partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
tokenize
Convert a single string into a list of substrings split along punctuation and word boundaries. Keep whitespace intact by always attaching it to the previous token. Arguments: ---------- text : str normalize_ascii : bool, perform some replacements on non-ascii characters to canonicalize the string (defaults to True). Returns: -------- list<str>, list of substring tokens.
ciseau/word_tokenizer.py
def tokenize(text, normalize_ascii=True): """ Convert a single string into a list of substrings split along punctuation and word boundaries. Keep whitespace intact by always attaching it to the previous token. Arguments: ---------- text : str normalize_ascii : bool, perform some replacements on non-ascii characters to canonicalize the string (defaults to True). Returns: -------- list<str>, list of substring tokens. """ # 1. If there's no punctuation, return immediately if no_punctuation.match(text): return [text] # 2. let's standardize the input text to ascii (if desired) # Note: this will no longer respect input-to-output character positions if normalize_ascii: # normalize these greco-roman characters to ascii: text = text.replace(u"œ", "oe").replace(u"æ", "ae") # normalize dashes: text = repeated_dash_converter.sub("-", text) # 3. let's construct an integer array of the possible split locations: split_locations = [UNDECIDED] * len(text) regexes = ( pure_whitespace, left_quote_shifter, left_quote_converter, left_single_quote_converter, remaining_quote_converter, # regex can't fix this -> regex ca n't fix this english_nots, # you'll dig this -> you 'll dig this english_contractions, # the rhino's horns -> the rhino 's horns english_specific_appendages, # qu'a tu fais au rhino -> qu ' a tu fais au rhino, french_appendages ) # 4. Mark end locations for specific regular expressions: for regex in regexes: mark_regex(regex, text, split_locations) begin_end_regexes = ( multi_single_quote_finder, right_single_quote_converter, # use dashes as the breakpoint: # the rhino--truck -> the rhino -- truck simple_dash_finder if normalize_ascii else advanced_dash_finder, numerical_expression, url_file_finder, shifted_ellipses, # the #rhino! -> the # rhino ! ; # the rino[sic] -> the rino [ sic ] shifted_standard_punctuation ) # 5. Mark begin and end locations for other regular expressions: for regex in begin_end_regexes: mark_begin_end_regex(regex, text, split_locations) # 6. Remove splitting on exceptional uses of periods: # I'm with Mr. -> I 'm with Mr. , I'm with Mister. -> I 'm with Mister . protect_shorthand(text, split_locations) if normalize_ascii: text = dash_converter.sub("-", text) # 7. Return the split string using the integer list: return list(split_with_locations(text, split_locations))
def tokenize(text, normalize_ascii=True): """ Convert a single string into a list of substrings split along punctuation and word boundaries. Keep whitespace intact by always attaching it to the previous token. Arguments: ---------- text : str normalize_ascii : bool, perform some replacements on non-ascii characters to canonicalize the string (defaults to True). Returns: -------- list<str>, list of substring tokens. """ # 1. If there's no punctuation, return immediately if no_punctuation.match(text): return [text] # 2. let's standardize the input text to ascii (if desired) # Note: this will no longer respect input-to-output character positions if normalize_ascii: # normalize these greco-roman characters to ascii: text = text.replace(u"œ", "oe").replace(u"æ", "ae") # normalize dashes: text = repeated_dash_converter.sub("-", text) # 3. let's construct an integer array of the possible split locations: split_locations = [UNDECIDED] * len(text) regexes = ( pure_whitespace, left_quote_shifter, left_quote_converter, left_single_quote_converter, remaining_quote_converter, # regex can't fix this -> regex ca n't fix this english_nots, # you'll dig this -> you 'll dig this english_contractions, # the rhino's horns -> the rhino 's horns english_specific_appendages, # qu'a tu fais au rhino -> qu ' a tu fais au rhino, french_appendages ) # 4. Mark end locations for specific regular expressions: for regex in regexes: mark_regex(regex, text, split_locations) begin_end_regexes = ( multi_single_quote_finder, right_single_quote_converter, # use dashes as the breakpoint: # the rhino--truck -> the rhino -- truck simple_dash_finder if normalize_ascii else advanced_dash_finder, numerical_expression, url_file_finder, shifted_ellipses, # the #rhino! -> the # rhino ! ; # the rino[sic] -> the rino [ sic ] shifted_standard_punctuation ) # 5. Mark begin and end locations for other regular expressions: for regex in begin_end_regexes: mark_begin_end_regex(regex, text, split_locations) # 6. Remove splitting on exceptional uses of periods: # I'm with Mr. -> I 'm with Mr. , I'm with Mister. -> I 'm with Mister . protect_shorthand(text, split_locations) if normalize_ascii: text = dash_converter.sub("-", text) # 7. Return the split string using the integer list: return list(split_with_locations(text, split_locations))
[ "Convert", "a", "single", "string", "into", "a", "list", "of", "substrings", "split", "along", "punctuation", "and", "word", "boundaries", ".", "Keep", "whitespace", "intact", "by", "always", "attaching", "it", "to", "the", "previous", "token", "." ]
JonathanRaiman/ciseau
python
https://github.com/JonathanRaiman/ciseau/blob/f72d1c82d85eeb3d3ac9fac17690041725402175/ciseau/word_tokenizer.py#L185-L260
[ "def", "tokenize", "(", "text", ",", "normalize_ascii", "=", "True", ")", ":", "# 1. If there's no punctuation, return immediately", "if", "no_punctuation", ".", "match", "(", "text", ")", ":", "return", "[", "text", "]", "# 2. let's standardize the input text to ascii (if desired)", "# Note: this will no longer respect input-to-output character positions", "if", "normalize_ascii", ":", "# normalize these greco-roman characters to ascii:", "text", "=", "text", ".", "replace", "(", "u\"œ\",", " ", "oe\")", ".", "r", "eplace(", "u", "\"æ\", ", "\"", "e\")", "", "# normalize dashes:", "text", "=", "repeated_dash_converter", ".", "sub", "(", "\"-\"", ",", "text", ")", "# 3. let's construct an integer array of the possible split locations:", "split_locations", "=", "[", "UNDECIDED", "]", "*", "len", "(", "text", ")", "regexes", "=", "(", "pure_whitespace", ",", "left_quote_shifter", ",", "left_quote_converter", ",", "left_single_quote_converter", ",", "remaining_quote_converter", ",", "# regex can't fix this -> regex ca n't fix this", "english_nots", ",", "# you'll dig this -> you 'll dig this", "english_contractions", ",", "# the rhino's horns -> the rhino 's horns", "english_specific_appendages", ",", "# qu'a tu fais au rhino -> qu ' a tu fais au rhino,", "french_appendages", ")", "# 4. Mark end locations for specific regular expressions:", "for", "regex", "in", "regexes", ":", "mark_regex", "(", "regex", ",", "text", ",", "split_locations", ")", "begin_end_regexes", "=", "(", "multi_single_quote_finder", ",", "right_single_quote_converter", ",", "# use dashes as the breakpoint:", "# the rhino--truck -> the rhino -- truck", "simple_dash_finder", "if", "normalize_ascii", "else", "advanced_dash_finder", ",", "numerical_expression", ",", "url_file_finder", ",", "shifted_ellipses", ",", "# the #rhino! -> the # rhino ! ;", "# the rino[sic] -> the rino [ sic ]", "shifted_standard_punctuation", ")", "# 5. Mark begin and end locations for other regular expressions:", "for", "regex", "in", "begin_end_regexes", ":", "mark_begin_end_regex", "(", "regex", ",", "text", ",", "split_locations", ")", "# 6. Remove splitting on exceptional uses of periods:", "# I'm with Mr. -> I 'm with Mr. , I'm with Mister. -> I 'm with Mister .", "protect_shorthand", "(", "text", ",", "split_locations", ")", "if", "normalize_ascii", ":", "text", "=", "dash_converter", ".", "sub", "(", "\"-\"", ",", "text", ")", "# 7. Return the split string using the integer list:", "return", "list", "(", "split_with_locations", "(", "text", ",", "split_locations", ")", ")" ]
f72d1c82d85eeb3d3ac9fac17690041725402175
test
main
Main command line interface.
keyrings/cryptfile/convert.py
def main(argv=None): """Main command line interface.""" if argv is None: argv = sys.argv[1:] cli = CommandLineTool() try: return cli.run(argv) except KeyboardInterrupt: print('Canceled') return 3
def main(argv=None): """Main command line interface.""" if argv is None: argv = sys.argv[1:] cli = CommandLineTool() try: return cli.run(argv) except KeyboardInterrupt: print('Canceled') return 3
[ "Main", "command", "line", "interface", "." ]
frispete/keyrings.cryptfile
python
https://github.com/frispete/keyrings.cryptfile/blob/cfa80d4848a5c3c0aeee41a954b2b120c80e69b2/keyrings/cryptfile/convert.py#L132-L142
[ "def", "main", "(", "argv", "=", "None", ")", ":", "if", "argv", "is", "None", ":", "argv", "=", "sys", ".", "argv", "[", "1", ":", "]", "cli", "=", "CommandLineTool", "(", ")", "try", ":", "return", "cli", ".", "run", "(", "argv", ")", "except", "KeyboardInterrupt", ":", "print", "(", "'Canceled'", ")", "return", "3" ]
cfa80d4848a5c3c0aeee41a954b2b120c80e69b2
test
ArgonAESEncryption._create_cipher
Create the cipher object to encrypt or decrypt a payload.
keyrings/cryptfile/cryptfile.py
def _create_cipher(self, password, salt, nonce = None): """ Create the cipher object to encrypt or decrypt a payload. """ from argon2.low_level import hash_secret_raw, Type from Crypto.Cipher import AES aesmode = self._get_mode(self.aesmode) if aesmode is None: # pragma: no cover raise ValueError('invalid AES mode: %s' % self.aesmode) key = hash_secret_raw( secret = password.encode(self.password_encoding), salt = salt, time_cost = self.time_cost, memory_cost = self.memory_cost, parallelism = self.parallelism, hash_len = 16, type = Type.ID) return AES.new(key, aesmode, nonce)
def _create_cipher(self, password, salt, nonce = None): """ Create the cipher object to encrypt or decrypt a payload. """ from argon2.low_level import hash_secret_raw, Type from Crypto.Cipher import AES aesmode = self._get_mode(self.aesmode) if aesmode is None: # pragma: no cover raise ValueError('invalid AES mode: %s' % self.aesmode) key = hash_secret_raw( secret = password.encode(self.password_encoding), salt = salt, time_cost = self.time_cost, memory_cost = self.memory_cost, parallelism = self.parallelism, hash_len = 16, type = Type.ID) return AES.new(key, aesmode, nonce)
[ "Create", "the", "cipher", "object", "to", "encrypt", "or", "decrypt", "a", "payload", "." ]
frispete/keyrings.cryptfile
python
https://github.com/frispete/keyrings.cryptfile/blob/cfa80d4848a5c3c0aeee41a954b2b120c80e69b2/keyrings/cryptfile/cryptfile.py#L38-L58
[ "def", "_create_cipher", "(", "self", ",", "password", ",", "salt", ",", "nonce", "=", "None", ")", ":", "from", "argon2", ".", "low_level", "import", "hash_secret_raw", ",", "Type", "from", "Crypto", ".", "Cipher", "import", "AES", "aesmode", "=", "self", ".", "_get_mode", "(", "self", ".", "aesmode", ")", "if", "aesmode", "is", "None", ":", "# pragma: no cover", "raise", "ValueError", "(", "'invalid AES mode: %s'", "%", "self", ".", "aesmode", ")", "key", "=", "hash_secret_raw", "(", "secret", "=", "password", ".", "encode", "(", "self", ".", "password_encoding", ")", ",", "salt", "=", "salt", ",", "time_cost", "=", "self", ".", "time_cost", ",", "memory_cost", "=", "self", ".", "memory_cost", ",", "parallelism", "=", "self", ".", "parallelism", ",", "hash_len", "=", "16", ",", "type", "=", "Type", ".", "ID", ")", "return", "AES", ".", "new", "(", "key", ",", "aesmode", ",", "nonce", ")" ]
cfa80d4848a5c3c0aeee41a954b2b120c80e69b2
test
ArgonAESEncryption._get_mode
Return the AES mode, or a list of valid AES modes, if mode == None
keyrings/cryptfile/cryptfile.py
def _get_mode(mode = None): """ Return the AES mode, or a list of valid AES modes, if mode == None """ from Crypto.Cipher import AES AESModeMap = { 'CCM': AES.MODE_CCM, 'EAX': AES.MODE_EAX, 'GCM': AES.MODE_GCM, 'OCB': AES.MODE_OCB, } if mode is None: return AESModeMap.keys() return AESModeMap.get(mode)
def _get_mode(mode = None): """ Return the AES mode, or a list of valid AES modes, if mode == None """ from Crypto.Cipher import AES AESModeMap = { 'CCM': AES.MODE_CCM, 'EAX': AES.MODE_EAX, 'GCM': AES.MODE_GCM, 'OCB': AES.MODE_OCB, } if mode is None: return AESModeMap.keys() return AESModeMap.get(mode)
[ "Return", "the", "AES", "mode", "or", "a", "list", "of", "valid", "AES", "modes", "if", "mode", "==", "None" ]
frispete/keyrings.cryptfile
python
https://github.com/frispete/keyrings.cryptfile/blob/cfa80d4848a5c3c0aeee41a954b2b120c80e69b2/keyrings/cryptfile/cryptfile.py#L61-L76
[ "def", "_get_mode", "(", "mode", "=", "None", ")", ":", "from", "Crypto", ".", "Cipher", "import", "AES", "AESModeMap", "=", "{", "'CCM'", ":", "AES", ".", "MODE_CCM", ",", "'EAX'", ":", "AES", ".", "MODE_EAX", ",", "'GCM'", ":", "AES", ".", "MODE_GCM", ",", "'OCB'", ":", "AES", ".", "MODE_OCB", ",", "}", "if", "mode", "is", "None", ":", "return", "AESModeMap", ".", "keys", "(", ")", "return", "AESModeMap", ".", "get", "(", "mode", ")" ]
cfa80d4848a5c3c0aeee41a954b2b120c80e69b2
test
CryptFileKeyring.priority
Applicable for all platforms, where the schemes, that are integrated with your environment, does not fit.
