partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
D.filter_trim
Remove points from the start and end of filter regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. filt : valid filter string or bool Which filter to trim. If True, applies to currently active filters.
latools/D_obj.py
def filter_trim(self, start=1, end=1, filt=True): """ Remove points from the start and end of filter regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. filt : valid filter string or bool Which filter to trim. If True, applies to currently active filters. """ params = locals() del(params['self']) f = self.filt.grab_filt(filt) nf = filters.trim(f, start, end) self.filt.add('trimmed_filter', nf, 'Trimmed Filter ({:.0f} start, {:.0f} end)'.format(start, end), params, setn=self.filt.maxset + 1)
def filter_trim(self, start=1, end=1, filt=True): """ Remove points from the start and end of filter regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. filt : valid filter string or bool Which filter to trim. If True, applies to currently active filters. """ params = locals() del(params['self']) f = self.filt.grab_filt(filt) nf = filters.trim(f, start, end) self.filt.add('trimmed_filter', nf, 'Trimmed Filter ({:.0f} start, {:.0f} end)'.format(start, end), params, setn=self.filt.maxset + 1)
[ "Remove", "points", "from", "the", "start", "and", "end", "of", "filter", "regions", ".", "Parameters", "----------", "start", "end", ":", "int", "The", "number", "of", "points", "to", "remove", "from", "the", "start", "and", "end", "of", "the", "specified", "filter", ".", "filt", ":", "valid", "filter", "string", "or", "bool", "Which", "filter", "to", "trim", ".", "If", "True", "applies", "to", "currently", "active", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1099-L1121
[ "def", "filter_trim", "(", "self", ",", "start", "=", "1", ",", "end", "=", "1", ",", "filt", "=", "True", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "f", "=", "self", ".", "filt", ".", "grab_filt", "(", "filt", ")", "nf", "=", "filters", ".", "trim", "(", "f", ",", "start", ",", "end", ")", "self", ".", "filt", ".", "add", "(", "'trimmed_filter'", ",", "nf", ",", "'Trimmed Filter ({:.0f} start, {:.0f} end)'", ".", "format", "(", "start", ",", "end", ")", ",", "params", ",", "setn", "=", "self", ".", "filt", ".", "maxset", "+", "1", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_exclude_downhole
Exclude all points down-hole (after) the first excluded data. Parameters ---------- threhold : int The minimum number of contiguous excluded data points that must exist before downhole exclusion occurs. file : valid filter string or bool Which filter to consider. If True, applies to currently active filters.
latools/D_obj.py
def filter_exclude_downhole(self, threshold, filt=True): """ Exclude all points down-hole (after) the first excluded data. Parameters ---------- threhold : int The minimum number of contiguous excluded data points that must exist before downhole exclusion occurs. file : valid filter string or bool Which filter to consider. If True, applies to currently active filters. """ f = self.filt.grab_filt(filt) if self.n == 1: nfilt = filters.exclude_downhole(f, threshold) else: nfilt = [] for i in range(self.n): nf = self.ns == i + 1 nfilt.append(filters.exclude_downhole(f & nf, threshold)) nfilt = np.apply_along_axis(any, 0, nfilt) self.filt.add(name='downhole_excl_{:.0f}'.format(threshold), filt=nfilt, info='Exclude data downhole of {:.0f} consecutive filtered points.'.format(threshold), params=(threshold, filt))
def filter_exclude_downhole(self, threshold, filt=True): """ Exclude all points down-hole (after) the first excluded data. Parameters ---------- threhold : int The minimum number of contiguous excluded data points that must exist before downhole exclusion occurs. file : valid filter string or bool Which filter to consider. If True, applies to currently active filters. """ f = self.filt.grab_filt(filt) if self.n == 1: nfilt = filters.exclude_downhole(f, threshold) else: nfilt = [] for i in range(self.n): nf = self.ns == i + 1 nfilt.append(filters.exclude_downhole(f & nf, threshold)) nfilt = np.apply_along_axis(any, 0, nfilt) self.filt.add(name='downhole_excl_{:.0f}'.format(threshold), filt=nfilt, info='Exclude data downhole of {:.0f} consecutive filtered points.'.format(threshold), params=(threshold, filt))
[ "Exclude", "all", "points", "down", "-", "hole", "(", "after", ")", "the", "first", "excluded", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1124-L1152
[ "def", "filter_exclude_downhole", "(", "self", ",", "threshold", ",", "filt", "=", "True", ")", ":", "f", "=", "self", ".", "filt", ".", "grab_filt", "(", "filt", ")", "if", "self", ".", "n", "==", "1", ":", "nfilt", "=", "filters", ".", "exclude_downhole", "(", "f", ",", "threshold", ")", "else", ":", "nfilt", "=", "[", "]", "for", "i", "in", "range", "(", "self", ".", "n", ")", ":", "nf", "=", "self", ".", "ns", "==", "i", "+", "1", "nfilt", ".", "append", "(", "filters", ".", "exclude_downhole", "(", "f", "&", "nf", ",", "threshold", ")", ")", "nfilt", "=", "np", ".", "apply_along_axis", "(", "any", ",", "0", ",", "nfilt", ")", "self", ".", "filt", ".", "add", "(", "name", "=", "'downhole_excl_{:.0f}'", ".", "format", "(", "threshold", ")", ",", "filt", "=", "nfilt", ",", "info", "=", "'Exclude data downhole of {:.0f} consecutive filtered points.'", ".", "format", "(", "threshold", ")", ",", "params", "=", "(", "threshold", ",", "filt", ")", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.signal_optimiser
Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None.
latools/D_obj.py
def signal_optimiser(self, analytes, min_points=5, threshold_mode='kde_first_max', threshold_mult=1., x_bias=0, weights=None, filt=True, mode='minimise'): """ Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. """ params = locals() del(params['self']) setn = self.filt.maxset + 1 if isinstance(analytes, str): analytes = [analytes] # get filter if filt is not False: ind = (self.filt.grab_filt(filt, analytes)) else: ind = np.full(self.Time.shape, True) errmsg = [] ofilt = [] self.opt = {} for i in range(self.n): nind = ind & (self.ns == i + 1) self.opt[i + 1], err = signal_optimiser(self, analytes=analytes, min_points=min_points, threshold_mode=threshold_mode, threshold_mult=threshold_mult, weights=weights, ind=nind, x_bias=x_bias, mode=mode) if err == '': ofilt.append(self.opt[i + 1].filt) else: errmsg.append(self.sample + '_{:.0f}: '.format(i + 1) + err) if len(ofilt) > 0: ofilt = np.apply_along_axis(any, 0, ofilt) name = 'optimise_' + '_'.join(analytes) self.filt.add(name=name, filt=ofilt, info="Optimisation filter to minimise " + ', '.join(analytes), params=params, setn=setn) if len(errmsg) > 0: return '\n'.join(errmsg) else: return ''
def signal_optimiser(self, analytes, min_points=5, threshold_mode='kde_first_max', threshold_mult=1., x_bias=0, weights=None, filt=True, mode='minimise'): """ Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. """ params = locals() del(params['self']) setn = self.filt.maxset + 1 if isinstance(analytes, str): analytes = [analytes] # get filter if filt is not False: ind = (self.filt.grab_filt(filt, analytes)) else: ind = np.full(self.Time.shape, True) errmsg = [] ofilt = [] self.opt = {} for i in range(self.n): nind = ind & (self.ns == i + 1) self.opt[i + 1], err = signal_optimiser(self, analytes=analytes, min_points=min_points, threshold_mode=threshold_mode, threshold_mult=threshold_mult, weights=weights, ind=nind, x_bias=x_bias, mode=mode) if err == '': ofilt.append(self.opt[i + 1].filt) else: errmsg.append(self.sample + '_{:.0f}: '.format(i + 1) + err) if len(ofilt) > 0: ofilt = np.apply_along_axis(any, 0, ofilt) name = 'optimise_' + '_'.join(analytes) self.filt.add(name=name, filt=ofilt, info="Optimisation filter to minimise " + ', '.join(analytes), params=params, setn=setn) if len(errmsg) > 0: return '\n'.join(errmsg) else: return ''
[ "Optimise", "data", "selection", "based", "on", "specified", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1156-L1252
[ "def", "signal_optimiser", "(", "self", ",", "analytes", ",", "min_points", "=", "5", ",", "threshold_mode", "=", "'kde_first_max'", ",", "threshold_mult", "=", "1.", ",", "x_bias", "=", "0", ",", "weights", "=", "None", ",", "filt", "=", "True", ",", "mode", "=", "'minimise'", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "setn", "=", "self", ".", "filt", ".", "maxset", "+", "1", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "# get filter", "if", "filt", "is", "not", "False", ":", "ind", "=", "(", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "analytes", ")", ")", "else", ":", "ind", "=", "np", ".", "full", "(", "self", ".", "Time", ".", "shape", ",", "True", ")", "errmsg", "=", "[", "]", "ofilt", "=", "[", "]", "self", ".", "opt", "=", "{", "}", "for", "i", "in", "range", "(", "self", ".", "n", ")", ":", "nind", "=", "ind", "&", "(", "self", ".", "ns", "==", "i", "+", "1", ")", "self", ".", "opt", "[", "i", "+", "1", "]", ",", "err", "=", "signal_optimiser", "(", "self", ",", "analytes", "=", "analytes", ",", "min_points", "=", "min_points", ",", "threshold_mode", "=", "threshold_mode", ",", "threshold_mult", "=", "threshold_mult", ",", "weights", "=", "weights", ",", "ind", "=", "nind", ",", "x_bias", "=", "x_bias", ",", "mode", "=", "mode", ")", "if", "err", "==", "''", ":", "ofilt", ".", "append", "(", "self", ".", "opt", "[", "i", "+", "1", "]", ".", "filt", ")", "else", ":", "errmsg", ".", "append", "(", "self", ".", "sample", "+", "'_{:.0f}: '", ".", "format", "(", "i", "+", "1", ")", "+", "err", ")", "if", "len", "(", "ofilt", ")", ">", "0", ":", "ofilt", "=", "np", ".", "apply_along_axis", "(", "any", ",", "0", ",", "ofilt", ")", "name", "=", "'optimise_'", "+", "'_'", ".", "join", "(", "analytes", ")", "self", ".", "filt", ".", "add", "(", "name", "=", "name", ",", "filt", "=", "ofilt", ",", "info", "=", "\"Optimisation filter to minimise \"", "+", "', '", ".", "join", "(", "analytes", ")", ",", "params", "=", "params", ",", "setn", "=", "setn", ")", "if", "len", "(", "errmsg", ")", ">", "0", ":", "return", "'\\n'", ".", "join", "(", "errmsg", ")", "else", ":", "return", "''" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.tplot
Plot analytes as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. figsize : tuple size of final figure. scale : str or None 'log' = plot data on log scale filt : bool, str or dict False: plot unfiltered data. True: plot filtered data over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict. Must contain all analytes plotted. Can use self.filt.keydict. ranges : bool show signal/background regions. stats : bool plot average and error of each trace, as specified by `stat` and `err`. stat : str average statistic to plot. err : str error statistic to plot. Returns ------- figure, axis
latools/D_obj.py
def tplot(self, analytes=None, figsize=[10, 4], scale='log', filt=None, ranges=False, stats=False, stat='nanmean', err='nanstd', focus_stage=None, err_envelope=False, ax=None): """ Plot analytes as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. figsize : tuple size of final figure. scale : str or None 'log' = plot data on log scale filt : bool, str or dict False: plot unfiltered data. True: plot filtered data over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict. Must contain all analytes plotted. Can use self.filt.keydict. ranges : bool show signal/background regions. stats : bool plot average and error of each trace, as specified by `stat` and `err`. stat : str average statistic to plot. err : str error statistic to plot. Returns ------- figure, axis """ return plot.tplot(self=self, analytes=analytes, figsize=figsize, scale=scale, filt=filt, ranges=ranges, stats=stats, stat=stat, err=err, focus_stage=focus_stage, err_envelope=err_envelope, ax=ax)
def tplot(self, analytes=None, figsize=[10, 4], scale='log', filt=None, ranges=False, stats=False, stat='nanmean', err='nanstd', focus_stage=None, err_envelope=False, ax=None): """ Plot analytes as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. figsize : tuple size of final figure. scale : str or None 'log' = plot data on log scale filt : bool, str or dict False: plot unfiltered data. True: plot filtered data over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict. Must contain all analytes plotted. Can use self.filt.keydict. ranges : bool show signal/background regions. stats : bool plot average and error of each trace, as specified by `stat` and `err`. stat : str average statistic to plot. err : str error statistic to plot. Returns ------- figure, axis """ return plot.tplot(self=self, analytes=analytes, figsize=figsize, scale=scale, filt=filt, ranges=ranges, stats=stats, stat=stat, err=err, focus_stage=focus_stage, err_envelope=err_envelope, ax=ax)
[ "Plot", "analytes", "as", "a", "function", "of", "Time", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1274-L1312
[ "def", "tplot", "(", "self", ",", "analytes", "=", "None", ",", "figsize", "=", "[", "10", ",", "4", "]", ",", "scale", "=", "'log'", ",", "filt", "=", "None", ",", "ranges", "=", "False", ",", "stats", "=", "False", ",", "stat", "=", "'nanmean'", ",", "err", "=", "'nanstd'", ",", "focus_stage", "=", "None", ",", "err_envelope", "=", "False", ",", "ax", "=", "None", ")", ":", "return", "plot", ".", "tplot", "(", "self", "=", "self", ",", "analytes", "=", "analytes", ",", "figsize", "=", "figsize", ",", "scale", "=", "scale", ",", "filt", "=", "filt", ",", "ranges", "=", "ranges", ",", "stats", "=", "stats", ",", "stat", "=", "stat", ",", "err", "=", "err", ",", "focus_stage", "=", "focus_stage", ",", "err_envelope", "=", "err_envelope", ",", "ax", "=", "ax", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.gplot
Plot analytes gradients as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. win : int The window over which to calculate the rolling gradient. figsize : tuple size of final figure. ranges : bool show signal/background regions. Returns ------- figure, axis
latools/D_obj.py
def gplot(self, analytes=None, win=5, figsize=[10, 4], ranges=False, focus_stage=None, ax=None): """ Plot analytes gradients as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. win : int The window over which to calculate the rolling gradient. figsize : tuple size of final figure. ranges : bool show signal/background regions. Returns ------- figure, axis """ return plot.gplot(self=self, analytes=analytes, win=win, figsize=figsize, ranges=ranges, focus_stage=focus_stage, ax=ax)
def gplot(self, analytes=None, win=5, figsize=[10, 4], ranges=False, focus_stage=None, ax=None): """ Plot analytes gradients as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. win : int The window over which to calculate the rolling gradient. figsize : tuple size of final figure. ranges : bool show signal/background regions. Returns ------- figure, axis """ return plot.gplot(self=self, analytes=analytes, win=win, figsize=figsize, ranges=ranges, focus_stage=focus_stage, ax=ax)
[ "Plot", "analytes", "gradients", "as", "a", "function", "of", "Time", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1315-L1338
[ "def", "gplot", "(", "self", ",", "analytes", "=", "None", ",", "win", "=", "5", ",", "figsize", "=", "[", "10", ",", "4", "]", ",", "ranges", "=", "False", ",", "focus_stage", "=", "None", ",", "ax", "=", "None", ")", ":", "return", "plot", ".", "gplot", "(", "self", "=", "self", ",", "analytes", "=", "analytes", ",", "win", "=", "win", ",", "figsize", "=", "figsize", ",", "ranges", "=", "ranges", ",", "focus_stage", "=", "focus_stage", ",", "ax", "=", "ax", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.crossplot
Plot analytes against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. Returns ------- (fig, axes)
latools/D_obj.py
def crossplot(self, analytes=None, bins=25, lognorm=True, filt=True, colourful=True, figsize=(12, 12)): """ Plot analytes against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] if figsize[0] < 1.5 * len(analytes): figsize = [1.5 * len(analytes)] * 2 numvars = len(analytes) fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(12, 12)) fig.subplots_adjust(hspace=0.05, wspace=0.05) for ax in axes.flat: ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if ax.is_first_col(): ax.yaxis.set_ticks_position('left') if ax.is_last_col(): ax.yaxis.set_ticks_position('right') if ax.is_first_row(): ax.xaxis.set_ticks_position('top') if ax.is_last_row(): ax.xaxis.set_ticks_position('bottom') # set up colour scales if colourful: cmlist = ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'] else: cmlist = ['Greys'] while len(cmlist) < len(analytes): cmlist *= 2 udict = {} for i, j in zip(*np.triu_indices_from(axes, k=1)): for x, y in [(i, j), (j, i)]: # set unit multipliers mx, ux = unitpicker(np.nanmean(self.focus[analytes[x]]), denominator=self.internal_standard, focus_stage=self.focus_stage) my, uy = unitpicker(np.nanmean(self.focus[analytes[y]]), denominator=self.internal_standard, focus_stage=self.focus_stage) udict[analytes[x]] = (x, ux) # get filter xd = nominal_values(self.focus[analytes[x]]) yd = nominal_values(self.focus[analytes[y]]) ind = (self.filt.grab_filt(filt, analytes[x]) & self.filt.grab_filt(filt, analytes[y]) & ~np.isnan(xd) & ~np.isnan(yd)) # make plot pi = xd[ind] * mx pj = yd[ind] * my # determine normalisation shceme if lognorm: norm = mpl.colors.LogNorm() else: norm = None # draw plots axes[i, j].hist2d(pj, pi, bins, norm=norm, cmap=plt.get_cmap(cmlist[i])) axes[j, i].hist2d(pi, pj, bins, norm=norm, cmap=plt.get_cmap(cmlist[j])) axes[x, y].set_ylim([pi.min(), pi.max()]) axes[x, y].set_xlim([pj.min(), pj.max()]) # diagonal labels for a, (i, u) in udict.items(): axes[i, i].annotate(a + '\n' + u, (0.5, 0.5), xycoords='axes fraction', ha='center', va='center') # switch on alternating axes for i, j in zip(range(numvars), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) for label in axes[j, i].get_xticklabels(): label.set_rotation(90) axes[i, j].yaxis.set_visible(True) axes[0, 0].set_title(self.sample, weight='bold', x=0.05, ha='left') return fig, axes
def crossplot(self, analytes=None, bins=25, lognorm=True, filt=True, colourful=True, figsize=(12, 12)): """ Plot analytes against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] if figsize[0] < 1.5 * len(analytes): figsize = [1.5 * len(analytes)] * 2 numvars = len(analytes) fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(12, 12)) fig.subplots_adjust(hspace=0.05, wspace=0.05) for ax in axes.flat: ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if ax.is_first_col(): ax.yaxis.set_ticks_position('left') if ax.is_last_col(): ax.yaxis.set_ticks_position('right') if ax.is_first_row(): ax.xaxis.set_ticks_position('top') if ax.is_last_row(): ax.xaxis.set_ticks_position('bottom') # set up colour scales if colourful: cmlist = ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'] else: cmlist = ['Greys'] while len(cmlist) < len(analytes): cmlist *= 2 udict = {} for i, j in zip(*np.triu_indices_from(axes, k=1)): for x, y in [(i, j), (j, i)]: # set unit multipliers mx, ux = unitpicker(np.nanmean(self.focus[analytes[x]]), denominator=self.internal_standard, focus_stage=self.focus_stage) my, uy = unitpicker(np.nanmean(self.focus[analytes[y]]), denominator=self.internal_standard, focus_stage=self.focus_stage) udict[analytes[x]] = (x, ux) # get filter xd = nominal_values(self.focus[analytes[x]]) yd = nominal_values(self.focus[analytes[y]]) ind = (self.filt.grab_filt(filt, analytes[x]) & self.filt.grab_filt(filt, analytes[y]) & ~np.isnan(xd) & ~np.isnan(yd)) # make plot pi = xd[ind] * mx pj = yd[ind] * my # determine normalisation shceme if lognorm: norm = mpl.colors.LogNorm() else: norm = None # draw plots axes[i, j].hist2d(pj, pi, bins, norm=norm, cmap=plt.get_cmap(cmlist[i])) axes[j, i].hist2d(pi, pj, bins, norm=norm, cmap=plt.get_cmap(cmlist[j])) axes[x, y].set_ylim([pi.min(), pi.max()]) axes[x, y].set_xlim([pj.min(), pj.max()]) # diagonal labels for a, (i, u) in udict.items(): axes[i, i].annotate(a + '\n' + u, (0.5, 0.5), xycoords='axes fraction', ha='center', va='center') # switch on alternating axes for i, j in zip(range(numvars), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) for label in axes[j, i].get_xticklabels(): label.set_rotation(90) axes[i, j].yaxis.set_visible(True) axes[0, 0].set_title(self.sample, weight='bold', x=0.05, ha='left') return fig, axes
[ "Plot", "analytes", "against", "each", "other", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1392-L1507
[ "def", "crossplot", "(", "self", ",", "analytes", "=", "None", ",", "bins", "=", "25", ",", "lognorm", "=", "True", ",", "filt", "=", "True", ",", "colourful", "=", "True", ",", "figsize", "=", "(", "12", ",", "12", ")", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "self", ".", "focus_stage", "in", "[", "'ratio'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "self", ".", "internal_standard", "not", "in", "a", "]", "if", "figsize", "[", "0", "]", "<", "1.5", "*", "len", "(", "analytes", ")", ":", "figsize", "=", "[", "1.5", "*", "len", "(", "analytes", ")", "]", "*", "2", "numvars", "=", "len", "(", "analytes", ")", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "nrows", "=", "numvars", ",", "ncols", "=", "numvars", ",", "figsize", "=", "(", "12", ",", "12", ")", ")", "fig", ".", "subplots_adjust", "(", "hspace", "=", "0.05", ",", "wspace", "=", "0.05", ")", "for", "ax", "in", "axes", ".", "flat", ":", "ax", ".", "xaxis", ".", "set_visible", "(", "False", ")", "ax", ".", "yaxis", ".", "set_visible", "(", "False", ")", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'left'", ")", "if", "ax", ".", "is_last_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'right'", ")", "if", "ax", ".", "is_first_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'top'", ")", "if", "ax", ".", "is_last_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'bottom'", ")", "# set up colour scales", "if", "colourful", ":", "cmlist", "=", "[", "'Blues'", ",", "'BuGn'", ",", "'BuPu'", ",", "'GnBu'", ",", "'Greens'", ",", "'Greys'", ",", "'Oranges'", ",", "'OrRd'", ",", "'PuBu'", ",", "'PuBuGn'", ",", "'PuRd'", ",", "'Purples'", ",", "'RdPu'", ",", "'Reds'", ",", "'YlGn'", ",", "'YlGnBu'", ",", "'YlOrBr'", ",", "'YlOrRd'", "]", "else", ":", "cmlist", "=", "[", "'Greys'", "]", "while", "len", "(", "cmlist", ")", "<", "len", "(", "analytes", ")", ":", "cmlist", "*=", "2", "udict", "=", "{", "}", "for", "i", ",", "j", "in", "zip", "(", "*", "np", ".", "triu_indices_from", "(", "axes", ",", "k", "=", "1", ")", ")", ":", "for", "x", ",", "y", "in", "[", "(", "i", ",", "j", ")", ",", "(", "j", ",", "i", ")", "]", ":", "# set unit multipliers", "mx", ",", "ux", "=", "unitpicker", "(", "np", ".", "nanmean", "(", "self", ".", "focus", "[", "analytes", "[", "x", "]", "]", ")", ",", "denominator", "=", "self", ".", "internal_standard", ",", "focus_stage", "=", "self", ".", "focus_stage", ")", "my", ",", "uy", "=", "unitpicker", "(", "np", ".", "nanmean", "(", "self", ".", "focus", "[", "analytes", "[", "y", "]", "]", ")", ",", "denominator", "=", "self", ".", "internal_standard", ",", "focus_stage", "=", "self", ".", "focus_stage", ")", "udict", "[", "analytes", "[", "x", "]", "]", "=", "(", "x", ",", "ux", ")", "# get filter", "xd", "=", "nominal_values", "(", "self", ".", "focus", "[", "analytes", "[", "x", "]", "]", ")", "yd", "=", "nominal_values", "(", "self", ".", "focus", "[", "analytes", "[", "y", "]", "]", ")", "ind", "=", "(", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "analytes", "[", "x", "]", ")", "&", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "analytes", "[", "y", "]", ")", "&", "~", "np", ".", "isnan", "(", "xd", ")", "&", "~", "np", ".", "isnan", "(", "yd", ")", ")", "# make plot", "pi", "=", "xd", "[", "ind", "]", "*", "mx", "pj", "=", "yd", "[", "ind", "]", "*", "my", "# determine normalisation shceme", "if", "lognorm", ":", "norm", "=", "mpl", ".", "colors", ".", "LogNorm", "(", ")", "else", ":", "norm", "=", "None", "# draw plots", "axes", "[", "i", ",", "j", "]", ".", "hist2d", "(", "pj", ",", "pi", ",", "bins", ",", "norm", "=", "norm", ",", "cmap", "=", "plt", ".", "get_cmap", "(", "cmlist", "[", "i", "]", ")", ")", "axes", "[", "j", ",", "i", "]", ".", "hist2d", "(", "pi", ",", "pj", ",", "bins", ",", "norm", "=", "norm", ",", "cmap", "=", "plt", ".", "get_cmap", "(", "cmlist", "[", "j", "]", ")", ")", "axes", "[", "x", ",", "y", "]", ".", "set_ylim", "(", "[", "pi", ".", "min", "(", ")", ",", "pi", ".", "max", "(", ")", "]", ")", "axes", "[", "x", ",", "y", "]", ".", "set_xlim", "(", "[", "pj", ".", "min", "(", ")", ",", "pj", ".", "max", "(", ")", "]", ")", "# diagonal labels", "for", "a", ",", "(", "i", ",", "u", ")", "in", "udict", ".", "items", "(", ")", ":", "axes", "[", "i", ",", "i", "]", ".", "annotate", "(", "a", "+", "'\\n'", "+", "u", ",", "(", "0.5", ",", "0.5", ")", ",", "xycoords", "=", "'axes fraction'", ",", "ha", "=", "'center'", ",", "va", "=", "'center'", ")", "# switch on alternating axes", "for", "i", ",", "j", "in", "zip", "(", "range", "(", "numvars", ")", ",", "itertools", ".", "cycle", "(", "(", "-", "1", ",", "0", ")", ")", ")", ":", "axes", "[", "j", ",", "i", "]", ".", "xaxis", ".", "set_visible", "(", "True", ")", "for", "label", "in", "axes", "[", "j", ",", "i", "]", ".", "get_xticklabels", "(", ")", ":", "label", ".", "set_rotation", "(", "90", ")", "axes", "[", "i", ",", "j", "]", ".", "yaxis", ".", "set_visible", "(", "True", ")", "axes", "[", "0", ",", "0", "]", ".", "set_title", "(", "self", ".", "sample", ",", "weight", "=", "'bold'", ",", "x", "=", "0.05", ",", "ha", "=", "'left'", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.crossplot_filters
Plot the results of a group of filters in a crossplot. Parameters ---------- filter_string : str A string that identifies a group of filters. e.g. 'test' would plot all filters with 'test' in the name. analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. Returns ------- fig, axes objects
latools/D_obj.py
def crossplot_filters(self, filter_string, analytes=None): """ Plot the results of a group of filters in a crossplot. Parameters ---------- filter_string : str A string that identifies a group of filters. e.g. 'test' would plot all filters with 'test' in the name. analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. Returns ------- fig, axes objects """ if analytes is None: analytes = [a for a in self.analytes if 'Ca' not in a] # isolate relevant filters filts = self.filt.components.keys() cfilts = [f for f in filts if filter_string in f] flab = re.compile('.*_(.*)$') # regex to get cluster number # set up axes numvars = len(analytes) fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(12, 12)) fig.subplots_adjust(hspace=0.05, wspace=0.05) for ax in axes.flat: ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if ax.is_first_col(): ax.yaxis.set_ticks_position('left') if ax.is_last_col(): ax.yaxis.set_ticks_position('right') if ax.is_first_row(): ax.xaxis.set_ticks_position('top') if ax.is_last_row(): ax.xaxis.set_ticks_position('bottom') # isolate nominal_values for all analytes focus = {k: nominal_values(v) for k, v in self.focus.items()} # determine units for all analytes udict = {a: unitpicker(np.nanmean(focus[a]), denominator=self.internal_standard, focus_stage=self.focus_stage) for a in analytes} # determine ranges for all analytes rdict = {a: (np.nanmin(focus[a] * udict[a][0]), np.nanmax(focus[a] * udict[a][0])) for a in analytes} for f in cfilts: ind = self.filt.grab_filt(f) focus = {k: nominal_values(v[ind]) for k, v in self.focus.items()} lab = flab.match(f).groups()[0] axes[0, 0].scatter([], [], s=10, label=lab) for i, j in zip(*np.triu_indices_from(axes, k=1)): # get analytes ai = analytes[i] aj = analytes[j] # remove nan, apply multipliers pi = focus[ai][~np.isnan(focus[ai])] * udict[ai][0] pj = focus[aj][~np.isnan(focus[aj])] * udict[aj][0] # make plot axes[i, j].scatter(pj, pi, alpha=0.4, s=10, lw=0) axes[j, i].scatter(pi, pj, alpha=0.4, s=10, lw=0) axes[i, j].set_ylim(*rdict[ai]) axes[i, j].set_xlim(*rdict[aj]) axes[j, i].set_ylim(*rdict[aj]) axes[j, i].set_xlim(*rdict[ai]) # diagonal labels for a, n in zip(analytes, np.arange(len(analytes))): axes[n, n].annotate(a + '\n' + udict[a][1], (0.5, 0.5), xycoords='axes fraction', ha='center', va='center') axes[n, n].set_xlim(*rdict[a]) axes[n, n].set_ylim(*rdict[a]) axes[0, 0].legend(loc='upper left', title=filter_string, fontsize=8) # switch on alternating axes for i, j in zip(range(numvars), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) for label in axes[j, i].get_xticklabels(): label.set_rotation(90) axes[i, j].yaxis.set_visible(True) return fig, axes
def crossplot_filters(self, filter_string, analytes=None): """ Plot the results of a group of filters in a crossplot. Parameters ---------- filter_string : str A string that identifies a group of filters. e.g. 'test' would plot all filters with 'test' in the name. analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. Returns ------- fig, axes objects """ if analytes is None: analytes = [a for a in self.analytes if 'Ca' not in a] # isolate relevant filters filts = self.filt.components.keys() cfilts = [f for f in filts if filter_string in f] flab = re.compile('.*_(.*)$') # regex to get cluster number # set up axes numvars = len(analytes) fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(12, 12)) fig.subplots_adjust(hspace=0.05, wspace=0.05) for ax in axes.flat: ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if ax.is_first_col(): ax.yaxis.set_ticks_position('left') if ax.is_last_col(): ax.yaxis.set_ticks_position('right') if ax.is_first_row(): ax.xaxis.set_ticks_position('top') if ax.is_last_row(): ax.xaxis.set_ticks_position('bottom') # isolate nominal_values for all analytes focus = {k: nominal_values(v) for k, v in self.focus.items()} # determine units for all analytes udict = {a: unitpicker(np.nanmean(focus[a]), denominator=self.internal_standard, focus_stage=self.focus_stage) for a in analytes} # determine ranges for all analytes rdict = {a: (np.nanmin(focus[a] * udict[a][0]), np.nanmax(focus[a] * udict[a][0])) for a in analytes} for f in cfilts: ind = self.filt.grab_filt(f) focus = {k: nominal_values(v[ind]) for k, v in self.focus.items()} lab = flab.match(f).groups()[0] axes[0, 0].scatter([], [], s=10, label=lab) for i, j in zip(*np.triu_indices_from(axes, k=1)): # get analytes ai = analytes[i] aj = analytes[j] # remove nan, apply multipliers pi = focus[ai][~np.isnan(focus[ai])] * udict[ai][0] pj = focus[aj][~np.isnan(focus[aj])] * udict[aj][0] # make plot axes[i, j].scatter(pj, pi, alpha=0.4, s=10, lw=0) axes[j, i].scatter(pi, pj, alpha=0.4, s=10, lw=0) axes[i, j].set_ylim(*rdict[ai]) axes[i, j].set_xlim(*rdict[aj]) axes[j, i].set_ylim(*rdict[aj]) axes[j, i].set_xlim(*rdict[ai]) # diagonal labels for a, n in zip(analytes, np.arange(len(analytes))): axes[n, n].annotate(a + '\n' + udict[a][1], (0.5, 0.5), xycoords='axes fraction', ha='center', va='center') axes[n, n].set_xlim(*rdict[a]) axes[n, n].set_ylim(*rdict[a]) axes[0, 0].legend(loc='upper left', title=filter_string, fontsize=8) # switch on alternating axes for i, j in zip(range(numvars), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) for label in axes[j, i].get_xticklabels(): label.set_rotation(90) axes[i, j].yaxis.set_visible(True) return fig, axes
[ "Plot", "the", "results", "of", "a", "group", "of", "filters", "in", "a", "crossplot", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1509-L1606
[ "def", "crossplot_filters", "(", "self", ",", "filter_string", ",", "analytes", "=", "None", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "[", "a", "for", "a", "in", "self", ".", "analytes", "if", "'Ca'", "not", "in", "a", "]", "# isolate relevant filters", "filts", "=", "self", ".", "filt", ".", "components", ".", "keys", "(", ")", "cfilts", "=", "[", "f", "for", "f", "in", "filts", "if", "filter_string", "in", "f", "]", "flab", "=", "re", ".", "compile", "(", "'.*_(.*)$'", ")", "# regex to get cluster number", "# set up axes", "numvars", "=", "len", "(", "analytes", ")", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "nrows", "=", "numvars", ",", "ncols", "=", "numvars", ",", "figsize", "=", "(", "12", ",", "12", ")", ")", "fig", ".", "subplots_adjust", "(", "hspace", "=", "0.05", ",", "wspace", "=", "0.05", ")", "for", "ax", "in", "axes", ".", "flat", ":", "ax", ".", "xaxis", ".", "set_visible", "(", "False", ")", "ax", ".", "yaxis", ".", "set_visible", "(", "False", ")", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'left'", ")", "if", "ax", ".", "is_last_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'right'", ")", "if", "ax", ".", "is_first_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'top'", ")", "if", "ax", ".", "is_last_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'bottom'", ")", "# isolate nominal_values for all analytes", "focus", "=", "{", "k", ":", "nominal_values", "(", "v", ")", "for", "k", ",", "v", "in", "self", ".", "focus", ".", "items", "(", ")", "}", "# determine units for all analytes", "udict", "=", "{", "a", ":", "unitpicker", "(", "np", ".", "nanmean", "(", "focus", "[", "a", "]", ")", ",", "denominator", "=", "self", ".", "internal_standard", ",", "focus_stage", "=", "self", ".", "focus_stage", ")", "for", "a", "in", "analytes", "}", "# determine ranges for all analytes", "rdict", "=", "{", "a", ":", "(", "np", ".", "nanmin", "(", "focus", "[", "a", "]", "*", "udict", "[", "a", "]", "[", "0", "]", ")", ",", "np", ".", "nanmax", "(", "focus", "[", "a", "]", "*", "udict", "[", "a", "]", "[", "0", "]", ")", ")", "for", "a", "in", "analytes", "}", "for", "f", "in", "cfilts", ":", "ind", "=", "self", ".", "filt", ".", "grab_filt", "(", "f", ")", "focus", "=", "{", "k", ":", "nominal_values", "(", "v", "[", "ind", "]", ")", "for", "k", ",", "v", "in", "self", ".", "focus", ".", "items", "(", ")", "}", "lab", "=", "flab", ".", "match", "(", "f", ")", ".", "groups", "(", ")", "[", "0", "]", "axes", "[", "0", ",", "0", "]", ".", "scatter", "(", "[", "]", ",", "[", "]", ",", "s", "=", "10", ",", "label", "=", "lab", ")", "for", "i", ",", "j", "in", "zip", "(", "*", "np", ".", "triu_indices_from", "(", "axes", ",", "k", "=", "1", ")", ")", ":", "# get analytes", "ai", "=", "analytes", "[", "i", "]", "aj", "=", "analytes", "[", "j", "]", "# remove nan, apply multipliers", "pi", "=", "focus", "[", "ai", "]", "[", "~", "np", ".", "isnan", "(", "focus", "[", "ai", "]", ")", "]", "*", "udict", "[", "ai", "]", "[", "0", "]", "pj", "=", "focus", "[", "aj", "]", "[", "~", "np", ".", "isnan", "(", "focus", "[", "aj", "]", ")", "]", "*", "udict", "[", "aj", "]", "[", "0", "]", "# make plot", "axes", "[", "i", ",", "j", "]", ".", "scatter", "(", "pj", ",", "pi", ",", "alpha", "=", "0.4", ",", "s", "=", "10", ",", "lw", "=", "0", ")", "axes", "[", "j", ",", "i", "]", ".", "scatter", "(", "pi", ",", "pj", ",", "alpha", "=", "0.4", ",", "s", "=", "10", ",", "lw", "=", "0", ")", "axes", "[", "i", ",", "j", "]", ".", "set_ylim", "(", "*", "rdict", "[", "ai", "]", ")", "axes", "[", "i", ",", "j", "]", ".", "set_xlim", "(", "*", "rdict", "[", "aj", "]", ")", "axes", "[", "j", ",", "i", "]", ".", "set_ylim", "(", "*", "rdict", "[", "aj", "]", ")", "axes", "[", "j", ",", "i", "]", ".", "set_xlim", "(", "*", "rdict", "[", "ai", "]", ")", "# diagonal labels", "for", "a", ",", "n", "in", "zip", "(", "analytes", ",", "np", ".", "arange", "(", "len", "(", "analytes", ")", ")", ")", ":", "axes", "[", "n", ",", "n", "]", ".", "annotate", "(", "a", "+", "'\\n'", "+", "udict", "[", "a", "]", "[", "1", "]", ",", "(", "0.5", ",", "0.5", ")", ",", "xycoords", "=", "'axes fraction'", ",", "ha", "=", "'center'", ",", "va", "=", "'center'", ")", "axes", "[", "n", ",", "n", "]", ".", "set_xlim", "(", "*", "rdict", "[", "a", "]", ")", "axes", "[", "n", ",", "n", "]", ".", "set_ylim", "(", "*", "rdict", "[", "a", "]", ")", "axes", "[", "0", ",", "0", "]", ".", "legend", "(", "loc", "=", "'upper left'", ",", "title", "=", "filter_string", ",", "fontsize", "=", "8", ")", "# switch on alternating axes", "for", "i", ",", "j", "in", "zip", "(", "range", "(", "numvars", ")", ",", "itertools", ".", "cycle", "(", "(", "-", "1", ",", "0", ")", ")", ")", ":", "axes", "[", "j", ",", "i", "]", ".", "xaxis", ".", "set_visible", "(", "True", ")", "for", "label", "in", "axes", "[", "j", ",", "i", "]", ".", "get_xticklabels", "(", ")", ":", "label", ".", "set_rotation", "(", "90", ")", "axes", "[", "i", ",", "j", "]", ".", "yaxis", ".", "set_visible", "(", "True", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_report
Visualise effect of data filters. Parameters ---------- filt : str Exact or partial name of filter to plot. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name will be plotted. Defaults to all filters. analyte : str Name of analyte to plot. save : str file path to save the plot Returns ------- (fig, axes)
latools/D_obj.py
def filter_report(self, filt=None, analytes=None, savedir=None, nbin=5): """ Visualise effect of data filters. Parameters ---------- filt : str Exact or partial name of filter to plot. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name will be plotted. Defaults to all filters. analyte : str Name of analyte to plot. save : str file path to save the plot Returns ------- (fig, axes) """ return plot.filter_report(self, filt, analytes, savedir, nbin)
def filter_report(self, filt=None, analytes=None, savedir=None, nbin=5): """ Visualise effect of data filters. Parameters ---------- filt : str Exact or partial name of filter to plot. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name will be plotted. Defaults to all filters. analyte : str Name of analyte to plot. save : str file path to save the plot Returns ------- (fig, axes) """ return plot.filter_report(self, filt, analytes, savedir, nbin)
[ "Visualise", "effect", "of", "data", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1615-L1635
[ "def", "filter_report", "(", "self", ",", "filt", "=", "None", ",", "analytes", "=", "None", ",", "savedir", "=", "None", ",", "nbin", "=", "5", ")", ":", "return", "plot", ".", "filter_report", "(", "self", ",", "filt", ",", "analytes", ",", "savedir", ",", "nbin", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.get_params
Returns paramters used to process data. Returns ------- dict dict of analysis parameters
latools/D_obj.py
def get_params(self): """ Returns paramters used to process data. Returns ------- dict dict of analysis parameters """ outputs = ['sample', 'ratio_params', 'despike_params', 'autorange_params', 'bkgcorrect_params'] out = {} for o in outputs: out[o] = getattr(self, o) out['filter_params'] = self.filt.params out['filter_sequence'] = self.filt.sequence out['filter_used'] = self.filt.make_keydict() return out
def get_params(self): """ Returns paramters used to process data. Returns ------- dict dict of analysis parameters """ outputs = ['sample', 'ratio_params', 'despike_params', 'autorange_params', 'bkgcorrect_params'] out = {} for o in outputs: out[o] = getattr(self, o) out['filter_params'] = self.filt.params out['filter_sequence'] = self.filt.sequence out['filter_used'] = self.filt.make_keydict() return out
[ "Returns", "paramters", "used", "to", "process", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1638-L1661
[ "def", "get_params", "(", "self", ")", ":", "outputs", "=", "[", "'sample'", ",", "'ratio_params'", ",", "'despike_params'", ",", "'autorange_params'", ",", "'bkgcorrect_params'", "]", "out", "=", "{", "}", "for", "o", "in", "outputs", ":", "out", "[", "o", "]", "=", "getattr", "(", "self", ",", "o", ")", "out", "[", "'filter_params'", "]", "=", "self", ".", "filt", ".", "params", "out", "[", "'filter_sequence'", "]", "=", "self", ".", "filt", ".", "sequence", "out", "[", "'filter_used'", "]", "=", "self", ".", "filt", ".", "make_keydict", "(", ")", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
tplot
Plot analytes as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. figsize : tuple size of final figure. scale : str or None 'log' = plot data on log scale filt : bool, str or dict False: plot unfiltered data. True: plot filtered data over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict. Must contain all analytes plotted. Can use self.filt.keydict. ranges : bool show signal/background regions. stats : bool plot average and error of each trace, as specified by `stat` and `err`. stat : str average statistic to plot. err : str error statistic to plot. Returns ------- figure, axis
latools/helpers/plot.py
def tplot(self, analytes=None, figsize=[10, 4], scale='log', filt=None, ranges=False, stats=False, stat='nanmean', err='nanstd', focus_stage=None, err_envelope=False, ax=None): """ Plot analytes as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. figsize : tuple size of final figure. scale : str or None 'log' = plot data on log scale filt : bool, str or dict False: plot unfiltered data. True: plot filtered data over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict. Must contain all analytes plotted. Can use self.filt.keydict. ranges : bool show signal/background regions. stats : bool plot average and error of each trace, as specified by `stat` and `err`. stat : str average statistic to plot. err : str error statistic to plot. Returns ------- figure, axis """ if type(analytes) is str: analytes = [analytes] if analytes is None: analytes = self.analytes if focus_stage is None: focus_stage = self.focus_stage # exclude internal standard from analytes if focus_stage in ['ratios', 'calibrated']: analytes = [a for a in analytes if a != self.internal_standard] if ax is None: fig = plt.figure(figsize=figsize) ax = fig.add_axes([.1, .12, .77, .8]) ret = True else: fig = ax.figure ret = False for a in analytes: x = self.Time y, yerr = unpack_uncertainties(self.data[focus_stage][a]) if scale is 'log': ax.set_yscale('log') y[y == 0] = np.nan if filt: ind = self.filt.grab_filt(filt, a) xf = x.copy() yf = y.copy() yerrf = yerr.copy() if any(~ind): xf[~ind] = np.nan yf[~ind] = np.nan yerrf[~ind] = np.nan if any(~ind): ax.plot(x, y, color=self.cmap[a], alpha=.2, lw=0.6) ax.plot(xf, yf, color=self.cmap[a], label=a) if err_envelope: ax.fill_between(xf, yf - yerrf, yf + yerrf, color=self.cmap[a], alpha=0.2, zorder=-1) else: ax.plot(x, y, color=self.cmap[a], label=a) if err_envelope: ax.fill_between(x, y - yerr, y + yerr, color=self.cmap[a], alpha=0.2, zorder=-1) # Plot averages and error envelopes if stats and hasattr(self, 'stats'): warnings.warn('\nStatistic plotting is broken.\nCheck progress here: https://github.com/oscarbranson/latools/issues/18') pass # sts = self.stats[sig][0].size # if sts > 1: # for n in np.arange(self.n): # n_ind = ind & (self.ns == n + 1) # if sum(n_ind) > 2: # x = [self.Time[n_ind][0], self.Time[n_ind][-1]] # y = [self.stats[sig][self.stats['analytes'] == a][0][n]] * 2 # yp = ([self.stats[sig][self.stats['analytes'] == a][0][n] + # self.stats[err][self.stats['analytes'] == a][0][n]] * 2) # yn = ([self.stats[sig][self.stats['analytes'] == a][0][n] - # self.stats[err][self.stats['analytes'] == a][0][n]] * 2) # ax.plot(x, y, color=self.cmap[a], lw=2) # ax.fill_between(x + x[::-1], yp + yn, # color=self.cmap[a], alpha=0.4, # linewidth=0) # else: # x = [self.Time[0], self.Time[-1]] # y = [self.stats[sig][self.stats['analytes'] == a][0]] * 2 # yp = ([self.stats[sig][self.stats['analytes'] == a][0] + # self.stats[err][self.stats['analytes'] == a][0]] * 2) # yn = ([self.stats[sig][self.stats['analytes'] == a][0] - # self.stats[err][self.stats['analytes'] == a][0]] * 2) # ax.plot(x, y, color=self.cmap[a], lw=2) # ax.fill_between(x + x[::-1], yp + yn, color=self.cmap[a], # alpha=0.4, linewidth=0) if ranges: for lims in self.bkgrng: ax.axvspan(*lims, color='k', alpha=0.1, zorder=-1) for lims in self.sigrng: ax.axvspan(*lims, color='r', alpha=0.1, zorder=-1) ax.text(0.01, 0.99, self.sample + ' : ' + focus_stage, transform=ax.transAxes, ha='left', va='top') ax.set_xlabel('Time (s)') ax.set_xlim(np.nanmin(x), np.nanmax(x)) # y label ud = {'rawdata': 'counts', 'despiked': 'counts', 'bkgsub': 'background corrected counts', 'ratios': 'counts/{:s} count', 'calibrated': 'mol/mol {:s}'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) ax.set_ylabel(ud[focus_stage]) # if interactive: # ax.legend() # plugins.connect(fig, plugins.MousePosition(fontsize=14)) # display.clear_output(wait=True) # display.display(fig) # input('Press [Return] when finished.') # else: ax.legend(bbox_to_anchor=(1.15, 1)) if ret: return fig, ax
def tplot(self, analytes=None, figsize=[10, 4], scale='log', filt=None, ranges=False, stats=False, stat='nanmean', err='nanstd', focus_stage=None, err_envelope=False, ax=None): """ Plot analytes as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. figsize : tuple size of final figure. scale : str or None 'log' = plot data on log scale filt : bool, str or dict False: plot unfiltered data. True: plot filtered data over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict. Must contain all analytes plotted. Can use self.filt.keydict. ranges : bool show signal/background regions. stats : bool plot average and error of each trace, as specified by `stat` and `err`. stat : str average statistic to plot. err : str error statistic to plot. Returns ------- figure, axis """ if type(analytes) is str: analytes = [analytes] if analytes is None: analytes = self.analytes if focus_stage is None: focus_stage = self.focus_stage # exclude internal standard from analytes if focus_stage in ['ratios', 'calibrated']: analytes = [a for a in analytes if a != self.internal_standard] if ax is None: fig = plt.figure(figsize=figsize) ax = fig.add_axes([.1, .12, .77, .8]) ret = True else: fig = ax.figure ret = False for a in analytes: x = self.Time y, yerr = unpack_uncertainties(self.data[focus_stage][a]) if scale is 'log': ax.set_yscale('log') y[y == 0] = np.nan if filt: ind = self.filt.grab_filt(filt, a) xf = x.copy() yf = y.copy() yerrf = yerr.copy() if any(~ind): xf[~ind] = np.nan yf[~ind] = np.nan yerrf[~ind] = np.nan if any(~ind): ax.plot(x, y, color=self.cmap[a], alpha=.2, lw=0.6) ax.plot(xf, yf, color=self.cmap[a], label=a) if err_envelope: ax.fill_between(xf, yf - yerrf, yf + yerrf, color=self.cmap[a], alpha=0.2, zorder=-1) else: ax.plot(x, y, color=self.cmap[a], label=a) if err_envelope: ax.fill_between(x, y - yerr, y + yerr, color=self.cmap[a], alpha=0.2, zorder=-1) # Plot averages and error envelopes if stats and hasattr(self, 'stats'): warnings.warn('\nStatistic plotting is broken.\nCheck progress here: https://github.com/oscarbranson/latools/issues/18') pass # sts = self.stats[sig][0].size # if sts > 1: # for n in np.arange(self.n): # n_ind = ind & (self.ns == n + 1) # if sum(n_ind) > 2: # x = [self.Time[n_ind][0], self.Time[n_ind][-1]] # y = [self.stats[sig][self.stats['analytes'] == a][0][n]] * 2 # yp = ([self.stats[sig][self.stats['analytes'] == a][0][n] + # self.stats[err][self.stats['analytes'] == a][0][n]] * 2) # yn = ([self.stats[sig][self.stats['analytes'] == a][0][n] - # self.stats[err][self.stats['analytes'] == a][0][n]] * 2) # ax.plot(x, y, color=self.cmap[a], lw=2) # ax.fill_between(x + x[::-1], yp + yn, # color=self.cmap[a], alpha=0.4, # linewidth=0) # else: # x = [self.Time[0], self.Time[-1]] # y = [self.stats[sig][self.stats['analytes'] == a][0]] * 2 # yp = ([self.stats[sig][self.stats['analytes'] == a][0] + # self.stats[err][self.stats['analytes'] == a][0]] * 2) # yn = ([self.stats[sig][self.stats['analytes'] == a][0] - # self.stats[err][self.stats['analytes'] == a][0]] * 2) # ax.plot(x, y, color=self.cmap[a], lw=2) # ax.fill_between(x + x[::-1], yp + yn, color=self.cmap[a], # alpha=0.4, linewidth=0) if ranges: for lims in self.bkgrng: ax.axvspan(*lims, color='k', alpha=0.1, zorder=-1) for lims in self.sigrng: ax.axvspan(*lims, color='r', alpha=0.1, zorder=-1) ax.text(0.01, 0.99, self.sample + ' : ' + focus_stage, transform=ax.transAxes, ha='left', va='top') ax.set_xlabel('Time (s)') ax.set_xlim(np.nanmin(x), np.nanmax(x)) # y label ud = {'rawdata': 'counts', 'despiked': 'counts', 'bkgsub': 'background corrected counts', 'ratios': 'counts/{:s} count', 'calibrated': 'mol/mol {:s}'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) ax.set_ylabel(ud[focus_stage]) # if interactive: # ax.legend() # plugins.connect(fig, plugins.MousePosition(fontsize=14)) # display.clear_output(wait=True) # display.display(fig) # input('Press [Return] when finished.') # else: ax.legend(bbox_to_anchor=(1.15, 1)) if ret: return fig, ax
[ "Plot", "analytes", "as", "a", "function", "of", "Time", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L23-L173
[ "def", "tplot", "(", "self", ",", "analytes", "=", "None", ",", "figsize", "=", "[", "10", ",", "4", "]", ",", "scale", "=", "'log'", ",", "filt", "=", "None", ",", "ranges", "=", "False", ",", "stats", "=", "False", ",", "stat", "=", "'nanmean'", ",", "err", "=", "'nanstd'", ",", "focus_stage", "=", "None", ",", "err_envelope", "=", "False", ",", "ax", "=", "None", ")", ":", "if", "type", "(", "analytes", ")", "is", "str", ":", "analytes", "=", "[", "analytes", "]", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "focus_stage", "is", "None", ":", "focus_stage", "=", "self", ".", "focus_stage", "# exclude internal standard from analytes", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "a", "!=", "self", ".", "internal_standard", "]", "if", "ax", "is", "None", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "ax", "=", "fig", ".", "add_axes", "(", "[", ".1", ",", ".12", ",", ".77", ",", ".8", "]", ")", "ret", "=", "True", "else", ":", "fig", "=", "ax", ".", "figure", "ret", "=", "False", "for", "a", "in", "analytes", ":", "x", "=", "self", ".", "Time", "y", ",", "yerr", "=", "unpack_uncertainties", "(", "self", ".", "data", "[", "focus_stage", "]", "[", "a", "]", ")", "if", "scale", "is", "'log'", ":", "ax", ".", "set_yscale", "(", "'log'", ")", "y", "[", "y", "==", "0", "]", "=", "np", ".", "nan", "if", "filt", ":", "ind", "=", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "a", ")", "xf", "=", "x", ".", "copy", "(", ")", "yf", "=", "y", ".", "copy", "(", ")", "yerrf", "=", "yerr", ".", "copy", "(", ")", "if", "any", "(", "~", "ind", ")", ":", "xf", "[", "~", "ind", "]", "=", "np", ".", "nan", "yf", "[", "~", "ind", "]", "=", "np", ".", "nan", "yerrf", "[", "~", "ind", "]", "=", "np", ".", "nan", "if", "any", "(", "~", "ind", ")", ":", "ax", ".", "plot", "(", "x", ",", "y", ",", "color", "=", "self", ".", "cmap", "[", "a", "]", ",", "alpha", "=", ".2", ",", "lw", "=", "0.6", ")", "ax", ".", "plot", "(", "xf", ",", "yf", ",", "color", "=", "self", ".", "cmap", "[", "a", "]", ",", "label", "=", "a", ")", "if", "err_envelope", ":", "ax", ".", "fill_between", "(", "xf", ",", "yf", "-", "yerrf", ",", "yf", "+", "yerrf", ",", "color", "=", "self", ".", "cmap", "[", "a", "]", ",", "alpha", "=", "0.2", ",", "zorder", "=", "-", "1", ")", "else", ":", "ax", ".", "plot", "(", "x", ",", "y", ",", "color", "=", "self", ".", "cmap", "[", "a", "]", ",", "label", "=", "a", ")", "if", "err_envelope", ":", "ax", ".", "fill_between", "(", "x", ",", "y", "-", "yerr", ",", "y", "+", "yerr", ",", "color", "=", "self", ".", "cmap", "[", "a", "]", ",", "alpha", "=", "0.2", ",", "zorder", "=", "-", "1", ")", "# Plot averages and error envelopes", "if", "stats", "and", "hasattr", "(", "self", ",", "'stats'", ")", ":", "warnings", ".", "warn", "(", "'\\nStatistic plotting is broken.\\nCheck progress here: https://github.com/oscarbranson/latools/issues/18'", ")", "pass", "# sts = self.stats[sig][0].size", "# if sts > 1:", "# for n in np.arange(self.n):", "# n_ind = ind & (self.ns == n + 1)", "# if sum(n_ind) > 2:", "# x = [self.Time[n_ind][0], self.Time[n_ind][-1]]", "# y = [self.stats[sig][self.stats['analytes'] == a][0][n]] * 2", "# yp = ([self.stats[sig][self.stats['analytes'] == a][0][n] +", "# self.stats[err][self.stats['analytes'] == a][0][n]] * 2)", "# yn = ([self.stats[sig][self.stats['analytes'] == a][0][n] -", "# self.stats[err][self.stats['analytes'] == a][0][n]] * 2)", "# ax.plot(x, y, color=self.cmap[a], lw=2)", "# ax.fill_between(x + x[::-1], yp + yn,", "# color=self.cmap[a], alpha=0.4,", "# linewidth=0)", "# else:", "# x = [self.Time[0], self.Time[-1]]", "# y = [self.stats[sig][self.stats['analytes'] == a][0]] * 2", "# yp = ([self.stats[sig][self.stats['analytes'] == a][0] +", "# self.stats[err][self.stats['analytes'] == a][0]] * 2)", "# yn = ([self.stats[sig][self.stats['analytes'] == a][0] -", "# self.stats[err][self.stats['analytes'] == a][0]] * 2)", "# ax.plot(x, y, color=self.cmap[a], lw=2)", "# ax.fill_between(x + x[::-1], yp + yn, color=self.cmap[a],", "# alpha=0.4, linewidth=0)", "if", "ranges", ":", "for", "lims", "in", "self", ".", "bkgrng", ":", "ax", ".", "axvspan", "(", "*", "lims", ",", "color", "=", "'k'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "1", ")", "for", "lims", "in", "self", ".", "sigrng", ":", "ax", ".", "axvspan", "(", "*", "lims", ",", "color", "=", "'r'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "1", ")", "ax", ".", "text", "(", "0.01", ",", "0.99", ",", "self", ".", "sample", "+", "' : '", "+", "focus_stage", ",", "transform", "=", "ax", ".", "transAxes", ",", "ha", "=", "'left'", ",", "va", "=", "'top'", ")", "ax", ".", "set_xlabel", "(", "'Time (s)'", ")", "ax", ".", "set_xlim", "(", "np", ".", "nanmin", "(", "x", ")", ",", "np", ".", "nanmax", "(", "x", ")", ")", "# y label", "ud", "=", "{", "'rawdata'", ":", "'counts'", ",", "'despiked'", ":", "'counts'", ",", "'bkgsub'", ":", "'background corrected counts'", ",", "'ratios'", ":", "'counts/{:s} count'", ",", "'calibrated'", ":", "'mol/mol {:s}'", "}", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "ud", "[", "focus_stage", "]", "=", "ud", "[", "focus_stage", "]", ".", "format", "(", "self", ".", "internal_standard", ")", "ax", ".", "set_ylabel", "(", "ud", "[", "focus_stage", "]", ")", "# if interactive:", "# ax.legend()", "# plugins.connect(fig, plugins.MousePosition(fontsize=14))", "# display.clear_output(wait=True)", "# display.display(fig)", "# input('Press [Return] when finished.')", "# else:", "ax", ".", "legend", "(", "bbox_to_anchor", "=", "(", "1.15", ",", "1", ")", ")", "if", "ret", ":", "return", "fig", ",", "ax" ]
cd25a650cfee318152f234d992708511f7047fbe
test
gplot
Plot analytes gradients as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. win : int The window over which to calculate the rolling gradient. figsize : tuple size of final figure. ranges : bool show signal/background regions. Returns ------- figure, axis
latools/helpers/plot.py
def gplot(self, analytes=None, win=25, figsize=[10, 4], ranges=False, focus_stage=None, ax=None, recalc=True): """ Plot analytes gradients as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. win : int The window over which to calculate the rolling gradient. figsize : tuple size of final figure. ranges : bool show signal/background regions. Returns ------- figure, axis """ if type(analytes) is str: analytes = [analytes] if analytes is None: analytes = self.analytes if focus_stage is None: focus_stage = self.focus_stage if ax is None: fig = plt.figure(figsize=figsize) ax = fig.add_axes([.1, .12, .77, .8]) ret = True else: fig = ax.figure ret = False x = self.Time if recalc or not self.grads_calced: self.grads = calc_grads(x, self.data[focus_stage], analytes, win) self.grads_calce = True for a in analytes: ax.plot(x, self.grads[a], color=self.cmap[a], label=a) if ranges: for lims in self.bkgrng: ax.axvspan(*lims, color='k', alpha=0.1, zorder=-1) for lims in self.sigrng: ax.axvspan(*lims, color='r', alpha=0.1, zorder=-1) ax.text(0.01, 0.99, self.sample + ' : ' + self.focus_stage + ' : gradient', transform=ax.transAxes, ha='left', va='top') ax.set_xlabel('Time (s)') ax.set_xlim(np.nanmin(x), np.nanmax(x)) # y label ud = {'rawdata': 'counts/s', 'despiked': 'counts/s', 'bkgsub': 'background corrected counts/s', 'ratios': 'counts/{:s} count/s', 'calibrated': 'mol/mol {:s}/s'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) ax.set_ylabel(ud[focus_stage]) # y tick format def yfmt(x, p): return '{:.0e}'.format(x) ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(yfmt)) ax.legend(bbox_to_anchor=(1.15, 1)) ax.axhline(0, color='k', lw=1, ls='dashed', alpha=0.5) if ret: return fig, ax
def gplot(self, analytes=None, win=25, figsize=[10, 4], ranges=False, focus_stage=None, ax=None, recalc=True): """ Plot analytes gradients as a function of Time. Parameters ---------- analytes : array_like list of strings containing names of analytes to plot. None = all analytes. win : int The window over which to calculate the rolling gradient. figsize : tuple size of final figure. ranges : bool show signal/background regions. Returns ------- figure, axis """ if type(analytes) is str: analytes = [analytes] if analytes is None: analytes = self.analytes if focus_stage is None: focus_stage = self.focus_stage if ax is None: fig = plt.figure(figsize=figsize) ax = fig.add_axes([.1, .12, .77, .8]) ret = True else: fig = ax.figure ret = False x = self.Time if recalc or not self.grads_calced: self.grads = calc_grads(x, self.data[focus_stage], analytes, win) self.grads_calce = True for a in analytes: ax.plot(x, self.grads[a], color=self.cmap[a], label=a) if ranges: for lims in self.bkgrng: ax.axvspan(*lims, color='k', alpha=0.1, zorder=-1) for lims in self.sigrng: ax.axvspan(*lims, color='r', alpha=0.1, zorder=-1) ax.text(0.01, 0.99, self.sample + ' : ' + self.focus_stage + ' : gradient', transform=ax.transAxes, ha='left', va='top') ax.set_xlabel('Time (s)') ax.set_xlim(np.nanmin(x), np.nanmax(x)) # y label ud = {'rawdata': 'counts/s', 'despiked': 'counts/s', 'bkgsub': 'background corrected counts/s', 'ratios': 'counts/{:s} count/s', 'calibrated': 'mol/mol {:s}/s'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) ax.set_ylabel(ud[focus_stage]) # y tick format def yfmt(x, p): return '{:.0e}'.format(x) ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(yfmt)) ax.legend(bbox_to_anchor=(1.15, 1)) ax.axhline(0, color='k', lw=1, ls='dashed', alpha=0.5) if ret: return fig, ax
[ "Plot", "analytes", "gradients", "as", "a", "function", "of", "Time", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L175-L254
[ "def", "gplot", "(", "self", ",", "analytes", "=", "None", ",", "win", "=", "25", ",", "figsize", "=", "[", "10", ",", "4", "]", ",", "ranges", "=", "False", ",", "focus_stage", "=", "None", ",", "ax", "=", "None", ",", "recalc", "=", "True", ")", ":", "if", "type", "(", "analytes", ")", "is", "str", ":", "analytes", "=", "[", "analytes", "]", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "focus_stage", "is", "None", ":", "focus_stage", "=", "self", ".", "focus_stage", "if", "ax", "is", "None", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "ax", "=", "fig", ".", "add_axes", "(", "[", ".1", ",", ".12", ",", ".77", ",", ".8", "]", ")", "ret", "=", "True", "else", ":", "fig", "=", "ax", ".", "figure", "ret", "=", "False", "x", "=", "self", ".", "Time", "if", "recalc", "or", "not", "self", ".", "grads_calced", ":", "self", ".", "grads", "=", "calc_grads", "(", "x", ",", "self", ".", "data", "[", "focus_stage", "]", ",", "analytes", ",", "win", ")", "self", ".", "grads_calce", "=", "True", "for", "a", "in", "analytes", ":", "ax", ".", "plot", "(", "x", ",", "self", ".", "grads", "[", "a", "]", ",", "color", "=", "self", ".", "cmap", "[", "a", "]", ",", "label", "=", "a", ")", "if", "ranges", ":", "for", "lims", "in", "self", ".", "bkgrng", ":", "ax", ".", "axvspan", "(", "*", "lims", ",", "color", "=", "'k'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "1", ")", "for", "lims", "in", "self", ".", "sigrng", ":", "ax", ".", "axvspan", "(", "*", "lims", ",", "color", "=", "'r'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "1", ")", "ax", ".", "text", "(", "0.01", ",", "0.99", ",", "self", ".", "sample", "+", "' : '", "+", "self", ".", "focus_stage", "+", "' : gradient'", ",", "transform", "=", "ax", ".", "transAxes", ",", "ha", "=", "'left'", ",", "va", "=", "'top'", ")", "ax", ".", "set_xlabel", "(", "'Time (s)'", ")", "ax", ".", "set_xlim", "(", "np", ".", "nanmin", "(", "x", ")", ",", "np", ".", "nanmax", "(", "x", ")", ")", "# y label", "ud", "=", "{", "'rawdata'", ":", "'counts/s'", ",", "'despiked'", ":", "'counts/s'", ",", "'bkgsub'", ":", "'background corrected counts/s'", ",", "'ratios'", ":", "'counts/{:s} count/s'", ",", "'calibrated'", ":", "'mol/mol {:s}/s'", "}", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "ud", "[", "focus_stage", "]", "=", "ud", "[", "focus_stage", "]", ".", "format", "(", "self", ".", "internal_standard", ")", "ax", ".", "set_ylabel", "(", "ud", "[", "focus_stage", "]", ")", "# y tick format", "def", "yfmt", "(", "x", ",", "p", ")", ":", "return", "'{:.0e}'", ".", "format", "(", "x", ")", "ax", ".", "yaxis", ".", "set_major_formatter", "(", "mpl", ".", "ticker", ".", "FuncFormatter", "(", "yfmt", ")", ")", "ax", ".", "legend", "(", "bbox_to_anchor", "=", "(", "1.15", ",", "1", ")", ")", "ax", ".", "axhline", "(", "0", ",", "color", "=", "'k'", ",", "lw", "=", "1", ",", "ls", "=", "'dashed'", ",", "alpha", "=", "0.5", ")", "if", "ret", ":", "return", "fig", ",", "ax" ]
cd25a650cfee318152f234d992708511f7047fbe
test
crossplot
Plot analytes against each other. The number of plots is n**2 - n, where n = len(keys). Parameters ---------- dat : dict A dictionary of key: data pairs, where data is the same length in each entry. keys : optional, array_like or str The keys of dat to plot. Defaults to all keys. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. figsize : tuple colourful : bool Returns ------- (fig, axes)
latools/helpers/plot.py
def crossplot(dat, keys=None, lognorm=True, bins=25, figsize=(12, 12), colourful=True, focus_stage=None, denominator=None, mode='hist2d', cmap=None, **kwargs): """ Plot analytes against each other. The number of plots is n**2 - n, where n = len(keys). Parameters ---------- dat : dict A dictionary of key: data pairs, where data is the same length in each entry. keys : optional, array_like or str The keys of dat to plot. Defaults to all keys. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. figsize : tuple colourful : bool Returns ------- (fig, axes) """ if keys is None: keys = list(dat.keys()) numvar = len(keys) if figsize[0] < 1.5 * numvar: figsize = [1.5 * numvar] * 2 fig, axes = plt.subplots(nrows=numvar, ncols=numvar, figsize=(12, 12)) fig.subplots_adjust(hspace=0.05, wspace=0.05) for ax in axes.flat: ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if ax.is_first_col(): ax.yaxis.set_ticks_position('left') if ax.is_last_col(): ax.yaxis.set_ticks_position('right') if ax.is_first_row(): ax.xaxis.set_ticks_position('top') if ax.is_last_row(): ax.xaxis.set_ticks_position('bottom') # set up colour scales if colourful: cmlist = ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'] else: cmlist = ['Greys'] if cmap is None and mode == 'scatter': cmap = {k: 'k' for k in dat.keys()} while len(cmlist) < len(keys): cmlist *= 2 # isolate nominal_values for all keys focus = {k: nominal_values(dat[k]) for k in keys} # determine units for all keys udict = {a: unitpicker(np.nanmean(focus[a]), focus_stage=focus_stage, denominator=denominator) for a in keys} # determine ranges for all analytes rdict = {a: (np.nanmin(focus[a] * udict[a][0]), np.nanmax(focus[a] * udict[a][0])) for a in keys} for i, j in tqdm(zip(*np.triu_indices_from(axes, k=1)), desc='Drawing Plots', total=sum(range(len(keys)))): # get analytes ai = keys[i] aj = keys[j] # remove nan, apply multipliers pi = focus[ai] * udict[ai][0] pj = focus[aj] * udict[aj][0] # determine normalisation shceme if lognorm: norm = mpl.colors.LogNorm() else: norm = None # draw plots if mode == 'hist2d': # remove nan pi = pi[~np.isnan(pi)] pj = pj[~np.isnan(pj)] axes[i, j].hist2d(pj, pi, bins, norm=norm, cmap=plt.get_cmap(cmlist[i])) axes[j, i].hist2d(pi, pj, bins, norm=norm, cmap=plt.get_cmap(cmlist[j])) elif mode == 'scatter': axes[i, j].scatter(pj, pi, s=10, color=cmap[ai], lw=0.5, edgecolor='k', alpha=0.4) axes[j, i].scatter(pi, pj, s=10, color=cmap[aj], lw=0.5, edgecolor='k', alpha=0.4) else: raise ValueError("invalid mode. Must be 'hist2d' or 'scatter'.") axes[i, j].set_ylim(*rdict[ai]) axes[i, j].set_xlim(*rdict[aj]) axes[j, i].set_ylim(*rdict[aj]) axes[j, i].set_xlim(*rdict[ai]) # diagonal labels for a, n in zip(keys, np.arange(len(keys))): axes[n, n].annotate(a + '\n' + udict[a][1], (0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=8) axes[n, n].set_xlim(*rdict[a]) axes[n, n].set_ylim(*rdict[a]) # switch on alternating axes for i, j in zip(range(numvar), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) for label in axes[j, i].get_xticklabels(): label.set_rotation(90) axes[i, j].yaxis.set_visible(True) return fig, axes
def crossplot(dat, keys=None, lognorm=True, bins=25, figsize=(12, 12), colourful=True, focus_stage=None, denominator=None, mode='hist2d', cmap=None, **kwargs): """ Plot analytes against each other. The number of plots is n**2 - n, where n = len(keys). Parameters ---------- dat : dict A dictionary of key: data pairs, where data is the same length in each entry. keys : optional, array_like or str The keys of dat to plot. Defaults to all keys. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. figsize : tuple colourful : bool Returns ------- (fig, axes) """ if keys is None: keys = list(dat.keys()) numvar = len(keys) if figsize[0] < 1.5 * numvar: figsize = [1.5 * numvar] * 2 fig, axes = plt.subplots(nrows=numvar, ncols=numvar, figsize=(12, 12)) fig.subplots_adjust(hspace=0.05, wspace=0.05) for ax in axes.flat: ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if ax.is_first_col(): ax.yaxis.set_ticks_position('left') if ax.is_last_col(): ax.yaxis.set_ticks_position('right') if ax.is_first_row(): ax.xaxis.set_ticks_position('top') if ax.is_last_row(): ax.xaxis.set_ticks_position('bottom') # set up colour scales if colourful: cmlist = ['Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'] else: cmlist = ['Greys'] if cmap is None and mode == 'scatter': cmap = {k: 'k' for k in dat.keys()} while len(cmlist) < len(keys): cmlist *= 2 # isolate nominal_values for all keys focus = {k: nominal_values(dat[k]) for k in keys} # determine units for all keys udict = {a: unitpicker(np.nanmean(focus[a]), focus_stage=focus_stage, denominator=denominator) for a in keys} # determine ranges for all analytes rdict = {a: (np.nanmin(focus[a] * udict[a][0]), np.nanmax(focus[a] * udict[a][0])) for a in keys} for i, j in tqdm(zip(*np.triu_indices_from(axes, k=1)), desc='Drawing Plots', total=sum(range(len(keys)))): # get analytes ai = keys[i] aj = keys[j] # remove nan, apply multipliers pi = focus[ai] * udict[ai][0] pj = focus[aj] * udict[aj][0] # determine normalisation shceme if lognorm: norm = mpl.colors.LogNorm() else: norm = None # draw plots if mode == 'hist2d': # remove nan pi = pi[~np.isnan(pi)] pj = pj[~np.isnan(pj)] axes[i, j].hist2d(pj, pi, bins, norm=norm, cmap=plt.get_cmap(cmlist[i])) axes[j, i].hist2d(pi, pj, bins, norm=norm, cmap=plt.get_cmap(cmlist[j])) elif mode == 'scatter': axes[i, j].scatter(pj, pi, s=10, color=cmap[ai], lw=0.5, edgecolor='k', alpha=0.4) axes[j, i].scatter(pi, pj, s=10, color=cmap[aj], lw=0.5, edgecolor='k', alpha=0.4) else: raise ValueError("invalid mode. Must be 'hist2d' or 'scatter'.") axes[i, j].set_ylim(*rdict[ai]) axes[i, j].set_xlim(*rdict[aj]) axes[j, i].set_ylim(*rdict[aj]) axes[j, i].set_xlim(*rdict[ai]) # diagonal labels for a, n in zip(keys, np.arange(len(keys))): axes[n, n].annotate(a + '\n' + udict[a][1], (0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=8) axes[n, n].set_xlim(*rdict[a]) axes[n, n].set_ylim(*rdict[a]) # switch on alternating axes for i, j in zip(range(numvar), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) for label in axes[j, i].get_xticklabels(): label.set_rotation(90) axes[i, j].yaxis.set_visible(True) return fig, axes
[ "Plot", "analytes", "against", "each", "other", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L256-L390
[ "def", "crossplot", "(", "dat", ",", "keys", "=", "None", ",", "lognorm", "=", "True", ",", "bins", "=", "25", ",", "figsize", "=", "(", "12", ",", "12", ")", ",", "colourful", "=", "True", ",", "focus_stage", "=", "None", ",", "denominator", "=", "None", ",", "mode", "=", "'hist2d'", ",", "cmap", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "keys", "is", "None", ":", "keys", "=", "list", "(", "dat", ".", "keys", "(", ")", ")", "numvar", "=", "len", "(", "keys", ")", "if", "figsize", "[", "0", "]", "<", "1.5", "*", "numvar", ":", "figsize", "=", "[", "1.5", "*", "numvar", "]", "*", "2", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "nrows", "=", "numvar", ",", "ncols", "=", "numvar", ",", "figsize", "=", "(", "12", ",", "12", ")", ")", "fig", ".", "subplots_adjust", "(", "hspace", "=", "0.05", ",", "wspace", "=", "0.05", ")", "for", "ax", "in", "axes", ".", "flat", ":", "ax", ".", "xaxis", ".", "set_visible", "(", "False", ")", "ax", ".", "yaxis", ".", "set_visible", "(", "False", ")", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'left'", ")", "if", "ax", ".", "is_last_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "'right'", ")", "if", "ax", ".", "is_first_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'top'", ")", "if", "ax", ".", "is_last_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'bottom'", ")", "# set up colour scales", "if", "colourful", ":", "cmlist", "=", "[", "'Blues'", ",", "'BuGn'", ",", "'BuPu'", ",", "'GnBu'", ",", "'Greens'", ",", "'Greys'", ",", "'Oranges'", ",", "'OrRd'", ",", "'PuBu'", ",", "'PuBuGn'", ",", "'PuRd'", ",", "'Purples'", ",", "'RdPu'", ",", "'Reds'", ",", "'YlGn'", ",", "'YlGnBu'", ",", "'YlOrBr'", ",", "'YlOrRd'", "]", "else", ":", "cmlist", "=", "[", "'Greys'", "]", "if", "cmap", "is", "None", "and", "mode", "==", "'scatter'", ":", "cmap", "=", "{", "k", ":", "'k'", "for", "k", "in", "dat", ".", "keys", "(", ")", "}", "while", "len", "(", "cmlist", ")", "<", "len", "(", "keys", ")", ":", "cmlist", "*=", "2", "# isolate nominal_values for all keys", "focus", "=", "{", "k", ":", "nominal_values", "(", "dat", "[", "k", "]", ")", "for", "k", "in", "keys", "}", "# determine units for all keys", "udict", "=", "{", "a", ":", "unitpicker", "(", "np", ".", "nanmean", "(", "focus", "[", "a", "]", ")", ",", "focus_stage", "=", "focus_stage", ",", "denominator", "=", "denominator", ")", "for", "a", "in", "keys", "}", "# determine ranges for all analytes", "rdict", "=", "{", "a", ":", "(", "np", ".", "nanmin", "(", "focus", "[", "a", "]", "*", "udict", "[", "a", "]", "[", "0", "]", ")", ",", "np", ".", "nanmax", "(", "focus", "[", "a", "]", "*", "udict", "[", "a", "]", "[", "0", "]", ")", ")", "for", "a", "in", "keys", "}", "for", "i", ",", "j", "in", "tqdm", "(", "zip", "(", "*", "np", ".", "triu_indices_from", "(", "axes", ",", "k", "=", "1", ")", ")", ",", "desc", "=", "'Drawing Plots'", ",", "total", "=", "sum", "(", "range", "(", "len", "(", "keys", ")", ")", ")", ")", ":", "# get analytes", "ai", "=", "keys", "[", "i", "]", "aj", "=", "keys", "[", "j", "]", "# remove nan, apply multipliers", "pi", "=", "focus", "[", "ai", "]", "*", "udict", "[", "ai", "]", "[", "0", "]", "pj", "=", "focus", "[", "aj", "]", "*", "udict", "[", "aj", "]", "[", "0", "]", "# determine normalisation shceme", "if", "lognorm", ":", "norm", "=", "mpl", ".", "colors", ".", "LogNorm", "(", ")", "else", ":", "norm", "=", "None", "# draw plots", "if", "mode", "==", "'hist2d'", ":", "# remove nan", "pi", "=", "pi", "[", "~", "np", ".", "isnan", "(", "pi", ")", "]", "pj", "=", "pj", "[", "~", "np", ".", "isnan", "(", "pj", ")", "]", "axes", "[", "i", ",", "j", "]", ".", "hist2d", "(", "pj", ",", "pi", ",", "bins", ",", "norm", "=", "norm", ",", "cmap", "=", "plt", ".", "get_cmap", "(", "cmlist", "[", "i", "]", ")", ")", "axes", "[", "j", ",", "i", "]", ".", "hist2d", "(", "pi", ",", "pj", ",", "bins", ",", "norm", "=", "norm", ",", "cmap", "=", "plt", ".", "get_cmap", "(", "cmlist", "[", "j", "]", ")", ")", "elif", "mode", "==", "'scatter'", ":", "axes", "[", "i", ",", "j", "]", ".", "scatter", "(", "pj", ",", "pi", ",", "s", "=", "10", ",", "color", "=", "cmap", "[", "ai", "]", ",", "lw", "=", "0.5", ",", "edgecolor", "=", "'k'", ",", "alpha", "=", "0.4", ")", "axes", "[", "j", ",", "i", "]", ".", "scatter", "(", "pi", ",", "pj", ",", "s", "=", "10", ",", "color", "=", "cmap", "[", "aj", "]", ",", "lw", "=", "0.5", ",", "edgecolor", "=", "'k'", ",", "alpha", "=", "0.4", ")", "else", ":", "raise", "ValueError", "(", "\"invalid mode. Must be 'hist2d' or 'scatter'.\"", ")", "axes", "[", "i", ",", "j", "]", ".", "set_ylim", "(", "*", "rdict", "[", "ai", "]", ")", "axes", "[", "i", ",", "j", "]", ".", "set_xlim", "(", "*", "rdict", "[", "aj", "]", ")", "axes", "[", "j", ",", "i", "]", ".", "set_ylim", "(", "*", "rdict", "[", "aj", "]", ")", "axes", "[", "j", ",", "i", "]", ".", "set_xlim", "(", "*", "rdict", "[", "ai", "]", ")", "# diagonal labels", "for", "a", ",", "n", "in", "zip", "(", "keys", ",", "np", ".", "arange", "(", "len", "(", "keys", ")", ")", ")", ":", "axes", "[", "n", ",", "n", "]", ".", "annotate", "(", "a", "+", "'\\n'", "+", "udict", "[", "a", "]", "[", "1", "]", ",", "(", "0.5", ",", "0.5", ")", ",", "xycoords", "=", "'axes fraction'", ",", "ha", "=", "'center'", ",", "va", "=", "'center'", ",", "fontsize", "=", "8", ")", "axes", "[", "n", ",", "n", "]", ".", "set_xlim", "(", "*", "rdict", "[", "a", "]", ")", "axes", "[", "n", ",", "n", "]", ".", "set_ylim", "(", "*", "rdict", "[", "a", "]", ")", "# switch on alternating axes", "for", "i", ",", "j", "in", "zip", "(", "range", "(", "numvar", ")", ",", "itertools", ".", "cycle", "(", "(", "-", "1", ",", "0", ")", ")", ")", ":", "axes", "[", "j", ",", "i", "]", ".", "xaxis", ".", "set_visible", "(", "True", ")", "for", "label", "in", "axes", "[", "j", ",", "i", "]", ".", "get_xticklabels", "(", ")", ":", "label", ".", "set_rotation", "(", "90", ")", "axes", "[", "i", ",", "j", "]", ".", "yaxis", ".", "set_visible", "(", "True", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
histograms
Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes
latools/helpers/plot.py
def histograms(dat, keys=None, bins=25, logy=False, cmap=None, ncol=4): """ Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes """ if keys is None: keys = dat.keys() ncol = int(ncol) nrow = calc_nrow(len(keys), ncol) fig, axs = plt.subplots(nrow, 4, figsize=[ncol * 2, nrow * 2]) pn = 0 for k, ax in zip(keys, axs.flat): tmp = nominal_values(dat[k]) x = tmp[~np.isnan(tmp)] if cmap is not None: c = cmap[k] else: c = (0, 0, 0, 0.5) ax.hist(x, bins=bins, color=c) if logy: ax.set_yscale('log') ylab = '$log_{10}(n)$' else: ylab = 'n' ax.set_ylim(1, ax.get_ylim()[1]) if ax.is_first_col(): ax.set_ylabel(ylab) ax.set_yticklabels([]) ax.text(.95, .95, k, ha='right', va='top', transform=ax.transAxes) pn += 1 for ax in axs.flat[pn:]: ax.set_visible(False) fig.tight_layout() return fig, axs
def histograms(dat, keys=None, bins=25, logy=False, cmap=None, ncol=4): """ Plot histograms of all items in dat. Parameters ---------- dat : dict Data in {key: array} pairs. keys : arra-like The keys in dat that you want to plot. If None, all are plotted. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. cmap : dict The colours that the different items should be. If None, all are grey. Returns ------- fig, axes """ if keys is None: keys = dat.keys() ncol = int(ncol) nrow = calc_nrow(len(keys), ncol) fig, axs = plt.subplots(nrow, 4, figsize=[ncol * 2, nrow * 2]) pn = 0 for k, ax in zip(keys, axs.flat): tmp = nominal_values(dat[k]) x = tmp[~np.isnan(tmp)] if cmap is not None: c = cmap[k] else: c = (0, 0, 0, 0.5) ax.hist(x, bins=bins, color=c) if logy: ax.set_yscale('log') ylab = '$log_{10}(n)$' else: ylab = 'n' ax.set_ylim(1, ax.get_ylim()[1]) if ax.is_first_col(): ax.set_ylabel(ylab) ax.set_yticklabels([]) ax.text(.95, .95, k, ha='right', va='top', transform=ax.transAxes) pn += 1 for ax in axs.flat[pn:]: ax.set_visible(False) fig.tight_layout() return fig, axs
[ "Plot", "histograms", "of", "all", "items", "in", "dat", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L393-L456
[ "def", "histograms", "(", "dat", ",", "keys", "=", "None", ",", "bins", "=", "25", ",", "logy", "=", "False", ",", "cmap", "=", "None", ",", "ncol", "=", "4", ")", ":", "if", "keys", "is", "None", ":", "keys", "=", "dat", ".", "keys", "(", ")", "ncol", "=", "int", "(", "ncol", ")", "nrow", "=", "calc_nrow", "(", "len", "(", "keys", ")", ",", "ncol", ")", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "nrow", ",", "4", ",", "figsize", "=", "[", "ncol", "*", "2", ",", "nrow", "*", "2", "]", ")", "pn", "=", "0", "for", "k", ",", "ax", "in", "zip", "(", "keys", ",", "axs", ".", "flat", ")", ":", "tmp", "=", "nominal_values", "(", "dat", "[", "k", "]", ")", "x", "=", "tmp", "[", "~", "np", ".", "isnan", "(", "tmp", ")", "]", "if", "cmap", "is", "not", "None", ":", "c", "=", "cmap", "[", "k", "]", "else", ":", "c", "=", "(", "0", ",", "0", ",", "0", ",", "0.5", ")", "ax", ".", "hist", "(", "x", ",", "bins", "=", "bins", ",", "color", "=", "c", ")", "if", "logy", ":", "ax", ".", "set_yscale", "(", "'log'", ")", "ylab", "=", "'$log_{10}(n)$'", "else", ":", "ylab", "=", "'n'", "ax", ".", "set_ylim", "(", "1", ",", "ax", ".", "get_ylim", "(", ")", "[", "1", "]", ")", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "set_ylabel", "(", "ylab", ")", "ax", ".", "set_yticklabels", "(", "[", "]", ")", "ax", ".", "text", "(", ".95", ",", ".95", ",", "k", ",", "ha", "=", "'right'", ",", "va", "=", "'top'", ",", "transform", "=", "ax", ".", "transAxes", ")", "pn", "+=", "1", "for", "ax", "in", "axs", ".", "flat", "[", "pn", ":", "]", ":", "ax", ".", "set_visible", "(", "False", ")", "fig", ".", "tight_layout", "(", ")", "return", "fig", ",", "axs" ]