keyrings/cryptfile/cryptfile.py
def priority(self): """ Applicable for all platforms, where the schemes, that are integrated with your environment, does not fit. """ try: __import__('argon2.low_level') except ImportError: # pragma: no cover raise RuntimeError("argon2_cffi package required") try: __import__('Crypto.Cipher.AES') except ImportError: # pragma: no cover raise RuntimeError("PyCryptodome package required") if not json: # pragma: no cover raise RuntimeError("JSON implementation such as simplejson " "required.") return 2.5
def priority(self): """ Applicable for all platforms, where the schemes, that are integrated with your environment, does not fit. """ try: __import__('argon2.low_level') except ImportError: # pragma: no cover raise RuntimeError("argon2_cffi package required") try: __import__('Crypto.Cipher.AES') except ImportError: # pragma: no cover raise RuntimeError("PyCryptodome package required") if not json: # pragma: no cover raise RuntimeError("JSON implementation such as simplejson " "required.") return 2.5
[ "Applicable", "for", "all", "platforms", "where", "the", "schemes", "that", "are", "integrated", "with", "your", "environment", "does", "not", "fit", "." ]
frispete/keyrings.cryptfile
python
https://github.com/frispete/keyrings.cryptfile/blob/cfa80d4848a5c3c0aeee41a954b2b120c80e69b2/keyrings/cryptfile/cryptfile.py#L90-L106
[ "def", "priority", "(", "self", ")", ":", "try", ":", "__import__", "(", "'argon2.low_level'", ")", "except", "ImportError", ":", "# pragma: no cover", "raise", "RuntimeError", "(", "\"argon2_cffi package required\"", ")", "try", ":", "__import__", "(", "'Crypto.Cipher.AES'", ")", "except", "ImportError", ":", "# pragma: no cover", "raise", "RuntimeError", "(", "\"PyCryptodome package required\"", ")", "if", "not", "json", ":", "# pragma: no cover", "raise", "RuntimeError", "(", "\"JSON implementation such as simplejson \"", "\"required.\"", ")", "return", "2.5" ]
cfa80d4848a5c3c0aeee41a954b2b120c80e69b2
test
CryptFileKeyring._check_scheme
check for a valid scheme raise AttributeError if missing raise ValueError if not valid
keyrings/cryptfile/cryptfile.py
def _check_scheme(self, config): """ check for a valid scheme raise AttributeError if missing raise ValueError if not valid """ try: scheme = config.get( escape_for_ini('keyring-setting'), escape_for_ini('scheme'), ) except (configparser.NoSectionError, configparser.NoOptionError): raise AttributeError("Encryption scheme missing") # extract AES mode aesmode = scheme[-3:] if aesmode not in self._get_mode(): raise ValueError("Encryption scheme invalid: %s" % (aesmode)) # setup AES mode self.aesmode = aesmode # remove pointless crypto module name if scheme.startswith('PyCryptodome '): scheme = scheme[13:] # check other scheme properties if scheme != self.scheme: raise ValueError("Encryption scheme mismatch " "(exp.: %s, found: %s)" % (self.scheme, scheme))
def _check_scheme(self, config): """ check for a valid scheme raise AttributeError if missing raise ValueError if not valid """ try: scheme = config.get( escape_for_ini('keyring-setting'), escape_for_ini('scheme'), ) except (configparser.NoSectionError, configparser.NoOptionError): raise AttributeError("Encryption scheme missing") # extract AES mode aesmode = scheme[-3:] if aesmode not in self._get_mode(): raise ValueError("Encryption scheme invalid: %s" % (aesmode)) # setup AES mode self.aesmode = aesmode # remove pointless crypto module name if scheme.startswith('PyCryptodome '): scheme = scheme[13:] # check other scheme properties if scheme != self.scheme: raise ValueError("Encryption scheme mismatch " "(exp.: %s, found: %s)" % (self.scheme, scheme))
[ "check", "for", "a", "valid", "scheme" ]
frispete/keyrings.cryptfile
python
https://github.com/frispete/keyrings.cryptfile/blob/cfa80d4848a5c3c0aeee41a954b2b120c80e69b2/keyrings/cryptfile/cryptfile.py#L132-L162
[ "def", "_check_scheme", "(", "self", ",", "config", ")", ":", "try", ":", "scheme", "=", "config", ".", "get", "(", "escape_for_ini", "(", "'keyring-setting'", ")", ",", "escape_for_ini", "(", "'scheme'", ")", ",", ")", "except", "(", "configparser", ".", "NoSectionError", ",", "configparser", ".", "NoOptionError", ")", ":", "raise", "AttributeError", "(", "\"Encryption scheme missing\"", ")", "# extract AES mode", "aesmode", "=", "scheme", "[", "-", "3", ":", "]", "if", "aesmode", "not", "in", "self", ".", "_get_mode", "(", ")", ":", "raise", "ValueError", "(", "\"Encryption scheme invalid: %s\"", "%", "(", "aesmode", ")", ")", "# setup AES mode", "self", ".", "aesmode", "=", "aesmode", "# remove pointless crypto module name", "if", "scheme", ".", "startswith", "(", "'PyCryptodome '", ")", ":", "scheme", "=", "scheme", "[", "13", ":", "]", "# check other scheme properties", "if", "scheme", "!=", "self", ".", "scheme", ":", "raise", "ValueError", "(", "\"Encryption scheme mismatch \"", "\"(exp.: %s, found: %s)\"", "%", "(", "self", ".", "scheme", ",", "scheme", ")", ")" ]
cfa80d4848a5c3c0aeee41a954b2b120c80e69b2
test
startLogging
Starts the global Twisted logger subsystem with maybe stdout and/or a file specified in the config file
examples/subscriber.py
def startLogging(console=True, filepath=None): ''' Starts the global Twisted logger subsystem with maybe stdout and/or a file specified in the config file ''' global logLevelFilterPredicate observers = [] if console: observers.append( FilteringLogObserver(observer=textFileLogObserver(sys.stdout), predicates=[logLevelFilterPredicate] )) if filepath is not None and filepath != "": observers.append( FilteringLogObserver(observer=textFileLogObserver(open(filepath,'a')), predicates=[logLevelFilterPredicate] )) globalLogBeginner.beginLoggingTo(observers)
def startLogging(console=True, filepath=None): ''' Starts the global Twisted logger subsystem with maybe stdout and/or a file specified in the config file ''' global logLevelFilterPredicate observers = [] if console: observers.append( FilteringLogObserver(observer=textFileLogObserver(sys.stdout), predicates=[logLevelFilterPredicate] )) if filepath is not None and filepath != "": observers.append( FilteringLogObserver(observer=textFileLogObserver(open(filepath,'a')), predicates=[logLevelFilterPredicate] )) globalLogBeginner.beginLoggingTo(observers)
[ "Starts", "the", "global", "Twisted", "logger", "subsystem", "with", "maybe", "stdout", "and", "/", "or", "a", "file", "specified", "in", "the", "config", "file" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/examples/subscriber.py#L27-L42
[ "def", "startLogging", "(", "console", "=", "True", ",", "filepath", "=", "None", ")", ":", "global", "logLevelFilterPredicate", "observers", "=", "[", "]", "if", "console", ":", "observers", ".", "append", "(", "FilteringLogObserver", "(", "observer", "=", "textFileLogObserver", "(", "sys", ".", "stdout", ")", ",", "predicates", "=", "[", "logLevelFilterPredicate", "]", ")", ")", "if", "filepath", "is", "not", "None", "and", "filepath", "!=", "\"\"", ":", "observers", ".", "append", "(", "FilteringLogObserver", "(", "observer", "=", "textFileLogObserver", "(", "open", "(", "filepath", ",", "'a'", ")", ")", ",", "predicates", "=", "[", "logLevelFilterPredicate", "]", ")", ")", "globalLogBeginner", ".", "beginLoggingTo", "(", "observers", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
setLogLevel
Set a new log level for a given namespace LevelStr is: 'critical', 'error', 'warn', 'info', 'debug'
examples/subscriber.py
def setLogLevel(namespace=None, levelStr='info'): ''' Set a new log level for a given namespace LevelStr is: 'critical', 'error', 'warn', 'info', 'debug' ''' level = LogLevel.levelWithName(levelStr) logLevelFilterPredicate.setLogLevelForNamespace(namespace=namespace, level=level)
def setLogLevel(namespace=None, levelStr='info'): ''' Set a new log level for a given namespace LevelStr is: 'critical', 'error', 'warn', 'info', 'debug' ''' level = LogLevel.levelWithName(levelStr) logLevelFilterPredicate.setLogLevelForNamespace(namespace=namespace, level=level)
[ "Set", "a", "new", "log", "level", "for", "a", "given", "namespace", "LevelStr", "is", ":", "critical", "error", "warn", "info", "debug" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/examples/subscriber.py#L45-L51
[ "def", "setLogLevel", "(", "namespace", "=", "None", ",", "levelStr", "=", "'info'", ")", ":", "level", "=", "LogLevel", ".", "levelWithName", "(", "levelStr", ")", "logLevelFilterPredicate", ".", "setLogLevelForNamespace", "(", "namespace", "=", "namespace", ",", "level", "=", "level", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
MQTTService.connectToBroker
Connect to MQTT broker
examples/subscriber.py
def connectToBroker(self, protocol): ''' Connect to MQTT broker ''' self.protocol = protocol self.protocol.onPublish = self.onPublish self.protocol.onDisconnection = self.onDisconnection self.protocol.setWindowSize(3) try: yield self.protocol.connect("TwistedMQTT-subs", keepalive=60) yield self.subscribe() except Exception as e: log.error("Connecting to {broker} raised {excp!s}", broker=BROKER, excp=e) else: log.info("Connected and subscribed to {broker}", broker=BROKER)
def connectToBroker(self, protocol): ''' Connect to MQTT broker ''' self.protocol = protocol self.protocol.onPublish = self.onPublish self.protocol.onDisconnection = self.onDisconnection self.protocol.setWindowSize(3) try: yield self.protocol.connect("TwistedMQTT-subs", keepalive=60) yield self.subscribe() except Exception as e: log.error("Connecting to {broker} raised {excp!s}", broker=BROKER, excp=e) else: log.info("Connected and subscribed to {broker}", broker=BROKER)
[ "Connect", "to", "MQTT", "broker" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/examples/subscriber.py#L72-L87
[ "def", "connectToBroker", "(", "self", ",", "protocol", ")", ":", "self", ".", "protocol", "=", "protocol", "self", ".", "protocol", ".", "onPublish", "=", "self", ".", "onPublish", "self", ".", "protocol", ".", "onDisconnection", "=", "self", ".", "onDisconnection", "self", ".", "protocol", ".", "setWindowSize", "(", "3", ")", "try", ":", "yield", "self", ".", "protocol", ".", "connect", "(", "\"TwistedMQTT-subs\"", ",", "keepalive", "=", "60", ")", "yield", "self", ".", "subscribe", "(", ")", "except", "Exception", "as", "e", ":", "log", ".", "error", "(", "\"Connecting to {broker} raised {excp!s}\"", ",", "broker", "=", "BROKER", ",", "excp", "=", "e", ")", "else", ":", "log", ".", "info", "(", "\"Connected and subscribed to {broker}\"", ",", "broker", "=", "BROKER", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
MQTTService.onPublish
Callback Receiving messages from publisher
examples/subscriber.py
def onPublish(self, topic, payload, qos, dup, retain, msgId): ''' Callback Receiving messages from publisher ''' log.debug("msg={payload}", payload=payload)
def onPublish(self, topic, payload, qos, dup, retain, msgId): ''' Callback Receiving messages from publisher ''' log.debug("msg={payload}", payload=payload)
[ "Callback", "Receiving", "messages", "from", "publisher" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/examples/subscriber.py#L117-L121
[ "def", "onPublish", "(", "self", ",", "topic", ",", "payload", ",", "qos", ",", "dup", ",", "retain", ",", "msgId", ")", ":", "log", ".", "debug", "(", "\"msg={payload}\"", ",", "payload", "=", "payload", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
MQTTService.onDisconnection
get notfied of disconnections and get a deferred for a new protocol object (next retry)
examples/subscriber.py
def onDisconnection(self, reason): ''' get notfied of disconnections and get a deferred for a new protocol object (next retry) ''' log.debug("<Connection was lost !> <reason={r}>", r=reason) self.whenConnected().addCallback(self.connectToBroker)
def onDisconnection(self, reason): ''' get notfied of disconnections and get a deferred for a new protocol object (next retry) ''' log.debug("<Connection was lost !> <reason={r}>", r=reason) self.whenConnected().addCallback(self.connectToBroker)
[ "get", "notfied", "of", "disconnections", "and", "get", "a", "deferred", "for", "a", "new", "protocol", "object", "(", "next", "retry", ")" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/examples/subscriber.py#L124-L130
[ "def", "onDisconnection", "(", "self", ",", "reason", ")", ":", "log", ".", "debug", "(", "\"<Connection was lost !> <reason={r}>\"", ",", "r", "=", "reason", ")", "self", ".", "whenConnected", "(", ")", ".", "addCallback", "(", "self", ".", "connectToBroker", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
MQTTService.connectToBroker
Connect to MQTT broker
examples/pubsubs.py
def connectToBroker(self, protocol): ''' Connect to MQTT broker ''' self.protocol = protocol self.protocol.onPublish = self.onPublish self.protocol.onDisconnection = self.onDisconnection self.protocol.setWindowSize(3) self.task = task.LoopingCall(self.publish) self.task.start(5.0, now=False) try: yield self.protocol.connect("TwistedMQTT-pubsubs", keepalive=60) yield self.subscribe() except Exception as e: log.error("Connecting to {broker} raised {excp!s}", broker=BROKER, excp=e) else: log.info("Connected and subscribed to {broker}", broker=BROKER)
def connectToBroker(self, protocol): ''' Connect to MQTT broker ''' self.protocol = protocol self.protocol.onPublish = self.onPublish self.protocol.onDisconnection = self.onDisconnection self.protocol.setWindowSize(3) self.task = task.LoopingCall(self.publish) self.task.start(5.0, now=False) try: yield self.protocol.connect("TwistedMQTT-pubsubs", keepalive=60) yield self.subscribe() except Exception as e: log.error("Connecting to {broker} raised {excp!s}", broker=BROKER, excp=e) else: log.info("Connected and subscribed to {broker}", broker=BROKER)
[ "Connect", "to", "MQTT", "broker" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/examples/pubsubs.py#L72-L89
[ "def", "connectToBroker", "(", "self", ",", "protocol", ")", ":", "self", ".", "protocol", "=", "protocol", "self", ".", "protocol", ".", "onPublish", "=", "self", ".", "onPublish", "self", ".", "protocol", ".", "onDisconnection", "=", "self", ".", "onDisconnection", "self", ".", "protocol", ".", "setWindowSize", "(", "3", ")", "self", ".", "task", "=", "task", ".", "LoopingCall", "(", "self", ".", "publish", ")", "self", ".", "task", ".", "start", "(", "5.0", ",", "now", "=", "False", ")", "try", ":", "yield", "self", ".", "protocol", ".", "connect", "(", "\"TwistedMQTT-pubsubs\"", ",", "keepalive", "=", "60", ")", "yield", "self", ".", "subscribe", "(", ")", "except", "Exception", "as", "e", ":", "log", ".", "error", "(", "\"Connecting to {broker} raised {excp!s}\"", ",", "broker", "=", "BROKER", ",", "excp", "=", "e", ")", "else", ":", "log", ".", "info", "(", "\"Connected and subscribed to {broker}\"", ",", "broker", "=", "BROKER", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
MQTTFactory.makeId
Produce ids for Protocol packets, outliving their sessions
mqtt/client/factory.py
def makeId(self): '''Produce ids for Protocol packets, outliving their sessions''' self.id = (self.id + 1) % 65536 self.id = self.id or 1 # avoid id 0 return self.id
def makeId(self): '''Produce ids for Protocol packets, outliving their sessions''' self.id = (self.id + 1) % 65536 self.id = self.id or 1 # avoid id 0 return self.id
[ "Produce", "ids", "for", "Protocol", "packets", "outliving", "their", "sessions" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/client/factory.py#L116-L120
[ "def", "makeId", "(", "self", ")", ":", "self", ".", "id", "=", "(", "self", ".", "id", "+", "1", ")", "%", "65536", "self", ".", "id", "=", "self", ".", "id", "or", "1", "# avoid id 0", "return", "self", ".", "id" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
BaseState.connect
Send a CONNECT control packet.
mqtt/client/base.py
def connect(self, request): ''' Send a CONNECT control packet. ''' state = self.__class__.__name__ return defer.fail(MQTTStateError("Unexpected connect() operation", state))
def connect(self, request): ''' Send a CONNECT control packet. ''' state = self.__class__.__name__ return defer.fail(MQTTStateError("Unexpected connect() operation", state))
[ "Send", "a", "CONNECT", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/client/base.py#L100-L105
[ "def", "connect", "(", "self", ",", "request", ")", ":", "state", "=", "self", ".", "__class__", ".", "__name__", "return", "defer", ".", "fail", "(", "MQTTStateError", "(", "\"Unexpected connect() operation\"", ",", "state", ")", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
BaseState.handleCONNACK
Handles CONNACK packet from the server
mqtt/client/base.py
def handleCONNACK(self, response): ''' Handles CONNACK packet from the server ''' state = self.__class__.__name__ log.error("Unexpected {packet:7} packet received in {log_source}", packet="CONNACK")
def handleCONNACK(self, response): ''' Handles CONNACK packet from the server ''' state = self.__class__.__name__ log.error("Unexpected {packet:7} packet received in {log_source}", packet="CONNACK")
[ "Handles", "CONNACK", "packet", "from", "the", "server" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/client/base.py#L138-L143
[ "def", "handleCONNACK", "(", "self", ",", "response", ")", ":", "state", "=", "self", ".", "__class__", ".", "__name__", "log", ".", "error", "(", "\"Unexpected {packet:7} packet received in {log_source}\"", ",", "packet", "=", "\"CONNACK\"", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
IMQTTClientControl.connect
Abstract ======== Send a CONNECT control packet. Description =========== After a Network Connection is established by a Client to a Server, the first Packet sent from the Client to the Server MUST be a CONNECT Packet [MQTT-3.1.0-1]. A Client can only send the CONNECT Packet once over a Network Connection. The Server MUST process a second CONNECT Packet sent from a Client as a protocol violation and disconnect the Client. If the Client does not receive a CONNACK Packet from the Server within a reasonable amount of time, he Client SHOULD close the Network Connection. A "reasonable" amount of time depends on the type of application and the communications infrastructure. Signature ========= @param clientId: client ID for the connection (UTF-8 string) @param keepalive: connection keepalive period in seconds. @param willTopic: last will topic (UTF-8 string) @param willMessage: last will message (UTF-8 string) @param willQoS: last will qos message @param willRetain: lass will retain flag. @param cleanStart: session clean flag. @return: a Deferred whose callback will be called with a tuple C{returnCode, sessionFlag)} when the connection completes. The Deferred errback with a C{MQTTError} exception will be called if no connection ack is received from the server within a keepalive period. If no keepalive is used, a max of 10 seconds is used.
mqtt/client/interfaces.py
def connect(clientId, keepalive=0, willTopic=None, willMessage=None, willQoS=0, willRetain=False, username=None, password=None, cleanStart=True, version=mqtt.v311): ''' Abstract ======== Send a CONNECT control packet. Description =========== After a Network Connection is established by a Client to a Server, the first Packet sent from the Client to the Server MUST be a CONNECT Packet [MQTT-3.1.0-1]. A Client can only send the CONNECT Packet once over a Network Connection. The Server MUST process a second CONNECT Packet sent from a Client as a protocol violation and disconnect the Client. If the Client does not receive a CONNACK Packet from the Server within a reasonable amount of time, he Client SHOULD close the Network Connection. A "reasonable" amount of time depends on the type of application and the communications infrastructure. Signature ========= @param clientId: client ID for the connection (UTF-8 string) @param keepalive: connection keepalive period in seconds. @param willTopic: last will topic (UTF-8 string) @param willMessage: last will message (UTF-8 string) @param willQoS: last will qos message @param willRetain: lass will retain flag. @param cleanStart: session clean flag. @return: a Deferred whose callback will be called with a tuple C{returnCode, sessionFlag)} when the connection completes. The Deferred errback with a C{MQTTError} exception will be called if no connection ack is received from the server within a keepalive period. If no keepalive is used, a max of 10 seconds is used. '''
def connect(clientId, keepalive=0, willTopic=None, willMessage=None, willQoS=0, willRetain=False, username=None, password=None, cleanStart=True, version=mqtt.v311): ''' Abstract ======== Send a CONNECT control packet. Description =========== After a Network Connection is established by a Client to a Server, the first Packet sent from the Client to the Server MUST be a CONNECT Packet [MQTT-3.1.0-1]. A Client can only send the CONNECT Packet once over a Network Connection. The Server MUST process a second CONNECT Packet sent from a Client as a protocol violation and disconnect the Client. If the Client does not receive a CONNACK Packet from the Server within a reasonable amount of time, he Client SHOULD close the Network Connection. A "reasonable" amount of time depends on the type of application and the communications infrastructure. Signature ========= @param clientId: client ID for the connection (UTF-8 string) @param keepalive: connection keepalive period in seconds. @param willTopic: last will topic (UTF-8 string) @param willMessage: last will message (UTF-8 string) @param willQoS: last will qos message @param willRetain: lass will retain flag. @param cleanStart: session clean flag. @return: a Deferred whose callback will be called with a tuple C{returnCode, sessionFlag)} when the connection completes. The Deferred errback with a C{MQTTError} exception will be called if no connection ack is received from the server within a keepalive period. If no keepalive is used, a max of 10 seconds is used. '''
[ "Abstract", "========" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/client/interfaces.py#L44-L84
[ "def", "connect", "(", "clientId", ",", "keepalive", "=", "0", ",", "willTopic", "=", "None", ",", "willMessage", "=", "None", ",", "willQoS", "=", "0", ",", "willRetain", "=", "False", ",", "username", "=", "None", ",", "password", "=", "None", ",", "cleanStart", "=", "True", ",", "version", "=", "mqtt", ".", "v311", ")", ":" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
encodeString
Encode an UTF-8 string into MQTT format. Returns a bytearray
mqtt/pdu.py
def encodeString(string): ''' Encode an UTF-8 string into MQTT format. Returns a bytearray ''' encoded = bytearray(2) encoded.extend(bytearray(string, encoding='utf-8')) l = len(encoded)-2 if(l > 65535): raise StringValueError(l) encoded[0] = l >> 8 encoded[1] = l & 0xFF return encoded
def encodeString(string): ''' Encode an UTF-8 string into MQTT format. Returns a bytearray ''' encoded = bytearray(2) encoded.extend(bytearray(string, encoding='utf-8')) l = len(encoded)-2 if(l > 65535): raise StringValueError(l) encoded[0] = l >> 8 encoded[1] = l & 0xFF return encoded
[ "Encode", "an", "UTF", "-", "8", "string", "into", "MQTT", "format", ".", "Returns", "a", "bytearray" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L51-L63
[ "def", "encodeString", "(", "string", ")", ":", "encoded", "=", "bytearray", "(", "2", ")", "encoded", ".", "extend", "(", "bytearray", "(", "string", ",", "encoding", "=", "'utf-8'", ")", ")", "l", "=", "len", "(", "encoded", ")", "-", "2", "if", "(", "l", ">", "65535", ")", ":", "raise", "StringValueError", "(", "l", ")", "encoded", "[", "0", "]", "=", "l", ">>", "8", "encoded", "[", "1", "]", "=", "l", "&", "0xFF", "return", "encoded" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
decodeString
Decodes an UTF-8 string from an encoded MQTT bytearray. Returns the decoded string and renaining bytearray to be parsed
mqtt/pdu.py
def decodeString(encoded): ''' Decodes an UTF-8 string from an encoded MQTT bytearray. Returns the decoded string and renaining bytearray to be parsed ''' length = encoded[0]*256 + encoded[1] return (encoded[2:2+length].decode('utf-8'), encoded[2+length:])
def decodeString(encoded): ''' Decodes an UTF-8 string from an encoded MQTT bytearray. Returns the decoded string and renaining bytearray to be parsed ''' length = encoded[0]*256 + encoded[1] return (encoded[2:2+length].decode('utf-8'), encoded[2+length:])
[ "Decodes", "an", "UTF", "-", "8", "string", "from", "an", "encoded", "MQTT", "bytearray", ".", "Returns", "the", "decoded", "string", "and", "renaining", "bytearray", "to", "be", "parsed" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L65-L71
[ "def", "decodeString", "(", "encoded", ")", ":", "length", "=", "encoded", "[", "0", "]", "*", "256", "+", "encoded", "[", "1", "]", "return", "(", "encoded", "[", "2", ":", "2", "+", "length", "]", ".", "decode", "(", "'utf-8'", ")", ",", "encoded", "[", "2", "+", "length", ":", "]", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
encode16Int
Encodes a 16 bit unsigned integer into MQTT format. Returns a bytearray
mqtt/pdu.py
def encode16Int(value): ''' Encodes a 16 bit unsigned integer into MQTT format. Returns a bytearray ''' value = int(value) encoded = bytearray(2) encoded[0] = value >> 8 encoded[1] = value & 0xFF return encoded
def encode16Int(value): ''' Encodes a 16 bit unsigned integer into MQTT format. Returns a bytearray ''' value = int(value) encoded = bytearray(2) encoded[0] = value >> 8 encoded[1] = value & 0xFF return encoded
[ "Encodes", "a", "16", "bit", "unsigned", "integer", "into", "MQTT", "format", ".", "Returns", "a", "bytearray" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L74-L83
[ "def", "encode16Int", "(", "value", ")", ":", "value", "=", "int", "(", "value", ")", "encoded", "=", "bytearray", "(", "2", ")", "encoded", "[", "0", "]", "=", "value", ">>", "8", "encoded", "[", "1", "]", "=", "value", "&", "0xFF", "return", "encoded" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
encodeLength
Encodes value into a multibyte sequence defined by MQTT protocol. Used to encode packet length fields.