cd25a650cfee318152f234d992708511f7047fbe
test
autorange_plot
Function for visualising the autorange mechanism. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window ised for signal smoothing. If None, gwin // 2. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). nbin : ind Used to calculate the number of bins in the data histogram. bins = len(sig) // nbin Returns ------- fig, axes
latools/helpers/plot.py
def autorange_plot(t, sig, gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), nbin=10, thresh=None): """ Function for visualising the autorange mechanism. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window ised for signal smoothing. If None, gwin // 2. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). nbin : ind Used to calculate the number of bins in the data histogram. bins = len(sig) // nbin Returns ------- fig, axes """ if swin is None: swin = gwin // 2 sigs = fastsmooth(sig, swin) # perform autorange calculations # bins = 50 bins = sig.size // nbin kde_x = np.linspace(sig.min(), sig.max(), bins) kde = gaussian_kde(sigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if thresh is not None: mins = [thresh] if len(mins) > 0: bkg = sigs < (mins[0]) # set background as lowest distribution else: bkg = np.ones(sig.size, dtype=bool) # bkg[0] = True # the first value must always be background # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg g = abs(fastgrad(sigs, gwin)) # calculate gradient of signal # 2. determine the approximate index of each transition zeros = bool_2_indices(fsig) if zeros is not None: zeros = zeros.flatten() lohi = [] pgs = [] excl = [] tps = [] failed = [] for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] lohi.append([lo, hi]) # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. tps.append(tp) c = t[z] # center of transition width = (t[1] - t[0]) * 2 # initial width guess try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) pgs.append(pg) fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] excl.append(lim) fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False failed.append(False) except RuntimeError: failed.append(True) lohi.append([np.nan, np.nan]) pgs.append([np.nan, np.nan, np.nan]) excl.append([np.nan, np.nan]) tps.append(tp) pass else: zeros = [] # make plot nrows = 2 + len(zeros) // 2 + len(zeros) % 2 fig, axs = plt.subplots(nrows, 2, figsize=(6, 4 + 1.5 * nrows)) # Trace ax1, ax2, ax3, ax4 = axs.flat[:4] ax4.set_visible(False) # widen ax1 & 3 for ax in [ax1, ax3]: p = ax.axes.get_position() p2 = [p.x0, p.y0, p.width * 1.75, p.height] ax.axes.set_position(p2) # move ax3 up p = ax3.axes.get_position() p2 = [p.x0, p.y0 + 0.15 * p.height, p.width, p.height] ax3.axes.set_position(p2) # truncate ax2 p = ax2.axes.get_position() p2 = [p.x0 + p.width * 0.6, p.y0, p.width * 0.4, p.height] ax2.axes.set_position(p2) # plot traces and gradient ax1.plot(t, sig, color='k', lw=1) ax1.set_xticklabels([]) ax1.set_ylabel('Signal') ax3.plot(t, g, color='k', lw=1) ax3.set_xlabel('Time (s)') ax3.set_ylabel('Gradient') # plot kde ax2.fill_betweenx(kde_x, yd, color=(0, 0, 0, 0.2)) ax2.plot(yd, kde_x, color='k') ax2.set_ylim(ax1.get_ylim()) ax2.set_yticklabels([]) ax2.set_xlabel('Data\nDensity') # limit for ax in [ax1, ax2]: ax.axhline(mins[0], color='k', ls='dashed', alpha=0.4) if len(zeros) > 0: # zeros for z in zeros: ax1.axvline(t[z], color='r', alpha=0.5) ax3.axvline(t[z], color='r', alpha=0.5) # plot individual transitions n = 1 for (lo, hi), lim, tp, pg, fail, ax in zip(lohi, excl, tps, pgs, failed, axs.flat[4:]): # plot region on gradient axis ax3.axvspan(t[lo], t[hi], color='r', alpha=0.1, zorder=-2) # plot individual transitions x = t[lo:hi] y = g[lo:hi] ys = sig[lo:hi] ax.scatter(x, y, color='k', marker='x', zorder=-1, s=10) ax.set_yticklabels([]) ax.set_ylim(rangecalc(y)) tax = ax.twinx() tax.plot(x, ys, color='k', alpha=0.3, zorder=-5) tax.set_yticklabels([]) tax.set_ylim(rangecalc(ys)) # plot fitted gaussian xn = np.linspace(x.min(), x.max(), 100) ax.plot(xn, gauss(xn, *pg), color='r', alpha=0.5) # plot center and excluded region ax.axvline(pg[1], color='b', alpha=0.5) ax.axvspan(*lim, color='b', alpha=0.1, zorder=-2) ax1.axvspan(*lim, color='b', alpha=0.1, zorder=-2) if tp: ax.text(.05, .95, '{} (on)'.format(n), ha='left', va='top', transform=ax.transAxes) else: ax.text(.95, .95, '{} (off)'.format(n), ha='right', va='top', transform=ax.transAxes) if ax.is_last_row(): ax.set_xlabel('Time (s)') if ax.is_first_col(): ax.set_ylabel('Gradient (x)') if ax.is_last_col(): tax.set_ylabel('Signal (line)') if fail: ax.axes.set_facecolor((1, 0, 0, 0.2)) ax.text(.5, .5, 'FAIL', ha='center', va='center', fontsize=16, color=(1, 0, 0, 0.5), transform=ax.transAxes) n += 1 # should never be, but just in case... if len(zeros) % 2 == 1: axs.flat[-1].set_visible = False return fig, axs
def autorange_plot(t, sig, gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), nbin=10, thresh=None): """ Function for visualising the autorange mechanism. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window ised for signal smoothing. If None, gwin // 2. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). nbin : ind Used to calculate the number of bins in the data histogram. bins = len(sig) // nbin Returns ------- fig, axes """ if swin is None: swin = gwin // 2 sigs = fastsmooth(sig, swin) # perform autorange calculations # bins = 50 bins = sig.size // nbin kde_x = np.linspace(sig.min(), sig.max(), bins) kde = gaussian_kde(sigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if thresh is not None: mins = [thresh] if len(mins) > 0: bkg = sigs < (mins[0]) # set background as lowest distribution else: bkg = np.ones(sig.size, dtype=bool) # bkg[0] = True # the first value must always be background # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg g = abs(fastgrad(sigs, gwin)) # calculate gradient of signal # 2. determine the approximate index of each transition zeros = bool_2_indices(fsig) if zeros is not None: zeros = zeros.flatten() lohi = [] pgs = [] excl = [] tps = [] failed = [] for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] lohi.append([lo, hi]) # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. tps.append(tp) c = t[z] # center of transition width = (t[1] - t[0]) * 2 # initial width guess try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) pgs.append(pg) fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] excl.append(lim) fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False failed.append(False) except RuntimeError: failed.append(True) lohi.append([np.nan, np.nan]) pgs.append([np.nan, np.nan, np.nan]) excl.append([np.nan, np.nan]) tps.append(tp) pass else: zeros = [] # make plot nrows = 2 + len(zeros) // 2 + len(zeros) % 2 fig, axs = plt.subplots(nrows, 2, figsize=(6, 4 + 1.5 * nrows)) # Trace ax1, ax2, ax3, ax4 = axs.flat[:4] ax4.set_visible(False) # widen ax1 & 3 for ax in [ax1, ax3]: p = ax.axes.get_position() p2 = [p.x0, p.y0, p.width * 1.75, p.height] ax.axes.set_position(p2) # move ax3 up p = ax3.axes.get_position() p2 = [p.x0, p.y0 + 0.15 * p.height, p.width, p.height] ax3.axes.set_position(p2) # truncate ax2 p = ax2.axes.get_position() p2 = [p.x0 + p.width * 0.6, p.y0, p.width * 0.4, p.height] ax2.axes.set_position(p2) # plot traces and gradient ax1.plot(t, sig, color='k', lw=1) ax1.set_xticklabels([]) ax1.set_ylabel('Signal') ax3.plot(t, g, color='k', lw=1) ax3.set_xlabel('Time (s)') ax3.set_ylabel('Gradient') # plot kde ax2.fill_betweenx(kde_x, yd, color=(0, 0, 0, 0.2)) ax2.plot(yd, kde_x, color='k') ax2.set_ylim(ax1.get_ylim()) ax2.set_yticklabels([]) ax2.set_xlabel('Data\nDensity') # limit for ax in [ax1, ax2]: ax.axhline(mins[0], color='k', ls='dashed', alpha=0.4) if len(zeros) > 0: # zeros for z in zeros: ax1.axvline(t[z], color='r', alpha=0.5) ax3.axvline(t[z], color='r', alpha=0.5) # plot individual transitions n = 1 for (lo, hi), lim, tp, pg, fail, ax in zip(lohi, excl, tps, pgs, failed, axs.flat[4:]): # plot region on gradient axis ax3.axvspan(t[lo], t[hi], color='r', alpha=0.1, zorder=-2) # plot individual transitions x = t[lo:hi] y = g[lo:hi] ys = sig[lo:hi] ax.scatter(x, y, color='k', marker='x', zorder=-1, s=10) ax.set_yticklabels([]) ax.set_ylim(rangecalc(y)) tax = ax.twinx() tax.plot(x, ys, color='k', alpha=0.3, zorder=-5) tax.set_yticklabels([]) tax.set_ylim(rangecalc(ys)) # plot fitted gaussian xn = np.linspace(x.min(), x.max(), 100) ax.plot(xn, gauss(xn, *pg), color='r', alpha=0.5) # plot center and excluded region ax.axvline(pg[1], color='b', alpha=0.5) ax.axvspan(*lim, color='b', alpha=0.1, zorder=-2) ax1.axvspan(*lim, color='b', alpha=0.1, zorder=-2) if tp: ax.text(.05, .95, '{} (on)'.format(n), ha='left', va='top', transform=ax.transAxes) else: ax.text(.95, .95, '{} (off)'.format(n), ha='right', va='top', transform=ax.transAxes) if ax.is_last_row(): ax.set_xlabel('Time (s)') if ax.is_first_col(): ax.set_ylabel('Gradient (x)') if ax.is_last_col(): tax.set_ylabel('Signal (line)') if fail: ax.axes.set_facecolor((1, 0, 0, 0.2)) ax.text(.5, .5, 'FAIL', ha='center', va='center', fontsize=16, color=(1, 0, 0, 0.5), transform=ax.transAxes) n += 1 # should never be, but just in case... if len(zeros) % 2 == 1: axs.flat[-1].set_visible = False return fig, axs
[ "Function", "for", "visualising", "the", "autorange", "mechanism", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L459-L690
[ "def", "autorange_plot", "(", "t", ",", "sig", ",", "gwin", "=", "7", ",", "swin", "=", "None", ",", "win", "=", "30", ",", "on_mult", "=", "(", "1.5", ",", "1.", ")", ",", "off_mult", "=", "(", "1.", ",", "1.5", ")", ",", "nbin", "=", "10", ",", "thresh", "=", "None", ")", ":", "if", "swin", "is", "None", ":", "swin", "=", "gwin", "//", "2", "sigs", "=", "fastsmooth", "(", "sig", ",", "swin", ")", "# perform autorange calculations", "# bins = 50", "bins", "=", "sig", ".", "size", "//", "nbin", "kde_x", "=", "np", ".", "linspace", "(", "sig", ".", "min", "(", ")", ",", "sig", ".", "max", "(", ")", ",", "bins", ")", "kde", "=", "gaussian_kde", "(", "sigs", ")", "yd", "=", "kde", ".", "pdf", "(", "kde_x", ")", "mins", "=", "findmins", "(", "kde_x", ",", "yd", ")", "# find minima in kde", "if", "thresh", "is", "not", "None", ":", "mins", "=", "[", "thresh", "]", "if", "len", "(", "mins", ")", ">", "0", ":", "bkg", "=", "sigs", "<", "(", "mins", "[", "0", "]", ")", "# set background as lowest distribution", "else", ":", "bkg", "=", "np", ".", "ones", "(", "sig", ".", "size", ",", "dtype", "=", "bool", ")", "# bkg[0] = True # the first value must always be background", "# assign rough background and signal regions based on kde minima", "fbkg", "=", "bkg", "fsig", "=", "~", "bkg", "g", "=", "abs", "(", "fastgrad", "(", "sigs", ",", "gwin", ")", ")", "# calculate gradient of signal", "# 2. determine the approximate index of each transition", "zeros", "=", "bool_2_indices", "(", "fsig", ")", "if", "zeros", "is", "not", "None", ":", "zeros", "=", "zeros", ".", "flatten", "(", ")", "lohi", "=", "[", "]", "pgs", "=", "[", "]", "excl", "=", "[", "]", "tps", "=", "[", "]", "failed", "=", "[", "]", "for", "z", "in", "zeros", ":", "# for each approximate transition", "# isolate the data around the transition", "if", "z", "-", "win", "<", "0", ":", "lo", "=", "gwin", "//", "2", "hi", "=", "int", "(", "z", "+", "win", ")", "elif", "z", "+", "win", ">", "(", "len", "(", "sig", ")", "-", "gwin", "//", "2", ")", ":", "lo", "=", "int", "(", "z", "-", "win", ")", "hi", "=", "len", "(", "sig", ")", "-", "gwin", "//", "2", "else", ":", "lo", "=", "int", "(", "z", "-", "win", ")", "hi", "=", "int", "(", "z", "+", "win", ")", "xs", "=", "t", "[", "lo", ":", "hi", "]", "ys", "=", "g", "[", "lo", ":", "hi", "]", "lohi", ".", "append", "(", "[", "lo", ",", "hi", "]", ")", "# determine type of transition (on/off)", "mid", "=", "(", "hi", "+", "lo", ")", "//", "2", "tp", "=", "sigs", "[", "mid", "+", "3", "]", ">", "sigs", "[", "mid", "-", "3", "]", "# True if 'on' transition.", "tps", ".", "append", "(", "tp", ")", "c", "=", "t", "[", "z", "]", "# center of transition", "width", "=", "(", "t", "[", "1", "]", "-", "t", "[", "0", "]", ")", "*", "2", "# initial width guess", "try", ":", "pg", ",", "_", "=", "curve_fit", "(", "gauss", ",", "xs", ",", "ys", ",", "p0", "=", "(", "np", ".", "nanmax", "(", "ys", ")", ",", "c", ",", "width", ")", ",", "sigma", "=", "(", "xs", "-", "c", ")", "**", "2", "+", ".01", ")", "pgs", ".", "append", "(", "pg", ")", "fwhm", "=", "abs", "(", "2", "*", "pg", "[", "-", "1", "]", "*", "np", ".", "sqrt", "(", "2", "*", "np", ".", "log", "(", "2", ")", ")", ")", "# apply on_mult or off_mult, as appropriate.", "if", "tp", ":", "lim", "=", "np", ".", "array", "(", "[", "-", "fwhm", ",", "fwhm", "]", ")", "*", "on_mult", "+", "pg", "[", "1", "]", "else", ":", "lim", "=", "np", ".", "array", "(", "[", "-", "fwhm", ",", "fwhm", "]", ")", "*", "off_mult", "+", "pg", "[", "1", "]", "excl", ".", "append", "(", "lim", ")", "fbkg", "[", "(", "t", ">", "lim", "[", "0", "]", ")", "&", "(", "t", "<", "lim", "[", "1", "]", ")", "]", "=", "False", "fsig", "[", "(", "t", ">", "lim", "[", "0", "]", ")", "&", "(", "t", "<", "lim", "[", "1", "]", ")", "]", "=", "False", "failed", ".", "append", "(", "False", ")", "except", "RuntimeError", ":", "failed", ".", "append", "(", "True", ")", "lohi", ".", "append", "(", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", ")", "pgs", ".", "append", "(", "[", "np", ".", "nan", ",", "np", ".", "nan", ",", "np", ".", "nan", "]", ")", "excl", ".", "append", "(", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", ")", "tps", ".", "append", "(", "tp", ")", "pass", "else", ":", "zeros", "=", "[", "]", "# make plot", "nrows", "=", "2", "+", "len", "(", "zeros", ")", "//", "2", "+", "len", "(", "zeros", ")", "%", "2", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "nrows", ",", "2", ",", "figsize", "=", "(", "6", ",", "4", "+", "1.5", "*", "nrows", ")", ")", "# Trace", "ax1", ",", "ax2", ",", "ax3", ",", "ax4", "=", "axs", ".", "flat", "[", ":", "4", "]", "ax4", ".", "set_visible", "(", "False", ")", "# widen ax1 & 3", "for", "ax", "in", "[", "ax1", ",", "ax3", "]", ":", "p", "=", "ax", ".", "axes", ".", "get_position", "(", ")", "p2", "=", "[", "p", ".", "x0", ",", "p", ".", "y0", ",", "p", ".", "width", "*", "1.75", ",", "p", ".", "height", "]", "ax", ".", "axes", ".", "set_position", "(", "p2", ")", "# move ax3 up", "p", "=", "ax3", ".", "axes", ".", "get_position", "(", ")", "p2", "=", "[", "p", ".", "x0", ",", "p", ".", "y0", "+", "0.15", "*", "p", ".", "height", ",", "p", ".", "width", ",", "p", ".", "height", "]", "ax3", ".", "axes", ".", "set_position", "(", "p2", ")", "# truncate ax2", "p", "=", "ax2", ".", "axes", ".", "get_position", "(", ")", "p2", "=", "[", "p", ".", "x0", "+", "p", ".", "width", "*", "0.6", ",", "p", ".", "y0", ",", "p", ".", "width", "*", "0.4", ",", "p", ".", "height", "]", "ax2", ".", "axes", ".", "set_position", "(", "p2", ")", "# plot traces and gradient", "ax1", ".", "plot", "(", "t", ",", "sig", ",", "color", "=", "'k'", ",", "lw", "=", "1", ")", "ax1", ".", "set_xticklabels", "(", "[", "]", ")", "ax1", ".", "set_ylabel", "(", "'Signal'", ")", "ax3", ".", "plot", "(", "t", ",", "g", ",", "color", "=", "'k'", ",", "lw", "=", "1", ")", "ax3", ".", "set_xlabel", "(", "'Time (s)'", ")", "ax3", ".", "set_ylabel", "(", "'Gradient'", ")", "# plot kde", "ax2", ".", "fill_betweenx", "(", "kde_x", ",", "yd", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "0.2", ")", ")", "ax2", ".", "plot", "(", "yd", ",", "kde_x", ",", "color", "=", "'k'", ")", "ax2", ".", "set_ylim", "(", "ax1", ".", "get_ylim", "(", ")", ")", "ax2", ".", "set_yticklabels", "(", "[", "]", ")", "ax2", ".", "set_xlabel", "(", "'Data\\nDensity'", ")", "# limit", "for", "ax", "in", "[", "ax1", ",", "ax2", "]", ":", "ax", ".", "axhline", "(", "mins", "[", "0", "]", ",", "color", "=", "'k'", ",", "ls", "=", "'dashed'", ",", "alpha", "=", "0.4", ")", "if", "len", "(", "zeros", ")", ">", "0", ":", "# zeros", "for", "z", "in", "zeros", ":", "ax1", ".", "axvline", "(", "t", "[", "z", "]", ",", "color", "=", "'r'", ",", "alpha", "=", "0.5", ")", "ax3", ".", "axvline", "(", "t", "[", "z", "]", ",", "color", "=", "'r'", ",", "alpha", "=", "0.5", ")", "# plot individual transitions", "n", "=", "1", "for", "(", "lo", ",", "hi", ")", ",", "lim", ",", "tp", ",", "pg", ",", "fail", ",", "ax", "in", "zip", "(", "lohi", ",", "excl", ",", "tps", ",", "pgs", ",", "failed", ",", "axs", ".", "flat", "[", "4", ":", "]", ")", ":", "# plot region on gradient axis", "ax3", ".", "axvspan", "(", "t", "[", "lo", "]", ",", "t", "[", "hi", "]", ",", "color", "=", "'r'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "2", ")", "# plot individual transitions", "x", "=", "t", "[", "lo", ":", "hi", "]", "y", "=", "g", "[", "lo", ":", "hi", "]", "ys", "=", "sig", "[", "lo", ":", "hi", "]", "ax", ".", "scatter", "(", "x", ",", "y", ",", "color", "=", "'k'", ",", "marker", "=", "'x'", ",", "zorder", "=", "-", "1", ",", "s", "=", "10", ")", "ax", ".", "set_yticklabels", "(", "[", "]", ")", "ax", ".", "set_ylim", "(", "rangecalc", "(", "y", ")", ")", "tax", "=", "ax", ".", "twinx", "(", ")", "tax", ".", "plot", "(", "x", ",", "ys", ",", "color", "=", "'k'", ",", "alpha", "=", "0.3", ",", "zorder", "=", "-", "5", ")", "tax", ".", "set_yticklabels", "(", "[", "]", ")", "tax", ".", "set_ylim", "(", "rangecalc", "(", "ys", ")", ")", "# plot fitted gaussian", "xn", "=", "np", ".", "linspace", "(", "x", ".", "min", "(", ")", ",", "x", ".", "max", "(", ")", ",", "100", ")", "ax", ".", "plot", "(", "xn", ",", "gauss", "(", "xn", ",", "*", "pg", ")", ",", "color", "=", "'r'", ",", "alpha", "=", "0.5", ")", "# plot center and excluded region", "ax", ".", "axvline", "(", "pg", "[", "1", "]", ",", "color", "=", "'b'", ",", "alpha", "=", "0.5", ")", "ax", ".", "axvspan", "(", "*", "lim", ",", "color", "=", "'b'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "2", ")", "ax1", ".", "axvspan", "(", "*", "lim", ",", "color", "=", "'b'", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "2", ")", "if", "tp", ":", "ax", ".", "text", "(", ".05", ",", ".95", ",", "'{} (on)'", ".", "format", "(", "n", ")", ",", "ha", "=", "'left'", ",", "va", "=", "'top'", ",", "transform", "=", "ax", ".", "transAxes", ")", "else", ":", "ax", ".", "text", "(", ".95", ",", ".95", ",", "'{} (off)'", ".", "format", "(", "n", ")", ",", "ha", "=", "'right'", ",", "va", "=", "'top'", ",", "transform", "=", "ax", ".", "transAxes", ")", "if", "ax", ".", "is_last_row", "(", ")", ":", "ax", ".", "set_xlabel", "(", "'Time (s)'", ")", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "set_ylabel", "(", "'Gradient (x)'", ")", "if", "ax", ".", "is_last_col", "(", ")", ":", "tax", ".", "set_ylabel", "(", "'Signal (line)'", ")", "if", "fail", ":", "ax", ".", "axes", ".", "set_facecolor", "(", "(", "1", ",", "0", ",", "0", ",", "0.2", ")", ")", "ax", ".", "text", "(", ".5", ",", ".5", ",", "'FAIL'", ",", "ha", "=", "'center'", ",", "va", "=", "'center'", ",", "fontsize", "=", "16", ",", "color", "=", "(", "1", ",", "0", ",", "0", ",", "0.5", ")", ",", "transform", "=", "ax", ".", "transAxes", ")", "n", "+=", "1", "# should never be, but just in case...", "if", "len", "(", "zeros", ")", "%", "2", "==", "1", ":", "axs", ".", "flat", "[", "-", "1", "]", ".", "set_visible", "=", "False", "return", "fig", ",", "axs" ]
cd25a650cfee318152f234d992708511f7047fbe
test
calibration_plot
Plot the calibration lines between measured and known SRM values. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. datarange : boolean Whether or not to show the distribution of the measured data alongside the calibration curve. loglog : boolean Whether or not to plot the data on a log - log scale. This is useful if you have two low standards very close together, and want to check whether your data are between them, or below them. Returns ------- (fig, axes)
latools/helpers/plot.py
def calibration_plot(self, analytes=None, datarange=True, loglog=False, ncol=3, srm_group=None, save=True): """ Plot the calibration lines between measured and known SRM values. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. datarange : boolean Whether or not to show the distribution of the measured data alongside the calibration curve. loglog : boolean Whether or not to plot the data on a log - log scale. This is useful if you have two low standards very close together, and want to check whether your data are between them, or below them. Returns ------- (fig, axes) """ if isinstance(analytes, str): analytes = [analytes] if analytes is None: analytes = [a for a in self.analytes if self.internal_standard not in a] if srm_group is not None: srm_groups = {int(g): t for g, t in self.stdtab.loc[:, ['group', 'gTime']].values} try: gTime = srm_groups[srm_group] except KeyError: text = ('Invalid SRM group selection. Valid options are:\n' + ' Key: Time Centre\n' + '\n'.join([' {:}: {:.1f}s'.format(k, v) for k, v in srm_groups.items()])) print(text) else: gTime = None ncol = int(ncol) n = len(analytes) nrow = calc_nrow(n + 1, ncol) axes = [] if not datarange: fig = plt.figure(figsize=[4.1 * ncol, 3 * nrow]) else: fig = plt.figure(figsize=[4.7 * ncol, 3 * nrow]) self.get_focus() gs = mpl.gridspec.GridSpec(nrows=int(nrow), ncols=int(ncol), hspace=0.35, wspace=0.3) mdict = self.srm_mdict for g, a in zip(gs, analytes): if not datarange: ax = fig.add_axes(g.get_position(fig)) axes.append((ax,)) else: f = 0.8 p0 = g.get_position(fig) p1 = [p0.x0, p0.y0, p0.width * f, p0.height] p2 = [p0.x0 + p0.width * f, p0.y0, p0.width * (1 - f), p0.height] ax = fig.add_axes(p1) axh = fig.add_axes(p2) axes.append((ax, axh)) if gTime is None: sub = idx[a] else: sub = idx[a, :, :, gTime] x = self.srmtabs.loc[sub, 'meas_mean'].values xe = self.srmtabs.loc[sub, 'meas_err'].values y = self.srmtabs.loc[sub, 'srm_mean'].values ye = self.srmtabs.loc[sub, 'srm_err'].values srm = self.srmtabs.loc[sub].index.get_level_values('SRM') # plot calibration data for s, m in mdict.items(): ind = srm == s ax.errorbar(x[ind], y[ind], xerr=xe[ind], yerr=ye[ind], color=self.cmaps[a], alpha=0.6, lw=0, elinewidth=1, marker=m, #'o', capsize=0, markersize=5, label='_') # work out axis scaling if not loglog: xmax = np.nanmax(x + xe) ymax = np.nanmax(y + ye) if any(x - xe < 0): xmin = np.nanmin(x - xe) xpad = (xmax - xmin) * 0.05 xlim = [xmin - xpad, xmax + xpad] else: xlim = [0, xmax * 1.05] if any(y - ye < 0): ymin = np.nanmin(y - ye) ypad = (ymax - ymin) * 0.05 ylim = [ymin - ypad, ymax + ypad] else: ylim = [0, ymax * 1.05] else: xd = self.srmtabs.loc[a, 'meas_mean'][self.srmtabs.loc[a, 'meas_mean'] > 0].values yd = self.srmtabs.loc[a, 'srm_mean'][self.srmtabs.loc[a, 'srm_mean'] > 0].values xlim = [10**np.floor(np.log10(np.nanmin(xd))), 10**np.ceil(np.log10(np.nanmax(xd)))] ylim = [10**np.floor(np.log10(np.nanmin(yd))), 10**np.ceil(np.log10(np.nanmax(yd)))] # scale sanity checks if xlim[0] == xlim[1]: xlim[0] = ylim[0] if ylim[0] == ylim[1]: ylim[0] = xlim[0] ax.set_xscale('log') ax.set_yscale('log') ax.set_xlim(xlim) ax.set_ylim(ylim) # visual warning if any values < 0 if xlim[0] < 0: ax.axvspan(xlim[0], 0, color=(1,0.8,0.8), zorder=-1) if ylim[0] < 0: ax.axhspan(ylim[0], 0, color=(1,0.8,0.8), zorder=-1) if any(x < 0) or any(y < 0): ax.text(.5, .5, 'WARNING: Values below zero.', color='r', weight='bold', ha='center', va='center', rotation=40, transform=ax.transAxes, alpha=0.6) # calculate line and R2 if loglog: x = np.logspace(*np.log10(xlim), 100) else: x = np.array(xlim) if gTime is None: coefs = self.calib_params.loc[:, a] else: coefs = self.calib_params.loc[gTime, a] m = np.nanmean(coefs['m']) m_nom = nominal_values(m) # calculate case-specific paramers if 'c' in coefs: c = np.nanmean(coefs['c']) c_nom = nominal_values(c) # calculate R2 ym = self.srmtabs.loc[a, 'meas_mean'] * m_nom + c_nom R2 = R2calc(self.srmtabs.loc[a, 'srm_mean'], ym, force_zero=False) # generate line and label line = x * m_nom + c_nom label = 'y = {:.2e} x'.format(m) if c > 0: label += '\n+ {:.2e}'.format(c) else: label += '\n {:.2e}'.format(c) else: # calculate R2 ym = self.srmtabs.loc[a, 'meas_mean'] * m_nom R2 = R2calc(self.srmtabs.loc[a, 'srm_mean'], ym, force_zero=True) # generate line and label line = x * m_nom label = 'y = {:.2e} x'.format(m) # plot line of best fit ax.plot(x, line, color=(0, 0, 0, 0.5), ls='dashed') # add R2 to label if round(R2, 3) == 1: label = '$R^2$: >0.999\n' + label else: label = '$R^2$: {:.3f}\n'.format(R2) + label ax.text(.05, .95, pretty_element(a), transform=ax.transAxes, weight='bold', va='top', ha='left', size=12) ax.set_xlabel('counts/counts ' + self.internal_standard) ax.set_ylabel('mol/mol ' + self.internal_standard) # write calibration equation on graph happens after data distribution # plot data distribution historgram alongside calibration plot if datarange: # isolate data meas = nominal_values(self.focus[a]) meas = meas[~np.isnan(meas)] # check and set y scale if np.nanmin(meas) < ylim[0]: if loglog: mmeas = meas[meas > 0] ylim[0] = 10**np.floor(np.log10(np.nanmin(mmeas))) else: ylim[0] = 0 ax.set_ylim(ylim) m95 = np.percentile(meas[~np.isnan(meas)], 95) * 1.05 if m95 > ylim[1]: if loglog: ylim[1] = 10**np.ceil(np.log10(m95)) else: ylim[1] = m95 # hist if loglog: bins = np.logspace(*np.log10(ylim), 30) else: bins = np.linspace(*ylim, 30) axh.hist(meas, bins=bins, orientation='horizontal', color=self.cmaps[a], lw=0.5, alpha=0.5) if loglog: axh.set_yscale('log') axh.set_ylim(ylim) # ylim of histogram axis ax.set_ylim(ylim) # ylim of calibration axis axh.set_xticks([]) axh.set_yticklabels([]) # write calibration equation on graph cmax = np.nanmax(y) if cmax / ylim[1] > 0.5: ax.text(0.98, 0.04, label, transform=ax.transAxes, va='bottom', ha='right') else: ax.text(0.02, 0.75, label, transform=ax.transAxes, va='top', ha='left') if srm_group is None: title = 'All SRMs' else: title = 'SRM Group {:} (centre at {:.1f}s)'.format(srm_group, gTime) axes[0][0].set_title(title, loc='left', weight='bold', fontsize=12) # SRM legend ax = fig.add_axes(gs[-1].get_position(fig)) for lab, m in mdict.items(): ax.scatter([],[],marker=m, label=lab, color=(0,0,0,0.6)) ax.legend() ax.axis('off') if save: fig.savefig(self.report_dir + '/calibration.pdf') return fig, axes
def calibration_plot(self, analytes=None, datarange=True, loglog=False, ncol=3, srm_group=None, save=True): """ Plot the calibration lines between measured and known SRM values. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. datarange : boolean Whether or not to show the distribution of the measured data alongside the calibration curve. loglog : boolean Whether or not to plot the data on a log - log scale. This is useful if you have two low standards very close together, and want to check whether your data are between them, or below them. Returns ------- (fig, axes) """ if isinstance(analytes, str): analytes = [analytes] if analytes is None: analytes = [a for a in self.analytes if self.internal_standard not in a] if srm_group is not None: srm_groups = {int(g): t for g, t in self.stdtab.loc[:, ['group', 'gTime']].values} try: gTime = srm_groups[srm_group] except KeyError: text = ('Invalid SRM group selection. Valid options are:\n' + ' Key: Time Centre\n' + '\n'.join([' {:}: {:.1f}s'.format(k, v) for k, v in srm_groups.items()])) print(text) else: gTime = None ncol = int(ncol) n = len(analytes) nrow = calc_nrow(n + 1, ncol) axes = [] if not datarange: fig = plt.figure(figsize=[4.1 * ncol, 3 * nrow]) else: fig = plt.figure(figsize=[4.7 * ncol, 3 * nrow]) self.get_focus() gs = mpl.gridspec.GridSpec(nrows=int(nrow), ncols=int(ncol), hspace=0.35, wspace=0.3) mdict = self.srm_mdict for g, a in zip(gs, analytes): if not datarange: ax = fig.add_axes(g.get_position(fig)) axes.append((ax,)) else: f = 0.8 p0 = g.get_position(fig) p1 = [p0.x0, p0.y0, p0.width * f, p0.height] p2 = [p0.x0 + p0.width * f, p0.y0, p0.width * (1 - f), p0.height] ax = fig.add_axes(p1) axh = fig.add_axes(p2) axes.append((ax, axh)) if gTime is None: sub = idx[a] else: sub = idx[a, :, :, gTime] x = self.srmtabs.loc[sub, 'meas_mean'].values xe = self.srmtabs.loc[sub, 'meas_err'].values y = self.srmtabs.loc[sub, 'srm_mean'].values ye = self.srmtabs.loc[sub, 'srm_err'].values srm = self.srmtabs.loc[sub].index.get_level_values('SRM') # plot calibration data for s, m in mdict.items(): ind = srm == s ax.errorbar(x[ind], y[ind], xerr=xe[ind], yerr=ye[ind], color=self.cmaps[a], alpha=0.6, lw=0, elinewidth=1, marker=m, #'o', capsize=0, markersize=5, label='_') # work out axis scaling if not loglog: xmax = np.nanmax(x + xe) ymax = np.nanmax(y + ye) if any(x - xe < 0): xmin = np.nanmin(x - xe) xpad = (xmax - xmin) * 0.05 xlim = [xmin - xpad, xmax + xpad] else: xlim = [0, xmax * 1.05] if any(y - ye < 0): ymin = np.nanmin(y - ye) ypad = (ymax - ymin) * 0.05 ylim = [ymin - ypad, ymax + ypad] else: ylim = [0, ymax * 1.05] else: xd = self.srmtabs.loc[a, 'meas_mean'][self.srmtabs.loc[a, 'meas_mean'] > 0].values yd = self.srmtabs.loc[a, 'srm_mean'][self.srmtabs.loc[a, 'srm_mean'] > 0].values xlim = [10**np.floor(np.log10(np.nanmin(xd))), 10**np.ceil(np.log10(np.nanmax(xd)))] ylim = [10**np.floor(np.log10(np.nanmin(yd))), 10**np.ceil(np.log10(np.nanmax(yd)))] # scale sanity checks if xlim[0] == xlim[1]: xlim[0] = ylim[0] if ylim[0] == ylim[1]: ylim[0] = xlim[0] ax.set_xscale('log') ax.set_yscale('log') ax.set_xlim(xlim) ax.set_ylim(ylim) # visual warning if any values < 0 if xlim[0] < 0: ax.axvspan(xlim[0], 0, color=(1,0.8,0.8), zorder=-1) if ylim[0] < 0: ax.axhspan(ylim[0], 0, color=(1,0.8,0.8), zorder=-1) if any(x < 0) or any(y < 0): ax.text(.5, .5, 'WARNING: Values below zero.', color='r', weight='bold', ha='center', va='center', rotation=40, transform=ax.transAxes, alpha=0.6) # calculate line and R2 if loglog: x = np.logspace(*np.log10(xlim), 100) else: x = np.array(xlim) if gTime is None: coefs = self.calib_params.loc[:, a] else: coefs = self.calib_params.loc[gTime, a] m = np.nanmean(coefs['m']) m_nom = nominal_values(m) # calculate case-specific paramers if 'c' in coefs: c = np.nanmean(coefs['c']) c_nom = nominal_values(c) # calculate R2 ym = self.srmtabs.loc[a, 'meas_mean'] * m_nom + c_nom R2 = R2calc(self.srmtabs.loc[a, 'srm_mean'], ym, force_zero=False) # generate line and label line = x * m_nom + c_nom label = 'y = {:.2e} x'.format(m) if c > 0: label += '\n+ {:.2e}'.format(c) else: label += '\n {:.2e}'.format(c) else: # calculate R2 ym = self.srmtabs.loc[a, 'meas_mean'] * m_nom R2 = R2calc(self.srmtabs.loc[a, 'srm_mean'], ym, force_zero=True) # generate line and label line = x * m_nom label = 'y = {:.2e} x'.format(m) # plot line of best fit ax.plot(x, line, color=(0, 0, 0, 0.5), ls='dashed') # add R2 to label if round(R2, 3) == 1: label = '$R^2$: >0.999\n' + label else: label = '$R^2$: {:.3f}\n'.format(R2) + label ax.text(.05, .95, pretty_element(a), transform=ax.transAxes, weight='bold', va='top', ha='left', size=12) ax.set_xlabel('counts/counts ' + self.internal_standard) ax.set_ylabel('mol/mol ' + self.internal_standard) # write calibration equation on graph happens after data distribution # plot data distribution historgram alongside calibration plot if datarange: # isolate data meas = nominal_values(self.focus[a]) meas = meas[~np.isnan(meas)] # check and set y scale if np.nanmin(meas) < ylim[0]: if loglog: mmeas = meas[meas > 0] ylim[0] = 10**np.floor(np.log10(np.nanmin(mmeas))) else: ylim[0] = 0 ax.set_ylim(ylim) m95 = np.percentile(meas[~np.isnan(meas)], 95) * 1.05 if m95 > ylim[1]: if loglog: ylim[1] = 10**np.ceil(np.log10(m95)) else: ylim[1] = m95 # hist if loglog: bins = np.logspace(*np.log10(ylim), 30) else: bins = np.linspace(*ylim, 30) axh.hist(meas, bins=bins, orientation='horizontal', color=self.cmaps[a], lw=0.5, alpha=0.5) if loglog: axh.set_yscale('log') axh.set_ylim(ylim) # ylim of histogram axis ax.set_ylim(ylim) # ylim of calibration axis axh.set_xticks([]) axh.set_yticklabels([]) # write calibration equation on graph cmax = np.nanmax(y) if cmax / ylim[1] > 0.5: ax.text(0.98, 0.04, label, transform=ax.transAxes, va='bottom', ha='right') else: ax.text(0.02, 0.75, label, transform=ax.transAxes, va='top', ha='left') if srm_group is None: title = 'All SRMs' else: title = 'SRM Group {:} (centre at {:.1f}s)'.format(srm_group, gTime) axes[0][0].set_title(title, loc='left', weight='bold', fontsize=12) # SRM legend ax = fig.add_axes(gs[-1].get_position(fig)) for lab, m in mdict.items(): ax.scatter([],[],marker=m, label=lab, color=(0,0,0,0.6)) ax.legend() ax.axis('off') if save: fig.savefig(self.report_dir + '/calibration.pdf') return fig, axes
[ "Plot", "the", "calibration", "lines", "between", "measured", "and", "known", "SRM", "values", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L692-L941
[ "def", "calibration_plot", "(", "self", ",", "analytes", "=", "None", ",", "datarange", "=", "True", ",", "loglog", "=", "False", ",", "ncol", "=", "3", ",", "srm_group", "=", "None", ",", "save", "=", "True", ")", ":", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "analytes", "is", "None", ":", "analytes", "=", "[", "a", "for", "a", "in", "self", ".", "analytes", "if", "self", ".", "internal_standard", "not", "in", "a", "]", "if", "srm_group", "is", "not", "None", ":", "srm_groups", "=", "{", "int", "(", "g", ")", ":", "t", "for", "g", ",", "t", "in", "self", ".", "stdtab", ".", "loc", "[", ":", ",", "[", "'group'", ",", "'gTime'", "]", "]", ".", "values", "}", "try", ":", "gTime", "=", "srm_groups", "[", "srm_group", "]", "except", "KeyError", ":", "text", "=", "(", "'Invalid SRM group selection. Valid options are:\\n'", "+", "' Key: Time Centre\\n'", "+", "'\\n'", ".", "join", "(", "[", "' {:}: {:.1f}s'", ".", "format", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "srm_groups", ".", "items", "(", ")", "]", ")", ")", "print", "(", "text", ")", "else", ":", "gTime", "=", "None", "ncol", "=", "int", "(", "ncol", ")", "n", "=", "len", "(", "analytes", ")", "nrow", "=", "calc_nrow", "(", "n", "+", "1", ",", "ncol", ")", "axes", "=", "[", "]", "if", "not", "datarange", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "[", "4.1", "*", "ncol", ",", "3", "*", "nrow", "]", ")", "else", ":", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "[", "4.7", "*", "ncol", ",", "3", "*", "nrow", "]", ")", "self", ".", "get_focus", "(", ")", "gs", "=", "mpl", ".", "gridspec", ".", "GridSpec", "(", "nrows", "=", "int", "(", "nrow", ")", ",", "ncols", "=", "int", "(", "ncol", ")", ",", "hspace", "=", "0.35", ",", "wspace", "=", "0.3", ")", "mdict", "=", "self", ".", "srm_mdict", "for", "g", ",", "a", "in", "zip", "(", "gs", ",", "analytes", ")", ":", "if", "not", "datarange", ":", "ax", "=", "fig", ".", "add_axes", "(", "g", ".", "get_position", "(", "fig", ")", ")", "axes", ".", "append", "(", "(", "ax", ",", ")", ")", "else", ":", "f", "=", "0.8", "p0", "=", "g", ".", "get_position", "(", "fig", ")", "p1", "=", "[", "p0", ".", "x0", ",", "p0", ".", "y0", ",", "p0", ".", "width", "*", "f", ",", "p0", ".", "height", "]", "p2", "=", "[", "p0", ".", "x0", "+", "p0", ".", "width", "*", "f", ",", "p0", ".", "y0", ",", "p0", ".", "width", "*", "(", "1", "-", "f", ")", ",", "p0", ".", "height", "]", "ax", "=", "fig", ".", "add_axes", "(", "p1", ")", "axh", "=", "fig", ".", "add_axes", "(", "p2", ")", "axes", ".", "append", "(", "(", "ax", ",", "axh", ")", ")", "if", "gTime", "is", "None", ":", "sub", "=", "idx", "[", "a", "]", "else", ":", "sub", "=", "idx", "[", "a", ",", ":", ",", ":", ",", "gTime", "]", "x", "=", "self", ".", "srmtabs", ".", "loc", "[", "sub", ",", "'meas_mean'", "]", ".", "values", "xe", "=", "self", ".", "srmtabs", ".", "loc", "[", "sub", ",", "'meas_err'", "]", ".", "values", "y", "=", "self", ".", "srmtabs", ".", "loc", "[", "sub", ",", "'srm_mean'", "]", ".", "values", "ye", "=", "self", ".", "srmtabs", ".", "loc", "[", "sub", ",", "'srm_err'", "]", ".", "values", "srm", "=", "self", ".", "srmtabs", ".", "loc", "[", "sub", "]", ".", "index", ".", "get_level_values", "(", "'SRM'", ")", "# plot calibration data", "for", "s", ",", "m", "in", "mdict", ".", "items", "(", ")", ":", "ind", "=", "srm", "==", "s", "ax", ".", "errorbar", "(", "x", "[", "ind", "]", ",", "y", "[", "ind", "]", ",", "xerr", "=", "xe", "[", "ind", "]", ",", "yerr", "=", "ye", "[", "ind", "]", ",", "color", "=", "self", ".", "cmaps", "[", "a", "]", ",", "alpha", "=", "0.6", ",", "lw", "=", "0", ",", "elinewidth", "=", "1", ",", "marker", "=", "m", ",", "#'o',", "capsize", "=", "0", ",", "markersize", "=", "5", ",", "label", "=", "'_'", ")", "# work out axis scaling", "if", "not", "loglog", ":", "xmax", "=", "np", ".", "nanmax", "(", "x", "+", "xe", ")", "ymax", "=", "np", ".", "nanmax", "(", "y", "+", "ye", ")", "if", "any", "(", "x", "-", "xe", "<", "0", ")", ":", "xmin", "=", "np", ".", "nanmin", "(", "x", "-", "xe", ")", "xpad", "=", "(", "xmax", "-", "xmin", ")", "*", "0.05", "xlim", "=", "[", "xmin", "-", "xpad", ",", "xmax", "+", "xpad", "]", "else", ":", "xlim", "=", "[", "0", ",", "xmax", "*", "1.05", "]", "if", "any", "(", "y", "-", "ye", "<", "0", ")", ":", "ymin", "=", "np", ".", "nanmin", "(", "y", "-", "ye", ")", "ypad", "=", "(", "ymax", "-", "ymin", ")", "*", "0.05", "ylim", "=", "[", "ymin", "-", "ypad", ",", "ymax", "+", "ypad", "]", "else", ":", "ylim", "=", "[", "0", ",", "ymax", "*", "1.05", "]", "else", ":", "xd", "=", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'meas_mean'", "]", "[", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'meas_mean'", "]", ">", "0", "]", ".", "values", "yd", "=", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'srm_mean'", "]", "[", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'srm_mean'", "]", ">", "0", "]", ".", "values", "xlim", "=", "[", "10", "**", "np", ".", "floor", "(", "np", ".", "log10", "(", "np", ".", "nanmin", "(", "xd", ")", ")", ")", ",", "10", "**", "np", ".", "ceil", "(", "np", ".", "log10", "(", "np", ".", "nanmax", "(", "xd", ")", ")", ")", "]", "ylim", "=", "[", "10", "**", "np", ".", "floor", "(", "np", ".", "log10", "(", "np", ".", "nanmin", "(", "yd", ")", ")", ")", ",", "10", "**", "np", ".", "ceil", "(", "np", ".", "log10", "(", "np", ".", "nanmax", "(", "yd", ")", ")", ")", "]", "# scale sanity checks", "if", "xlim", "[", "0", "]", "==", "xlim", "[", "1", "]", ":", "xlim", "[", "0", "]", "=", "ylim", "[", "0", "]", "if", "ylim", "[", "0", "]", "==", "ylim", "[", "1", "]", ":", "ylim", "[", "0", "]", "=", "xlim", "[", "0", "]", "ax", ".", "set_xscale", "(", "'log'", ")", "ax", ".", "set_yscale", "(", "'log'", ")", "ax", ".", "set_xlim", "(", "xlim", ")", "ax", ".", "set_ylim", "(", "ylim", ")", "# visual warning if any values < 0", "if", "xlim", "[", "0", "]", "<", "0", ":", "ax", ".", "axvspan", "(", "xlim", "[", "0", "]", ",", "0", ",", "color", "=", "(", "1", ",", "0.8", ",", "0.8", ")", ",", "zorder", "=", "-", "1", ")", "if", "ylim", "[", "0", "]", "<", "0", ":", "ax", ".", "axhspan", "(", "ylim", "[", "0", "]", ",", "0", ",", "color", "=", "(", "1", ",", "0.8", ",", "0.8", ")", ",", "zorder", "=", "-", "1", ")", "if", "any", "(", "x", "<", "0", ")", "or", "any", "(", "y", "<", "0", ")", ":", "ax", ".", "text", "(", ".5", ",", ".5", ",", "'WARNING: Values below zero.'", ",", "color", "=", "'r'", ",", "weight", "=", "'bold'", ",", "ha", "=", "'center'", ",", "va", "=", "'center'", ",", "rotation", "=", "40", ",", "transform", "=", "ax", ".", "transAxes", ",", "alpha", "=", "0.6", ")", "# calculate line and R2", "if", "loglog", ":", "x", "=", "np", ".", "logspace", "(", "*", "np", ".", "log10", "(", "xlim", ")", ",", "100", ")", "else", ":", "x", "=", "np", ".", "array", "(", "xlim", ")", "if", "gTime", "is", "None", ":", "coefs", "=", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "a", "]", "else", ":", "coefs", "=", "self", ".", "calib_params", ".", "loc", "[", "gTime", ",", "a", "]", "m", "=", "np", ".", "nanmean", "(", "coefs", "[", "'m'", "]", ")", "m_nom", "=", "nominal_values", "(", "m", ")", "# calculate case-specific paramers", "if", "'c'", "in", "coefs", ":", "c", "=", "np", ".", "nanmean", "(", "coefs", "[", "'c'", "]", ")", "c_nom", "=", "nominal_values", "(", "c", ")", "# calculate R2", "ym", "=", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'meas_mean'", "]", "*", "m_nom", "+", "c_nom", "R2", "=", "R2calc", "(", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'srm_mean'", "]", ",", "ym", ",", "force_zero", "=", "False", ")", "# generate line and label", "line", "=", "x", "*", "m_nom", "+", "c_nom", "label", "=", "'y = {:.2e} x'", ".", "format", "(", "m", ")", "if", "c", ">", "0", ":", "label", "+=", "'\\n+ {:.2e}'", ".", "format", "(", "c", ")", "else", ":", "label", "+=", "'\\n {:.2e}'", ".", "format", "(", "c", ")", "else", ":", "# calculate R2", "ym", "=", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'meas_mean'", "]", "*", "m_nom", "R2", "=", "R2calc", "(", "self", ".", "srmtabs", ".", "loc", "[", "a", ",", "'srm_mean'", "]", ",", "ym", ",", "force_zero", "=", "True", ")", "# generate line and label", "line", "=", "x", "*", "m_nom", "label", "=", "'y = {:.2e} x'", ".", "format", "(", "m", ")", "# plot line of best fit", "ax", ".", "plot", "(", "x", ",", "line", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "0.5", ")", ",", "ls", "=", "'dashed'", ")", "# add R2 to label", "if", "round", "(", "R2", ",", "3", ")", "==", "1", ":", "label", "=", "'$R^2$: >0.999\\n'", "+", "label", "else", ":", "label", "=", "'$R^2$: {:.3f}\\n'", ".", "format", "(", "R2", ")", "+", "label", "ax", ".", "text", "(", ".05", ",", ".95", ",", "pretty_element", "(", "a", ")", ",", "transform", "=", "ax", ".", "transAxes", ",", "weight", "=", "'bold'", ",", "va", "=", "'top'", ",", "ha", "=", "'left'", ",", "size", "=", "12", ")", "ax", ".", "set_xlabel", "(", "'counts/counts '", "+", "self", ".", "internal_standard", ")", "ax", ".", "set_ylabel", "(", "'mol/mol '", "+", "self", ".", "internal_standard", ")", "# write calibration equation on graph happens after data distribution", "# plot data distribution historgram alongside calibration plot", "if", "datarange", ":", "# isolate data", "meas", "=", "nominal_values", "(", "self", ".", "focus", "[", "a", "]", ")", "meas", "=", "meas", "[", "~", "np", ".", "isnan", "(", "meas", ")", "]", "# check and set y scale", "if", "np", ".", "nanmin", "(", "meas", ")", "<", "ylim", "[", "0", "]", ":", "if", "loglog", ":", "mmeas", "=", "meas", "[", "meas", ">", "0", "]", "ylim", "[", "0", "]", "=", "10", "**", "np", ".", "floor", "(", "np", ".", "log10", "(", "np", ".", "nanmin", "(", "mmeas", ")", ")", ")", "else", ":", "ylim", "[", "0", "]", "=", "0", "ax", ".", "set_ylim", "(", "ylim", ")", "m95", "=", "np", ".", "percentile", "(", "meas", "[", "~", "np", ".", "isnan", "(", "meas", ")", "]", ",", "95", ")", "*", "1.05", "if", "m95", ">", "ylim", "[", "1", "]", ":", "if", "loglog", ":", "ylim", "[", "1", "]", "=", "10", "**", "np", ".", "ceil", "(", "np", ".", "log10", "(", "m95", ")", ")", "else", ":", "ylim", "[", "1", "]", "=", "m95", "# hist", "if", "loglog", ":", "bins", "=", "np", ".", "logspace", "(", "*", "np", ".", "log10", "(", "ylim", ")", ",", "30", ")", "else", ":", "bins", "=", "np", ".", "linspace", "(", "*", "ylim", ",", "30", ")", "axh", ".", "hist", "(", "meas", ",", "bins", "=", "bins", ",", "orientation", "=", "'horizontal'", ",", "color", "=", "self", ".", "cmaps", "[", "a", "]", ",", "lw", "=", "0.5", ",", "alpha", "=", "0.5", ")", "if", "loglog", ":", "axh", ".", "set_yscale", "(", "'log'", ")", "axh", ".", "set_ylim", "(", "ylim", ")", "# ylim of histogram axis", "ax", ".", "set_ylim", "(", "ylim", ")", "# ylim of calibration axis", "axh", ".", "set_xticks", "(", "[", "]", ")", "axh", ".", "set_yticklabels", "(", "[", "]", ")", "# write calibration equation on graph", "cmax", "=", "np", ".", "nanmax", "(", "y", ")", "if", "cmax", "/", "ylim", "[", "1", "]", ">", "0.5", ":", "ax", ".", "text", "(", "0.98", ",", "0.04", ",", "label", ",", "transform", "=", "ax", ".", "transAxes", ",", "va", "=", "'bottom'", ",", "ha", "=", "'right'", ")", "else", ":", "ax", ".", "text", "(", "0.02", ",", "0.75", ",", "label", ",", "transform", "=", "ax", ".", "transAxes", ",", "va", "=", "'top'", ",", "ha", "=", "'left'", ")", "if", "srm_group", "is", "None", ":", "title", "=", "'All SRMs'", "else", ":", "title", "=", "'SRM Group {:} (centre at {:.1f}s)'", ".", "format", "(", "srm_group", ",", "gTime", ")", "axes", "[", "0", "]", "[", "0", "]", ".", "set_title", "(", "title", ",", "loc", "=", "'left'", ",", "weight", "=", "'bold'", ",", "fontsize", "=", "12", ")", "# SRM legend", "ax", "=", "fig", ".", "add_axes", "(", "gs", "[", "-", "1", "]", ".", "get_position", "(", "fig", ")", ")", "for", "lab", ",", "m", "in", "mdict", ".", "items", "(", ")", ":", "ax", ".", "scatter", "(", "[", "]", ",", "[", "]", ",", "marker", "=", "m", ",", "label", "=", "lab", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "0.6", ")", ")", "ax", ".", "legend", "(", ")", "ax", ".", "axis", "(", "'off'", ")", "if", "save", ":", "fig", ".", "savefig", "(", "self", ".", "report_dir", "+", "'/calibration.pdf'", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
filter_report
Visualise effect of data filters. Parameters ---------- filt : str Exact or partial name of filter to plot. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name will be plotted. Defaults to all filters. analyte : str Name of analyte to plot. save : str file path to save the plot Returns ------- (fig, axes)
latools/helpers/plot.py
def filter_report(Data, filt=None, analytes=None, savedir=None, nbin=5): """ Visualise effect of data filters. Parameters ---------- filt : str Exact or partial name of filter to plot. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name will be plotted. Defaults to all filters. analyte : str Name of analyte to plot. save : str file path to save the plot Returns ------- (fig, axes) """ if filt is None or filt == 'all': sets = Data.filt.sets else: sets = {k: v for k, v in Data.filt.sets.items() if any(filt in f for f in v)} regex = re.compile('^([0-9]+)_([A-Za-z0-9-]+)_' '([A-Za-z0-9-]+)[_$]?' '([a-z0-9]+)?') cm = plt.cm.get_cmap('Spectral') ngrps = len(sets) if analytes is None: analytes = Data.analytes elif isinstance(analytes, str): analytes = [analytes] axes = [] for analyte in analytes: if analyte != Data.internal_standard: fig = plt.figure() for i in sorted(sets.keys()): filts = sets[i] nfilts = np.array([re.match(regex, f).groups() for f in filts]) fgnames = np.array(['_'.join(a) for a in nfilts[:, 1:3]]) fgrp = np.unique(fgnames)[0] fig.set_size_inches(10, 3.5 * ngrps) h = .8 / ngrps y = nominal_values(Data.focus[analyte]) yh = y[~np.isnan(y)] m, u = unitpicker(np.nanmax(y), denominator=Data.internal_standard, focus_stage=Data.focus_stage) axs = tax, hax = (fig.add_axes([.1, .9 - (i + 1) * h, .6, h * .98]), fig.add_axes([.7, .9 - (i + 1) * h, .2, h * .98])) axes.append(axs) # get variables fg = sets[i] cs = cm(np.linspace(0, 1, len(fg))) fn = ['_'.join(x) for x in nfilts[:, (0, 3)]] an = nfilts[:, 0] bins = np.linspace(np.nanmin(y), np.nanmax(y), len(yh) // nbin) * m if 'DBSCAN' in fgrp: # determine data filters core_ind = Data.filt.components[[f for f in fg if 'core' in f][0]] other = np.array([('noise' not in f) & ('core' not in f) for f in fg]) tfg = fg[other] tfn = fn[other] tcs = cm(np.linspace(0, 1, len(tfg))) # plot all data hax.hist(m * yh, bins, alpha=0.2, orientation='horizontal', color='k', lw=0) # legend markers for core/member tax.scatter([], [], s=20, label='core', color='w', lw=0.5, edgecolor='k') tax.scatter([], [], s=7.5, label='member', color='w', lw=0.5, edgecolor='k') # plot noise try: noise_ind = Data.filt.components[[f for f in fg if 'noise' in f][0]] tax.scatter(Data.Time[noise_ind], m * y[noise_ind], lw=1, color='k', s=10, marker='x', label='noise', alpha=0.6) except: pass # plot filtered data for f, c, lab in zip(tfg, tcs, tfn): ind = Data.filt.components[f] tax.scatter(Data.Time[~core_ind & ind], m * y[~core_ind & ind], lw=.5, color=c, s=5, edgecolor='k') tax.scatter(Data.Time[core_ind & ind], m * y[core_ind & ind], lw=.5, color=c, s=15, edgecolor='k', label=lab) hax.hist(m * y[ind][~np.isnan(y[ind])], bins, color=c, lw=0.1, orientation='horizontal', alpha=0.6) else: # plot all data tax.scatter(Data.Time, m * y, color='k', alpha=0.2, lw=0.1, s=20, label='excl') hax.hist(m * yh, bins, alpha=0.2, orientation='horizontal', color='k', lw=0) # plot filtered data for f, c, lab in zip(fg, cs, fn): ind = Data.filt.components[f] tax.scatter(Data.Time[ind], m * y[ind], edgecolor=(0,0,0,0), color=c, s=15, label=lab) hax.hist(m * y[ind][~np.isnan(y[ind])], bins, color=c, lw=0.1, orientation='horizontal', alpha=0.6) if 'thresh' in fgrp and analyte in fgrp: tax.axhline(Data.filt.params[fg[0]]['threshold'] * m, ls='dashed', zorder=-2, alpha=0.5, color='k') hax.axhline(Data.filt.params[fg[0]]['threshold'] * m, ls='dashed', zorder=-2, alpha=0.5, color='k') # formatting for ax in axs: mn = np.nanmin(y) * m mx = np.nanmax(y) * m rn = mx - mn ax.set_ylim(mn - .05 * rn, mx + 0.05 * rn) # legend hn, la = tax.get_legend_handles_labels() hax.legend(hn, la, loc='upper right', scatterpoints=1) tax.text(.02, .98, Data.sample + ': ' + fgrp, size=12, weight='bold', ha='left', va='top', transform=tax.transAxes) tax.set_ylabel(pretty_element(analyte) + ' (' + u + ')') tax.set_xticks(tax.get_xticks()[:-1]) hax.set_yticklabels([]) if i < ngrps - 1: tax.set_xticklabels([]) hax.set_xticklabels([]) else: tax.set_xlabel('Time (s)') hax.set_xlabel('n') if isinstance(savedir, str): fig.savefig(savedir + '/' + Data.sample + '_' + analyte + '.pdf') plt.close(fig) return fig, axes
def filter_report(Data, filt=None, analytes=None, savedir=None, nbin=5): """ Visualise effect of data filters. Parameters ---------- filt : str Exact or partial name of filter to plot. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name will be plotted. Defaults to all filters. analyte : str Name of analyte to plot. save : str file path to save the plot Returns ------- (fig, axes) """ if filt is None or filt == 'all': sets = Data.filt.sets else: sets = {k: v for k, v in Data.filt.sets.items() if any(filt in f for f in v)} regex = re.compile('^([0-9]+)_([A-Za-z0-9-]+)_' '([A-Za-z0-9-]+)[_$]?' '([a-z0-9]+)?') cm = plt.cm.get_cmap('Spectral') ngrps = len(sets) if analytes is None: analytes = Data.analytes elif isinstance(analytes, str): analytes = [analytes] axes = [] for analyte in analytes: if analyte != Data.internal_standard: fig = plt.figure() for i in sorted(sets.keys()): filts = sets[i] nfilts = np.array([re.match(regex, f).groups() for f in filts]) fgnames = np.array(['_'.join(a) for a in nfilts[:, 1:3]]) fgrp = np.unique(fgnames)[0] fig.set_size_inches(10, 3.5 * ngrps) h = .8 / ngrps y = nominal_values(Data.focus[analyte]) yh = y[~np.isnan(y)] m, u = unitpicker(np.nanmax(y), denominator=Data.internal_standard, focus_stage=Data.focus_stage) axs = tax, hax = (fig.add_axes([.1, .9 - (i + 1) * h, .6, h * .98]), fig.add_axes([.7, .9 - (i + 1) * h, .2, h * .98])) axes.append(axs) # get variables fg = sets[i] cs = cm(np.linspace(0, 1, len(fg))) fn = ['_'.join(x) for x in nfilts[:, (0, 3)]] an = nfilts[:, 0] bins = np.linspace(np.nanmin(y), np.nanmax(y), len(yh) // nbin) * m if 'DBSCAN' in fgrp: # determine data filters core_ind = Data.filt.components[[f for f in fg if 'core' in f][0]] other = np.array([('noise' not in f) & ('core' not in f) for f in fg]) tfg = fg[other] tfn = fn[other] tcs = cm(np.linspace(0, 1, len(tfg))) # plot all data hax.hist(m * yh, bins, alpha=0.2, orientation='horizontal', color='k', lw=0) # legend markers for core/member tax.scatter([], [], s=20, label='core', color='w', lw=0.5, edgecolor='k') tax.scatter([], [], s=7.5, label='member', color='w', lw=0.5, edgecolor='k') # plot noise try: noise_ind = Data.filt.components[[f for f in fg if 'noise' in f][0]] tax.scatter(Data.Time[noise_ind], m * y[noise_ind], lw=1, color='k', s=10, marker='x', label='noise', alpha=0.6) except: pass # plot filtered data for f, c, lab in zip(tfg, tcs, tfn): ind = Data.filt.components[f] tax.scatter(Data.Time[~core_ind & ind], m * y[~core_ind & ind], lw=.5, color=c, s=5, edgecolor='k') tax.scatter(Data.Time[core_ind & ind], m * y[core_ind & ind], lw=.5, color=c, s=15, edgecolor='k', label=lab) hax.hist(m * y[ind][~np.isnan(y[ind])], bins, color=c, lw=0.1, orientation='horizontal', alpha=0.6) else: # plot all data tax.scatter(Data.Time, m * y, color='k', alpha=0.2, lw=0.1, s=20, label='excl') hax.hist(m * yh, bins, alpha=0.2, orientation='horizontal', color='k', lw=0) # plot filtered data for f, c, lab in zip(fg, cs, fn): ind = Data.filt.components[f] tax.scatter(Data.Time[ind], m * y[ind], edgecolor=(0,0,0,0), color=c, s=15, label=lab) hax.hist(m * y[ind][~np.isnan(y[ind])], bins, color=c, lw=0.1, orientation='horizontal', alpha=0.6) if 'thresh' in fgrp and analyte in fgrp: tax.axhline(Data.filt.params[fg[0]]['threshold'] * m, ls='dashed', zorder=-2, alpha=0.5, color='k') hax.axhline(Data.filt.params[fg[0]]['threshold'] * m, ls='dashed', zorder=-2, alpha=0.5, color='k') # formatting for ax in axs: mn = np.nanmin(y) * m mx = np.nanmax(y) * m rn = mx - mn ax.set_ylim(mn - .05 * rn, mx + 0.05 * rn) # legend hn, la = tax.get_legend_handles_labels() hax.legend(hn, la, loc='upper right', scatterpoints=1) tax.text(.02, .98, Data.sample + ': ' + fgrp, size=12, weight='bold', ha='left', va='top', transform=tax.transAxes) tax.set_ylabel(pretty_element(analyte) + ' (' + u + ')') tax.set_xticks(tax.get_xticks()[:-1]) hax.set_yticklabels([]) if i < ngrps - 1: tax.set_xticklabels([]) hax.set_xticklabels([]) else: tax.set_xlabel('Time (s)') hax.set_xlabel('n') if isinstance(savedir, str): fig.savefig(savedir + '/' + Data.sample + '_' + analyte + '.pdf') plt.close(fig) return fig, axes
[ "Visualise", "effect", "of", "data", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/plot.py#L1002-L1159
[ "def", "filter_report", "(", "Data", ",", "filt", "=", "None", ",", "analytes", "=", "None", ",", "savedir", "=", "None", ",", "nbin", "=", "5", ")", ":", "if", "filt", "is", "None", "or", "filt", "==", "'all'", ":", "sets", "=", "Data", ".", "filt", ".", "sets", "else", ":", "sets", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "Data", ".", "filt", ".", "sets", ".", "items", "(", ")", "if", "any", "(", "filt", "in", "f", "for", "f", "in", "v", ")", "}", "regex", "=", "re", ".", "compile", "(", "'^([0-9]+)_([A-Za-z0-9-]+)_'", "'([A-Za-z0-9-]+)[_$]?'", "'([a-z0-9]+)?'", ")", "cm", "=", "plt", ".", "cm", ".", "get_cmap", "(", "'Spectral'", ")", "ngrps", "=", "len", "(", "sets", ")", "if", "analytes", "is", "None", ":", "analytes", "=", "Data", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "axes", "=", "[", "]", "for", "analyte", "in", "analytes", ":", "if", "analyte", "!=", "Data", ".", "internal_standard", ":", "fig", "=", "plt", ".", "figure", "(", ")", "for", "i", "in", "sorted", "(", "sets", ".", "keys", "(", ")", ")", ":", "filts", "=", "sets", "[", "i", "]", "nfilts", "=", "np", ".", "array", "(", "[", "re", ".", "match", "(", "regex", ",", "f", ")", ".", "groups", "(", ")", "for", "f", "in", "filts", "]", ")", "fgnames", "=", "np", ".", "array", "(", "[", "'_'", ".", "join", "(", "a", ")", "for", "a", "in", "nfilts", "[", ":", ",", "1", ":", "3", "]", "]", ")", "fgrp", "=", "np", ".", "unique", "(", "fgnames", ")", "[", "0", "]", "fig", ".", "set_size_inches", "(", "10", ",", "3.5", "*", "ngrps", ")", "h", "=", ".8", "/", "ngrps", "y", "=", "nominal_values", "(", "Data", ".", "focus", "[", "analyte", "]", ")", "yh", "=", "y", "[", "~", "np", ".", "isnan", "(", "y", ")", "]", "m", ",", "u", "=", "unitpicker", "(", "np", ".", "nanmax", "(", "y", ")", ",", "denominator", "=", "Data", ".", "internal_standard", ",", "focus_stage", "=", "Data", ".", "focus_stage", ")", "axs", "=", "tax", ",", "hax", "=", "(", "fig", ".", "add_axes", "(", "[", ".1", ",", ".9", "-", "(", "i", "+", "1", ")", "*", "h", ",", ".6", ",", "h", "*", ".98", "]", ")", ",", "fig", ".", "add_axes", "(", "[", ".7", ",", ".9", "-", "(", "i", "+", "1", ")", "*", "h", ",", ".2", ",", "h", "*", ".98", "]", ")", ")", "axes", ".", "append", "(", "axs", ")", "# get variables", "fg", "=", "sets", "[", "i", "]", "cs", "=", "cm", "(", "np", ".", "linspace", "(", "0", ",", "1", ",", "len", "(", "fg", ")", ")", ")", "fn", "=", "[", "'_'", ".", "join", "(", "x", ")", "for", "x", "in", "nfilts", "[", ":", ",", "(", "0", ",", "3", ")", "]", "]", "an", "=", "nfilts", "[", ":", ",", "0", "]", "bins", "=", "np", ".", "linspace", "(", "np", ".", "nanmin", "(", "y", ")", ",", "np", ".", "nanmax", "(", "y", ")", ",", "len", "(", "yh", ")", "//", "nbin", ")", "*", "m", "if", "'DBSCAN'", "in", "fgrp", ":", "# determine data filters", "core_ind", "=", "Data", ".", "filt", ".", "components", "[", "[", "f", "for", "f", "in", "fg", "if", "'core'", "in", "f", "]", "[", "0", "]", "]", "other", "=", "np", ".", "array", "(", "[", "(", "'noise'", "not", "in", "f", ")", "&", "(", "'core'", "not", "in", "f", ")", "for", "f", "in", "fg", "]", ")", "tfg", "=", "fg", "[", "other", "]", "tfn", "=", "fn", "[", "other", "]", "tcs", "=", "cm", "(", "np", ".", "linspace", "(", "0", ",", "1", ",", "len", "(", "tfg", ")", ")", ")", "# plot all data", "hax", ".", "hist", "(", "m", "*", "yh", ",", "bins", ",", "alpha", "=", "0.2", ",", "orientation", "=", "'horizontal'", ",", "color", "=", "'k'", ",", "lw", "=", "0", ")", "# legend markers for core/member", "tax", ".", "scatter", "(", "[", "]", ",", "[", "]", ",", "s", "=", "20", ",", "label", "=", "'core'", ",", "color", "=", "'w'", ",", "lw", "=", "0.5", ",", "edgecolor", "=", "'k'", ")", "tax", ".", "scatter", "(", "[", "]", ",", "[", "]", ",", "s", "=", "7.5", ",", "label", "=", "'member'", ",", "color", "=", "'w'", ",", "lw", "=", "0.5", ",", "edgecolor", "=", "'k'", ")", "# plot noise", "try", ":", "noise_ind", "=", "Data", ".", "filt", ".", "components", "[", "[", "f", "for", "f", "in", "fg", "if", "'noise'", "in", "f", "]", "[", "0", "]", "]", "tax", ".", "scatter", "(", "Data", ".", "Time", "[", "noise_ind", "]", ",", "m", "*", "y", "[", "noise_ind", "]", ",", "lw", "=", "1", ",", "color", "=", "'k'", ",", "s", "=", "10", ",", "marker", "=", "'x'", ",", "label", "=", "'noise'", ",", "alpha", "=", "0.6", ")", "except", ":", "pass", "# plot filtered data", "for", "f", ",", "c", ",", "lab", "in", "zip", "(", "tfg", ",", "tcs", ",", "tfn", ")", ":", "ind", "=", "Data", ".", "filt", ".", "components", "[", "f", "]", "tax", ".", "scatter", "(", "Data", ".", "Time", "[", "~", "core_ind", "&", "ind", "]", ",", "m", "*", "y", "[", "~", "core_ind", "&", "ind", "]", ",", "lw", "=", ".5", ",", "color", "=", "c", ",", "s", "=", "5", ",", "edgecolor", "=", "'k'", ")", "tax", ".", "scatter", "(", "Data", ".", "Time", "[", "core_ind", "&", "ind", "]", ",", "m", "*", "y", "[", "core_ind", "&", "ind", "]", ",", "lw", "=", ".5", ",", "color", "=", "c", ",", "s", "=", "15", ",", "edgecolor", "=", "'k'", ",", "label", "=", "lab", ")", "hax", ".", "hist", "(", "m", "*", "y", "[", "ind", "]", "[", "~", "np", ".", "isnan", "(", "y", "[", "ind", "]", ")", "]", ",", "bins", ",", "color", "=", "c", ",", "lw", "=", "0.1", ",", "orientation", "=", "'horizontal'", ",", "alpha", "=", "0.6", ")", "else", ":", "# plot all data", "tax", ".", "scatter", "(", "Data", ".", "Time", ",", "m", "*", "y", ",", "color", "=", "'k'", ",", "alpha", "=", "0.2", ",", "lw", "=", "0.1", ",", "s", "=", "20", ",", "label", "=", "'excl'", ")", "hax", ".", "hist", "(", "m", "*", "yh", ",", "bins", ",", "alpha", "=", "0.2", ",", "orientation", "=", "'horizontal'", ",", "color", "=", "'k'", ",", "lw", "=", "0", ")", "# plot filtered data", "for", "f", ",", "c", ",", "lab", "in", "zip", "(", "fg", ",", "cs", ",", "fn", ")", ":", "ind", "=", "Data", ".", "filt", ".", "components", "[", "f", "]", "tax", ".", "scatter", "(", "Data", ".", "Time", "[", "ind", "]", ",", "m", "*", "y", "[", "ind", "]", ",", "edgecolor", "=", "(", "0", ",", "0", ",", "0", ",", "0", ")", ",", "color", "=", "c", ",", "s", "=", "15", ",", "label", "=", "lab", ")", "hax", ".", "hist", "(", "m", "*", "y", "[", "ind", "]", "[", "~", "np", ".", "isnan", "(", "y", "[", "ind", "]", ")", "]", ",", "bins", ",", "color", "=", "c", ",", "lw", "=", "0.1", ",", "orientation", "=", "'horizontal'", ",", "alpha", "=", "0.6", ")", "if", "'thresh'", "in", "fgrp", "and", "analyte", "in", "fgrp", ":", "tax", ".", "axhline", "(", "Data", ".", "filt", ".", "params", "[", "fg", "[", "0", "]", "]", "[", "'threshold'", "]", "*", "m", ",", "ls", "=", "'dashed'", ",", "zorder", "=", "-", "2", ",", "alpha", "=", "0.5", ",", "color", "=", "'k'", ")", "hax", ".", "axhline", "(", "Data", ".", "filt", ".", "params", "[", "fg", "[", "0", "]", "]", "[", "'threshold'", "]", "*", "m", ",", "ls", "=", "'dashed'", ",", "zorder", "=", "-", "2", ",", "alpha", "=", "0.5", ",", "color", "=", "'k'", ")", "# formatting", "for", "ax", "in", "axs", ":", "mn", "=", "np", ".", "nanmin", "(", "y", ")", "*", "m", "mx", "=", "np", ".", "nanmax", "(", "y", ")", "*", "m", "rn", "=", "mx", "-", "mn", "ax", ".", "set_ylim", "(", "mn", "-", ".05", "*", "rn", ",", "mx", "+", "0.05", "*", "rn", ")", "# legend", "hn", ",", "la", "=", "tax", ".", "get_legend_handles_labels", "(", ")", "hax", ".", "legend", "(", "hn", ",", "la", ",", "loc", "=", "'upper right'", ",", "scatterpoints", "=", "1", ")", "tax", ".", "text", "(", ".02", ",", ".98", ",", "Data", ".", "sample", "+", "': '", "+", "fgrp", ",", "size", "=", "12", ",", "weight", "=", "'bold'", ",", "ha", "=", "'left'", ",", "va", "=", "'top'", ",", "transform", "=", "tax", ".", "transAxes", ")", "tax", ".", "set_ylabel", "(", "pretty_element", "(", "analyte", ")", "+", "' ('", "+", "u", "+", "')'", ")", "tax", ".", "set_xticks", "(", "tax", ".", "get_xticks", "(", ")", "[", ":", "-", "1", "]", ")", "hax", ".", "set_yticklabels", "(", "[", "]", ")", "if", "i", "<", "ngrps", "-", "1", ":", "tax", ".", "set_xticklabels", "(", "[", "]", ")", "hax", ".", "set_xticklabels", "(", "[", "]", ")", "else", ":", "tax", ".", "set_xlabel", "(", "'Time (s)'", ")", "hax", ".", "set_xlabel", "(", "'n'", ")", "if", "isinstance", "(", "savedir", ",", "str", ")", ":", "fig", ".", "savefig", "(", "savedir", "+", "'/'", "+", "Data", ".", "sample", "+", "'_'", "+", "analyte", "+", "'.pdf'", ")", "plt", ".", "close", "(", "fig", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
pairwise_reproducibility
Calculate the reproducibility of LA-ICPMS based on unique pairs of repeat analyses. Pairwise differences are fit with a half-Cauchy distribution, and the median and 95% confidence limits are returned for each analyte. Parameters ---------- df : pandas.DataFrame A dataset plot : bool Whether or not to plot the resulting error distributions. Returns ------- pdiffs : pandas.DataFrame Unique pairwise differences for all analytes. rep_dists : dict of scipy.stats.halfcauchy Half-Cauchy distribution objects fitted to the differences. rep_stats : dict of tuples The 50% and 95% quantiles of the half-cauchy distribution. (fig, axs) : matplotlib objects The figure. If not made, returnes (None, None) placeholder
Supplement/comparison_tools/stats.py
def pairwise_reproducibility(df, plot=False): """ Calculate the reproducibility of LA-ICPMS based on unique pairs of repeat analyses. Pairwise differences are fit with a half-Cauchy distribution, and the median and 95% confidence limits are returned for each analyte. Parameters ---------- df : pandas.DataFrame A dataset plot : bool Whether or not to plot the resulting error distributions. Returns ------- pdiffs : pandas.DataFrame Unique pairwise differences for all analytes. rep_dists : dict of scipy.stats.halfcauchy Half-Cauchy distribution objects fitted to the differences. rep_stats : dict of tuples The 50% and 95% quantiles of the half-cauchy distribution. (fig, axs) : matplotlib objects The figure. If not made, returnes (None, None) placeholder """ ans = df.columns.values pdifs = [] # calculate differences between unique pairs for ind, d in df.groupby(level=0): d.index = d.index.droplevel(0) difs = [] for i, r in d.iterrows(): t = d.loc[i+1:, :] difs.append(t[ans] - r[ans]) pdifs.append(pd.concat(difs)) pdifs = pd.concat(pdifs).abs() # calculate stats rep_stats = {} rep_dists = {} errfn = stats.halfcauchy for a in ans: d = pdifs.loc[:, a].dropna().values hdist = errfn.fit(d, floc=0) rep_dists[a] = errfn(*hdist) rep_stats[a] = rep_dists[a].ppf((0.5, 0.95)) # make plot if not plot: return pdifs, rep_dists, rep_stats, (None, None) fig, axs = plt.subplots(1, len(ans), figsize=[len(ans) * 2, 2]) for a, ax in zip(ans, axs): d = pdifs.loc[:, a].dropna().values hist, edges, _ = ax.hist(d, 30) ax.plot(edges, rep_dists[a].pdf(edges) * (sum(hist) * np.mean(np.diff(edges)))) ax.set_title(a, loc='left') return pdifs, rep_dists, rep_stats, (fig, axs)
def pairwise_reproducibility(df, plot=False): """ Calculate the reproducibility of LA-ICPMS based on unique pairs of repeat analyses. Pairwise differences are fit with a half-Cauchy distribution, and the median and 95% confidence limits are returned for each analyte. Parameters ---------- df : pandas.DataFrame A dataset plot : bool Whether or not to plot the resulting error distributions. Returns ------- pdiffs : pandas.DataFrame Unique pairwise differences for all analytes. rep_dists : dict of scipy.stats.halfcauchy Half-Cauchy distribution objects fitted to the differences. rep_stats : dict of tuples The 50% and 95% quantiles of the half-cauchy distribution. (fig, axs) : matplotlib objects The figure. If not made, returnes (None, None) placeholder """ ans = df.columns.values pdifs = [] # calculate differences between unique pairs for ind, d in df.groupby(level=0): d.index = d.index.droplevel(0) difs = [] for i, r in d.iterrows(): t = d.loc[i+1:, :] difs.append(t[ans] - r[ans]) pdifs.append(pd.concat(difs)) pdifs = pd.concat(pdifs).abs() # calculate stats rep_stats = {} rep_dists = {} errfn = stats.halfcauchy for a in ans: d = pdifs.loc[:, a].dropna().values hdist = errfn.fit(d, floc=0) rep_dists[a] = errfn(*hdist) rep_stats[a] = rep_dists[a].ppf((0.5, 0.95)) # make plot if not plot: return pdifs, rep_dists, rep_stats, (None, None) fig, axs = plt.subplots(1, len(ans), figsize=[len(ans) * 2, 2]) for a, ax in zip(ans, axs): d = pdifs.loc[:, a].dropna().values hist, edges, _ = ax.hist(d, 30) ax.plot(edges, rep_dists[a].pdf(edges) * (sum(hist) * np.mean(np.diff(edges)))) ax.set_title(a, loc='left') return pdifs, rep_dists, rep_stats, (fig, axs)
[ "Calculate", "the", "reproducibility", "of", "LA", "-", "ICPMS", "based", "on", "unique", "pairs", "of", "repeat", "analyses", ".", "Pairwise", "differences", "are", "fit", "with", "a", "half", "-", "Cauchy", "distribution", "and", "the", "median", "and", "95%", "confidence", "limits", "are", "returned", "for", "each", "analyte", ".", "Parameters", "----------", "df", ":", "pandas", ".", "DataFrame", "A", "dataset", "plot", ":", "bool", "Whether", "or", "not", "to", "plot", "the", "resulting", "error", "distributions", ".", "Returns", "-------", "pdiffs", ":", "pandas", ".", "DataFrame", "Unique", "pairwise", "differences", "for", "all", "analytes", ".", "rep_dists", ":", "dict", "of", "scipy", ".", "stats", ".", "halfcauchy", "Half", "-", "Cauchy", "distribution", "objects", "fitted", "to", "the", "differences", ".", "rep_stats", ":", "dict", "of", "tuples", "The", "50%", "and", "95%", "quantiles", "of", "the", "half", "-", "cauchy", "distribution", ".", "(", "fig", "axs", ")", ":", "matplotlib", "objects", "The", "figure", ".", "If", "not", "made", "returnes", "(", "None", "None", ")", "placeholder" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/stats.py#L14-L81
[ "def", "pairwise_reproducibility", "(", "df", ",", "plot", "=", "False", ")", ":", "ans", "=", "df", ".", "columns", ".", "values", "pdifs", "=", "[", "]", "# calculate differences between unique pairs", "for", "ind", ",", "d", "in", "df", ".", "groupby", "(", "level", "=", "0", ")", ":", "d", ".", "index", "=", "d", ".", "index", ".", "droplevel", "(", "0", ")", "difs", "=", "[", "]", "for", "i", ",", "r", "in", "d", ".", "iterrows", "(", ")", ":", "t", "=", "d", ".", "loc", "[", "i", "+", "1", ":", ",", ":", "]", "difs", ".", "append", "(", "t", "[", "ans", "]", "-", "r", "[", "ans", "]", ")", "pdifs", ".", "append", "(", "pd", ".", "concat", "(", "difs", ")", ")", "pdifs", "=", "pd", ".", "concat", "(", "pdifs", ")", ".", "abs", "(", ")", "# calculate stats", "rep_stats", "=", "{", "}", "rep_dists", "=", "{", "}", "errfn", "=", "stats", ".", "halfcauchy", "for", "a", "in", "ans", ":", "d", "=", "pdifs", ".", "loc", "[", ":", ",", "a", "]", ".", "dropna", "(", ")", ".", "values", "hdist", "=", "errfn", ".", "fit", "(", "d", ",", "floc", "=", "0", ")", "rep_dists", "[", "a", "]", "=", "errfn", "(", "*", "hdist", ")", "rep_stats", "[", "a", "]", "=", "rep_dists", "[", "a", "]", ".", "ppf", "(", "(", "0.5", ",", "0.95", ")", ")", "# make plot", "if", "not", "plot", ":", "return", "pdifs", ",", "rep_dists", ",", "rep_stats", ",", "(", "None", ",", "None", ")", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "1", ",", "len", "(", "ans", ")", ",", "figsize", "=", "[", "len", "(", "ans", ")", "*", "2", ",", "2", "]", ")", "for", "a", ",", "ax", "in", "zip", "(", "ans", ",", "axs", ")", ":", "d", "=", "pdifs", ".", "loc", "[", ":", ",", "a", "]", ".", "dropna", "(", ")", ".", "values", "hist", ",", "edges", ",", "_", "=", "ax", ".", "hist", "(", "d", ",", "30", ")", "ax", ".", "plot", "(", "edges", ",", "rep_dists", "[", "a", "]", ".", "pdf", "(", "edges", ")", "*", "(", "sum", "(", "hist", ")", "*", "np", ".", "mean", "(", "np", ".", "diff", "(", "edges", ")", ")", ")", ")", "ax", ".", "set_title", "(", "a", ",", "loc", "=", "'left'", ")", "return", "pdifs", ",", "rep_dists", ",", "rep_stats", ",", "(", "fig", ",", "axs", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
comparison_stats
Compute comparison stats for test and LAtools data. Population-level similarity assessed by a Kolmogorov-Smirnov test. Individual similarity assessed by a pairwise Wilcoxon signed rank test. Trends in residuals assessed by regression analysis, where significance of the slope and intercept is determined by t-tests (both relative to zero). Parameters ---------- df : pandas.DataFrame A dataframe containing reference ('X/Ca_r'), test user ('X/Ca_t') and LAtools ('X123') data. els : list list of elements (names only) to plot. Returns ------- pandas.DataFrame
Supplement/comparison_tools/stats.py
def comparison_stats(df, els=['Mg', 'Sr', 'Ba', 'Al', 'Mn']): """ Compute comparison stats for test and LAtools data. Population-level similarity assessed by a Kolmogorov-Smirnov test. Individual similarity assessed by a pairwise Wilcoxon signed rank test. Trends in residuals assessed by regression analysis, where significance of the slope and intercept is determined by t-tests (both relative to zero). Parameters ---------- df : pandas.DataFrame A dataframe containing reference ('X/Ca_r'), test user ('X/Ca_t') and LAtools ('X123') data. els : list list of elements (names only) to plot. Returns ------- pandas.DataFrame """ # get corresponding analyte and ratio names As = [] Rs = [] analytes = [c for c in df.columns if ('_r' not in c) and ('_t' not in c)] ratios = [c for c in df.columns if ('_r' in c)] for e in els: if e == 'Sr': As.append('Sr88') elif e == 'Mg': As.append('Mg24') else: As.append([a for a in analytes if e in a][0]) Rs.append([r for r in ratios if e in r][0][:-2]) yt_stats = [] yl_stats = [] for i, (e, a) in enumerate(zip(Rs, As)): if a == 'Ba138': m = 1e3 u = '$\mu$mol/mol' else: m = 1 u = 'mmol/mol' x = df.loc[:, e + '_r'].values * m yt = df.loc[:, e + '_t'].values * m yl = df.loc[:, a].values * m yt_stats.append(summary_stats(x, yt, e)) yl_stats.append(summary_stats(x, yl, e)) yt_stats = pd.concat(yt_stats).T yl_stats = pd.concat(yl_stats).T return pd.concat([yt_stats, yl_stats], keys=['Test User', 'LAtools']).T
def comparison_stats(df, els=['Mg', 'Sr', 'Ba', 'Al', 'Mn']): """ Compute comparison stats for test and LAtools data. Population-level similarity assessed by a Kolmogorov-Smirnov test. Individual similarity assessed by a pairwise Wilcoxon signed rank test. Trends in residuals assessed by regression analysis, where significance of the slope and intercept is determined by t-tests (both relative to zero). Parameters ---------- df : pandas.DataFrame A dataframe containing reference ('X/Ca_r'), test user ('X/Ca_t') and LAtools ('X123') data. els : list list of elements (names only) to plot. Returns ------- pandas.DataFrame """ # get corresponding analyte and ratio names As = [] Rs = [] analytes = [c for c in df.columns if ('_r' not in c) and ('_t' not in c)] ratios = [c for c in df.columns if ('_r' in c)] for e in els: if e == 'Sr': As.append('Sr88') elif e == 'Mg': As.append('Mg24') else: As.append([a for a in analytes if e in a][0]) Rs.append([r for r in ratios if e in r][0][:-2]) yt_stats = [] yl_stats = [] for i, (e, a) in enumerate(zip(Rs, As)): if a == 'Ba138': m = 1e3 u = '$\mu$mol/mol' else: m = 1 u = 'mmol/mol' x = df.loc[:, e + '_r'].values * m yt = df.loc[:, e + '_t'].values * m yl = df.loc[:, a].values * m yt_stats.append(summary_stats(x, yt, e)) yl_stats.append(summary_stats(x, yl, e)) yt_stats = pd.concat(yt_stats).T yl_stats = pd.concat(yl_stats).T return pd.concat([yt_stats, yl_stats], keys=['Test User', 'LAtools']).T
[ "Compute", "comparison", "stats", "for", "test", "and", "LAtools", "data", ".", "Population", "-", "level", "similarity", "assessed", "by", "a", "Kolmogorov", "-", "Smirnov", "test", ".", "Individual", "similarity", "assessed", "by", "a", "pairwise", "Wilcoxon", "signed", "rank", "test", ".", "Trends", "in", "residuals", "assessed", "by", "regression", "analysis", "where", "significance", "of", "the", "slope", "and", "intercept", "is", "determined", "by", "t", "-", "tests", "(", "both", "relative", "to", "zero", ")", ".", "Parameters", "----------", "df", ":", "pandas", ".", "DataFrame", "A", "dataframe", "containing", "reference", "(", "X", "/", "Ca_r", ")", "test", "user", "(", "X", "/", "Ca_t", ")", "and", "LAtools", "(", "X123", ")", "data", ".", "els", ":", "list", "list", "of", "elements", "(", "names", "only", ")", "to", "plot", ".", "Returns", "-------", "pandas", ".", "DataFrame" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/stats.py#L83-L144
[ "def", "comparison_stats", "(", "df", ",", "els", "=", "[", "'Mg'", ",", "'Sr'", ",", "'Ba'", ",", "'Al'", ",", "'Mn'", "]", ")", ":", "# get corresponding analyte and ratio names", "As", "=", "[", "]", "Rs", "=", "[", "]", "analytes", "=", "[", "c", "for", "c", "in", "df", ".", "columns", "if", "(", "'_r'", "not", "in", "c", ")", "and", "(", "'_t'", "not", "in", "c", ")", "]", "ratios", "=", "[", "c", "for", "c", "in", "df", ".", "columns", "if", "(", "'_r'", "in", "c", ")", "]", "for", "e", "in", "els", ":", "if", "e", "==", "'Sr'", ":", "As", ".", "append", "(", "'Sr88'", ")", "elif", "e", "==", "'Mg'", ":", "As", ".", "append", "(", "'Mg24'", ")", "else", ":", "As", ".", "append", "(", "[", "a", "for", "a", "in", "analytes", "if", "e", "in", "a", "]", "[", "0", "]", ")", "Rs", ".", "append", "(", "[", "r", "for", "r", "in", "ratios", "if", "e", "in", "r", "]", "[", "0", "]", "[", ":", "-", "2", "]", ")", "yt_stats", "=", "[", "]", "yl_stats", "=", "[", "]", "for", "i", ",", "(", "e", ",", "a", ")", "in", "enumerate", "(", "zip", "(", "Rs", ",", "As", ")", ")", ":", "if", "a", "==", "'Ba138'", ":", "m", "=", "1e3", "u", "=", "'$\\mu$mol/mol'", "else", ":", "m", "=", "1", "u", "=", "'mmol/mol'", "x", "=", "df", ".", "loc", "[", ":", ",", "e", "+", "'_r'", "]", ".", "values", "*", "m", "yt", "=", "df", ".", "loc", "[", ":", ",", "e", "+", "'_t'", "]", ".", "values", "*", "m", "yl", "=", "df", ".", "loc", "[", ":", ",", "a", "]", ".", "values", "*", "m", "yt_stats", ".", "append", "(", "summary_stats", "(", "x", ",", "yt", ",", "e", ")", ")", "yl_stats", ".", "append", "(", "summary_stats", "(", "x", ",", "yl", ",", "e", ")", ")", "yt_stats", "=", "pd", ".", "concat", "(", "yt_stats", ")", ".", "T", "yl_stats", "=", "pd", ".", "concat", "(", "yl_stats", ")", ".", "T", "return", "pd", ".", "concat", "(", "[", "yt_stats", ",", "yl_stats", "]", ",", "keys", "=", "[", "'Test User'", ",", "'LAtools'", "]", ")", ".", "T" ]
cd25a650cfee318152f234d992708511f7047fbe
test
summary_stats
Compute summary statistics for paired x, y data. Tests ----- Parameters ---------- x, y : array-like Data to compare nm : str (optional) Index value of created dataframe. Returns ------- pandas dataframe of statistics.