mqtt/pdu.py
def encodeLength(value): ''' Encodes value into a multibyte sequence defined by MQTT protocol. Used to encode packet length fields. ''' encoded = bytearray() while True: digit = value % 128 value //= 128 if value > 0: digit |= 128 encoded.append(digit) if value <= 0: break return encoded
def encodeLength(value): ''' Encodes value into a multibyte sequence defined by MQTT protocol. Used to encode packet length fields. ''' encoded = bytearray() while True: digit = value % 128 value //= 128 if value > 0: digit |= 128 encoded.append(digit) if value <= 0: break return encoded
[ "Encodes", "value", "into", "a", "multibyte", "sequence", "defined", "by", "MQTT", "protocol", ".", "Used", "to", "encode", "packet", "length", "fields", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L92-L106
[ "def", "encodeLength", "(", "value", ")", ":", "encoded", "=", "bytearray", "(", ")", "while", "True", ":", "digit", "=", "value", "%", "128", "value", "//=", "128", "if", "value", ">", "0", ":", "digit", "|=", "128", "encoded", ".", "append", "(", "digit", ")", "if", "value", "<=", "0", ":", "break", "return", "encoded" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
decodeLength
Decodes a variable length value defined in the MQTT protocol. This value typically represents remaining field lengths
mqtt/pdu.py
def decodeLength(encoded): ''' Decodes a variable length value defined in the MQTT protocol. This value typically represents remaining field lengths ''' value = 0 multiplier = 1 for i in encoded: value += (i & 0x7F) * multiplier multiplier *= 0x80 if (i & 0x80) != 0x80: break return value
def decodeLength(encoded): ''' Decodes a variable length value defined in the MQTT protocol. This value typically represents remaining field lengths ''' value = 0 multiplier = 1 for i in encoded: value += (i & 0x7F) * multiplier multiplier *= 0x80 if (i & 0x80) != 0x80: break return value
[ "Decodes", "a", "variable", "length", "value", "defined", "in", "the", "MQTT", "protocol", ".", "This", "value", "typically", "represents", "remaining", "field", "lengths" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L109-L121
[ "def", "decodeLength", "(", "encoded", ")", ":", "value", "=", "0", "multiplier", "=", "1", "for", "i", "in", "encoded", ":", "value", "+=", "(", "i", "&", "0x7F", ")", "*", "multiplier", "multiplier", "*=", "0x80", "if", "(", "i", "&", "0x80", ")", "!=", "0x80", ":", "break", "return", "value" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
DISCONNECT.encode
Encode and store a DISCONNECT control packet.
mqtt/pdu.py
def encode(self): ''' Encode and store a DISCONNECT control packet. ''' header = bytearray(2) header[0] = 0xE0 self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store a DISCONNECT control packet. ''' header = bytearray(2) header[0] = 0xE0 self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "a", "DISCONNECT", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L133-L140
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "2", ")", "header", "[", "0", "]", "=", "0xE0", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
CONNECT.encode
Encode and store a CONNECT control packet. @raise e: C{ValueError} if any encoded topic string exceeds 65535 bytes. @raise e: C{ValueError} if encoded username string exceeds 65535 bytes.
mqtt/pdu.py
def encode(self): ''' Encode and store a CONNECT control packet. @raise e: C{ValueError} if any encoded topic string exceeds 65535 bytes. @raise e: C{ValueError} if encoded username string exceeds 65535 bytes. ''' header = bytearray(1) varHeader = bytearray() payload = bytearray() header[0] = 0x10 # packet code # ---- Variable header encoding section ----- varHeader.extend(encodeString(self.version['tag'])) varHeader.append(self.version['level']) # protocol Level flags = (self.cleanStart << 1) if self.willTopic is not None and self.willMessage is not None: flags |= 0x04 | (self.willRetain << 5) | (self.willQoS << 3) if self.username is not None: flags |= 0x80 if self.password is not None: flags |= 0x40 varHeader.append(flags) varHeader.extend(encode16Int(self.keepalive)) # ------ Payload encoding section ---- payload.extend(encodeString(self.clientId)) if self.willTopic is not None and self.willMessage is not None: payload.extend(encodeString(self.willTopic)) payload.extend(encodeString(self.willMessage)) if self.username is not None: payload.extend(encodeString(self.username)) if self.password is not None: payload.extend(encode16Int(len(self.password))) payload.extend(bytearray(self.password, encoding='ascii', errors='ignore')) # ---- Build the packet once all lengths are known ---- header.extend(encodeLength(len(varHeader) + len(payload))) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store a CONNECT control packet. @raise e: C{ValueError} if any encoded topic string exceeds 65535 bytes. @raise e: C{ValueError} if encoded username string exceeds 65535 bytes. ''' header = bytearray(1) varHeader = bytearray() payload = bytearray() header[0] = 0x10 # packet code # ---- Variable header encoding section ----- varHeader.extend(encodeString(self.version['tag'])) varHeader.append(self.version['level']) # protocol Level flags = (self.cleanStart << 1) if self.willTopic is not None and self.willMessage is not None: flags |= 0x04 | (self.willRetain << 5) | (self.willQoS << 3) if self.username is not None: flags |= 0x80 if self.password is not None: flags |= 0x40 varHeader.append(flags) varHeader.extend(encode16Int(self.keepalive)) # ------ Payload encoding section ---- payload.extend(encodeString(self.clientId)) if self.willTopic is not None and self.willMessage is not None: payload.extend(encodeString(self.willTopic)) payload.extend(encodeString(self.willMessage)) if self.username is not None: payload.extend(encodeString(self.username)) if self.password is not None: payload.extend(encode16Int(len(self.password))) payload.extend(bytearray(self.password, encoding='ascii', errors='ignore')) # ---- Build the packet once all lengths are known ---- header.extend(encodeLength(len(varHeader) + len(payload))) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "a", "CONNECT", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L211-L249
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "1", ")", "varHeader", "=", "bytearray", "(", ")", "payload", "=", "bytearray", "(", ")", "header", "[", "0", "]", "=", "0x10", "# packet code", "# ---- Variable header encoding section -----", "varHeader", ".", "extend", "(", "encodeString", "(", "self", ".", "version", "[", "'tag'", "]", ")", ")", "varHeader", ".", "append", "(", "self", ".", "version", "[", "'level'", "]", ")", "# protocol Level", "flags", "=", "(", "self", ".", "cleanStart", "<<", "1", ")", "if", "self", ".", "willTopic", "is", "not", "None", "and", "self", ".", "willMessage", "is", "not", "None", ":", "flags", "|=", "0x04", "|", "(", "self", ".", "willRetain", "<<", "5", ")", "|", "(", "self", ".", "willQoS", "<<", "3", ")", "if", "self", ".", "username", "is", "not", "None", ":", "flags", "|=", "0x80", "if", "self", ".", "password", "is", "not", "None", ":", "flags", "|=", "0x40", "varHeader", ".", "append", "(", "flags", ")", "varHeader", ".", "extend", "(", "encode16Int", "(", "self", ".", "keepalive", ")", ")", "# ------ Payload encoding section ----", "payload", ".", "extend", "(", "encodeString", "(", "self", ".", "clientId", ")", ")", "if", "self", ".", "willTopic", "is", "not", "None", "and", "self", ".", "willMessage", "is", "not", "None", ":", "payload", ".", "extend", "(", "encodeString", "(", "self", ".", "willTopic", ")", ")", "payload", ".", "extend", "(", "encodeString", "(", "self", ".", "willMessage", ")", ")", "if", "self", ".", "username", "is", "not", "None", ":", "payload", ".", "extend", "(", "encodeString", "(", "self", ".", "username", ")", ")", "if", "self", ".", "password", "is", "not", "None", ":", "payload", ".", "extend", "(", "encode16Int", "(", "len", "(", "self", ".", "password", ")", ")", ")", "payload", ".", "extend", "(", "bytearray", "(", "self", ".", "password", ",", "encoding", "=", "'ascii'", ",", "errors", "=", "'ignore'", ")", ")", "# ---- Build the packet once all lengths are known ----", "header", ".", "extend", "(", "encodeLength", "(", "len", "(", "varHeader", ")", "+", "len", "(", "payload", ")", ")", ")", "header", ".", "extend", "(", "varHeader", ")", "header", ".", "extend", "(", "payload", ")", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
CONNECT.decode
Decode a CONNECT control packet.
mqtt/pdu.py
def decode(self, packet): ''' Decode a CONNECT control packet. ''' self.encoded = packet # Strip the fixed header plus variable length field lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] # Variable Header version_str, packet_remaining = decodeString(packet_remaining) version_id = int(packet_remaining[0]) if version_id == v31['level']: self.version = v31 else: self.version = v311 flags = packet_remaining[1] self.cleanStart = (flags & 0x02) != 0 willFlag = (flags & 0x04) != 0 willQoS = (flags >> 3) & 0x03 willRetain = (flags & 0x20) != 0 userFlag = (flags & 0x80) != 0 passFlag = (flags & 0x40) != 0 packet_remaining = packet_remaining[2:] self.keepalive = decode16Int(packet_remaining) # Payload packet_remaining = packet_remaining[2:] self.clientId, packet_remaining = decodeString(packet_remaining) if willFlag: self.willRetain = willRetain self.willQoS = willQoS self.willTopic, packet_remaining = decodeString(packet_remaining) self.willMessage, packet_remaining = decodeString(packet_remaining) if userFlag: self.username, packet_remaining = decodeString(packet_remaining) if passFlag: l = decode16Int(packet_remaining) self.password = packet_remaining[2:2+l]
def decode(self, packet): ''' Decode a CONNECT control packet. ''' self.encoded = packet # Strip the fixed header plus variable length field lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] # Variable Header version_str, packet_remaining = decodeString(packet_remaining) version_id = int(packet_remaining[0]) if version_id == v31['level']: self.version = v31 else: self.version = v311 flags = packet_remaining[1] self.cleanStart = (flags & 0x02) != 0 willFlag = (flags & 0x04) != 0 willQoS = (flags >> 3) & 0x03 willRetain = (flags & 0x20) != 0 userFlag = (flags & 0x80) != 0 passFlag = (flags & 0x40) != 0 packet_remaining = packet_remaining[2:] self.keepalive = decode16Int(packet_remaining) # Payload packet_remaining = packet_remaining[2:] self.clientId, packet_remaining = decodeString(packet_remaining) if willFlag: self.willRetain = willRetain self.willQoS = willQoS self.willTopic, packet_remaining = decodeString(packet_remaining) self.willMessage, packet_remaining = decodeString(packet_remaining) if userFlag: self.username, packet_remaining = decodeString(packet_remaining) if passFlag: l = decode16Int(packet_remaining) self.password = packet_remaining[2:2+l]
[ "Decode", "a", "CONNECT", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L251-L289
[ "def", "decode", "(", "self", ",", "packet", ")", ":", "self", ".", "encoded", "=", "packet", "# Strip the fixed header plus variable length field", "lenLen", "=", "1", "while", "packet", "[", "lenLen", "]", "&", "0x80", ":", "lenLen", "+=", "1", "packet_remaining", "=", "packet", "[", "lenLen", "+", "1", ":", "]", "# Variable Header", "version_str", ",", "packet_remaining", "=", "decodeString", "(", "packet_remaining", ")", "version_id", "=", "int", "(", "packet_remaining", "[", "0", "]", ")", "if", "version_id", "==", "v31", "[", "'level'", "]", ":", "self", ".", "version", "=", "v31", "else", ":", "self", ".", "version", "=", "v311", "flags", "=", "packet_remaining", "[", "1", "]", "self", ".", "cleanStart", "=", "(", "flags", "&", "0x02", ")", "!=", "0", "willFlag", "=", "(", "flags", "&", "0x04", ")", "!=", "0", "willQoS", "=", "(", "flags", ">>", "3", ")", "&", "0x03", "willRetain", "=", "(", "flags", "&", "0x20", ")", "!=", "0", "userFlag", "=", "(", "flags", "&", "0x80", ")", "!=", "0", "passFlag", "=", "(", "flags", "&", "0x40", ")", "!=", "0", "packet_remaining", "=", "packet_remaining", "[", "2", ":", "]", "self", ".", "keepalive", "=", "decode16Int", "(", "packet_remaining", ")", "# Payload", "packet_remaining", "=", "packet_remaining", "[", "2", ":", "]", "self", ".", "clientId", ",", "packet_remaining", "=", "decodeString", "(", "packet_remaining", ")", "if", "willFlag", ":", "self", ".", "willRetain", "=", "willRetain", "self", ".", "willQoS", "=", "willQoS", "self", ".", "willTopic", ",", "packet_remaining", "=", "decodeString", "(", "packet_remaining", ")", "self", ".", "willMessage", ",", "packet_remaining", "=", "decodeString", "(", "packet_remaining", ")", "if", "userFlag", ":", "self", ".", "username", ",", "packet_remaining", "=", "decodeString", "(", "packet_remaining", ")", "if", "passFlag", ":", "l", "=", "decode16Int", "(", "packet_remaining", ")", "self", ".", "password", "=", "packet_remaining", "[", "2", ":", "2", "+", "l", "]" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
CONNACK.encode
Encode and store a CONNACK control packet.
mqtt/pdu.py
def encode(self): ''' Encode and store a CONNACK control packet. ''' header = bytearray(1) varHeader = bytearray(2) header[0] = 0x20 varHeader[0] = self.session varHeader[1] = self.resultCode header.extend(encodeLength(len(varHeader))) header.extend(varHeader) self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store a CONNACK control packet. ''' header = bytearray(1) varHeader = bytearray(2) header[0] = 0x20 varHeader[0] = self.session varHeader[1] = self.resultCode header.extend(encodeLength(len(varHeader))) header.extend(varHeader) self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "a", "CONNACK", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L302-L315
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "1", ")", "varHeader", "=", "bytearray", "(", "2", ")", "header", "[", "0", "]", "=", "0x20", "varHeader", "[", "0", "]", "=", "self", ".", "session", "varHeader", "[", "1", "]", "=", "self", ".", "resultCode", "header", ".", "extend", "(", "encodeLength", "(", "len", "(", "varHeader", ")", ")", ")", "header", ".", "extend", "(", "varHeader", ")", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
CONNACK.decode
Decode a CONNACK control packet.
mqtt/pdu.py
def decode(self, packet): ''' Decode a CONNACK control packet. ''' self.encoded = packet # Strip the fixed header plus variable length field lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.session = (packet_remaining[0] & 0x01) == 0x01 self.resultCode = int(packet_remaining[1])
def decode(self, packet): ''' Decode a CONNACK control packet. ''' self.encoded = packet # Strip the fixed header plus variable length field lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.session = (packet_remaining[0] & 0x01) == 0x01 self.resultCode = int(packet_remaining[1])
[ "Decode", "a", "CONNACK", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L317-L328
[ "def", "decode", "(", "self", ",", "packet", ")", ":", "self", ".", "encoded", "=", "packet", "# Strip the fixed header plus variable length field", "lenLen", "=", "1", "while", "packet", "[", "lenLen", "]", "&", "0x80", ":", "lenLen", "+=", "1", "packet_remaining", "=", "packet", "[", "lenLen", "+", "1", ":", "]", "self", ".", "session", "=", "(", "packet_remaining", "[", "0", "]", "&", "0x01", ")", "==", "0x01", "self", ".", "resultCode", "=", "int", "(", "packet_remaining", "[", "1", "]", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
SUBSCRIBE.decode
Decode a SUBSCRIBE control packet.
mqtt/pdu.py
def decode(self, packet): ''' Decode a SUBSCRIBE control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.msgId = decode16Int(packet_remaining[0:2]) self.topics = [] packet_remaining = packet_remaining[2:] while len(packet_remaining): topic, packet_remaining = decodeString(packet_remaining) qos = int (packet_remaining[0]) & 0x03 self.topics.append((topic,qos)) packet_remaining = packet_remaining[1:]
def decode(self, packet): ''' Decode a SUBSCRIBE control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.msgId = decode16Int(packet_remaining[0:2]) self.topics = [] packet_remaining = packet_remaining[2:] while len(packet_remaining): topic, packet_remaining = decodeString(packet_remaining) qos = int (packet_remaining[0]) & 0x03 self.topics.append((topic,qos)) packet_remaining = packet_remaining[1:]
[ "Decode", "a", "SUBSCRIBE", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L357-L373
[ "def", "decode", "(", "self", ",", "packet", ")", ":", "self", ".", "encoded", "=", "packet", "lenLen", "=", "1", "while", "packet", "[", "lenLen", "]", "&", "0x80", ":", "lenLen", "+=", "1", "packet_remaining", "=", "packet", "[", "lenLen", "+", "1", ":", "]", "self", ".", "msgId", "=", "decode16Int", "(", "packet_remaining", "[", "0", ":", "2", "]", ")", "self", ".", "topics", "=", "[", "]", "packet_remaining", "=", "packet_remaining", "[", "2", ":", "]", "while", "len", "(", "packet_remaining", ")", ":", "topic", ",", "packet_remaining", "=", "decodeString", "(", "packet_remaining", ")", "qos", "=", "int", "(", "packet_remaining", "[", "0", "]", ")", "&", "0x03", "self", ".", "topics", ".", "append", "(", "(", "topic", ",", "qos", ")", ")", "packet_remaining", "=", "packet_remaining", "[", "1", ":", "]" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
SUBACK.encode
Encode and store a SUBACK control packet.
mqtt/pdu.py
def encode(self): ''' Encode and store a SUBACK control packet. ''' header = bytearray(1) payload = bytearray() varHeader = encode16Int(self.msgId) header[0] = 0x90 for code in self.granted: payload.append(code[0] | (0x80 if code[1] == True else 0x00)) header.extend(encodeLength(len(varHeader) + len(payload))) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store a SUBACK control packet. ''' header = bytearray(1) payload = bytearray() varHeader = encode16Int(self.msgId) header[0] = 0x90 for code in self.granted: payload.append(code[0] | (0x80 if code[1] == True else 0x00)) header.extend(encodeLength(len(varHeader) + len(payload))) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "a", "SUBACK", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L387-L401
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "1", ")", "payload", "=", "bytearray", "(", ")", "varHeader", "=", "encode16Int", "(", "self", ".", "msgId", ")", "header", "[", "0", "]", "=", "0x90", "for", "code", "in", "self", ".", "granted", ":", "payload", ".", "append", "(", "code", "[", "0", "]", "|", "(", "0x80", "if", "code", "[", "1", "]", "==", "True", "else", "0x00", ")", ")", "header", ".", "extend", "(", "encodeLength", "(", "len", "(", "varHeader", ")", "+", "len", "(", "payload", ")", ")", ")", "header", ".", "extend", "(", "varHeader", ")", "header", ".", "extend", "(", "payload", ")", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
UNSUBSCRIBE.encode
Encode and store an UNSUBCRIBE control packet @raise e: C{ValueError} if any encoded topic string exceeds 65535 bytes
mqtt/pdu.py
def encode(self): ''' Encode and store an UNSUBCRIBE control packet @raise e: C{ValueError} if any encoded topic string exceeds 65535 bytes ''' header = bytearray(1) payload = bytearray() varHeader = encode16Int(self.msgId) header[0] = 0xA2 # packet with QoS=1 for topic in self.topics: payload.extend(encodeString(topic)) # topic name header.extend(encodeLength(len(varHeader) + len(payload))) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store an UNSUBCRIBE control packet @raise e: C{ValueError} if any encoded topic string exceeds 65535 bytes ''' header = bytearray(1) payload = bytearray() varHeader = encode16Int(self.msgId) header[0] = 0xA2 # packet with QoS=1 for topic in self.topics: payload.extend(encodeString(topic)) # topic name header.extend(encodeLength(len(varHeader) + len(payload))) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "an", "UNSUBCRIBE", "control", "packet" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L430-L445
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "1", ")", "payload", "=", "bytearray", "(", ")", "varHeader", "=", "encode16Int", "(", "self", ".", "msgId", ")", "header", "[", "0", "]", "=", "0xA2", "# packet with QoS=1", "for", "topic", "in", "self", ".", "topics", ":", "payload", ".", "extend", "(", "encodeString", "(", "topic", ")", ")", "# topic name", "header", ".", "extend", "(", "encodeLength", "(", "len", "(", "varHeader", ")", "+", "len", "(", "payload", ")", ")", ")", "header", ".", "extend", "(", "varHeader", ")", "header", ".", "extend", "(", "payload", ")", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
UNSUBSCRIBE.decode
Decode a UNSUBACK control packet.