Supplement/comparison_tools/stats.py
def summary_stats(x, y, nm=None): """ Compute summary statistics for paired x, y data. Tests ----- Parameters ---------- x, y : array-like Data to compare nm : str (optional) Index value of created dataframe. Returns ------- pandas dataframe of statistics. """ # create datafrane for results if isinstance(nm, str): nm = [nm] # cols = pd.MultiIndex.from_arrays([['', 'Pairwise', 'Pairwise', cat, cat, cat, cat], # ['N', 'W', 'p', 'Median', 'IQR', 'W', 'p']]) # cols = ['Median', 'IQR', 'CI95', 'L95', 'LQ', 'UQ', 'U95', 'N', # 'Wilcoxon_stat', 'Wilcoxon_p', # 'KS_stat', 'KS_p', # 'LR_slope', 'LR_intercept', 'LR_slope_tvalue', 'LR_intercept_tvalue', 'LR_slope_p', 'LR_intercept_p', 'LR_R2adj'] # out = pd.DataFrame(index=nm, columns=cols) cols = pd.MultiIndex.from_tuples([('Residual Summary', 'N'), ('Residual Summary', 'Median'), ('Residual Summary', 'LQ'), ('Residual Summary', 'IQR'), ('Residual Summary', 'UQ'), ('Residual Regression', 'Slope'), ('Residual Regression', 'Slope t'), ('Residual Regression', 'Slope p'), ('Residual Regression', 'Intercept'), ('Residual Regression', 'Intercept t'), ('Residual Regression', 'Intercept p'), ('Residual Regression', 'R2'), ('Kolmogorov-Smirnov', 'KS'), ('Kolmogorov-Smirnov', 'p')]) out = pd.DataFrame(index=nm, columns=cols) # remove nan values ind = ~(np.isnan(x) | np.isnan(y)) x = x[ind] y = y[ind] # calculate residuals r = y - x # summary statistics cat = 'Residual Summary' out.loc[:, (cat, 'N')] = len(x) out.loc[:, (cat, 'Median')] = np.median(r) out.loc[:, [(cat, 'LQ'), (cat, 'UQ')]] = np.percentile(r, [25, 75]) out.loc[:, (cat, 'IQR')] = out.loc[:, (cat, 'UQ')] - out.loc[:, (cat, 'LQ')] # non-paired test for same distribution cat = 'Kolmogorov-Smirnov' ks = stats.ks_2samp(x, y) out.loc[:, (cat, 'KS')] = ks.statistic out.loc[:, (cat, 'p')] = ks.pvalue # regression analysis of residuals - slope should be 0, intercept should be 0 cat = 'Residual Regression' X = sm.add_constant(x) reg = sm.OLS(r, X, missing='drop') fit = reg.fit() out.loc[:, [(cat, 'Intercept'), (cat, 'Slope')]] = fit.params out.loc[:, [(cat, 'Intercept t'), (cat, 'Slope t')]] = fit.tvalues out.loc[:, (cat, 'R2')] = fit.rsquared out.loc[:, [(cat, 'Intercept p'), (cat, 'Slope p')]] = fit.pvalues return out
def summary_stats(x, y, nm=None): """ Compute summary statistics for paired x, y data. Tests ----- Parameters ---------- x, y : array-like Data to compare nm : str (optional) Index value of created dataframe. Returns ------- pandas dataframe of statistics. """ # create datafrane for results if isinstance(nm, str): nm = [nm] # cols = pd.MultiIndex.from_arrays([['', 'Pairwise', 'Pairwise', cat, cat, cat, cat], # ['N', 'W', 'p', 'Median', 'IQR', 'W', 'p']]) # cols = ['Median', 'IQR', 'CI95', 'L95', 'LQ', 'UQ', 'U95', 'N', # 'Wilcoxon_stat', 'Wilcoxon_p', # 'KS_stat', 'KS_p', # 'LR_slope', 'LR_intercept', 'LR_slope_tvalue', 'LR_intercept_tvalue', 'LR_slope_p', 'LR_intercept_p', 'LR_R2adj'] # out = pd.DataFrame(index=nm, columns=cols) cols = pd.MultiIndex.from_tuples([('Residual Summary', 'N'), ('Residual Summary', 'Median'), ('Residual Summary', 'LQ'), ('Residual Summary', 'IQR'), ('Residual Summary', 'UQ'), ('Residual Regression', 'Slope'), ('Residual Regression', 'Slope t'), ('Residual Regression', 'Slope p'), ('Residual Regression', 'Intercept'), ('Residual Regression', 'Intercept t'), ('Residual Regression', 'Intercept p'), ('Residual Regression', 'R2'), ('Kolmogorov-Smirnov', 'KS'), ('Kolmogorov-Smirnov', 'p')]) out = pd.DataFrame(index=nm, columns=cols) # remove nan values ind = ~(np.isnan(x) | np.isnan(y)) x = x[ind] y = y[ind] # calculate residuals r = y - x # summary statistics cat = 'Residual Summary' out.loc[:, (cat, 'N')] = len(x) out.loc[:, (cat, 'Median')] = np.median(r) out.loc[:, [(cat, 'LQ'), (cat, 'UQ')]] = np.percentile(r, [25, 75]) out.loc[:, (cat, 'IQR')] = out.loc[:, (cat, 'UQ')] - out.loc[:, (cat, 'LQ')] # non-paired test for same distribution cat = 'Kolmogorov-Smirnov' ks = stats.ks_2samp(x, y) out.loc[:, (cat, 'KS')] = ks.statistic out.loc[:, (cat, 'p')] = ks.pvalue # regression analysis of residuals - slope should be 0, intercept should be 0 cat = 'Residual Regression' X = sm.add_constant(x) reg = sm.OLS(r, X, missing='drop') fit = reg.fit() out.loc[:, [(cat, 'Intercept'), (cat, 'Slope')]] = fit.params out.loc[:, [(cat, 'Intercept t'), (cat, 'Slope t')]] = fit.tvalues out.loc[:, (cat, 'R2')] = fit.rsquared out.loc[:, [(cat, 'Intercept p'), (cat, 'Slope p')]] = fit.pvalues return out
[ "Compute", "summary", "statistics", "for", "paired", "x", "y", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/stats.py#L146-L225
[ "def", "summary_stats", "(", "x", ",", "y", ",", "nm", "=", "None", ")", ":", "# create datafrane for results", "if", "isinstance", "(", "nm", ",", "str", ")", ":", "nm", "=", "[", "nm", "]", "# cols = pd.MultiIndex.from_arrays([['', 'Pairwise', 'Pairwise', cat, cat, cat, cat],", "# ['N', 'W', 'p', 'Median', 'IQR', 'W', 'p']])", "# cols = ['Median', 'IQR', 'CI95', 'L95', 'LQ', 'UQ', 'U95', 'N',", "# 'Wilcoxon_stat', 'Wilcoxon_p',", "# 'KS_stat', 'KS_p',", "# 'LR_slope', 'LR_intercept', 'LR_slope_tvalue', 'LR_intercept_tvalue', 'LR_slope_p', 'LR_intercept_p', 'LR_R2adj']", "# out = pd.DataFrame(index=nm, columns=cols)", "cols", "=", "pd", ".", "MultiIndex", ".", "from_tuples", "(", "[", "(", "'Residual Summary'", ",", "'N'", ")", ",", "(", "'Residual Summary'", ",", "'Median'", ")", ",", "(", "'Residual Summary'", ",", "'LQ'", ")", ",", "(", "'Residual Summary'", ",", "'IQR'", ")", ",", "(", "'Residual Summary'", ",", "'UQ'", ")", ",", "(", "'Residual Regression'", ",", "'Slope'", ")", ",", "(", "'Residual Regression'", ",", "'Slope t'", ")", ",", "(", "'Residual Regression'", ",", "'Slope p'", ")", ",", "(", "'Residual Regression'", ",", "'Intercept'", ")", ",", "(", "'Residual Regression'", ",", "'Intercept t'", ")", ",", "(", "'Residual Regression'", ",", "'Intercept p'", ")", ",", "(", "'Residual Regression'", ",", "'R2'", ")", ",", "(", "'Kolmogorov-Smirnov'", ",", "'KS'", ")", ",", "(", "'Kolmogorov-Smirnov'", ",", "'p'", ")", "]", ")", "out", "=", "pd", ".", "DataFrame", "(", "index", "=", "nm", ",", "columns", "=", "cols", ")", "# remove nan values", "ind", "=", "~", "(", "np", ".", "isnan", "(", "x", ")", "|", "np", ".", "isnan", "(", "y", ")", ")", "x", "=", "x", "[", "ind", "]", "y", "=", "y", "[", "ind", "]", "# calculate residuals", "r", "=", "y", "-", "x", "# summary statistics", "cat", "=", "'Residual Summary'", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'N'", ")", "]", "=", "len", "(", "x", ")", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'Median'", ")", "]", "=", "np", ".", "median", "(", "r", ")", "out", ".", "loc", "[", ":", ",", "[", "(", "cat", ",", "'LQ'", ")", ",", "(", "cat", ",", "'UQ'", ")", "]", "]", "=", "np", ".", "percentile", "(", "r", ",", "[", "25", ",", "75", "]", ")", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'IQR'", ")", "]", "=", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'UQ'", ")", "]", "-", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'LQ'", ")", "]", "# non-paired test for same distribution", "cat", "=", "'Kolmogorov-Smirnov'", "ks", "=", "stats", ".", "ks_2samp", "(", "x", ",", "y", ")", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'KS'", ")", "]", "=", "ks", ".", "statistic", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'p'", ")", "]", "=", "ks", ".", "pvalue", "# regression analysis of residuals - slope should be 0, intercept should be 0", "cat", "=", "'Residual Regression'", "X", "=", "sm", ".", "add_constant", "(", "x", ")", "reg", "=", "sm", ".", "OLS", "(", "r", ",", "X", ",", "missing", "=", "'drop'", ")", "fit", "=", "reg", ".", "fit", "(", ")", "out", ".", "loc", "[", ":", ",", "[", "(", "cat", ",", "'Intercept'", ")", ",", "(", "cat", ",", "'Slope'", ")", "]", "]", "=", "fit", ".", "params", "out", ".", "loc", "[", ":", ",", "[", "(", "cat", ",", "'Intercept t'", ")", ",", "(", "cat", ",", "'Slope t'", ")", "]", "]", "=", "fit", ".", "tvalues", "out", ".", "loc", "[", ":", ",", "(", "cat", ",", "'R2'", ")", "]", "=", "fit", ".", "rsquared", "out", ".", "loc", "[", ":", ",", "[", "(", "cat", ",", "'Intercept p'", ")", ",", "(", "cat", ",", "'Slope p'", ")", "]", "]", "=", "fit", ".", "pvalues", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
load_reference_data
Fetch LAtools reference data from online repository. Parameters ---------- name : str< Which data to download. Can be one of 'culture_reference', 'culture_test', 'downcore_reference', 'downcore_test', 'iolite_reference' or 'zircon_reference'. If None, all are downloaded and returned as a dict. Returns ------- pandas.DataFrame or dict.
Supplement/comparison_tools/helpers.py
def load_reference_data(name=None): """ Fetch LAtools reference data from online repository. Parameters ---------- name : str< Which data to download. Can be one of 'culture_reference', 'culture_test', 'downcore_reference', 'downcore_test', 'iolite_reference' or 'zircon_reference'. If None, all are downloaded and returned as a dict. Returns ------- pandas.DataFrame or dict. """ base_url = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vQJfCeuqrtFFMAeSpA9rguzLAo9OVuw50AHhAULuqjMJzbd3h46PK1KjF69YiJAeNAAjjMDkJK7wMpG/pub?gid={:}&single=true&output=csv' gids = {'culture_reference': '0', 'culture_test': '1170065442', 'downcore_reference': '190752797', 'downcore_test': '721359794', 'iolite_reference': '483581945', 'zircon_reference': '1355554964'} if name is None: out = {} for nm, gid in gids.items(): url = base_url.format(gid) tmp = pd.read_csv(url, header=[0], index_col=[0, 1]) tmp.index.names = ['sample', 'rep'] tmp.columns.names = ['analyte'] tmp.sort_index(1, inplace=True) out[nm] = tmp else: gid = gids[name] url = base_url.format(gid) out = pd.read_csv(url, index_col=[0, 1]) out.columns.names = ['analyte'] out.sort_index(1, inplace=True) return out
def load_reference_data(name=None): """ Fetch LAtools reference data from online repository. Parameters ---------- name : str< Which data to download. Can be one of 'culture_reference', 'culture_test', 'downcore_reference', 'downcore_test', 'iolite_reference' or 'zircon_reference'. If None, all are downloaded and returned as a dict. Returns ------- pandas.DataFrame or dict. """ base_url = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vQJfCeuqrtFFMAeSpA9rguzLAo9OVuw50AHhAULuqjMJzbd3h46PK1KjF69YiJAeNAAjjMDkJK7wMpG/pub?gid={:}&single=true&output=csv' gids = {'culture_reference': '0', 'culture_test': '1170065442', 'downcore_reference': '190752797', 'downcore_test': '721359794', 'iolite_reference': '483581945', 'zircon_reference': '1355554964'} if name is None: out = {} for nm, gid in gids.items(): url = base_url.format(gid) tmp = pd.read_csv(url, header=[0], index_col=[0, 1]) tmp.index.names = ['sample', 'rep'] tmp.columns.names = ['analyte'] tmp.sort_index(1, inplace=True) out[nm] = tmp else: gid = gids[name] url = base_url.format(gid) out = pd.read_csv(url, index_col=[0, 1]) out.columns.names = ['analyte'] out.sort_index(1, inplace=True) return out
[ "Fetch", "LAtools", "reference", "data", "from", "online", "repository", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/helpers.py#L18-L57
[ "def", "load_reference_data", "(", "name", "=", "None", ")", ":", "base_url", "=", "'https://docs.google.com/spreadsheets/d/e/2PACX-1vQJfCeuqrtFFMAeSpA9rguzLAo9OVuw50AHhAULuqjMJzbd3h46PK1KjF69YiJAeNAAjjMDkJK7wMpG/pub?gid={:}&single=true&output=csv'", "gids", "=", "{", "'culture_reference'", ":", "'0'", ",", "'culture_test'", ":", "'1170065442'", ",", "'downcore_reference'", ":", "'190752797'", ",", "'downcore_test'", ":", "'721359794'", ",", "'iolite_reference'", ":", "'483581945'", ",", "'zircon_reference'", ":", "'1355554964'", "}", "if", "name", "is", "None", ":", "out", "=", "{", "}", "for", "nm", ",", "gid", "in", "gids", ".", "items", "(", ")", ":", "url", "=", "base_url", ".", "format", "(", "gid", ")", "tmp", "=", "pd", ".", "read_csv", "(", "url", ",", "header", "=", "[", "0", "]", ",", "index_col", "=", "[", "0", ",", "1", "]", ")", "tmp", ".", "index", ".", "names", "=", "[", "'sample'", ",", "'rep'", "]", "tmp", ".", "columns", ".", "names", "=", "[", "'analyte'", "]", "tmp", ".", "sort_index", "(", "1", ",", "inplace", "=", "True", ")", "out", "[", "nm", "]", "=", "tmp", "else", ":", "gid", "=", "gids", "[", "name", "]", "url", "=", "base_url", ".", "format", "(", "gid", ")", "out", "=", "pd", ".", "read_csv", "(", "url", ",", "index_col", "=", "[", "0", ",", "1", "]", ")", "out", ".", "columns", ".", "names", "=", "[", "'analyte'", "]", "out", ".", "sort_index", "(", "1", ",", "inplace", "=", "True", ")", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
AllInstances.lookup
Find an instance of the type class `TC` for type `G`. Iterates `G`'s parent classes, looking up instances for each, checking whether the instance is a subclass of the target type class `TC`.
amino/tc/base.py
def lookup(self, TC: type, G: type) -> Optional[TypeClass]: ''' Find an instance of the type class `TC` for type `G`. Iterates `G`'s parent classes, looking up instances for each, checking whether the instance is a subclass of the target type class `TC`. ''' if isinstance(G, str): raise ImplicitNotFound(TC, G, f'{G} is a string annotation') if not isinstance(G, (type, TypeVar, _GenericAlias)): raise ImplicitNotFound(TC, G, f'{G} is neither type, _GenericAlias nor TypeVar: {type(G)}') match = lambda a: self._lookup_type(TC, a) def attach_type(tc: TypeClass) -> TypeClass: setattr(tc, 'tpe', G) return tc scrutinee = ( ( unbounded_typevar(TC, G) if G.__bound__ is None else G.__bound__ ) if isinstance(G, TypeVar) else G ) safe_mro = lambda t: getattr(t, '__mro__', (t,)) target = scrutinee.__origin__ if isinstance(scrutinee, _GenericAlias) else scrutinee mro = safe_mro(target) return next((attach_type(a) for a in map(match, mro) if a is not None), None)
def lookup(self, TC: type, G: type) -> Optional[TypeClass]: ''' Find an instance of the type class `TC` for type `G`. Iterates `G`'s parent classes, looking up instances for each, checking whether the instance is a subclass of the target type class `TC`. ''' if isinstance(G, str): raise ImplicitNotFound(TC, G, f'{G} is a string annotation') if not isinstance(G, (type, TypeVar, _GenericAlias)): raise ImplicitNotFound(TC, G, f'{G} is neither type, _GenericAlias nor TypeVar: {type(G)}') match = lambda a: self._lookup_type(TC, a) def attach_type(tc: TypeClass) -> TypeClass: setattr(tc, 'tpe', G) return tc scrutinee = ( ( unbounded_typevar(TC, G) if G.__bound__ is None else G.__bound__ ) if isinstance(G, TypeVar) else G ) safe_mro = lambda t: getattr(t, '__mro__', (t,)) target = scrutinee.__origin__ if isinstance(scrutinee, _GenericAlias) else scrutinee mro = safe_mro(target) return next((attach_type(a) for a in map(match, mro) if a is not None), None)
[ "Find", "an", "instance", "of", "the", "type", "class", "TC", "for", "type", "G", ".", "Iterates", "G", "s", "parent", "classes", "looking", "up", "instances", "for", "each", "checking", "whether", "the", "instance", "is", "a", "subclass", "of", "the", "target", "type", "class", "TC", "." ]
tek/amino
python
https://github.com/tek/amino/blob/51b314933e047a45587a24ecff02c836706d27ff/amino/tc/base.py#L375-L401
[ "def", "lookup", "(", "self", ",", "TC", ":", "type", ",", "G", ":", "type", ")", "->", "Optional", "[", "TypeClass", "]", ":", "if", "isinstance", "(", "G", ",", "str", ")", ":", "raise", "ImplicitNotFound", "(", "TC", ",", "G", ",", "f'{G} is a string annotation'", ")", "if", "not", "isinstance", "(", "G", ",", "(", "type", ",", "TypeVar", ",", "_GenericAlias", ")", ")", ":", "raise", "ImplicitNotFound", "(", "TC", ",", "G", ",", "f'{G} is neither type, _GenericAlias nor TypeVar: {type(G)}'", ")", "match", "=", "lambda", "a", ":", "self", ".", "_lookup_type", "(", "TC", ",", "a", ")", "def", "attach_type", "(", "tc", ":", "TypeClass", ")", "->", "TypeClass", ":", "setattr", "(", "tc", ",", "'tpe'", ",", "G", ")", "return", "tc", "scrutinee", "=", "(", "(", "unbounded_typevar", "(", "TC", ",", "G", ")", "if", "G", ".", "__bound__", "is", "None", "else", "G", ".", "__bound__", ")", "if", "isinstance", "(", "G", ",", "TypeVar", ")", "else", "G", ")", "safe_mro", "=", "lambda", "t", ":", "getattr", "(", "t", ",", "'__mro__'", ",", "(", "t", ",", ")", ")", "target", "=", "scrutinee", ".", "__origin__", "if", "isinstance", "(", "scrutinee", ",", "_GenericAlias", ")", "else", "scrutinee", "mro", "=", "safe_mro", "(", "target", ")", "return", "next", "(", "(", "attach_type", "(", "a", ")", "for", "a", "in", "map", "(", "match", ",", "mro", ")", "if", "a", "is", "not", "None", ")", ",", "None", ")" ]
51b314933e047a45587a24ecff02c836706d27ff
test
rangecalc
Calculate padded range limits for axes.
Supplement/comparison_tools/plots.py
def rangecalc(x, y=None, pad=0.05): """ Calculate padded range limits for axes. """ mn = np.nanmin([np.nanmin(x), np.nanmin(y)]) mx = np.nanmax([np.nanmax(x), np.nanmax(y)]) rn = mx - mn return (mn - pad * rn, mx + pad * rn)
def rangecalc(x, y=None, pad=0.05): """ Calculate padded range limits for axes. """ mn = np.nanmin([np.nanmin(x), np.nanmin(y)]) mx = np.nanmax([np.nanmax(x), np.nanmax(y)]) rn = mx - mn return (mn - pad * rn, mx + pad * rn)
[ "Calculate", "padded", "range", "limits", "for", "axes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/plots.py#L19-L27
[ "def", "rangecalc", "(", "x", ",", "y", "=", "None", ",", "pad", "=", "0.05", ")", ":", "mn", "=", "np", ".", "nanmin", "(", "[", "np", ".", "nanmin", "(", "x", ")", ",", "np", ".", "nanmin", "(", "y", ")", "]", ")", "mx", "=", "np", ".", "nanmax", "(", "[", "np", ".", "nanmax", "(", "x", ")", ",", "np", ".", "nanmax", "(", "y", ")", "]", ")", "rn", "=", "mx", "-", "mn", "return", "(", "mn", "-", "pad", "*", "rn", ",", "mx", "+", "pad", "*", "rn", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
rangecalcx
Calculate padded range limits for axes.
Supplement/comparison_tools/plots.py
def rangecalcx(x, pad=0.05): """ Calculate padded range limits for axes. """ mn = np.nanmin(x) mx = np.nanmax(x) rn = mx - mn return (mn - pad * rn, mx + pad * rn)
def rangecalcx(x, pad=0.05): """ Calculate padded range limits for axes. """ mn = np.nanmin(x) mx = np.nanmax(x) rn = mx - mn return (mn - pad * rn, mx + pad * rn)
[ "Calculate", "padded", "range", "limits", "for", "axes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/plots.py#L29-L37
[ "def", "rangecalcx", "(", "x", ",", "pad", "=", "0.05", ")", ":", "mn", "=", "np", ".", "nanmin", "(", "x", ")", "mx", "=", "np", ".", "nanmax", "(", "x", ")", "rn", "=", "mx", "-", "mn", "return", "(", "mn", "-", "pad", "*", "rn", ",", "mx", "+", "pad", "*", "rn", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
bland_altman
Draw a Bland-Altman plot of x and y data. https://en.wikipedia.org/wiki/Bland%E2%80%93Altman_plot Parameters ---------- x, y : array-like x and y data to compare. interval : float Percentile band to draw on the residuals. indep_conf : float Independently determined confidence interval to draw on the plot ax : matplotlib.axesobject The axis on which to draw the plot **kwargs Passed to ax.scatter
Supplement/comparison_tools/plots.py
def bland_altman(x, y, interval=None, indep_conf=None, ax=None, c=None, **kwargs): """ Draw a Bland-Altman plot of x and y data. https://en.wikipedia.org/wiki/Bland%E2%80%93Altman_plot Parameters ---------- x, y : array-like x and y data to compare. interval : float Percentile band to draw on the residuals. indep_conf : float Independently determined confidence interval to draw on the plot ax : matplotlib.axesobject The axis on which to draw the plot **kwargs Passed to ax.scatter """ ret = False if ax is None: fig, ax = plt.subplots(1, 1) ret = True # NaN screening ind = ~(np.isnan(x) | np.isnan(y)) x = x[ind] y = y[ind] xy_mean = (x + y) / 2 xy_resid = (y - x) ax.scatter(xy_mean, xy_resid, lw=0.5, edgecolor='k', alpha=0.6, c=c, s=15, **kwargs) # markup ax.axhline(0, ls='dashed', c='k', alpha=0.6, zorder=-1) ax.axhline(np.median(xy_resid), ls='dashed', c=c, alpha=0.8) if interval is not None: perc = 100 - interval * 100 ints = [perc / 2, 100 - perc / 2] lims = np.percentile(xy_resid, ints) ax.axhspan(*lims, color=c, alpha=0.1, zorder=-3) if indep_conf is not None: ax.axhspan(-indep_conf, indep_conf, color=(0,0,0,0.1), zorder=-2) # labels ax.set_ylabel('y - x') ax.set_xlabel('mean (x, y)') if ret: return fig, ax
def bland_altman(x, y, interval=None, indep_conf=None, ax=None, c=None, **kwargs): """ Draw a Bland-Altman plot of x and y data. https://en.wikipedia.org/wiki/Bland%E2%80%93Altman_plot Parameters ---------- x, y : array-like x and y data to compare. interval : float Percentile band to draw on the residuals. indep_conf : float Independently determined confidence interval to draw on the plot ax : matplotlib.axesobject The axis on which to draw the plot **kwargs Passed to ax.scatter """ ret = False if ax is None: fig, ax = plt.subplots(1, 1) ret = True # NaN screening ind = ~(np.isnan(x) | np.isnan(y)) x = x[ind] y = y[ind] xy_mean = (x + y) / 2 xy_resid = (y - x) ax.scatter(xy_mean, xy_resid, lw=0.5, edgecolor='k', alpha=0.6, c=c, s=15, **kwargs) # markup ax.axhline(0, ls='dashed', c='k', alpha=0.6, zorder=-1) ax.axhline(np.median(xy_resid), ls='dashed', c=c, alpha=0.8) if interval is not None: perc = 100 - interval * 100 ints = [perc / 2, 100 - perc / 2] lims = np.percentile(xy_resid, ints) ax.axhspan(*lims, color=c, alpha=0.1, zorder=-3) if indep_conf is not None: ax.axhspan(-indep_conf, indep_conf, color=(0,0,0,0.1), zorder=-2) # labels ax.set_ylabel('y - x') ax.set_xlabel('mean (x, y)') if ret: return fig, ax
[ "Draw", "a", "Bland", "-", "Altman", "plot", "of", "x", "and", "y", "data", ".", "https", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Bland%E2%80%93Altman_plot", "Parameters", "----------", "x", "y", ":", "array", "-", "like", "x", "and", "y", "data", "to", "compare", ".", "interval", ":", "float", "Percentile", "band", "to", "draw", "on", "the", "residuals", ".", "indep_conf", ":", "float", "Independently", "determined", "confidence", "interval", "to", "draw", "on", "the", "plot", "ax", ":", "matplotlib", ".", "axesobject", "The", "axis", "on", "which", "to", "draw", "the", "plot", "**", "kwargs", "Passed", "to", "ax", ".", "scatter" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/Supplement/comparison_tools/plots.py#L250-L305
[ "def", "bland_altman", "(", "x", ",", "y", ",", "interval", "=", "None", ",", "indep_conf", "=", "None", ",", "ax", "=", "None", ",", "c", "=", "None", ",", "*", "*", "kwargs", ")", ":", "ret", "=", "False", "if", "ax", "is", "None", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "1", ",", "1", ")", "ret", "=", "True", "# NaN screening", "ind", "=", "~", "(", "np", ".", "isnan", "(", "x", ")", "|", "np", ".", "isnan", "(", "y", ")", ")", "x", "=", "x", "[", "ind", "]", "y", "=", "y", "[", "ind", "]", "xy_mean", "=", "(", "x", "+", "y", ")", "/", "2", "xy_resid", "=", "(", "y", "-", "x", ")", "ax", ".", "scatter", "(", "xy_mean", ",", "xy_resid", ",", "lw", "=", "0.5", ",", "edgecolor", "=", "'k'", ",", "alpha", "=", "0.6", ",", "c", "=", "c", ",", "s", "=", "15", ",", "*", "*", "kwargs", ")", "# markup", "ax", ".", "axhline", "(", "0", ",", "ls", "=", "'dashed'", ",", "c", "=", "'k'", ",", "alpha", "=", "0.6", ",", "zorder", "=", "-", "1", ")", "ax", ".", "axhline", "(", "np", ".", "median", "(", "xy_resid", ")", ",", "ls", "=", "'dashed'", ",", "c", "=", "c", ",", "alpha", "=", "0.8", ")", "if", "interval", "is", "not", "None", ":", "perc", "=", "100", "-", "interval", "*", "100", "ints", "=", "[", "perc", "/", "2", ",", "100", "-", "perc", "/", "2", "]", "lims", "=", "np", ".", "percentile", "(", "xy_resid", ",", "ints", ")", "ax", ".", "axhspan", "(", "*", "lims", ",", "color", "=", "c", ",", "alpha", "=", "0.1", ",", "zorder", "=", "-", "3", ")", "if", "indep_conf", "is", "not", "None", ":", "ax", ".", "axhspan", "(", "-", "indep_conf", ",", "indep_conf", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "0.1", ")", ",", "zorder", "=", "-", "2", ")", "# labels", "ax", ".", "set_ylabel", "(", "'y - x'", ")", "ax", ".", "set_xlabel", "(", "'mean (x, y)'", ")", "if", "ret", ":", "return", "fig", ",", "ax" ]
cd25a650cfee318152f234d992708511f7047fbe
test
autorange
Automatically separates signal and background in an on/off data stream. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window used for signal smoothing. If None, ``gwin // 2``. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). transform : str How to transform the data. Default is 'log'. Returns ------- fbkg, fsig, ftrn, failed : tuple where fbkg, fsig and ftrn are boolean arrays the same length as sig, that are True where sig is background, signal and transition, respecively. failed contains a list of transition positions where gaussian fitting has failed.
latools/processes/signal_id.py
def autorange(t, sig, gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), nbin=10, transform='log', thresh=None): """ Automatically separates signal and background in an on/off data stream. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window used for signal smoothing. If None, ``gwin // 2``. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). transform : str How to transform the data. Default is 'log'. Returns ------- fbkg, fsig, ftrn, failed : tuple where fbkg, fsig and ftrn are boolean arrays the same length as sig, that are True where sig is background, signal and transition, respecively. failed contains a list of transition positions where gaussian fitting has failed. """ failed = [] # smooth signal if swin is not None: sigs = fastsmooth(sig, swin) else: sigs = sig # transform signal if transform == 'log': tsigs = np.log10(sigs) else: tsigs = sigs if thresh is None: bins = 50 kde_x = np.linspace(tsigs.min(), tsigs.max(), bins) kde = gaussian_kde(tsigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if len(mins) > 0: bkg = tsigs < (mins[0]) # set background as lowest distribution else: bkg = np.ones(tsigs.size, dtype=bool) # bkg[0] = True # the first value must always be background else: bkg = tsigs < thresh # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg # remove transitions by fitting a gaussian to the gradients of # each transition # 1. determine the approximate index of each transition zeros = bool_2_indices(fsig) # 2. calculate the absolute gradient of the target trace. g = abs(fastgrad(sigs, gwin)) # gradient of untransformed data. if zeros is not None: zeros = zeros.flatten() for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. # fit a gaussian to the first derivative of each # transition. Initial guess parameters: # - A: maximum gradient in data # - mu: c # - width: 2 * time step # The 'sigma' parameter of curve_fit: # This weights the fit by distance from c - i.e. data closer # to c are more important in the fit than data further away # from c. This allows the function to fit the correct curve, # even if the data window has captured two independent # transitions (i.e. end of one ablation and start of next) # ablation are < win time steps apart). c = t[z] # center of transition width = (t[1] - t[0]) * 2 try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) # get the x positions when the fitted gaussian is at 'conf' of # maximum # determine transition FWHM fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False except RuntimeError: failed.append([c, tp]) pass ftrn = ~fbkg & ~fsig # if there are any failed transitions, exclude the mean transition width # either side of the failures if len(failed) > 0: trns = t[bool_2_indices(ftrn)] tr_mean = (trns[:, 1] - trns[:, 0]).mean() / 2 for f, tp in failed: if tp: ind = (t >= f - tr_mean * on_mult[0]) & (t <= f + tr_mean * on_mult[0]) else: ind = (t >= f - tr_mean * off_mult[0]) & (t <= f + tr_mean * off_mult[0]) fsig[ind] = False fbkg[ind] = False ftrn[ind] = False return fbkg, fsig, ftrn, [f[0] for f in failed]
def autorange(t, sig, gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), nbin=10, transform='log', thresh=None): """ Automatically separates signal and background in an on/off data stream. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window used for signal smoothing. If None, ``gwin // 2``. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). transform : str How to transform the data. Default is 'log'. Returns ------- fbkg, fsig, ftrn, failed : tuple where fbkg, fsig and ftrn are boolean arrays the same length as sig, that are True where sig is background, signal and transition, respecively. failed contains a list of transition positions where gaussian fitting has failed. """ failed = [] # smooth signal if swin is not None: sigs = fastsmooth(sig, swin) else: sigs = sig # transform signal if transform == 'log': tsigs = np.log10(sigs) else: tsigs = sigs if thresh is None: bins = 50 kde_x = np.linspace(tsigs.min(), tsigs.max(), bins) kde = gaussian_kde(tsigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if len(mins) > 0: bkg = tsigs < (mins[0]) # set background as lowest distribution else: bkg = np.ones(tsigs.size, dtype=bool) # bkg[0] = True # the first value must always be background else: bkg = tsigs < thresh # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg # remove transitions by fitting a gaussian to the gradients of # each transition # 1. determine the approximate index of each transition zeros = bool_2_indices(fsig) # 2. calculate the absolute gradient of the target trace. g = abs(fastgrad(sigs, gwin)) # gradient of untransformed data. if zeros is not None: zeros = zeros.flatten() for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. # fit a gaussian to the first derivative of each # transition. Initial guess parameters: # - A: maximum gradient in data # - mu: c # - width: 2 * time step # The 'sigma' parameter of curve_fit: # This weights the fit by distance from c - i.e. data closer # to c are more important in the fit than data further away # from c. This allows the function to fit the correct curve, # even if the data window has captured two independent # transitions (i.e. end of one ablation and start of next) # ablation are < win time steps apart). c = t[z] # center of transition width = (t[1] - t[0]) * 2 try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) # get the x positions when the fitted gaussian is at 'conf' of # maximum # determine transition FWHM fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False except RuntimeError: failed.append([c, tp]) pass ftrn = ~fbkg & ~fsig # if there are any failed transitions, exclude the mean transition width # either side of the failures if len(failed) > 0: trns = t[bool_2_indices(ftrn)] tr_mean = (trns[:, 1] - trns[:, 0]).mean() / 2 for f, tp in failed: if tp: ind = (t >= f - tr_mean * on_mult[0]) & (t <= f + tr_mean * on_mult[0]) else: ind = (t >= f - tr_mean * off_mult[0]) & (t <= f + tr_mean * off_mult[0]) fsig[ind] = False fbkg[ind] = False ftrn[ind] = False return fbkg, fsig, ftrn, [f[0] for f in failed]
[ "Automatically", "separates", "signal", "and", "background", "in", "an", "on", "/", "off", "data", "stream", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/processes/signal_id.py#L8-L189
[ "def", "autorange", "(", "t", ",", "sig", ",", "gwin", "=", "7", ",", "swin", "=", "None", ",", "win", "=", "30", ",", "on_mult", "=", "(", "1.5", ",", "1.", ")", ",", "off_mult", "=", "(", "1.", ",", "1.5", ")", ",", "nbin", "=", "10", ",", "transform", "=", "'log'", ",", "thresh", "=", "None", ")", ":", "failed", "=", "[", "]", "# smooth signal", "if", "swin", "is", "not", "None", ":", "sigs", "=", "fastsmooth", "(", "sig", ",", "swin", ")", "else", ":", "sigs", "=", "sig", "# transform signal", "if", "transform", "==", "'log'", ":", "tsigs", "=", "np", ".", "log10", "(", "sigs", ")", "else", ":", "tsigs", "=", "sigs", "if", "thresh", "is", "None", ":", "bins", "=", "50", "kde_x", "=", "np", ".", "linspace", "(", "tsigs", ".", "min", "(", ")", ",", "tsigs", ".", "max", "(", ")", ",", "bins", ")", "kde", "=", "gaussian_kde", "(", "tsigs", ")", "yd", "=", "kde", ".", "pdf", "(", "kde_x", ")", "mins", "=", "findmins", "(", "kde_x", ",", "yd", ")", "# find minima in kde", "if", "len", "(", "mins", ")", ">", "0", ":", "bkg", "=", "tsigs", "<", "(", "mins", "[", "0", "]", ")", "# set background as lowest distribution", "else", ":", "bkg", "=", "np", ".", "ones", "(", "tsigs", ".", "size", ",", "dtype", "=", "bool", ")", "# bkg[0] = True # the first value must always be background", "else", ":", "bkg", "=", "tsigs", "<", "thresh", "# assign rough background and signal regions based on kde minima", "fbkg", "=", "bkg", "fsig", "=", "~", "bkg", "# remove transitions by fitting a gaussian to the gradients of", "# each transition", "# 1. determine the approximate index of each transition", "zeros", "=", "bool_2_indices", "(", "fsig", ")", "# 2. calculate the absolute gradient of the target trace.", "g", "=", "abs", "(", "fastgrad", "(", "sigs", ",", "gwin", ")", ")", "# gradient of untransformed data.", "if", "zeros", "is", "not", "None", ":", "zeros", "=", "zeros", ".", "flatten", "(", ")", "for", "z", "in", "zeros", ":", "# for each approximate transition", "# isolate the data around the transition", "if", "z", "-", "win", "<", "0", ":", "lo", "=", "gwin", "//", "2", "hi", "=", "int", "(", "z", "+", "win", ")", "elif", "z", "+", "win", ">", "(", "len", "(", "sig", ")", "-", "gwin", "//", "2", ")", ":", "lo", "=", "int", "(", "z", "-", "win", ")", "hi", "=", "len", "(", "sig", ")", "-", "gwin", "//", "2", "else", ":", "lo", "=", "int", "(", "z", "-", "win", ")", "hi", "=", "int", "(", "z", "+", "win", ")", "xs", "=", "t", "[", "lo", ":", "hi", "]", "ys", "=", "g", "[", "lo", ":", "hi", "]", "# determine type of transition (on/off)", "mid", "=", "(", "hi", "+", "lo", ")", "//", "2", "tp", "=", "sigs", "[", "mid", "+", "3", "]", ">", "sigs", "[", "mid", "-", "3", "]", "# True if 'on' transition.", "# fit a gaussian to the first derivative of each", "# transition. Initial guess parameters:", "# - A: maximum gradient in data", "# - mu: c", "# - width: 2 * time step", "# The 'sigma' parameter of curve_fit:", "# This weights the fit by distance from c - i.e. data closer", "# to c are more important in the fit than data further away", "# from c. This allows the function to fit the correct curve,", "# even if the data window has captured two independent", "# transitions (i.e. end of one ablation and start of next)", "# ablation are < win time steps apart).", "c", "=", "t", "[", "z", "]", "# center of transition", "width", "=", "(", "t", "[", "1", "]", "-", "t", "[", "0", "]", ")", "*", "2", "try", ":", "pg", ",", "_", "=", "curve_fit", "(", "gauss", ",", "xs", ",", "ys", ",", "p0", "=", "(", "np", ".", "nanmax", "(", "ys", ")", ",", "c", ",", "width", ")", ",", "sigma", "=", "(", "xs", "-", "c", ")", "**", "2", "+", ".01", ")", "# get the x positions when the fitted gaussian is at 'conf' of", "# maximum", "# determine transition FWHM", "fwhm", "=", "abs", "(", "2", "*", "pg", "[", "-", "1", "]", "*", "np", ".", "sqrt", "(", "2", "*", "np", ".", "log", "(", "2", ")", ")", ")", "# apply on_mult or off_mult, as appropriate.", "if", "tp", ":", "lim", "=", "np", ".", "array", "(", "[", "-", "fwhm", ",", "fwhm", "]", ")", "*", "on_mult", "+", "pg", "[", "1", "]", "else", ":", "lim", "=", "np", ".", "array", "(", "[", "-", "fwhm", ",", "fwhm", "]", ")", "*", "off_mult", "+", "pg", "[", "1", "]", "fbkg", "[", "(", "t", ">", "lim", "[", "0", "]", ")", "&", "(", "t", "<", "lim", "[", "1", "]", ")", "]", "=", "False", "fsig", "[", "(", "t", ">", "lim", "[", "0", "]", ")", "&", "(", "t", "<", "lim", "[", "1", "]", ")", "]", "=", "False", "except", "RuntimeError", ":", "failed", ".", "append", "(", "[", "c", ",", "tp", "]", ")", "pass", "ftrn", "=", "~", "fbkg", "&", "~", "fsig", "# if there are any failed transitions, exclude the mean transition width", "# either side of the failures", "if", "len", "(", "failed", ")", ">", "0", ":", "trns", "=", "t", "[", "bool_2_indices", "(", "ftrn", ")", "]", "tr_mean", "=", "(", "trns", "[", ":", ",", "1", "]", "-", "trns", "[", ":", ",", "0", "]", ")", ".", "mean", "(", ")", "/", "2", "for", "f", ",", "tp", "in", "failed", ":", "if", "tp", ":", "ind", "=", "(", "t", ">=", "f", "-", "tr_mean", "*", "on_mult", "[", "0", "]", ")", "&", "(", "t", "<=", "f", "+", "tr_mean", "*", "on_mult", "[", "0", "]", ")", "else", ":", "ind", "=", "(", "t", ">=", "f", "-", "tr_mean", "*", "off_mult", "[", "0", "]", ")", "&", "(", "t", "<=", "f", "+", "tr_mean", "*", "off_mult", "[", "0", "]", ")", "fsig", "[", "ind", "]", "=", "False", "fbkg", "[", "ind", "]", "=", "False", "ftrn", "[", "ind", "]", "=", "False", "return", "fbkg", ",", "fsig", ",", "ftrn", ",", "[", "f", "[", "0", "]", "for", "f", "in", "failed", "]" ]
cd25a650cfee318152f234d992708511f7047fbe
test
autorange_components
Returns the components underlying the autorange algorithm. Returns ------- t : array-like Time axis (independent variable) sig : array-like Raw signal (dependent variable) sigs : array-like Smoothed signal (swin) tsig : array-like Transformed raw signal (transform) tsigs : array-like Transformed smoothed signal (transform, swin) kde_x : array-like kernel density estimate of smoothed signal. yd : array-like bins of kernel density estimator. g : array-like gradient of smoothed signal (swin, gwin) trans : dict per-transition data. thresh : float threshold identified from kernel density plot
latools/processes/signal_id.py
def autorange_components(t, sig, transform='log', gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), thresh=None): """ Returns the components underlying the autorange algorithm. Returns ------- t : array-like Time axis (independent variable) sig : array-like Raw signal (dependent variable) sigs : array-like Smoothed signal (swin) tsig : array-like Transformed raw signal (transform) tsigs : array-like Transformed smoothed signal (transform, swin) kde_x : array-like kernel density estimate of smoothed signal. yd : array-like bins of kernel density estimator. g : array-like gradient of smoothed signal (swin, gwin) trans : dict per-transition data. thresh : float threshold identified from kernel density plot """ failed = [] # smooth signal if swin is not None: sigs = fastsmooth(sig, swin) else: sigs = sig # transform signal if transform == 'log': tsigs = np.log10(sigs) tsig = np.log10(sig) else: tsigs = sigs tsig = sig if thresh is None: bins = 50 kde_x = np.linspace(tsigs.min(), tsigs.max(), bins) kde = gaussian_kde(tsigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if len(mins) > 0: bkg = tsigs < (mins[0]) # set background as lowest distribution thresh = mins[0] else: bkg = np.ones(tsigs.size, dtype=bool) else: bkg = tsigs < thresh # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg # remove transitions by fitting a gaussian to the gradients of # each transition # 1. determine the approximate index of each transition zeros = bool_2_indices(fsig) # 2. calculate the absolute gradient of the target trace. g = abs(fastgrad(sigs, gwin)) # gradient of untransformed data. if zeros is not None: zeros = zeros.flatten() trans = dict(zeros=zeros.flatten(), lohi=[], pgs=[], excl=[], tps=[], failed=[], xs=[], ys=[]) for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] trans['xs'].append(xs) trans['ys'].append(ys) trans['lohi'].append([lo, hi]) # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. trans['tps'].append(tp) c = t[z] # center of transition width = (t[1] - t[0]) * 2 # initial width guess try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) trans['pgs'].append(pg) fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] trans['excl'].append(lim) fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False failed.append(False) except RuntimeError: failed.append(True) trans['lohi'].append([np.nan, np.nan]) trans['pgs'].append([np.nan, np.nan, np.nan]) trans['excl'].append([np.nan, np.nan]) trans['tps'].append(tp) pass else: zeros = [] return t, sig, sigs, tsig, tsigs, kde_x, yd, g, trans, thresh
def autorange_components(t, sig, transform='log', gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), thresh=None): """ Returns the components underlying the autorange algorithm. Returns ------- t : array-like Time axis (independent variable) sig : array-like Raw signal (dependent variable) sigs : array-like Smoothed signal (swin) tsig : array-like Transformed raw signal (transform) tsigs : array-like Transformed smoothed signal (transform, swin) kde_x : array-like kernel density estimate of smoothed signal. yd : array-like bins of kernel density estimator. g : array-like gradient of smoothed signal (swin, gwin) trans : dict per-transition data. thresh : float threshold identified from kernel density plot """ failed = [] # smooth signal if swin is not None: sigs = fastsmooth(sig, swin) else: sigs = sig # transform signal if transform == 'log': tsigs = np.log10(sigs) tsig = np.log10(sig) else: tsigs = sigs tsig = sig if thresh is None: bins = 50 kde_x = np.linspace(tsigs.min(), tsigs.max(), bins) kde = gaussian_kde(tsigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if len(mins) > 0: bkg = tsigs < (mins[0]) # set background as lowest distribution thresh = mins[0] else: bkg = np.ones(tsigs.size, dtype=bool) else: bkg = tsigs < thresh # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg # remove transitions by fitting a gaussian to the gradients of # each transition # 1. determine the approximate index of each transition zeros = bool_2_indices(fsig) # 2. calculate the absolute gradient of the target trace. g = abs(fastgrad(sigs, gwin)) # gradient of untransformed data. if zeros is not None: zeros = zeros.flatten() trans = dict(zeros=zeros.flatten(), lohi=[], pgs=[], excl=[], tps=[], failed=[], xs=[], ys=[]) for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] trans['xs'].append(xs) trans['ys'].append(ys) trans['lohi'].append([lo, hi]) # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. trans['tps'].append(tp) c = t[z] # center of transition width = (t[1] - t[0]) * 2 # initial width guess try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) trans['pgs'].append(pg) fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] trans['excl'].append(lim) fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False failed.append(False) except RuntimeError: failed.append(True) trans['lohi'].append([np.nan, np.nan]) trans['pgs'].append([np.nan, np.nan, np.nan]) trans['excl'].append([np.nan, np.nan]) trans['tps'].append(tp) pass else: zeros = [] return t, sig, sigs, tsig, tsigs, kde_x, yd, g, trans, thresh
[ "Returns", "the", "components", "underlying", "the", "autorange", "algorithm", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/processes/signal_id.py#L191-L330
[ "def", "autorange_components", "(", "t", ",", "sig", ",", "transform", "=", "'log'", ",", "gwin", "=", "7", ",", "swin", "=", "None", ",", "win", "=", "30", ",", "on_mult", "=", "(", "1.5", ",", "1.", ")", ",", "off_mult", "=", "(", "1.", ",", "1.5", ")", ",", "thresh", "=", "None", ")", ":", "failed", "=", "[", "]", "# smooth signal", "if", "swin", "is", "not", "None", ":", "sigs", "=", "fastsmooth", "(", "sig", ",", "swin", ")", "else", ":", "sigs", "=", "sig", "# transform signal", "if", "transform", "==", "'log'", ":", "tsigs", "=", "np", ".", "log10", "(", "sigs", ")", "tsig", "=", "np", ".", "log10", "(", "sig", ")", "else", ":", "tsigs", "=", "sigs", "tsig", "=", "sig", "if", "thresh", "is", "None", ":", "bins", "=", "50", "kde_x", "=", "np", ".", "linspace", "(", "tsigs", ".", "min", "(", ")", ",", "tsigs", ".", "max", "(", ")", ",", "bins", ")", "kde", "=", "gaussian_kde", "(", "tsigs", ")", "yd", "=", "kde", ".", "pdf", "(", "kde_x", ")", "mins", "=", "findmins", "(", "kde_x", ",", "yd", ")", "# find minima in kde", "if", "len", "(", "mins", ")", ">", "0", ":", "bkg", "=", "tsigs", "<", "(", "mins", "[", "0", "]", ")", "# set background as lowest distribution", "thresh", "=", "mins", "[", "0", "]", "else", ":", "bkg", "=", "np", ".", "ones", "(", "tsigs", ".", "size", ",", "dtype", "=", "bool", ")", "else", ":", "bkg", "=", "tsigs", "<", "thresh", "# assign rough background and signal regions based on kde minima", "fbkg", "=", "bkg", "fsig", "=", "~", "bkg", "# remove transitions by fitting a gaussian to the gradients of", "# each transition", "# 1. determine the approximate index of each transition", "zeros", "=", "bool_2_indices", "(", "fsig", ")", "# 2. calculate the absolute gradient of the target trace.", "g", "=", "abs", "(", "fastgrad", "(", "sigs", ",", "gwin", ")", ")", "# gradient of untransformed data.", "if", "zeros", "is", "not", "None", ":", "zeros", "=", "zeros", ".", "flatten", "(", ")", "trans", "=", "dict", "(", "zeros", "=", "zeros", ".", "flatten", "(", ")", ",", "lohi", "=", "[", "]", ",", "pgs", "=", "[", "]", ",", "excl", "=", "[", "]", ",", "tps", "=", "[", "]", ",", "failed", "=", "[", "]", ",", "xs", "=", "[", "]", ",", "ys", "=", "[", "]", ")", "for", "z", "in", "zeros", ":", "# for each approximate transition", "# isolate the data around the transition", "if", "z", "-", "win", "<", "0", ":", "lo", "=", "gwin", "//", "2", "hi", "=", "int", "(", "z", "+", "win", ")", "elif", "z", "+", "win", ">", "(", "len", "(", "sig", ")", "-", "gwin", "//", "2", ")", ":", "lo", "=", "int", "(", "z", "-", "win", ")", "hi", "=", "len", "(", "sig", ")", "-", "gwin", "//", "2", "else", ":", "lo", "=", "int", "(", "z", "-", "win", ")", "hi", "=", "int", "(", "z", "+", "win", ")", "xs", "=", "t", "[", "lo", ":", "hi", "]", "ys", "=", "g", "[", "lo", ":", "hi", "]", "trans", "[", "'xs'", "]", ".", "append", "(", "xs", ")", "trans", "[", "'ys'", "]", ".", "append", "(", "ys", ")", "trans", "[", "'lohi'", "]", ".", "append", "(", "[", "lo", ",", "hi", "]", ")", "# determine type of transition (on/off)", "mid", "=", "(", "hi", "+", "lo", ")", "//", "2", "tp", "=", "sigs", "[", "mid", "+", "3", "]", ">", "sigs", "[", "mid", "-", "3", "]", "# True if 'on' transition.", "trans", "[", "'tps'", "]", ".", "append", "(", "tp", ")", "c", "=", "t", "[", "z", "]", "# center of transition", "width", "=", "(", "t", "[", "1", "]", "-", "t", "[", "0", "]", ")", "*", "2", "# initial width guess", "try", ":", "pg", ",", "_", "=", "curve_fit", "(", "gauss", ",", "xs", ",", "ys", ",", "p0", "=", "(", "np", ".", "nanmax", "(", "ys", ")", ",", "c", ",", "width", ")", ",", "sigma", "=", "(", "xs", "-", "c", ")", "**", "2", "+", ".01", ")", "trans", "[", "'pgs'", "]", ".", "append", "(", "pg", ")", "fwhm", "=", "abs", "(", "2", "*", "pg", "[", "-", "1", "]", "*", "np", ".", "sqrt", "(", "2", "*", "np", ".", "log", "(", "2", ")", ")", ")", "# apply on_mult or off_mult, as appropriate.", "if", "tp", ":", "lim", "=", "np", ".", "array", "(", "[", "-", "fwhm", ",", "fwhm", "]", ")", "*", "on_mult", "+", "pg", "[", "1", "]", "else", ":", "lim", "=", "np", ".", "array", "(", "[", "-", "fwhm", ",", "fwhm", "]", ")", "*", "off_mult", "+", "pg", "[", "1", "]", "trans", "[", "'excl'", "]", ".", "append", "(", "lim", ")", "fbkg", "[", "(", "t", ">", "lim", "[", "0", "]", ")", "&", "(", "t", "<", "lim", "[", "1", "]", ")", "]", "=", "False", "fsig", "[", "(", "t", ">", "lim", "[", "0", "]", ")", "&", "(", "t", "<", "lim", "[", "1", "]", ")", "]", "=", "False", "failed", ".", "append", "(", "False", ")", "except", "RuntimeError", ":", "failed", ".", "append", "(", "True", ")", "trans", "[", "'lohi'", "]", ".", "append", "(", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", ")", "trans", "[", "'pgs'", "]", ".", "append", "(", "[", "np", ".", "nan", ",", "np", ".", "nan", ",", "np", ".", "nan", "]", ")", "trans", "[", "'excl'", "]", ".", "append", "(", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", ")", "trans", "[", "'tps'", "]", ".", "append", "(", "tp", ")", "pass", "else", ":", "zeros", "=", "[", "]", "return", "t", ",", "sig", ",", "sigs", ",", "tsig", ",", "tsigs", ",", "kde_x", ",", "yd", ",", "g", ",", "trans", ",", "thresh" ]
cd25a650cfee318152f234d992708511f7047fbe
test
elements
Loads a DataFrame of all elements and isotopes. Scraped from https://www.webelements.com/ Returns ------- pandas DataFrame with columns (element, atomic_number, isotope, atomic_weight, percent)
latools/helpers/chemistry.py
def elements(all_isotopes=True): """ Loads a DataFrame of all elements and isotopes. Scraped from https://www.webelements.com/ Returns ------- pandas DataFrame with columns (element, atomic_number, isotope, atomic_weight, percent) """ el = pd.read_pickle(pkgrs.resource_filename('latools', 'resources/elements.pkl')) if all_isotopes: return el.set_index('element') else: def wmean(g): return (g.atomic_weight * g.percent).sum() / 100 iel = el.groupby('element').apply(wmean) iel.name = 'atomic_weight' return iel
def elements(all_isotopes=True): """ Loads a DataFrame of all elements and isotopes. Scraped from https://www.webelements.com/ Returns ------- pandas DataFrame with columns (element, atomic_number, isotope, atomic_weight, percent) """ el = pd.read_pickle(pkgrs.resource_filename('latools', 'resources/elements.pkl')) if all_isotopes: return el.set_index('element') else: def wmean(g): return (g.atomic_weight * g.percent).sum() / 100 iel = el.groupby('element').apply(wmean) iel.name = 'atomic_weight' return iel
[ "Loads", "a", "DataFrame", "of", "all", "elements", "and", "isotopes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/chemistry.py#L6-L24
[ "def", "elements", "(", "all_isotopes", "=", "True", ")", ":", "el", "=", "pd", ".", "read_pickle", "(", "pkgrs", ".", "resource_filename", "(", "'latools'", ",", "'resources/elements.pkl'", ")", ")", "if", "all_isotopes", ":", "return", "el", ".", "set_index", "(", "'element'", ")", "else", ":", "def", "wmean", "(", "g", ")", ":", "return", "(", "g", ".", "atomic_weight", "*", "g", ".", "percent", ")", ".", "sum", "(", ")", "/", "100", "iel", "=", "el", ".", "groupby", "(", "'element'", ")", ".", "apply", "(", "wmean", ")", "iel", ".", "name", "=", "'atomic_weight'", "return", "iel" ]
cd25a650cfee318152f234d992708511f7047fbe
test
calc_M
Returns molecular weight of molecule. Where molecule is in standard chemical notation, e.g. 'CO2', 'HCO3' or B(OH)4 Returns ------- molecular_weight : float
latools/helpers/chemistry.py
def calc_M(molecule): """ Returns molecular weight of molecule. Where molecule is in standard chemical notation, e.g. 'CO2', 'HCO3' or B(OH)4 Returns ------- molecular_weight : float """ # load periodic table els = elements() # define regexs parens = re.compile('\(([A-z0-9]+)\)([0-9]+)?') stoich = re.compile('([A-Z][a-z]?)([0-9]+)?') ps = parens.findall(molecule) # find subgroups in parentheses rem = parens.sub('', molecule) # get remainder m = 0 # deal with sub-groups if len(ps) > 0: for sub, ns in ps: ms = 0 for e, n in stoich.findall(sub): me = (els.loc[e, 'atomic_weight'] * els.loc[e, 'percent'] / 100).sum() if n == '': n = 1 else: n = int(n) ms += me * n if ns == '': ns = 1 else: ns = int(ns) m += ms * ns # deal with remainder for e, n in stoich.findall(rem): me = (els.loc[e, 'atomic_weight'] * els.loc[e, 'percent'] / 100).sum() if n == '': n = 1 else: n = int(n) m += me * n return m
def calc_M(molecule): """ Returns molecular weight of molecule. Where molecule is in standard chemical notation, e.g. 'CO2', 'HCO3' or B(OH)4 Returns ------- molecular_weight : float """ # load periodic table els = elements() # define regexs parens = re.compile('\(([A-z0-9]+)\)([0-9]+)?') stoich = re.compile('([A-Z][a-z]?)([0-9]+)?') ps = parens.findall(molecule) # find subgroups in parentheses rem = parens.sub('', molecule) # get remainder m = 0 # deal with sub-groups if len(ps) > 0: for sub, ns in ps: ms = 0 for e, n in stoich.findall(sub): me = (els.loc[e, 'atomic_weight'] * els.loc[e, 'percent'] / 100).sum() if n == '': n = 1 else: n = int(n) ms += me * n if ns == '': ns = 1 else: ns = int(ns) m += ms * ns # deal with remainder for e, n in stoich.findall(rem): me = (els.loc[e, 'atomic_weight'] * els.loc[e, 'percent'] / 100).sum() if n == '': n = 1 else: n = int(n) m += me * n return m
[ "Returns", "molecular", "weight", "of", "molecule", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/chemistry.py#L26-L75
[ "def", "calc_M", "(", "molecule", ")", ":", "# load periodic table", "els", "=", "elements", "(", ")", "# define regexs", "parens", "=", "re", ".", "compile", "(", "'\\(([A-z0-9]+)\\)([0-9]+)?'", ")", "stoich", "=", "re", ".", "compile", "(", "'([A-Z][a-z]?)([0-9]+)?'", ")", "ps", "=", "parens", ".", "findall", "(", "molecule", ")", "# find subgroups in parentheses", "rem", "=", "parens", ".", "sub", "(", "''", ",", "molecule", ")", "# get remainder", "m", "=", "0", "# deal with sub-groups", "if", "len", "(", "ps", ")", ">", "0", ":", "for", "sub", ",", "ns", "in", "ps", ":", "ms", "=", "0", "for", "e", ",", "n", "in", "stoich", ".", "findall", "(", "sub", ")", ":", "me", "=", "(", "els", ".", "loc", "[", "e", ",", "'atomic_weight'", "]", "*", "els", ".", "loc", "[", "e", ",", "'percent'", "]", "/", "100", ")", ".", "sum", "(", ")", "if", "n", "==", "''", ":", "n", "=", "1", "else", ":", "n", "=", "int", "(", "n", ")", "ms", "+=", "me", "*", "n", "if", "ns", "==", "''", ":", "ns", "=", "1", "else", ":", "ns", "=", "int", "(", "ns", ")", "m", "+=", "ms", "*", "ns", "# deal with remainder", "for", "e", ",", "n", "in", "stoich", ".", "findall", "(", "rem", ")", ":", "me", "=", "(", "els", ".", "loc", "[", "e", ",", "'atomic_weight'", "]", "*", "els", ".", "loc", "[", "e", ",", "'percent'", "]", "/", "100", ")", ".", "sum", "(", ")", "if", "n", "==", "''", ":", "n", "=", "1", "else", ":", "n", "=", "int", "(", "n", ")", "m", "+=", "me", "*", "n", "return", "m" ]
cd25a650cfee318152f234d992708511f7047fbe
test
gen_keywords
generate single escape sequence mapping.