mqtt/pdu.py
def decode(self, packet): ''' Decode a UNSUBACK control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.msgId = decode16Int(packet_remaining[0:2]) self.topics = [] packet_remaining = packet_remaining[2:] while len(packet_remaining): l = decode16Int(packet_remaining[0:2]) topic = packet_remaining[2:2+l].decode(encoding='utf-8') self.topics.append(topic) packet_remaining = packet_remaining[2+l:]
def decode(self, packet): ''' Decode a UNSUBACK control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.msgId = decode16Int(packet_remaining[0:2]) self.topics = [] packet_remaining = packet_remaining[2:] while len(packet_remaining): l = decode16Int(packet_remaining[0:2]) topic = packet_remaining[2:2+l].decode(encoding='utf-8') self.topics.append(topic) packet_remaining = packet_remaining[2+l:]
[ "Decode", "a", "UNSUBACK", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L447-L463
[ "def", "decode", "(", "self", ",", "packet", ")", ":", "self", ".", "encoded", "=", "packet", "lenLen", "=", "1", "while", "packet", "[", "lenLen", "]", "&", "0x80", ":", "lenLen", "+=", "1", "packet_remaining", "=", "packet", "[", "lenLen", "+", "1", ":", "]", "self", ".", "msgId", "=", "decode16Int", "(", "packet_remaining", "[", "0", ":", "2", "]", ")", "self", ".", "topics", "=", "[", "]", "packet_remaining", "=", "packet_remaining", "[", "2", ":", "]", "while", "len", "(", "packet_remaining", ")", ":", "l", "=", "decode16Int", "(", "packet_remaining", "[", "0", ":", "2", "]", ")", "topic", "=", "packet_remaining", "[", "2", ":", "2", "+", "l", "]", ".", "decode", "(", "encoding", "=", "'utf-8'", ")", "self", ".", "topics", ".", "append", "(", "topic", ")", "packet_remaining", "=", "packet_remaining", "[", "2", "+", "l", ":", "]" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
UNSUBACK.encode
Encode and store an UNSUBACK control packet
mqtt/pdu.py
def encode(self): ''' Encode and store an UNSUBACK control packet ''' header = bytearray(1) varHeader = encode16Int(self.msgId) header[0] = 0xB0 header.extend(encodeLength(len(varHeader))) header.extend(varHeader) self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store an UNSUBACK control packet ''' header = bytearray(1) varHeader = encode16Int(self.msgId) header[0] = 0xB0 header.extend(encodeLength(len(varHeader))) header.extend(varHeader) self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "an", "UNSUBACK", "control", "packet" ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L474-L484
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "1", ")", "varHeader", "=", "encode16Int", "(", "self", ".", "msgId", ")", "header", "[", "0", "]", "=", "0xB0", "header", ".", "extend", "(", "encodeLength", "(", "len", "(", "varHeader", ")", ")", ")", "header", ".", "extend", "(", "varHeader", ")", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
PUBLISH.encode
Encode and store a PUBLISH control packet. @raise e: C{ValueError} if encoded topic string exceeds 65535 bytes. @raise e: C{ValueError} if encoded packet size exceeds 268435455 bytes. @raise e: C{TypeError} if C{data} is not a string, bytearray, int, boolean or float.
mqtt/pdu.py
def encode(self): ''' Encode and store a PUBLISH control packet. @raise e: C{ValueError} if encoded topic string exceeds 65535 bytes. @raise e: C{ValueError} if encoded packet size exceeds 268435455 bytes. @raise e: C{TypeError} if C{data} is not a string, bytearray, int, boolean or float. ''' header = bytearray(1) varHeader = bytearray() payload = bytearray() if self.qos: header[0] = 0x30 | self.retain | (self.qos << 1) | (self.dup << 3) varHeader.extend(encodeString(self.topic)) # topic name varHeader.extend(encode16Int(self.msgId)) # msgId should not be None else: header[0] = 0x30 | self.retain varHeader.extend(encodeString(self.topic)) # topic name if isinstance(self.payload, bytearray): payload.extend(self.payload) elif isinstance(self.payload, str): payload.extend(bytearray(self.payload, encoding='utf-8')) else: raise PayloadTypeError(type(self.payload)) totalLen = len(varHeader) + len(payload) if totalLen > 268435455: raise PayloadValueError(totalLen) header.extend(encodeLength(totalLen)) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
def encode(self): ''' Encode and store a PUBLISH control packet. @raise e: C{ValueError} if encoded topic string exceeds 65535 bytes. @raise e: C{ValueError} if encoded packet size exceeds 268435455 bytes. @raise e: C{TypeError} if C{data} is not a string, bytearray, int, boolean or float. ''' header = bytearray(1) varHeader = bytearray() payload = bytearray() if self.qos: header[0] = 0x30 | self.retain | (self.qos << 1) | (self.dup << 3) varHeader.extend(encodeString(self.topic)) # topic name varHeader.extend(encode16Int(self.msgId)) # msgId should not be None else: header[0] = 0x30 | self.retain varHeader.extend(encodeString(self.topic)) # topic name if isinstance(self.payload, bytearray): payload.extend(self.payload) elif isinstance(self.payload, str): payload.extend(bytearray(self.payload, encoding='utf-8')) else: raise PayloadTypeError(type(self.payload)) totalLen = len(varHeader) + len(payload) if totalLen > 268435455: raise PayloadValueError(totalLen) header.extend(encodeLength(totalLen)) header.extend(varHeader) header.extend(payload) self.encoded = header return str(header) if PY2 else bytes(header)
[ "Encode", "and", "store", "a", "PUBLISH", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L511-L542
[ "def", "encode", "(", "self", ")", ":", "header", "=", "bytearray", "(", "1", ")", "varHeader", "=", "bytearray", "(", ")", "payload", "=", "bytearray", "(", ")", "if", "self", ".", "qos", ":", "header", "[", "0", "]", "=", "0x30", "|", "self", ".", "retain", "|", "(", "self", ".", "qos", "<<", "1", ")", "|", "(", "self", ".", "dup", "<<", "3", ")", "varHeader", ".", "extend", "(", "encodeString", "(", "self", ".", "topic", ")", ")", "# topic name", "varHeader", ".", "extend", "(", "encode16Int", "(", "self", ".", "msgId", ")", ")", "# msgId should not be None", "else", ":", "header", "[", "0", "]", "=", "0x30", "|", "self", ".", "retain", "varHeader", ".", "extend", "(", "encodeString", "(", "self", ".", "topic", ")", ")", "# topic name", "if", "isinstance", "(", "self", ".", "payload", ",", "bytearray", ")", ":", "payload", ".", "extend", "(", "self", ".", "payload", ")", "elif", "isinstance", "(", "self", ".", "payload", ",", "str", ")", ":", "payload", ".", "extend", "(", "bytearray", "(", "self", ".", "payload", ",", "encoding", "=", "'utf-8'", ")", ")", "else", ":", "raise", "PayloadTypeError", "(", "type", "(", "self", ".", "payload", ")", ")", "totalLen", "=", "len", "(", "varHeader", ")", "+", "len", "(", "payload", ")", "if", "totalLen", ">", "268435455", ":", "raise", "PayloadValueError", "(", "totalLen", ")", "header", ".", "extend", "(", "encodeLength", "(", "totalLen", ")", ")", "header", ".", "extend", "(", "varHeader", ")", "header", ".", "extend", "(", "payload", ")", "self", ".", "encoded", "=", "header", "return", "str", "(", "header", ")", "if", "PY2", "else", "bytes", "(", "header", ")" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
PUBLISH.decode
Decode a PUBLISH control packet.
mqtt/pdu.py
def decode(self, packet): ''' Decode a PUBLISH control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.dup = (packet[0] & 0x08) == 0x08 self.qos = (packet[0] & 0x06) >> 1 self.retain = (packet[0] & 0x01) == 0x01 self.topic, _ = decodeString(packet_remaining) topicLen = decode16Int(packet_remaining) if self.qos: self.msgId = decode16Int( packet_remaining[topicLen+2:topicLen+4] ) self.payload = packet_remaining[topicLen+4:] else: self.msgId = None self.payload = packet_remaining[topicLen+2:]
def decode(self, packet): ''' Decode a PUBLISH control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.dup = (packet[0] & 0x08) == 0x08 self.qos = (packet[0] & 0x06) >> 1 self.retain = (packet[0] & 0x01) == 0x01 self.topic, _ = decodeString(packet_remaining) topicLen = decode16Int(packet_remaining) if self.qos: self.msgId = decode16Int( packet_remaining[topicLen+2:topicLen+4] ) self.payload = packet_remaining[topicLen+4:] else: self.msgId = None self.payload = packet_remaining[topicLen+2:]
[ "Decode", "a", "PUBLISH", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L544-L563
[ "def", "decode", "(", "self", ",", "packet", ")", ":", "self", ".", "encoded", "=", "packet", "lenLen", "=", "1", "while", "packet", "[", "lenLen", "]", "&", "0x80", ":", "lenLen", "+=", "1", "packet_remaining", "=", "packet", "[", "lenLen", "+", "1", ":", "]", "self", ".", "dup", "=", "(", "packet", "[", "0", "]", "&", "0x08", ")", "==", "0x08", "self", ".", "qos", "=", "(", "packet", "[", "0", "]", "&", "0x06", ")", ">>", "1", "self", ".", "retain", "=", "(", "packet", "[", "0", "]", "&", "0x01", ")", "==", "0x01", "self", ".", "topic", ",", "_", "=", "decodeString", "(", "packet_remaining", ")", "topicLen", "=", "decode16Int", "(", "packet_remaining", ")", "if", "self", ".", "qos", ":", "self", ".", "msgId", "=", "decode16Int", "(", "packet_remaining", "[", "topicLen", "+", "2", ":", "topicLen", "+", "4", "]", ")", "self", ".", "payload", "=", "packet_remaining", "[", "topicLen", "+", "4", ":", "]", "else", ":", "self", ".", "msgId", "=", "None", "self", ".", "payload", "=", "packet_remaining", "[", "topicLen", "+", "2", ":", "]" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
PUBREL.decode
Decode a PUBREL control packet.
mqtt/pdu.py
def decode(self, packet): ''' Decode a PUBREL control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.msgId = decode16Int(packet_remaining) self.dup = (packet[0] & 0x08) == 0x08
def decode(self, packet): ''' Decode a PUBREL control packet. ''' self.encoded = packet lenLen = 1 while packet[lenLen] & 0x80: lenLen += 1 packet_remaining = packet[lenLen+1:] self.msgId = decode16Int(packet_remaining) self.dup = (packet[0] & 0x08) == 0x08
[ "Decode", "a", "PUBREL", "control", "packet", "." ]
astrorafael/twisted-mqtt
python
https://github.com/astrorafael/twisted-mqtt/blob/5b322f7c2b82a502b1e1b70703ae45f1f668d07d/mqtt/pdu.py#L651-L661
[ "def", "decode", "(", "self", ",", "packet", ")", ":", "self", ".", "encoded", "=", "packet", "lenLen", "=", "1", "while", "packet", "[", "lenLen", "]", "&", "0x80", ":", "lenLen", "+=", "1", "packet_remaining", "=", "packet", "[", "lenLen", "+", "1", ":", "]", "self", ".", "msgId", "=", "decode16Int", "(", "packet_remaining", ")", "self", ".", "dup", "=", "(", "packet", "[", "0", "]", "&", "0x08", ")", "==", "0x08" ]
5b322f7c2b82a502b1e1b70703ae45f1f668d07d
test
API.get_url
Return url for call method. :param method (optional): `str` method name. :returns: `str` URL.
vklancer/api.py
def get_url(self, method=None, **kwargs): """Return url for call method. :param method (optional): `str` method name. :returns: `str` URL. """ kwargs.setdefault('v', self.__version) if self.__token is not None: kwargs.setdefault('access_token', self.__token) return 'https://api.vk.com/method/{}?{}'.format( method or self.__method, urlencode(kwargs) )
def get_url(self, method=None, **kwargs): """Return url for call method. :param method (optional): `str` method name. :returns: `str` URL. """ kwargs.setdefault('v', self.__version) if self.__token is not None: kwargs.setdefault('access_token', self.__token) return 'https://api.vk.com/method/{}?{}'.format( method or self.__method, urlencode(kwargs) )
[ "Return", "url", "for", "call", "method", "." ]
bindlock/vklancer
python
https://github.com/bindlock/vklancer/blob/10151c3856bc6f46a1f446ae4d605d46aace3669/vklancer/api.py#L26-L39
[ "def", "get_url", "(", "self", ",", "method", "=", "None", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "setdefault", "(", "'v'", ",", "self", ".", "__version", ")", "if", "self", ".", "__token", "is", "not", "None", ":", "kwargs", ".", "setdefault", "(", "'access_token'", ",", "self", ".", "__token", ")", "return", "'https://api.vk.com/method/{}?{}'", ".", "format", "(", "method", "or", "self", ".", "__method", ",", "urlencode", "(", "kwargs", ")", ")" ]
10151c3856bc6f46a1f446ae4d605d46aace3669
test
API.request
Send request to API. :param method: `str` method name. :returns: `dict` response.