amino/string/hues.py
def gen_keywords(*args: Union[ANSIColors, ANSIStyles], **kwargs: Union[ANSIColors, ANSIStyles]) -> tuple: '''generate single escape sequence mapping.''' fields: tuple = tuple() values: tuple = tuple() for tpl in args: fields += tpl._fields values += tpl for prefix, tpl in kwargs.items(): fields += tuple(map(lambda x: '_'.join([prefix, x]), tpl._fields)) values += tpl return namedtuple('ANSISequences', fields)(*values)
def gen_keywords(*args: Union[ANSIColors, ANSIStyles], **kwargs: Union[ANSIColors, ANSIStyles]) -> tuple: '''generate single escape sequence mapping.''' fields: tuple = tuple() values: tuple = tuple() for tpl in args: fields += tpl._fields values += tpl for prefix, tpl in kwargs.items(): fields += tuple(map(lambda x: '_'.join([prefix, x]), tpl._fields)) values += tpl return namedtuple('ANSISequences', fields)(*values)
[ "generate", "single", "escape", "sequence", "mapping", "." ]
tek/amino
python
https://github.com/tek/amino/blob/51b314933e047a45587a24ecff02c836706d27ff/amino/string/hues.py#L50-L60
[ "def", "gen_keywords", "(", "*", "args", ":", "Union", "[", "ANSIColors", ",", "ANSIStyles", "]", ",", "*", "*", "kwargs", ":", "Union", "[", "ANSIColors", ",", "ANSIStyles", "]", ")", "->", "tuple", ":", "fields", ":", "tuple", "=", "tuple", "(", ")", "values", ":", "tuple", "=", "tuple", "(", ")", "for", "tpl", "in", "args", ":", "fields", "+=", "tpl", ".", "_fields", "values", "+=", "tpl", "for", "prefix", ",", "tpl", "in", "kwargs", ".", "items", "(", ")", ":", "fields", "+=", "tuple", "(", "map", "(", "lambda", "x", ":", "'_'", ".", "join", "(", "[", "prefix", ",", "x", "]", ")", ",", "tpl", ".", "_fields", ")", ")", "values", "+=", "tpl", "return", "namedtuple", "(", "'ANSISequences'", ",", "fields", ")", "(", "*", "values", ")" ]
51b314933e047a45587a24ecff02c836706d27ff
test
zero_break
Handle Resets in input stack. Breaks the input stack if a Reset operator (zero) is encountered.
amino/string/hues.py
def zero_break(stack: tuple) -> tuple: '''Handle Resets in input stack. Breaks the input stack if a Reset operator (zero) is encountered. ''' reducer = lambda x, y: tuple() if y == 0 else x + (y,) return reduce(reducer, stack, tuple())
def zero_break(stack: tuple) -> tuple: '''Handle Resets in input stack. Breaks the input stack if a Reset operator (zero) is encountered. ''' reducer = lambda x, y: tuple() if y == 0 else x + (y,) return reduce(reducer, stack, tuple())
[ "Handle", "Resets", "in", "input", "stack", ".", "Breaks", "the", "input", "stack", "if", "a", "Reset", "operator", "(", "zero", ")", "is", "encountered", "." ]
tek/amino
python
https://github.com/tek/amino/blob/51b314933e047a45587a24ecff02c836706d27ff/amino/string/hues.py#L65-L70
[ "def", "zero_break", "(", "stack", ":", "tuple", ")", "->", "tuple", ":", "reducer", "=", "lambda", "x", ",", "y", ":", "tuple", "(", ")", "if", "y", "==", "0", "else", "x", "+", "(", "y", ",", ")", "return", "reduce", "(", "reducer", ",", "stack", ",", "tuple", "(", ")", ")" ]
51b314933e047a45587a24ecff02c836706d27ff
test
annihilate
Squash and reduce the input stack. Removes the elements of input that match predicate and only keeps the last match at the end of the stack.
amino/string/hues.py
def annihilate(predicate: tuple, stack: tuple) -> tuple: '''Squash and reduce the input stack. Removes the elements of input that match predicate and only keeps the last match at the end of the stack. ''' extra = tuple(filter(lambda x: x not in predicate, stack)) head = reduce(lambda x, y: y if y in predicate else x, stack, None) return extra + (head,) if head else extra
def annihilate(predicate: tuple, stack: tuple) -> tuple: '''Squash and reduce the input stack. Removes the elements of input that match predicate and only keeps the last match at the end of the stack. ''' extra = tuple(filter(lambda x: x not in predicate, stack)) head = reduce(lambda x, y: y if y in predicate else x, stack, None) return extra + (head,) if head else extra
[ "Squash", "and", "reduce", "the", "input", "stack", ".", "Removes", "the", "elements", "of", "input", "that", "match", "predicate", "and", "only", "keeps", "the", "last", "match", "at", "the", "end", "of", "the", "stack", "." ]
tek/amino
python
https://github.com/tek/amino/blob/51b314933e047a45587a24ecff02c836706d27ff/amino/string/hues.py#L73-L80
[ "def", "annihilate", "(", "predicate", ":", "tuple", ",", "stack", ":", "tuple", ")", "->", "tuple", ":", "extra", "=", "tuple", "(", "filter", "(", "lambda", "x", ":", "x", "not", "in", "predicate", ",", "stack", ")", ")", "head", "=", "reduce", "(", "lambda", "x", ",", "y", ":", "y", "if", "y", "in", "predicate", "else", "x", ",", "stack", ",", "None", ")", "return", "extra", "+", "(", "head", ",", ")", "if", "head", "else", "extra" ]
51b314933e047a45587a24ecff02c836706d27ff
test
dedup
Remove duplicates from the stack in first-seen order.
amino/string/hues.py
def dedup(stack: tuple) -> tuple: '''Remove duplicates from the stack in first-seen order.''' # Initializes with an accumulator and then reduces the stack with first match # deduplication. reducer = lambda x, y: x if y in x else x + (y,) return reduce(reducer, stack, tuple())
def dedup(stack: tuple) -> tuple: '''Remove duplicates from the stack in first-seen order.''' # Initializes with an accumulator and then reduces the stack with first match # deduplication. reducer = lambda x, y: x if y in x else x + (y,) return reduce(reducer, stack, tuple())
[ "Remove", "duplicates", "from", "the", "stack", "in", "first", "-", "seen", "order", "." ]
tek/amino
python
https://github.com/tek/amino/blob/51b314933e047a45587a24ecff02c836706d27ff/amino/string/hues.py#L88-L93
[ "def", "dedup", "(", "stack", ":", "tuple", ")", "->", "tuple", ":", "# Initializes with an accumulator and then reduces the stack with first match", "# deduplication.", "reducer", "=", "lambda", "x", ",", "y", ":", "x", "if", "y", "in", "x", "else", "x", "+", "(", "y", ",", ")", "return", "reduce", "(", "reducer", ",", "stack", ",", "tuple", "(", ")", ")" ]
51b314933e047a45587a24ecff02c836706d27ff
test
gauss_weighted_stats
Calculate gaussian weigted moving mean, SD and SE. Parameters ---------- x : array-like The independent variable yarray : (n,m) array Where n = x.size, and m is the number of dependent variables to smooth. x_new : array-like The new x-scale to interpolate the data fwhm : int FWHM of the gaussian kernel. Returns ------- (mean, std, se) : tuple
latools/helpers/stat_fns.py
def gauss_weighted_stats(x, yarray, x_new, fwhm): """ Calculate gaussian weigted moving mean, SD and SE. Parameters ---------- x : array-like The independent variable yarray : (n,m) array Where n = x.size, and m is the number of dependent variables to smooth. x_new : array-like The new x-scale to interpolate the data fwhm : int FWHM of the gaussian kernel. Returns ------- (mean, std, se) : tuple """ sigma = fwhm / (2 * np.sqrt(2 * np.log(2))) # create empty mask array mask = np.zeros((x.size, yarray.shape[1], x_new.size)) # fill mask for i, xni in enumerate(x_new): mask[:, :, i] = gauss(x[:, np.newaxis], 1, xni, sigma) # normalise mask nmask = mask / mask.sum(0) # sum of each gaussian = 1 # calculate moving average av = (nmask * yarray[:, :, np.newaxis]).sum(0) # apply mask to data # sum along xn axis to get means # calculate moving sd diff = np.power(av - yarray[:, :, np.newaxis], 2) std = np.sqrt((diff * nmask).sum(0)) # sqrt of weighted average of data-mean # calculate moving se se = std / np.sqrt(mask.sum(0)) # max amplitude of weights is 1, so sum of weights scales # a fn of how many points are nearby. Use this as 'n' in # SE calculation. return av, std, se
def gauss_weighted_stats(x, yarray, x_new, fwhm): """ Calculate gaussian weigted moving mean, SD and SE. Parameters ---------- x : array-like The independent variable yarray : (n,m) array Where n = x.size, and m is the number of dependent variables to smooth. x_new : array-like The new x-scale to interpolate the data fwhm : int FWHM of the gaussian kernel. Returns ------- (mean, std, se) : tuple """ sigma = fwhm / (2 * np.sqrt(2 * np.log(2))) # create empty mask array mask = np.zeros((x.size, yarray.shape[1], x_new.size)) # fill mask for i, xni in enumerate(x_new): mask[:, :, i] = gauss(x[:, np.newaxis], 1, xni, sigma) # normalise mask nmask = mask / mask.sum(0) # sum of each gaussian = 1 # calculate moving average av = (nmask * yarray[:, :, np.newaxis]).sum(0) # apply mask to data # sum along xn axis to get means # calculate moving sd diff = np.power(av - yarray[:, :, np.newaxis], 2) std = np.sqrt((diff * nmask).sum(0)) # sqrt of weighted average of data-mean # calculate moving se se = std / np.sqrt(mask.sum(0)) # max amplitude of weights is 1, so sum of weights scales # a fn of how many points are nearby. Use this as 'n' in # SE calculation. return av, std, se
[ "Calculate", "gaussian", "weigted", "moving", "mean", "SD", "and", "SE", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/stat_fns.py#L51-L96
[ "def", "gauss_weighted_stats", "(", "x", ",", "yarray", ",", "x_new", ",", "fwhm", ")", ":", "sigma", "=", "fwhm", "/", "(", "2", "*", "np", ".", "sqrt", "(", "2", "*", "np", ".", "log", "(", "2", ")", ")", ")", "# create empty mask array", "mask", "=", "np", ".", "zeros", "(", "(", "x", ".", "size", ",", "yarray", ".", "shape", "[", "1", "]", ",", "x_new", ".", "size", ")", ")", "# fill mask", "for", "i", ",", "xni", "in", "enumerate", "(", "x_new", ")", ":", "mask", "[", ":", ",", ":", ",", "i", "]", "=", "gauss", "(", "x", "[", ":", ",", "np", ".", "newaxis", "]", ",", "1", ",", "xni", ",", "sigma", ")", "# normalise mask", "nmask", "=", "mask", "/", "mask", ".", "sum", "(", "0", ")", "# sum of each gaussian = 1", "# calculate moving average", "av", "=", "(", "nmask", "*", "yarray", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", ")", ".", "sum", "(", "0", ")", "# apply mask to data", "# sum along xn axis to get means", "# calculate moving sd", "diff", "=", "np", ".", "power", "(", "av", "-", "yarray", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", ",", "2", ")", "std", "=", "np", ".", "sqrt", "(", "(", "diff", "*", "nmask", ")", ".", "sum", "(", "0", ")", ")", "# sqrt of weighted average of data-mean", "# calculate moving se", "se", "=", "std", "/", "np", ".", "sqrt", "(", "mask", ".", "sum", "(", "0", ")", ")", "# max amplitude of weights is 1, so sum of weights scales", "# a fn of how many points are nearby. Use this as 'n' in", "# SE calculation.", "return", "av", ",", "std", ",", "se" ]
cd25a650cfee318152f234d992708511f7047fbe
test
gauss
Gaussian function. Parameters ---------- x : array_like Independent variable. *p : parameters unpacked to A, mu, sigma A = amplitude, mu = centre, sigma = width Return ------ array_like gaussian descriped by *p.
latools/helpers/stat_fns.py
def gauss(x, *p): """ Gaussian function. Parameters ---------- x : array_like Independent variable. *p : parameters unpacked to A, mu, sigma A = amplitude, mu = centre, sigma = width Return ------ array_like gaussian descriped by *p. """ A, mu, sigma = p return A * np.exp(-0.5 * (-mu + x)**2 / sigma**2)
def gauss(x, *p): """ Gaussian function. Parameters ---------- x : array_like Independent variable. *p : parameters unpacked to A, mu, sigma A = amplitude, mu = centre, sigma = width Return ------ array_like gaussian descriped by *p. """ A, mu, sigma = p return A * np.exp(-0.5 * (-mu + x)**2 / sigma**2)
[ "Gaussian", "function", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/stat_fns.py#L99-L115
[ "def", "gauss", "(", "x", ",", "*", "p", ")", ":", "A", ",", "mu", ",", "sigma", "=", "p", "return", "A", "*", "np", ".", "exp", "(", "-", "0.5", "*", "(", "-", "mu", "+", "x", ")", "**", "2", "/", "sigma", "**", "2", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
stderr
Calculate the standard error of a.
latools/helpers/stat_fns.py
def stderr(a): """ Calculate the standard error of a. """ return np.nanstd(a) / np.sqrt(sum(np.isfinite(a)))
def stderr(a): """ Calculate the standard error of a. """ return np.nanstd(a) / np.sqrt(sum(np.isfinite(a)))
[ "Calculate", "the", "standard", "error", "of", "a", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/stat_fns.py#L119-L123
[ "def", "stderr", "(", "a", ")", ":", "return", "np", ".", "nanstd", "(", "a", ")", "/", "np", ".", "sqrt", "(", "sum", "(", "np", ".", "isfinite", "(", "a", ")", ")", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
H15_mean
Calculate the Huber (H15) Robust mean of x. For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf
latools/helpers/stat_fns.py
def H15_mean(x): """ Calculate the Huber (H15) Robust mean of x. For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf """ mu = np.nanmean(x) sd = np.nanstd(x) * 1.134 sig = 1.5 hi = x > mu + sig * sd lo = x < mu - sig * sd if any(hi | lo): x[hi] = mu + sig * sd x[lo] = mu - sig * sd return H15_mean(x) else: return mu
def H15_mean(x): """ Calculate the Huber (H15) Robust mean of x. For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf """ mu = np.nanmean(x) sd = np.nanstd(x) * 1.134 sig = 1.5 hi = x > mu + sig * sd lo = x < mu - sig * sd if any(hi | lo): x[hi] = mu + sig * sd x[lo] = mu - sig * sd return H15_mean(x) else: return mu
[ "Calculate", "the", "Huber", "(", "H15", ")", "Robust", "mean", "of", "x", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/stat_fns.py#L132-L152
[ "def", "H15_mean", "(", "x", ")", ":", "mu", "=", "np", ".", "nanmean", "(", "x", ")", "sd", "=", "np", ".", "nanstd", "(", "x", ")", "*", "1.134", "sig", "=", "1.5", "hi", "=", "x", ">", "mu", "+", "sig", "*", "sd", "lo", "=", "x", "<", "mu", "-", "sig", "*", "sd", "if", "any", "(", "hi", "|", "lo", ")", ":", "x", "[", "hi", "]", "=", "mu", "+", "sig", "*", "sd", "x", "[", "lo", "]", "=", "mu", "-", "sig", "*", "sd", "return", "H15_mean", "(", "x", ")", "else", ":", "return", "mu" ]
cd25a650cfee318152f234d992708511f7047fbe
test
H15_se
Calculate the Huber (H15) Robust standard deviation of x. For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf
latools/helpers/stat_fns.py
def H15_se(x): """ Calculate the Huber (H15) Robust standard deviation of x. For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf """ sd = H15_std(x) return sd / np.sqrt(sum(np.isfinite(x)))
def H15_se(x): """ Calculate the Huber (H15) Robust standard deviation of x. For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf """ sd = H15_std(x) return sd / np.sqrt(sum(np.isfinite(x)))
[ "Calculate", "the", "Huber", "(", "H15", ")", "Robust", "standard", "deviation", "of", "x", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/stat_fns.py#L178-L187
[ "def", "H15_se", "(", "x", ")", ":", "sd", "=", "H15_std", "(", "x", ")", "return", "sd", "/", "np", ".", "sqrt", "(", "sum", "(", "np", ".", "isfinite", "(", "x", ")", ")", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
reproduce
Reproduce a previous analysis exported with :func:`latools.analyse.minimal_export` For normal use, supplying `log_file` and specifying a plotting option should be enough to reproduce an analysis. All requisites (raw data, SRM table and any custom stat functions) will then be imported from the minimal_export folder. You may also specify your own raw_data, srm_table and custom_stat_functions, if you wish. Parameters ---------- log_file : str The path to the log file produced by :func:`~latools.analyse.minimal_export`. plotting : bool Whether or not to output plots. data_folder : str Optional. Specify a different data folder. Data folder should normally be in the same folder as the log file. srm_table : str Optional. Specify a different SRM table. SRM table should normally be in the same folder as the log file. custom_stat_functions : str Optional. Specify a python file containing custom stat functions for use by reproduce. Any custom stat functions should normally be included in the same folder as the log file.
latools/latools.py
def reproduce(past_analysis, plotting=False, data_folder=None, srm_table=None, custom_stat_functions=None): """ Reproduce a previous analysis exported with :func:`latools.analyse.minimal_export` For normal use, supplying `log_file` and specifying a plotting option should be enough to reproduce an analysis. All requisites (raw data, SRM table and any custom stat functions) will then be imported from the minimal_export folder. You may also specify your own raw_data, srm_table and custom_stat_functions, if you wish. Parameters ---------- log_file : str The path to the log file produced by :func:`~latools.analyse.minimal_export`. plotting : bool Whether or not to output plots. data_folder : str Optional. Specify a different data folder. Data folder should normally be in the same folder as the log file. srm_table : str Optional. Specify a different SRM table. SRM table should normally be in the same folder as the log file. custom_stat_functions : str Optional. Specify a python file containing custom stat functions for use by reproduce. Any custom stat functions should normally be included in the same folder as the log file. """ if '.zip' in past_analysis: dirpath = utils.extract_zipdir(past_analysis) logpath = os.path.join(dirpath, 'analysis.lalog') elif os.path.isdir(past_analysis): if os.path.exists(os.path.join(past_analysis, 'analysis.lalog')): logpath = os.path.join(past_analysis, 'analysis.lalog') elif 'analysis.lalog' in past_analysis: logpath = past_analysis else: raise ValueError(('\n\n{} is not a valid input.\n\n' + 'Must be one of:\n' + ' - A .zip file exported by latools\n' + ' - An analysis.lalog file\n' + ' - A directory containing an analysis.lalog files\n')) runargs, paths = logging.read_logfile(logpath) # parse custom stat functions csfs = Bunch() if custom_stat_functions is None and 'custom_stat_functions' in paths.keys(): # load custom functions as a dict with open(paths['custom_stat_functions'], 'r') as f: csf = f.read() fname = re.compile('def (.*)\(.*') for c in csf.split('\n\n\n\n'): if fname.match(c): csfs[fname.match(c).groups()[0]] = c # create analysis object rep = analyse(*runargs[0][-1]['args'], **runargs[0][-1]['kwargs']) # rest of commands for fname, arg in runargs: if fname != '__init__': if 'plot' in fname.lower() and plotting: getattr(rep, fname)(*arg['args'], **arg['kwargs']) elif 'sample_stats' in fname.lower(): rep.sample_stats(*arg['args'], csf_dict=csfs, **arg['kwargs']) else: getattr(rep, fname)(*arg['args'], **arg['kwargs']) return rep
def reproduce(past_analysis, plotting=False, data_folder=None, srm_table=None, custom_stat_functions=None): """ Reproduce a previous analysis exported with :func:`latools.analyse.minimal_export` For normal use, supplying `log_file` and specifying a plotting option should be enough to reproduce an analysis. All requisites (raw data, SRM table and any custom stat functions) will then be imported from the minimal_export folder. You may also specify your own raw_data, srm_table and custom_stat_functions, if you wish. Parameters ---------- log_file : str The path to the log file produced by :func:`~latools.analyse.minimal_export`. plotting : bool Whether or not to output plots. data_folder : str Optional. Specify a different data folder. Data folder should normally be in the same folder as the log file. srm_table : str Optional. Specify a different SRM table. SRM table should normally be in the same folder as the log file. custom_stat_functions : str Optional. Specify a python file containing custom stat functions for use by reproduce. Any custom stat functions should normally be included in the same folder as the log file. """ if '.zip' in past_analysis: dirpath = utils.extract_zipdir(past_analysis) logpath = os.path.join(dirpath, 'analysis.lalog') elif os.path.isdir(past_analysis): if os.path.exists(os.path.join(past_analysis, 'analysis.lalog')): logpath = os.path.join(past_analysis, 'analysis.lalog') elif 'analysis.lalog' in past_analysis: logpath = past_analysis else: raise ValueError(('\n\n{} is not a valid input.\n\n' + 'Must be one of:\n' + ' - A .zip file exported by latools\n' + ' - An analysis.lalog file\n' + ' - A directory containing an analysis.lalog files\n')) runargs, paths = logging.read_logfile(logpath) # parse custom stat functions csfs = Bunch() if custom_stat_functions is None and 'custom_stat_functions' in paths.keys(): # load custom functions as a dict with open(paths['custom_stat_functions'], 'r') as f: csf = f.read() fname = re.compile('def (.*)\(.*') for c in csf.split('\n\n\n\n'): if fname.match(c): csfs[fname.match(c).groups()[0]] = c # create analysis object rep = analyse(*runargs[0][-1]['args'], **runargs[0][-1]['kwargs']) # rest of commands for fname, arg in runargs: if fname != '__init__': if 'plot' in fname.lower() and plotting: getattr(rep, fname)(*arg['args'], **arg['kwargs']) elif 'sample_stats' in fname.lower(): rep.sample_stats(*arg['args'], csf_dict=csfs, **arg['kwargs']) else: getattr(rep, fname)(*arg['args'], **arg['kwargs']) return rep
[ "Reproduce", "a", "previous", "analysis", "exported", "with", ":", "func", ":", "latools", ".", "analyse", ".", "minimal_export" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L4018-L4091
[ "def", "reproduce", "(", "past_analysis", ",", "plotting", "=", "False", ",", "data_folder", "=", "None", ",", "srm_table", "=", "None", ",", "custom_stat_functions", "=", "None", ")", ":", "if", "'.zip'", "in", "past_analysis", ":", "dirpath", "=", "utils", ".", "extract_zipdir", "(", "past_analysis", ")", "logpath", "=", "os", ".", "path", ".", "join", "(", "dirpath", ",", "'analysis.lalog'", ")", "elif", "os", ".", "path", ".", "isdir", "(", "past_analysis", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "past_analysis", ",", "'analysis.lalog'", ")", ")", ":", "logpath", "=", "os", ".", "path", ".", "join", "(", "past_analysis", ",", "'analysis.lalog'", ")", "elif", "'analysis.lalog'", "in", "past_analysis", ":", "logpath", "=", "past_analysis", "else", ":", "raise", "ValueError", "(", "(", "'\\n\\n{} is not a valid input.\\n\\n'", "+", "'Must be one of:\\n'", "+", "' - A .zip file exported by latools\\n'", "+", "' - An analysis.lalog file\\n'", "+", "' - A directory containing an analysis.lalog files\\n'", ")", ")", "runargs", ",", "paths", "=", "logging", ".", "read_logfile", "(", "logpath", ")", "# parse custom stat functions", "csfs", "=", "Bunch", "(", ")", "if", "custom_stat_functions", "is", "None", "and", "'custom_stat_functions'", "in", "paths", ".", "keys", "(", ")", ":", "# load custom functions as a dict", "with", "open", "(", "paths", "[", "'custom_stat_functions'", "]", ",", "'r'", ")", "as", "f", ":", "csf", "=", "f", ".", "read", "(", ")", "fname", "=", "re", ".", "compile", "(", "'def (.*)\\(.*'", ")", "for", "c", "in", "csf", ".", "split", "(", "'\\n\\n\\n\\n'", ")", ":", "if", "fname", ".", "match", "(", "c", ")", ":", "csfs", "[", "fname", ".", "match", "(", "c", ")", ".", "groups", "(", ")", "[", "0", "]", "]", "=", "c", "# create analysis object", "rep", "=", "analyse", "(", "*", "runargs", "[", "0", "]", "[", "-", "1", "]", "[", "'args'", "]", ",", "*", "*", "runargs", "[", "0", "]", "[", "-", "1", "]", "[", "'kwargs'", "]", ")", "# rest of commands", "for", "fname", ",", "arg", "in", "runargs", ":", "if", "fname", "!=", "'__init__'", ":", "if", "'plot'", "in", "fname", ".", "lower", "(", ")", "and", "plotting", ":", "getattr", "(", "rep", ",", "fname", ")", "(", "*", "arg", "[", "'args'", "]", ",", "*", "*", "arg", "[", "'kwargs'", "]", ")", "elif", "'sample_stats'", "in", "fname", ".", "lower", "(", ")", ":", "rep", ".", "sample_stats", "(", "*", "arg", "[", "'args'", "]", ",", "csf_dict", "=", "csfs", ",", "*", "*", "arg", "[", "'kwargs'", "]", ")", "else", ":", "getattr", "(", "rep", ",", "fname", ")", "(", "*", "arg", "[", "'args'", "]", ",", "*", "*", "arg", "[", "'kwargs'", "]", ")", "return", "rep" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse._get_samples
Helper function to get sample names from subset. Parameters ---------- subset : str Subset name. If None, returns all samples. Returns ------- List of sample names
latools/latools.py
def _get_samples(self, subset=None): """ Helper function to get sample names from subset. Parameters ---------- subset : str Subset name. If None, returns all samples. Returns ------- List of sample names """ if subset is None: samples = self.subsets['All_Samples'] else: try: samples = self.subsets[subset] except KeyError: raise KeyError(("Subset '{:s}' does not ".format(subset) + "exist.\nUse 'make_subset' to create a" + "subset.")) return samples
def _get_samples(self, subset=None): """ Helper function to get sample names from subset. Parameters ---------- subset : str Subset name. If None, returns all samples. Returns ------- List of sample names """ if subset is None: samples = self.subsets['All_Samples'] else: try: samples = self.subsets[subset] except KeyError: raise KeyError(("Subset '{:s}' does not ".format(subset) + "exist.\nUse 'make_subset' to create a" + "subset.")) return samples
[ "Helper", "function", "to", "get", "sample", "names", "from", "subset", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L337-L359
[ "def", "_get_samples", "(", "self", ",", "subset", "=", "None", ")", ":", "if", "subset", "is", "None", ":", "samples", "=", "self", ".", "subsets", "[", "'All_Samples'", "]", "else", ":", "try", ":", "samples", "=", "self", ".", "subsets", "[", "subset", "]", "except", "KeyError", ":", "raise", "KeyError", "(", "(", "\"Subset '{:s}' does not \"", ".", "format", "(", "subset", ")", "+", "\"exist.\\nUse 'make_subset' to create a\"", "+", "\"subset.\"", ")", ")", "return", "samples" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.autorange
Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. This can also be 'total_counts' to use the sum of all analytes. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. smwin : int The smoothing window used for calculating the second derivative. Must be odd. conf : float The proportional intensity of the fitted gaussian tails that determines the transition width cutoff (lower = wider transition regions excluded). trans_mult : array_like, len=2 Multiples of the peak FWHM to add to the transition cutoffs, e.g. if the transitions consistently leave some bad data proceeding the transition, set trans_mult to [0, 0.5] to ad 0.5 * the FWHM to the right hand side of the limit. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked', or rawdata' if not despiked. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays.
latools/latools.py
def autorange(self, analyte='total_counts', gwin=5, swin=3, win=20, on_mult=[1., 1.5], off_mult=[1.5, 1], transform='log', ploterrs=True, focus_stage='despiked'): """ Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. This can also be 'total_counts' to use the sum of all analytes. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. smwin : int The smoothing window used for calculating the second derivative. Must be odd. conf : float The proportional intensity of the fitted gaussian tails that determines the transition width cutoff (lower = wider transition regions excluded). trans_mult : array_like, len=2 Multiples of the peak FWHM to add to the transition cutoffs, e.g. if the transitions consistently leave some bad data proceeding the transition, set trans_mult to [0, 0.5] to ad 0.5 * the FWHM to the right hand side of the limit. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked', or rawdata' if not despiked. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays. """ if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' if analyte is None: analyte = self.internal_standard elif analyte in self.analytes: self.minimal_analytes.update([analyte]) fails = {} # list for catching failures. with self.pbar.set(total=len(self.data), desc='AutoRange') as prog: for s, d in self.data.items(): f = d.autorange(analyte=analyte, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult, ploterrs=ploterrs, transform=transform) if f is not None: fails[s] = f prog.update() # advance progress bar # handle failures if len(fails) > 0: wstr = ('\n\n' + '*' * 41 + '\n' + ' WARNING\n' + '*' * 41 + '\n' + 'Autorange failed for some samples:\n') kwidth = max([len(k) for k in fails.keys()]) + 1 fstr = ' {:' + '{}'.format(kwidth) + 's}: ' for k in sorted(fails.keys()): wstr += fstr.format(k) + ', '.join(['{:.1f}'.format(f) for f in fails[k][-1]]) + '\n' wstr += ('\n*** THIS IS NOT NECESSARILY A PROBLEM ***\n' + 'But please check the plots below to make\n' + 'sure they look OK. Failures are marked by\n' + 'dashed vertical red lines.\n\n' + 'To examine an autorange failure in more\n' + 'detail, use the `autorange_plot` method\n' + 'of the failing data object, e.g.:\n' + "dat.data['Sample'].autorange_plot(params)\n" + '*' * 41 + '\n') warnings.warn(wstr) self.stages_complete.update(['autorange']) return
def autorange(self, analyte='total_counts', gwin=5, swin=3, win=20, on_mult=[1., 1.5], off_mult=[1.5, 1], transform='log', ploterrs=True, focus_stage='despiked'): """ Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. This can also be 'total_counts' to use the sum of all analytes. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. smwin : int The smoothing window used for calculating the second derivative. Must be odd. conf : float The proportional intensity of the fitted gaussian tails that determines the transition width cutoff (lower = wider transition regions excluded). trans_mult : array_like, len=2 Multiples of the peak FWHM to add to the transition cutoffs, e.g. if the transitions consistently leave some bad data proceeding the transition, set trans_mult to [0, 0.5] to ad 0.5 * the FWHM to the right hand side of the limit. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked', or rawdata' if not despiked. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays. """ if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' if analyte is None: analyte = self.internal_standard elif analyte in self.analytes: self.minimal_analytes.update([analyte]) fails = {} # list for catching failures. with self.pbar.set(total=len(self.data), desc='AutoRange') as prog: for s, d in self.data.items(): f = d.autorange(analyte=analyte, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult, ploterrs=ploterrs, transform=transform) if f is not None: fails[s] = f prog.update() # advance progress bar # handle failures if len(fails) > 0: wstr = ('\n\n' + '*' * 41 + '\n' + ' WARNING\n' + '*' * 41 + '\n' + 'Autorange failed for some samples:\n') kwidth = max([len(k) for k in fails.keys()]) + 1 fstr = ' {:' + '{}'.format(kwidth) + 's}: ' for k in sorted(fails.keys()): wstr += fstr.format(k) + ', '.join(['{:.1f}'.format(f) for f in fails[k][-1]]) + '\n' wstr += ('\n*** THIS IS NOT NECESSARILY A PROBLEM ***\n' + 'But please check the plots below to make\n' + 'sure they look OK. Failures are marked by\n' + 'dashed vertical red lines.\n\n' + 'To examine an autorange failure in more\n' + 'detail, use the `autorange_plot` method\n' + 'of the failing data object, e.g.:\n' + "dat.data['Sample'].autorange_plot(params)\n" + '*' * 41 + '\n') warnings.warn(wstr) self.stages_complete.update(['autorange']) return
[ "Automatically", "separates", "signal", "and", "background", "data", "regions", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L406-L525
[ "def", "autorange", "(", "self", ",", "analyte", "=", "'total_counts'", ",", "gwin", "=", "5", ",", "swin", "=", "3", ",", "win", "=", "20", ",", "on_mult", "=", "[", "1.", ",", "1.5", "]", ",", "off_mult", "=", "[", "1.5", ",", "1", "]", ",", "transform", "=", "'log'", ",", "ploterrs", "=", "True", ",", "focus_stage", "=", "'despiked'", ")", ":", "if", "focus_stage", "==", "'despiked'", ":", "if", "'despiked'", "not", "in", "self", ".", "stages_complete", ":", "focus_stage", "=", "'rawdata'", "if", "analyte", "is", "None", ":", "analyte", "=", "self", ".", "internal_standard", "elif", "analyte", "in", "self", ".", "analytes", ":", "self", ".", "minimal_analytes", ".", "update", "(", "[", "analyte", "]", ")", "fails", "=", "{", "}", "# list for catching failures.", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "data", ")", ",", "desc", "=", "'AutoRange'", ")", "as", "prog", ":", "for", "s", ",", "d", "in", "self", ".", "data", ".", "items", "(", ")", ":", "f", "=", "d", ".", "autorange", "(", "analyte", "=", "analyte", ",", "gwin", "=", "gwin", ",", "swin", "=", "swin", ",", "win", "=", "win", ",", "on_mult", "=", "on_mult", ",", "off_mult", "=", "off_mult", ",", "ploterrs", "=", "ploterrs", ",", "transform", "=", "transform", ")", "if", "f", "is", "not", "None", ":", "fails", "[", "s", "]", "=", "f", "prog", ".", "update", "(", ")", "# advance progress bar", "# handle failures", "if", "len", "(", "fails", ")", ">", "0", ":", "wstr", "=", "(", "'\\n\\n'", "+", "'*'", "*", "41", "+", "'\\n'", "+", "' WARNING\\n'", "+", "'*'", "*", "41", "+", "'\\n'", "+", "'Autorange failed for some samples:\\n'", ")", "kwidth", "=", "max", "(", "[", "len", "(", "k", ")", "for", "k", "in", "fails", ".", "keys", "(", ")", "]", ")", "+", "1", "fstr", "=", "' {:'", "+", "'{}'", ".", "format", "(", "kwidth", ")", "+", "'s}: '", "for", "k", "in", "sorted", "(", "fails", ".", "keys", "(", ")", ")", ":", "wstr", "+=", "fstr", ".", "format", "(", "k", ")", "+", "', '", ".", "join", "(", "[", "'{:.1f}'", ".", "format", "(", "f", ")", "for", "f", "in", "fails", "[", "k", "]", "[", "-", "1", "]", "]", ")", "+", "'\\n'", "wstr", "+=", "(", "'\\n*** THIS IS NOT NECESSARILY A PROBLEM ***\\n'", "+", "'But please check the plots below to make\\n'", "+", "'sure they look OK. Failures are marked by\\n'", "+", "'dashed vertical red lines.\\n\\n'", "+", "'To examine an autorange failure in more\\n'", "+", "'detail, use the `autorange_plot` method\\n'", "+", "'of the failing data object, e.g.:\\n'", "+", "\"dat.data['Sample'].autorange_plot(params)\\n\"", "+", "'*'", "*", "41", "+", "'\\n'", ")", "warnings", ".", "warn", "(", "wstr", ")", "self", ".", "stages_complete", ".", "update", "(", "[", "'autorange'", "]", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.find_expcoef
Determines exponential decay coefficient for despike filter. Fits an exponential decay function to the washout phase of standards to determine the washout time of your laser cell. The exponential coefficient reported is `nsd_below` standard deviations below the fitted exponent, to ensure that no real data is removed. Total counts are used in fitting, rather than a specific analyte. Parameters ---------- nsd_below : float The number of standard deviations to subtract from the fitted coefficient when calculating the filter exponent. plot : bool or str If True, creates a plot of the fit, if str the plot is to the location specified in str. trimlim : float A threshold limit used in determining the start of the exponential decay region of the washout. Defaults to half the increase in signal over background. If the data in the plot don't fall on an exponential decay line, change this number. Normally you'll need to increase it. Returns ------- None
latools/latools.py
def find_expcoef(self, nsd_below=0., plot=False, trimlim=None, autorange_kwargs={}): """ Determines exponential decay coefficient for despike filter. Fits an exponential decay function to the washout phase of standards to determine the washout time of your laser cell. The exponential coefficient reported is `nsd_below` standard deviations below the fitted exponent, to ensure that no real data is removed. Total counts are used in fitting, rather than a specific analyte. Parameters ---------- nsd_below : float The number of standard deviations to subtract from the fitted coefficient when calculating the filter exponent. plot : bool or str If True, creates a plot of the fit, if str the plot is to the location specified in str. trimlim : float A threshold limit used in determining the start of the exponential decay region of the washout. Defaults to half the increase in signal over background. If the data in the plot don't fall on an exponential decay line, change this number. Normally you'll need to increase it. Returns ------- None """ print('Calculating exponential decay coefficient\nfrom SRM washouts...') def findtrim(tr, lim=None): trr = np.roll(tr, -1) trr[-1] = 0 if lim is None: lim = 0.5 * np.nanmax(tr - trr) ind = (tr - trr) >= lim return np.arange(len(ind))[ind ^ np.roll(ind, -1)][0] if not hasattr(self.stds[0], 'trnrng'): for s in self.stds: s.autorange(**autorange_kwargs, ploterrs=False) trans = [] times = [] for v in self.stds: for trnrng in v.trnrng[-1::-2]: tr = minmax_scale(v.data['total_counts'][(v.Time > trnrng[0]) & (v.Time < trnrng[1])]) sm = np.apply_along_axis(np.nanmean, 1, rolling_window(tr, 3, pad=0)) sm[0] = sm[1] trim = findtrim(sm, trimlim) + 2 trans.append(minmax_scale(tr[trim:])) times.append(np.arange(tr[trim:].size) * np.diff(v.Time[1:3])) times = np.concatenate(times) times = np.round(times, 2) trans = np.concatenate(trans) ti = [] tr = [] for t in np.unique(times): ti.append(t) tr.append(np.nanmin(trans[times == t])) def expfit(x, e): """ Exponential decay function. """ return np.exp(e * x) ep, ecov = curve_fit(expfit, ti, tr, p0=(-1.)) eeR2 = R2calc(trans, expfit(times, ep)) if plot: fig, ax = plt.subplots(1, 1, figsize=[6, 4]) ax.scatter(times, trans, alpha=0.2, color='k', marker='x', zorder=-2) ax.scatter(ti, tr, alpha=1, color='k', marker='o') fitx = np.linspace(0, max(ti)) ax.plot(fitx, expfit(fitx, ep), color='r', label='Fit') ax.plot(fitx, expfit(fitx, ep - nsd_below * np.diag(ecov)**.5, ), color='b', label='Used') ax.text(0.95, 0.75, ('y = $e^{%.2f \pm %.2f * x}$\n$R^2$= %.2f \nCoefficient: ' '%.2f') % (ep, np.diag(ecov)**.5, eeR2, ep - nsd_below * np.diag(ecov)**.5), transform=ax.transAxes, ha='right', va='top', size=12) ax.set_xlim(0, ax.get_xlim()[-1]) ax.set_xlabel('Time (s)') ax.set_ylim(-0.05, 1.05) ax.set_ylabel('Proportion of Signal') plt.legend() if isinstance(plot, str): fig.savefig(plot) self.expdecay_coef = ep - nsd_below * np.diag(ecov)**.5 print(' {:0.2f}'.format(self.expdecay_coef[0])) return
def find_expcoef(self, nsd_below=0., plot=False, trimlim=None, autorange_kwargs={}): """ Determines exponential decay coefficient for despike filter. Fits an exponential decay function to the washout phase of standards to determine the washout time of your laser cell. The exponential coefficient reported is `nsd_below` standard deviations below the fitted exponent, to ensure that no real data is removed. Total counts are used in fitting, rather than a specific analyte. Parameters ---------- nsd_below : float The number of standard deviations to subtract from the fitted coefficient when calculating the filter exponent. plot : bool or str If True, creates a plot of the fit, if str the plot is to the location specified in str. trimlim : float A threshold limit used in determining the start of the exponential decay region of the washout. Defaults to half the increase in signal over background. If the data in the plot don't fall on an exponential decay line, change this number. Normally you'll need to increase it. Returns ------- None """ print('Calculating exponential decay coefficient\nfrom SRM washouts...') def findtrim(tr, lim=None): trr = np.roll(tr, -1) trr[-1] = 0 if lim is None: lim = 0.5 * np.nanmax(tr - trr) ind = (tr - trr) >= lim return np.arange(len(ind))[ind ^ np.roll(ind, -1)][0] if not hasattr(self.stds[0], 'trnrng'): for s in self.stds: s.autorange(**autorange_kwargs, ploterrs=False) trans = [] times = [] for v in self.stds: for trnrng in v.trnrng[-1::-2]: tr = minmax_scale(v.data['total_counts'][(v.Time > trnrng[0]) & (v.Time < trnrng[1])]) sm = np.apply_along_axis(np.nanmean, 1, rolling_window(tr, 3, pad=0)) sm[0] = sm[1] trim = findtrim(sm, trimlim) + 2 trans.append(minmax_scale(tr[trim:])) times.append(np.arange(tr[trim:].size) * np.diff(v.Time[1:3])) times = np.concatenate(times) times = np.round(times, 2) trans = np.concatenate(trans) ti = [] tr = [] for t in np.unique(times): ti.append(t) tr.append(np.nanmin(trans[times == t])) def expfit(x, e): """ Exponential decay function. """ return np.exp(e * x) ep, ecov = curve_fit(expfit, ti, tr, p0=(-1.)) eeR2 = R2calc(trans, expfit(times, ep)) if plot: fig, ax = plt.subplots(1, 1, figsize=[6, 4]) ax.scatter(times, trans, alpha=0.2, color='k', marker='x', zorder=-2) ax.scatter(ti, tr, alpha=1, color='k', marker='o') fitx = np.linspace(0, max(ti)) ax.plot(fitx, expfit(fitx, ep), color='r', label='Fit') ax.plot(fitx, expfit(fitx, ep - nsd_below * np.diag(ecov)**.5, ), color='b', label='Used') ax.text(0.95, 0.75, ('y = $e^{%.2f \pm %.2f * x}$\n$R^2$= %.2f \nCoefficient: ' '%.2f') % (ep, np.diag(ecov)**.5, eeR2, ep - nsd_below * np.diag(ecov)**.5), transform=ax.transAxes, ha='right', va='top', size=12) ax.set_xlim(0, ax.get_xlim()[-1]) ax.set_xlabel('Time (s)') ax.set_ylim(-0.05, 1.05) ax.set_ylabel('Proportion of Signal') plt.legend() if isinstance(plot, str): fig.savefig(plot) self.expdecay_coef = ep - nsd_below * np.diag(ecov)**.5 print(' {:0.2f}'.format(self.expdecay_coef[0])) return
[ "Determines", "exponential", "decay", "coefficient", "for", "despike", "filter", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L527-L633
[ "def", "find_expcoef", "(", "self", ",", "nsd_below", "=", "0.", ",", "plot", "=", "False", ",", "trimlim", "=", "None", ",", "autorange_kwargs", "=", "{", "}", ")", ":", "print", "(", "'Calculating exponential decay coefficient\\nfrom SRM washouts...'", ")", "def", "findtrim", "(", "tr", ",", "lim", "=", "None", ")", ":", "trr", "=", "np", ".", "roll", "(", "tr", ",", "-", "1", ")", "trr", "[", "-", "1", "]", "=", "0", "if", "lim", "is", "None", ":", "lim", "=", "0.5", "*", "np", ".", "nanmax", "(", "tr", "-", "trr", ")", "ind", "=", "(", "tr", "-", "trr", ")", ">=", "lim", "return", "np", ".", "arange", "(", "len", "(", "ind", ")", ")", "[", "ind", "^", "np", ".", "roll", "(", "ind", ",", "-", "1", ")", "]", "[", "0", "]", "if", "not", "hasattr", "(", "self", ".", "stds", "[", "0", "]", ",", "'trnrng'", ")", ":", "for", "s", "in", "self", ".", "stds", ":", "s", ".", "autorange", "(", "*", "*", "autorange_kwargs", ",", "ploterrs", "=", "False", ")", "trans", "=", "[", "]", "times", "=", "[", "]", "for", "v", "in", "self", ".", "stds", ":", "for", "trnrng", "in", "v", ".", "trnrng", "[", "-", "1", ":", ":", "-", "2", "]", ":", "tr", "=", "minmax_scale", "(", "v", ".", "data", "[", "'total_counts'", "]", "[", "(", "v", ".", "Time", ">", "trnrng", "[", "0", "]", ")", "&", "(", "v", ".", "Time", "<", "trnrng", "[", "1", "]", ")", "]", ")", "sm", "=", "np", ".", "apply_along_axis", "(", "np", ".", "nanmean", ",", "1", ",", "rolling_window", "(", "tr", ",", "3", ",", "pad", "=", "0", ")", ")", "sm", "[", "0", "]", "=", "sm", "[", "1", "]", "trim", "=", "findtrim", "(", "sm", ",", "trimlim", ")", "+", "2", "trans", ".", "append", "(", "minmax_scale", "(", "tr", "[", "trim", ":", "]", ")", ")", "times", ".", "append", "(", "np", ".", "arange", "(", "tr", "[", "trim", ":", "]", ".", "size", ")", "*", "np", ".", "diff", "(", "v", ".", "Time", "[", "1", ":", "3", "]", ")", ")", "times", "=", "np", ".", "concatenate", "(", "times", ")", "times", "=", "np", ".", "round", "(", "times", ",", "2", ")", "trans", "=", "np", ".", "concatenate", "(", "trans", ")", "ti", "=", "[", "]", "tr", "=", "[", "]", "for", "t", "in", "np", ".", "unique", "(", "times", ")", ":", "ti", ".", "append", "(", "t", ")", "tr", ".", "append", "(", "np", ".", "nanmin", "(", "trans", "[", "times", "==", "t", "]", ")", ")", "def", "expfit", "(", "x", ",", "e", ")", ":", "\"\"\"\n Exponential decay function.\n \"\"\"", "return", "np", ".", "exp", "(", "e", "*", "x", ")", "ep", ",", "ecov", "=", "curve_fit", "(", "expfit", ",", "ti", ",", "tr", ",", "p0", "=", "(", "-", "1.", ")", ")", "eeR2", "=", "R2calc", "(", "trans", ",", "expfit", "(", "times", ",", "ep", ")", ")", "if", "plot", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "1", ",", "1", ",", "figsize", "=", "[", "6", ",", "4", "]", ")", "ax", ".", "scatter", "(", "times", ",", "trans", ",", "alpha", "=", "0.2", ",", "color", "=", "'k'", ",", "marker", "=", "'x'", ",", "zorder", "=", "-", "2", ")", "ax", ".", "scatter", "(", "ti", ",", "tr", ",", "alpha", "=", "1", ",", "color", "=", "'k'", ",", "marker", "=", "'o'", ")", "fitx", "=", "np", ".", "linspace", "(", "0", ",", "max", "(", "ti", ")", ")", "ax", ".", "plot", "(", "fitx", ",", "expfit", "(", "fitx", ",", "ep", ")", ",", "color", "=", "'r'", ",", "label", "=", "'Fit'", ")", "ax", ".", "plot", "(", "fitx", ",", "expfit", "(", "fitx", ",", "ep", "-", "nsd_below", "*", "np", ".", "diag", "(", "ecov", ")", "**", ".5", ",", ")", ",", "color", "=", "'b'", ",", "label", "=", "'Used'", ")", "ax", ".", "text", "(", "0.95", ",", "0.75", ",", "(", "'y = $e^{%.2f \\pm %.2f * x}$\\n$R^2$= %.2f \\nCoefficient: '", "'%.2f'", ")", "%", "(", "ep", ",", "np", ".", "diag", "(", "ecov", ")", "**", ".5", ",", "eeR2", ",", "ep", "-", "nsd_below", "*", "np", ".", "diag", "(", "ecov", ")", "**", ".5", ")", ",", "transform", "=", "ax", ".", "transAxes", ",", "ha", "=", "'right'", ",", "va", "=", "'top'", ",", "size", "=", "12", ")", "ax", ".", "set_xlim", "(", "0", ",", "ax", ".", "get_xlim", "(", ")", "[", "-", "1", "]", ")", "ax", ".", "set_xlabel", "(", "'Time (s)'", ")", "ax", ".", "set_ylim", "(", "-", "0.05", ",", "1.05", ")", "ax", ".", "set_ylabel", "(", "'Proportion of Signal'", ")", "plt", ".", "legend", "(", ")", "if", "isinstance", "(", "plot", ",", "str", ")", ":", "fig", ".", "savefig", "(", "plot", ")", "self", ".", "expdecay_coef", "=", "ep", "-", "nsd_below", "*", "np", ".", "diag", "(", "ecov", ")", "**", ".5", "print", "(", "' {:0.2f}'", ".", "format", "(", "self", ".", "expdecay_coef", "[", "0", "]", ")", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.despike
Despikes data with exponential decay and noise filters. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. tstep : None or float The timeinterval between measurements. If None, it is determined automatically from the Time variable. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. exponentplot : bool Whether or not to show a plot of the automatically determined exponential decay exponent. maxiter : int The max number of times that the fitler is applied. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'rawdata'. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- None
latools/latools.py
def despike(self, expdecay_despiker=False, exponent=None, noise_despiker=True, win=3, nlim=12., exponentplot=False, maxiter=4, autorange_kwargs={}, focus_stage='rawdata'): """ Despikes data with exponential decay and noise filters. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. tstep : None or float The timeinterval between measurements. If None, it is determined automatically from the Time variable. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. exponentplot : bool Whether or not to show a plot of the automatically determined exponential decay exponent. maxiter : int The max number of times that the fitler is applied. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'rawdata'. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- None """ if focus_stage != self.focus_stage: self.set_focus(focus_stage) if expdecay_despiker and exponent is None: if not hasattr(self, 'expdecay_coef'): self.find_expcoef(plot=exponentplot, autorange_kwargs=autorange_kwargs) exponent = self.expdecay_coef time.sleep(0.1) with self.pbar.set(total=len(self.data), desc='Despiking') as prog: for d in self.data.values(): d.despike(expdecay_despiker, exponent, noise_despiker, win, nlim, maxiter) prog.update() self.stages_complete.update(['despiked']) self.focus_stage = 'despiked' return
def despike(self, expdecay_despiker=False, exponent=None, noise_despiker=True, win=3, nlim=12., exponentplot=False, maxiter=4, autorange_kwargs={}, focus_stage='rawdata'): """ Despikes data with exponential decay and noise filters. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. tstep : None or float The timeinterval between measurements. If None, it is determined automatically from the Time variable. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. exponentplot : bool Whether or not to show a plot of the automatically determined exponential decay exponent. maxiter : int The max number of times that the fitler is applied. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'rawdata'. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- None """ if focus_stage != self.focus_stage: self.set_focus(focus_stage) if expdecay_despiker and exponent is None: if not hasattr(self, 'expdecay_coef'): self.find_expcoef(plot=exponentplot, autorange_kwargs=autorange_kwargs) exponent = self.expdecay_coef time.sleep(0.1) with self.pbar.set(total=len(self.data), desc='Despiking') as prog: for d in self.data.values(): d.despike(expdecay_despiker, exponent, noise_despiker, win, nlim, maxiter) prog.update() self.stages_complete.update(['despiked']) self.focus_stage = 'despiked' return
[ "Despikes", "data", "with", "exponential", "decay", "and", "noise", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L636-L700
[ "def", "despike", "(", "self", ",", "expdecay_despiker", "=", "False", ",", "exponent", "=", "None", ",", "noise_despiker", "=", "True", ",", "win", "=", "3", ",", "nlim", "=", "12.", ",", "exponentplot", "=", "False", ",", "maxiter", "=", "4", ",", "autorange_kwargs", "=", "{", "}", ",", "focus_stage", "=", "'rawdata'", ")", ":", "if", "focus_stage", "!=", "self", ".", "focus_stage", ":", "self", ".", "set_focus", "(", "focus_stage", ")", "if", "expdecay_despiker", "and", "exponent", "is", "None", ":", "if", "not", "hasattr", "(", "self", ",", "'expdecay_coef'", ")", ":", "self", ".", "find_expcoef", "(", "plot", "=", "exponentplot", ",", "autorange_kwargs", "=", "autorange_kwargs", ")", "exponent", "=", "self", ".", "expdecay_coef", "time", ".", "sleep", "(", "0.1", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "data", ")", ",", "desc", "=", "'Despiking'", ")", "as", "prog", ":", "for", "d", "in", "self", ".", "data", ".", "values", "(", ")", ":", "d", ".", "despike", "(", "expdecay_despiker", ",", "exponent", ",", "noise_despiker", ",", "win", ",", "nlim", ",", "maxiter", ")", "prog", ".", "update", "(", ")", "self", ".", "stages_complete", ".", "update", "(", "[", "'despiked'", "]", ")", "self", ".", "focus_stage", "=", "'despiked'", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.get_background
Extract all background data from all samples on universal time scale. Used by both 'polynomial' and 'weightedmean' methods. Parameters ---------- n_min : int The minimum number of points a background region must have to be included in calculation. n_max : int The maximum number of points a background region must have to be included in calculation. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- pandas.DataFrame object containing background data.
latools/latools.py
def get_background(self, n_min=10, n_max=None, focus_stage='despiked', bkg_filter=False, f_win=5, f_n_lim=3): """ Extract all background data from all samples on universal time scale. Used by both 'polynomial' and 'weightedmean' methods. Parameters ---------- n_min : int The minimum number of points a background region must have to be included in calculation. n_max : int The maximum number of points a background region must have to be included in calculation. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- pandas.DataFrame object containing background data. """ allbkgs = {'uTime': [], 'ns': []} if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' for a in self.analytes: allbkgs[a] = [] n0 = 0 for s in self.data.values(): if sum(s.bkg) > 0: allbkgs['uTime'].append(s.uTime[s.bkg]) allbkgs['ns'].append(enumerate_bool(s.bkg, n0)[s.bkg]) n0 = allbkgs['ns'][-1][-1] for a in self.analytes: allbkgs[a].append(s.data[focus_stage][a][s.bkg]) allbkgs.update((k, np.concatenate(v)) for k, v in allbkgs.items()) bkgs = pd.DataFrame(allbkgs) # using pandas here because it's much more efficient than loops. self.bkg = Bunch() # extract background data from whole dataset if n_max is None: self.bkg['raw'] = bkgs.groupby('ns').filter(lambda x: len(x) > n_min) else: self.bkg['raw'] = bkgs.groupby('ns').filter(lambda x: (len(x) > n_min) & (len(x) < n_max)) # calculate per - background region stats self.bkg['summary'] = self.bkg['raw'].groupby('ns').aggregate([np.mean, np.std, stderr]) # sort summary by uTime self.bkg['summary'].sort_values(('uTime', 'mean'), inplace=True) # self.bkg['summary'].index = np.arange(self.bkg['summary'].shape[0]) # self.bkg['summary'].index.name = 'ns' if bkg_filter: # calculate rolling mean and std from summary t = self.bkg['summary'].loc[:, idx[:, 'mean']] r = t.rolling(f_win).aggregate([np.nanmean, np.nanstd]) # calculate upper threshold upper = r.loc[:, idx[:, :, 'nanmean']] + f_n_lim * r.loc[:, idx[:, :, 'nanstd']].values # calculate which are over upper threshold over = r.loc[:, idx[:, :, 'nanmean']] > np.roll(upper.values, 1, 0) # identify them ns_drop = over.loc[over.apply(any, 1), :].index.values # drop them from summary self.bkg['summary'].drop(ns_drop, inplace=True) # remove them from raw ind = np.ones(self.bkg['raw'].shape[0], dtype=bool) for ns in ns_drop: ind = ind & (self.bkg['raw'].loc[:, 'ns'] != ns) self.bkg['raw'] = self.bkg['raw'].loc[ind, :] return
def get_background(self, n_min=10, n_max=None, focus_stage='despiked', bkg_filter=False, f_win=5, f_n_lim=3): """ Extract all background data from all samples on universal time scale. Used by both 'polynomial' and 'weightedmean' methods. Parameters ---------- n_min : int The minimum number of points a background region must have to be included in calculation. n_max : int The maximum number of points a background region must have to be included in calculation. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Returns ------- pandas.DataFrame object containing background data. """ allbkgs = {'uTime': [], 'ns': []} if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' for a in self.analytes: allbkgs[a] = [] n0 = 0 for s in self.data.values(): if sum(s.bkg) > 0: allbkgs['uTime'].append(s.uTime[s.bkg]) allbkgs['ns'].append(enumerate_bool(s.bkg, n0)[s.bkg]) n0 = allbkgs['ns'][-1][-1] for a in self.analytes: allbkgs[a].append(s.data[focus_stage][a][s.bkg]) allbkgs.update((k, np.concatenate(v)) for k, v in allbkgs.items()) bkgs = pd.DataFrame(allbkgs) # using pandas here because it's much more efficient than loops. self.bkg = Bunch() # extract background data from whole dataset if n_max is None: self.bkg['raw'] = bkgs.groupby('ns').filter(lambda x: len(x) > n_min) else: self.bkg['raw'] = bkgs.groupby('ns').filter(lambda x: (len(x) > n_min) & (len(x) < n_max)) # calculate per - background region stats self.bkg['summary'] = self.bkg['raw'].groupby('ns').aggregate([np.mean, np.std, stderr]) # sort summary by uTime self.bkg['summary'].sort_values(('uTime', 'mean'), inplace=True) # self.bkg['summary'].index = np.arange(self.bkg['summary'].shape[0]) # self.bkg['summary'].index.name = 'ns' if bkg_filter: # calculate rolling mean and std from summary t = self.bkg['summary'].loc[:, idx[:, 'mean']] r = t.rolling(f_win).aggregate([np.nanmean, np.nanstd]) # calculate upper threshold upper = r.loc[:, idx[:, :, 'nanmean']] + f_n_lim * r.loc[:, idx[:, :, 'nanstd']].values # calculate which are over upper threshold over = r.loc[:, idx[:, :, 'nanmean']] > np.roll(upper.values, 1, 0) # identify them ns_drop = over.loc[over.apply(any, 1), :].index.values # drop them from summary self.bkg['summary'].drop(ns_drop, inplace=True) # remove them from raw ind = np.ones(self.bkg['raw'].shape[0], dtype=bool) for ns in ns_drop: ind = ind & (self.bkg['raw'].loc[:, 'ns'] != ns) self.bkg['raw'] = self.bkg['raw'].loc[ind, :] return
[ "Extract", "all", "background", "data", "from", "all", "samples", "on", "universal", "time", "scale", ".", "Used", "by", "both", "polynomial", "and", "weightedmean", "methods", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L703-L795
[ "def", "get_background", "(", "self", ",", "n_min", "=", "10", ",", "n_max", "=", "None", ",", "focus_stage", "=", "'despiked'", ",", "bkg_filter", "=", "False", ",", "f_win", "=", "5", ",", "f_n_lim", "=", "3", ")", ":", "allbkgs", "=", "{", "'uTime'", ":", "[", "]", ",", "'ns'", ":", "[", "]", "}", "if", "focus_stage", "==", "'despiked'", ":", "if", "'despiked'", "not", "in", "self", ".", "stages_complete", ":", "focus_stage", "=", "'rawdata'", "for", "a", "in", "self", ".", "analytes", ":", "allbkgs", "[", "a", "]", "=", "[", "]", "n0", "=", "0", "for", "s", "in", "self", ".", "data", ".", "values", "(", ")", ":", "if", "sum", "(", "s", ".", "bkg", ")", ">", "0", ":", "allbkgs", "[", "'uTime'", "]", ".", "append", "(", "s", ".", "uTime", "[", "s", ".", "bkg", "]", ")", "allbkgs", "[", "'ns'", "]", ".", "append", "(", "enumerate_bool", "(", "s", ".", "bkg", ",", "n0", ")", "[", "s", ".", "bkg", "]", ")", "n0", "=", "allbkgs", "[", "'ns'", "]", "[", "-", "1", "]", "[", "-", "1", "]", "for", "a", "in", "self", ".", "analytes", ":", "allbkgs", "[", "a", "]", ".", "append", "(", "s", ".", "data", "[", "focus_stage", "]", "[", "a", "]", "[", "s", ".", "bkg", "]", ")", "allbkgs", ".", "update", "(", "(", "k", ",", "np", ".", "concatenate", "(", "v", ")", ")", "for", "k", ",", "v", "in", "allbkgs", ".", "items", "(", ")", ")", "bkgs", "=", "pd", ".", "DataFrame", "(", "allbkgs", ")", "# using pandas here because it's much more efficient than loops.", "self", ".", "bkg", "=", "Bunch", "(", ")", "# extract background data from whole dataset", "if", "n_max", "is", "None", ":", "self", ".", "bkg", "[", "'raw'", "]", "=", "bkgs", ".", "groupby", "(", "'ns'", ")", ".", "filter", "(", "lambda", "x", ":", "len", "(", "x", ")", ">", "n_min", ")", "else", ":", "self", ".", "bkg", "[", "'raw'", "]", "=", "bkgs", ".", "groupby", "(", "'ns'", ")", ".", "filter", "(", "lambda", "x", ":", "(", "len", "(", "x", ")", ">", "n_min", ")", "&", "(", "len", "(", "x", ")", "<", "n_max", ")", ")", "# calculate per - background region stats", "self", ".", "bkg", "[", "'summary'", "]", "=", "self", ".", "bkg", "[", "'raw'", "]", ".", "groupby", "(", "'ns'", ")", ".", "aggregate", "(", "[", "np", ".", "mean", ",", "np", ".", "std", ",", "stderr", "]", ")", "# sort summary by uTime", "self", ".", "bkg", "[", "'summary'", "]", ".", "sort_values", "(", "(", "'uTime'", ",", "'mean'", ")", ",", "inplace", "=", "True", ")", "# self.bkg['summary'].index = np.arange(self.bkg['summary'].shape[0])", "# self.bkg['summary'].index.name = 'ns'", "if", "bkg_filter", ":", "# calculate rolling mean and std from summary", "t", "=", "self", ".", "bkg", "[", "'summary'", "]", ".", "loc", "[", ":", ",", "idx", "[", ":", ",", "'mean'", "]", "]", "r", "=", "t", ".", "rolling", "(", "f_win", ")", ".", "aggregate", "(", "[", "np", ".", "nanmean", ",", "np", ".", "nanstd", "]", ")", "# calculate upper threshold", "upper", "=", "r", ".", "loc", "[", ":", ",", "idx", "[", ":", ",", ":", ",", "'nanmean'", "]", "]", "+", "f_n_lim", "*", "r", ".", "loc", "[", ":", ",", "idx", "[", ":", ",", ":", ",", "'nanstd'", "]", "]", ".", "values", "# calculate which are over upper threshold", "over", "=", "r", ".", "loc", "[", ":", ",", "idx", "[", ":", ",", ":", ",", "'nanmean'", "]", "]", ">", "np", ".", "roll", "(", "upper", ".", "values", ",", "1", ",", "0", ")", "# identify them", "ns_drop", "=", "over", ".", "loc", "[", "over", ".", "apply", "(", "any", ",", "1", ")", ",", ":", "]", ".", "index", ".", "values", "# drop them from summary", "self", ".", "bkg", "[", "'summary'", "]", ".", "drop", "(", "ns_drop", ",", "inplace", "=", "True", ")", "# remove them from raw", "ind", "=", "np", ".", "ones", "(", "self", ".", "bkg", "[", "'raw'", "]", ".", "shape", "[", "0", "]", ",", "dtype", "=", "bool", ")", "for", "ns", "in", "ns_drop", ":", "ind", "=", "ind", "&", "(", "self", ".", "bkg", "[", "'raw'", "]", ".", "loc", "[", ":", ",", "'ns'", "]", "!=", "ns", ")", "self", ".", "bkg", "[", "'raw'", "]", "=", "self", ".", "bkg", "[", "'raw'", "]", ".", "loc", "[", "ind", ",", ":", "]", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.bkg_calc_weightedmean
Background calculation using a gaussian weighted mean. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. weight_fwhm : float The full-width-at-half-maximum of the gaussian used to calculate the weighted average. n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate.
latools/latools.py
def bkg_calc_weightedmean(self, analytes=None, weight_fwhm=None, n_min=20, n_max=None, cstep=None, bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a gaussian weighted mean. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. weight_fwhm : float The full-width-at-half-maximum of the gaussian used to calculate the weighted average. n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] if weight_fwhm is None: weight_fwhm = 600 # 10 minute default window self.get_background(n_min=n_min, n_max=n_max, bkg_filter=bkg_filter, f_win=f_win, f_n_lim=f_n_lim, focus_stage=focus_stage) # Gaussian - weighted average if 'calc' not in self.bkg.keys(): # create time points to calculate background if cstep is None: cstep = weight_fwhm / 20 elif cstep > weight_fwhm: warnings.warn("\ncstep should be less than weight_fwhm. Your backgrounds\n" + "might not behave as expected.\n") bkg_t = np.linspace(0, self.max_time, self.max_time // cstep) self.bkg['calc'] = Bunch() self.bkg['calc']['uTime'] = bkg_t # TODO : calculation then dict assignment is clumsy... mean, std, stderr = gauss_weighted_stats(self.bkg['raw'].uTime, self.bkg['raw'].loc[:, analytes].values, self.bkg['calc']['uTime'], fwhm=weight_fwhm) for i, a in enumerate(analytes): self.bkg['calc'][a] = {'mean': mean[i], 'std': std[i], 'stderr': stderr[i]}
def bkg_calc_weightedmean(self, analytes=None, weight_fwhm=None, n_min=20, n_max=None, cstep=None, bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a gaussian weighted mean. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. weight_fwhm : float The full-width-at-half-maximum of the gaussian used to calculate the weighted average. n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] if weight_fwhm is None: weight_fwhm = 600 # 10 minute default window self.get_background(n_min=n_min, n_max=n_max, bkg_filter=bkg_filter, f_win=f_win, f_n_lim=f_n_lim, focus_stage=focus_stage) # Gaussian - weighted average if 'calc' not in self.bkg.keys(): # create time points to calculate background if cstep is None: cstep = weight_fwhm / 20 elif cstep > weight_fwhm: warnings.warn("\ncstep should be less than weight_fwhm. Your backgrounds\n" + "might not behave as expected.\n") bkg_t = np.linspace(0, self.max_time, self.max_time // cstep) self.bkg['calc'] = Bunch() self.bkg['calc']['uTime'] = bkg_t # TODO : calculation then dict assignment is clumsy... mean, std, stderr = gauss_weighted_stats(self.bkg['raw'].uTime, self.bkg['raw'].loc[:, analytes].values, self.bkg['calc']['uTime'], fwhm=weight_fwhm) for i, a in enumerate(analytes): self.bkg['calc'][a] = {'mean': mean[i], 'std': std[i], 'stderr': stderr[i]}
[ "Background", "calculation", "using", "a", "gaussian", "weighted", "mean", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L798-L875
[ "def", "bkg_calc_weightedmean", "(", "self", ",", "analytes", "=", "None", ",", "weight_fwhm", "=", "None", ",", "n_min", "=", "20", ",", "n_max", "=", "None", ",", "cstep", "=", "None", ",", "bkg_filter", "=", "False", ",", "f_win", "=", "7", ",", "f_n_lim", "=", "3", ",", "focus_stage", "=", "'despiked'", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "self", ".", "bkg", "=", "Bunch", "(", ")", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "weight_fwhm", "is", "None", ":", "weight_fwhm", "=", "600", "# 10 minute default window", "self", ".", "get_background", "(", "n_min", "=", "n_min", ",", "n_max", "=", "n_max", ",", "bkg_filter", "=", "bkg_filter", ",", "f_win", "=", "f_win", ",", "f_n_lim", "=", "f_n_lim", ",", "focus_stage", "=", "focus_stage", ")", "# Gaussian - weighted average", "if", "'calc'", "not", "in", "self", ".", "bkg", ".", "keys", "(", ")", ":", "# create time points to calculate background", "if", "cstep", "is", "None", ":", "cstep", "=", "weight_fwhm", "/", "20", "elif", "cstep", ">", "weight_fwhm", ":", "warnings", ".", "warn", "(", "\"\\ncstep should be less than weight_fwhm. Your backgrounds\\n\"", "+", "\"might not behave as expected.\\n\"", ")", "bkg_t", "=", "np", ".", "linspace", "(", "0", ",", "self", ".", "max_time", ",", "self", ".", "max_time", "//", "cstep", ")", "self", ".", "bkg", "[", "'calc'", "]", "=", "Bunch", "(", ")", "self", ".", "bkg", "[", "'calc'", "]", "[", "'uTime'", "]", "=", "bkg_t", "# TODO : calculation then dict assignment is clumsy...", "mean", ",", "std", ",", "stderr", "=", "gauss_weighted_stats", "(", "self", ".", "bkg", "[", "'raw'", "]", ".", "uTime", ",", "self", ".", "bkg", "[", "'raw'", "]", ".", "loc", "[", ":", ",", "analytes", "]", ".", "values", ",", "self", ".", "bkg", "[", "'calc'", "]", "[", "'uTime'", "]", ",", "fwhm", "=", "weight_fwhm", ")", "for", "i", ",", "a", "in", "enumerate", "(", "analytes", ")", ":", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "=", "{", "'mean'", ":", "mean", "[", "i", "]", ",", "'std'", ":", "std", "[", "i", "]", ",", "'stderr'", ":", "stderr", "[", "i", "]", "}" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.bkg_calc_interp1d
Background calculation using a 1D interpolation. scipy.interpolate.interp1D is used for interpolation. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. kind : str or int Integer specifying the order of the spline interpolation used, or string specifying a type of interpolation. Passed to `scipy.interpolate.interp1D` n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate.
latools/latools.py
def bkg_calc_interp1d(self, analytes=None, kind=1, n_min=10, n_max=None, cstep=None, bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a 1D interpolation. scipy.interpolate.interp1D is used for interpolation. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. kind : str or int Integer specifying the order of the spline interpolation used, or string specifying a type of interpolation. Passed to `scipy.interpolate.interp1D` n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] self.get_background(n_min=n_min, n_max=n_max, bkg_filter=bkg_filter, f_win=f_win, f_n_lim=f_n_lim, focus_stage=focus_stage) def pad(a, lo=None, hi=None): if lo is None: lo = [a[0]] if hi is None: hi = [a[-1]] return np.concatenate((lo, a, hi)) if 'calc' not in self.bkg.keys(): # create time points to calculate background # if cstep is None: # cstep = self.bkg['raw']['uTime'].ptp() / 100 # bkg_t = np.arange(self.bkg['summary']['uTime']['mean'].min(), # self.bkg['summary']['uTime']['mean'].max(), # cstep) bkg_t = pad(self.bkg['summary'].loc[:, ('uTime', 'mean')], [0], [self.max_time]) self.bkg['calc'] = Bunch() self.bkg['calc']['uTime'] = bkg_t d = self.bkg['summary'] with self.pbar.set(total=len(analytes), desc='Calculating Analyte Backgrounds') as prog: for a in analytes: self.bkg['calc'][a] = {'mean': pad(d.loc[:, (a, 'mean')].values), 'std': pad(d.loc[:, (a, 'std')].values), 'stderr': pad(d.loc[:, (a, 'stderr')].values)} prog.update() self.bkg['calc'] return
def bkg_calc_interp1d(self, analytes=None, kind=1, n_min=10, n_max=None, cstep=None, bkg_filter=False, f_win=7, f_n_lim=3, focus_stage='despiked'): """ Background calculation using a 1D interpolation. scipy.interpolate.interp1D is used for interpolation. Parameters ---------- analytes : str or iterable Which analyte or analytes to calculate. kind : str or int Integer specifying the order of the spline interpolation used, or string specifying a type of interpolation. Passed to `scipy.interpolate.interp1D` n_min : int Background regions with fewer than n_min points will not be included in the fit. cstep : float or None The interval between calculated background points. filter : bool If true, apply a rolling filter to the isolated background regions to exclude regions with anomalously high values. If True, two parameters alter the filter's behaviour: f_win : int The size of the rolling window f_n_lim : float The number of standard deviations above the rolling mean to set the threshold. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes self.bkg = Bunch() elif isinstance(analytes, str): analytes = [analytes] self.get_background(n_min=n_min, n_max=n_max, bkg_filter=bkg_filter, f_win=f_win, f_n_lim=f_n_lim, focus_stage=focus_stage) def pad(a, lo=None, hi=None): if lo is None: lo = [a[0]] if hi is None: hi = [a[-1]] return np.concatenate((lo, a, hi)) if 'calc' not in self.bkg.keys(): # create time points to calculate background # if cstep is None: # cstep = self.bkg['raw']['uTime'].ptp() / 100 # bkg_t = np.arange(self.bkg['summary']['uTime']['mean'].min(), # self.bkg['summary']['uTime']['mean'].max(), # cstep) bkg_t = pad(self.bkg['summary'].loc[:, ('uTime', 'mean')], [0], [self.max_time]) self.bkg['calc'] = Bunch() self.bkg['calc']['uTime'] = bkg_t d = self.bkg['summary'] with self.pbar.set(total=len(analytes), desc='Calculating Analyte Backgrounds') as prog: for a in analytes: self.bkg['calc'][a] = {'mean': pad(d.loc[:, (a, 'mean')].values), 'std': pad(d.loc[:, (a, 'std')].values), 'stderr': pad(d.loc[:, (a, 'stderr')].values)} prog.update() self.bkg['calc'] return
[ "Background", "calculation", "using", "a", "1D", "interpolation", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L878-L961
[ "def", "bkg_calc_interp1d", "(", "self", ",", "analytes", "=", "None", ",", "kind", "=", "1", ",", "n_min", "=", "10", ",", "n_max", "=", "None", ",", "cstep", "=", "None", ",", "bkg_filter", "=", "False", ",", "f_win", "=", "7", ",", "f_n_lim", "=", "3", ",", "focus_stage", "=", "'despiked'", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "self", ".", "bkg", "=", "Bunch", "(", ")", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "self", ".", "get_background", "(", "n_min", "=", "n_min", ",", "n_max", "=", "n_max", ",", "bkg_filter", "=", "bkg_filter", ",", "f_win", "=", "f_win", ",", "f_n_lim", "=", "f_n_lim", ",", "focus_stage", "=", "focus_stage", ")", "def", "pad", "(", "a", ",", "lo", "=", "None", ",", "hi", "=", "None", ")", ":", "if", "lo", "is", "None", ":", "lo", "=", "[", "a", "[", "0", "]", "]", "if", "hi", "is", "None", ":", "hi", "=", "[", "a", "[", "-", "1", "]", "]", "return", "np", ".", "concatenate", "(", "(", "lo", ",", "a", ",", "hi", ")", ")", "if", "'calc'", "not", "in", "self", ".", "bkg", ".", "keys", "(", ")", ":", "# create time points to calculate background", "# if cstep is None:", "# cstep = self.bkg['raw']['uTime'].ptp() / 100", "# bkg_t = np.arange(self.bkg['summary']['uTime']['mean'].min(),", "# self.bkg['summary']['uTime']['mean'].max(),", "# cstep)", "bkg_t", "=", "pad", "(", "self", ".", "bkg", "[", "'summary'", "]", ".", "loc", "[", ":", ",", "(", "'uTime'", ",", "'mean'", ")", "]", ",", "[", "0", "]", ",", "[", "self", ".", "max_time", "]", ")", "self", ".", "bkg", "[", "'calc'", "]", "=", "Bunch", "(", ")", "self", ".", "bkg", "[", "'calc'", "]", "[", "'uTime'", "]", "=", "bkg_t", "d", "=", "self", ".", "bkg", "[", "'summary'", "]", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "analytes", ")", ",", "desc", "=", "'Calculating Analyte Backgrounds'", ")", "as", "prog", ":", "for", "a", "in", "analytes", ":", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "=", "{", "'mean'", ":", "pad", "(", "d", ".", "loc", "[", ":", ",", "(", "a", ",", "'mean'", ")", "]", ".", "values", ")", ",", "'std'", ":", "pad", "(", "d", ".", "loc", "[", ":", ",", "(", "a", ",", "'std'", ")", "]", ".", "values", ")", ",", "'stderr'", ":", "pad", "(", "d", ".", "loc", "[", ":", ",", "(", "a", ",", "'stderr'", ")", "]", ".", "values", ")", "}", "prog", ".", "update", "(", ")", "self", ".", "bkg", "[", "'calc'", "]", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.bkg_subtract
Subtract calculated background from data. Must run bkg_calc first! Parameters ---------- analytes : str or iterable Which analyte(s) to subtract. errtype : str Which type of error to propagate. default is 'stderr'. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate.
latools/latools.py
def bkg_subtract(self, analytes=None, errtype='stderr', focus_stage='despiked'): """ Subtract calculated background from data. Must run bkg_calc first! Parameters ---------- analytes : str or iterable Which analyte(s) to subtract. errtype : str Which type of error to propagate. default is 'stderr'. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' # make uncertainty-aware background interpolators bkg_interps = {} for a in analytes: bkg_interps[a] = un_interp1d(x=self.bkg['calc']['uTime'], y=un.uarray(self.bkg['calc'][a]['mean'], self.bkg['calc'][a][errtype])) self.bkg_interps = bkg_interps # apply background corrections with self.pbar.set(total=len(self.data), desc='Background Subtraction') as prog: for d in self.data.values(): # [d.bkg_subtract(a, bkg_interps[a].new(d.uTime), None, focus_stage=focus_stage) for a in analytes] [d.bkg_subtract(a, bkg_interps[a].new(d.uTime), ~d.sig, focus_stage=focus_stage) for a in analytes] d.setfocus('bkgsub') prog.update() self.stages_complete.update(['bkgsub']) self.focus_stage = 'bkgsub' return
def bkg_subtract(self, analytes=None, errtype='stderr', focus_stage='despiked'): """ Subtract calculated background from data. Must run bkg_calc first! Parameters ---------- analytes : str or iterable Which analyte(s) to subtract. errtype : str Which type of error to propagate. default is 'stderr'. focus_stage : str Which stage of analysis to apply processing to. Defaults to 'despiked' if present, or 'rawdata' if not. Can be one of: * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if focus_stage == 'despiked': if 'despiked' not in self.stages_complete: focus_stage = 'rawdata' # make uncertainty-aware background interpolators bkg_interps = {} for a in analytes: bkg_interps[a] = un_interp1d(x=self.bkg['calc']['uTime'], y=un.uarray(self.bkg['calc'][a]['mean'], self.bkg['calc'][a][errtype])) self.bkg_interps = bkg_interps # apply background corrections with self.pbar.set(total=len(self.data), desc='Background Subtraction') as prog: for d in self.data.values(): # [d.bkg_subtract(a, bkg_interps[a].new(d.uTime), None, focus_stage=focus_stage) for a in analytes] [d.bkg_subtract(a, bkg_interps[a].new(d.uTime), ~d.sig, focus_stage=focus_stage) for a in analytes] d.setfocus('bkgsub') prog.update() self.stages_complete.update(['bkgsub']) self.focus_stage = 'bkgsub' return
[ "Subtract", "calculated", "background", "from", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L964-L1018
[ "def", "bkg_subtract", "(", "self", ",", "analytes", "=", "None", ",", "errtype", "=", "'stderr'", ",", "focus_stage", "=", "'despiked'", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "focus_stage", "==", "'despiked'", ":", "if", "'despiked'", "not", "in", "self", ".", "stages_complete", ":", "focus_stage", "=", "'rawdata'", "# make uncertainty-aware background interpolators", "bkg_interps", "=", "{", "}", "for", "a", "in", "analytes", ":", "bkg_interps", "[", "a", "]", "=", "un_interp1d", "(", "x", "=", "self", ".", "bkg", "[", "'calc'", "]", "[", "'uTime'", "]", ",", "y", "=", "un", ".", "uarray", "(", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "'mean'", "]", ",", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "errtype", "]", ")", ")", "self", ".", "bkg_interps", "=", "bkg_interps", "# apply background corrections", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "data", ")", ",", "desc", "=", "'Background Subtraction'", ")", "as", "prog", ":", "for", "d", "in", "self", ".", "data", ".", "values", "(", ")", ":", "# [d.bkg_subtract(a, bkg_interps[a].new(d.uTime), None, focus_stage=focus_stage) for a in analytes]", "[", "d", ".", "bkg_subtract", "(", "a", ",", "bkg_interps", "[", "a", "]", ".", "new", "(", "d", ".", "uTime", ")", ",", "~", "d", ".", "sig", ",", "focus_stage", "=", "focus_stage", ")", "for", "a", "in", "analytes", "]", "d", ".", "setfocus", "(", "'bkgsub'", ")", "prog", ".", "update", "(", ")", "self", ".", "stages_complete", ".", "update", "(", "[", "'bkgsub'", "]", ")", "self", ".", "focus_stage", "=", "'bkgsub'", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.correct_spectral_interference
Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Example ------- To correct 44Ca+ for an 88Sr++ interference, where both 43.5 and 44 Da peaks are known: f = abundance(88Sr) / (abundance(87Sr) counts(44Ca) = counts(44 Da) - counts(43.5 Da) * f Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None
latools/latools.py
def correct_spectral_interference(self, target_analyte, source_analyte, f): """ Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Example ------- To correct 44Ca+ for an 88Sr++ interference, where both 43.5 and 44 Da peaks are known: f = abundance(88Sr) / (abundance(87Sr) counts(44Ca) = counts(44 Da) - counts(43.5 Da) * f Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None """ if target_analyte not in self.analytes: raise ValueError('target_analyte: {:} not in available analytes ({:})'.format(target_analyte, ', '.join(self.analytes))) if source_analyte not in self.analytes: raise ValueError('source_analyte: {:} not in available analytes ({:})'.format(source_analyte, ', '.join(self.analytes))) with self.pbar.set(total=len(self.data), desc='Interference Correction') as prog: for d in self.data.values(): d.correct_spectral_interference(target_analyte, source_analyte, f) prog.update()
def correct_spectral_interference(self, target_analyte, source_analyte, f): """ Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Example ------- To correct 44Ca+ for an 88Sr++ interference, where both 43.5 and 44 Da peaks are known: f = abundance(88Sr) / (abundance(87Sr) counts(44Ca) = counts(44 Da) - counts(43.5 Da) * f Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None """ if target_analyte not in self.analytes: raise ValueError('target_analyte: {:} not in available analytes ({:})'.format(target_analyte, ', '.join(self.analytes))) if source_analyte not in self.analytes: raise ValueError('source_analyte: {:} not in available analytes ({:})'.format(source_analyte, ', '.join(self.analytes))) with self.pbar.set(total=len(self.data), desc='Interference Correction') as prog: for d in self.data.values(): d.correct_spectral_interference(target_analyte, source_analyte, f) prog.update()
[ "Correct", "spectral", "interference", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1021-L1069
[ "def", "correct_spectral_interference", "(", "self", ",", "target_analyte", ",", "source_analyte", ",", "f", ")", ":", "if", "target_analyte", "not", "in", "self", ".", "analytes", ":", "raise", "ValueError", "(", "'target_analyte: {:} not in available analytes ({:})'", ".", "format", "(", "target_analyte", ",", "', '", ".", "join", "(", "self", ".", "analytes", ")", ")", ")", "if", "source_analyte", "not", "in", "self", ".", "analytes", ":", "raise", "ValueError", "(", "'source_analyte: {:} not in available analytes ({:})'", ".", "format", "(", "source_analyte", ",", "', '", ".", "join", "(", "self", ".", "analytes", ")", ")", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "data", ")", ",", "desc", "=", "'Interference Correction'", ")", "as", "prog", ":", "for", "d", "in", "self", ".", "data", ".", "values", "(", ")", ":", "d", ".", "correct_spectral_interference", "(", "target_analyte", ",", "source_analyte", ",", "f", ")", "prog", ".", "update", "(", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.bkg_plot
Plot the calculated background. Parameters ---------- analytes : str or iterable Which analyte(s) to plot. figsize : tuple The (width, height) of the figure, in inches. If None, calculated based on number of samples. yscale : str 'log' (default) or 'linear'. ylim : tuple Manually specify the y scale. err : str What type of error to plot. Default is stderr. save : bool If True, figure is saved. Returns ------- fig, ax : matplotlib.figure, matplotlib.axes
latools/latools.py
def bkg_plot(self, analytes=None, figsize=None, yscale='log', ylim=None, err='stderr', save=True): """ Plot the calculated background. Parameters ---------- analytes : str or iterable Which analyte(s) to plot. figsize : tuple The (width, height) of the figure, in inches. If None, calculated based on number of samples. yscale : str 'log' (default) or 'linear'. ylim : tuple Manually specify the y scale. err : str What type of error to plot. Default is stderr. save : bool If True, figure is saved. Returns ------- fig, ax : matplotlib.figure, matplotlib.axes """ if not hasattr(self, 'bkg'): raise ValueError("\nPlease calculate a background before attempting to\n" + "plot it... either:\n" + " bkg_calc_interp1d\n" + " bkg_calc_weightedmean\n") if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if figsize is None: if len(self.samples) > 50: figsize = (len(self.samples) * 0.15, 5) else: figsize = (7.5, 5) fig = plt.figure(figsize=figsize) ax = fig.add_axes([.07, .1, .84, .8]) with self.pbar.set(total=len(analytes), desc='Plotting backgrounds') as prog: for a in analytes: # draw data points ax.scatter(self.bkg['raw'].uTime, self.bkg['raw'].loc[:, a], alpha=0.5, s=3, c=self.cmaps[a], lw=0.5) # draw STD boxes for i, r in self.bkg['summary'].iterrows(): x = (r.loc['uTime', 'mean'] - r.loc['uTime', 'std'] * 2, r.loc['uTime', 'mean'] + r.loc['uTime', 'std'] * 2) yl = [r.loc[a, 'mean'] - r.loc[a, err]] * 2 yu = [r.loc[a, 'mean'] + r.loc[a, err]] * 2 ax.fill_between(x, yl, yu, alpha=0.8, lw=0.5, color=self.cmaps[a], zorder=1) prog.update() if yscale == 'log': ax.set_yscale('log') if ylim is not None: ax.set_ylim(ylim) else: ax.set_ylim(ax.get_ylim() * np.array([1, 10])) # x10 to make sample names readable. for a in analytes: # draw confidence intervals of calculated x = self.bkg['calc']['uTime'] y = self.bkg['calc'][a]['mean'] yl = self.bkg['calc'][a]['mean'] - self.bkg['calc'][a][err] yu = self.bkg['calc'][a]['mean'] + self.bkg['calc'][a][err] # trim values below zero if log scale= if yscale == 'log': yl[yl < ax.get_ylim()[0]] = ax.get_ylim()[0] ax.plot(x, y, c=self.cmaps[a], zorder=2, label=a) ax.fill_between(x, yl, yu, color=self.cmaps[a], alpha=0.3, zorder=-1) ax.set_xlabel('Time (s)') ax.set_ylabel('Background Counts') ax.set_title('Points = raw data; Bars = {:s}; Lines = Calculated Background; Envelope = Background {:s}'.format(err, err), fontsize=10) ha, la = ax.get_legend_handles_labels() ax.legend(labels=la[:len(analytes)], handles=ha[:len(analytes)], bbox_to_anchor=(1, 1)) # scale x axis to range ± 2.5% xlim = rangecalc(self.bkg['raw']['uTime'], 0.025) ax.set_xlim(xlim) # add sample labels for s, d in self.data.items(): ax.axvline(d.uTime[0], alpha=0.2, color='k', zorder=-1) ax.text(d.uTime[0], ax.get_ylim()[1], s, rotation=90, va='top', ha='left', zorder=-1, fontsize=7) if save: fig.savefig(self.report_dir + '/background.png', dpi=200) return fig, ax
def bkg_plot(self, analytes=None, figsize=None, yscale='log', ylim=None, err='stderr', save=True): """ Plot the calculated background. Parameters ---------- analytes : str or iterable Which analyte(s) to plot. figsize : tuple The (width, height) of the figure, in inches. If None, calculated based on number of samples. yscale : str 'log' (default) or 'linear'. ylim : tuple Manually specify the y scale. err : str What type of error to plot. Default is stderr. save : bool If True, figure is saved. Returns ------- fig, ax : matplotlib.figure, matplotlib.axes """ if not hasattr(self, 'bkg'): raise ValueError("\nPlease calculate a background before attempting to\n" + "plot it... either:\n" + " bkg_calc_interp1d\n" + " bkg_calc_weightedmean\n") if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if figsize is None: if len(self.samples) > 50: figsize = (len(self.samples) * 0.15, 5) else: figsize = (7.5, 5) fig = plt.figure(figsize=figsize) ax = fig.add_axes([.07, .1, .84, .8]) with self.pbar.set(total=len(analytes), desc='Plotting backgrounds') as prog: for a in analytes: # draw data points ax.scatter(self.bkg['raw'].uTime, self.bkg['raw'].loc[:, a], alpha=0.5, s=3, c=self.cmaps[a], lw=0.5) # draw STD boxes for i, r in self.bkg['summary'].iterrows(): x = (r.loc['uTime', 'mean'] - r.loc['uTime', 'std'] * 2, r.loc['uTime', 'mean'] + r.loc['uTime', 'std'] * 2) yl = [r.loc[a, 'mean'] - r.loc[a, err]] * 2 yu = [r.loc[a, 'mean'] + r.loc[a, err]] * 2 ax.fill_between(x, yl, yu, alpha=0.8, lw=0.5, color=self.cmaps[a], zorder=1) prog.update() if yscale == 'log': ax.set_yscale('log') if ylim is not None: ax.set_ylim(ylim) else: ax.set_ylim(ax.get_ylim() * np.array([1, 10])) # x10 to make sample names readable. for a in analytes: # draw confidence intervals of calculated x = self.bkg['calc']['uTime'] y = self.bkg['calc'][a]['mean'] yl = self.bkg['calc'][a]['mean'] - self.bkg['calc'][a][err] yu = self.bkg['calc'][a]['mean'] + self.bkg['calc'][a][err] # trim values below zero if log scale= if yscale == 'log': yl[yl < ax.get_ylim()[0]] = ax.get_ylim()[0] ax.plot(x, y, c=self.cmaps[a], zorder=2, label=a) ax.fill_between(x, yl, yu, color=self.cmaps[a], alpha=0.3, zorder=-1) ax.set_xlabel('Time (s)') ax.set_ylabel('Background Counts') ax.set_title('Points = raw data; Bars = {:s}; Lines = Calculated Background; Envelope = Background {:s}'.format(err, err), fontsize=10) ha, la = ax.get_legend_handles_labels() ax.legend(labels=la[:len(analytes)], handles=ha[:len(analytes)], bbox_to_anchor=(1, 1)) # scale x axis to range ± 2.5% xlim = rangecalc(self.bkg['raw']['uTime'], 0.025) ax.set_xlim(xlim) # add sample labels for s, d in self.data.items(): ax.axvline(d.uTime[0], alpha=0.2, color='k', zorder=-1) ax.text(d.uTime[0], ax.get_ylim()[1], s, rotation=90, va='top', ha='left', zorder=-1, fontsize=7) if save: fig.savefig(self.report_dir + '/background.png', dpi=200) return fig, ax
[ "Plot", "the", "calculated", "background", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1072-L1181
[ "def", "bkg_plot", "(", "self", ",", "analytes", "=", "None", ",", "figsize", "=", "None", ",", "yscale", "=", "'log'", ",", "ylim", "=", "None", ",", "err", "=", "'stderr'", ",", "save", "=", "True", ")", ":", "if", "not", "hasattr", "(", "self", ",", "'bkg'", ")", ":", "raise", "ValueError", "(", "\"\\nPlease calculate a background before attempting to\\n\"", "+", "\"plot it... either:\\n\"", "+", "\" bkg_calc_interp1d\\n\"", "+", "\" bkg_calc_weightedmean\\n\"", ")", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "figsize", "is", "None", ":", "if", "len", "(", "self", ".", "samples", ")", ">", "50", ":", "figsize", "=", "(", "len", "(", "self", ".", "samples", ")", "*", "0.15", ",", "5", ")", "else", ":", "figsize", "=", "(", "7.5", ",", "5", ")", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "ax", "=", "fig", ".", "add_axes", "(", "[", ".07", ",", ".1", ",", ".84", ",", ".8", "]", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "analytes", ")", ",", "desc", "=", "'Plotting backgrounds'", ")", "as", "prog", ":", "for", "a", "in", "analytes", ":", "# draw data points", "ax", ".", "scatter", "(", "self", ".", "bkg", "[", "'raw'", "]", ".", "uTime", ",", "self", ".", "bkg", "[", "'raw'", "]", ".", "loc", "[", ":", ",", "a", "]", ",", "alpha", "=", "0.5", ",", "s", "=", "3", ",", "c", "=", "self", ".", "cmaps", "[", "a", "]", ",", "lw", "=", "0.5", ")", "# draw STD boxes", "for", "i", ",", "r", "in", "self", ".", "bkg", "[", "'summary'", "]", ".", "iterrows", "(", ")", ":", "x", "=", "(", "r", ".", "loc", "[", "'uTime'", ",", "'mean'", "]", "-", "r", ".", "loc", "[", "'uTime'", ",", "'std'", "]", "*", "2", ",", "r", ".", "loc", "[", "'uTime'", ",", "'mean'", "]", "+", "r", ".", "loc", "[", "'uTime'", ",", "'std'", "]", "*", "2", ")", "yl", "=", "[", "r", ".", "loc", "[", "a", ",", "'mean'", "]", "-", "r", ".", "loc", "[", "a", ",", "err", "]", "]", "*", "2", "yu", "=", "[", "r", ".", "loc", "[", "a", ",", "'mean'", "]", "+", "r", ".", "loc", "[", "a", ",", "err", "]", "]", "*", "2", "ax", ".", "fill_between", "(", "x", ",", "yl", ",", "yu", ",", "alpha", "=", "0.8", ",", "lw", "=", "0.5", ",", "color", "=", "self", ".", "cmaps", "[", "a", "]", ",", "zorder", "=", "1", ")", "prog", ".", "update", "(", ")", "if", "yscale", "==", "'log'", ":", "ax", ".", "set_yscale", "(", "'log'", ")", "if", "ylim", "is", "not", "None", ":", "ax", ".", "set_ylim", "(", "ylim", ")", "else", ":", "ax", ".", "set_ylim", "(", "ax", ".", "get_ylim", "(", ")", "*", "np", ".", "array", "(", "[", "1", ",", "10", "]", ")", ")", "# x10 to make sample names readable.", "for", "a", "in", "analytes", ":", "# draw confidence intervals of calculated", "x", "=", "self", ".", "bkg", "[", "'calc'", "]", "[", "'uTime'", "]", "y", "=", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "'mean'", "]", "yl", "=", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "'mean'", "]", "-", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "err", "]", "yu", "=", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "'mean'", "]", "+", "self", ".", "bkg", "[", "'calc'", "]", "[", "a", "]", "[", "err", "]", "# trim values below zero if log scale= ", "if", "yscale", "==", "'log'", ":", "yl", "[", "yl", "<", "ax", ".", "get_ylim", "(", ")", "[", "0", "]", "]", "=", "ax", ".", "get_ylim", "(", ")", "[", "0", "]", "ax", ".", "plot", "(", "x", ",", "y", ",", "c", "=", "self", ".", "cmaps", "[", "a", "]", ",", "zorder", "=", "2", ",", "label", "=", "a", ")", "ax", ".", "fill_between", "(", "x", ",", "yl", ",", "yu", ",", "color", "=", "self", ".", "cmaps", "[", "a", "]", ",", "alpha", "=", "0.3", ",", "zorder", "=", "-", "1", ")", "ax", ".", "set_xlabel", "(", "'Time (s)'", ")", "ax", ".", "set_ylabel", "(", "'Background Counts'", ")", "ax", ".", "set_title", "(", "'Points = raw data; Bars = {:s}; Lines = Calculated Background; Envelope = Background {:s}'", ".", "format", "(", "err", ",", "err", ")", ",", "fontsize", "=", "10", ")", "ha", ",", "la", "=", "ax", ".", "get_legend_handles_labels", "(", ")", "ax", ".", "legend", "(", "labels", "=", "la", "[", ":", "len", "(", "analytes", ")", "]", ",", "handles", "=", "ha", "[", ":", "len", "(", "analytes", ")", "]", ",", "bbox_to_anchor", "=", "(", "1", ",", "1", ")", ")", "# scale x axis to range ± 2.5%", "xlim", "=", "rangecalc", "(", "self", ".", "bkg", "[", "'raw'", "]", "[", "'uTime'", "]", ",", "0.025", ")", "ax", ".", "set_xlim", "(", "xlim", ")", "# add sample labels", "for", "s", ",", "d", "in", "self", ".", "data", ".", "items", "(", ")", ":", "ax", ".", "axvline", "(", "d", ".", "uTime", "[", "0", "]", ",", "alpha", "=", "0.2", ",", "color", "=", "'k'", ",", "zorder", "=", "-", "1", ")", "ax", ".", "text", "(", "d", ".", "uTime", "[", "0", "]", ",", "ax", ".", "get_ylim", "(", ")", "[", "1", "]", ",", "s", ",", "rotation", "=", "90", ",", "va", "=", "'top'", ",", "ha", "=", "'left'", ",", "zorder", "=", "-", "1", ",", "fontsize", "=", "7", ")", "if", "save", ":", "fig", ".", "savefig", "(", "self", ".", "report_dir", "+", "'/background.png'", ",", "dpi", "=", "200", ")", "return", "fig", ",", "ax" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.ratio
Calculates the ratio of all analytes to a single analyte. Parameters ---------- internal_standard : str The name of the analyte to divide all other analytes by. Returns ------- None
latools/latools.py
def ratio(self, internal_standard=None): """ Calculates the ratio of all analytes to a single analyte. Parameters ---------- internal_standard : str The name of the analyte to divide all other analytes by. Returns ------- None """ if 'bkgsub' not in self.stages_complete: raise RuntimeError('Cannot calculate ratios before background subtraction.') if internal_standard is not None: self.internal_standard = internal_standard self.minimal_analytes.update([internal_standard]) with self.pbar.set(total=len(self.data), desc='Ratio Calculation') as prog: for s in self.data.values(): s.ratio(internal_standard=self.internal_standard) prog.update() self.stages_complete.update(['ratios']) self.focus_stage = 'ratios' return
def ratio(self, internal_standard=None): """ Calculates the ratio of all analytes to a single analyte. Parameters ---------- internal_standard : str The name of the analyte to divide all other analytes by. Returns ------- None """ if 'bkgsub' not in self.stages_complete: raise RuntimeError('Cannot calculate ratios before background subtraction.') if internal_standard is not None: self.internal_standard = internal_standard self.minimal_analytes.update([internal_standard]) with self.pbar.set(total=len(self.data), desc='Ratio Calculation') as prog: for s in self.data.values(): s.ratio(internal_standard=self.internal_standard) prog.update() self.stages_complete.update(['ratios']) self.focus_stage = 'ratios' return
[ "Calculates", "the", "ratio", "of", "all", "analytes", "to", "a", "single", "analyte", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1185-L1213
[ "def", "ratio", "(", "self", ",", "internal_standard", "=", "None", ")", ":", "if", "'bkgsub'", "not", "in", "self", ".", "stages_complete", ":", "raise", "RuntimeError", "(", "'Cannot calculate ratios before background subtraction.'", ")", "if", "internal_standard", "is", "not", "None", ":", "self", ".", "internal_standard", "=", "internal_standard", "self", ".", "minimal_analytes", ".", "update", "(", "[", "internal_standard", "]", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "data", ")", ",", "desc", "=", "'Ratio Calculation'", ")", "as", "prog", ":", "for", "s", "in", "self", ".", "data", ".", "values", "(", ")", ":", "s", ".", "ratio", "(", "internal_standard", "=", "self", ".", "internal_standard", ")", "prog", ".", "update", "(", ")", "self", ".", "stages_complete", ".", "update", "(", "[", "'ratios'", "]", ")", "self", ".", "focus_stage", "=", "'ratios'", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.srm_id_auto
Function for automarically identifying SRMs Parameters ---------- srms_used : iterable Which SRMs have been used. Must match SRM names in SRM database *exactly* (case sensitive!). n_min : int The minimum number of data points a SRM measurement must contain to be included.
latools/latools.py
def srm_id_auto(self, srms_used=['NIST610', 'NIST612', 'NIST614'], n_min=10, reload_srm_database=False): """ Function for automarically identifying SRMs Parameters ---------- srms_used : iterable Which SRMs have been used. Must match SRM names in SRM database *exactly* (case sensitive!). n_min : int The minimum number of data points a SRM measurement must contain to be included. """ if isinstance(srms_used, str): srms_used = [srms_used] # get mean and standard deviations of measured standards self.srm_compile_measured(n_min) stdtab = self.stdtab.copy() # load corresponding SRM database self.srm_load_database(srms_used, reload_srm_database) # create blank srm table srm_tab = self.srmdat.loc[:, ['mol_ratio', 'element']].reset_index().pivot(index='SRM', columns='element', values='mol_ratio') # Auto - ID STDs # 1. identify elements in measured SRMS with biggest range of values meas_tab = stdtab.loc[:, (slice(None), 'mean')] # isolate means of standards meas_tab.columns = meas_tab.columns.droplevel(1) # drop 'mean' column names meas_tab.columns = [re.findall('[A-Za-z]+', a)[0] for a in meas_tab.columns] # rename to element names meas_tab = meas_tab.T.groupby(level=0).first().T # remove duplicate columns ranges = nominal_values(meas_tab.apply(lambda a: np.ptp(a) / np.nanmean(a), 0)) # calculate relative ranges of all elements # (used as weights later) # 2. Work out which standard is which # normalise all elements between 0-1 def normalise(a): a = nominal_values(a) if np.nanmin(a) < np.nanmax(a): return (a - np.nanmin(a)) / np.nanmax(a - np.nanmin(a)) else: return np.ones(a.shape) nmeas = meas_tab.apply(normalise, 0) nmeas.dropna(1, inplace=True) # remove elements with NaN values # nmeas.replace(np.nan, 1, inplace=True) nsrm_tab = srm_tab.apply(normalise, 0) nsrm_tab.dropna(1, inplace=True) # nsrm_tab.replace(np.nan, 1, inplace=True) for uT, r in nmeas.iterrows(): # for each standard... idx = np.nansum(((nsrm_tab - r) * ranges)**2, 1) idx = abs((nsrm_tab - r) * ranges).sum(1) # calculate the absolute difference between the normalised elemental # values for each measured SRM and the SRM table. Each element is # multiplied by the relative range seen in that element (i.e. range / mean # measuerd value), so that elements with a large difference are given # more importance in identifying the SRM. # This produces a table, where wach row contains the difference between # a known vs. measured SRM. The measured SRM is identified as the SRM that # has the smallest weighted sum value. stdtab.loc[uT, 'SRM'] = srm_tab.index[idx == min(idx)].values[0] # calculate mean time for each SRM # reset index and sort stdtab.reset_index(inplace=True) stdtab.sort_index(1, inplace=True) # isolate STD and uTime uT = stdtab.loc[:, ['gTime', 'STD']].set_index('STD') uT.sort_index(inplace=True) uTm = uT.groupby(level=0).mean() # mean uTime for each SRM # replace uTime values with means stdtab.set_index(['STD'], inplace=True) stdtab.loc[:, 'gTime'] = uTm # reset index stdtab.reset_index(inplace=True) stdtab.set_index(['STD', 'SRM', 'gTime'], inplace=True) # combine to make SRM reference tables srmtabs = Bunch() for a in self.analytes: el = re.findall('[A-Za-z]+', a)[0] sub = stdtab.loc[:, a] srmsub = self.srmdat.loc[self.srmdat.element == el, ['mol_ratio', 'mol_ratio_err']] srmtab = sub.join(srmsub) srmtab.columns = ['meas_err', 'meas_mean', 'srm_mean', 'srm_err'] srmtabs[a] = srmtab self.srmtabs = pd.concat(srmtabs).apply(nominal_values).sort_index() self.srmtabs.dropna(subset=['srm_mean'], inplace=True) # replace any nan error values with zeros - nans cause problems later. self.srmtabs.loc[:, ['meas_err', 'srm_err']] = self.srmtabs.loc[:, ['meas_err', 'srm_err']].replace(np.nan, 0) # remove internal standard from calibration elements self.srmtabs.drop(self.internal_standard, inplace=True) self.srms_ided = True return
def srm_id_auto(self, srms_used=['NIST610', 'NIST612', 'NIST614'], n_min=10, reload_srm_database=False): """ Function for automarically identifying SRMs Parameters ---------- srms_used : iterable Which SRMs have been used. Must match SRM names in SRM database *exactly* (case sensitive!). n_min : int The minimum number of data points a SRM measurement must contain to be included. """ if isinstance(srms_used, str): srms_used = [srms_used] # get mean and standard deviations of measured standards self.srm_compile_measured(n_min) stdtab = self.stdtab.copy() # load corresponding SRM database self.srm_load_database(srms_used, reload_srm_database) # create blank srm table srm_tab = self.srmdat.loc[:, ['mol_ratio', 'element']].reset_index().pivot(index='SRM', columns='element', values='mol_ratio') # Auto - ID STDs # 1. identify elements in measured SRMS with biggest range of values meas_tab = stdtab.loc[:, (slice(None), 'mean')] # isolate means of standards meas_tab.columns = meas_tab.columns.droplevel(1) # drop 'mean' column names meas_tab.columns = [re.findall('[A-Za-z]+', a)[0] for a in meas_tab.columns] # rename to element names meas_tab = meas_tab.T.groupby(level=0).first().T # remove duplicate columns ranges = nominal_values(meas_tab.apply(lambda a: np.ptp(a) / np.nanmean(a), 0)) # calculate relative ranges of all elements # (used as weights later) # 2. Work out which standard is which # normalise all elements between 0-1 def normalise(a): a = nominal_values(a) if np.nanmin(a) < np.nanmax(a): return (a - np.nanmin(a)) / np.nanmax(a - np.nanmin(a)) else: return np.ones(a.shape) nmeas = meas_tab.apply(normalise, 0) nmeas.dropna(1, inplace=True) # remove elements with NaN values # nmeas.replace(np.nan, 1, inplace=True) nsrm_tab = srm_tab.apply(normalise, 0) nsrm_tab.dropna(1, inplace=True) # nsrm_tab.replace(np.nan, 1, inplace=True) for uT, r in nmeas.iterrows(): # for each standard... idx = np.nansum(((nsrm_tab - r) * ranges)**2, 1) idx = abs((nsrm_tab - r) * ranges).sum(1) # calculate the absolute difference between the normalised elemental # values for each measured SRM and the SRM table. Each element is # multiplied by the relative range seen in that element (i.e. range / mean # measuerd value), so that elements with a large difference are given # more importance in identifying the SRM. # This produces a table, where wach row contains the difference between # a known vs. measured SRM. The measured SRM is identified as the SRM that # has the smallest weighted sum value. stdtab.loc[uT, 'SRM'] = srm_tab.index[idx == min(idx)].values[0] # calculate mean time for each SRM # reset index and sort stdtab.reset_index(inplace=True) stdtab.sort_index(1, inplace=True) # isolate STD and uTime uT = stdtab.loc[:, ['gTime', 'STD']].set_index('STD') uT.sort_index(inplace=True) uTm = uT.groupby(level=0).mean() # mean uTime for each SRM # replace uTime values with means stdtab.set_index(['STD'], inplace=True) stdtab.loc[:, 'gTime'] = uTm # reset index stdtab.reset_index(inplace=True) stdtab.set_index(['STD', 'SRM', 'gTime'], inplace=True) # combine to make SRM reference tables srmtabs = Bunch() for a in self.analytes: el = re.findall('[A-Za-z]+', a)[0] sub = stdtab.loc[:, a] srmsub = self.srmdat.loc[self.srmdat.element == el, ['mol_ratio', 'mol_ratio_err']] srmtab = sub.join(srmsub) srmtab.columns = ['meas_err', 'meas_mean', 'srm_mean', 'srm_err'] srmtabs[a] = srmtab self.srmtabs = pd.concat(srmtabs).apply(nominal_values).sort_index() self.srmtabs.dropna(subset=['srm_mean'], inplace=True) # replace any nan error values with zeros - nans cause problems later. self.srmtabs.loc[:, ['meas_err', 'srm_err']] = self.srmtabs.loc[:, ['meas_err', 'srm_err']].replace(np.nan, 0) # remove internal standard from calibration elements self.srmtabs.drop(self.internal_standard, inplace=True) self.srms_ided = True return
[ "Function", "for", "automarically", "identifying", "SRMs", "Parameters", "----------", "srms_used", ":", "iterable", "Which", "SRMs", "have", "been", "used", ".", "Must", "match", "SRM", "names", "in", "SRM", "database", "*", "exactly", "*", "(", "case", "sensitive!", ")", ".", "n_min", ":", "int", "The", "minimum", "number", "of", "data", "points", "a", "SRM", "measurement", "must", "contain", "to", "be", "included", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1319-L1422
[ "def", "srm_id_auto", "(", "self", ",", "srms_used", "=", "[", "'NIST610'", ",", "'NIST612'", ",", "'NIST614'", "]", ",", "n_min", "=", "10", ",", "reload_srm_database", "=", "False", ")", ":", "if", "isinstance", "(", "srms_used", ",", "str", ")", ":", "srms_used", "=", "[", "srms_used", "]", "# get mean and standard deviations of measured standards", "self", ".", "srm_compile_measured", "(", "n_min", ")", "stdtab", "=", "self", ".", "stdtab", ".", "copy", "(", ")", "# load corresponding SRM database", "self", ".", "srm_load_database", "(", "srms_used", ",", "reload_srm_database", ")", "# create blank srm table", "srm_tab", "=", "self", ".", "srmdat", ".", "loc", "[", ":", ",", "[", "'mol_ratio'", ",", "'element'", "]", "]", ".", "reset_index", "(", ")", ".", "pivot", "(", "index", "=", "'SRM'", ",", "columns", "=", "'element'", ",", "values", "=", "'mol_ratio'", ")", "# Auto - ID STDs", "# 1. identify elements in measured SRMS with biggest range of values", "meas_tab", "=", "stdtab", ".", "loc", "[", ":", ",", "(", "slice", "(", "None", ")", ",", "'mean'", ")", "]", "# isolate means of standards", "meas_tab", ".", "columns", "=", "meas_tab", ".", "columns", ".", "droplevel", "(", "1", ")", "# drop 'mean' column names", "meas_tab", ".", "columns", "=", "[", "re", ".", "findall", "(", "'[A-Za-z]+'", ",", "a", ")", "[", "0", "]", "for", "a", "in", "meas_tab", ".", "columns", "]", "# rename to element names", "meas_tab", "=", "meas_tab", ".", "T", ".", "groupby", "(", "level", "=", "0", ")", ".", "first", "(", ")", ".", "T", "# remove duplicate columns", "ranges", "=", "nominal_values", "(", "meas_tab", ".", "apply", "(", "lambda", "a", ":", "np", ".", "ptp", "(", "a", ")", "/", "np", ".", "nanmean", "(", "a", ")", ",", "0", ")", ")", "# calculate relative ranges of all elements", "# (used as weights later)", "# 2. Work out which standard is which", "# normalise all elements between 0-1", "def", "normalise", "(", "a", ")", ":", "a", "=", "nominal_values", "(", "a", ")", "if", "np", ".", "nanmin", "(", "a", ")", "<", "np", ".", "nanmax", "(", "a", ")", ":", "return", "(", "a", "-", "np", ".", "nanmin", "(", "a", ")", ")", "/", "np", ".", "nanmax", "(", "a", "-", "np", ".", "nanmin", "(", "a", ")", ")", "else", ":", "return", "np", ".", "ones", "(", "a", ".", "shape", ")", "nmeas", "=", "meas_tab", ".", "apply", "(", "normalise", ",", "0", ")", "nmeas", ".", "dropna", "(", "1", ",", "inplace", "=", "True", ")", "# remove elements with NaN values", "# nmeas.replace(np.nan, 1, inplace=True)", "nsrm_tab", "=", "srm_tab", ".", "apply", "(", "normalise", ",", "0", ")", "nsrm_tab", ".", "dropna", "(", "1", ",", "inplace", "=", "True", ")", "# nsrm_tab.replace(np.nan, 1, inplace=True)", "for", "uT", ",", "r", "in", "nmeas", ".", "iterrows", "(", ")", ":", "# for each standard...", "idx", "=", "np", ".", "nansum", "(", "(", "(", "nsrm_tab", "-", "r", ")", "*", "ranges", ")", "**", "2", ",", "1", ")", "idx", "=", "abs", "(", "(", "nsrm_tab", "-", "r", ")", "*", "ranges", ")", ".", "sum", "(", "1", ")", "# calculate the absolute difference between the normalised elemental", "# values for each measured SRM and the SRM table. Each element is", "# multiplied by the relative range seen in that element (i.e. range / mean", "# measuerd value), so that elements with a large difference are given", "# more importance in identifying the SRM. ", "# This produces a table, where wach row contains the difference between", "# a known vs. measured SRM. The measured SRM is identified as the SRM that", "# has the smallest weighted sum value.", "stdtab", ".", "loc", "[", "uT", ",", "'SRM'", "]", "=", "srm_tab", ".", "index", "[", "idx", "==", "min", "(", "idx", ")", "]", ".", "values", "[", "0", "]", "# calculate mean time for each SRM", "# reset index and sort", "stdtab", ".", "reset_index", "(", "inplace", "=", "True", ")", "stdtab", ".", "sort_index", "(", "1", ",", "inplace", "=", "True", ")", "# isolate STD and uTime", "uT", "=", "stdtab", ".", "loc", "[", ":", ",", "[", "'gTime'", ",", "'STD'", "]", "]", ".", "set_index", "(", "'STD'", ")", "uT", ".", "sort_index", "(", "inplace", "=", "True", ")", "uTm", "=", "uT", ".", "groupby", "(", "level", "=", "0", ")", ".", "mean", "(", ")", "# mean uTime for each SRM", "# replace uTime values with means", "stdtab", ".", "set_index", "(", "[", "'STD'", "]", ",", "inplace", "=", "True", ")", "stdtab", ".", "loc", "[", ":", ",", "'gTime'", "]", "=", "uTm", "# reset index", "stdtab", ".", "reset_index", "(", "inplace", "=", "True", ")", "stdtab", ".", "set_index", "(", "[", "'STD'", ",", "'SRM'", ",", "'gTime'", "]", ",", "inplace", "=", "True", ")", "# combine to make SRM reference tables", "srmtabs", "=", "Bunch", "(", ")", "for", "a", "in", "self", ".", "analytes", ":", "el", "=", "re", ".", "findall", "(", "'[A-Za-z]+'", ",", "a", ")", "[", "0", "]", "sub", "=", "stdtab", ".", "loc", "[", ":", ",", "a", "]", "srmsub", "=", "self", ".", "srmdat", ".", "loc", "[", "self", ".", "srmdat", ".", "element", "==", "el", ",", "[", "'mol_ratio'", ",", "'mol_ratio_err'", "]", "]", "srmtab", "=", "sub", ".", "join", "(", "srmsub", ")", "srmtab", ".", "columns", "=", "[", "'meas_err'", ",", "'meas_mean'", ",", "'srm_mean'", ",", "'srm_err'", "]", "srmtabs", "[", "a", "]", "=", "srmtab", "self", ".", "srmtabs", "=", "pd", ".", "concat", "(", "srmtabs", ")", ".", "apply", "(", "nominal_values", ")", ".", "sort_index", "(", ")", "self", ".", "srmtabs", ".", "dropna", "(", "subset", "=", "[", "'srm_mean'", "]", ",", "inplace", "=", "True", ")", "# replace any nan error values with zeros - nans cause problems later.", "self", ".", "srmtabs", ".", "loc", "[", ":", ",", "[", "'meas_err'", ",", "'srm_err'", "]", "]", "=", "self", ".", "srmtabs", ".", "loc", "[", ":", ",", "[", "'meas_err'", ",", "'srm_err'", "]", "]", ".", "replace", "(", "np", ".", "nan", ",", "0", ")", "# remove internal standard from calibration elements", "self", ".", "srmtabs", ".", "drop", "(", "self", ".", "internal_standard", ",", "inplace", "=", "True", ")", "self", ".", "srms_ided", "=", "True", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.calibrate
Calibrates the data to measured SRM values. Assumes that y intercept is zero. Parameters ---------- analytes : str or iterable Which analytes you'd like to calibrate. Defaults to all. drift_correct : bool Whether to pool all SRM measurements into a single calibration, or vary the calibration through the run, interpolating coefficients between measured SRMs. srms_used : str or iterable Which SRMs have been measured. Must match names given in SRM data file *exactly*. n_min : int The minimum number of data points an SRM measurement must have to be included. Returns ------- None
latools/latools.py
def calibrate(self, analytes=None, drift_correct=True, srms_used=['NIST610', 'NIST612', 'NIST614'], zero_intercept=True, n_min=10, reload_srm_database=False): """ Calibrates the data to measured SRM values. Assumes that y intercept is zero. Parameters ---------- analytes : str or iterable Which analytes you'd like to calibrate. Defaults to all. drift_correct : bool Whether to pool all SRM measurements into a single calibration, or vary the calibration through the run, interpolating coefficients between measured SRMs. srms_used : str or iterable Which SRMs have been measured. Must match names given in SRM data file *exactly*. n_min : int The minimum number of data points an SRM measurement must have to be included. Returns ------- None """ if analytes is None: analytes = self.analytes[self.analytes != self.internal_standard] elif isinstance(analytes, str): analytes = [analytes] if not hasattr(self, 'srmtabs'): self.srm_id_auto(srms_used=srms_used, n_min=n_min, reload_srm_database=reload_srm_database) # make container for calibration params if not hasattr(self, 'calib_params'): gTime = self.stdtab.gTime.unique() self.calib_params = pd.DataFrame(columns=pd.MultiIndex.from_product([analytes, ['m']]), index=gTime) calib_analytes = self.srmtabs.index.get_level_values(0).unique() if zero_intercept: fn = lambda x, m: x * m else: fn = lambda x, m, c: x * m + c for a in calib_analytes: if zero_intercept: if (a, 'c') in self.calib_params: self.calib_params.drop((a, 'c'), 1, inplace=True) if drift_correct: for g in self.stdtab.gTime.unique(): ind = idx[a, :, :, g] if self.srmtabs.loc[ind].size == 0: continue # try: meas = self.srmtabs.loc[ind, 'meas_mean'] srm = self.srmtabs.loc[ind, 'srm_mean'] # TODO: replace curve_fit with Sambridge's 2D likelihood function for better uncertainty incorporation. merr = self.srmtabs.loc[ind, 'meas_err'] serr = self.srmtabs.loc[ind, 'srm_err'] sigma = np.sqrt(merr**2 + serr**2) if len(meas) > 1: # multiple SRMs - do a regression p, cov = curve_fit(fn, meas, srm, sigma=sigma) pe = unc.correlated_values(p, cov) self.calib_params.loc[g, (a, 'm')] = pe[0] if not zero_intercept: self.calib_params.loc[g, (a, 'c')] = pe[1] else: # deal with case where there's only one datum self.calib_params.loc[g, (a, 'm')] = (un.uarray(srm, serr) / un.uarray(meas, merr))[0] if not zero_intercept: self.calib_params.loc[g, (a, 'c')] = 0 # This should be obsolete, because no-longer sourcing locator from calib_params index. # except KeyError: # # If the calibration is being recalculated, calib_params # # will have t=0 and t=max(uTime) values that are outside # # the srmtabs index. # # If this happens, drop them, and re-fill them at the end. # self.calib_params.drop(g, inplace=True) else: ind = idx[a, :, :, :] meas = self.srmtabs.loc[ind, 'meas_mean'] srm = self.srmtabs.loc[ind, 'srm_mean'] merr = self.srmtabs.loc[ind, 'meas_err'] serr = self.srmtabs.loc[ind, 'srm_err'] sigma = np.sqrt(merr**2 + serr**2) if len(meas) > 1: p, cov = curve_fit(fn, meas, srm, sigma=sigma) pe = unc.correlated_values(p, cov) self.calib_params.loc[:, (a, 'm')] = pe[0] if not zero_intercept: self.calib_params.loc[:, (a, 'c')] = pe[1] else: self.calib_params.loc[:, (a, 'm')] = (un.uarray(srm, serr) / un.uarray(meas, merr))[0] if not zero_intercept: self.calib_params.loc[:, (a, 'c')] = 0 # if fill: # fill in uTime=0 and uTime = max cases for interpolation if self.calib_params.index.min() == 0: self.calib_params.drop(0, inplace=True) self.calib_params.drop(self.calib_params.index.max(), inplace=True) self.calib_params.loc[0, :] = self.calib_params.loc[self.calib_params.index.min(), :] maxuT = np.max([d.uTime.max() for d in self.data.values()]) # calculate max uTime self.calib_params.loc[maxuT, :] = self.calib_params.loc[self.calib_params.index.max(), :] # sort indices for slice access self.calib_params.sort_index(1, inplace=True) self.calib_params.sort_index(0, inplace=True) # calculcate interpolators for applying calibrations self.calib_ps = Bunch() for a in analytes: # TODO: revisit un_interp1d to see whether it plays well with correlated values. # Possible re-write to deal with covariance matrices? self.calib_ps[a] = {'m': un_interp1d(self.calib_params.index.values, self.calib_params.loc[:, (a, 'm')].values)} if not zero_intercept: self.calib_ps[a]['c'] = un_interp1d(self.calib_params.index.values, self.calib_params.loc[:, (a, 'c')].values) with self.pbar.set(total=len(self.data), desc='Applying Calibrations') as prog: for d in self.data.values(): d.calibrate(self.calib_ps, analytes) prog.update() # record SRMs used for plotting markers = 'osDsv<>PX' # for future implementation of SRM-specific markers. if not hasattr(self, 'srms_used'): self.srms_used = set(srms_used) else: self.srms_used.update(srms_used) self.srm_mdict = {k: markers[i] for i, k in enumerate(self.srms_used)} self.stages_complete.update(['calibrated']) self.focus_stage = 'calibrated' return
def calibrate(self, analytes=None, drift_correct=True, srms_used=['NIST610', 'NIST612', 'NIST614'], zero_intercept=True, n_min=10, reload_srm_database=False): """ Calibrates the data to measured SRM values. Assumes that y intercept is zero. Parameters ---------- analytes : str or iterable Which analytes you'd like to calibrate. Defaults to all. drift_correct : bool Whether to pool all SRM measurements into a single calibration, or vary the calibration through the run, interpolating coefficients between measured SRMs. srms_used : str or iterable Which SRMs have been measured. Must match names given in SRM data file *exactly*. n_min : int The minimum number of data points an SRM measurement must have to be included. Returns ------- None """ if analytes is None: analytes = self.analytes[self.analytes != self.internal_standard] elif isinstance(analytes, str): analytes = [analytes] if not hasattr(self, 'srmtabs'): self.srm_id_auto(srms_used=srms_used, n_min=n_min, reload_srm_database=reload_srm_database) # make container for calibration params if not hasattr(self, 'calib_params'): gTime = self.stdtab.gTime.unique() self.calib_params = pd.DataFrame(columns=pd.MultiIndex.from_product([analytes, ['m']]), index=gTime) calib_analytes = self.srmtabs.index.get_level_values(0).unique() if zero_intercept: fn = lambda x, m: x * m else: fn = lambda x, m, c: x * m + c for a in calib_analytes: if zero_intercept: if (a, 'c') in self.calib_params: self.calib_params.drop((a, 'c'), 1, inplace=True) if drift_correct: for g in self.stdtab.gTime.unique(): ind = idx[a, :, :, g] if self.srmtabs.loc[ind].size == 0: continue # try: meas = self.srmtabs.loc[ind, 'meas_mean'] srm = self.srmtabs.loc[ind, 'srm_mean'] # TODO: replace curve_fit with Sambridge's 2D likelihood function for better uncertainty incorporation. merr = self.srmtabs.loc[ind, 'meas_err'] serr = self.srmtabs.loc[ind, 'srm_err'] sigma = np.sqrt(merr**2 + serr**2) if len(meas) > 1: # multiple SRMs - do a regression p, cov = curve_fit(fn, meas, srm, sigma=sigma) pe = unc.correlated_values(p, cov) self.calib_params.loc[g, (a, 'm')] = pe[0] if not zero_intercept: self.calib_params.loc[g, (a, 'c')] = pe[1] else: # deal with case where there's only one datum self.calib_params.loc[g, (a, 'm')] = (un.uarray(srm, serr) / un.uarray(meas, merr))[0] if not zero_intercept: self.calib_params.loc[g, (a, 'c')] = 0 # This should be obsolete, because no-longer sourcing locator from calib_params index. # except KeyError: # # If the calibration is being recalculated, calib_params # # will have t=0 and t=max(uTime) values that are outside # # the srmtabs index. # # If this happens, drop them, and re-fill them at the end. # self.calib_params.drop(g, inplace=True) else: ind = idx[a, :, :, :] meas = self.srmtabs.loc[ind, 'meas_mean'] srm = self.srmtabs.loc[ind, 'srm_mean'] merr = self.srmtabs.loc[ind, 'meas_err'] serr = self.srmtabs.loc[ind, 'srm_err'] sigma = np.sqrt(merr**2 + serr**2) if len(meas) > 1: p, cov = curve_fit(fn, meas, srm, sigma=sigma) pe = unc.correlated_values(p, cov) self.calib_params.loc[:, (a, 'm')] = pe[0] if not zero_intercept: self.calib_params.loc[:, (a, 'c')] = pe[1] else: self.calib_params.loc[:, (a, 'm')] = (un.uarray(srm, serr) / un.uarray(meas, merr))[0] if not zero_intercept: self.calib_params.loc[:, (a, 'c')] = 0 # if fill: # fill in uTime=0 and uTime = max cases for interpolation if self.calib_params.index.min() == 0: self.calib_params.drop(0, inplace=True) self.calib_params.drop(self.calib_params.index.max(), inplace=True) self.calib_params.loc[0, :] = self.calib_params.loc[self.calib_params.index.min(), :] maxuT = np.max([d.uTime.max() for d in self.data.values()]) # calculate max uTime self.calib_params.loc[maxuT, :] = self.calib_params.loc[self.calib_params.index.max(), :] # sort indices for slice access self.calib_params.sort_index(1, inplace=True) self.calib_params.sort_index(0, inplace=True) # calculcate interpolators for applying calibrations self.calib_ps = Bunch() for a in analytes: # TODO: revisit un_interp1d to see whether it plays well with correlated values. # Possible re-write to deal with covariance matrices? self.calib_ps[a] = {'m': un_interp1d(self.calib_params.index.values, self.calib_params.loc[:, (a, 'm')].values)} if not zero_intercept: self.calib_ps[a]['c'] = un_interp1d(self.calib_params.index.values, self.calib_params.loc[:, (a, 'c')].values) with self.pbar.set(total=len(self.data), desc='Applying Calibrations') as prog: for d in self.data.values(): d.calibrate(self.calib_ps, analytes) prog.update() # record SRMs used for plotting markers = 'osDsv<>PX' # for future implementation of SRM-specific markers. if not hasattr(self, 'srms_used'): self.srms_used = set(srms_used) else: self.srms_used.update(srms_used) self.srm_mdict = {k: markers[i] for i, k in enumerate(self.srms_used)} self.stages_complete.update(['calibrated']) self.focus_stage = 'calibrated' return
[ "Calibrates", "the", "data", "to", "measured", "SRM", "values", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1431-L1576
[ "def", "calibrate", "(", "self", ",", "analytes", "=", "None", ",", "drift_correct", "=", "True", ",", "srms_used", "=", "[", "'NIST610'", ",", "'NIST612'", ",", "'NIST614'", "]", ",", "zero_intercept", "=", "True", ",", "n_min", "=", "10", ",", "reload_srm_database", "=", "False", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "[", "self", ".", "analytes", "!=", "self", ".", "internal_standard", "]", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "not", "hasattr", "(", "self", ",", "'srmtabs'", ")", ":", "self", ".", "srm_id_auto", "(", "srms_used", "=", "srms_used", ",", "n_min", "=", "n_min", ",", "reload_srm_database", "=", "reload_srm_database", ")", "# make container for calibration params", "if", "not", "hasattr", "(", "self", ",", "'calib_params'", ")", ":", "gTime", "=", "self", ".", "stdtab", ".", "gTime", ".", "unique", "(", ")", "self", ".", "calib_params", "=", "pd", ".", "DataFrame", "(", "columns", "=", "pd", ".", "MultiIndex", ".", "from_product", "(", "[", "analytes", ",", "[", "'m'", "]", "]", ")", ",", "index", "=", "gTime", ")", "calib_analytes", "=", "self", ".", "srmtabs", ".", "index", ".", "get_level_values", "(", "0", ")", ".", "unique", "(", ")", "if", "zero_intercept", ":", "fn", "=", "lambda", "x", ",", "m", ":", "x", "*", "m", "else", ":", "fn", "=", "lambda", "x", ",", "m", ",", "c", ":", "x", "*", "m", "+", "c", "for", "a", "in", "calib_analytes", ":", "if", "zero_intercept", ":", "if", "(", "a", ",", "'c'", ")", "in", "self", ".", "calib_params", ":", "self", ".", "calib_params", ".", "drop", "(", "(", "a", ",", "'c'", ")", ",", "1", ",", "inplace", "=", "True", ")", "if", "drift_correct", ":", "for", "g", "in", "self", ".", "stdtab", ".", "gTime", ".", "unique", "(", ")", ":", "ind", "=", "idx", "[", "a", ",", ":", ",", ":", ",", "g", "]", "if", "self", ".", "srmtabs", ".", "loc", "[", "ind", "]", ".", "size", "==", "0", ":", "continue", "# try:", "meas", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'meas_mean'", "]", "srm", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'srm_mean'", "]", "# TODO: replace curve_fit with Sambridge's 2D likelihood function for better uncertainty incorporation.", "merr", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'meas_err'", "]", "serr", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'srm_err'", "]", "sigma", "=", "np", ".", "sqrt", "(", "merr", "**", "2", "+", "serr", "**", "2", ")", "if", "len", "(", "meas", ")", ">", "1", ":", "# multiple SRMs - do a regression", "p", ",", "cov", "=", "curve_fit", "(", "fn", ",", "meas", ",", "srm", ",", "sigma", "=", "sigma", ")", "pe", "=", "unc", ".", "correlated_values", "(", "p", ",", "cov", ")", "self", ".", "calib_params", ".", "loc", "[", "g", ",", "(", "a", ",", "'m'", ")", "]", "=", "pe", "[", "0", "]", "if", "not", "zero_intercept", ":", "self", ".", "calib_params", ".", "loc", "[", "g", ",", "(", "a", ",", "'c'", ")", "]", "=", "pe", "[", "1", "]", "else", ":", "# deal with case where there's only one datum", "self", ".", "calib_params", ".", "loc", "[", "g", ",", "(", "a", ",", "'m'", ")", "]", "=", "(", "un", ".", "uarray", "(", "srm", ",", "serr", ")", "/", "un", ".", "uarray", "(", "meas", ",", "merr", ")", ")", "[", "0", "]", "if", "not", "zero_intercept", ":", "self", ".", "calib_params", ".", "loc", "[", "g", ",", "(", "a", ",", "'c'", ")", "]", "=", "0", "# This should be obsolete, because no-longer sourcing locator from calib_params index.", "# except KeyError:", "# # If the calibration is being recalculated, calib_params", "# # will have t=0 and t=max(uTime) values that are outside", "# # the srmtabs index.", "# # If this happens, drop them, and re-fill them at the end.", "# self.calib_params.drop(g, inplace=True)", "else", ":", "ind", "=", "idx", "[", "a", ",", ":", ",", ":", ",", ":", "]", "meas", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'meas_mean'", "]", "srm", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'srm_mean'", "]", "merr", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'meas_err'", "]", "serr", "=", "self", ".", "srmtabs", ".", "loc", "[", "ind", ",", "'srm_err'", "]", "sigma", "=", "np", ".", "sqrt", "(", "merr", "**", "2", "+", "serr", "**", "2", ")", "if", "len", "(", "meas", ")", ">", "1", ":", "p", ",", "cov", "=", "curve_fit", "(", "fn", ",", "meas", ",", "srm", ",", "sigma", "=", "sigma", ")", "pe", "=", "unc", ".", "correlated_values", "(", "p", ",", "cov", ")", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "(", "a", ",", "'m'", ")", "]", "=", "pe", "[", "0", "]", "if", "not", "zero_intercept", ":", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "(", "a", ",", "'c'", ")", "]", "=", "pe", "[", "1", "]", "else", ":", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "(", "a", ",", "'m'", ")", "]", "=", "(", "un", ".", "uarray", "(", "srm", ",", "serr", ")", "/", "un", ".", "uarray", "(", "meas", ",", "merr", ")", ")", "[", "0", "]", "if", "not", "zero_intercept", ":", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "(", "a", ",", "'c'", ")", "]", "=", "0", "# if fill:", "# fill in uTime=0 and uTime = max cases for interpolation", "if", "self", ".", "calib_params", ".", "index", ".", "min", "(", ")", "==", "0", ":", "self", ".", "calib_params", ".", "drop", "(", "0", ",", "inplace", "=", "True", ")", "self", ".", "calib_params", ".", "drop", "(", "self", ".", "calib_params", ".", "index", ".", "max", "(", ")", ",", "inplace", "=", "True", ")", "self", ".", "calib_params", ".", "loc", "[", "0", ",", ":", "]", "=", "self", ".", "calib_params", ".", "loc", "[", "self", ".", "calib_params", ".", "index", ".", "min", "(", ")", ",", ":", "]", "maxuT", "=", "np", ".", "max", "(", "[", "d", ".", "uTime", ".", "max", "(", ")", "for", "d", "in", "self", ".", "data", ".", "values", "(", ")", "]", ")", "# calculate max uTime", "self", ".", "calib_params", ".", "loc", "[", "maxuT", ",", ":", "]", "=", "self", ".", "calib_params", ".", "loc", "[", "self", ".", "calib_params", ".", "index", ".", "max", "(", ")", ",", ":", "]", "# sort indices for slice access", "self", ".", "calib_params", ".", "sort_index", "(", "1", ",", "inplace", "=", "True", ")", "self", ".", "calib_params", ".", "sort_index", "(", "0", ",", "inplace", "=", "True", ")", "# calculcate interpolators for applying calibrations", "self", ".", "calib_ps", "=", "Bunch", "(", ")", "for", "a", "in", "analytes", ":", "# TODO: revisit un_interp1d to see whether it plays well with correlated values. ", "# Possible re-write to deal with covariance matrices?", "self", ".", "calib_ps", "[", "a", "]", "=", "{", "'m'", ":", "un_interp1d", "(", "self", ".", "calib_params", ".", "index", ".", "values", ",", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "(", "a", ",", "'m'", ")", "]", ".", "values", ")", "}", "if", "not", "zero_intercept", ":", "self", ".", "calib_ps", "[", "a", "]", "[", "'c'", "]", "=", "un_interp1d", "(", "self", ".", "calib_params", ".", "index", ".", "values", ",", "self", ".", "calib_params", ".", "loc", "[", ":", ",", "(", "a", ",", "'c'", ")", "]", ".", "values", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "data", ")", ",", "desc", "=", "'Applying Calibrations'", ")", "as", "prog", ":", "for", "d", "in", "self", ".", "data", ".", "values", "(", ")", ":", "d", ".", "calibrate", "(", "self", ".", "calib_ps", ",", "analytes", ")", "prog", ".", "update", "(", ")", "# record SRMs used for plotting", "markers", "=", "'osDsv<>PX'", "# for future implementation of SRM-specific markers.", "if", "not", "hasattr", "(", "self", ",", "'srms_used'", ")", ":", "self", ".", "srms_used", "=", "set", "(", "srms_used", ")", "else", ":", "self", ".", "srms_used", ".", "update", "(", "srms_used", ")", "self", ".", "srm_mdict", "=", "{", "k", ":", "markers", "[", "i", "]", "for", "i", ",", "k", "in", "enumerate", "(", "self", ".", "srms_used", ")", "}", "self", ".", "stages_complete", ".", "update", "(", "[", "'calibrated'", "]", ")", "self", ".", "focus_stage", "=", "'calibrated'", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.make_subset
Creates a subset of samples, which can be treated independently. Parameters ---------- samples : str or array - like Name of sample, or list of sample names. name : (optional) str or number The name of the sample group. Defaults to n + 1, where n is the highest existing group number
latools/latools.py
def make_subset(self, samples=None, name=None): """ Creates a subset of samples, which can be treated independently. Parameters ---------- samples : str or array - like Name of sample, or list of sample names. name : (optional) str or number The name of the sample group. Defaults to n + 1, where n is the highest existing group number """ # Check if a subset containing the same samples already exists. for k, v in self.subsets.items(): if set(v) == set(samples) and k != 'not_in_set': return k if isinstance(samples, str): samples = [samples] not_exists = [s for s in samples if s not in self.subsets['All_Analyses']] if len(not_exists) > 0: raise ValueError(', '.join(not_exists) + ' not in the list of sample names.\nPlease check your sample names.\nNote: Sample names are stored in the .samples attribute of your analysis.') if name is None: name = max([-1] + [x for x in self.subsets.keys() if isinstance(x, int)]) + 1 self._subset_names.append(name) if samples is not None: self.subsets[name] = samples for s in samples: try: self.subsets['not_in_set'].remove(s) except ValueError: pass self._has_subsets = True # for subset in np.unique(list(self.subsets.values())): # self.subsets[subset] = sorted([k for k, v in self.subsets.items() if str(v) == subset]) return name
def make_subset(self, samples=None, name=None): """ Creates a subset of samples, which can be treated independently. Parameters ---------- samples : str or array - like Name of sample, or list of sample names. name : (optional) str or number The name of the sample group. Defaults to n + 1, where n is the highest existing group number """ # Check if a subset containing the same samples already exists. for k, v in self.subsets.items(): if set(v) == set(samples) and k != 'not_in_set': return k if isinstance(samples, str): samples = [samples] not_exists = [s for s in samples if s not in self.subsets['All_Analyses']] if len(not_exists) > 0: raise ValueError(', '.join(not_exists) + ' not in the list of sample names.\nPlease check your sample names.\nNote: Sample names are stored in the .samples attribute of your analysis.') if name is None: name = max([-1] + [x for x in self.subsets.keys() if isinstance(x, int)]) + 1 self._subset_names.append(name) if samples is not None: self.subsets[name] = samples for s in samples: try: self.subsets['not_in_set'].remove(s) except ValueError: pass self._has_subsets = True # for subset in np.unique(list(self.subsets.values())): # self.subsets[subset] = sorted([k for k, v in self.subsets.items() if str(v) == subset]) return name
[ "Creates", "a", "subset", "of", "samples", "which", "can", "be", "treated", "independently", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1711-L1753
[ "def", "make_subset", "(", "self", ",", "samples", "=", "None", ",", "name", "=", "None", ")", ":", "# Check if a subset containing the same samples already exists.", "for", "k", ",", "v", "in", "self", ".", "subsets", ".", "items", "(", ")", ":", "if", "set", "(", "v", ")", "==", "set", "(", "samples", ")", "and", "k", "!=", "'not_in_set'", ":", "return", "k", "if", "isinstance", "(", "samples", ",", "str", ")", ":", "samples", "=", "[", "samples", "]", "not_exists", "=", "[", "s", "for", "s", "in", "samples", "if", "s", "not", "in", "self", ".", "subsets", "[", "'All_Analyses'", "]", "]", "if", "len", "(", "not_exists", ")", ">", "0", ":", "raise", "ValueError", "(", "', '", ".", "join", "(", "not_exists", ")", "+", "' not in the list of sample names.\\nPlease check your sample names.\\nNote: Sample names are stored in the .samples attribute of your analysis.'", ")", "if", "name", "is", "None", ":", "name", "=", "max", "(", "[", "-", "1", "]", "+", "[", "x", "for", "x", "in", "self", ".", "subsets", ".", "keys", "(", ")", "if", "isinstance", "(", "x", ",", "int", ")", "]", ")", "+", "1", "self", ".", "_subset_names", ".", "append", "(", "name", ")", "if", "samples", "is", "not", "None", ":", "self", ".", "subsets", "[", "name", "]", "=", "samples", "for", "s", "in", "samples", ":", "try", ":", "self", ".", "subsets", "[", "'not_in_set'", "]", ".", "remove", "(", "s", ")", "except", "ValueError", ":", "pass", "self", ".", "_has_subsets", "=", "True", "# for subset in np.unique(list(self.subsets.values())):", "# self.subsets[subset] = sorted([k for k, v in self.subsets.items() if str(v) == subset])", "return", "name" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.zeroscreen
Remove all points containing data below zero (which are impossible!)