vklancer/api.py
def request(self, method, **kwargs): """ Send request to API. :param method: `str` method name. :returns: `dict` response. """ kwargs.setdefault('v', self.__version) if self.__token is not None: kwargs.setdefault('access_token', self.__token) return requests.get(self.get_url(method, **kwargs)).json()
def request(self, method, **kwargs): """ Send request to API. :param method: `str` method name. :returns: `dict` response. """ kwargs.setdefault('v', self.__version) if self.__token is not None: kwargs.setdefault('access_token', self.__token) return requests.get(self.get_url(method, **kwargs)).json()
[ "Send", "request", "to", "API", "." ]
bindlock/vklancer
python
https://github.com/bindlock/vklancer/blob/10151c3856bc6f46a1f446ae4d605d46aace3669/vklancer/api.py#L41-L53
[ "def", "request", "(", "self", ",", "method", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "setdefault", "(", "'v'", ",", "self", ".", "__version", ")", "if", "self", ".", "__token", "is", "not", "None", ":", "kwargs", ".", "setdefault", "(", "'access_token'", ",", "self", ".", "__token", ")", "return", "requests", ".", "get", "(", "self", ".", "get_url", "(", "method", ",", "*", "*", "kwargs", ")", ")", ".", "json", "(", ")" ]
10151c3856bc6f46a1f446ae4d605d46aace3669
test
authentication
Authentication on vk.com. :param login: login on vk.com. :param password: password on vk.com. :returns: `requests.Session` session with cookies.
vklancer/utils.py
def authentication(login, password): """ Authentication on vk.com. :param login: login on vk.com. :param password: password on vk.com. :returns: `requests.Session` session with cookies. """ session = requests.Session() response = session.get('https://m.vk.com') url = re.search(r'action="([^\"]+)"', response.text).group(1) data = {'email': login, 'pass': password} response = session.post(url, data=data) return session
def authentication(login, password): """ Authentication on vk.com. :param login: login on vk.com. :param password: password on vk.com. :returns: `requests.Session` session with cookies. """ session = requests.Session() response = session.get('https://m.vk.com') url = re.search(r'action="([^\"]+)"', response.text).group(1) data = {'email': login, 'pass': password} response = session.post(url, data=data) return session
[ "Authentication", "on", "vk", ".", "com", "." ]
bindlock/vklancer
python
https://github.com/bindlock/vklancer/blob/10151c3856bc6f46a1f446ae4d605d46aace3669/vklancer/utils.py#L8-L21
[ "def", "authentication", "(", "login", ",", "password", ")", ":", "session", "=", "requests", ".", "Session", "(", ")", "response", "=", "session", ".", "get", "(", "'https://m.vk.com'", ")", "url", "=", "re", ".", "search", "(", "r'action=\"([^\\\"]+)\"'", ",", "response", ".", "text", ")", ".", "group", "(", "1", ")", "data", "=", "{", "'email'", ":", "login", ",", "'pass'", ":", "password", "}", "response", "=", "session", ".", "post", "(", "url", ",", "data", "=", "data", ")", "return", "session" ]
10151c3856bc6f46a1f446ae4d605d46aace3669
test
oauth
OAuth on vk.com. :param login: login on vk.com. :param password: password on vk.com. :param app_id: vk.com application id (default: 4729418). :param scope: allowed actions (default: 2097151 (all)). :returns: OAuth2 access token or None.
vklancer/utils.py
def oauth(login, password, app_id=4729418, scope=2097151): """ OAuth on vk.com. :param login: login on vk.com. :param password: password on vk.com. :param app_id: vk.com application id (default: 4729418). :param scope: allowed actions (default: 2097151 (all)). :returns: OAuth2 access token or None. """ session = authentication(login, password) data = { 'response_type': 'token', 'client_id': app_id, 'scope': scope, 'display': 'mobile', } response = session.post('https://oauth.vk.com/authorize', data=data) if 'access_token' not in response.url: url = re.search(r'action="([^\"]+)"', response.text).group(1) response = session.get(url) try: return re.search(r'access_token=([^\&]+)', response.url).group(1) except: return None
def oauth(login, password, app_id=4729418, scope=2097151): """ OAuth on vk.com. :param login: login on vk.com. :param password: password on vk.com. :param app_id: vk.com application id (default: 4729418). :param scope: allowed actions (default: 2097151 (all)). :returns: OAuth2 access token or None. """ session = authentication(login, password) data = { 'response_type': 'token', 'client_id': app_id, 'scope': scope, 'display': 'mobile', } response = session.post('https://oauth.vk.com/authorize', data=data) if 'access_token' not in response.url: url = re.search(r'action="([^\"]+)"', response.text).group(1) response = session.get(url) try: return re.search(r'access_token=([^\&]+)', response.url).group(1) except: return None
[ "OAuth", "on", "vk", ".", "com", "." ]
bindlock/vklancer
python
https://github.com/bindlock/vklancer/blob/10151c3856bc6f46a1f446ae4d605d46aace3669/vklancer/utils.py#L24-L50
[ "def", "oauth", "(", "login", ",", "password", ",", "app_id", "=", "4729418", ",", "scope", "=", "2097151", ")", ":", "session", "=", "authentication", "(", "login", ",", "password", ")", "data", "=", "{", "'response_type'", ":", "'token'", ",", "'client_id'", ":", "app_id", ",", "'scope'", ":", "scope", ",", "'display'", ":", "'mobile'", ",", "}", "response", "=", "session", ".", "post", "(", "'https://oauth.vk.com/authorize'", ",", "data", "=", "data", ")", "if", "'access_token'", "not", "in", "response", ".", "url", ":", "url", "=", "re", ".", "search", "(", "r'action=\"([^\\\"]+)\"'", ",", "response", ".", "text", ")", ".", "group", "(", "1", ")", "response", "=", "session", ".", "get", "(", "url", ")", "try", ":", "return", "re", ".", "search", "(", "r'access_token=([^\\&]+)'", ",", "response", ".", "url", ")", ".", "group", "(", "1", ")", "except", ":", "return", "None" ]
10151c3856bc6f46a1f446ae4d605d46aace3669
test
File.create_from_array
create a block from array like objects The operation is well defined only if array is at most 2d. Parameters ---------- array : array_like, array shall have a scalar dtype. blockname : string name of the block Nfile : int or None number of physical files. if None, 32M items per file is used. memorylimit : int number of bytes to use for the buffering. relevant only if indexing on array returns a copy (e.g. IO or dask array)
bigfile/__init__.py
def create_from_array(self, blockname, array, Nfile=None, memorylimit=1024 * 1024 * 256): """ create a block from array like objects The operation is well defined only if array is at most 2d. Parameters ---------- array : array_like, array shall have a scalar dtype. blockname : string name of the block Nfile : int or None number of physical files. if None, 32M items per file is used. memorylimit : int number of bytes to use for the buffering. relevant only if indexing on array returns a copy (e.g. IO or dask array) """ size = len(array) # sane value -- 32 million items per physical file sizeperfile = 32 * 1024 * 1024 if Nfile is None: Nfile = (size + sizeperfile - 1) // sizeperfile dtype = numpy.dtype((array.dtype, array.shape[1:])) itemsize = dtype.itemsize # we will do some chunking # write memorylimit bytes at most (256M bytes) # round to 1024 items itemlimit = memorylimit // dtype.itemsize // 1024 * 1024 with self.create(blockname, dtype, size, Nfile) as b: for i in range(0, len(array), itemlimit): b.write(i, numpy.array(array[i:i+itemlimit])) return self.open(blockname)
def create_from_array(self, blockname, array, Nfile=None, memorylimit=1024 * 1024 * 256): """ create a block from array like objects The operation is well defined only if array is at most 2d. Parameters ---------- array : array_like, array shall have a scalar dtype. blockname : string name of the block Nfile : int or None number of physical files. if None, 32M items per file is used. memorylimit : int number of bytes to use for the buffering. relevant only if indexing on array returns a copy (e.g. IO or dask array) """ size = len(array) # sane value -- 32 million items per physical file sizeperfile = 32 * 1024 * 1024 if Nfile is None: Nfile = (size + sizeperfile - 1) // sizeperfile dtype = numpy.dtype((array.dtype, array.shape[1:])) itemsize = dtype.itemsize # we will do some chunking # write memorylimit bytes at most (256M bytes) # round to 1024 items itemlimit = memorylimit // dtype.itemsize // 1024 * 1024 with self.create(blockname, dtype, size, Nfile) as b: for i in range(0, len(array), itemlimit): b.write(i, numpy.array(array[i:i+itemlimit])) return self.open(blockname)
[ "create", "a", "block", "from", "array", "like", "objects", "The", "operation", "is", "well", "defined", "only", "if", "array", "is", "at", "most", "2d", "." ]
rainwoodman/bigfile
python
https://github.com/rainwoodman/bigfile/blob/1a2d05977fc8edebd8ddf9e81fdb97648596266d/bigfile/__init__.py#L96-L135
[ "def", "create_from_array", "(", "self", ",", "blockname", ",", "array", ",", "Nfile", "=", "None", ",", "memorylimit", "=", "1024", "*", "1024", "*", "256", ")", ":", "size", "=", "len", "(", "array", ")", "# sane value -- 32 million items per physical file", "sizeperfile", "=", "32", "*", "1024", "*", "1024", "if", "Nfile", "is", "None", ":", "Nfile", "=", "(", "size", "+", "sizeperfile", "-", "1", ")", "//", "sizeperfile", "dtype", "=", "numpy", ".", "dtype", "(", "(", "array", ".", "dtype", ",", "array", ".", "shape", "[", "1", ":", "]", ")", ")", "itemsize", "=", "dtype", ".", "itemsize", "# we will do some chunking", "# write memorylimit bytes at most (256M bytes)", "# round to 1024 items", "itemlimit", "=", "memorylimit", "//", "dtype", ".", "itemsize", "//", "1024", "*", "1024", "with", "self", ".", "create", "(", "blockname", ",", "dtype", ",", "size", ",", "Nfile", ")", "as", "b", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "array", ")", ",", "itemlimit", ")", ":", "b", ".", "write", "(", "i", ",", "numpy", ".", "array", "(", "array", "[", "i", ":", "i", "+", "itemlimit", "]", ")", ")", "return", "self", ".", "open", "(", "blockname", ")" ]
1a2d05977fc8edebd8ddf9e81fdb97648596266d
test
FileMPI.refresh
Refresh the list of blocks to the disk, collectively
bigfile/__init__.py
def refresh(self): """ Refresh the list of blocks to the disk, collectively """ if self.comm.rank == 0: self._blocks = self.list_blocks() else: self._blocks = None self._blocks = self.comm.bcast(self._blocks)
def refresh(self): """ Refresh the list of blocks to the disk, collectively """ if self.comm.rank == 0: self._blocks = self.list_blocks() else: self._blocks = None self._blocks = self.comm.bcast(self._blocks)
[ "Refresh", "the", "list", "of", "blocks", "to", "the", "disk", "collectively" ]
rainwoodman/bigfile
python
https://github.com/rainwoodman/bigfile/blob/1a2d05977fc8edebd8ddf9e81fdb97648596266d/bigfile/__init__.py#L199-L205
[ "def", "refresh", "(", "self", ")", ":", "if", "self", ".", "comm", ".", "rank", "==", "0", ":", "self", ".", "_blocks", "=", "self", ".", "list_blocks", "(", ")", "else", ":", "self", ".", "_blocks", "=", "None", "self", ".", "_blocks", "=", "self", ".", "comm", ".", "bcast", "(", "self", ".", "_blocks", ")" ]
1a2d05977fc8edebd8ddf9e81fdb97648596266d
test
FileMPI.create_from_array
create a block from array like objects The operation is well defined only if array is at most 2d. Parameters ---------- array : array_like, array shall have a scalar dtype. blockname : string name of the block Nfile : int or None number of physical files. if None, 32M items per file is used. memorylimit : int number of bytes to use for the buffering. relevant only if indexing on array returns a copy (e.g. IO or dask array)
bigfile/__init__.py
def create_from_array(self, blockname, array, Nfile=None, memorylimit=1024 * 1024 * 256): """ create a block from array like objects The operation is well defined only if array is at most 2d. Parameters ---------- array : array_like, array shall have a scalar dtype. blockname : string name of the block Nfile : int or None number of physical files. if None, 32M items per file is used. memorylimit : int number of bytes to use for the buffering. relevant only if indexing on array returns a copy (e.g. IO or dask array) """ size = self.comm.allreduce(len(array)) # sane value -- 32 million items per physical file sizeperfile = 32 * 1024 * 1024 if Nfile is None: Nfile = (size + sizeperfile - 1) // sizeperfile offset = sum(self.comm.allgather(len(array))[:self.comm.rank]) dtype = numpy.dtype((array.dtype, array.shape[1:])) itemsize = dtype.itemsize # we will do some chunking # write memorylimit bytes at most (256M bytes) # round to 1024 items itemlimit = memorylimit // dtype.itemsize // 1024 * 1024 with self.create(blockname, dtype, size, Nfile) as b: for i in range(0, len(array), itemlimit): b.write(offset + i, numpy.array(array[i:i+itemlimit])) return self.open(blockname)
def create_from_array(self, blockname, array, Nfile=None, memorylimit=1024 * 1024 * 256): """ create a block from array like objects The operation is well defined only if array is at most 2d. Parameters ---------- array : array_like, array shall have a scalar dtype. blockname : string name of the block Nfile : int or None number of physical files. if None, 32M items per file is used. memorylimit : int number of bytes to use for the buffering. relevant only if indexing on array returns a copy (e.g. IO or dask array) """ size = self.comm.allreduce(len(array)) # sane value -- 32 million items per physical file sizeperfile = 32 * 1024 * 1024 if Nfile is None: Nfile = (size + sizeperfile - 1) // sizeperfile offset = sum(self.comm.allgather(len(array))[:self.comm.rank]) dtype = numpy.dtype((array.dtype, array.shape[1:])) itemsize = dtype.itemsize # we will do some chunking # write memorylimit bytes at most (256M bytes) # round to 1024 items itemlimit = memorylimit // dtype.itemsize // 1024 * 1024 with self.create(blockname, dtype, size, Nfile) as b: for i in range(0, len(array), itemlimit): b.write(offset + i, numpy.array(array[i:i+itemlimit])) return self.open(blockname)
[ "create", "a", "block", "from", "array", "like", "objects", "The", "operation", "is", "well", "defined", "only", "if", "array", "is", "at", "most", "2d", "." ]
rainwoodman/bigfile
python
https://github.com/rainwoodman/bigfile/blob/1a2d05977fc8edebd8ddf9e81fdb97648596266d/bigfile/__init__.py#L221-L261
[ "def", "create_from_array", "(", "self", ",", "blockname", ",", "array", ",", "Nfile", "=", "None", ",", "memorylimit", "=", "1024", "*", "1024", "*", "256", ")", ":", "size", "=", "self", ".", "comm", ".", "allreduce", "(", "len", "(", "array", ")", ")", "# sane value -- 32 million items per physical file", "sizeperfile", "=", "32", "*", "1024", "*", "1024", "if", "Nfile", "is", "None", ":", "Nfile", "=", "(", "size", "+", "sizeperfile", "-", "1", ")", "//", "sizeperfile", "offset", "=", "sum", "(", "self", ".", "comm", ".", "allgather", "(", "len", "(", "array", ")", ")", "[", ":", "self", ".", "comm", ".", "rank", "]", ")", "dtype", "=", "numpy", ".", "dtype", "(", "(", "array", ".", "dtype", ",", "array", ".", "shape", "[", "1", ":", "]", ")", ")", "itemsize", "=", "dtype", ".", "itemsize", "# we will do some chunking", "# write memorylimit bytes at most (256M bytes)", "# round to 1024 items", "itemlimit", "=", "memorylimit", "//", "dtype", ".", "itemsize", "//", "1024", "*", "1024", "with", "self", ".", "create", "(", "blockname", ",", "dtype", ",", "size", ",", "Nfile", ")", "as", "b", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "array", ")", ",", "itemlimit", ")", ":", "b", ".", "write", "(", "offset", "+", "i", ",", "numpy", ".", "array", "(", "array", "[", "i", ":", "i", "+", "itemlimit", "]", ")", ")", "return", "self", ".", "open", "(", "blockname", ")" ]
1a2d05977fc8edebd8ddf9e81fdb97648596266d
test
maybebool
If `value` is a string type, attempts to convert it to a boolean if it looks like it might be one, otherwise returns the value unchanged. The difference between this and :func:`pyramid.settings.asbool` is how non-bools are handled: this returns the original value, whereas `asbool` returns False.
pyramid_webassets/__init__.py
def maybebool(value): ''' If `value` is a string type, attempts to convert it to a boolean if it looks like it might be one, otherwise returns the value unchanged. The difference between this and :func:`pyramid.settings.asbool` is how non-bools are handled: this returns the original value, whereas `asbool` returns False. ''' if isinstance(value, six.string_types) and value.lower() in booly: return asbool(value) # pragma: no cover return value
def maybebool(value): ''' If `value` is a string type, attempts to convert it to a boolean if it looks like it might be one, otherwise returns the value unchanged. The difference between this and :func:`pyramid.settings.asbool` is how non-bools are handled: this returns the original value, whereas `asbool` returns False. ''' if isinstance(value, six.string_types) and value.lower() in booly: return asbool(value) # pragma: no cover return value
[ "If", "value", "is", "a", "string", "type", "attempts", "to", "convert", "it", "to", "a", "boolean", "if", "it", "looks", "like", "it", "might", "be", "one", "otherwise", "returns", "the", "value", "unchanged", ".", "The", "difference", "between", "this", "and", ":", "func", ":", "pyramid", ".", "settings", ".", "asbool", "is", "how", "non", "-", "bools", "are", "handled", ":", "this", "returns", "the", "original", "value", "whereas", "asbool", "returns", "False", "." ]
sontek/pyramid_webassets
python
https://github.com/sontek/pyramid_webassets/blob/d81a8f0c55aa49181ced4650fc88d434bbf94e62/pyramid_webassets/__init__.py#L24-L34
[ "def", "maybebool", "(", "value", ")", ":", "if", "isinstance", "(", "value", ",", "six", ".", "string_types", ")", "and", "value", ".", "lower", "(", ")", "in", "booly", ":", "return", "asbool", "(", "value", ")", "# pragma: no cover", "return", "value" ]
d81a8f0c55aa49181ced4650fc88d434bbf94e62
test
get_webassets_env_from_settings
This function will take all webassets.* parameters, and call the ``Environment()`` constructor with kwargs passed in. The only two parameters that are not passed as keywords are: * base_dir * base_url which are passed in positionally. Read the ``WebAssets`` docs for ``Environment`` for more details.
pyramid_webassets/__init__.py
def get_webassets_env_from_settings(settings, prefix='webassets'): """This function will take all webassets.* parameters, and call the ``Environment()`` constructor with kwargs passed in. The only two parameters that are not passed as keywords are: * base_dir * base_url which are passed in positionally. Read the ``WebAssets`` docs for ``Environment`` for more details. """ # Make a dictionary of the webassets.* elements... kwargs = {} # assets settings cut_prefix = len(prefix) + 1 for k in settings: if k.startswith(prefix): val = settings[k] if isinstance(val, six.string_types): if val.lower() in auto_booly: val = asbool(val) elif val.lower().startswith('json:') and k[cut_prefix:] != 'manifest': val = json.loads(val[5:]) kwargs[k[cut_prefix:]] = val if 'base_dir' not in kwargs: raise Exception("You need to provide webassets.base_dir in your configuration") if 'base_url' not in kwargs: raise Exception("You need to provide webassets.base_url in your configuration") asset_dir = kwargs.pop('base_dir') asset_url = kwargs.pop('base_url') if ':' in asset_dir: try: resolved_dir = AssetResolver(None).resolve(asset_dir).abspath() except ImportError: pass else: # Store the original asset spec to use later kwargs['asset_base'] = asset_dir asset_dir = resolved_dir if not asset_url.startswith('/'): if six.moves.urllib.parse.urlparse(asset_url).scheme == '': asset_url = '/' + asset_url if 'debug' in kwargs: kwargs['debug'] = maybebool(kwargs['debug']) if 'cache' in kwargs: cache = kwargs['cache'] = maybebool(kwargs['cache']) if cache and isinstance(cache, six.string_types) and not path.isdir(cache): makedirs(cache) # 'updater' is just passed in... if 'auto_build' in kwargs: kwargs['auto_build'] = maybebool(kwargs['auto_build']) if 'jst_compiler' in kwargs: kwargs['JST_COMPILER'] = kwargs.pop('jst_compiler') if 'jst_namespace' in kwargs: kwargs['JST_NAMESPACE'] = kwargs.pop('jst_namespace') if 'manifest' in kwargs: kwargs['manifest'] = maybebool(kwargs['manifest']) if 'url_expire' in kwargs: kwargs['url_expire'] = maybebool(kwargs['url_expire']) if 'static_view' in kwargs: kwargs['static_view'] = asbool(kwargs['static_view']) else: kwargs['static_view'] = False if 'cache_max_age' in kwargs: kwargs['cache_max_age'] = int(kwargs.pop('cache_max_age')) else: kwargs['cache_max_age'] = None if 'load_path' in kwargs: # force load_path to be an array and split on whitespace if not isinstance(kwargs['load_path'], list): kwargs['load_path'] = kwargs['load_path'].split() paths = kwargs.pop('paths', None) if 'bundles' in kwargs: if isinstance(kwargs['bundles'], six.string_types): kwargs['bundles'] = kwargs['bundles'].split() bundles = kwargs.pop('bundles', None) assets_env = Environment(asset_dir, asset_url, **kwargs) if paths is not None: for map_path, map_url in json.loads(paths).items(): assets_env.append_path(map_path, map_url) def yaml_stream(fname, mode): if path.exists(fname): return open(fname, mode) else: return assets_env.resolver.resolver.resolve(fname).stream() if isinstance(bundles, list): fnames = reversed(bundles) fin = fileinput.input(fnames, openhook=yaml_stream) with closing(fin): lines = [text(line).rstrip() for line in fin] yamlin = six.StringIO('\n'.join(lines)) loader = YAMLLoader(yamlin) result = loader.load_bundles() assets_env.register(result) elif isinstance(bundles, dict): assets_env.register(bundles) return assets_env
def get_webassets_env_from_settings(settings, prefix='webassets'): """This function will take all webassets.* parameters, and call the ``Environment()`` constructor with kwargs passed in. The only two parameters that are not passed as keywords are: * base_dir * base_url which are passed in positionally. Read the ``WebAssets`` docs for ``Environment`` for more details. """ # Make a dictionary of the webassets.* elements... kwargs = {} # assets settings cut_prefix = len(prefix) + 1 for k in settings: if k.startswith(prefix): val = settings[k] if isinstance(val, six.string_types): if val.lower() in auto_booly: val = asbool(val) elif val.lower().startswith('json:') and k[cut_prefix:] != 'manifest': val = json.loads(val[5:]) kwargs[k[cut_prefix:]] = val if 'base_dir' not in kwargs: raise Exception("You need to provide webassets.base_dir in your configuration") if 'base_url' not in kwargs: raise Exception("You need to provide webassets.base_url in your configuration") asset_dir = kwargs.pop('base_dir') asset_url = kwargs.pop('base_url') if ':' in asset_dir: try: resolved_dir = AssetResolver(None).resolve(asset_dir).abspath() except ImportError: pass else: # Store the original asset spec to use later kwargs['asset_base'] = asset_dir asset_dir = resolved_dir if not asset_url.startswith('/'): if six.moves.urllib.parse.urlparse(asset_url).scheme == '': asset_url = '/' + asset_url if 'debug' in kwargs: kwargs['debug'] = maybebool(kwargs['debug']) if 'cache' in kwargs: cache = kwargs['cache'] = maybebool(kwargs['cache']) if cache and isinstance(cache, six.string_types) and not path.isdir(cache): makedirs(cache) # 'updater' is just passed in... if 'auto_build' in kwargs: kwargs['auto_build'] = maybebool(kwargs['auto_build']) if 'jst_compiler' in kwargs: kwargs['JST_COMPILER'] = kwargs.pop('jst_compiler') if 'jst_namespace' in kwargs: kwargs['JST_NAMESPACE'] = kwargs.pop('jst_namespace') if 'manifest' in kwargs: kwargs['manifest'] = maybebool(kwargs['manifest']) if 'url_expire' in kwargs: kwargs['url_expire'] = maybebool(kwargs['url_expire']) if 'static_view' in kwargs: kwargs['static_view'] = asbool(kwargs['