latools/latools.py
def zeroscreen(self, focus_stage=None): """ Remove all points containing data below zero (which are impossible!) """ if focus_stage is None: focus_stage = self.focus_stage for s in self.data.values(): ind = np.ones(len(s.Time), dtype=bool) for v in s.data[focus_stage].values(): ind = ind & (nominal_values(v) > 0) for k in s.data[focus_stage].keys(): s.data[focus_stage][k][~ind] = unc.ufloat(np.nan, np.nan) self.set_focus(focus_stage) return
def zeroscreen(self, focus_stage=None): """ Remove all points containing data below zero (which are impossible!) """ if focus_stage is None: focus_stage = self.focus_stage for s in self.data.values(): ind = np.ones(len(s.Time), dtype=bool) for v in s.data[focus_stage].values(): ind = ind & (nominal_values(v) > 0) for k in s.data[focus_stage].keys(): s.data[focus_stage][k][~ind] = unc.ufloat(np.nan, np.nan) self.set_focus(focus_stage) return
[ "Remove", "all", "points", "containing", "data", "below", "zero", "(", "which", "are", "impossible!", ")" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1756-L1773
[ "def", "zeroscreen", "(", "self", ",", "focus_stage", "=", "None", ")", ":", "if", "focus_stage", "is", "None", ":", "focus_stage", "=", "self", ".", "focus_stage", "for", "s", "in", "self", ".", "data", ".", "values", "(", ")", ":", "ind", "=", "np", ".", "ones", "(", "len", "(", "s", ".", "Time", ")", ",", "dtype", "=", "bool", ")", "for", "v", "in", "s", ".", "data", "[", "focus_stage", "]", ".", "values", "(", ")", ":", "ind", "=", "ind", "&", "(", "nominal_values", "(", "v", ")", ">", "0", ")", "for", "k", "in", "s", ".", "data", "[", "focus_stage", "]", ".", "keys", "(", ")", ":", "s", ".", "data", "[", "focus_stage", "]", "[", "k", "]", "[", "~", "ind", "]", "=", "unc", ".", "ufloat", "(", "np", ".", "nan", ",", "np", ".", "nan", ")", "self", ".", "set_focus", "(", "focus_stage", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_threshold
Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. threshold : float The threshold value. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None
latools/latools.py
def filter_threshold(self, analyte, threshold, samples=None, subset=None): """ Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. threshold : float The threshold value. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) with self.pbar.set(total=len(samples), desc='Threshold Filter') as prog: for s in samples: self.data[s].filter_threshold(analyte, threshold) prog.update()
def filter_threshold(self, analyte, threshold, samples=None, subset=None): """ Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. threshold : float The threshold value. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) with self.pbar.set(total=len(samples), desc='Threshold Filter') as prog: for s in samples: self.data[s].filter_threshold(analyte, threshold) prog.update()
[ "Applies", "a", "threshold", "filter", "to", "the", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1776-L1814
[ "def", "filter_threshold", "(", "self", ",", "analyte", ",", "threshold", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "self", ".", "minimal_analytes", ".", "update", "(", "[", "analyte", "]", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Threshold Filter'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "filter_threshold", "(", "analyte", ",", "threshold", ")", "prog", ".", "update", "(", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_threshold_percentile
Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. percentiles : float or iterable of len=2 The percentile values. level : str Whether to calculate percentiles from the entire dataset ('population') or for each individual sample ('individual') filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None
latools/latools.py
def filter_threshold_percentile(self, analyte, percentiles, level='population', filt=False, samples=None, subset=None): """ Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. percentiles : float or iterable of len=2 The percentile values. level : str Whether to calculate percentiles from the entire dataset ('population') or for each individual sample ('individual') filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # Get all samples self.get_focus(filt=filt, subset=subset, nominal=True) dat = self.focus[analyte][~np.isnan(self.focus[analyte])] # calculate filter limits lims = np.percentile(dat, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile theshold filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = d.focus[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above = g >= lims[0] below = g < lims[0] d.filt.add(analyte + '_{:.1f}-pcnt_below'.format(percentiles[0]), below, 'Values below {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) d.filt.add(analyte + '_{:.1f}-pcnt_above'.format(percentiles[0]), above, 'Values above {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) elif len(lims) == 2: inside = (g >= min(lims)) & (g <= max(lims)) outside = (g < min(lims)) | (g > max(lims)) lpc = '-'.join(['{:.1f}'.format(p) for p in percentiles]) d.filt.add(analyte + '_' + lpc + '-pcnt_inside', inside, 'Values between ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) d.filt.add(analyte + '_' + lpc + '-pcnt_outside', outside, 'Values outside ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) prog.update() return
def filter_threshold_percentile(self, analyte, percentiles, level='population', filt=False, samples=None, subset=None): """ Applies a threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. percentiles : float or iterable of len=2 The percentile values. level : str Whether to calculate percentiles from the entire dataset ('population') or for each individual sample ('individual') filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # Get all samples self.get_focus(filt=filt, subset=subset, nominal=True) dat = self.focus[analyte][~np.isnan(self.focus[analyte])] # calculate filter limits lims = np.percentile(dat, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile theshold filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = d.focus[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above = g >= lims[0] below = g < lims[0] d.filt.add(analyte + '_{:.1f}-pcnt_below'.format(percentiles[0]), below, 'Values below {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) d.filt.add(analyte + '_{:.1f}-pcnt_above'.format(percentiles[0]), above, 'Values above {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) elif len(lims) == 2: inside = (g >= min(lims)) & (g <= max(lims)) outside = (g < min(lims)) | (g > max(lims)) lpc = '-'.join(['{:.1f}'.format(p) for p in percentiles]) d.filt.add(analyte + '_' + lpc + '-pcnt_inside', inside, 'Values between ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) d.filt.add(analyte + '_' + lpc + '-pcnt_outside', outside, 'Values outside ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) prog.update() return
[ "Applies", "a", "threshold", "filter", "to", "the", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1817-L1907
[ "def", "filter_threshold_percentile", "(", "self", ",", "analyte", ",", "percentiles", ",", "level", "=", "'population'", ",", "filt", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "self", ".", "minimal_analytes", ".", "update", "(", "[", "analyte", "]", ")", "if", "isinstance", "(", "percentiles", ",", "(", "int", ",", "float", ")", ")", ":", "percentiles", "=", "[", "percentiles", "]", "if", "level", "==", "'population'", ":", "# Get all samples", "self", ".", "get_focus", "(", "filt", "=", "filt", ",", "subset", "=", "subset", ",", "nominal", "=", "True", ")", "dat", "=", "self", ".", "focus", "[", "analyte", "]", "[", "~", "np", ".", "isnan", "(", "self", ".", "focus", "[", "analyte", "]", ")", "]", "# calculate filter limits", "lims", "=", "np", ".", "percentile", "(", "dat", ",", "percentiles", ")", "# Calculate filter for individual samples", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Percentile theshold filter'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "d", "=", "self", ".", "data", "[", "s", "]", "setn", "=", "d", ".", "filt", ".", "maxset", "+", "1", "g", "=", "d", ".", "focus", "[", "analyte", "]", "if", "level", "==", "'individual'", ":", "gt", "=", "nominal_values", "(", "g", ")", "lims", "=", "np", ".", "percentile", "(", "gt", "[", "~", "np", ".", "isnan", "(", "gt", ")", "]", ",", "percentiles", ")", "if", "len", "(", "lims", ")", "==", "1", ":", "above", "=", "g", ">=", "lims", "[", "0", "]", "below", "=", "g", "<", "lims", "[", "0", "]", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_{:.1f}-pcnt_below'", ".", "format", "(", "percentiles", "[", "0", "]", ")", ",", "below", ",", "'Values below {:.1f}th {:} percentile ({:.2e})'", ".", "format", "(", "percentiles", "[", "0", "]", ",", "analyte", ",", "lims", "[", "0", "]", ")", ",", "params", ",", "setn", "=", "setn", ")", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_{:.1f}-pcnt_above'", ".", "format", "(", "percentiles", "[", "0", "]", ")", ",", "above", ",", "'Values above {:.1f}th {:} percentile ({:.2e})'", ".", "format", "(", "percentiles", "[", "0", "]", ",", "analyte", ",", "lims", "[", "0", "]", ")", ",", "params", ",", "setn", "=", "setn", ")", "elif", "len", "(", "lims", ")", "==", "2", ":", "inside", "=", "(", "g", ">=", "min", "(", "lims", ")", ")", "&", "(", "g", "<=", "max", "(", "lims", ")", ")", "outside", "=", "(", "g", "<", "min", "(", "lims", ")", ")", "|", "(", "g", ">", "max", "(", "lims", ")", ")", "lpc", "=", "'-'", ".", "join", "(", "[", "'{:.1f}'", ".", "format", "(", "p", ")", "for", "p", "in", "percentiles", "]", ")", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_'", "+", "lpc", "+", "'-pcnt_inside'", ",", "inside", ",", "'Values between '", "+", "lpc", "+", "' '", "+", "analyte", "+", "'percentiles'", ",", "params", ",", "setn", "=", "setn", ")", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_'", "+", "lpc", "+", "'-pcnt_outside'", ",", "outside", ",", "'Values outside '", "+", "lpc", "+", "' '", "+", "analyte", "+", "'percentiles'", ",", "params", ",", "setn", "=", "setn", ")", "prog", ".", "update", "(", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_gradient_threshold_percentile
Calculate a gradient threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. win : int The window over which to calculate the moving gradient percentiles : float or iterable of len=2 The percentile values. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None
latools/latools.py
def filter_gradient_threshold_percentile(self, analyte, percentiles, level='population', win=15, filt=False, samples=None, subset=None): """ Calculate a gradient threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. win : int The window over which to calculate the moving gradient percentiles : float or iterable of len=2 The percentile values. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) # Calculate gradients of all samples self.get_gradients(analytes=[analyte], win=win, filt=filt, subset=subset) grad = self.gradients[analyte][~np.isnan(self.gradients[analyte])] if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # calculate filter limits lims = np.percentile(grad, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile Threshold Filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = calc_grads(d.Time, d.focus, [analyte], win)[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above = g >= lims[0] below = g < lims[0] d.filt.add(analyte + '_{:.1f}-grd-pcnt_below'.format(percentiles[0]), below, 'Gradients below {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) d.filt.add(analyte + '_{:.1f}-grd-pcnt_above'.format(percentiles[0]), above, 'Gradients above {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) elif len(lims) == 2: inside = (g >= min(lims)) & (g <= max(lims)) outside = (g < min(lims)) | (g > max(lims)) lpc = '-'.join(['{:.1f}'.format(p) for p in percentiles]) d.filt.add(analyte + '_' + lpc + '-grd-pcnt_inside', inside, 'Gradients between ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) d.filt.add(analyte + '_' + lpc + '-grd-pcnt_outside', outside, 'Gradients outside ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) prog.update() return
def filter_gradient_threshold_percentile(self, analyte, percentiles, level='population', win=15, filt=False, samples=None, subset=None): """ Calculate a gradient threshold filter to the data. Generates two filters above and below the threshold value for a given analyte. Parameters ---------- analyte : str The analyte that the filter applies to. win : int The window over which to calculate the moving gradient percentiles : float or iterable of len=2 The percentile values. filt : bool Whether or not to apply existing filters to the data before calculating this filter. samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ params = locals() del(params['self']) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([analyte]) # Calculate gradients of all samples self.get_gradients(analytes=[analyte], win=win, filt=filt, subset=subset) grad = self.gradients[analyte][~np.isnan(self.gradients[analyte])] if isinstance(percentiles, (int, float)): percentiles = [percentiles] if level == 'population': # calculate filter limits lims = np.percentile(grad, percentiles) # Calculate filter for individual samples with self.pbar.set(total=len(samples), desc='Percentile Threshold Filter') as prog: for s in samples: d = self.data[s] setn = d.filt.maxset + 1 g = calc_grads(d.Time, d.focus, [analyte], win)[analyte] if level == 'individual': gt = nominal_values(g) lims = np.percentile(gt[~np.isnan(gt)], percentiles) if len(lims) == 1: above = g >= lims[0] below = g < lims[0] d.filt.add(analyte + '_{:.1f}-grd-pcnt_below'.format(percentiles[0]), below, 'Gradients below {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) d.filt.add(analyte + '_{:.1f}-grd-pcnt_above'.format(percentiles[0]), above, 'Gradients above {:.1f}th {:} percentile ({:.2e})'.format(percentiles[0], analyte, lims[0]), params, setn=setn) elif len(lims) == 2: inside = (g >= min(lims)) & (g <= max(lims)) outside = (g < min(lims)) | (g > max(lims)) lpc = '-'.join(['{:.1f}'.format(p) for p in percentiles]) d.filt.add(analyte + '_' + lpc + '-grd-pcnt_inside', inside, 'Gradients between ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) d.filt.add(analyte + '_' + lpc + '-grd-pcnt_outside', outside, 'Gradients outside ' + lpc + ' ' + analyte + 'percentiles', params, setn=setn) prog.update() return
[ "Calculate", "a", "gradient", "threshold", "filter", "to", "the", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L1954-L2043
[ "def", "filter_gradient_threshold_percentile", "(", "self", ",", "analyte", ",", "percentiles", ",", "level", "=", "'population'", ",", "win", "=", "15", ",", "filt", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "self", ".", "minimal_analytes", ".", "update", "(", "[", "analyte", "]", ")", "# Calculate gradients of all samples", "self", ".", "get_gradients", "(", "analytes", "=", "[", "analyte", "]", ",", "win", "=", "win", ",", "filt", "=", "filt", ",", "subset", "=", "subset", ")", "grad", "=", "self", ".", "gradients", "[", "analyte", "]", "[", "~", "np", ".", "isnan", "(", "self", ".", "gradients", "[", "analyte", "]", ")", "]", "if", "isinstance", "(", "percentiles", ",", "(", "int", ",", "float", ")", ")", ":", "percentiles", "=", "[", "percentiles", "]", "if", "level", "==", "'population'", ":", "# calculate filter limits", "lims", "=", "np", ".", "percentile", "(", "grad", ",", "percentiles", ")", "# Calculate filter for individual samples", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Percentile Threshold Filter'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "d", "=", "self", ".", "data", "[", "s", "]", "setn", "=", "d", ".", "filt", ".", "maxset", "+", "1", "g", "=", "calc_grads", "(", "d", ".", "Time", ",", "d", ".", "focus", ",", "[", "analyte", "]", ",", "win", ")", "[", "analyte", "]", "if", "level", "==", "'individual'", ":", "gt", "=", "nominal_values", "(", "g", ")", "lims", "=", "np", ".", "percentile", "(", "gt", "[", "~", "np", ".", "isnan", "(", "gt", ")", "]", ",", "percentiles", ")", "if", "len", "(", "lims", ")", "==", "1", ":", "above", "=", "g", ">=", "lims", "[", "0", "]", "below", "=", "g", "<", "lims", "[", "0", "]", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_{:.1f}-grd-pcnt_below'", ".", "format", "(", "percentiles", "[", "0", "]", ")", ",", "below", ",", "'Gradients below {:.1f}th {:} percentile ({:.2e})'", ".", "format", "(", "percentiles", "[", "0", "]", ",", "analyte", ",", "lims", "[", "0", "]", ")", ",", "params", ",", "setn", "=", "setn", ")", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_{:.1f}-grd-pcnt_above'", ".", "format", "(", "percentiles", "[", "0", "]", ")", ",", "above", ",", "'Gradients above {:.1f}th {:} percentile ({:.2e})'", ".", "format", "(", "percentiles", "[", "0", "]", ",", "analyte", ",", "lims", "[", "0", "]", ")", ",", "params", ",", "setn", "=", "setn", ")", "elif", "len", "(", "lims", ")", "==", "2", ":", "inside", "=", "(", "g", ">=", "min", "(", "lims", ")", ")", "&", "(", "g", "<=", "max", "(", "lims", ")", ")", "outside", "=", "(", "g", "<", "min", "(", "lims", ")", ")", "|", "(", "g", ">", "max", "(", "lims", ")", ")", "lpc", "=", "'-'", ".", "join", "(", "[", "'{:.1f}'", ".", "format", "(", "p", ")", "for", "p", "in", "percentiles", "]", ")", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_'", "+", "lpc", "+", "'-grd-pcnt_inside'", ",", "inside", ",", "'Gradients between '", "+", "lpc", "+", "' '", "+", "analyte", "+", "'percentiles'", ",", "params", ",", "setn", "=", "setn", ")", "d", ".", "filt", ".", "add", "(", "analyte", "+", "'_'", "+", "lpc", "+", "'-grd-pcnt_outside'", ",", "outside", ",", "'Gradients outside '", "+", "lpc", "+", "' '", "+", "analyte", "+", "'percentiles'", ",", "params", ",", "setn", "=", "setn", ")", "prog", ".", "update", "(", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_clustering
Applies an n - dimensional clustering filter to the data. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use: * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. level : str Whether to conduct the clustering analysis at the 'sample' or 'population' level. include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. sort : bool Whether or not you want the cluster labels to be sorted by the mean magnitude of the signals they are based on (0 = lowest) min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K-Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- None
latools/latools.py
def filter_clustering(self, analytes, filt=False, normalise=True, method='kmeans', include_time=False, samples=None, sort=True, subset=None, level='sample', min_data=10, **kwargs): """ Applies an n - dimensional clustering filter to the data. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use: * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. level : str Whether to conduct the clustering analysis at the 'sample' or 'population' level. include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. sort : bool Whether or not you want the cluster labels to be sorted by the mean magnitude of the signals they are based on (0 = lowest) min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K-Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if isinstance(analytes, str): analytes = [analytes] self.minimal_analytes.update(analytes) if level == 'sample': with self.pbar.set(total=len(samples), desc='Clustering Filter') as prog: for s in samples: self.data[s].filter_clustering(analytes=analytes, filt=filt, normalise=normalise, method=method, include_time=include_time, min_data=min_data, sort=sort, **kwargs) prog.update() if level == 'population': if isinstance(sort, bool): sort_by = 0 else: sort_by = sort name = '_'.join(analytes) + '_{}'.format(method) self.fit_classifier(name=name, analytes=analytes, method=method, subset=subset, filt=filt, sort_by=sort_by, **kwargs) self.apply_classifier(name=name, subset=subset)
def filter_clustering(self, analytes, filt=False, normalise=True, method='kmeans', include_time=False, samples=None, sort=True, subset=None, level='sample', min_data=10, **kwargs): """ Applies an n - dimensional clustering filter to the data. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use: * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. level : str Whether to conduct the clustering analysis at the 'sample' or 'population' level. include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. sort : bool Whether or not you want the cluster labels to be sorted by the mean magnitude of the signals they are based on (0 = lowest) min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K-Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if isinstance(analytes, str): analytes = [analytes] self.minimal_analytes.update(analytes) if level == 'sample': with self.pbar.set(total=len(samples), desc='Clustering Filter') as prog: for s in samples: self.data[s].filter_clustering(analytes=analytes, filt=filt, normalise=normalise, method=method, include_time=include_time, min_data=min_data, sort=sort, **kwargs) prog.update() if level == 'population': if isinstance(sort, bool): sort_by = 0 else: sort_by = sort name = '_'.join(analytes) + '_{}'.format(method) self.fit_classifier(name=name, analytes=analytes, method=method, subset=subset, filt=filt, sort_by=sort_by, **kwargs) self.apply_classifier(name=name, subset=subset)
[ "Applies", "an", "n", "-", "dimensional", "clustering", "filter", "to", "the", "data", ".", "Parameters", "----------", "analytes", ":", "str", "The", "analyte", "(", "s", ")", "that", "the", "filter", "applies", "to", ".", "filt", ":", "bool", "Whether", "or", "not", "to", "apply", "existing", "filters", "to", "the", "data", "before", "calculating", "this", "filter", ".", "normalise", ":", "bool", "Whether", "or", "not", "to", "normalise", "the", "data", "to", "zero", "mean", "and", "unit", "variance", ".", "Reccomended", "if", "clustering", "based", "on", "more", "than", "1", "analyte", ".", "Uses", "sklearn", ".", "preprocessing", ".", "scale", ".", "method", ":", "str", "Which", "clustering", "algorithm", "to", "use", ":", "*", "meanshift", ":", "The", "sklearn", ".", "cluster", ".", "MeanShift", "algorithm", ".", "Automatically", "determines", "number", "of", "clusters", "in", "data", "based", "on", "the", "bandwidth", "of", "expected", "variation", ".", "*", "kmeans", ":", "The", "sklearn", ".", "cluster", ".", "KMeans", "algorithm", ".", "Determines", "the", "characteristics", "of", "a", "known", "number", "of", "clusters", "within", "the", "data", ".", "Must", "provide", "n_clusters", "to", "specify", "the", "expected", "number", "of", "clusters", ".", "level", ":", "str", "Whether", "to", "conduct", "the", "clustering", "analysis", "at", "the", "sample", "or", "population", "level", ".", "include_time", ":", "bool", "Whether", "or", "not", "to", "include", "the", "Time", "variable", "in", "the", "clustering", "analysis", ".", "Useful", "if", "you", "re", "looking", "for", "spatially", "continuous", "clusters", "in", "your", "data", "i", ".", "e", ".", "this", "will", "identify", "each", "spot", "in", "your", "analysis", "as", "an", "individual", "cluster", ".", "samples", ":", "optional", "array_like", "or", "None", "Which", "samples", "to", "apply", "this", "filter", "to", ".", "If", "None", "applies", "to", "all", "samples", ".", "sort", ":", "bool", "Whether", "or", "not", "you", "want", "the", "cluster", "labels", "to", "be", "sorted", "by", "the", "mean", "magnitude", "of", "the", "signals", "they", "are", "based", "on", "(", "0", "=", "lowest", ")", "min_data", ":", "int", "The", "minimum", "number", "of", "data", "points", "that", "should", "be", "considered", "by", "the", "filter", ".", "Default", "=", "10", ".", "**", "kwargs", "Parameters", "passed", "to", "the", "clustering", "algorithm", "specified", "by", "method", ".", "Meanshift", "Parameters", "bandwidth", ":", "str", "or", "float", "The", "bandwith", "(", "float", ")", "or", "bandwidth", "method", "(", "scott", "or", "silverman", ")", "used", "to", "estimate", "the", "data", "bandwidth", ".", "bin_seeding", ":", "bool", "Modifies", "the", "behaviour", "of", "the", "meanshift", "algorithm", ".", "Refer", "to", "sklearn", ".", "cluster", ".", "meanshift", "documentation", ".", "K", "-", "Means", "Parameters", "n_clusters", ":", "int", "The", "number", "of", "clusters", "expected", "in", "the", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2046-L2143
[ "def", "filter_clustering", "(", "self", ",", "analytes", ",", "filt", "=", "False", ",", "normalise", "=", "True", ",", "method", "=", "'kmeans'", ",", "include_time", "=", "False", ",", "samples", "=", "None", ",", "sort", "=", "True", ",", "subset", "=", "None", ",", "level", "=", "'sample'", ",", "min_data", "=", "10", ",", "*", "*", "kwargs", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "self", ".", "minimal_analytes", ".", "update", "(", "analytes", ")", "if", "level", "==", "'sample'", ":", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Clustering Filter'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "filter_clustering", "(", "analytes", "=", "analytes", ",", "filt", "=", "filt", ",", "normalise", "=", "normalise", ",", "method", "=", "method", ",", "include_time", "=", "include_time", ",", "min_data", "=", "min_data", ",", "sort", "=", "sort", ",", "*", "*", "kwargs", ")", "prog", ".", "update", "(", ")", "if", "level", "==", "'population'", ":", "if", "isinstance", "(", "sort", ",", "bool", ")", ":", "sort_by", "=", "0", "else", ":", "sort_by", "=", "sort", "name", "=", "'_'", ".", "join", "(", "analytes", ")", "+", "'_{}'", ".", "format", "(", "method", ")", "self", ".", "fit_classifier", "(", "name", "=", "name", ",", "analytes", "=", "analytes", ",", "method", "=", "method", ",", "subset", "=", "subset", ",", "filt", "=", "filt", ",", "sort_by", "=", "sort_by", ",", "*", "*", "kwargs", ")", "self", ".", "apply_classifier", "(", "name", "=", "name", ",", "subset", "=", "subset", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.fit_classifier
Create a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier. analytes : str or iterable Which analytes the clustering algorithm should consider. method : str Which clustering algorithm to use. Can be: 'meanshift' The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. 'kmeans' The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. samples : iterable list of samples to consider. Overrides 'subset'. subset : str The subset of samples used to fit the classifier. Ignored if 'samples' is specified. sort_by : int Which analyte the resulting clusters should be sorted by - defaults to 0, which is the first analyte. **kwargs : method-specific keyword parameters - see below. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- name : str
latools/latools.py
def fit_classifier(self, name, analytes, method, samples=None, subset=None, filt=True, sort_by=0, **kwargs): """ Create a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier. analytes : str or iterable Which analytes the clustering algorithm should consider. method : str Which clustering algorithm to use. Can be: 'meanshift' The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. 'kmeans' The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. samples : iterable list of samples to consider. Overrides 'subset'. subset : str The subset of samples used to fit the classifier. Ignored if 'samples' is specified. sort_by : int Which analyte the resulting clusters should be sorted by - defaults to 0, which is the first analyte. **kwargs : method-specific keyword parameters - see below. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- name : str """ # isolate data if samples is not None: subset = self.make_subset(samples) self.get_focus(subset=subset, filt=filt) # create classifer c = classifier(analytes, sort_by) # fit classifier c.fit(data=self.focus, method=method, **kwargs) self.classifiers[name] = c return name
def fit_classifier(self, name, analytes, method, samples=None, subset=None, filt=True, sort_by=0, **kwargs): """ Create a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier. analytes : str or iterable Which analytes the clustering algorithm should consider. method : str Which clustering algorithm to use. Can be: 'meanshift' The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. 'kmeans' The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. samples : iterable list of samples to consider. Overrides 'subset'. subset : str The subset of samples used to fit the classifier. Ignored if 'samples' is specified. sort_by : int Which analyte the resulting clusters should be sorted by - defaults to 0, which is the first analyte. **kwargs : method-specific keyword parameters - see below. Meanshift Parameters bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters n_clusters : int The number of clusters expected in the data. Returns ------- name : str """ # isolate data if samples is not None: subset = self.make_subset(samples) self.get_focus(subset=subset, filt=filt) # create classifer c = classifier(analytes, sort_by) # fit classifier c.fit(data=self.focus, method=method, **kwargs) self.classifiers[name] = c return name
[ "Create", "a", "clustering", "classifier", "based", "on", "all", "samples", "or", "a", "subset", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2146-L2211
[ "def", "fit_classifier", "(", "self", ",", "name", ",", "analytes", ",", "method", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "filt", "=", "True", ",", "sort_by", "=", "0", ",", "*", "*", "kwargs", ")", ":", "# isolate data", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "self", ".", "get_focus", "(", "subset", "=", "subset", ",", "filt", "=", "filt", ")", "# create classifer", "c", "=", "classifier", "(", "analytes", ",", "sort_by", ")", "# fit classifier", "c", ".", "fit", "(", "data", "=", "self", ".", "focus", ",", "method", "=", "method", ",", "*", "*", "kwargs", ")", "self", ".", "classifiers", "[", "name", "]", "=", "c", "return", "name" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.apply_classifier
Apply a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier to apply. subset : str The subset of samples to apply the classifier to. Returns ------- name : str
latools/latools.py
def apply_classifier(self, name, samples=None, subset=None): """ Apply a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier to apply. subset : str The subset of samples to apply the classifier to. Returns ------- name : str """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) c = self.classifiers[name] labs = c.classifier.ulabels_ with self.pbar.set(total=len(samples), desc='Applying ' + name + ' classifier') as prog: for s in samples: d = self.data[s] try: f = c.predict(d.focus) except ValueError: # in case there's no data f = np.array([-2] * len(d.Time)) for l in labs: ind = f == l d.filt.add(name=name + '_{:.0f}'.format(l), filt=ind, info=name + ' ' + c.method + ' classifier', params=(c.analytes, c.method)) prog.update() return name
def apply_classifier(self, name, samples=None, subset=None): """ Apply a clustering classifier based on all samples, or a subset. Parameters ---------- name : str The name of the classifier to apply. subset : str The subset of samples to apply the classifier to. Returns ------- name : str """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) c = self.classifiers[name] labs = c.classifier.ulabels_ with self.pbar.set(total=len(samples), desc='Applying ' + name + ' classifier') as prog: for s in samples: d = self.data[s] try: f = c.predict(d.focus) except ValueError: # in case there's no data f = np.array([-2] * len(d.Time)) for l in labs: ind = f == l d.filt.add(name=name + '_{:.0f}'.format(l), filt=ind, info=name + ' ' + c.method + ' classifier', params=(c.analytes, c.method)) prog.update() return name
[ "Apply", "a", "clustering", "classifier", "based", "on", "all", "samples", "or", "a", "subset", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2214-L2252
[ "def", "apply_classifier", "(", "self", ",", "name", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "c", "=", "self", ".", "classifiers", "[", "name", "]", "labs", "=", "c", ".", "classifier", ".", "ulabels_", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Applying '", "+", "name", "+", "' classifier'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "d", "=", "self", ".", "data", "[", "s", "]", "try", ":", "f", "=", "c", ".", "predict", "(", "d", ".", "focus", ")", "except", "ValueError", ":", "# in case there's no data", "f", "=", "np", ".", "array", "(", "[", "-", "2", "]", "*", "len", "(", "d", ".", "Time", ")", ")", "for", "l", "in", "labs", ":", "ind", "=", "f", "==", "l", "d", ".", "filt", ".", "add", "(", "name", "=", "name", "+", "'_{:.0f}'", ".", "format", "(", "l", ")", ",", "filt", "=", "ind", ",", "info", "=", "name", "+", "' '", "+", "c", ".", "method", "+", "' classifier'", ",", "params", "=", "(", "c", ".", "analytes", ",", "c", ".", "method", ")", ")", "prog", ".", "update", "(", ")", "return", "name" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_correlation
Applies a correlation filter to the data. Calculates a rolling correlation between every `window` points of two analytes, and excludes data where their Pearson's R value is above `r_threshold` and statistically significant. Data will be excluded where their absolute R value is greater than `r_threshold` AND the p - value associated with the correlation is less than `p_threshold`. i.e. only correlations that are statistically significant are considered. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. Returns ------- None
latools/latools.py
def filter_correlation(self, x_analyte, y_analyte, window=None, r_threshold=0.9, p_threshold=0.05, filt=True, samples=None, subset=None): """ Applies a correlation filter to the data. Calculates a rolling correlation between every `window` points of two analytes, and excludes data where their Pearson's R value is above `r_threshold` and statistically significant. Data will be excluded where their absolute R value is greater than `r_threshold` AND the p - value associated with the correlation is less than `p_threshold`. i.e. only correlations that are statistically significant are considered. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([x_analyte, y_analyte]) with self.pbar.set(total=len(samples), desc='Correlation Filter') as prog: for s in samples: self.data[s].filter_correlation(x_analyte, y_analyte, window=window, r_threshold=r_threshold, p_threshold=p_threshold, filt=filt) prog.update()
def filter_correlation(self, x_analyte, y_analyte, window=None, r_threshold=0.9, p_threshold=0.05, filt=True, samples=None, subset=None): """ Applies a correlation filter to the data. Calculates a rolling correlation between every `window` points of two analytes, and excludes data where their Pearson's R value is above `r_threshold` and statistically significant. Data will be excluded where their absolute R value is greater than `r_threshold` AND the p - value associated with the correlation is less than `p_threshold`. i.e. only correlations that are statistically significant are considered. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.minimal_analytes.update([x_analyte, y_analyte]) with self.pbar.set(total=len(samples), desc='Correlation Filter') as prog: for s in samples: self.data[s].filter_correlation(x_analyte, y_analyte, window=window, r_threshold=r_threshold, p_threshold=p_threshold, filt=filt) prog.update()
[ "Applies", "a", "correlation", "filter", "to", "the", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2255-L2305
[ "def", "filter_correlation", "(", "self", ",", "x_analyte", ",", "y_analyte", ",", "window", "=", "None", ",", "r_threshold", "=", "0.9", ",", "p_threshold", "=", "0.05", ",", "filt", "=", "True", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "self", ".", "minimal_analytes", ".", "update", "(", "[", "x_analyte", ",", "y_analyte", "]", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Correlation Filter'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "filter_correlation", "(", "x_analyte", ",", "y_analyte", ",", "window", "=", "window", ",", "r_threshold", "=", "r_threshold", ",", "p_threshold", "=", "p_threshold", ",", "filt", "=", "filt", ")", "prog", ".", "update", "(", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.correlation_plots
Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None
latools/latools.py
def correlation_plots(self, x_analyte, y_analyte, window=15, filt=True, recalc=False, samples=None, subset=None, outdir=None): """ Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ if outdir is None: outdir = self.report_dir + '/correlations/' if not os.path.isdir(outdir): os.mkdir(outdir) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, a = self.data[s].correlation_plot(x_analyte=x_analyte, y_analyte=y_analyte, window=window, filt=filt, recalc=recalc) f.savefig('{}/{}_{}-{}.pdf'.format(outdir, s, x_analyte, y_analyte)) plt.close(f) prog.update() return
def correlation_plots(self, x_analyte, y_analyte, window=15, filt=True, recalc=False, samples=None, subset=None, outdir=None): """ Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ if outdir is None: outdir = self.report_dir + '/correlations/' if not os.path.isdir(outdir): os.mkdir(outdir) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, a = self.data[s].correlation_plot(x_analyte=x_analyte, y_analyte=y_analyte, window=window, filt=filt, recalc=recalc) f.savefig('{}/{}_{}-{}.pdf'.format(outdir, s, x_analyte, y_analyte)) plt.close(f) prog.update() return
[ "Plot", "the", "local", "correlation", "between", "two", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2308-L2347
[ "def", "correlation_plots", "(", "self", ",", "x_analyte", ",", "y_analyte", ",", "window", "=", "15", ",", "filt", "=", "True", ",", "recalc", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "outdir", "=", "None", ")", ":", "if", "outdir", "is", "None", ":", "outdir", "=", "self", ".", "report_dir", "+", "'/correlations/'", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "if", "subset", "is", "not", "None", ":", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "elif", "samples", "is", "None", ":", "samples", "=", "self", ".", "subsets", "[", "'All_Analyses'", "]", "elif", "isinstance", "(", "samples", ",", "str", ")", ":", "samples", "=", "[", "samples", "]", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Drawing Plots'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "f", ",", "a", "=", "self", ".", "data", "[", "s", "]", ".", "correlation_plot", "(", "x_analyte", "=", "x_analyte", ",", "y_analyte", "=", "y_analyte", ",", "window", "=", "window", ",", "filt", "=", "filt", ",", "recalc", "=", "recalc", ")", "f", ".", "savefig", "(", "'{}/{}_{}-{}.pdf'", ".", "format", "(", "outdir", ",", "s", ",", "x_analyte", ",", "y_analyte", ")", ")", "plt", ".", "close", "(", "f", ")", "prog", ".", "update", "(", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_on
Turns data filters on for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None
latools/latools.py
def filter_on(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters on for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: try: self.data[s].filt.on(analyte, filt) except: warnings.warn("filt.on failure in sample " + s) if show_status: self.filter_status(subset=subset) return
def filter_on(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters on for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: try: self.data[s].filt.on(analyte, filt) except: warnings.warn("filt.on failure in sample " + s) if show_status: self.filter_status(subset=subset) return
[ "Turns", "data", "filters", "on", "for", "particular", "analytes", "and", "samples", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2352-L2386
[ "def", "filter_on", "(", "self", ",", "filt", "=", "None", ",", "analyte", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "show_status", "=", "False", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "samples", ":", "try", ":", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "on", "(", "analyte", ",", "filt", ")", "except", ":", "warnings", ".", "warn", "(", "\"filt.on failure in sample \"", "+", "s", ")", "if", "show_status", ":", "self", ".", "filter_status", "(", "subset", "=", "subset", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_off
Turns data filters off for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None
latools/latools.py
def filter_off(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters off for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: try: self.data[s].filt.off(analyte, filt) except: warnings.warn("filt.off failure in sample " + s) if show_status: self.filter_status(subset=subset) return
def filter_off(self, filt=None, analyte=None, samples=None, subset=None, show_status=False): """ Turns data filters off for particular analytes and samples. Parameters ---------- filt : optional, str or array_like Name, partial name or list of names of filters. Supports partial matching. i.e. if 'cluster' is specified, all filters with 'cluster' in the name are activated. Defaults to all filters. analyte : optional, str or array_like Name or list of names of analytes. Defaults to all analytes. samples : optional, array_like or None Which samples to apply this filter to. If None, applies to all samples. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: try: self.data[s].filt.off(analyte, filt) except: warnings.warn("filt.off failure in sample " + s) if show_status: self.filter_status(subset=subset) return
[ "Turns", "data", "filters", "off", "for", "particular", "analytes", "and", "samples", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2389-L2423
[ "def", "filter_off", "(", "self", ",", "filt", "=", "None", ",", "analyte", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "show_status", "=", "False", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "samples", ":", "try", ":", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "off", "(", "analyte", ",", "filt", ")", "except", ":", "warnings", ".", "warn", "(", "\"filt.off failure in sample \"", "+", "s", ")", "if", "show_status", ":", "self", ".", "filter_status", "(", "subset", "=", "subset", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_status
Prints the current status of filters for specified samples. Parameters ---------- sample : str Which sample to print. subset : str Specify a subset stds : bool Whether or not to include standards.
latools/latools.py
def filter_status(self, sample=None, subset=None, stds=False): """ Prints the current status of filters for specified samples. Parameters ---------- sample : str Which sample to print. subset : str Specify a subset stds : bool Whether or not to include standards. """ s = '' if sample is None and subset is None: if not self._has_subsets: s += 'Subset: All Samples\n\n' s += self.data[self.subsets['All_Samples'][0]].filt.__repr__() else: for n in sorted(str(sn) for sn in self._subset_names): if n in self.subsets: pass elif int(n) in self.subsets: n = int(n) pass s += 'Subset: ' + str(n) + '\n' s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n' s += self.data[self.subsets[n][0]].filt.__repr__() if len(self.subsets['not_in_set']) > 0: s += '\nNot in Subset:\n' s += 'Samples: ' + ', '.join(self.subsets['not_in_set']) + '\n\n' s += self.data[self.subsets['not_in_set'][0]].filt.__repr__() print(s) return elif sample is not None: s += 'Sample: ' + sample + '\n' s += self.data[sample].filt.__repr__() print(s) return elif subset is not None: if isinstance(subset, (str, int, float)): subset = [subset] for n in subset: s += 'Subset: ' + str(n) + '\n' s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n' s += self.data[self.subsets[n][0]].filt.__repr__() print(s) return
def filter_status(self, sample=None, subset=None, stds=False): """ Prints the current status of filters for specified samples. Parameters ---------- sample : str Which sample to print. subset : str Specify a subset stds : bool Whether or not to include standards. """ s = '' if sample is None and subset is None: if not self._has_subsets: s += 'Subset: All Samples\n\n' s += self.data[self.subsets['All_Samples'][0]].filt.__repr__() else: for n in sorted(str(sn) for sn in self._subset_names): if n in self.subsets: pass elif int(n) in self.subsets: n = int(n) pass s += 'Subset: ' + str(n) + '\n' s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n' s += self.data[self.subsets[n][0]].filt.__repr__() if len(self.subsets['not_in_set']) > 0: s += '\nNot in Subset:\n' s += 'Samples: ' + ', '.join(self.subsets['not_in_set']) + '\n\n' s += self.data[self.subsets['not_in_set'][0]].filt.__repr__() print(s) return elif sample is not None: s += 'Sample: ' + sample + '\n' s += self.data[sample].filt.__repr__() print(s) return elif subset is not None: if isinstance(subset, (str, int, float)): subset = [subset] for n in subset: s += 'Subset: ' + str(n) + '\n' s += 'Samples: ' + ', '.join(self.subsets[n]) + '\n\n' s += self.data[self.subsets[n][0]].filt.__repr__() print(s) return
[ "Prints", "the", "current", "status", "of", "filters", "for", "specified", "samples", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2425-L2474
[ "def", "filter_status", "(", "self", ",", "sample", "=", "None", ",", "subset", "=", "None", ",", "stds", "=", "False", ")", ":", "s", "=", "''", "if", "sample", "is", "None", "and", "subset", "is", "None", ":", "if", "not", "self", ".", "_has_subsets", ":", "s", "+=", "'Subset: All Samples\\n\\n'", "s", "+=", "self", ".", "data", "[", "self", ".", "subsets", "[", "'All_Samples'", "]", "[", "0", "]", "]", ".", "filt", ".", "__repr__", "(", ")", "else", ":", "for", "n", "in", "sorted", "(", "str", "(", "sn", ")", "for", "sn", "in", "self", ".", "_subset_names", ")", ":", "if", "n", "in", "self", ".", "subsets", ":", "pass", "elif", "int", "(", "n", ")", "in", "self", ".", "subsets", ":", "n", "=", "int", "(", "n", ")", "pass", "s", "+=", "'Subset: '", "+", "str", "(", "n", ")", "+", "'\\n'", "s", "+=", "'Samples: '", "+", "', '", ".", "join", "(", "self", ".", "subsets", "[", "n", "]", ")", "+", "'\\n\\n'", "s", "+=", "self", ".", "data", "[", "self", ".", "subsets", "[", "n", "]", "[", "0", "]", "]", ".", "filt", ".", "__repr__", "(", ")", "if", "len", "(", "self", ".", "subsets", "[", "'not_in_set'", "]", ")", ">", "0", ":", "s", "+=", "'\\nNot in Subset:\\n'", "s", "+=", "'Samples: '", "+", "', '", ".", "join", "(", "self", ".", "subsets", "[", "'not_in_set'", "]", ")", "+", "'\\n\\n'", "s", "+=", "self", ".", "data", "[", "self", ".", "subsets", "[", "'not_in_set'", "]", "[", "0", "]", "]", ".", "filt", ".", "__repr__", "(", ")", "print", "(", "s", ")", "return", "elif", "sample", "is", "not", "None", ":", "s", "+=", "'Sample: '", "+", "sample", "+", "'\\n'", "s", "+=", "self", ".", "data", "[", "sample", "]", ".", "filt", ".", "__repr__", "(", ")", "print", "(", "s", ")", "return", "elif", "subset", "is", "not", "None", ":", "if", "isinstance", "(", "subset", ",", "(", "str", ",", "int", ",", "float", ")", ")", ":", "subset", "=", "[", "subset", "]", "for", "n", "in", "subset", ":", "s", "+=", "'Subset: '", "+", "str", "(", "n", ")", "+", "'\\n'", "s", "+=", "'Samples: '", "+", "', '", ".", "join", "(", "self", ".", "subsets", "[", "n", "]", ")", "+", "'\\n\\n'", "s", "+=", "self", ".", "data", "[", "self", ".", "subsets", "[", "n", "]", "[", "0", "]", "]", ".", "filt", ".", "__repr__", "(", ")", "print", "(", "s", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_clear
Clears (deletes) all data filters.
latools/latools.py
def filter_clear(self, samples=None, subset=None): """ Clears (deletes) all data filters. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: self.data[s].filt.clear()
def filter_clear(self, samples=None, subset=None): """ Clears (deletes) all data filters. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: self.data[s].filt.clear()
[ "Clears", "(", "deletes", ")", "all", "data", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2477-L2487
[ "def", "filter_clear", "(", "self", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "clear", "(", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_defragment
Remove 'fragments' from the calculated filter Parameters ---------- threshold : int Contiguous data regions that contain this number or fewer points are considered 'fragments' mode : str Specifies wither to 'include' or 'exclude' the identified fragments. filt : bool or filt string Which filter to apply the defragmenter to. Defaults to True samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None
latools/latools.py
def filter_defragment(self, threshold, mode='include', filt=True, samples=None, subset=None): """ Remove 'fragments' from the calculated filter Parameters ---------- threshold : int Contiguous data regions that contain this number or fewer points are considered 'fragments' mode : str Specifies wither to 'include' or 'exclude' the identified fragments. filt : bool or filt string Which filter to apply the defragmenter to. Defaults to True samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: f = self.data[s].filt.grab_filt(filt) self.data[s].filt.add(name='defrag_{:s}_{:.0f}'.format(mode, threshold), filt=filters.defrag(f, threshold, mode), info='Defrag {:s} filter with threshold {:.0f}'.format(mode, threshold), params=(threshold, mode, filt, samples, subset))
def filter_defragment(self, threshold, mode='include', filt=True, samples=None, subset=None): """ Remove 'fragments' from the calculated filter Parameters ---------- threshold : int Contiguous data regions that contain this number or fewer points are considered 'fragments' mode : str Specifies wither to 'include' or 'exclude' the identified fragments. filt : bool or filt string Which filter to apply the defragmenter to. Defaults to True samples : array_like or None Which samples to apply this filter to. If None, applies to all samples. subset : str or number The subset of samples (defined by make_subset) you want to apply the filter to. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: f = self.data[s].filt.grab_filt(filt) self.data[s].filt.add(name='defrag_{:s}_{:.0f}'.format(mode, threshold), filt=filters.defrag(f, threshold, mode), info='Defrag {:s} filter with threshold {:.0f}'.format(mode, threshold), params=(threshold, mode, filt, samples, subset))
[ "Remove", "fragments", "from", "the", "calculated", "filter" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2490-L2525
[ "def", "filter_defragment", "(", "self", ",", "threshold", ",", "mode", "=", "'include'", ",", "filt", "=", "True", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "samples", ":", "f", "=", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "grab_filt", "(", "filt", ")", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "add", "(", "name", "=", "'defrag_{:s}_{:.0f}'", ".", "format", "(", "mode", ",", "threshold", ")", ",", "filt", "=", "filters", ".", "defrag", "(", "f", ",", "threshold", ",", "mode", ")", ",", "info", "=", "'Defrag {:s} filter with threshold {:.0f}'", ".", "format", "(", "mode", ",", "threshold", ")", ",", "params", "=", "(", "threshold", ",", "mode", ",", "filt", ",", "samples", ",", "subset", ")", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_exclude_downhole
Exclude all points down-hole (after) the first excluded data. Parameters ---------- threhold : int The minimum number of contiguous excluded data points that must exist before downhole exclusion occurs. file : valid filter string or bool Which filter to consider. If True, applies to currently active filters.
latools/latools.py
def filter_exclude_downhole(self, threshold, filt=True, samples=None, subset=None): """ Exclude all points down-hole (after) the first excluded data. Parameters ---------- threhold : int The minimum number of contiguous excluded data points that must exist before downhole exclusion occurs. file : valid filter string or bool Which filter to consider. If True, applies to currently active filters. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: self.data[s].filter_exclude_downhole(threshold, filt)
def filter_exclude_downhole(self, threshold, filt=True, samples=None, subset=None): """ Exclude all points down-hole (after) the first excluded data. Parameters ---------- threhold : int The minimum number of contiguous excluded data points that must exist before downhole exclusion occurs. file : valid filter string or bool Which filter to consider. If True, applies to currently active filters. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: self.data[s].filter_exclude_downhole(threshold, filt)
[ "Exclude", "all", "points", "down", "-", "hole", "(", "after", ")", "the", "first", "excluded", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2528-L2547
[ "def", "filter_exclude_downhole", "(", "self", ",", "threshold", ",", "filt", "=", "True", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "filter_exclude_downhole", "(", "threshold", ",", "filt", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_trim
Remove points from the start and end of filter regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. filt : valid filter string or bool Which filter to trim. If True, applies to currently active filters.
latools/latools.py
def filter_trim(self, start=1, end=1, filt=True, samples=None, subset=None): """ Remove points from the start and end of filter regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. filt : valid filter string or bool Which filter to trim. If True, applies to currently active filters. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: self.data[s].filter_trim(start, end, filt)
def filter_trim(self, start=1, end=1, filt=True, samples=None, subset=None): """ Remove points from the start and end of filter regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. filt : valid filter string or bool Which filter to trim. If True, applies to currently active filters. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in samples: self.data[s].filter_trim(start, end, filt)
[ "Remove", "points", "from", "the", "start", "and", "end", "of", "filter", "regions", ".", "Parameters", "----------", "start", "end", ":", "int", "The", "number", "of", "points", "to", "remove", "from", "the", "start", "and", "end", "of", "the", "specified", "filter", ".", "filt", ":", "valid", "filter", "string", "or", "bool", "Which", "filter", "to", "trim", ".", "If", "True", "applies", "to", "currently", "active", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2550-L2569
[ "def", "filter_trim", "(", "self", ",", "start", "=", "1", ",", "end", "=", "1", ",", "filt", "=", "True", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "filter_trim", "(", "start", ",", "end", ",", "filt", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_nremoved
Report how many data are removed by the active filters.
latools/latools.py
def filter_nremoved(self, filt=True, quiet=False): """ Report how many data are removed by the active filters. """ rminfo = {} for n in self.subsets['All_Samples']: s = self.data[n] rminfo[n] = s.filt_nremoved(filt) if not quiet: maxL = max([len(s) for s in rminfo.keys()]) print('{string:{number}s}'.format(string='Sample ', number=maxL + 3) + '{total:4s}'.format(total='tot') + '{removed:4s}'.format(removed='flt') + '{percent:4s}'.format(percent='%rm')) for k, (ntot, nfilt, pcrm) in rminfo.items(): print('{string:{number}s}'.format(string=k, number=maxL + 3) + '{total:4.0f}'.format(total=ntot) + '{removed:4.0f}'.format(removed=nfilt) + '{percent:4.0f}'.format(percent=pcrm)) return rminfo
def filter_nremoved(self, filt=True, quiet=False): """ Report how many data are removed by the active filters. """ rminfo = {} for n in self.subsets['All_Samples']: s = self.data[n] rminfo[n] = s.filt_nremoved(filt) if not quiet: maxL = max([len(s) for s in rminfo.keys()]) print('{string:{number}s}'.format(string='Sample ', number=maxL + 3) + '{total:4s}'.format(total='tot') + '{removed:4s}'.format(removed='flt') + '{percent:4s}'.format(percent='%rm')) for k, (ntot, nfilt, pcrm) in rminfo.items(): print('{string:{number}s}'.format(string=k, number=maxL + 3) + '{total:4.0f}'.format(total=ntot) + '{removed:4.0f}'.format(removed=nfilt) + '{percent:4.0f}'.format(percent=pcrm)) return rminfo
[ "Report", "how", "many", "data", "are", "removed", "by", "the", "active", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2571-L2591
[ "def", "filter_nremoved", "(", "self", ",", "filt", "=", "True", ",", "quiet", "=", "False", ")", ":", "rminfo", "=", "{", "}", "for", "n", "in", "self", ".", "subsets", "[", "'All_Samples'", "]", ":", "s", "=", "self", ".", "data", "[", "n", "]", "rminfo", "[", "n", "]", "=", "s", ".", "filt_nremoved", "(", "filt", ")", "if", "not", "quiet", ":", "maxL", "=", "max", "(", "[", "len", "(", "s", ")", "for", "s", "in", "rminfo", ".", "keys", "(", ")", "]", ")", "print", "(", "'{string:{number}s}'", ".", "format", "(", "string", "=", "'Sample '", ",", "number", "=", "maxL", "+", "3", ")", "+", "'{total:4s}'", ".", "format", "(", "total", "=", "'tot'", ")", "+", "'{removed:4s}'", ".", "format", "(", "removed", "=", "'flt'", ")", "+", "'{percent:4s}'", ".", "format", "(", "percent", "=", "'%rm'", ")", ")", "for", "k", ",", "(", "ntot", ",", "nfilt", ",", "pcrm", ")", "in", "rminfo", ".", "items", "(", ")", ":", "print", "(", "'{string:{number}s}'", ".", "format", "(", "string", "=", "k", ",", "number", "=", "maxL", "+", "3", ")", "+", "'{total:4.0f}'", ".", "format", "(", "total", "=", "ntot", ")", "+", "'{removed:4.0f}'", ".", "format", "(", "removed", "=", "nfilt", ")", "+", "'{percent:4.0f}'", ".", "format", "(", "percent", "=", "pcrm", ")", ")", "return", "rminfo" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.optimise_signal
Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None.
latools/latools.py
def optimise_signal(self, analytes, min_points=5, threshold_mode='kde_first_max', threshold_mult=1., x_bias=0, filt=True, weights=None, mode='minimise', samples=None, subset=None): """ Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if isinstance(analytes, str): analytes = [analytes] self.minimal_analytes.update(analytes) errs = [] with self.pbar.set(total=len(samples), desc='Optimising Data selection') as prog: for s in samples: e = self.data[s].signal_optimiser(analytes=analytes, min_points=min_points, threshold_mode=threshold_mode, threshold_mult=threshold_mult, x_bias=x_bias, weights=weights, filt=filt, mode=mode) if e != '': errs.append(e) prog.update() if len(errs) > 0: print('\nA Few Problems:\n' + '\n'.join(errs) + '\n\n *** Check Optimisation Plots ***')
def optimise_signal(self, analytes, min_points=5, threshold_mode='kde_first_max', threshold_mult=1., x_bias=0, filt=True, weights=None, mode='minimise', samples=None, subset=None): """ Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if isinstance(analytes, str): analytes = [analytes] self.minimal_analytes.update(analytes) errs = [] with self.pbar.set(total=len(samples), desc='Optimising Data selection') as prog: for s in samples: e = self.data[s].signal_optimiser(analytes=analytes, min_points=min_points, threshold_mode=threshold_mode, threshold_mult=threshold_mult, x_bias=x_bias, weights=weights, filt=filt, mode=mode) if e != '': errs.append(e) prog.update() if len(errs) > 0: print('\nA Few Problems:\n' + '\n'.join(errs) + '\n\n *** Check Optimisation Plots ***')
[ "Optimise", "data", "selection", "based", "on", "specified", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2594-L2668
[ "def", "optimise_signal", "(", "self", ",", "analytes", ",", "min_points", "=", "5", ",", "threshold_mode", "=", "'kde_first_max'", ",", "threshold_mult", "=", "1.", ",", "x_bias", "=", "0", ",", "filt", "=", "True", ",", "weights", "=", "None", ",", "mode", "=", "'minimise'", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "self", ".", "minimal_analytes", ".", "update", "(", "analytes", ")", "errs", "=", "[", "]", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Optimising Data selection'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "e", "=", "self", ".", "data", "[", "s", "]", ".", "signal_optimiser", "(", "analytes", "=", "analytes", ",", "min_points", "=", "min_points", ",", "threshold_mode", "=", "threshold_mode", ",", "threshold_mult", "=", "threshold_mult", ",", "x_bias", "=", "x_bias", ",", "weights", "=", "weights", ",", "filt", "=", "filt", ",", "mode", "=", "mode", ")", "if", "e", "!=", "''", ":", "errs", ".", "append", "(", "e", ")", "prog", ".", "update", "(", ")", "if", "len", "(", "errs", ")", ">", "0", ":", "print", "(", "'\\nA Few Problems:\\n'", "+", "'\\n'", ".", "join", "(", "errs", ")", "+", "'\\n\\n *** Check Optimisation Plots ***'", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.optimisation_plots
Plot the result of signal_optimise. `signal_optimiser` must be run first, and the output stored in the `opt` attribute of the latools.D object. Parameters ---------- d : latools.D object A latools data object. overlay_alpha : float The opacity of the threshold overlays. Between 0 and 1. **kwargs Passed to `tplot`
latools/latools.py
def optimisation_plots(self, overlay_alpha=0.5, samples=None, subset=None, **kwargs): """ Plot the result of signal_optimise. `signal_optimiser` must be run first, and the output stored in the `opt` attribute of the latools.D object. Parameters ---------- d : latools.D object A latools data object. overlay_alpha : float The opacity of the threshold overlays. Between 0 and 1. **kwargs Passed to `tplot` """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) outdir=self.report_dir + '/optimisation_plots/' if not os.path.isdir(outdir): os.mkdir(outdir) with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: figs = self.data[s].optimisation_plot(overlay_alpha, **kwargs) n = 1 for f, _ in figs: if f is not None: f.savefig(outdir + '/' + s + '_optim_{:.0f}.pdf'.format(n)) plt.close(f) n += 1 prog.update() return
def optimisation_plots(self, overlay_alpha=0.5, samples=None, subset=None, **kwargs): """ Plot the result of signal_optimise. `signal_optimiser` must be run first, and the output stored in the `opt` attribute of the latools.D object. Parameters ---------- d : latools.D object A latools data object. overlay_alpha : float The opacity of the threshold overlays. Between 0 and 1. **kwargs Passed to `tplot` """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) outdir=self.report_dir + '/optimisation_plots/' if not os.path.isdir(outdir): os.mkdir(outdir) with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: figs = self.data[s].optimisation_plot(overlay_alpha, **kwargs) n = 1 for f, _ in figs: if f is not None: f.savefig(outdir + '/' + s + '_optim_{:.0f}.pdf'.format(n)) plt.close(f) n += 1 prog.update() return
[ "Plot", "the", "result", "of", "signal_optimise", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2671-L2706
[ "def", "optimisation_plots", "(", "self", ",", "overlay_alpha", "=", "0.5", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "outdir", "=", "self", ".", "report_dir", "+", "'/optimisation_plots/'", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Drawing Plots'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "figs", "=", "self", ".", "data", "[", "s", "]", ".", "optimisation_plot", "(", "overlay_alpha", ",", "*", "*", "kwargs", ")", "n", "=", "1", "for", "f", ",", "_", "in", "figs", ":", "if", "f", "is", "not", "None", ":", "f", ".", "savefig", "(", "outdir", "+", "'/'", "+", "s", "+", "'_optim_{:.0f}.pdf'", ".", "format", "(", "n", ")", ")", "plt", ".", "close", "(", "f", ")", "n", "+=", "1", "prog", ".", "update", "(", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.set_focus
Set the 'focus' attribute of the data file. The 'focus' attribute of the object points towards data from a particular stage of analysis. It is used to identify the 'working stage' of the data. Processing functions operate on the 'focus' stage, so if steps are done out of sequence, things will break. Names of analysis stages: * 'rawdata': raw data, loaded from csv file when object is initialised. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data, padded with np.nan. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Parameters ---------- focus : str The name of the analysis stage desired. Returns ------- None
latools/latools.py
def set_focus(self, focus_stage=None, samples=None, subset=None): """ Set the 'focus' attribute of the data file. The 'focus' attribute of the object points towards data from a particular stage of analysis. It is used to identify the 'working stage' of the data. Processing functions operate on the 'focus' stage, so if steps are done out of sequence, things will break. Names of analysis stages: * 'rawdata': raw data, loaded from csv file when object is initialised. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data, padded with np.nan. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Parameters ---------- focus : str The name of the analysis stage desired. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) if subset is None: subset = 'All_Analyses' samples = self._get_samples(subset) if focus_stage is None: focus_stage = self.focus_stage else: self.focus_stage = focus_stage for s in samples: self.data[s].setfocus(focus_stage)
def set_focus(self, focus_stage=None, samples=None, subset=None): """ Set the 'focus' attribute of the data file. The 'focus' attribute of the object points towards data from a particular stage of analysis. It is used to identify the 'working stage' of the data. Processing functions operate on the 'focus' stage, so if steps are done out of sequence, things will break. Names of analysis stages: * 'rawdata': raw data, loaded from csv file when object is initialised. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data, padded with np.nan. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Parameters ---------- focus : str The name of the analysis stage desired. Returns ------- None """ if samples is not None: subset = self.make_subset(samples) if subset is None: subset = 'All_Analyses' samples = self._get_samples(subset) if focus_stage is None: focus_stage = self.focus_stage else: self.focus_stage = focus_stage for s in samples: self.data[s].setfocus(focus_stage)
[ "Set", "the", "focus", "attribute", "of", "the", "data", "file", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2716-L2763
[ "def", "set_focus", "(", "self", ",", "focus_stage", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "None", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "if", "subset", "is", "None", ":", "subset", "=", "'All_Analyses'", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "if", "focus_stage", "is", "None", ":", "focus_stage", "=", "self", ".", "focus_stage", "else", ":", "self", ".", "focus_stage", "=", "focus_stage", "for", "s", "in", "samples", ":", "self", ".", "data", "[", "s", "]", ".", "setfocus", "(", "focus_stage", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.get_focus
Collect all data from all samples into a single array. Data from standards is not collected. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. samples : str or list which samples to get subset : str or int which subset to get Returns ------- None
latools/latools.py
def get_focus(self, filt=False, samples=None, subset=None, nominal=False): """ Collect all data from all samples into a single array. Data from standards is not collected. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. samples : str or list which samples to get subset : str or int which subset to get Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) # t = 0 focus = {'uTime': []} focus.update({a: [] for a in self.analytes}) for sa in samples: s = self.data[sa] focus['uTime'].append(s.uTime) ind = s.filt.grab_filt(filt) for a in self.analytes: tmp = s.focus[a].copy() tmp[~ind] = np.nan focus[a].append(tmp) if nominal: self.focus.update({k: nominal_values(np.concatenate(v)) for k, v, in focus.items()}) else: self.focus.update({k: np.concatenate(v) for k, v, in focus.items()}) return
def get_focus(self, filt=False, samples=None, subset=None, nominal=False): """ Collect all data from all samples into a single array. Data from standards is not collected. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. samples : str or list which samples to get subset : str or int which subset to get Returns ------- None """ if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) # t = 0 focus = {'uTime': []} focus.update({a: [] for a in self.analytes}) for sa in samples: s = self.data[sa] focus['uTime'].append(s.uTime) ind = s.filt.grab_filt(filt) for a in self.analytes: tmp = s.focus[a].copy() tmp[~ind] = np.nan focus[a].append(tmp) if nominal: self.focus.update({k: nominal_values(np.concatenate(v)) for k, v, in focus.items()}) else: self.focus.update({k: np.concatenate(v) for k, v, in focus.items()}) return
[ "Collect", "all", "data", "from", "all", "samples", "into", "a", "single", "array", ".", "Data", "from", "standards", "is", "not", "collected", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2766-L2810
[ "def", "get_focus", "(", "self", ",", "filt", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "nominal", "=", "False", ")", ":", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "# t = 0", "focus", "=", "{", "'uTime'", ":", "[", "]", "}", "focus", ".", "update", "(", "{", "a", ":", "[", "]", "for", "a", "in", "self", ".", "analytes", "}", ")", "for", "sa", "in", "samples", ":", "s", "=", "self", ".", "data", "[", "sa", "]", "focus", "[", "'uTime'", "]", ".", "append", "(", "s", ".", "uTime", ")", "ind", "=", "s", ".", "filt", ".", "grab_filt", "(", "filt", ")", "for", "a", "in", "self", ".", "analytes", ":", "tmp", "=", "s", ".", "focus", "[", "a", "]", ".", "copy", "(", ")", "tmp", "[", "~", "ind", "]", "=", "np", ".", "nan", "focus", "[", "a", "]", ".", "append", "(", "tmp", ")", "if", "nominal", ":", "self", ".", "focus", ".", "update", "(", "{", "k", ":", "nominal_values", "(", "np", ".", "concatenate", "(", "v", ")", ")", "for", "k", ",", "v", ",", "in", "focus", ".", "items", "(", ")", "}", ")", "else", ":", "self", ".", "focus", ".", "update", "(", "{", "k", ":", "np", ".", "concatenate", "(", "v", ")", "for", "k", ",", "v", ",", "in", "focus", ".", "items", "(", ")", "}", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.get_gradients
Collect all data from all samples into a single array. Data from standards is not collected. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. samples : str or list which samples to get subset : str or int which subset to get Returns ------- None
latools/latools.py
def get_gradients(self, analytes=None, win=15, filt=False, samples=None, subset=None, recalc=True): """ Collect all data from all samples into a single array. Data from standards is not collected. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. samples : str or list which samples to get subset : str or int which subset to get Returns ------- None """ if analytes is None: analytes = self.analytes if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) # check if gradients already calculated if all([self.data[s].grads_calced for s in samples]) and hasattr(self, 'gradients'): if not recalc: print("Using existing gradients. Set recalc=True to re-calculate.") return if not hasattr(self, 'gradients'): self.gradients = Bunch() # t = 0 focus = {'uTime': []} focus.update({a: [] for a in analytes}) with self.pbar.set(total=len(samples), desc='Calculating Gradients') as prog: for sa in samples: s = self.data[sa] focus['uTime'].append(s.uTime) ind = s.filt.grab_filt(filt) grads = calc_grads(s.uTime, s.focus, keys=analytes, win=win) for a in analytes: tmp = grads[a] tmp[~ind] = np.nan focus[a].append(tmp) s.grads = tmp s.grads_calced = True prog.update() self.gradients.update({k: np.concatenate(v) for k, v, in focus.items()}) return
def get_gradients(self, analytes=None, win=15, filt=False, samples=None, subset=None, recalc=True): """ Collect all data from all samples into a single array. Data from standards is not collected. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. samples : str or list which samples to get subset : str or int which subset to get Returns ------- None """ if analytes is None: analytes = self.analytes if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) # check if gradients already calculated if all([self.data[s].grads_calced for s in samples]) and hasattr(self, 'gradients'): if not recalc: print("Using existing gradients. Set recalc=True to re-calculate.") return if not hasattr(self, 'gradients'): self.gradients = Bunch() # t = 0 focus = {'uTime': []} focus.update({a: [] for a in analytes}) with self.pbar.set(total=len(samples), desc='Calculating Gradients') as prog: for sa in samples: s = self.data[sa] focus['uTime'].append(s.uTime) ind = s.filt.grab_filt(filt) grads = calc_grads(s.uTime, s.focus, keys=analytes, win=win) for a in analytes: tmp = grads[a] tmp[~ind] = np.nan focus[a].append(tmp) s.grads = tmp s.grads_calced = True prog.update() self.gradients.update({k: np.concatenate(v) for k, v, in focus.items()}) return
[ "Collect", "all", "data", "from", "all", "samples", "into", "a", "single", "array", ".", "Data", "from", "standards", "is", "not", "collected", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2813-L2870
[ "def", "get_gradients", "(", "self", ",", "analytes", "=", "None", ",", "win", "=", "15", ",", "filt", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "recalc", "=", "True", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "# check if gradients already calculated", "if", "all", "(", "[", "self", ".", "data", "[", "s", "]", ".", "grads_calced", "for", "s", "in", "samples", "]", ")", "and", "hasattr", "(", "self", ",", "'gradients'", ")", ":", "if", "not", "recalc", ":", "print", "(", "\"Using existing gradients. Set recalc=True to re-calculate.\"", ")", "return", "if", "not", "hasattr", "(", "self", ",", "'gradients'", ")", ":", "self", ".", "gradients", "=", "Bunch", "(", ")", "# t = 0", "focus", "=", "{", "'uTime'", ":", "[", "]", "}", "focus", ".", "update", "(", "{", "a", ":", "[", "]", "for", "a", "in", "analytes", "}", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Calculating Gradients'", ")", "as", "prog", ":", "for", "sa", "in", "samples", ":", "s", "=", "self", ".", "data", "[", "sa", "]", "focus", "[", "'uTime'", "]", ".", "append", "(", "s", ".", "uTime", ")", "ind", "=", "s", ".", "filt", ".", "grab_filt", "(", "filt", ")", "grads", "=", "calc_grads", "(", "s", ".", "uTime", ",", "s", ".", "focus", ",", "keys", "=", "analytes", ",", "win", "=", "win", ")", "for", "a", "in", "analytes", ":", "tmp", "=", "grads", "[", "a", "]", "tmp", "[", "~", "ind", "]", "=", "np", ".", "nan", "focus", "[", "a", "]", ".", "append", "(", "tmp", ")", "s", ".", "grads", "=", "tmp", "s", ".", "grads_calced", "=", "True", "prog", ".", "update", "(", ")", "self", ".", "gradients", ".", "update", "(", "{", "k", ":", "np", ".", "concatenate", "(", "v", ")", "for", "k", ",", "v", ",", "in", "focus", ".", "items", "(", ")", "}", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.gradient_histogram
Plot a histogram of the gradients in all samples. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. bins : None or array-like The bins to use in the histogram samples : str or list which samples to get subset : str or int which subset to get recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- fig, ax
latools/latools.py
def gradient_histogram(self, analytes=None, win=15, filt=False, bins=None, samples=None, subset=None, recalc=True, ncol=4): """ Plot a histogram of the gradients in all samples. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. bins : None or array-like The bins to use in the histogram samples : str or list which samples to get subset : str or int which subset to get recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- fig, ax """ if analytes is None: analytes = [a for a in self.analytes if self.internal_standard not in a] if not hasattr(self, 'gradients'): self.gradients = Bunch() ncol = int(ncol) n = len(analytes) nrow = plot.calc_nrow(n, ncol) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.get_gradients(analytes=analytes, win=win, filt=filt, subset=subset, recalc=recalc) fig, axs = plt.subplots(nrow, ncol, figsize=[3. * ncol, 2.5 * nrow]) if not isinstance(axs, np.ndarray): axs = [axs] i = 0 for a, ax in zip(analytes, axs.flatten()): d = nominal_values(self.gradients[a]) d = d[~np.isnan(d)] m, u = unitpicker(d, focus_stage=self.focus_stage, denominator=self.internal_standard) if bins is None: ibins = np.linspace(*np.percentile(d * m, [1, 99]), 50) else: ibins = bins ax.hist(d * m, bins=ibins, color=self.cmaps[a]) ax.axvline(0, ls='dashed', lw=1, c=(0,0,0,0.7)) ax.set_title(a, loc='left') if ax.is_first_col(): ax.set_ylabel('N') ax.set_xlabel(u + '/s') i += 1 if i < ncol * nrow: for ax in axs.flatten()[i:]: ax.set_visible(False) fig.tight_layout() return fig, axs
def gradient_histogram(self, analytes=None, win=15, filt=False, bins=None, samples=None, subset=None, recalc=True, ncol=4): """ Plot a histogram of the gradients in all samples. Parameters ---------- filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. bins : None or array-like The bins to use in the histogram samples : str or list which samples to get subset : str or int which subset to get recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- fig, ax """ if analytes is None: analytes = [a for a in self.analytes if self.internal_standard not in a] if not hasattr(self, 'gradients'): self.gradients = Bunch() ncol = int(ncol) n = len(analytes) nrow = plot.calc_nrow(n, ncol) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) self.get_gradients(analytes=analytes, win=win, filt=filt, subset=subset, recalc=recalc) fig, axs = plt.subplots(nrow, ncol, figsize=[3. * ncol, 2.5 * nrow]) if not isinstance(axs, np.ndarray): axs = [axs] i = 0 for a, ax in zip(analytes, axs.flatten()): d = nominal_values(self.gradients[a]) d = d[~np.isnan(d)] m, u = unitpicker(d, focus_stage=self.focus_stage, denominator=self.internal_standard) if bins is None: ibins = np.linspace(*np.percentile(d * m, [1, 99]), 50) else: ibins = bins ax.hist(d * m, bins=ibins, color=self.cmaps[a]) ax.axvline(0, ls='dashed', lw=1, c=(0,0,0,0.7)) ax.set_title(a, loc='left') if ax.is_first_col(): ax.set_ylabel('N') ax.set_xlabel(u + '/s') i += 1 if i < ncol * nrow: for ax in axs.flatten()[i:]: ax.set_visible(False) fig.tight_layout() return fig, axs
[ "Plot", "a", "histogram", "of", "the", "gradients", "in", "all", "samples", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2872-L2944
[ "def", "gradient_histogram", "(", "self", ",", "analytes", "=", "None", ",", "win", "=", "15", ",", "filt", "=", "False", ",", "bins", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "recalc", "=", "True", ",", "ncol", "=", "4", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "[", "a", "for", "a", "in", "self", ".", "analytes", "if", "self", ".", "internal_standard", "not", "in", "a", "]", "if", "not", "hasattr", "(", "self", ",", "'gradients'", ")", ":", "self", ".", "gradients", "=", "Bunch", "(", ")", "ncol", "=", "int", "(", "ncol", ")", "n", "=", "len", "(", "analytes", ")", "nrow", "=", "plot", ".", "calc_nrow", "(", "n", ",", "ncol", ")", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "self", ".", "get_gradients", "(", "analytes", "=", "analytes", ",", "win", "=", "win", ",", "filt", "=", "filt", ",", "subset", "=", "subset", ",", "recalc", "=", "recalc", ")", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "nrow", ",", "ncol", ",", "figsize", "=", "[", "3.", "*", "ncol", ",", "2.5", "*", "nrow", "]", ")", "if", "not", "isinstance", "(", "axs", ",", "np", ".", "ndarray", ")", ":", "axs", "=", "[", "axs", "]", "i", "=", "0", "for", "a", ",", "ax", "in", "zip", "(", "analytes", ",", "axs", ".", "flatten", "(", ")", ")", ":", "d", "=", "nominal_values", "(", "self", ".", "gradients", "[", "a", "]", ")", "d", "=", "d", "[", "~", "np", ".", "isnan", "(", "d", ")", "]", "m", ",", "u", "=", "unitpicker", "(", "d", ",", "focus_stage", "=", "self", ".", "focus_stage", ",", "denominator", "=", "self", ".", "internal_standard", ")", "if", "bins", "is", "None", ":", "ibins", "=", "np", ".", "linspace", "(", "*", "np", ".", "percentile", "(", "d", "*", "m", ",", "[", "1", ",", "99", "]", ")", ",", "50", ")", "else", ":", "ibins", "=", "bins", "ax", ".", "hist", "(", "d", "*", "m", ",", "bins", "=", "ibins", ",", "color", "=", "self", ".", "cmaps", "[", "a", "]", ")", "ax", ".", "axvline", "(", "0", ",", "ls", "=", "'dashed'", ",", "lw", "=", "1", ",", "c", "=", "(", "0", ",", "0", ",", "0", ",", "0.7", ")", ")", "ax", ".", "set_title", "(", "a", ",", "loc", "=", "'left'", ")", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "set_ylabel", "(", "'N'", ")", "ax", ".", "set_xlabel", "(", "u", "+", "'/s'", ")", "i", "+=", "1", "if", "i", "<", "ncol", "*", "nrow", ":", "for", "ax", "in", "axs", ".", "flatten", "(", ")", "[", "i", ":", "]", ":", "ax", ".", "set_visible", "(", "False", ")", "fig", ".", "tight_layout", "(", ")", "return", "fig", ",", "axs" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.crossplot
Plot analytes against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is saves as str. colourful : bool Whether or not the plot should be colourful :). mode : str 'hist2d' (default) or 'scatter' Returns ------- (fig, axes)
latools/latools.py
def crossplot(self, analytes=None, lognorm=True, bins=25, filt=False, samples=None, subset=None, figsize=(12, 12), save=False, colourful=True, mode='hist2d', **kwargs): """ Plot analytes against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is saves as str. colourful : bool Whether or not the plot should be colourful :). mode : str 'hist2d' (default) or 'scatter' Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] # sort analytes try: analytes = sorted(analytes, key=lambda x: float(re.findall('[0-9.-]+', x)[0])) except IndexError: analytes = sorted(analytes) self.get_focus(filt=filt, samples=samples, subset=subset) fig, axes = plot.crossplot(dat=self.focus, keys=analytes, lognorm=lognorm, bins=bins, figsize=figsize, colourful=colourful, focus_stage=self.focus_stage, cmap=self.cmaps, denominator=self.internal_standard, mode=mode) if save or isinstance(save, str): if isinstance(save, str): fig.savefig(self.report_dir + '/' + save, dpi=200) else: fig.savefig(self.report_dir + '/crossplot.png', dpi=200) return fig, axes
def crossplot(self, analytes=None, lognorm=True, bins=25, filt=False, samples=None, subset=None, figsize=(12, 12), save=False, colourful=True, mode='hist2d', **kwargs): """ Plot analytes against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is saves as str. colourful : bool Whether or not the plot should be colourful :). mode : str 'hist2d' (default) or 'scatter' Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] # sort analytes try: analytes = sorted(analytes, key=lambda x: float(re.findall('[0-9.-]+', x)[0])) except IndexError: analytes = sorted(analytes) self.get_focus(filt=filt, samples=samples, subset=subset) fig, axes = plot.crossplot(dat=self.focus, keys=analytes, lognorm=lognorm, bins=bins, figsize=figsize, colourful=colourful, focus_stage=self.focus_stage, cmap=self.cmaps, denominator=self.internal_standard, mode=mode) if save or isinstance(save, str): if isinstance(save, str): fig.savefig(self.report_dir + '/' + save, dpi=200) else: fig.savefig(self.report_dir + '/crossplot.png', dpi=200) return fig, axes
[ "Plot", "analytes", "against", "each", "other", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2948-L3006
[ "def", "crossplot", "(", "self", ",", "analytes", "=", "None", ",", "lognorm", "=", "True", ",", "bins", "=", "25", ",", "filt", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "figsize", "=", "(", "12", ",", "12", ")", ",", "save", "=", "False", ",", "colourful", "=", "True", ",", "mode", "=", "'hist2d'", ",", "*", "*", "kwargs", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "self", ".", "focus_stage", "in", "[", "'ratio'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "self", ".", "internal_standard", "not", "in", "a", "]", "# sort analytes", "try", ":", "analytes", "=", "sorted", "(", "analytes", ",", "key", "=", "lambda", "x", ":", "float", "(", "re", ".", "findall", "(", "'[0-9.-]+'", ",", "x", ")", "[", "0", "]", ")", ")", "except", "IndexError", ":", "analytes", "=", "sorted", "(", "analytes", ")", "self", ".", "get_focus", "(", "filt", "=", "filt", ",", "samples", "=", "samples", ",", "subset", "=", "subset", ")", "fig", ",", "axes", "=", "plot", ".", "crossplot", "(", "dat", "=", "self", ".", "focus", ",", "keys", "=", "analytes", ",", "lognorm", "=", "lognorm", ",", "bins", "=", "bins", ",", "figsize", "=", "figsize", ",", "colourful", "=", "colourful", ",", "focus_stage", "=", "self", ".", "focus_stage", ",", "cmap", "=", "self", ".", "cmaps", ",", "denominator", "=", "self", ".", "internal_standard", ",", "mode", "=", "mode", ")", "if", "save", "or", "isinstance", "(", "save", ",", "str", ")", ":", "if", "isinstance", "(", "save", ",", "str", ")", ":", "fig", ".", "savefig", "(", "self", ".", "report_dir", "+", "'/'", "+", "save", ",", "dpi", "=", "200", ")", "else", ":", "fig", ".", "savefig", "(", "self", ".", "report_dir", "+", "'/crossplot.png'", ",", "dpi", "=", "200", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.gradient_crossplot
Plot analyte gradients against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is saves as str. colourful : bool Whether or not the plot should be colourful :). mode : str 'hist2d' (default) or 'scatter' recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- (fig, axes)
latools/latools.py
def gradient_crossplot(self, analytes=None, win=15, lognorm=True, bins=25, filt=False, samples=None, subset=None, figsize=(12, 12), save=False, colourful=True, mode='hist2d', recalc=True, **kwargs): """ Plot analyte gradients against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is saves as str. colourful : bool Whether or not the plot should be colourful :). mode : str 'hist2d' (default) or 'scatter' recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] # sort analytes try: analytes = sorted(analytes, key=lambda x: float(re.findall('[0-9.-]+', x)[0])) except IndexError: analytes = sorted(analytes) samples = self._get_samples(subset) # calculate gradients self.get_gradients(analytes=analytes, win=win, filt=filt, subset=subset, recalc=recalc) # self.get_focus(filt=filt, samples=samples, subset=subset) # grads = calc_grads(self.focus.uTime, self.focus, analytes, win) fig, axes = plot.crossplot(dat=self.gradients, keys=analytes, lognorm=lognorm, bins=bins, figsize=figsize, colourful=colourful, focus_stage=self.focus_stage, cmap=self.cmaps, denominator=self.internal_standard, mode=mode) if save: fig.savefig(self.report_dir + '/g_crossplot.png', dpi=200) return fig, axes
def gradient_crossplot(self, analytes=None, win=15, lognorm=True, bins=25, filt=False, samples=None, subset=None, figsize=(12, 12), save=False, colourful=True, mode='hist2d', recalc=True, **kwargs): """ Plot analyte gradients against each other. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. lognorm : bool Whether or not to log normalise the colour scale of the 2D histogram. bins : int The number of bins in the 2D histogram. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. figsize : tuple Figure size (width, height) in inches. save : bool or str If True, plot is saves as 'crossplot.png', if str plot is saves as str. colourful : bool Whether or not the plot should be colourful :). mode : str 'hist2d' (default) or 'scatter' recalc : bool Whether to re-calculate the gradients, or use existing gradients. Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] # sort analytes try: analytes = sorted(analytes, key=lambda x: float(re.findall('[0-9.-]+', x)[0])) except IndexError: analytes = sorted(analytes) samples = self._get_samples(subset) # calculate gradients self.get_gradients(analytes=analytes, win=win, filt=filt, subset=subset, recalc=recalc) # self.get_focus(filt=filt, samples=samples, subset=subset) # grads = calc_grads(self.focus.uTime, self.focus, analytes, win) fig, axes = plot.crossplot(dat=self.gradients, keys=analytes, lognorm=lognorm, bins=bins, figsize=figsize, colourful=colourful, focus_stage=self.focus_stage, cmap=self.cmaps, denominator=self.internal_standard, mode=mode) if save: fig.savefig(self.report_dir + '/g_crossplot.png', dpi=200) return fig, axes
[ "Plot", "analyte", "gradients", "against", "each", "other", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3009-L3073
[ "def", "gradient_crossplot", "(", "self", ",", "analytes", "=", "None", ",", "win", "=", "15", ",", "lognorm", "=", "True", ",", "bins", "=", "25", ",", "filt", "=", "False", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "figsize", "=", "(", "12", ",", "12", ")", ",", "save", "=", "False", ",", "colourful", "=", "True", ",", "mode", "=", "'hist2d'", ",", "recalc", "=", "True", ",", "*", "*", "kwargs", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "self", ".", "focus_stage", "in", "[", "'ratio'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "self", ".", "internal_standard", "not", "in", "a", "]", "# sort analytes", "try", ":", "analytes", "=", "sorted", "(", "analytes", ",", "key", "=", "lambda", "x", ":", "float", "(", "re", ".", "findall", "(", "'[0-9.-]+'", ",", "x", ")", "[", "0", "]", ")", ")", "except", "IndexError", ":", "analytes", "=", "sorted", "(", "analytes", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "# calculate gradients", "self", ".", "get_gradients", "(", "analytes", "=", "analytes", ",", "win", "=", "win", ",", "filt", "=", "filt", ",", "subset", "=", "subset", ",", "recalc", "=", "recalc", ")", "# self.get_focus(filt=filt, samples=samples, subset=subset)", "# grads = calc_grads(self.focus.uTime, self.focus, analytes, win)", "fig", ",", "axes", "=", "plot", ".", "crossplot", "(", "dat", "=", "self", ".", "gradients", ",", "keys", "=", "analytes", ",", "lognorm", "=", "lognorm", ",", "bins", "=", "bins", ",", "figsize", "=", "figsize", ",", "colourful", "=", "colourful", ",", "focus_stage", "=", "self", ".", "focus_stage", ",", "cmap", "=", "self", ".", "cmaps", ",", "denominator", "=", "self", ".", "internal_standard", ",", "mode", "=", "mode", ")", "if", "save", ":", "fig", ".", "savefig", "(", "self", ".", "report_dir", "+", "'/g_crossplot.png'", ",", "dpi", "=", "200", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.histograms
Plot histograms of analytes. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. colourful : bool If True, histograms are colourful :) Returns ------- (fig, axes)
latools/latools.py
def histograms(self, analytes=None, bins=25, logy=False, filt=False, colourful=True): """ Plot histograms of analytes. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. colourful : bool If True, histograms are colourful :) Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] if colourful: cmap = self.cmaps else: cmap = None self.get_focus(filt=filt) fig, axes = plot.histograms(self.focus, keys=analytes, bins=bins, logy=logy, cmap=cmap) return fig, axes
def histograms(self, analytes=None, bins=25, logy=False, filt=False, colourful=True): """ Plot histograms of analytes. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. bins : int The number of bins in each histogram (default = 25) logy : bool If true, y axis is a log scale. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. colourful : bool If True, histograms are colourful :) Returns ------- (fig, axes) """ if analytes is None: analytes = self.analytes if self.focus_stage in ['ratio', 'calibrated']: analytes = [a for a in analytes if self.internal_standard not in a] if colourful: cmap = self.cmaps else: cmap = None self.get_focus(filt=filt) fig, axes = plot.histograms(self.focus, keys=analytes, bins=bins, logy=logy, cmap=cmap) return fig, axes
[ "Plot", "histograms", "of", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3075-L3112
[ "def", "histograms", "(", "self", ",", "analytes", "=", "None", ",", "bins", "=", "25", ",", "logy", "=", "False", ",", "filt", "=", "False", ",", "colourful", "=", "True", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "self", ".", "focus_stage", "in", "[", "'ratio'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "self", ".", "internal_standard", "not", "in", "a", "]", "if", "colourful", ":", "cmap", "=", "self", ".", "cmaps", "else", ":", "cmap", "=", "None", "self", ".", "get_focus", "(", "filt", "=", "filt", ")", "fig", ",", "axes", "=", "plot", ".", "histograms", "(", "self", ".", "focus", ",", "keys", "=", "analytes", ",", "bins", "=", "bins", ",", "logy", "=", "logy", ",", "cmap", "=", "cmap", ")", "return", "fig", ",", "axes" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_effect
Quantify the effects of the active filters. Parameters ---------- analytes : str or list Which analytes to consider. stats : list Which statistics to calculate. file : valid filter string or bool Which filter to consider. If True, applies all active filters. Returns ------- pandas.DataFrame Contains statistics calculated for filtered and unfiltered data, and the filtered/unfiltered ratio.
latools/latools.py
def filter_effect(self, analytes=None, stats=['mean', 'std'], filt=True): """ Quantify the effects of the active filters. Parameters ---------- analytes : str or list Which analytes to consider. stats : list Which statistics to calculate. file : valid filter string or bool Which filter to consider. If True, applies all active filters. Returns ------- pandas.DataFrame Contains statistics calculated for filtered and unfiltered data, and the filtered/unfiltered ratio. """ if analytes is None: analytes = self.analytes if isinstance(analytes, str): analytes = [analytes] # calculate filtered and unfiltered stats self.sample_stats(['La139', 'Ti49'], stats=stats, filt=False) suf = self.stats.copy() self.sample_stats(['La139', 'Ti49'], stats=stats, filt=filt) sf = self.stats.copy() # create dataframe for results cols = [] for s in self.stats_calced: cols += ['unfiltered_{:}'.format(s), 'filtered_{:}'.format(s)] comp = pd.DataFrame(index=self.samples, columns=pd.MultiIndex.from_arrays([cols, [None] * len(cols)])) # collate stats for k, v in suf.items(): vf = sf[k] for i, a in enumerate(v['analytes']): for s in self.stats_calced: comp.loc[k, ('unfiltered_{:}'.format(s), a)] = v[s][i,0] comp.loc[k, ('filtered_{:}'.format(s), a)] = vf[s][i,0] comp.dropna(0, 'all', inplace=True) comp.dropna(1, 'all', inplace=True) comp.sort_index(1, inplace=True) # calculate filtered/unfiltered ratios rats = [] for s in self.stats_calced: rat = comp.loc[:, 'filtered_{:}'.format(s)] / comp.loc[:, 'unfiltered_{:}'.format(s)] rat.columns = pd.MultiIndex.from_product([['{:}_ratio'.format(s)], rat.columns]) rats.append(rat) # join it all up comp = comp.join(pd.concat(rats, 1)) comp.sort_index(1, inplace=True) return comp.loc[:, (pd.IndexSlice[:], pd.IndexSlice[analytes])]
def filter_effect(self, analytes=None, stats=['mean', 'std'], filt=True): """ Quantify the effects of the active filters. Parameters ---------- analytes : str or list Which analytes to consider. stats : list Which statistics to calculate. file : valid filter string or bool Which filter to consider. If True, applies all active filters. Returns ------- pandas.DataFrame Contains statistics calculated for filtered and unfiltered data, and the filtered/unfiltered ratio. """ if analytes is None: analytes = self.analytes if isinstance(analytes, str): analytes = [analytes] # calculate filtered and unfiltered stats self.sample_stats(['La139', 'Ti49'], stats=stats, filt=False) suf = self.stats.copy() self.sample_stats(['La139', 'Ti49'], stats=stats, filt=filt) sf = self.stats.copy() # create dataframe for results cols = [] for s in self.stats_calced: cols += ['unfiltered_{:}'.format(s), 'filtered_{:}'.format(s)] comp = pd.DataFrame(index=self.samples, columns=pd.MultiIndex.from_arrays([cols, [None] * len(cols)])) # collate stats for k, v in suf.items(): vf = sf[k] for i, a in enumerate(v['analytes']): for s in self.stats_calced: comp.loc[k, ('unfiltered_{:}'.format(s), a)] = v[s][i,0] comp.loc[k, ('filtered_{:}'.format(s), a)] = vf[s][i,0] comp.dropna(0, 'all', inplace=True) comp.dropna(1, 'all', inplace=True) comp.sort_index(1, inplace=True) # calculate filtered/unfiltered ratios rats = [] for s in self.stats_calced: rat = comp.loc[:, 'filtered_{:}'.format(s)] / comp.loc[:, 'unfiltered_{:}'.format(s)] rat.columns = pd.MultiIndex.from_product([['{:}_ratio'.format(s)], rat.columns]) rats.append(rat) # join it all up comp = comp.join(pd.concat(rats, 1)) comp.sort_index(1, inplace=True) return comp.loc[:, (pd.IndexSlice[:], pd.IndexSlice[analytes])]
[ "Quantify", "the", "effects", "of", "the", "active", "filters", ".", "Parameters", "----------", "analytes", ":", "str", "or", "list", "Which", "analytes", "to", "consider", ".", "stats", ":", "list", "Which", "statistics", "to", "calculate", ".", "file", ":", "valid", "filter", "string", "or", "bool", "Which", "filter", "to", "consider", ".", "If", "True", "applies", "all", "active", "filters", ".", "Returns", "-------", "pandas", ".", "DataFrame", "Contains", "statistics", "calculated", "for", "filtered", "and", "unfiltered", "data", "and", "the", "filtered", "/", "unfiltered", "ratio", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3114-L3175
[ "def", "filter_effect", "(", "self", ",", "analytes", "=", "None", ",", "stats", "=", "[", "'mean'", ",", "'std'", "]", ",", "filt", "=", "True", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "# calculate filtered and unfiltered stats", "self", ".", "sample_stats", "(", "[", "'La139'", ",", "'Ti49'", "]", ",", "stats", "=", "stats", ",", "filt", "=", "False", ")", "suf", "=", "self", ".", "stats", ".", "copy", "(", ")", "self", ".", "sample_stats", "(", "[", "'La139'", ",", "'Ti49'", "]", ",", "stats", "=", "stats", ",", "filt", "=", "filt", ")", "sf", "=", "self", ".", "stats", ".", "copy", "(", ")", "# create dataframe for results", "cols", "=", "[", "]", "for", "s", "in", "self", ".", "stats_calced", ":", "cols", "+=", "[", "'unfiltered_{:}'", ".", "format", "(", "s", ")", ",", "'filtered_{:}'", ".", "format", "(", "s", ")", "]", "comp", "=", "pd", ".", "DataFrame", "(", "index", "=", "self", ".", "samples", ",", "columns", "=", "pd", ".", "MultiIndex", ".", "from_arrays", "(", "[", "cols", ",", "[", "None", "]", "*", "len", "(", "cols", ")", "]", ")", ")", "# collate stats", "for", "k", ",", "v", "in", "suf", ".", "items", "(", ")", ":", "vf", "=", "sf", "[", "k", "]", "for", "i", ",", "a", "in", "enumerate", "(", "v", "[", "'analytes'", "]", ")", ":", "for", "s", "in", "self", ".", "stats_calced", ":", "comp", ".", "loc", "[", "k", ",", "(", "'unfiltered_{:}'", ".", "format", "(", "s", ")", ",", "a", ")", "]", "=", "v", "[", "s", "]", "[", "i", ",", "0", "]", "comp", ".", "loc", "[", "k", ",", "(", "'filtered_{:}'", ".", "format", "(", "s", ")", ",", "a", ")", "]", "=", "vf", "[", "s", "]", "[", "i", ",", "0", "]", "comp", ".", "dropna", "(", "0", ",", "'all'", ",", "inplace", "=", "True", ")", "comp", ".", "dropna", "(", "1", ",", "'all'", ",", "inplace", "=", "True", ")", "comp", ".", "sort_index", "(", "1", ",", "inplace", "=", "True", ")", "# calculate filtered/unfiltered ratios", "rats", "=", "[", "]", "for", "s", "in", "self", ".", "stats_calced", ":", "rat", "=", "comp", ".", "loc", "[", ":", ",", "'filtered_{:}'", ".", "format", "(", "s", ")", "]", "/", "comp", ".", "loc", "[", ":", ",", "'unfiltered_{:}'", ".", "format", "(", "s", ")", "]", "rat", ".", "columns", "=", "pd", ".", "MultiIndex", ".", "from_product", "(", "[", "[", "'{:}_ratio'", ".", "format", "(", "s", ")", "]", ",", "rat", ".", "columns", "]", ")", "rats", ".", "append", "(", "rat", ")", "# join it all up", "comp", "=", "comp", ".", "join", "(", "pd", ".", "concat", "(", "rats", ",", "1", ")", ")", "comp", ".", "sort_index", "(", "1", ",", "inplace", "=", "True", ")", "return", "comp", ".", "loc", "[", ":", ",", "(", "pd", ".", "IndexSlice", "[", ":", "]", ",", "pd", ".", "IndexSlice", "[", "analytes", "]", ")", "]" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.trace_plots
Plot analytes as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None
latools/latools.py
def trace_plots(self, analytes=None, samples=None, ranges=False, focus=None, outdir=None, filt=None, scale='log', figsize=[10, 4], stats=False, stat='nanmean', err='nanstd', subset='All_Analyses'): """ Plot analytes as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None """ if focus is None: focus = self.focus_stage if outdir is None: outdir = self.report_dir + '/' + focus if not os.path.isdir(outdir): os.mkdir(outdir) # if samples is not None: # subset = self.make_subset(samples) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, a = self.data[s].tplot(analytes=analytes, figsize=figsize, scale=scale, filt=filt, ranges=ranges, stats=stats, stat=stat, err=err, focus_stage=focus) # ax = fig.axes[0] # for l, u in s.sigrng: # ax.axvspan(l, u, color='r', alpha=0.1) # for l, u in s.bkgrng: # ax.axvspan(l, u, color='k', alpha=0.1) f.savefig(outdir + '/' + s + '_traces.pdf') # TODO: on older(?) computers raises # 'OSError: [Errno 24] Too many open files' plt.close(f) prog.update() return
def trace_plots(self, analytes=None, samples=None, ranges=False, focus=None, outdir=None, filt=None, scale='log', figsize=[10, 4], stats=False, stat='nanmean', err='nanstd', subset='All_Analyses'): """ Plot analytes as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None """ if focus is None: focus = self.focus_stage if outdir is None: outdir = self.report_dir + '/' + focus if not os.path.isdir(outdir): os.mkdir(outdir) # if samples is not None: # subset = self.make_subset(samples) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, a = self.data[s].tplot(analytes=analytes, figsize=figsize, scale=scale, filt=filt, ranges=ranges, stats=stats, stat=stat, err=err, focus_stage=focus) # ax = fig.axes[0] # for l, u in s.sigrng: # ax.axvspan(l, u, color='r', alpha=0.1) # for l, u in s.bkgrng: # ax.axvspan(l, u, color='k', alpha=0.1) f.savefig(outdir + '/' + s + '_traces.pdf') # TODO: on older(?) computers raises # 'OSError: [Errno 24] Too many open files' plt.close(f) prog.update() return
[ "Plot", "analytes", "as", "a", "function", "of", "time", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3290-L3367
[ "def", "trace_plots", "(", "self", ",", "analytes", "=", "None", ",", "samples", "=", "None", ",", "ranges", "=", "False", ",", "focus", "=", "None", ",", "outdir", "=", "None", ",", "filt", "=", "None", ",", "scale", "=", "'log'", ",", "figsize", "=", "[", "10", ",", "4", "]", ",", "stats", "=", "False", ",", "stat", "=", "'nanmean'", ",", "err", "=", "'nanstd'", ",", "subset", "=", "'All_Analyses'", ")", ":", "if", "focus", "is", "None", ":", "focus", "=", "self", ".", "focus_stage", "if", "outdir", "is", "None", ":", "outdir", "=", "self", ".", "report_dir", "+", "'/'", "+", "focus", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "# if samples is not None:", "# subset = self.make_subset(samples)", "if", "subset", "is", "not", "None", ":", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "elif", "samples", "is", "None", ":", "samples", "=", "self", ".", "subsets", "[", "'All_Analyses'", "]", "elif", "isinstance", "(", "samples", ",", "str", ")", ":", "samples", "=", "[", "samples", "]", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Drawing Plots'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "f", ",", "a", "=", "self", ".", "data", "[", "s", "]", ".", "tplot", "(", "analytes", "=", "analytes", ",", "figsize", "=", "figsize", ",", "scale", "=", "scale", ",", "filt", "=", "filt", ",", "ranges", "=", "ranges", ",", "stats", "=", "stats", ",", "stat", "=", "stat", ",", "err", "=", "err", ",", "focus_stage", "=", "focus", ")", "# ax = fig.axes[0]", "# for l, u in s.sigrng:", "# ax.axvspan(l, u, color='r', alpha=0.1)", "# for l, u in s.bkgrng:", "# ax.axvspan(l, u, color='k', alpha=0.1)", "f", ".", "savefig", "(", "outdir", "+", "'/'", "+", "s", "+", "'_traces.pdf'", ")", "# TODO: on older(?) computers raises", "# 'OSError: [Errno 24] Too many open files'", "plt", ".", "close", "(", "f", ")", "prog", ".", "update", "(", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.gradient_plots
Plot analyte gradients as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None
latools/latools.py
def gradient_plots(self, analytes=None, win=15, samples=None, ranges=False, focus=None, outdir=None, figsize=[10, 4], subset='All_Analyses'): """ Plot analyte gradients as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None """ if focus is None: focus = self.focus_stage if outdir is None: outdir = self.report_dir + '/' + focus + '_gradient' if not os.path.isdir(outdir): os.mkdir(outdir) # if samples is not None: # subset = self.make_subset(samples) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, a = self.data[s].gplot(analytes=analytes, win=win, figsize=figsize, ranges=ranges, focus_stage=focus) # ax = fig.axes[0] # for l, u in s.sigrng: # ax.axvspan(l, u, color='r', alpha=0.1) # for l, u in s.bkgrng: # ax.axvspan(l, u, color='k', alpha=0.1) f.savefig(outdir + '/' + s + '_gradients.pdf') # TODO: on older(?) computers raises # 'OSError: [Errno 24] Too many open files' plt.close(f) prog.update() return
def gradient_plots(self, analytes=None, win=15, samples=None, ranges=False, focus=None, outdir=None, figsize=[10, 4], subset='All_Analyses'): """ Plot analyte gradients as a function of time. Parameters ---------- analytes : optional, array_like or str The analyte(s) to plot. Defaults to all analytes. samples: optional, array_like or str The sample(s) to plot. Defaults to all samples. ranges : bool Whether or not to show the signal/backgroudn regions identified by 'autorange'. focus : str The focus 'stage' of the analysis to plot. Can be 'rawdata', 'despiked':, 'signal', 'background', 'bkgsub', 'ratios' or 'calibrated'. outdir : str Path to a directory where you'd like the plots to be saved. Defaults to 'reports/[focus]' in your data directory. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. scale : str If 'log', plots the data on a log scale. figsize : array_like Array of length 2 specifying figure [width, height] in inches. stats : bool Whether or not to overlay the mean and standard deviations for each trace. stat, err: str The names of the statistic and error components to plot. Deafaults to 'nanmean' and 'nanstd'. Returns ------- None """ if focus is None: focus = self.focus_stage if outdir is None: outdir = self.report_dir + '/' + focus + '_gradient' if not os.path.isdir(outdir): os.mkdir(outdir) # if samples is not None: # subset = self.make_subset(samples) if subset is not None: samples = self._get_samples(subset) elif samples is None: samples = self.subsets['All_Analyses'] elif isinstance(samples, str): samples = [samples] with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: f, a = self.data[s].gplot(analytes=analytes, win=win, figsize=figsize, ranges=ranges, focus_stage=focus) # ax = fig.axes[0] # for l, u in s.sigrng: # ax.axvspan(l, u, color='r', alpha=0.1) # for l, u in s.bkgrng: # ax.axvspan(l, u, color='k', alpha=0.1) f.savefig(outdir + '/' + s + '_gradients.pdf') # TODO: on older(?) computers raises # 'OSError: [Errno 24] Too many open files' plt.close(f) prog.update() return
[ "Plot", "analyte", "gradients", "as", "a", "function", "of", "time", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3371-L3445
[ "def", "gradient_plots", "(", "self", ",", "analytes", "=", "None", ",", "win", "=", "15", ",", "samples", "=", "None", ",", "ranges", "=", "False", ",", "focus", "=", "None", ",", "outdir", "=", "None", ",", "figsize", "=", "[", "10", ",", "4", "]", ",", "subset", "=", "'All_Analyses'", ")", ":", "if", "focus", "is", "None", ":", "focus", "=", "self", ".", "focus_stage", "if", "outdir", "is", "None", ":", "outdir", "=", "self", ".", "report_dir", "+", "'/'", "+", "focus", "+", "'_gradient'", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "# if samples is not None:", "# subset = self.make_subset(samples)", "if", "subset", "is", "not", "None", ":", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "elif", "samples", "is", "None", ":", "samples", "=", "self", ".", "subsets", "[", "'All_Analyses'", "]", "elif", "isinstance", "(", "samples", ",", "str", ")", ":", "samples", "=", "[", "samples", "]", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Drawing Plots'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "f", ",", "a", "=", "self", ".", "data", "[", "s", "]", ".", "gplot", "(", "analytes", "=", "analytes", ",", "win", "=", "win", ",", "figsize", "=", "figsize", ",", "ranges", "=", "ranges", ",", "focus_stage", "=", "focus", ")", "# ax = fig.axes[0]", "# for l, u in s.sigrng:", "# ax.axvspan(l, u, color='r', alpha=0.1)", "# for l, u in s.bkgrng:", "# ax.axvspan(l, u, color='k', alpha=0.1)", "f", ".", "savefig", "(", "outdir", "+", "'/'", "+", "s", "+", "'_gradients.pdf'", ")", "# TODO: on older(?) computers raises", "# 'OSError: [Errno 24] Too many open files'", "plt", ".", "close", "(", "f", ")", "prog", ".", "update", "(", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.filter_reports
Plot filter reports for all filters that contain ``filt_str`` in the name.
latools/latools.py
def filter_reports(self, analytes, filt_str='all', nbin=5, samples=None, outdir=None, subset='All_Samples'): """ Plot filter reports for all filters that contain ``filt_str`` in the name. """ if outdir is None: outdir = self.report_dir + '/filters/' + filt_str if not os.path.isdir(self.report_dir + '/filters'): os.mkdir(self.report_dir + '/filters') if not os.path.isdir(outdir): os.mkdir(outdir) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: _ = self.data[s].filter_report(filt=filt_str, analytes=analytes, savedir=outdir, nbin=nbin) prog.update() # plt.close(fig) return
def filter_reports(self, analytes, filt_str='all', nbin=5, samples=None, outdir=None, subset='All_Samples'): """ Plot filter reports for all filters that contain ``filt_str`` in the name. """ if outdir is None: outdir = self.report_dir + '/filters/' + filt_str if not os.path.isdir(self.report_dir + '/filters'): os.mkdir(self.report_dir + '/filters') if not os.path.isdir(outdir): os.mkdir(outdir) if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) with self.pbar.set(total=len(samples), desc='Drawing Plots') as prog: for s in samples: _ = self.data[s].filter_report(filt=filt_str, analytes=analytes, savedir=outdir, nbin=nbin) prog.update() # plt.close(fig) return
[ "Plot", "filter", "reports", "for", "all", "filters", "that", "contain", "filt_str", "in", "the", "name", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3449-L3475
[ "def", "filter_reports", "(", "self", ",", "analytes", ",", "filt_str", "=", "'all'", ",", "nbin", "=", "5", ",", "samples", "=", "None", ",", "outdir", "=", "None", ",", "subset", "=", "'All_Samples'", ")", ":", "if", "outdir", "is", "None", ":", "outdir", "=", "self", ".", "report_dir", "+", "'/filters/'", "+", "filt_str", "if", "not", "os", ".", "path", ".", "isdir", "(", "self", ".", "report_dir", "+", "'/filters'", ")", ":", "os", ".", "mkdir", "(", "self", ".", "report_dir", "+", "'/filters'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "samples", ")", ",", "desc", "=", "'Drawing Plots'", ")", "as", "prog", ":", "for", "s", "in", "samples", ":", "_", "=", "self", ".", "data", "[", "s", "]", ".", "filter_report", "(", "filt", "=", "filt_str", ",", "analytes", "=", "analytes", ",", "savedir", "=", "outdir", ",", "nbin", "=", "nbin", ")", "prog", ".", "update", "(", ")", "# plt.close(fig)", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.sample_stats
Calculate sample statistics. Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Included stat functions: * :func:`~latools.stat_fns.mean`: arithmetic mean * :func:`~latools.stat_fns.std`: arithmetic standard deviation * :func:`~latools.stat_fns.se`: arithmetic standard error * :func:`~latools.stat_fns.H15_mean`: Huber mean (outlier removal) * :func:`~latools.stat_fns.H15_std`: Huber standard deviation (outlier removal) * :func:`~latools.stat_fns.H15_se`: Huber standard error (outlier removal) Parameters ---------- analytes : optional, array_like or str The analyte(s) to calculate statistics for. Defaults to all analytes. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. stats : array_like take a single array_like input, and return a single statistic. list of functions or names (see above) or functions that Function should be able to cope with NaN values. eachtrace : bool Whether to calculate the statistics for each analysis spot individually, or to produce per - sample means. Default is True. Returns ------- None Adds dict to analyse object containing samples, analytes and functions and data.
latools/latools.py
def sample_stats(self, analytes=None, filt=True, stats=['mean', 'std'], eachtrace=True, csf_dict={}): """ Calculate sample statistics. Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Included stat functions: * :func:`~latools.stat_fns.mean`: arithmetic mean * :func:`~latools.stat_fns.std`: arithmetic standard deviation * :func:`~latools.stat_fns.se`: arithmetic standard error * :func:`~latools.stat_fns.H15_mean`: Huber mean (outlier removal) * :func:`~latools.stat_fns.H15_std`: Huber standard deviation (outlier removal) * :func:`~latools.stat_fns.H15_se`: Huber standard error (outlier removal) Parameters ---------- analytes : optional, array_like or str The analyte(s) to calculate statistics for. Defaults to all analytes. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. stats : array_like take a single array_like input, and return a single statistic. list of functions or names (see above) or functions that Function should be able to cope with NaN values. eachtrace : bool Whether to calculate the statistics for each analysis spot individually, or to produce per - sample means. Default is True. Returns ------- None Adds dict to analyse object containing samples, analytes and functions and data. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] self.stats = Bunch() self.stats_calced = [] stat_fns = Bunch() stat_dict = {'mean': np.nanmean, 'std': np.nanstd, 'nanmean': np.nanmean, 'nanstd': np.nanstd, 'se': stderr, 'H15_mean': H15_mean, 'H15_std': H15_std, 'H15_se': H15_se} for s in stats: if isinstance(s, str): if s in stat_dict.keys(): self.stats_calced.append(s) stat_fns[s] = stat_dict[s] if s in csf_dict.keys(): self.stats_calced.append(s) exec(csf_dict[s]) stat_fns[s] = eval(s) elif callable(s): self.stats_calced.append(s.__name__) stat_fns[s.__name__] = s if not hasattr(self, 'custom_stat_functions'): self.custom_stat_functions = '' self.custom_stat_functions += inspect.getsource(s) + '\n\n\n\n' # calculate stats for each sample with self.pbar.set(total=len(self.samples), desc='Calculating Stats') as prog: for s in self.samples: if self.srm_identifier not in s: self.data[s].sample_stats(analytes, filt=filt, stat_fns=stat_fns, eachtrace=eachtrace) self.stats[s] = self.data[s].stats prog.update()
def sample_stats(self, analytes=None, filt=True, stats=['mean', 'std'], eachtrace=True, csf_dict={}): """ Calculate sample statistics. Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Included stat functions: * :func:`~latools.stat_fns.mean`: arithmetic mean * :func:`~latools.stat_fns.std`: arithmetic standard deviation * :func:`~latools.stat_fns.se`: arithmetic standard error * :func:`~latools.stat_fns.H15_mean`: Huber mean (outlier removal) * :func:`~latools.stat_fns.H15_std`: Huber standard deviation (outlier removal) * :func:`~latools.stat_fns.H15_se`: Huber standard error (outlier removal) Parameters ---------- analytes : optional, array_like or str The analyte(s) to calculate statistics for. Defaults to all analytes. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. stats : array_like take a single array_like input, and return a single statistic. list of functions or names (see above) or functions that Function should be able to cope with NaN values. eachtrace : bool Whether to calculate the statistics for each analysis spot individually, or to produce per - sample means. Default is True. Returns ------- None Adds dict to analyse object containing samples, analytes and functions and data. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] self.stats = Bunch() self.stats_calced = [] stat_fns = Bunch() stat_dict = {'mean': np.nanmean, 'std': np.nanstd, 'nanmean': np.nanmean, 'nanstd': np.nanstd, 'se': stderr, 'H15_mean': H15_mean, 'H15_std': H15_std, 'H15_se': H15_se} for s in stats: if isinstance(s, str): if s in stat_dict.keys(): self.stats_calced.append(s) stat_fns[s] = stat_dict[s] if s in csf_dict.keys(): self.stats_calced.append(s) exec(csf_dict[s]) stat_fns[s] = eval(s) elif callable(s): self.stats_calced.append(s.__name__) stat_fns[s.__name__] = s if not hasattr(self, 'custom_stat_functions'): self.custom_stat_functions = '' self.custom_stat_functions += inspect.getsource(s) + '\n\n\n\n' # calculate stats for each sample with self.pbar.set(total=len(self.samples), desc='Calculating Stats') as prog: for s in self.samples: if self.srm_identifier not in s: self.data[s].sample_stats(analytes, filt=filt, stat_fns=stat_fns, eachtrace=eachtrace) self.stats[s] = self.data[s].stats prog.update()
[ "Calculate", "sample", "statistics", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3506-L3594
[ "def", "sample_stats", "(", "self", ",", "analytes", "=", "None", ",", "filt", "=", "True", ",", "stats", "=", "[", "'mean'", ",", "'std'", "]", ",", "eachtrace", "=", "True", ",", "csf_dict", "=", "{", "}", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "self", ".", "stats", "=", "Bunch", "(", ")", "self", ".", "stats_calced", "=", "[", "]", "stat_fns", "=", "Bunch", "(", ")", "stat_dict", "=", "{", "'mean'", ":", "np", ".", "nanmean", ",", "'std'", ":", "np", ".", "nanstd", ",", "'nanmean'", ":", "np", ".", "nanmean", ",", "'nanstd'", ":", "np", ".", "nanstd", ",", "'se'", ":", "stderr", ",", "'H15_mean'", ":", "H15_mean", ",", "'H15_std'", ":", "H15_std", ",", "'H15_se'", ":", "H15_se", "}", "for", "s", "in", "stats", ":", "if", "isinstance", "(", "s", ",", "str", ")", ":", "if", "s", "in", "stat_dict", ".", "keys", "(", ")", ":", "self", ".", "stats_calced", ".", "append", "(", "s", ")", "stat_fns", "[", "s", "]", "=", "stat_dict", "[", "s", "]", "if", "s", "in", "csf_dict", ".", "keys", "(", ")", ":", "self", ".", "stats_calced", ".", "append", "(", "s", ")", "exec", "(", "csf_dict", "[", "s", "]", ")", "stat_fns", "[", "s", "]", "=", "eval", "(", "s", ")", "elif", "callable", "(", "s", ")", ":", "self", ".", "stats_calced", ".", "append", "(", "s", ".", "__name__", ")", "stat_fns", "[", "s", ".", "__name__", "]", "=", "s", "if", "not", "hasattr", "(", "self", ",", "'custom_stat_functions'", ")", ":", "self", ".", "custom_stat_functions", "=", "''", "self", ".", "custom_stat_functions", "+=", "inspect", ".", "getsource", "(", "s", ")", "+", "'\\n\\n\\n\\n'", "# calculate stats for each sample", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "samples", ")", ",", "desc", "=", "'Calculating Stats'", ")", "as", "prog", ":", "for", "s", "in", "self", ".", "samples", ":", "if", "self", ".", "srm_identifier", "not", "in", "s", ":", "self", ".", "data", "[", "s", "]", ".", "sample_stats", "(", "analytes", ",", "filt", "=", "filt", ",", "stat_fns", "=", "stat_fns", ",", "eachtrace", "=", "eachtrace", ")", "self", ".", "stats", "[", "s", "]", "=", "self", ".", "data", "[", "s", "]", ".", "stats", "prog", ".", "update", "(", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.statplot
Function for visualising per-ablation and per-sample means. Parameters ---------- analytes : str or iterable Which analyte(s) to plot samples : str or iterable Which sample(s) to plot figsize : tuple Figure (width, height) in inches stat : str Which statistic to plot. Must match the name of the functions used in 'sample_stats'. err : str Which uncertainty to plot. subset : str Which subset of samples to plot.
latools/latools.py
def statplot(self, analytes=None, samples=None, figsize=None, stat='mean', err='std', subset=None): """ Function for visualising per-ablation and per-sample means. Parameters ---------- analytes : str or iterable Which analyte(s) to plot samples : str or iterable Which sample(s) to plot figsize : tuple Figure (width, height) in inches stat : str Which statistic to plot. Must match the name of the functions used in 'sample_stats'. err : str Which uncertainty to plot. subset : str Which subset of samples to plot. """ if not hasattr(self, 'stats'): self.sample_stats() if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) analytes = [a for a in analytes if a != self.internal_standard] if figsize is None: figsize = (1.5 * len(self.stats), 3 * len(analytes)) fig, axs = plt.subplots(len(analytes), 1, figsize=figsize) for ax, an in zip(axs, analytes): i = 0 stab = self.getstats() m, u = unitpicker(np.percentile(stab.loc[:, an].dropna(), 25), 0.1, focus_stage='calibrated', denominator=self.internal_standard) for s in samples: if self.srm_identifier not in s: d = self.stats[s] if d[stat].ndim == 2: n = d[stat].shape[-1] x = np.linspace(i - .1 * n / 2, i + .1 * n / 2, n) else: x = [i] a_ind = d['analytes'] == an # plot individual ablations with error bars ax.errorbar(x, d[stat][a_ind][0] * m, yerr=d[err][a_ind][0] * m, marker='o', color=self.cmaps[an], lw=0, elinewidth=1) ax.set_ylabel('%s / %s (%s )' % (pretty_element(an), pretty_element(self.internal_standard), u)) # plot whole - sample mean if len(x) > 1: # mean calculation with error propagation? # umean = un.uarray(d[stat][a_ind][0] * m, d[err][a_ind][0] * m).mean() # std = un.std_devs(umean) # mean = un.nominal_values(umean) mean = np.nanmean(d[stat][a_ind][0] * m) std = np.nanstd(d[stat][a_ind][0] * m) ax.plot(x, [mean] * len(x), c=self.cmaps[an], lw=2) ax.fill_between(x, [mean + std] * len(x), [mean - std] * len(x), lw=0, alpha=0.2, color=self.cmaps[an]) # highlight each sample if i % 2 == 1: ax.axvspan(i - .5, i + .5, color=(0, 0, 0, 0.05), lw=0) i += 1 ax.set_xticks(np.arange(0, len(self.stats))) ax.set_xlim(-0.5, len(self.stats) - .5) ax.set_xticklabels(samples) return fig, ax
def statplot(self, analytes=None, samples=None, figsize=None, stat='mean', err='std', subset=None): """ Function for visualising per-ablation and per-sample means. Parameters ---------- analytes : str or iterable Which analyte(s) to plot samples : str or iterable Which sample(s) to plot figsize : tuple Figure (width, height) in inches stat : str Which statistic to plot. Must match the name of the functions used in 'sample_stats'. err : str Which uncertainty to plot. subset : str Which subset of samples to plot. """ if not hasattr(self, 'stats'): self.sample_stats() if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) analytes = [a for a in analytes if a != self.internal_standard] if figsize is None: figsize = (1.5 * len(self.stats), 3 * len(analytes)) fig, axs = plt.subplots(len(analytes), 1, figsize=figsize) for ax, an in zip(axs, analytes): i = 0 stab = self.getstats() m, u = unitpicker(np.percentile(stab.loc[:, an].dropna(), 25), 0.1, focus_stage='calibrated', denominator=self.internal_standard) for s in samples: if self.srm_identifier not in s: d = self.stats[s] if d[stat].ndim == 2: n = d[stat].shape[-1] x = np.linspace(i - .1 * n / 2, i + .1 * n / 2, n) else: x = [i] a_ind = d['analytes'] == an # plot individual ablations with error bars ax.errorbar(x, d[stat][a_ind][0] * m, yerr=d[err][a_ind][0] * m, marker='o', color=self.cmaps[an], lw=0, elinewidth=1) ax.set_ylabel('%s / %s (%s )' % (pretty_element(an), pretty_element(self.internal_standard), u)) # plot whole - sample mean if len(x) > 1: # mean calculation with error propagation? # umean = un.uarray(d[stat][a_ind][0] * m, d[err][a_ind][0] * m).mean() # std = un.std_devs(umean) # mean = un.nominal_values(umean) mean = np.nanmean(d[stat][a_ind][0] * m) std = np.nanstd(d[stat][a_ind][0] * m) ax.plot(x, [mean] * len(x), c=self.cmaps[an], lw=2) ax.fill_between(x, [mean + std] * len(x), [mean - std] * len(x), lw=0, alpha=0.2, color=self.cmaps[an]) # highlight each sample if i % 2 == 1: ax.axvspan(i - .5, i + .5, color=(0, 0, 0, 0.05), lw=0) i += 1 ax.set_xticks(np.arange(0, len(self.stats))) ax.set_xlim(-0.5, len(self.stats) - .5) ax.set_xticklabels(samples) return fig, ax
[ "Function", "for", "visualising", "per", "-", "ablation", "and", "per", "-", "sample", "means", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3621-L3714
[ "def", "statplot", "(", "self", ",", "analytes", "=", "None", ",", "samples", "=", "None", ",", "figsize", "=", "None", ",", "stat", "=", "'mean'", ",", "err", "=", "'std'", ",", "subset", "=", "None", ")", ":", "if", "not", "hasattr", "(", "self", ",", "'stats'", ")", ":", "self", ".", "sample_stats", "(", ")", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "a", "!=", "self", ".", "internal_standard", "]", "if", "figsize", "is", "None", ":", "figsize", "=", "(", "1.5", "*", "len", "(", "self", ".", "stats", ")", ",", "3", "*", "len", "(", "analytes", ")", ")", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "len", "(", "analytes", ")", ",", "1", ",", "figsize", "=", "figsize", ")", "for", "ax", ",", "an", "in", "zip", "(", "axs", ",", "analytes", ")", ":", "i", "=", "0", "stab", "=", "self", ".", "getstats", "(", ")", "m", ",", "u", "=", "unitpicker", "(", "np", ".", "percentile", "(", "stab", ".", "loc", "[", ":", ",", "an", "]", ".", "dropna", "(", ")", ",", "25", ")", ",", "0.1", ",", "focus_stage", "=", "'calibrated'", ",", "denominator", "=", "self", ".", "internal_standard", ")", "for", "s", "in", "samples", ":", "if", "self", ".", "srm_identifier", "not", "in", "s", ":", "d", "=", "self", ".", "stats", "[", "s", "]", "if", "d", "[", "stat", "]", ".", "ndim", "==", "2", ":", "n", "=", "d", "[", "stat", "]", ".", "shape", "[", "-", "1", "]", "x", "=", "np", ".", "linspace", "(", "i", "-", ".1", "*", "n", "/", "2", ",", "i", "+", ".1", "*", "n", "/", "2", ",", "n", ")", "else", ":", "x", "=", "[", "i", "]", "a_ind", "=", "d", "[", "'analytes'", "]", "==", "an", "# plot individual ablations with error bars", "ax", ".", "errorbar", "(", "x", ",", "d", "[", "stat", "]", "[", "a_ind", "]", "[", "0", "]", "*", "m", ",", "yerr", "=", "d", "[", "err", "]", "[", "a_ind", "]", "[", "0", "]", "*", "m", ",", "marker", "=", "'o'", ",", "color", "=", "self", ".", "cmaps", "[", "an", "]", ",", "lw", "=", "0", ",", "elinewidth", "=", "1", ")", "ax", ".", "set_ylabel", "(", "'%s / %s (%s )'", "%", "(", "pretty_element", "(", "an", ")", ",", "pretty_element", "(", "self", ".", "internal_standard", ")", ",", "u", ")", ")", "# plot whole - sample mean", "if", "len", "(", "x", ")", ">", "1", ":", "# mean calculation with error propagation?", "# umean = un.uarray(d[stat][a_ind][0] * m, d[err][a_ind][0] * m).mean()", "# std = un.std_devs(umean)", "# mean = un.nominal_values(umean)", "mean", "=", "np", ".", "nanmean", "(", "d", "[", "stat", "]", "[", "a_ind", "]", "[", "0", "]", "*", "m", ")", "std", "=", "np", ".", "nanstd", "(", "d", "[", "stat", "]", "[", "a_ind", "]", "[", "0", "]", "*", "m", ")", "ax", ".", "plot", "(", "x", ",", "[", "mean", "]", "*", "len", "(", "x", ")", ",", "c", "=", "self", ".", "cmaps", "[", "an", "]", ",", "lw", "=", "2", ")", "ax", ".", "fill_between", "(", "x", ",", "[", "mean", "+", "std", "]", "*", "len", "(", "x", ")", ",", "[", "mean", "-", "std", "]", "*", "len", "(", "x", ")", ",", "lw", "=", "0", ",", "alpha", "=", "0.2", ",", "color", "=", "self", ".", "cmaps", "[", "an", "]", ")", "# highlight each sample", "if", "i", "%", "2", "==", "1", ":", "ax", ".", "axvspan", "(", "i", "-", ".5", ",", "i", "+", ".5", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "0.05", ")", ",", "lw", "=", "0", ")", "i", "+=", "1", "ax", ".", "set_xticks", "(", "np", ".", "arange", "(", "0", ",", "len", "(", "self", ".", "stats", ")", ")", ")", "ax", ".", "set_xlim", "(", "-", "0.5", ",", "len", "(", "self", ".", "stats", ")", "-", ".5", ")", "ax", ".", "set_xticklabels", "(", "samples", ")", "return", "fig", ",", "ax" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.getstats
Return pandas dataframe of all sample statistics.
latools/latools.py
def getstats(self, save=True, filename=None, samples=None, subset=None, ablation_time=False): """ Return pandas dataframe of all sample statistics. """ slst = [] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in self.stats_calced: for nm in [n for n in samples if self.srm_identifier not in n]: if self.stats[nm][s].ndim == 2: # make multi - index reps = np.arange(self.stats[nm][s].shape[-1]) ss = np.array([s] * reps.size) nms = np.array([nm] * reps.size) # make sub - dataframe stdf = pd.DataFrame(self.stats[nm][s].T, columns=self.stats[nm]['analytes'], index=[ss, nms, reps]) stdf.index.set_names(['statistic', 'sample', 'rep'], inplace=True) else: stdf = pd.DataFrame(self.stats[nm][s], index=self.stats[nm]['analytes'], columns=[[s], [nm]]).T stdf.index.set_names(['statistic', 'sample'], inplace=True) slst.append(stdf) out = pd.concat(slst) if ablation_time: ats = self.ablation_times(samples=samples, subset=subset) ats['statistic'] = 'nanmean' ats.set_index('statistic', append=True, inplace=True) ats = ats.reorder_levels(['statistic', 'sample', 'rep']) out = out.join(ats) out.drop(self.internal_standard, 1, inplace=True) if save: if filename is None: filename = 'stat_export.csv' out.to_csv(self.export_dir + '/' + filename) self.stats_df = out return out
def getstats(self, save=True, filename=None, samples=None, subset=None, ablation_time=False): """ Return pandas dataframe of all sample statistics. """ slst = [] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) for s in self.stats_calced: for nm in [n for n in samples if self.srm_identifier not in n]: if self.stats[nm][s].ndim == 2: # make multi - index reps = np.arange(self.stats[nm][s].shape[-1]) ss = np.array([s] * reps.size) nms = np.array([nm] * reps.size) # make sub - dataframe stdf = pd.DataFrame(self.stats[nm][s].T, columns=self.stats[nm]['analytes'], index=[ss, nms, reps]) stdf.index.set_names(['statistic', 'sample', 'rep'], inplace=True) else: stdf = pd.DataFrame(self.stats[nm][s], index=self.stats[nm]['analytes'], columns=[[s], [nm]]).T stdf.index.set_names(['statistic', 'sample'], inplace=True) slst.append(stdf) out = pd.concat(slst) if ablation_time: ats = self.ablation_times(samples=samples, subset=subset) ats['statistic'] = 'nanmean' ats.set_index('statistic', append=True, inplace=True) ats = ats.reorder_levels(['statistic', 'sample', 'rep']) out = out.join(ats) out.drop(self.internal_standard, 1, inplace=True) if save: if filename is None: filename = 'stat_export.csv' out.to_csv(self.export_dir + '/' + filename) self.stats_df = out return out
[ "Return", "pandas", "dataframe", "of", "all", "sample", "statistics", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3717-L3769
[ "def", "getstats", "(", "self", ",", "save", "=", "True", ",", "filename", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "None", ",", "ablation_time", "=", "False", ")", ":", "slst", "=", "[", "]", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "for", "s", "in", "self", ".", "stats_calced", ":", "for", "nm", "in", "[", "n", "for", "n", "in", "samples", "if", "self", ".", "srm_identifier", "not", "in", "n", "]", ":", "if", "self", ".", "stats", "[", "nm", "]", "[", "s", "]", ".", "ndim", "==", "2", ":", "# make multi - index", "reps", "=", "np", ".", "arange", "(", "self", ".", "stats", "[", "nm", "]", "[", "s", "]", ".", "shape", "[", "-", "1", "]", ")", "ss", "=", "np", ".", "array", "(", "[", "s", "]", "*", "reps", ".", "size", ")", "nms", "=", "np", ".", "array", "(", "[", "nm", "]", "*", "reps", ".", "size", ")", "# make sub - dataframe", "stdf", "=", "pd", ".", "DataFrame", "(", "self", ".", "stats", "[", "nm", "]", "[", "s", "]", ".", "T", ",", "columns", "=", "self", ".", "stats", "[", "nm", "]", "[", "'analytes'", "]", ",", "index", "=", "[", "ss", ",", "nms", ",", "reps", "]", ")", "stdf", ".", "index", ".", "set_names", "(", "[", "'statistic'", ",", "'sample'", ",", "'rep'", "]", ",", "inplace", "=", "True", ")", "else", ":", "stdf", "=", "pd", ".", "DataFrame", "(", "self", ".", "stats", "[", "nm", "]", "[", "s", "]", ",", "index", "=", "self", ".", "stats", "[", "nm", "]", "[", "'analytes'", "]", ",", "columns", "=", "[", "[", "s", "]", ",", "[", "nm", "]", "]", ")", ".", "T", "stdf", ".", "index", ".", "set_names", "(", "[", "'statistic'", ",", "'sample'", "]", ",", "inplace", "=", "True", ")", "slst", ".", "append", "(", "stdf", ")", "out", "=", "pd", ".", "concat", "(", "slst", ")", "if", "ablation_time", ":", "ats", "=", "self", ".", "ablation_times", "(", "samples", "=", "samples", ",", "subset", "=", "subset", ")", "ats", "[", "'statistic'", "]", "=", "'nanmean'", "ats", ".", "set_index", "(", "'statistic'", ",", "append", "=", "True", ",", "inplace", "=", "True", ")", "ats", "=", "ats", ".", "reorder_levels", "(", "[", "'statistic'", ",", "'sample'", ",", "'rep'", "]", ")", "out", "=", "out", ".", "join", "(", "ats", ")", "out", ".", "drop", "(", "self", ".", "internal_standard", ",", "1", ",", "inplace", "=", "True", ")", "if", "save", ":", "if", "filename", "is", "None", ":", "filename", "=", "'stat_export.csv'", "out", ".", "to_csv", "(", "self", ".", "export_dir", "+", "'/'", "+", "filename", ")", "self", ".", "stats_df", "=", "out", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse._minimal_export_traces
Used for exporting minimal dataset. DON'T USE.
latools/latools.py
def _minimal_export_traces(self, outdir=None, analytes=None, samples=None, subset='All_Analyses'): """ Used for exporting minimal dataset. DON'T USE. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) focus_stage = 'rawdata' # ud = 'counts' if not os.path.isdir(outdir): os.mkdir(outdir) for s in samples: d = self.data[s].data[focus_stage] out = Bunch() for a in analytes: out[a] = d[a] out = pd.DataFrame(out, index=self.data[s].Time) out.index.name = 'Time' d = dateutil.parser.parse(self.data[s].meta['date']) header = ['# Minimal Reproduction Dataset Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), "# Analysis described in '../analysis.lalog'", '# Run latools.reproduce to import analysis.', '#', '# Sample: %s' % (s), '# Analysis Time: ' + d.strftime('%Y-%m-%d %H:%M:%S')] header = '\n'.join(header) + '\n' csv = out.to_csv() with open('%s/%s.csv' % (outdir, s), 'w') as f: f.write(header) f.write(csv) return
def _minimal_export_traces(self, outdir=None, analytes=None, samples=None, subset='All_Analyses'): """ Used for exporting minimal dataset. DON'T USE. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) focus_stage = 'rawdata' # ud = 'counts' if not os.path.isdir(outdir): os.mkdir(outdir) for s in samples: d = self.data[s].data[focus_stage] out = Bunch() for a in analytes: out[a] = d[a] out = pd.DataFrame(out, index=self.data[s].Time) out.index.name = 'Time' d = dateutil.parser.parse(self.data[s].meta['date']) header = ['# Minimal Reproduction Dataset Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), "# Analysis described in '../analysis.lalog'", '# Run latools.reproduce to import analysis.', '#', '# Sample: %s' % (s), '# Analysis Time: ' + d.strftime('%Y-%m-%d %H:%M:%S')] header = '\n'.join(header) + '\n' csv = out.to_csv() with open('%s/%s.csv' % (outdir, s), 'w') as f: f.write(header) f.write(csv) return
[ "Used", "for", "exporting", "minimal", "dataset", ".", "DON", "T", "USE", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3772-L3819
[ "def", "_minimal_export_traces", "(", "self", ",", "outdir", "=", "None", ",", "analytes", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "'All_Analyses'", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "focus_stage", "=", "'rawdata'", "# ud = 'counts'", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "for", "s", "in", "samples", ":", "d", "=", "self", ".", "data", "[", "s", "]", ".", "data", "[", "focus_stage", "]", "out", "=", "Bunch", "(", ")", "for", "a", "in", "analytes", ":", "out", "[", "a", "]", "=", "d", "[", "a", "]", "out", "=", "pd", ".", "DataFrame", "(", "out", ",", "index", "=", "self", ".", "data", "[", "s", "]", ".", "Time", ")", "out", ".", "index", ".", "name", "=", "'Time'", "d", "=", "dateutil", ".", "parser", ".", "parse", "(", "self", ".", "data", "[", "s", "]", ".", "meta", "[", "'date'", "]", ")", "header", "=", "[", "'# Minimal Reproduction Dataset Exported from LATOOLS on %s'", "%", "(", "time", ".", "strftime", "(", "'%Y:%m:%d %H:%M:%S'", ")", ")", ",", "\"# Analysis described in '../analysis.lalog'\"", ",", "'# Run latools.reproduce to import analysis.'", ",", "'#'", ",", "'# Sample: %s'", "%", "(", "s", ")", ",", "'# Analysis Time: '", "+", "d", ".", "strftime", "(", "'%Y-%m-%d %H:%M:%S'", ")", "]", "header", "=", "'\\n'", ".", "join", "(", "header", ")", "+", "'\\n'", "csv", "=", "out", ".", "to_csv", "(", ")", "with", "open", "(", "'%s/%s.csv'", "%", "(", "outdir", ",", "s", ")", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "header", ")", "f", ".", "write", "(", "csv", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.export_traces
Function to export raw data. Parameters ---------- outdir : str directory to save toe traces. Defaults to 'main-dir-name_export'. focus_stage : str The name of the analysis stage to export. * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Defaults to the most recent stage of analysis. analytes : str or array - like Either a single analyte, or list of analytes to export. Defaults to all analytes. samples : str or array - like Either a single sample name, or list of samples to export. Defaults to all samples. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`.
latools/latools.py
def export_traces(self, outdir=None, focus_stage=None, analytes=None, samples=None, subset='All_Analyses', filt=False, zip_archive=False): """ Function to export raw data. Parameters ---------- outdir : str directory to save toe traces. Defaults to 'main-dir-name_export'. focus_stage : str The name of the analysis stage to export. * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Defaults to the most recent stage of analysis. analytes : str or array - like Either a single analyte, or list of analytes to export. Defaults to all analytes. samples : str or array - like Either a single sample name, or list of samples to export. Defaults to all samples. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if focus_stage is None: focus_stage = self.focus_stage if focus_stage in ['ratios', 'calibrated']: analytes = [a for a in analytes if a != self.internal_standard] if outdir is None: outdir = os.path.join(self.export_dir, 'trace_export') ud = {'rawdata': 'counts', 'despiked': 'counts', 'bkgsub': 'background corrected counts', 'ratios': 'counts/count {:s}', 'calibrated': 'mol/mol {:s}'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) if not os.path.isdir(outdir): os.mkdir(outdir) for s in samples: d = self.data[s].data[focus_stage] ind = self.data[s].filt.grab_filt(filt) out = Bunch() for a in analytes: out[a] = nominal_values(d[a][ind]) if focus_stage not in ['rawdata', 'despiked']: out[a + '_std'] = std_devs(d[a][ind]) out[a + '_std'][out[a + '_std'] == 0] = np.nan out = pd.DataFrame(out, index=self.data[s].Time[ind]) out.index.name = 'Time' header = ['# Sample: %s' % (s), '# Data Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), '# Processed using %s configuration' % (self.config['config']), '# Analysis Stage: %s' % (focus_stage), '# Unit: %s' % ud[focus_stage]] header = '\n'.join(header) + '\n' csv = out.to_csv() with open('%s/%s_%s.csv' % (outdir, s, focus_stage), 'w') as f: f.write(header) f.write(csv) if zip_archive: utils.zipdir(outdir, delete=True) return
def export_traces(self, outdir=None, focus_stage=None, analytes=None, samples=None, subset='All_Analyses', filt=False, zip_archive=False): """ Function to export raw data. Parameters ---------- outdir : str directory to save toe traces. Defaults to 'main-dir-name_export'. focus_stage : str The name of the analysis stage to export. * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Defaults to the most recent stage of analysis. analytes : str or array - like Either a single analyte, or list of analytes to export. Defaults to all analytes. samples : str or array - like Either a single sample name, or list of samples to export. Defaults to all samples. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if focus_stage is None: focus_stage = self.focus_stage if focus_stage in ['ratios', 'calibrated']: analytes = [a for a in analytes if a != self.internal_standard] if outdir is None: outdir = os.path.join(self.export_dir, 'trace_export') ud = {'rawdata': 'counts', 'despiked': 'counts', 'bkgsub': 'background corrected counts', 'ratios': 'counts/count {:s}', 'calibrated': 'mol/mol {:s}'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) if not os.path.isdir(outdir): os.mkdir(outdir) for s in samples: d = self.data[s].data[focus_stage] ind = self.data[s].filt.grab_filt(filt) out = Bunch() for a in analytes: out[a] = nominal_values(d[a][ind]) if focus_stage not in ['rawdata', 'despiked']: out[a + '_std'] = std_devs(d[a][ind]) out[a + '_std'][out[a + '_std'] == 0] = np.nan out = pd.DataFrame(out, index=self.data[s].Time[ind]) out.index.name = 'Time' header = ['# Sample: %s' % (s), '# Data Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), '# Processed using %s configuration' % (self.config['config']), '# Analysis Stage: %s' % (focus_stage), '# Unit: %s' % ud[focus_stage]] header = '\n'.join(header) + '\n' csv = out.to_csv() with open('%s/%s_%s.csv' % (outdir, s, focus_stage), 'w') as f: f.write(header) f.write(csv) if zip_archive: utils.zipdir(outdir, delete=True) return
[ "Function", "to", "export", "raw", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3822-L3918
[ "def", "export_traces", "(", "self", ",", "outdir", "=", "None", ",", "focus_stage", "=", "None", ",", "analytes", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "'All_Analyses'", ",", "filt", "=", "False", ",", "zip_archive", "=", "False", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "if", "focus_stage", "is", "None", ":", "focus_stage", "=", "self", ".", "focus_stage", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "a", "!=", "self", ".", "internal_standard", "]", "if", "outdir", "is", "None", ":", "outdir", "=", "os", ".", "path", ".", "join", "(", "self", ".", "export_dir", ",", "'trace_export'", ")", "ud", "=", "{", "'rawdata'", ":", "'counts'", ",", "'despiked'", ":", "'counts'", ",", "'bkgsub'", ":", "'background corrected counts'", ",", "'ratios'", ":", "'counts/count {:s}'", ",", "'calibrated'", ":", "'mol/mol {:s}'", "}", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "ud", "[", "focus_stage", "]", "=", "ud", "[", "focus_stage", "]", ".", "format", "(", "self", ".", "internal_standard", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "for", "s", "in", "samples", ":", "d", "=", "self", ".", "data", "[", "s", "]", ".", "data", "[", "focus_stage", "]", "ind", "=", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "grab_filt", "(", "filt", ")", "out", "=", "Bunch", "(", ")", "for", "a", "in", "analytes", ":", "out", "[", "a", "]", "=", "nominal_values", "(", "d", "[", "a", "]", "[", "ind", "]", ")", "if", "focus_stage", "not", "in", "[", "'rawdata'", ",", "'despiked'", "]", ":", "out", "[", "a", "+", "'_std'", "]", "=", "std_devs", "(", "d", "[", "a", "]", "[", "ind", "]", ")", "out", "[", "a", "+", "'_std'", "]", "[", "out", "[", "a", "+", "'_std'", "]", "==", "0", "]", "=", "np", ".", "nan", "out", "=", "pd", ".", "DataFrame", "(", "out", ",", "index", "=", "self", ".", "data", "[", "s", "]", ".", "Time", "[", "ind", "]", ")", "out", ".", "index", ".", "name", "=", "'Time'", "header", "=", "[", "'# Sample: %s'", "%", "(", "s", ")", ",", "'# Data Exported from LATOOLS on %s'", "%", "(", "time", ".", "strftime", "(", "'%Y:%m:%d %H:%M:%S'", ")", ")", ",", "'# Processed using %s configuration'", "%", "(", "self", ".", "config", "[", "'config'", "]", ")", ",", "'# Analysis Stage: %s'", "%", "(", "focus_stage", ")", ",", "'# Unit: %s'", "%", "ud", "[", "focus_stage", "]", "]", "header", "=", "'\\n'", ".", "join", "(", "header", ")", "+", "'\\n'", "csv", "=", "out", ".", "to_csv", "(", ")", "with", "open", "(", "'%s/%s_%s.csv'", "%", "(", "outdir", ",", "s", ",", "focus_stage", ")", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "header", ")", "f", ".", "write", "(", "csv", ")", "if", "zip_archive", ":", "utils", ".", "zipdir", "(", "outdir", ",", "delete", "=", "True", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.save_log
Save analysis.lalog in specified location
latools/latools.py
def save_log(self, directory=None, logname=None, header=None): """ Save analysis.lalog in specified location """ if directory is None: directory = self.export_dir if not os.path.isdir(directory): directory = os.path.dirname(directory) if logname is None: logname = 'analysis.lalog' if header is None: header = self._log_header() loc = logging.write_logfile(self.log, header, os.path.join(directory, logname)) return loc
def save_log(self, directory=None, logname=None, header=None): """ Save analysis.lalog in specified location """ if directory is None: directory = self.export_dir if not os.path.isdir(directory): directory = os.path.dirname(directory) if logname is None: logname = 'analysis.lalog' if header is None: header = self._log_header() loc = logging.write_logfile(self.log, header, os.path.join(directory, logname)) return loc
[ "Save", "analysis", ".", "lalog", "in", "specified", "location" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3920-L3938
[ "def", "save_log", "(", "self", ",", "directory", "=", "None", ",", "logname", "=", "None", ",", "header", "=", "None", ")", ":", "if", "directory", "is", "None", ":", "directory", "=", "self", ".", "export_dir", "if", "not", "os", ".", "path", ".", "isdir", "(", "directory", ")", ":", "directory", "=", "os", ".", "path", ".", "dirname", "(", "directory", ")", "if", "logname", "is", "None", ":", "logname", "=", "'analysis.lalog'", "if", "header", "is", "None", ":", "header", "=", "self", ".", "_log_header", "(", ")", "loc", "=", "logging", ".", "write_logfile", "(", "self", ".", "log", ",", "header", ",", "os", ".", "path", ".", "join", "(", "directory", ",", "logname", ")", ")", "return", "loc" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyse.minimal_export
Exports a analysis parameters, standard info and a minimal dataset, which can be imported by another user. Parameters ---------- target_analytes : str or iterable Which analytes to include in the export. If specified, the export will contain these analytes, and all other analytes used during data processing (e.g. during filtering). If not specified, all analytes are exported. path : str Where to save the minimal export. If it ends with .zip, a zip file is created. If it's a folder, all data are exported to a folder.
latools/latools.py
def minimal_export(self, target_analytes=None, path=None): """ Exports a analysis parameters, standard info and a minimal dataset, which can be imported by another user. Parameters ---------- target_analytes : str or iterable Which analytes to include in the export. If specified, the export will contain these analytes, and all other analytes used during data processing (e.g. during filtering). If not specified, all analytes are exported. path : str Where to save the minimal export. If it ends with .zip, a zip file is created. If it's a folder, all data are exported to a folder. """ if target_analytes is None: target_analytes = self.analytes if isinstance(target_analytes, str): target_analytes = [target_analytes] self.minimal_analytes.update(target_analytes) zip_archive = False # set up data path if path is None: path = self.export_dir + '/minimal_export.zip' if path.endswith('.zip'): path = path.replace('.zip', '') zip_archive = True if not os.path.isdir(path): os.mkdir(path) # export data self._minimal_export_traces(path + '/data', analytes=self.minimal_analytes) # define analysis_log header log_header = ['# Minimal Reproduction Dataset Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), 'data_folder :: ./data/'] if hasattr(self, 'srmdat'): log_header.append('srm_table :: ./srm.table') # export srm table els = np.unique([re.sub('[0-9]', '', a) for a in self.minimal_analytes]) srmdat = [] for e in els: srmdat.append(self.srmdat.loc[self.srmdat.element == e, :]) srmdat = pd.concat(srmdat) with open(path + '/srm.table', 'w') as f: f.write(srmdat.to_csv()) # save custom functions (of defined) if hasattr(self, 'custom_stat_functions'): with open(path + '/custom_stat_fns.py', 'w') as f: f.write(self.custom_stat_functions) log_header.append('custom_stat_functions :: ./custom_stat_fns.py') log_header.append('# Analysis Log Start: \n') # format sample_stats correctly lss = [(i, l) for i, l in enumerate(self.log) if 'sample_stats' in l] rep = re.compile("(.*'stats': )(\[.*?\])(.*)") for i, l in lss: self.log[i] = rep.sub(r'\1' + str(self.stats_calced) + r'\3', l) # save log self.save_log(path, 'analysis.lalog', header=log_header) if zip_archive: utils.zipdir(directory=path, delete=True) return
def minimal_export(self, target_analytes=None, path=None): """ Exports a analysis parameters, standard info and a minimal dataset, which can be imported by another user. Parameters ---------- target_analytes : str or iterable Which analytes to include in the export. If specified, the export will contain these analytes, and all other analytes used during data processing (e.g. during filtering). If not specified, all analytes are exported. path : str Where to save the minimal export. If it ends with .zip, a zip file is created. If it's a folder, all data are exported to a folder. """ if target_analytes is None: target_analytes = self.analytes if isinstance(target_analytes, str): target_analytes = [target_analytes] self.minimal_analytes.update(target_analytes) zip_archive = False # set up data path if path is None: path = self.export_dir + '/minimal_export.zip' if path.endswith('.zip'): path = path.replace('.zip', '') zip_archive = True if not os.path.isdir(path): os.mkdir(path) # export data self._minimal_export_traces(path + '/data', analytes=self.minimal_analytes) # define analysis_log header log_header = ['# Minimal Reproduction Dataset Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), 'data_folder :: ./data/'] if hasattr(self, 'srmdat'): log_header.append('srm_table :: ./srm.table') # export srm table els = np.unique([re.sub('[0-9]', '', a) for a in self.minimal_analytes]) srmdat = [] for e in els: srmdat.append(self.srmdat.loc[self.srmdat.element == e, :]) srmdat = pd.concat(srmdat) with open(path + '/srm.table', 'w') as f: f.write(srmdat.to_csv()) # save custom functions (of defined) if hasattr(self, 'custom_stat_functions'): with open(path + '/custom_stat_fns.py', 'w') as f: f.write(self.custom_stat_functions) log_header.append('custom_stat_functions :: ./custom_stat_fns.py') log_header.append('# Analysis Log Start: \n') # format sample_stats correctly lss = [(i, l) for i, l in enumerate(self.log) if 'sample_stats' in l] rep = re.compile("(.*'stats': )(\[.*?\])(.*)") for i, l in lss: self.log[i] = rep.sub(r'\1' + str(self.stats_calced) + r'\3', l) # save log self.save_log(path, 'analysis.lalog', header=log_header) if zip_archive: utils.zipdir(directory=path, delete=True) return
[ "Exports", "a", "analysis", "parameters", "standard", "info", "and", "a", "minimal", "dataset", "which", "can", "be", "imported", "by", "another", "user", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3940-L4015
[ "def", "minimal_export", "(", "self", ",", "target_analytes", "=", "None", ",", "path", "=", "None", ")", ":", "if", "target_analytes", "is", "None", ":", "target_analytes", "=", "self", ".", "analytes", "if", "isinstance", "(", "target_analytes", ",", "str", ")", ":", "target_analytes", "=", "[", "target_analytes", "]", "self", ".", "minimal_analytes", ".", "update", "(", "target_analytes", ")", "zip_archive", "=", "False", "# set up data path", "if", "path", "is", "None", ":", "path", "=", "self", ".", "export_dir", "+", "'/minimal_export.zip'", "if", "path", ".", "endswith", "(", "'.zip'", ")", ":", "path", "=", "path", ".", "replace", "(", "'.zip'", ",", "''", ")", "zip_archive", "=", "True", "if", "not", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "os", ".", "mkdir", "(", "path", ")", "# export data", "self", ".", "_minimal_export_traces", "(", "path", "+", "'/data'", ",", "analytes", "=", "self", ".", "minimal_analytes", ")", "# define analysis_log header", "log_header", "=", "[", "'# Minimal Reproduction Dataset Exported from LATOOLS on %s'", "%", "(", "time", ".", "strftime", "(", "'%Y:%m:%d %H:%M:%S'", ")", ")", ",", "'data_folder :: ./data/'", "]", "if", "hasattr", "(", "self", ",", "'srmdat'", ")", ":", "log_header", ".", "append", "(", "'srm_table :: ./srm.table'", ")", "# export srm table", "els", "=", "np", ".", "unique", "(", "[", "re", ".", "sub", "(", "'[0-9]'", ",", "''", ",", "a", ")", "for", "a", "in", "self", ".", "minimal_analytes", "]", ")", "srmdat", "=", "[", "]", "for", "e", "in", "els", ":", "srmdat", ".", "append", "(", "self", ".", "srmdat", ".", "loc", "[", "self", ".", "srmdat", ".", "element", "==", "e", ",", ":", "]", ")", "srmdat", "=", "pd", ".", "concat", "(", "srmdat", ")", "with", "open", "(", "path", "+", "'/srm.table'", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "srmdat", ".", "to_csv", "(", ")", ")", "# save custom functions (of defined)", "if", "hasattr", "(", "self", ",", "'custom_stat_functions'", ")", ":", "with", "open", "(", "path", "+", "'/custom_stat_fns.py'", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "self", ".", "custom_stat_functions", ")", "log_header", ".", "append", "(", "'custom_stat_functions :: ./custom_stat_fns.py'", ")", "log_header", ".", "append", "(", "'# Analysis Log Start: \\n'", ")", "# format sample_stats correctly", "lss", "=", "[", "(", "i", ",", "l", ")", "for", "i", ",", "l", "in", "enumerate", "(", "self", ".", "log", ")", "if", "'sample_stats'", "in", "l", "]", "rep", "=", "re", ".", "compile", "(", "\"(.*'stats': )(\\[.*?\\])(.*)\"", ")", "for", "i", ",", "l", "in", "lss", ":", "self", ".", "log", "[", "i", "]", "=", "rep", ".", "sub", "(", "r'\\1'", "+", "str", "(", "self", ".", "stats_calced", ")", "+", "r'\\3'", ",", "l", ")", "# save log", "self", ".", "save_log", "(", "path", ",", "'analysis.lalog'", ",", "header", "=", "log_header", ")", "if", "zip_archive", ":", "utils", ".", "zipdir", "(", "directory", "=", "path", ",", "delete", "=", "True", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
by_regex
Split one long analysis file into multiple smaller ones. Parameters ---------- file : str The path to the file you want to split. outdir : str The directory to save the split files to. If None, files are saved to a new directory called 'split', which is created inside the data directory. split_pattern : regex string A regular expression that will match lines in the file that mark the start of a new section. Does not have to match the whole line, but must provide a positive match to the lines containing the pattern. global_header_rows : int How many rows at the start of the file to include in each new sub-file. fname_pattern : regex string A regular expression that identifies a new file name in the lines identified by split_pattern. If none, files will be called 'noname_N'. The extension of the main file will be used for all sub-files. trim_head_lines : int If greater than zero, this many lines are removed from the start of each segment trim_tail_lines : int If greater than zero, this many lines are removed from the end of each segment Returns ------- Path to new directory : str
latools/preprocessing/split.py
def by_regex(file, outdir=None, split_pattern=None, global_header_rows=0, fname_pattern=None, trim_tail_lines=0, trim_head_lines=0): """ Split one long analysis file into multiple smaller ones. Parameters ---------- file : str The path to the file you want to split. outdir : str The directory to save the split files to. If None, files are saved to a new directory called 'split', which is created inside the data directory. split_pattern : regex string A regular expression that will match lines in the file that mark the start of a new section. Does not have to match the whole line, but must provide a positive match to the lines containing the pattern. global_header_rows : int How many rows at the start of the file to include in each new sub-file. fname_pattern : regex string A regular expression that identifies a new file name in the lines identified by split_pattern. If none, files will be called 'noname_N'. The extension of the main file will be used for all sub-files. trim_head_lines : int If greater than zero, this many lines are removed from the start of each segment trim_tail_lines : int If greater than zero, this many lines are removed from the end of each segment Returns ------- Path to new directory : str """ # create output sirectory if outdir is None: outdir = os.path.join(os.path.dirname(file), 'split') if not os.path.exists(outdir): os.mkdir(outdir) # read input file with open(file, 'r') as f: lines = f.readlines() # get file extension extension = os.path.splitext(file)[-1] # grab global header rows global_header = lines[:global_header_rows] # find indices of lines containing split_pattern starts = [] for i, line in enumerate(lines): if re.search(split_pattern, line): starts.append(i) starts.append(len(lines)) # get length of lines # split lines into segments based on positions of regex splits = {} for i in range(len(starts) - 1): m = re.search(fname_pattern, lines[starts[i]]) if m: fname = m.groups()[0].strip() else: fname = 'no_name_{:}'.format(i) splits[fname] = global_header + lines[starts[i]:starts[i+1]][trim_head_lines:trim_tail_lines] # write files print('Writing files to: {:}'.format(outdir)) for k, v in splits.items(): fname = (k + extension).replace(' ', '_') with open(os.path.join(outdir, fname), 'w') as f: f.writelines(v) print(' {:}'.format(fname)) print('Done.') return outdir
def by_regex(file, outdir=None, split_pattern=None, global_header_rows=0, fname_pattern=None, trim_tail_lines=0, trim_head_lines=0): """ Split one long analysis file into multiple smaller ones. Parameters ---------- file : str The path to the file you want to split. outdir : str The directory to save the split files to. If None, files are saved to a new directory called 'split', which is created inside the data directory. split_pattern : regex string A regular expression that will match lines in the file that mark the start of a new section. Does not have to match the whole line, but must provide a positive match to the lines containing the pattern. global_header_rows : int How many rows at the start of the file to include in each new sub-file. fname_pattern : regex string A regular expression that identifies a new file name in the lines identified by split_pattern. If none, files will be called 'noname_N'. The extension of the main file will be used for all sub-files. trim_head_lines : int If greater than zero, this many lines are removed from the start of each segment trim_tail_lines : int If greater than zero, this many lines are removed from the end of each segment Returns ------- Path to new directory : str """ # create output sirectory if outdir is None: outdir = os.path.join(os.path.dirname(file), 'split') if not os.path.exists(outdir): os.mkdir(outdir) # read input file with open(file, 'r') as f: lines = f.readlines() # get file extension extension = os.path.splitext(file)[-1] # grab global header rows global_header = lines[:global_header_rows] # find indices of lines containing split_pattern starts = [] for i, line in enumerate(lines): if re.search(split_pattern, line): starts.append(i) starts.append(len(lines)) # get length of lines # split lines into segments based on positions of regex splits = {} for i in range(len(starts) - 1): m = re.search(fname_pattern, lines[starts[i]]) if m: fname = m.groups()[0].strip() else: fname = 'no_name_{:}'.format(i) splits[fname] = global_header + lines[starts[i]:starts[i+1]][trim_head_lines:trim_tail_lines] # write files print('Writing files to: {:}'.format(outdir)) for k, v in splits.items(): fname = (k + extension).replace(' ', '_') with open(os.path.join(outdir, fname), 'w') as f: f.writelines(v) print(' {:}'.format(fname)) print('Done.') return outdir
[ "Split", "one", "long", "analysis", "file", "into", "multiple", "smaller", "ones", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/preprocessing/split.py#L11-L90
[ "def", "by_regex", "(", "file", ",", "outdir", "=", "None", ",", "split_pattern", "=", "None", ",", "global_header_rows", "=", "0", ",", "fname_pattern", "=", "None", ",", "trim_tail_lines", "=", "0", ",", "trim_head_lines", "=", "0", ")", ":", "# create output sirectory", "if", "outdir", "is", "None", ":", "outdir", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "file", ")", ",", "'split'", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "# read input file", "with", "open", "(", "file", ",", "'r'", ")", "as", "f", ":", "lines", "=", "f", ".", "readlines", "(", ")", "# get file extension", "extension", "=", "os", ".", "path", ".", "splitext", "(", "file", ")", "[", "-", "1", "]", "# grab global header rows", "global_header", "=", "lines", "[", ":", "global_header_rows", "]", "# find indices of lines containing split_pattern", "starts", "=", "[", "]", "for", "i", ",", "line", "in", "enumerate", "(", "lines", ")", ":", "if", "re", ".", "search", "(", "split_pattern", ",", "line", ")", ":", "starts", ".", "append", "(", "i", ")", "starts", ".", "append", "(", "len", "(", "lines", ")", ")", "# get length of lines", "# split lines into segments based on positions of regex", "splits", "=", "{", "}", "for", "i", "in", "range", "(", "len", "(", "starts", ")", "-", "1", ")", ":", "m", "=", "re", ".", "search", "(", "fname_pattern", ",", "lines", "[", "starts", "[", "i", "]", "]", ")", "if", "m", ":", "fname", "=", "m", ".", "groups", "(", ")", "[", "0", "]", ".", "strip", "(", ")", "else", ":", "fname", "=", "'no_name_{:}'", ".", "format", "(", "i", ")", "splits", "[", "fname", "]", "=", "global_header", "+", "lines", "[", "starts", "[", "i", "]", ":", "starts", "[", "i", "+", "1", "]", "]", "[", "trim_head_lines", ":", "trim_tail_lines", "]", "# write files", "print", "(", "'Writing files to: {:}'", ".", "format", "(", "outdir", ")", ")", "for", "k", ",", "v", "in", "splits", ".", "items", "(", ")", ":", "fname", "=", "(", "k", "+", "extension", ")", ".", "replace", "(", "' '", ",", "'_'", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "outdir", ",", "fname", ")", ",", "'w'", ")", "as", "f", ":", "f", ".", "writelines", "(", "v", ")", "print", "(", "' {:}'", ".", "format", "(", "fname", ")", ")", "print", "(", "'Done.'", ")", "return", "outdir" ]
cd25a650cfee318152f234d992708511f7047fbe
test
long_file
TODO: Check for existing files in savedir, don't overwrite?
latools/preprocessing/split.py
def long_file(data_file, dataformat, sample_list, savedir=None, srm_id=None, **autorange_args): """ TODO: Check for existing files in savedir, don't overwrite? """ if isinstance(sample_list, str): if os.path.exists(sample_list): sample_list = np.genfromtxt(sample_list, dtype=str) else: raise ValueError('File {} not found.') elif not isinstance(sample_list, (list, np.ndarray)): raise ValueError('sample_list should be an array_like or a file.') if srm_id is not None: srm_replace = [] for s in sample_list: if srm_id in s: s = srm_id srm_replace.append(s) sample_list = srm_replace _, _, dat, meta = read_data(data_file, dataformat=dataformat, name_mode='file') if 'date' in meta: d = dateutil.parser.parse(meta['date']) else: d = datetime.datetime.now() # autorange bkg, sig, trn, _ = autorange(dat['Time'], dat['total_counts'], **autorange_args) ns = np.zeros(sig.size) ns[sig] = np.cumsum((sig ^ np.roll(sig, 1)) & sig)[sig] n = int(max(ns)) if len(sample_list) != n: warn('Length of sample list does not match number of ablations in file.\n' + 'We will continue, but please make sure the assignments are correct.') # calculate split boundaries bounds = [] lower = 0 sn = 0 next_sample = '' for ni in range(n-1): sample = sample_list[sn] next_sample = sample_list[sn + 1] if sample != next_sample: current_end = np.argwhere(dat['Time'] == dat['Time'][ns == ni + 1].max())[0] next_start = np.argwhere(dat['Time'] == dat['Time'][ns == ni + 2].min())[0] upper = (current_end + next_start) // 2 bounds.append((sample, (int(lower), int(upper)))) lower = upper + 1 sn += 1 bounds.append((sample_list[-1], (int(upper) + 1, len(ns)))) # split up data sections = {} seen = {} for s, (lo, hi) in bounds: if s not in seen: seen[s] = 0 else: seen[s] += 1 s += '_{}'.format(seen[s]) sections[s] = {'oTime': dat['Time'][lo:hi]} sections[s]['Time'] = sections[s]['oTime'] - np.nanmin(sections[s]['oTime']) sections[s]['rawdata'] = {} for k, v in dat['rawdata'].items(): sections[s]['rawdata'][k] = v[lo:hi] sections[s]['starttime'] = d + datetime.timedelta(seconds=np.nanmin(sections[s]['oTime'])) # save output if savedir is None: savedir = os.path.join(os.path.dirname(os.path.abspath(data_file)), os.path.splitext(os.path.basename(data_file))[0] + '_split') if not os.path.isdir(savedir): os.makedirs(savedir) header = ['# Long data file split by latools on {}'.format(datetime.datetime.now().strftime('%Y:%m:%d %H:%M:%S'))] if 'date' not in meta: header.append('# Warning: No date specified in file - Analysis Times are date file was split. ') else: header.append('# ') header.append('# ') header.append('# ') flist = [savedir] for s, dat in sections.items(): iheader = header.copy() iheader.append('# Sample: {}'.format(s)) iheader.append('# Analysis Time: {}'.format(dat['starttime'].strftime('%Y-%m-%d %H:%M:%S'))) iheader = '\n'.join(iheader) + '\n' out = pd.DataFrame({analyte_2_namemass(k): v for k, v in dat['rawdata'].items()}, index=dat['Time']) out.index.name = 'Time' csv = out.to_csv() with open('{}/{}.csv'.format(savedir, s), 'w') as f: f.write(iheader) f.write(csv) flist.append(' {}.csv'.format(s)) print("File split into {} sections.\n Saved to: {}\n\n Import using the 'REPRODUCE' configuration.".format(n, '\n'.join(flist))) return None
def long_file(data_file, dataformat, sample_list, savedir=None, srm_id=None, **autorange_args): """ TODO: Check for existing files in savedir, don't overwrite? """ if isinstance(sample_list, str): if os.path.exists(sample_list): sample_list = np.genfromtxt(sample_list, dtype=str) else: raise ValueError('File {} not found.') elif not isinstance(sample_list, (list, np.ndarray)): raise ValueError('sample_list should be an array_like or a file.') if srm_id is not None: srm_replace = [] for s in sample_list: if srm_id in s: s = srm_id srm_replace.append(s) sample_list = srm_replace _, _, dat, meta = read_data(data_file, dataformat=dataformat, name_mode='file') if 'date' in meta: d = dateutil.parser.parse(meta['date']) else: d = datetime.datetime.now() # autorange bkg, sig, trn, _ = autorange(dat['Time'], dat['total_counts'], **autorange_args) ns = np.zeros(sig.size) ns[sig] = np.cumsum((sig ^ np.roll(sig, 1)) & sig)[sig] n = int(max(ns)) if len(sample_list) != n: warn('Length of sample list does not match number of ablations in file.\n' + 'We will continue, but please make sure the assignments are correct.') # calculate split boundaries bounds = [] lower = 0 sn = 0 next_sample = '' for ni in range(n-1): sample = sample_list[sn] next_sample = sample_list[sn + 1] if sample != next_sample: current_end = np.argwhere(dat['Time'] == dat['Time'][ns == ni + 1].max())[0] next_start = np.argwhere(dat['Time'] == dat['Time'][ns == ni + 2].min())[0] upper = (current_end + next_start) // 2 bounds.append((sample, (int(lower), int(upper)))) lower = upper + 1 sn += 1 bounds.append((sample_list[-1], (int(upper) + 1, len(ns)))) # split up data sections = {} seen = {} for s, (lo, hi) in bounds: if s not in seen: seen[s] = 0 else: seen[s] += 1 s += '_{}'.format(seen[s]) sections[s] = {'oTime': dat['Time'][lo:hi]} sections[s]['Time'] = sections[s]['oTime'] - np.nanmin(sections[s]['oTime']) sections[s]['rawdata'] = {} for k, v in dat['rawdata'].items(): sections[s]['rawdata'][k] = v[lo:hi] sections[s]['starttime'] = d + datetime.timedelta(seconds=np.nanmin(sections[s]['oTime'])) # save output if savedir is None: savedir = os.path.join(os.path.dirname(os.path.abspath(data_file)), os.path.splitext(os.path.basename(data_file))[0] + '_split') if not os.path.isdir(savedir): os.makedirs(savedir) header = ['# Long data file split by latools on {}'.format(datetime.datetime.now().strftime('%Y:%m:%d %H:%M:%S'))] if 'date' not in meta: header.append('# Warning: No date specified in file - Analysis Times are date file was split. ') else: header.append('# ') header.append('# ') header.append('# ') flist = [savedir] for s, dat in sections.items(): iheader = header.copy() iheader.append('# Sample: {}'.format(s)) iheader.append('# Analysis Time: {}'.format(dat['starttime'].strftime('%Y-%m-%d %H:%M:%S'))) iheader = '\n'.join(iheader) + '\n' out = pd.DataFrame({analyte_2_namemass(k): v for k, v in dat['rawdata'].items()}, index=dat['Time']) out.index.name = 'Time' csv = out.to_csv() with open('{}/{}.csv'.format(savedir, s), 'w') as f: f.write(iheader) f.write(csv) flist.append(' {}.csv'.format(s)) print("File split into {} sections.\n Saved to: {}\n\n Import using the 'REPRODUCE' configuration.".format(n, '\n'.join(flist))) return None
[ "TODO", ":", "Check", "for", "existing", "files", "in", "savedir", "don", "t", "overwrite?" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/preprocessing/split.py#L92-L200
[ "def", "long_file", "(", "data_file", ",", "dataformat", ",", "sample_list", ",", "savedir", "=", "None", ",", "srm_id", "=", "None", ",", "*", "*", "autorange_args", ")", ":", "if", "isinstance", "(", "sample_list", ",", "str", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "sample_list", ")", ":", "sample_list", "=", "np", ".", "genfromtxt", "(", "sample_list", ",", "dtype", "=", "str", ")", "else", ":", "raise", "ValueError", "(", "'File {} not found.'", ")", "elif", "not", "isinstance", "(", "sample_list", ",", "(", "list", ",", "np", ".", "ndarray", ")", ")", ":", "raise", "ValueError", "(", "'sample_list should be an array_like or a file.'", ")", "if", "srm_id", "is", "not", "None", ":", "srm_replace", "=", "[", "]", "for", "s", "in", "sample_list", ":", "if", "srm_id", "in", "s", ":", "s", "=", "srm_id", "srm_replace", ".", "append", "(", "s", ")", "sample_list", "=", "srm_replace", "_", ",", "_", ",", "dat", ",", "meta", "=", "read_data", "(", "data_file", ",", "dataformat", "=", "dataformat", ",", "name_mode", "=", "'file'", ")", "if", "'date'", "in", "meta", ":", "d", "=", "dateutil", ".", "parser", ".", "parse", "(", "meta", "[", "'date'", "]", ")", "else", ":", "d", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "# autorange", "bkg", ",", "sig", ",", "trn", ",", "_", "=", "autorange", "(", "dat", "[", "'Time'", "]", ",", "dat", "[", "'total_counts'", "]", ",", "*", "*", "autorange_args", ")", "ns", "=", "np", ".", "zeros", "(", "sig", ".", "size", ")", "ns", "[", "sig", "]", "=", "np", ".", "cumsum", "(", "(", "sig", "^", "np", ".", "roll", "(", "sig", ",", "1", ")", ")", "&", "sig", ")", "[", "sig", "]", "n", "=", "int", "(", "max", "(", "ns", ")", ")", "if", "len", "(", "sample_list", ")", "!=", "n", ":", "warn", "(", "'Length of sample list does not match number of ablations in file.\\n'", "+", "'We will continue, but please make sure the assignments are correct.'", ")", "# calculate split boundaries", "bounds", "=", "[", "]", "lower", "=", "0", "sn", "=", "0", "next_sample", "=", "''", "for", "ni", "in", "range", "(", "n", "-", "1", ")", ":", "sample", "=", "sample_list", "[", "sn", "]", "next_sample", "=", "sample_list", "[", "sn", "+", "1", "]", "if", "sample", "!=", "next_sample", ":", "current_end", "=", "np", ".", "argwhere", "(", "dat", "[", "'Time'", "]", "==", "dat", "[", "'Time'", "]", "[", "ns", "==", "ni", "+", "1", "]", ".", "max", "(", ")", ")", "[", "0", "]", "next_start", "=", "np", ".", "argwhere", "(", "dat", "[", "'Time'", "]", "==", "dat", "[", "'Time'", "]", "[", "ns", "==", "ni", "+", "2", "]", ".", "min", "(", ")", ")", "[", "0", "]", "upper", "=", "(", "current_end", "+", "next_start", ")", "//", "2", "bounds", ".", "append", "(", "(", "sample", ",", "(", "int", "(", "lower", ")", ",", "int", "(", "upper", ")", ")", ")", ")", "lower", "=", "upper", "+", "1", "sn", "+=", "1", "bounds", ".", "append", "(", "(", "sample_list", "[", "-", "1", "]", ",", "(", "int", "(", "upper", ")", "+", "1", ",", "len", "(", "ns", ")", ")", ")", ")", "# split up data", "sections", "=", "{", "}", "seen", "=", "{", "}", "for", "s", ",", "(", "lo", ",", "hi", ")", "in", "bounds", ":", "if", "s", "not", "in", "seen", ":", "seen", "[", "s", "]", "=", "0", "else", ":", "seen", "[", "s", "]", "+=", "1", "s", "+=", "'_{}'", ".", "format", "(", "seen", "[", "s", "]", ")", "sections", "[", "s", "]", "=", "{", "'oTime'", ":", "dat", "[", "'Time'", "]", "[", "lo", ":", "hi", "]", "}", "sections", "[", "s", "]", "[", "'Time'", "]", "=", "sections", "[", "s", "]", "[", "'oTime'", "]", "-", "np", ".", "nanmin", "(", "sections", "[", "s", "]", "[", "'oTime'", "]", ")", "sections", "[", "s", "]", "[", "'rawdata'", "]", "=", "{", "}", "for", "k", ",", "v", "in", "dat", "[", "'rawdata'", "]", ".", "items", "(", ")", ":", "sections", "[", "s", "]", "[", "'rawdata'", "]", "[", "k", "]", "=", "v", "[", "lo", ":", "hi", "]", "sections", "[", "s", "]", "[", "'starttime'", "]", "=", "d", "+", "datetime", ".", "timedelta", "(", "seconds", "=", "np", ".", "nanmin", "(", "sections", "[", "s", "]", "[", "'oTime'", "]", ")", ")", "# save output", "if", "savedir", "is", "None", ":", "savedir", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "data_file", ")", ")", ",", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "data_file", ")", ")", "[", "0", "]", "+", "'_split'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "savedir", ")", ":", "os", ".", "makedirs", "(", "savedir", ")", "header", "=", "[", "'# Long data file split by latools on {}'", ".", "format", "(", "datetime", ".", "datetime", ".", "now", "(", ")", ".", "strftime", "(", "'%Y:%m:%d %H:%M:%S'", ")", ")", "]", "if", "'date'", "not", "in", "meta", ":", "header", ".", "append", "(", "'# Warning: No date specified in file - Analysis Times are date file was split. '", ")", "else", ":", "header", ".", "append", "(", "'# '", ")", "header", ".", "append", "(", "'# '", ")", "header", ".", "append", "(", "'# '", ")", "flist", "=", "[", "savedir", "]", "for", "s", ",", "dat", "in", "sections", ".", "items", "(", ")", ":", "iheader", "=", "header", ".", "copy", "(", ")", "iheader", ".", "append", "(", "'# Sample: {}'", ".", "format", "(", "s", ")", ")", "iheader", ".", "append", "(", "'# Analysis Time: {}'", ".", "format", "(", "dat", "[", "'starttime'", "]", ".", "strftime", "(", "'%Y-%m-%d %H:%M:%S'", ")", ")", ")", "iheader", "=", "'\\n'", ".", "join", "(", "iheader", ")", "+", "'\\n'", "out", "=", "pd", ".", "DataFrame", "(", "{", "analyte_2_namemass", "(", "k", ")", ":", "v", "for", "k", ",", "v", "in", "dat", "[", "'rawdata'", "]", ".", "items", "(", ")", "}", ",", "index", "=", "dat", "[", "'Time'", "]", ")", "out", ".", "index", ".", "name", "=", "'Time'", "csv", "=", "out", ".", "to_csv", "(", ")", "with", "open", "(", "'{}/{}.csv'", ".", "format", "(", "savedir", ",", "s", ")", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "iheader", ")", "f", ".", "write", "(", "csv", ")", "flist", ".", "append", "(", "' {}.csv'", ".", "format", "(", "s", ")", ")", "print", "(", "\"File split into {} sections.\\n Saved to: {}\\n\\n Import using the 'REPRODUCE' configuration.\"", ".", "format", "(", "n", ",", "'\\n'", ".", "join", "(", "flist", ")", ")", ")", "return", "None" ]
cd25a650cfee318152f234d992708511f7047fbe
test
Foldable.fold_map
map `f` over the traversable, then fold over the result using the supplied initial element `z` and operation `g`, defaulting to addition for the latter.
amino/tc/foldable.py
def fold_map(self, fa: F[A], z: B, f: Callable[[A], B], g: Callable[[Z, B], Z]=operator.add) -> Z: ''' map `f` over the traversable, then fold over the result using the supplied initial element `z` and operation `g`, defaulting to addition for the latter. ''' mapped = Functor.fatal(type(fa)).map(fa, f) return self.fold_left(mapped)(z)(g)
def fold_map(self, fa: F[A], z: B, f: Callable[[A], B], g: Callable[[Z, B], Z]=operator.add) -> Z: ''' map `f` over the traversable, then fold over the result using the supplied initial element `z` and operation `g`, defaulting to addition for the latter. ''' mapped = Functor.fatal(type(fa)).map(fa, f) return self.fold_left(mapped)(z)(g)
[ "map", "f", "over", "the", "traversable", "then", "fold", "over", "the", "result", "using", "the", "supplied", "initial", "element", "z", "and", "operation", "g", "defaulting", "to", "addition", "for", "the", "latter", "." ]
tek/amino
python
https://github.com/tek/amino/blob/51b314933e047a45587a24ecff02c836706d27ff/amino/tc/foldable.py#L64-L70
[ "def", "fold_map", "(", "self", ",", "fa", ":", "F", "[", "A", "]", ",", "z", ":", "B", ",", "f", ":", "Callable", "[", "[", "A", "]", ",", "B", "]", ",", "g", ":", "Callable", "[", "[", "Z", ",", "B", "]", ",", "Z", "]", "=", "operator", ".", "add", ")", "->", "Z", ":", "mapped", "=", "Functor", ".", "fatal", "(", "type", "(", "fa", ")", ")", ".", "map", "(", "fa", ",", "f", ")", "return", "self", ".", "fold_left", "(", "mapped", ")", "(", "z", ")", "(", "g", ")" ]
51b314933e047a45587a24ecff02c836706d27ff
test
pca_calc
Calculates pca of d. Parameters ---------- nc : int Number of components d : np.ndarray An NxM array, containing M observations of N variables. Data must be floats. Can contain NaN values. Returns ------- pca, dt : tuple fitted PCA object, and transformed d (same size as d).
latools/filtering/pca.py
def pca_calc(nc, d): """ Calculates pca of d. Parameters ---------- nc : int Number of components d : np.ndarray An NxM array, containing M observations of N variables. Data must be floats. Can contain NaN values. Returns ------- pca, dt : tuple fitted PCA object, and transformed d (same size as d). """ # check for and remove nans ind = ~np.apply_along_axis(any, 1, np.isnan(d)) if any(~ind): pcs = np.full((d.shape[0], nc), np.nan) d = d[ind, :] pca = PCA(nc).fit(d) if any(~ind): pcs[ind, :] = pca.transform(d) else: pcs = pca.transform(d) return pca, pcs
def pca_calc(nc, d): """ Calculates pca of d. Parameters ---------- nc : int Number of components d : np.ndarray An NxM array, containing M observations of N variables. Data must be floats. Can contain NaN values. Returns ------- pca, dt : tuple fitted PCA object, and transformed d (same size as d). """ # check for and remove nans ind = ~np.apply_along_axis(any, 1, np.isnan(d)) if any(~ind): pcs = np.full((d.shape[0], nc), np.nan) d = d[ind, :] pca = PCA(nc).fit(d) if any(~ind): pcs[ind, :] = pca.transform(d) else: pcs = pca.transform(d) return pca, pcs
[ "Calculates", "pca", "of", "d", ".", "Parameters", "----------", "nc", ":", "int", "Number", "of", "components", "d", ":", "np", ".", "ndarray", "An", "NxM", "array", "containing", "M", "observations", "of", "N", "variables", ".", "Data", "must", "be", "floats", ".", "Can", "contain", "NaN", "values", ".", "Returns", "-------", "pca", "dt", ":", "tuple", "fitted", "PCA", "object", "and", "transformed", "d", "(", "same", "size", "as", "d", ")", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/pca.py#L10-L42
[ "def", "pca_calc", "(", "nc", ",", "d", ")", ":", "# check for and remove nans", "ind", "=", "~", "np", ".", "apply_along_axis", "(", "any", ",", "1", ",", "np", ".", "isnan", "(", "d", ")", ")", "if", "any", "(", "~", "ind", ")", ":", "pcs", "=", "np", ".", "full", "(", "(", "d", ".", "shape", "[", "0", "]", ",", "nc", ")", ",", "np", ".", "nan", ")", "d", "=", "d", "[", "ind", ",", ":", "]", "pca", "=", "PCA", "(", "nc", ")", ".", "fit", "(", "d", ")", "if", "any", "(", "~", "ind", ")", ":", "pcs", "[", "ind", ",", ":", "]", "=", "pca", ".", "transform", "(", "d", ")", "else", ":", "pcs", "=", "pca", ".", "transform", "(", "d", ")", "return", "pca", ",", "pcs" ]
cd25a650cfee318152f234d992708511f7047fbe
test
pca_plot
Plot a fitted PCA, and all components.
latools/filtering/pca.py
def pca_plot(pca, dt, xlabs=None, mode='scatter', lognorm=True): """ Plot a fitted PCA, and all components. """ nc = pca.n_components f = np.arange(pca.n_features_) cs = list(itertools.combinations(range(nc), 2)) ind = ~np.apply_along_axis(any, 1, np.isnan(dt)) cylim = (pca.components_.min(), pca.components_.max()) yd = cylim[1] - cylim[0] # Make figure fig, axs = plt.subplots(nc, nc, figsize=[3 * nc, nc * 3], tight_layout=True) for x, y in zip(*np.triu_indices(nc)): if x == y: tax = axs[x, y] tax.bar(f, pca.components_[x], 0.8) tax.set_xticks([]) tax.axhline(0, zorder=-1, c=(0,0,0,0.6)) # labels tax.set_ylim(cylim[0] - 0.2 * yd, cylim[1] + 0.2 * yd) for xi, yi, lab in zip(f, pca.components_[x], xlabs): if yi > 0: yo = yd * 0.03 va = 'bottom' else: yo = yd * -0.02 va = 'top' tax.text(xi, yi + yo, lab, ha='center', va=va, rotation=90, fontsize=8) else: xv = dt[ind, x] yv = dt[ind, y] if mode == 'scatter': axs[x, y].scatter(xv, yv, alpha=0.2) axs[y, x].scatter(yv, xv, alpha=0.2) if mode == 'hist2d': if lognorm: norm = mpl.colors.LogNorm() else: norm = None axs[x, y].hist2d(xv, yv, 50, cmap=plt.cm.Blues, norm=norm) axs[y, x].hist2d(yv, xv, 50, cmap=plt.cm.Blues, norm=norm) if x == 0: axs[y, x].set_ylabel('PC{:.0f}'.format(y + 1)) if y == nc - 1: axs[y, x].set_xlabel('PC{:.0f}'.format(x + 1)) return fig, axs, xv, yv
def pca_plot(pca, dt, xlabs=None, mode='scatter', lognorm=True): """ Plot a fitted PCA, and all components. """ nc = pca.n_components f = np.arange(pca.n_features_) cs = list(itertools.combinations(range(nc), 2)) ind = ~np.apply_along_axis(any, 1, np.isnan(dt)) cylim = (pca.components_.min(), pca.components_.max()) yd = cylim[1] - cylim[0] # Make figure fig, axs = plt.subplots(nc, nc, figsize=[3 * nc, nc * 3], tight_layout=True) for x, y in zip(*np.triu_indices(nc)): if x == y: tax = axs[x, y] tax.bar(f, pca.components_[x], 0.8) tax.set_xticks([]) tax.axhline(0, zorder=-1, c=(0,0,0,0.6)) # labels tax.set_ylim(cylim[0] - 0.2 * yd, cylim[1] + 0.2 * yd) for xi, yi, lab in zip(f, pca.components_[x], xlabs): if yi > 0: yo = yd * 0.03 va = 'bottom' else: yo = yd * -0.02 va = 'top' tax.text(xi, yi + yo, lab, ha='center', va=va, rotation=90, fontsize=8) else: xv = dt[ind, x] yv = dt[ind, y] if mode == 'scatter': axs[x, y].scatter(xv, yv, alpha=0.2) axs[y, x].scatter(yv, xv, alpha=0.2) if mode == 'hist2d': if lognorm: norm = mpl.colors.LogNorm() else: norm = None axs[x, y].hist2d(xv, yv, 50, cmap=plt.cm.Blues, norm=norm) axs[y, x].hist2d(yv, xv, 50, cmap=plt.cm.Blues, norm=norm) if x == 0: axs[y, x].set_ylabel('PC{:.0f}'.format(y + 1)) if y == nc - 1: axs[y, x].set_xlabel('PC{:.0f}'.format(x + 1)) return fig, axs, xv, yv
[ "Plot", "a", "fitted", "PCA", "and", "all", "components", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/pca.py#L45-L103
[ "def", "pca_plot", "(", "pca", ",", "dt", ",", "xlabs", "=", "None", ",", "mode", "=", "'scatter'", ",", "lognorm", "=", "True", ")", ":", "nc", "=", "pca", ".", "n_components", "f", "=", "np", ".", "arange", "(", "pca", ".", "n_features_", ")", "cs", "=", "list", "(", "itertools", ".", "combinations", "(", "range", "(", "nc", ")", ",", "2", ")", ")", "ind", "=", "~", "np", ".", "apply_along_axis", "(", "any", ",", "1", ",", "np", ".", "isnan", "(", "dt", ")", ")", "cylim", "=", "(", "pca", ".", "components_", ".", "min", "(", ")", ",", "pca", ".", "components_", ".", "max", "(", ")", ")", "yd", "=", "cylim", "[", "1", "]", "-", "cylim", "[", "0", "]", "# Make figure", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "nc", ",", "nc", ",", "figsize", "=", "[", "3", "*", "nc", ",", "nc", "*", "3", "]", ",", "tight_layout", "=", "True", ")", "for", "x", ",", "y", "in", "zip", "(", "*", "np", ".", "triu_indices", "(", "nc", ")", ")", ":", "if", "x", "==", "y", ":", "tax", "=", "axs", "[", "x", ",", "y", "]", "tax", ".", "bar", "(", "f", ",", "pca", ".", "components_", "[", "x", "]", ",", "0.8", ")", "tax", ".", "set_xticks", "(", "[", "]", ")", "tax", ".", "axhline", "(", "0", ",", "zorder", "=", "-", "1", ",", "c", "=", "(", "0", ",", "0", ",", "0", ",", "0.6", ")", ")", "# labels ", "tax", ".", "set_ylim", "(", "cylim", "[", "0", "]", "-", "0.2", "*", "yd", ",", "cylim", "[", "1", "]", "+", "0.2", "*", "yd", ")", "for", "xi", ",", "yi", ",", "lab", "in", "zip", "(", "f", ",", "pca", ".", "components_", "[", "x", "]", ",", "xlabs", ")", ":", "if", "yi", ">", "0", ":", "yo", "=", "yd", "*", "0.03", "va", "=", "'bottom'", "else", ":", "yo", "=", "yd", "*", "-", "0.02", "va", "=", "'top'", "tax", ".", "text", "(", "xi", ",", "yi", "+", "yo", ",", "lab", ",", "ha", "=", "'center'", ",", "va", "=", "va", ",", "rotation", "=", "90", ",", "fontsize", "=", "8", ")", "else", ":", "xv", "=", "dt", "[", "ind", ",", "x", "]", "yv", "=", "dt", "[", "ind", ",", "y", "]", "if", "mode", "==", "'scatter'", ":", "axs", "[", "x", ",", "y", "]", ".", "scatter", "(", "xv", ",", "yv", ",", "alpha", "=", "0.2", ")", "axs", "[", "y", ",", "x", "]", ".", "scatter", "(", "yv", ",", "xv", ",", "alpha", "=", "0.2", ")", "if", "mode", "==", "'hist2d'", ":", "if", "lognorm", ":", "norm", "=", "mpl", ".", "colors", ".", "LogNorm", "(", ")", "else", ":", "norm", "=", "None", "axs", "[", "x", ",", "y", "]", ".", "hist2d", "(", "xv", ",", "yv", ",", "50", ",", "cmap", "=", "plt", ".", "cm", ".", "Blues", ",", "norm", "=", "norm", ")", "axs", "[", "y", ",", "x", "]", ".", "hist2d", "(", "yv", ",", "xv", ",", "50", ",", "cmap", "=", "plt", ".", "cm", ".", "Blues", ",", "norm", "=", "norm", ")", "if", "x", "==", "0", ":", "axs", "[", "y", ",", "x", "]", ".", "set_ylabel", "(", "'PC{:.0f}'", ".", "format", "(", "y", "+", "1", ")", ")", "if", "y", "==", "nc", "-", "1", ":", "axs", "[", "y", ",", "x", "]", ".", "set_xlabel", "(", "'PC{:.0f}'", ".", "format", "(", "x", "+", "1", ")", ")", "return", "fig", ",", "axs", ",", "xv", ",", "yv" ]
cd25a650cfee318152f234d992708511f7047fbe
test
calc_windows
Apply fn to all contiguous regions in s that have at least min_points.
latools/filtering/signal_optimiser.py
def calc_windows(fn, s, min_points): """ Apply fn to all contiguous regions in s that have at least min_points. """ max_points = np.sum(~np.isnan(s)) n_points = max_points - min_points out = np.full((n_points, s.size), np.nan) # skip nans, for speed ind = ~np.isnan(s) s = s[ind] for i, w in enumerate(range(min_points, s.size)): r = rolling_window(s, w, pad=np.nan) out[i, ind] = np.apply_along_axis(fn, 1, r) return out
def calc_windows(fn, s, min_points): """ Apply fn to all contiguous regions in s that have at least min_points. """ max_points = np.sum(~np.isnan(s)) n_points = max_points - min_points out = np.full((n_points, s.size), np.nan) # skip nans, for speed ind = ~np.isnan(s) s = s[ind] for i, w in enumerate(range(min_points, s.size)): r = rolling_window(s, w, pad=np.nan) out[i, ind] = np.apply_along_axis(fn, 1, r) return out
[ "Apply", "fn", "to", "all", "contiguous", "regions", "in", "s", "that", "have", "at", "least", "min_points", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L14-L31
[ "def", "calc_windows", "(", "fn", ",", "s", ",", "min_points", ")", ":", "max_points", "=", "np", ".", "sum", "(", "~", "np", ".", "isnan", "(", "s", ")", ")", "n_points", "=", "max_points", "-", "min_points", "out", "=", "np", ".", "full", "(", "(", "n_points", ",", "s", ".", "size", ")", ",", "np", ".", "nan", ")", "# skip nans, for speed", "ind", "=", "~", "np", ".", "isnan", "(", "s", ")", "s", "=", "s", "[", "ind", "]", "for", "i", ",", "w", "in", "enumerate", "(", "range", "(", "min_points", ",", "s", ".", "size", ")", ")", ":", "r", "=", "rolling_window", "(", "s", ",", "w", ",", "pad", "=", "np", ".", "nan", ")", "out", "[", "i", ",", "ind", "]", "=", "np", ".", "apply_along_axis", "(", "fn", ",", "1", ",", "r", ")", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
calc_window_mean_std
Apply fn to all contiguous regions in s that have at least min_points.
latools/filtering/signal_optimiser.py
def calc_window_mean_std(s, min_points, ind=None): """ Apply fn to all contiguous regions in s that have at least min_points. """ max_points = np.sum(~np.isnan(s)) n_points = max_points - min_points mean = np.full((n_points, s.size), np.nan) std = np.full((n_points, s.size), np.nan) # skip nans, for speed if ind is None: ind = ~np.isnan(s) else: ind = ind & ~np.isnan(s) s = s[ind] for i, w in enumerate(range(min_points, s.size)): r = rolling_window(s, w, pad=np.nan) mean[i, ind] = r.sum(1) / w std[i, ind] = (((r - mean[i, ind][:, np.newaxis])**2).sum(1) / (w - 1))**0.5 # mean[i, ind] = np.apply_along_axis(np.nanmean, 1, r) # std[i, ind] = np.apply_along_axis(np.nanstd, 1, r) return mean, std
def calc_window_mean_std(s, min_points, ind=None): """ Apply fn to all contiguous regions in s that have at least min_points. """ max_points = np.sum(~np.isnan(s)) n_points = max_points - min_points mean = np.full((n_points, s.size), np.nan) std = np.full((n_points, s.size), np.nan) # skip nans, for speed if ind is None: ind = ~np.isnan(s) else: ind = ind & ~np.isnan(s) s = s[ind] for i, w in enumerate(range(min_points, s.size)): r = rolling_window(s, w, pad=np.nan) mean[i, ind] = r.sum(1) / w std[i, ind] = (((r - mean[i, ind][:, np.newaxis])**2).sum(1) / (w - 1))**0.5 # mean[i, ind] = np.apply_along_axis(np.nanmean, 1, r) # std[i, ind] = np.apply_along_axis(np.nanstd, 1, r) return mean, std
[ "Apply", "fn", "to", "all", "contiguous", "regions", "in", "s", "that", "have", "at", "least", "min_points", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L33-L57
[ "def", "calc_window_mean_std", "(", "s", ",", "min_points", ",", "ind", "=", "None", ")", ":", "max_points", "=", "np", ".", "sum", "(", "~", "np", ".", "isnan", "(", "s", ")", ")", "n_points", "=", "max_points", "-", "min_points", "mean", "=", "np", ".", "full", "(", "(", "n_points", ",", "s", ".", "size", ")", ",", "np", ".", "nan", ")", "std", "=", "np", ".", "full", "(", "(", "n_points", ",", "s", ".", "size", ")", ",", "np", ".", "nan", ")", "# skip nans, for speed", "if", "ind", "is", "None", ":", "ind", "=", "~", "np", ".", "isnan", "(", "s", ")", "else", ":", "ind", "=", "ind", "&", "~", "np", ".", "isnan", "(", "s", ")", "s", "=", "s", "[", "ind", "]", "for", "i", ",", "w", "in", "enumerate", "(", "range", "(", "min_points", ",", "s", ".", "size", ")", ")", ":", "r", "=", "rolling_window", "(", "s", ",", "w", ",", "pad", "=", "np", ".", "nan", ")", "mean", "[", "i", ",", "ind", "]", "=", "r", ".", "sum", "(", "1", ")", "/", "w", "std", "[", "i", ",", "ind", "]", "=", "(", "(", "(", "r", "-", "mean", "[", "i", ",", "ind", "]", "[", ":", ",", "np", ".", "newaxis", "]", ")", "**", "2", ")", ".", "sum", "(", "1", ")", "/", "(", "w", "-", "1", ")", ")", "**", "0.5", "# mean[i, ind] = np.apply_along_axis(np.nanmean, 1, r)", "# std[i, ind] = np.apply_along_axis(np.nanstd, 1, r)", "return", "mean", ",", "std" ]
cd25a650cfee318152f234d992708511f7047fbe
test
bayes_scale
Remove mean and divide by standard deviation, using bayes_kvm statistics.
latools/filtering/signal_optimiser.py
def bayes_scale(s): """ Remove mean and divide by standard deviation, using bayes_kvm statistics. """ if sum(~np.isnan(s)) > 1: bm, bv, bs = bayes_mvs(s[~np.isnan(s)]) return (s - bm.statistic) / bs.statistic else: return np.full(s.shape, np.nan)
def bayes_scale(s): """ Remove mean and divide by standard deviation, using bayes_kvm statistics. """ if sum(~np.isnan(s)) > 1: bm, bv, bs = bayes_mvs(s[~np.isnan(s)]) return (s - bm.statistic) / bs.statistic else: return np.full(s.shape, np.nan)
[ "Remove", "mean", "and", "divide", "by", "standard", "deviation", "using", "bayes_kvm", "statistics", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L65-L73
[ "def", "bayes_scale", "(", "s", ")", ":", "if", "sum", "(", "~", "np", ".", "isnan", "(", "s", ")", ")", ">", "1", ":", "bm", ",", "bv", ",", "bs", "=", "bayes_mvs", "(", "s", "[", "~", "np", ".", "isnan", "(", "s", ")", "]", ")", "return", "(", "s", "-", "bm", ".", "statistic", ")", "/", "bs", ".", "statistic", "else", ":", "return", "np", ".", "full", "(", "s", ".", "shape", ",", "np", ".", "nan", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
median_scaler
Remove median, divide by IQR.
latools/filtering/signal_optimiser.py
def median_scaler(s): """ Remove median, divide by IQR. """ if sum(~np.isnan(s)) > 2: ss = s[~np.isnan(s)] median = np.median(ss) IQR = np.diff(np.percentile(ss, [25, 75])) return (s - median) / IQR else: return np.full(s.shape, np.nan)
def median_scaler(s): """ Remove median, divide by IQR. """ if sum(~np.isnan(s)) > 2: ss = s[~np.isnan(s)] median = np.median(ss) IQR = np.diff(np.percentile(ss, [25, 75])) return (s - median) / IQR else: return np.full(s.shape, np.nan)
[ "Remove", "median", "divide", "by", "IQR", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L75-L85
[ "def", "median_scaler", "(", "s", ")", ":", "if", "sum", "(", "~", "np", ".", "isnan", "(", "s", ")", ")", ">", "2", ":", "ss", "=", "s", "[", "~", "np", ".", "isnan", "(", "s", ")", "]", "median", "=", "np", ".", "median", "(", "ss", ")", "IQR", "=", "np", ".", "diff", "(", "np", ".", "percentile", "(", "ss", ",", "[", "25", ",", "75", "]", ")", ")", "return", "(", "s", "-", "median", ")", "/", "IQR", "else", ":", "return", "np", ".", "full", "(", "s", ".", "shape", ",", "np", ".", "nan", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
signal_optimiser
Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. threshood_mult : float or tuple A multiplier applied to the calculated threshold before use. If a tuple, the first value is applied to the mean threshold, and the second is applied to the standard deviation threshold. Reduce this to make data selection more stringent. x_bias : float If non-zero, a bias is applied to the calculated statistics to prefer the beginning (if > 0) or end (if < 0) of the signal. Should be between zero and 1. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. ind : boolean array A boolean array the same length as the data. Where false, data will not be included. mode : str Whether to 'minimise' or 'maximise' the concentration of the elements. Returns ------- dict, str : optimisation result, error message
latools/filtering/signal_optimiser.py
def signal_optimiser(d, analytes, min_points=5, threshold_mode='kde_first_max', threshold_mult=1., x_bias=0, weights=None, ind=None, mode='minimise'): """ Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. threshood_mult : float or tuple A multiplier applied to the calculated threshold before use. If a tuple, the first value is applied to the mean threshold, and the second is applied to the standard deviation threshold. Reduce this to make data selection more stringent. x_bias : float If non-zero, a bias is applied to the calculated statistics to prefer the beginning (if > 0) or end (if < 0) of the signal. Should be between zero and 1. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. ind : boolean array A boolean array the same length as the data. Where false, data will not be included. mode : str Whether to 'minimise' or 'maximise' the concentration of the elements. Returns ------- dict, str : optimisation result, error message """ errmsg = '' if isinstance(analytes, str): analytes = [analytes] if ind is None: ind = np.full(len(d.Time), True) # initial catch if not any(ind) or (np.diff(bool_2_indices(ind)).max() < min_points): errmsg = 'Optmisation failed. No contiguous data regions longer than {:.0f} points.'.format(min_points) return Bunch({'means': np.nan, 'stds': np.nan, 'mean_threshold': np.nan, 'std_threshold': np.nan, 'lims': np.nan, 'filt': ind, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': np.nan, 'opt_n_points': np.nan, 'weights': weights, 'optimisation_success': False, 'errmsg': errmsg}), errmsg msmeans, msstds = calculate_optimisation_stats(d, analytes, min_points, weights, ind, x_bias) # second catch if all(np.isnan(msmeans).flat) or all(np.isnan(msmeans).flat): errmsg = 'Optmisation failed. No contiguous data regions longer than {:.0f} points.'.format(min_points) return Bunch({'means': np.nan, 'stds': np.nan, 'mean_threshold': np.nan, 'std_threshold': np.nan, 'lims': np.nan, 'filt': ind, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': np.nan, 'opt_n_points': np.nan, 'weights': weights, 'optimisation_success': False, 'errmsg': errmsg}), errmsg # define thresholds valid = ['kde_first_max', 'kde_max', 'median', 'bayes_mvs', 'mean'] n_under = 0 i = np.argwhere(np.array(valid) == threshold_mode)[0, 0] o_threshold_mode = threshold_mode while (n_under <= 0) & (i < len(valid)): if threshold_mode == 'median': # median - OK, but best? std_threshold = np.nanmedian(msstds) mean_threshold = np.nanmedian(msmeans) elif threshold_mode == 'mean': # mean std_threshold = np.nanmean(msstds) mean_threshold = np.nanmean(msmeans) elif threshold_mode == 'kde_max': # maximum of gaussian kernel density estimator mkd = gaussian_kde(msmeans[~np.isnan(msmeans)].flat) xm = np.linspace(*np.percentile(msmeans.flatten()[~np.isnan(msmeans.flatten())], (1, 99)), 100) mdf = mkd.pdf(xm) mean_threshold = xm[np.argmax(mdf)] rkd = gaussian_kde(msstds[~np.isnan(msstds)]) xr = np.linspace(*np.percentile(msstds.flatten()[~np.isnan(msstds.flatten())], (1, 99)), 100) rdf = rkd.pdf(xr) std_threshold = xr[np.argmax(rdf)] elif threshold_mode == 'kde_first_max': # first local maximum of gaussian kernel density estimator mkd = gaussian_kde(msmeans[~np.isnan(msmeans)].flat) xm = np.linspace(*np.percentile(msmeans.flatten()[~np.isnan(msmeans.flatten())], (1, 99)), 100) mdf = mkd.pdf(xm) inds = np.argwhere(np.r_[False, mdf[1:] > mdf[:-1]] & np.r_[mdf[:-1] > mdf[1:], False] & (mdf > 0.25 * mdf.max())) mean_threshold = xm[np.min(inds)] rkd = gaussian_kde(msstds[~np.isnan(msstds)]) xr = np.linspace(*np.percentile(msstds.flatten()[~np.isnan(msstds.flatten())], (1, 99)), 100) rdf = rkd.pdf(xr) inds = np.argwhere(np.r_[False, rdf[1:] > rdf[:-1]] & np.r_[rdf[:-1] > rdf[1:], False] & (rdf > 0.25 * rdf.max())) std_threshold = xr[np.min(inds)] elif threshold_mode == 'bayes_mvs': # bayesian mvs. bm, _, bs = bayes_mvs(msstds[~np.isnan(msstds)]) std_threshold = bm.statistic bm, _, bs = bayes_mvs(msmeans[~np.isnan(msmeans)]) mean_threshold = bm.statistic elif callable(threshold_mode): std_threshold = threshold_mode(msstds[~np.isnan(msstds)].flatten()) mean_threshold = threshold_mode(msmeans[~np.isnan(msmeans)].flatten()) else: try: mean_threshold, std_threshold = threshold_mode except: raise ValueError('\nthreshold_mode must be one of:\n ' + ', '.join(valid) + ',\na custom function, or a \n(mean_threshold, std_threshold) tuple.') # apply threshold_mult if isinstance(threshold_mult, (int, float)): std_threshold *= threshold_mult mean_threshold *= threshold_mult elif len(threshold_mult) == 2: mean_threshold *= threshold_mult[0] std_threshold *= threshold_mult[1] else: raise ValueError('\nthreshold_mult must be a float, int or tuple of length 2.') rind = (msstds < std_threshold) if mode == 'minimise': mind = (msmeans < mean_threshold) else: mind = (msmeans > mean_threshold) ind = rind & mind n_under = ind.sum() if n_under == 0: i += 1 if i <= len(valid) - 1: threshold_mode = valid[i] else: errmsg = 'Optimisation failed. No of the threshold_mode would work. Try reducting min_points.' return Bunch({'means': np.nan, 'stds': np.nan, 'mean_threshold': np.nan, 'std_threshold': np.nan, 'lims': np.nan, 'filt': ind, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': np.nan, 'opt_n_points': np.nan, 'weights': weights, 'optimisation_success': False, 'errmsg': errmsg}), errmsg if i > 0: errmsg = "optimisation failed using threshold_mode='{:}', falling back to '{:}'".format(o_threshold_mode, threshold_mode) # identify max number of points within thresholds passing = np.argwhere(ind) opt_n_points = passing[:, 0].max() opt_centre = passing[passing[:, 0] == opt_n_points, 1].min() opt_n_points += min_points # centres, npoints = np.meshgrid(np.arange(msmeans.shape[1]), # np.arange(min_points, min_points + msmeans.shape[0])) # opt_n_points = npoints[ind].max() # plus/minus one point to allow some freedom to shift selection window. # cind = ind & (npoints == opt_n_points) # opt_centre = centres[cind].min() if opt_n_points % 2 == 0: lims = (opt_centre - opt_n_points // 2, opt_centre + opt_n_points // 2) else: lims = (opt_centre - opt_n_points // 2, opt_centre + opt_n_points // 2 + 1) filt = np.zeros(d.Time.shape, dtype=bool) filt[lims[0]:lims[1]] = True return Bunch({'means': msmeans, 'stds': msstds, 'mean_threshold': mean_threshold, 'std_threshold': std_threshold, 'lims': lims, 'filt': filt, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': opt_centre, 'opt_n_points': opt_n_points, 'weights': weights, 'optimisation_success': True, 'errmsg': errmsg}), errmsg
def signal_optimiser(d, analytes, min_points=5, threshold_mode='kde_first_max', threshold_mult=1., x_bias=0, weights=None, ind=None, mode='minimise'): """ Optimise data selection based on specified analytes. Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std) and concentration of all analytes is minimised. Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean std and mean scaled analyte concentration ('amplitude') are calculated. The size and position of the optimal data region are identified using threshold std and amplitude values. Thresholds are derived from all calculated stds and amplitudes using the method specified by `threshold_mode`. For example, using the 'kde_max' method, a probability density function (PDF) is calculated for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size and position of the longest contiguous region where the std is below the threshold, and the amplitude is either below the threshold. All possible regions of the data that have at least `min_points` are considered. For a graphical demonstration of the action of signal_optimiser, use `optimisation_plot`. Parameters ---------- d : latools.D object An latools data object. analytes : str or array-like Which analytes to consider. min_points : int The minimum number of contiguous points to consider. threshold_mode : str The method used to calculate the optimisation thresholds. Can be 'mean', 'median', 'kde_max' or 'bayes_mvs', or a custom function. If a function, must take a 1D array, and return a single, real number. threshood_mult : float or tuple A multiplier applied to the calculated threshold before use. If a tuple, the first value is applied to the mean threshold, and the second is applied to the standard deviation threshold. Reduce this to make data selection more stringent. x_bias : float If non-zero, a bias is applied to the calculated statistics to prefer the beginning (if > 0) or end (if < 0) of the signal. Should be between zero and 1. weights : array-like of length len(analytes) An array of numbers specifying the importance of each analyte considered. Larger number makes the analyte have a greater effect on the optimisation. Default is None. ind : boolean array A boolean array the same length as the data. Where false, data will not be included. mode : str Whether to 'minimise' or 'maximise' the concentration of the elements. Returns ------- dict, str : optimisation result, error message """ errmsg = '' if isinstance(analytes, str): analytes = [analytes] if ind is None: ind = np.full(len(d.Time), True) # initial catch if not any(ind) or (np.diff(bool_2_indices(ind)).max() < min_points): errmsg = 'Optmisation failed. No contiguous data regions longer than {:.0f} points.'.format(min_points) return Bunch({'means': np.nan, 'stds': np.nan, 'mean_threshold': np.nan, 'std_threshold': np.nan, 'lims': np.nan, 'filt': ind, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': np.nan, 'opt_n_points': np.nan, 'weights': weights, 'optimisation_success': False, 'errmsg': errmsg}), errmsg msmeans, msstds = calculate_optimisation_stats(d, analytes, min_points, weights, ind, x_bias) # second catch if all(np.isnan(msmeans).flat) or all(np.isnan(msmeans).flat): errmsg = 'Optmisation failed. No contiguous data regions longer than {:.0f} points.'.format(min_points) return Bunch({'means': np.nan, 'stds': np.nan, 'mean_threshold': np.nan, 'std_threshold': np.nan, 'lims': np.nan, 'filt': ind, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': np.nan, 'opt_n_points': np.nan, 'weights': weights, 'optimisation_success': False, 'errmsg': errmsg}), errmsg # define thresholds valid = ['kde_first_max', 'kde_max', 'median', 'bayes_mvs', 'mean'] n_under = 0 i = np.argwhere(np.array(valid) == threshold_mode)[0, 0] o_threshold_mode = threshold_mode while (n_under <= 0) & (i < len(valid)): if threshold_mode == 'median': # median - OK, but best? std_threshold = np.nanmedian(msstds) mean_threshold = np.nanmedian(msmeans) elif threshold_mode == 'mean': # mean std_threshold = np.nanmean(msstds) mean_threshold = np.nanmean(msmeans) elif threshold_mode == 'kde_max': # maximum of gaussian kernel density estimator mkd = gaussian_kde(msmeans[~np.isnan(msmeans)].flat) xm = np.linspace(*np.percentile(msmeans.flatten()[~np.isnan(msmeans.flatten())], (1, 99)), 100) mdf = mkd.pdf(xm) mean_threshold = xm[np.argmax(mdf)] rkd = gaussian_kde(msstds[~np.isnan(msstds)]) xr = np.linspace(*np.percentile(msstds.flatten()[~np.isnan(msstds.flatten())], (1, 99)), 100) rdf = rkd.pdf(xr) std_threshold = xr[np.argmax(rdf)] elif threshold_mode == 'kde_first_max': # first local maximum of gaussian kernel density estimator mkd = gaussian_kde(msmeans[~np.isnan(msmeans)].flat) xm = np.linspace(*np.percentile(msmeans.flatten()[~np.isnan(msmeans.flatten())], (1, 99)), 100) mdf = mkd.pdf(xm) inds = np.argwhere(np.r_[False, mdf[1:] > mdf[:-1]] & np.r_[mdf[:-1] > mdf[1:], False] & (mdf > 0.25 * mdf.max())) mean_threshold = xm[np.min(inds)] rkd = gaussian_kde(msstds[~np.isnan(msstds)]) xr = np.linspace(*np.percentile(msstds.flatten()[~np.isnan(msstds.flatten())], (1, 99)), 100) rdf = rkd.pdf(xr) inds = np.argwhere(np.r_[False, rdf[1:] > rdf[:-1]] & np.r_[rdf[:-1] > rdf[1:], False] & (rdf > 0.25 * rdf.max())) std_threshold = xr[np.min(inds)] elif threshold_mode == 'bayes_mvs': # bayesian mvs. bm, _, bs = bayes_mvs(msstds[~np.isnan(msstds)]) std_threshold = bm.statistic bm, _, bs = bayes_mvs(msmeans[~np.isnan(msmeans)]) mean_threshold = bm.statistic elif callable(threshold_mode): std_threshold = threshold_mode(msstds[~np.isnan(msstds)].flatten()) mean_threshold = threshold_mode(msmeans[~np.isnan(msmeans)].flatten()) else: try: mean_threshold, std_threshold = threshold_mode except: raise ValueError('\nthreshold_mode must be one of:\n ' + ', '.join(valid) + ',\na custom function, or a \n(mean_threshold, std_threshold) tuple.') # apply threshold_mult if isinstance(threshold_mult, (int, float)): std_threshold *= threshold_mult mean_threshold *= threshold_mult elif len(threshold_mult) == 2: mean_threshold *= threshold_mult[0] std_threshold *= threshold_mult[1] else: raise ValueError('\nthreshold_mult must be a float, int or tuple of length 2.') rind = (msstds < std_threshold) if mode == 'minimise': mind = (msmeans < mean_threshold) else: mind = (msmeans > mean_threshold) ind = rind & mind n_under = ind.sum() if n_under == 0: i += 1 if i <= len(valid) - 1: threshold_mode = valid[i] else: errmsg = 'Optimisation failed. No of the threshold_mode would work. Try reducting min_points.' return Bunch({'means': np.nan, 'stds': np.nan, 'mean_threshold': np.nan, 'std_threshold': np.nan, 'lims': np.nan, 'filt': ind, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': np.nan, 'opt_n_points': np.nan, 'weights': weights, 'optimisation_success': False, 'errmsg': errmsg}), errmsg if i > 0: errmsg = "optimisation failed using threshold_mode='{:}', falling back to '{:}'".format(o_threshold_mode, threshold_mode) # identify max number of points within thresholds passing = np.argwhere(ind) opt_n_points = passing[:, 0].max() opt_centre = passing[passing[:, 0] == opt_n_points, 1].min() opt_n_points += min_points # centres, npoints = np.meshgrid(np.arange(msmeans.shape[1]), # np.arange(min_points, min_points + msmeans.shape[0])) # opt_n_points = npoints[ind].max() # plus/minus one point to allow some freedom to shift selection window. # cind = ind & (npoints == opt_n_points) # opt_centre = centres[cind].min() if opt_n_points % 2 == 0: lims = (opt_centre - opt_n_points // 2, opt_centre + opt_n_points // 2) else: lims = (opt_centre - opt_n_points // 2, opt_centre + opt_n_points // 2 + 1) filt = np.zeros(d.Time.shape, dtype=bool) filt[lims[0]:lims[1]] = True return Bunch({'means': msmeans, 'stds': msstds, 'mean_threshold': mean_threshold, 'std_threshold': std_threshold, 'lims': lims, 'filt': filt, 'threshold_mode': threshold_mode, 'min_points': min_points, 'analytes': analytes, 'opt_centre': opt_centre, 'opt_n_points': opt_n_points, 'weights': weights, 'optimisation_success': True, 'errmsg': errmsg}), errmsg
[ "Optimise", "data", "selection", "based", "on", "specified", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L132-L389
[ "def", "signal_optimiser", "(", "d", ",", "analytes", ",", "min_points", "=", "5", ",", "threshold_mode", "=", "'kde_first_max'", ",", "threshold_mult", "=", "1.", ",", "x_bias", "=", "0", ",", "weights", "=", "None", ",", "ind", "=", "None", ",", "mode", "=", "'minimise'", ")", ":", "errmsg", "=", "''", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "ind", "is", "None", ":", "ind", "=", "np", ".", "full", "(", "len", "(", "d", ".", "Time", ")", ",", "True", ")", "# initial catch", "if", "not", "any", "(", "ind", ")", "or", "(", "np", ".", "diff", "(", "bool_2_indices", "(", "ind", ")", ")", ".", "max", "(", ")", "<", "min_points", ")", ":", "errmsg", "=", "'Optmisation failed. No contiguous data regions longer than {:.0f} points.'", ".", "format", "(", "min_points", ")", "return", "Bunch", "(", "{", "'means'", ":", "np", ".", "nan", ",", "'stds'", ":", "np", ".", "nan", ",", "'mean_threshold'", ":", "np", ".", "nan", ",", "'std_threshold'", ":", "np", ".", "nan", ",", "'lims'", ":", "np", ".", "nan", ",", "'filt'", ":", "ind", ",", "'threshold_mode'", ":", "threshold_mode", ",", "'min_points'", ":", "min_points", ",", "'analytes'", ":", "analytes", ",", "'opt_centre'", ":", "np", ".", "nan", ",", "'opt_n_points'", ":", "np", ".", "nan", ",", "'weights'", ":", "weights", ",", "'optimisation_success'", ":", "False", ",", "'errmsg'", ":", "errmsg", "}", ")", ",", "errmsg", "msmeans", ",", "msstds", "=", "calculate_optimisation_stats", "(", "d", ",", "analytes", ",", "min_points", ",", "weights", ",", "ind", ",", "x_bias", ")", "# second catch", "if", "all", "(", "np", ".", "isnan", "(", "msmeans", ")", ".", "flat", ")", "or", "all", "(", "np", ".", "isnan", "(", "msmeans", ")", ".", "flat", ")", ":", "errmsg", "=", "'Optmisation failed. No contiguous data regions longer than {:.0f} points.'", ".", "format", "(", "min_points", ")", "return", "Bunch", "(", "{", "'means'", ":", "np", ".", "nan", ",", "'stds'", ":", "np", ".", "nan", ",", "'mean_threshold'", ":", "np", ".", "nan", ",", "'std_threshold'", ":", "np", ".", "nan", ",", "'lims'", ":", "np", ".", "nan", ",", "'filt'", ":", "ind", ",", "'threshold_mode'", ":", "threshold_mode", ",", "'min_points'", ":", "min_points", ",", "'analytes'", ":", "analytes", ",", "'opt_centre'", ":", "np", ".", "nan", ",", "'opt_n_points'", ":", "np", ".", "nan", ",", "'weights'", ":", "weights", ",", "'optimisation_success'", ":", "False", ",", "'errmsg'", ":", "errmsg", "}", ")", ",", "errmsg", "# define thresholds", "valid", "=", "[", "'kde_first_max'", ",", "'kde_max'", ",", "'median'", ",", "'bayes_mvs'", ",", "'mean'", "]", "n_under", "=", "0", "i", "=", "np", ".", "argwhere", "(", "np", ".", "array", "(", "valid", ")", "==", "threshold_mode", ")", "[", "0", ",", "0", "]", "o_threshold_mode", "=", "threshold_mode", "while", "(", "n_under", "<=", "0", ")", "&", "(", "i", "<", "len", "(", "valid", ")", ")", ":", "if", "threshold_mode", "==", "'median'", ":", "# median - OK, but best?", "std_threshold", "=", "np", ".", "nanmedian", "(", "msstds", ")", "mean_threshold", "=", "np", ".", "nanmedian", "(", "msmeans", ")", "elif", "threshold_mode", "==", "'mean'", ":", "# mean", "std_threshold", "=", "np", ".", "nanmean", "(", "msstds", ")", "mean_threshold", "=", "np", ".", "nanmean", "(", "msmeans", ")", "elif", "threshold_mode", "==", "'kde_max'", ":", "# maximum of gaussian kernel density estimator", "mkd", "=", "gaussian_kde", "(", "msmeans", "[", "~", "np", ".", "isnan", "(", "msmeans", ")", "]", ".", "flat", ")", "xm", "=", "np", ".", "linspace", "(", "*", "np", ".", "percentile", "(", "msmeans", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "msmeans", ".", "flatten", "(", ")", ")", "]", ",", "(", "1", ",", "99", ")", ")", ",", "100", ")", "mdf", "=", "mkd", ".", "pdf", "(", "xm", ")", "mean_threshold", "=", "xm", "[", "np", ".", "argmax", "(", "mdf", ")", "]", "rkd", "=", "gaussian_kde", "(", "msstds", "[", "~", "np", ".", "isnan", "(", "msstds", ")", "]", ")", "xr", "=", "np", ".", "linspace", "(", "*", "np", ".", "percentile", "(", "msstds", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "msstds", ".", "flatten", "(", ")", ")", "]", ",", "(", "1", ",", "99", ")", ")", ",", "100", ")", "rdf", "=", "rkd", ".", "pdf", "(", "xr", ")", "std_threshold", "=", "xr", "[", "np", ".", "argmax", "(", "rdf", ")", "]", "elif", "threshold_mode", "==", "'kde_first_max'", ":", "# first local maximum of gaussian kernel density estimator", "mkd", "=", "gaussian_kde", "(", "msmeans", "[", "~", "np", ".", "isnan", "(", "msmeans", ")", "]", ".", "flat", ")", "xm", "=", "np", ".", "linspace", "(", "*", "np", ".", "percentile", "(", "msmeans", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "msmeans", ".", "flatten", "(", ")", ")", "]", ",", "(", "1", ",", "99", ")", ")", ",", "100", ")", "mdf", "=", "mkd", ".", "pdf", "(", "xm", ")", "inds", "=", "np", ".", "argwhere", "(", "np", ".", "r_", "[", "False", ",", "mdf", "[", "1", ":", "]", ">", "mdf", "[", ":", "-", "1", "]", "]", "&", "np", ".", "r_", "[", "mdf", "[", ":", "-", "1", "]", ">", "mdf", "[", "1", ":", "]", ",", "False", "]", "&", "(", "mdf", ">", "0.25", "*", "mdf", ".", "max", "(", ")", ")", ")", "mean_threshold", "=", "xm", "[", "np", ".", "min", "(", "inds", ")", "]", "rkd", "=", "gaussian_kde", "(", "msstds", "[", "~", "np", ".", "isnan", "(", "msstds", ")", "]", ")", "xr", "=", "np", ".", "linspace", "(", "*", "np", ".", "percentile", "(", "msstds", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "msstds", ".", "flatten", "(", ")", ")", "]", ",", "(", "1", ",", "99", ")", ")", ",", "100", ")", "rdf", "=", "rkd", ".", "pdf", "(", "xr", ")", "inds", "=", "np", ".", "argwhere", "(", "np", ".", "r_", "[", "False", ",", "rdf", "[", "1", ":", "]", ">", "rdf", "[", ":", "-", "1", "]", "]", "&", "np", ".", "r_", "[", "rdf", "[", ":", "-", "1", "]", ">", "rdf", "[", "1", ":", "]", ",", "False", "]", "&", "(", "rdf", ">", "0.25", "*", "rdf", ".", "max", "(", ")", ")", ")", "std_threshold", "=", "xr", "[", "np", ".", "min", "(", "inds", ")", "]", "elif", "threshold_mode", "==", "'bayes_mvs'", ":", "# bayesian mvs.", "bm", ",", "_", ",", "bs", "=", "bayes_mvs", "(", "msstds", "[", "~", "np", ".", "isnan", "(", "msstds", ")", "]", ")", "std_threshold", "=", "bm", ".", "statistic", "bm", ",", "_", ",", "bs", "=", "bayes_mvs", "(", "msmeans", "[", "~", "np", ".", "isnan", "(", "msmeans", ")", "]", ")", "mean_threshold", "=", "bm", ".", "statistic", "elif", "callable", "(", "threshold_mode", ")", ":", "std_threshold", "=", "threshold_mode", "(", "msstds", "[", "~", "np", ".", "isnan", "(", "msstds", ")", "]", ".", "flatten", "(", ")", ")", "mean_threshold", "=", "threshold_mode", "(", "msmeans", "[", "~", "np", ".", "isnan", "(", "msmeans", ")", "]", ".", "flatten", "(", ")", ")", "else", ":", "try", ":", "mean_threshold", ",", "std_threshold", "=", "threshold_mode", "except", ":", "raise", "ValueError", "(", "'\\nthreshold_mode must be one of:\\n '", "+", "', '", ".", "join", "(", "valid", ")", "+", "',\\na custom function, or a \\n(mean_threshold, std_threshold) tuple.'", ")", "# apply threshold_mult", "if", "isinstance", "(", "threshold_mult", ",", "(", "int", ",", "float", ")", ")", ":", "std_threshold", "*=", "threshold_mult", "mean_threshold", "*=", "threshold_mult", "elif", "len", "(", "threshold_mult", ")", "==", "2", ":", "mean_threshold", "*=", "threshold_mult", "[", "0", "]", "std_threshold", "*=", "threshold_mult", "[", "1", "]", "else", ":", "raise", "ValueError", "(", "'\\nthreshold_mult must be a float, int or tuple of length 2.'", ")", "rind", "=", "(", "msstds", "<", "std_threshold", ")", "if", "mode", "==", "'minimise'", ":", "mind", "=", "(", "msmeans", "<", "mean_threshold", ")", "else", ":", "mind", "=", "(", "msmeans", ">", "mean_threshold", ")", "ind", "=", "rind", "&", "mind", "n_under", "=", "ind", ".", "sum", "(", ")", "if", "n_under", "==", "0", ":", "i", "+=", "1", "if", "i", "<=", "len", "(", "valid", ")", "-", "1", ":", "threshold_mode", "=", "valid", "[", "i", "]", "else", ":", "errmsg", "=", "'Optimisation failed. No of the threshold_mode would work. Try reducting min_points.'", "return", "Bunch", "(", "{", "'means'", ":", "np", ".", "nan", ",", "'stds'", ":", "np", ".", "nan", ",", "'mean_threshold'", ":", "np", ".", "nan", ",", "'std_threshold'", ":", "np", ".", "nan", ",", "'lims'", ":", "np", ".", "nan", ",", "'filt'", ":", "ind", ",", "'threshold_mode'", ":", "threshold_mode", ",", "'min_points'", ":", "min_points", ",", "'analytes'", ":", "analytes", ",", "'opt_centre'", ":", "np", ".", "nan", ",", "'opt_n_points'", ":", "np", ".", "nan", ",", "'weights'", ":", "weights", ",", "'optimisation_success'", ":", "False", ",", "'errmsg'", ":", "errmsg", "}", ")", ",", "errmsg", "if", "i", ">", "0", ":", "errmsg", "=", "\"optimisation failed using threshold_mode='{:}', falling back to '{:}'\"", ".", "format", "(", "o_threshold_mode", ",", "threshold_mode", ")", "# identify max number of points within thresholds", "passing", "=", "np", ".", "argwhere", "(", "ind", ")", "opt_n_points", "=", "passing", "[", ":", ",", "0", "]", ".", "max", "(", ")", "opt_centre", "=", "passing", "[", "passing", "[", ":", ",", "0", "]", "==", "opt_n_points", ",", "1", "]", ".", "min", "(", ")", "opt_n_points", "+=", "min_points", "# centres, npoints = np.meshgrid(np.arange(msmeans.shape[1]),", "# np.arange(min_points, min_points + msmeans.shape[0]))", "# opt_n_points = npoints[ind].max()", "# plus/minus one point to allow some freedom to shift selection window.", "# cind = ind & (npoints == opt_n_points)", "# opt_centre = centres[cind].min()", "if", "opt_n_points", "%", "2", "==", "0", ":", "lims", "=", "(", "opt_centre", "-", "opt_n_points", "//", "2", ",", "opt_centre", "+", "opt_n_points", "//", "2", ")", "else", ":", "lims", "=", "(", "opt_centre", "-", "opt_n_points", "//", "2", ",", "opt_centre", "+", "opt_n_points", "//", "2", "+", "1", ")", "filt", "=", "np", ".", "zeros", "(", "d", ".", "Time", ".", "shape", ",", "dtype", "=", "bool", ")", "filt", "[", "lims", "[", "0", "]", ":", "lims", "[", "1", "]", "]", "=", "True", "return", "Bunch", "(", "{", "'means'", ":", "msmeans", ",", "'stds'", ":", "msstds", ",", "'mean_threshold'", ":", "mean_threshold", ",", "'std_threshold'", ":", "std_threshold", ",", "'lims'", ":", "lims", ",", "'filt'", ":", "filt", ",", "'threshold_mode'", ":", "threshold_mode", ",", "'min_points'", ":", "min_points", ",", "'analytes'", ":", "analytes", ",", "'opt_centre'", ":", "opt_centre", ",", "'opt_n_points'", ":", "opt_n_points", ",", "'weights'", ":", "weights", ",", "'optimisation_success'", ":", "True", ",", "'errmsg'", ":", "errmsg", "}", ")", ",", "errmsg" ]
cd25a650cfee318152f234d992708511f7047fbe
test
optimisation_plot
Plot the result of signal_optimise. `signal_optimiser` must be run first, and the output stored in the `opt` attribute of the latools.D object. Parameters ---------- d : latools.D object A latools data object. overlay_alpha : float The opacity of the threshold overlays. Between 0 and 1. **kwargs Passed to `tplot`
latools/filtering/signal_optimiser.py
def optimisation_plot(d, overlay_alpha=0.5, **kwargs): """ Plot the result of signal_optimise. `signal_optimiser` must be run first, and the output stored in the `opt` attribute of the latools.D object. Parameters ---------- d : latools.D object A latools data object. overlay_alpha : float The opacity of the threshold overlays. Between 0 and 1. **kwargs Passed to `tplot` """ if not hasattr(d, 'opt'): raise ValueError('Please run `signal_optimiser` before trying to plot its results.') out = [] for n, opt in d.opt.items(): if not opt['optimisation_success']: out.append((None, None)) else: # unpack variables means = opt['means'] stds = opt['stds'] min_points = opt['min_points'] mean_threshold = opt['mean_threshold'] std_threshold = opt['std_threshold'] opt_centre = opt['opt_centre'] opt_n_points = opt['opt_n_points'] centres, npoints = np.meshgrid(np.arange(means.shape[1]), np.arange(min_points, min_points + means.shape[0])) rind = (stds < std_threshold) mind = (means < mean_threshold) # color scale and histogram limits mlim = np.percentile(means.flatten()[~np.isnan(means.flatten())], (0, 99)) rlim = np.percentile(stds.flatten()[~np.isnan(stds.flatten())], (0, 99)) cmr = plt.cm.Blues cmr.set_bad((0,0,0,0.3)) cmm = plt.cm.Reds cmm.set_bad((0,0,0,0.3)) # create figure fig = plt.figure(figsize=[7,7]) ma = fig.add_subplot(3, 2, 1) ra = fig.add_subplot(3, 2, 2) # work out image limits nonan = np.argwhere(~np.isnan(means)) xdif = np.ptp(nonan[:, 1]) ydif = np.ptp(nonan[:, 0]) extent = (nonan[:, 1].min() - np.ceil(0.1 * xdif), # x min nonan[:, 1].max() + np.ceil(0.1 * xdif), # x max nonan[:, 0].min() + min_points, # y min nonan[:, 0].max() + np.ceil(0.1 * ydif) + min_points) # y max mm = ma.imshow(means, origin='bottomleft', cmap=cmm, vmin=mlim[0], vmax=mlim[1], extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) ma.set_ylabel('N points') ma.set_xlabel('Center') fig.colorbar(mm, ax=ma, label='Amplitude') mr = ra.imshow(stds, origin='bottomleft', cmap=cmr, vmin=rlim[0], vmax=rlim[1], extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) ra.set_xlabel('Center') fig.colorbar(mr, ax=ra, label='std') # view limits ra.imshow(~rind, origin='bottomleft', cmap=plt.cm.Greys, alpha=overlay_alpha, extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) ma.imshow(~mind, origin='bottomleft', cmap=plt.cm.Greys, alpha=overlay_alpha, extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) for ax in [ma, ra]: ax.scatter(opt_centre, opt_n_points, c=(1,1,1,0.7), edgecolor='k',marker='o') ax.set_xlim(extent[:2]) ax.set_ylim(extent[-2:]) # draw histograms mah = fig.add_subplot(3, 2, 3) rah = fig.add_subplot(3, 2, 4) mah.set_xlim(mlim) mbin = np.linspace(*mah.get_xlim(), 50) mah.hist(means.flatten()[~np.isnan(means.flatten())], mbin) mah.axvspan(mean_threshold, mah.get_xlim()[1], color=(0,0,0,overlay_alpha)) mah.axvline(mean_threshold, c='r') mah.set_xlabel('Scaled Mean Analyte Conc') mah.set_ylabel('N') rah.set_xlim(rlim) rbin = np.linspace(*rah.get_xlim(), 50) rah.hist(stds.flatten()[~np.isnan(stds.flatten())], rbin) rah.axvspan(std_threshold, rah.get_xlim()[1], color=(0,0,0,0.4)) rah.axvline(std_threshold, c='r') rah.set_xlabel('std') tax = fig.add_subplot(3,1,3) tplot(d, opt.analytes, ax=tax, **kwargs) tax.axvspan(*d.Time[[opt.lims[0], opt.lims[1]]], alpha=0.2) tax.set_xlim(d.Time[d.ns == n].min() - 3, d.Time[d.ns == n].max() + 3) fig.tight_layout() out.append((fig, (ma, ra, mah, rah, tax))) return out
def optimisation_plot(d, overlay_alpha=0.5, **kwargs): """ Plot the result of signal_optimise. `signal_optimiser` must be run first, and the output stored in the `opt` attribute of the latools.D object. Parameters ---------- d : latools.D object A latools data object. overlay_alpha : float The opacity of the threshold overlays. Between 0 and 1. **kwargs Passed to `tplot` """ if not hasattr(d, 'opt'): raise ValueError('Please run `signal_optimiser` before trying to plot its results.') out = [] for n, opt in d.opt.items(): if not opt['optimisation_success']: out.append((None, None)) else: # unpack variables means = opt['means'] stds = opt['stds'] min_points = opt['min_points'] mean_threshold = opt['mean_threshold'] std_threshold = opt['std_threshold'] opt_centre = opt['opt_centre'] opt_n_points = opt['opt_n_points'] centres, npoints = np.meshgrid(np.arange(means.shape[1]), np.arange(min_points, min_points + means.shape[0])) rind = (stds < std_threshold) mind = (means < mean_threshold) # color scale and histogram limits mlim = np.percentile(means.flatten()[~np.isnan(means.flatten())], (0, 99)) rlim = np.percentile(stds.flatten()[~np.isnan(stds.flatten())], (0, 99)) cmr = plt.cm.Blues cmr.set_bad((0,0,0,0.3)) cmm = plt.cm.Reds cmm.set_bad((0,0,0,0.3)) # create figure fig = plt.figure(figsize=[7,7]) ma = fig.add_subplot(3, 2, 1) ra = fig.add_subplot(3, 2, 2) # work out image limits nonan = np.argwhere(~np.isnan(means)) xdif = np.ptp(nonan[:, 1]) ydif = np.ptp(nonan[:, 0]) extent = (nonan[:, 1].min() - np.ceil(0.1 * xdif), # x min nonan[:, 1].max() + np.ceil(0.1 * xdif), # x max nonan[:, 0].min() + min_points, # y min nonan[:, 0].max() + np.ceil(0.1 * ydif) + min_points) # y max mm = ma.imshow(means, origin='bottomleft', cmap=cmm, vmin=mlim[0], vmax=mlim[1], extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) ma.set_ylabel('N points') ma.set_xlabel('Center') fig.colorbar(mm, ax=ma, label='Amplitude') mr = ra.imshow(stds, origin='bottomleft', cmap=cmr, vmin=rlim[0], vmax=rlim[1], extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) ra.set_xlabel('Center') fig.colorbar(mr, ax=ra, label='std') # view limits ra.imshow(~rind, origin='bottomleft', cmap=plt.cm.Greys, alpha=overlay_alpha, extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) ma.imshow(~mind, origin='bottomleft', cmap=plt.cm.Greys, alpha=overlay_alpha, extent=(centres.min(), centres.max(), npoints.min(), npoints.max())) for ax in [ma, ra]: ax.scatter(opt_centre, opt_n_points, c=(1,1,1,0.7), edgecolor='k',marker='o') ax.set_xlim(extent[:2]) ax.set_ylim(extent[-2:]) # draw histograms mah = fig.add_subplot(3, 2, 3) rah = fig.add_subplot(3, 2, 4) mah.set_xlim(mlim) mbin = np.linspace(*mah.get_xlim(), 50) mah.hist(means.flatten()[~np.isnan(means.flatten())], mbin) mah.axvspan(mean_threshold, mah.get_xlim()[1], color=(0,0,0,overlay_alpha)) mah.axvline(mean_threshold, c='r') mah.set_xlabel('Scaled Mean Analyte Conc') mah.set_ylabel('N') rah.set_xlim(rlim) rbin = np.linspace(*rah.get_xlim(), 50) rah.hist(stds.flatten()[~np.isnan(stds.flatten())], rbin) rah.axvspan(std_threshold, rah.get_xlim()[1], color=(0,0,0,0.4)) rah.axvline(std_threshold, c='r') rah.set_xlabel('std') tax = fig.add_subplot(3,1,3) tplot(d, opt.analytes, ax=tax, **kwargs) tax.axvspan(*d.Time[[opt.lims[0], opt.lims[1]]], alpha=0.2) tax.set_xlim(d.Time[d.ns == n].min() - 3, d.Time[d.ns == n].max() + 3) fig.tight_layout() out.append((fig, (ma, ra, mah, rah, tax))) return out
[ "Plot", "the", "result", "of", "signal_optimise", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L392-L508
[ "def", "optimisation_plot", "(", "d", ",", "overlay_alpha", "=", "0.5", ",", "*", "*", "kwargs", ")", ":", "if", "not", "hasattr", "(", "d", ",", "'opt'", ")", ":", "raise", "ValueError", "(", "'Please run `signal_optimiser` before trying to plot its results.'", ")", "out", "=", "[", "]", "for", "n", ",", "opt", "in", "d", ".", "opt", ".", "items", "(", ")", ":", "if", "not", "opt", "[", "'optimisation_success'", "]", ":", "out", ".", "append", "(", "(", "None", ",", "None", ")", ")", "else", ":", "# unpack variables", "means", "=", "opt", "[", "'means'", "]", "stds", "=", "opt", "[", "'stds'", "]", "min_points", "=", "opt", "[", "'min_points'", "]", "mean_threshold", "=", "opt", "[", "'mean_threshold'", "]", "std_threshold", "=", "opt", "[", "'std_threshold'", "]", "opt_centre", "=", "opt", "[", "'opt_centre'", "]", "opt_n_points", "=", "opt", "[", "'opt_n_points'", "]", "centres", ",", "npoints", "=", "np", ".", "meshgrid", "(", "np", ".", "arange", "(", "means", ".", "shape", "[", "1", "]", ")", ",", "np", ".", "arange", "(", "min_points", ",", "min_points", "+", "means", ".", "shape", "[", "0", "]", ")", ")", "rind", "=", "(", "stds", "<", "std_threshold", ")", "mind", "=", "(", "means", "<", "mean_threshold", ")", "# color scale and histogram limits", "mlim", "=", "np", ".", "percentile", "(", "means", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "means", ".", "flatten", "(", ")", ")", "]", ",", "(", "0", ",", "99", ")", ")", "rlim", "=", "np", ".", "percentile", "(", "stds", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "stds", ".", "flatten", "(", ")", ")", "]", ",", "(", "0", ",", "99", ")", ")", "cmr", "=", "plt", ".", "cm", ".", "Blues", "cmr", ".", "set_bad", "(", "(", "0", ",", "0", ",", "0", ",", "0.3", ")", ")", "cmm", "=", "plt", ".", "cm", ".", "Reds", "cmm", ".", "set_bad", "(", "(", "0", ",", "0", ",", "0", ",", "0.3", ")", ")", "# create figure", "fig", "=", "plt", ".", "figure", "(", "figsize", "=", "[", "7", ",", "7", "]", ")", "ma", "=", "fig", ".", "add_subplot", "(", "3", ",", "2", ",", "1", ")", "ra", "=", "fig", ".", "add_subplot", "(", "3", ",", "2", ",", "2", ")", "# work out image limits", "nonan", "=", "np", ".", "argwhere", "(", "~", "np", ".", "isnan", "(", "means", ")", ")", "xdif", "=", "np", ".", "ptp", "(", "nonan", "[", ":", ",", "1", "]", ")", "ydif", "=", "np", ".", "ptp", "(", "nonan", "[", ":", ",", "0", "]", ")", "extent", "=", "(", "nonan", "[", ":", ",", "1", "]", ".", "min", "(", ")", "-", "np", ".", "ceil", "(", "0.1", "*", "xdif", ")", ",", "# x min", "nonan", "[", ":", ",", "1", "]", ".", "max", "(", ")", "+", "np", ".", "ceil", "(", "0.1", "*", "xdif", ")", ",", "# x max", "nonan", "[", ":", ",", "0", "]", ".", "min", "(", ")", "+", "min_points", ",", "# y min", "nonan", "[", ":", ",", "0", "]", ".", "max", "(", ")", "+", "np", ".", "ceil", "(", "0.1", "*", "ydif", ")", "+", "min_points", ")", "# y max", "mm", "=", "ma", ".", "imshow", "(", "means", ",", "origin", "=", "'bottomleft'", ",", "cmap", "=", "cmm", ",", "vmin", "=", "mlim", "[", "0", "]", ",", "vmax", "=", "mlim", "[", "1", "]", ",", "extent", "=", "(", "centres", ".", "min", "(", ")", ",", "centres", ".", "max", "(", ")", ",", "npoints", ".", "min", "(", ")", ",", "npoints", ".", "max", "(", ")", ")", ")", "ma", ".", "set_ylabel", "(", "'N points'", ")", "ma", ".", "set_xlabel", "(", "'Center'", ")", "fig", ".", "colorbar", "(", "mm", ",", "ax", "=", "ma", ",", "label", "=", "'Amplitude'", ")", "mr", "=", "ra", ".", "imshow", "(", "stds", ",", "origin", "=", "'bottomleft'", ",", "cmap", "=", "cmr", ",", "vmin", "=", "rlim", "[", "0", "]", ",", "vmax", "=", "rlim", "[", "1", "]", ",", "extent", "=", "(", "centres", ".", "min", "(", ")", ",", "centres", ".", "max", "(", ")", ",", "npoints", ".", "min", "(", ")", ",", "npoints", ".", "max", "(", ")", ")", ")", "ra", ".", "set_xlabel", "(", "'Center'", ")", "fig", ".", "colorbar", "(", "mr", ",", "ax", "=", "ra", ",", "label", "=", "'std'", ")", "# view limits", "ra", ".", "imshow", "(", "~", "rind", ",", "origin", "=", "'bottomleft'", ",", "cmap", "=", "plt", ".", "cm", ".", "Greys", ",", "alpha", "=", "overlay_alpha", ",", "extent", "=", "(", "centres", ".", "min", "(", ")", ",", "centres", ".", "max", "(", ")", ",", "npoints", ".", "min", "(", ")", ",", "npoints", ".", "max", "(", ")", ")", ")", "ma", ".", "imshow", "(", "~", "mind", ",", "origin", "=", "'bottomleft'", ",", "cmap", "=", "plt", ".", "cm", ".", "Greys", ",", "alpha", "=", "overlay_alpha", ",", "extent", "=", "(", "centres", ".", "min", "(", ")", ",", "centres", ".", "max", "(", ")", ",", "npoints", ".", "min", "(", ")", ",", "npoints", ".", "max", "(", ")", ")", ")", "for", "ax", "in", "[", "ma", ",", "ra", "]", ":", "ax", ".", "scatter", "(", "opt_centre", ",", "opt_n_points", ",", "c", "=", "(", "1", ",", "1", ",", "1", ",", "0.7", ")", ",", "edgecolor", "=", "'k'", ",", "marker", "=", "'o'", ")", "ax", ".", "set_xlim", "(", "extent", "[", ":", "2", "]", ")", "ax", ".", "set_ylim", "(", "extent", "[", "-", "2", ":", "]", ")", "# draw histograms", "mah", "=", "fig", ".", "add_subplot", "(", "3", ",", "2", ",", "3", ")", "rah", "=", "fig", ".", "add_subplot", "(", "3", ",", "2", ",", "4", ")", "mah", ".", "set_xlim", "(", "mlim", ")", "mbin", "=", "np", ".", "linspace", "(", "*", "mah", ".", "get_xlim", "(", ")", ",", "50", ")", "mah", ".", "hist", "(", "means", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "means", ".", "flatten", "(", ")", ")", "]", ",", "mbin", ")", "mah", ".", "axvspan", "(", "mean_threshold", ",", "mah", ".", "get_xlim", "(", ")", "[", "1", "]", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "overlay_alpha", ")", ")", "mah", ".", "axvline", "(", "mean_threshold", ",", "c", "=", "'r'", ")", "mah", ".", "set_xlabel", "(", "'Scaled Mean Analyte Conc'", ")", "mah", ".", "set_ylabel", "(", "'N'", ")", "rah", ".", "set_xlim", "(", "rlim", ")", "rbin", "=", "np", ".", "linspace", "(", "*", "rah", ".", "get_xlim", "(", ")", ",", "50", ")", "rah", ".", "hist", "(", "stds", ".", "flatten", "(", ")", "[", "~", "np", ".", "isnan", "(", "stds", ".", "flatten", "(", ")", ")", "]", ",", "rbin", ")", "rah", ".", "axvspan", "(", "std_threshold", ",", "rah", ".", "get_xlim", "(", ")", "[", "1", "]", ",", "color", "=", "(", "0", ",", "0", ",", "0", ",", "0.4", ")", ")", "rah", ".", "axvline", "(", "std_threshold", ",", "c", "=", "'r'", ")", "rah", ".", "set_xlabel", "(", "'std'", ")", "tax", "=", "fig", ".", "add_subplot", "(", "3", ",", "1", ",", "3", ")", "tplot", "(", "d", ",", "opt", ".", "analytes", ",", "ax", "=", "tax", ",", "*", "*", "kwargs", ")", "tax", ".", "axvspan", "(", "*", "d", ".", "Time", "[", "[", "opt", ".", "lims", "[", "0", "]", ",", "opt", ".", "lims", "[", "1", "]", "]", "]", ",", "alpha", "=", "0.2", ")", "tax", ".", "set_xlim", "(", "d", ".", "Time", "[", "d", ".", "ns", "==", "n", "]", ".", "min", "(", ")", "-", "3", ",", "d", ".", "Time", "[", "d", ".", "ns", "==", "n", "]", ".", "max", "(", ")", "+", "3", ")", "fig", ".", "tight_layout", "(", ")", "out", ".", "append", "(", "(", "fig", ",", "(", "ma", ",", "ra", ",", "mah", ",", "rah", ",", "tax", ")", ")", ")", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe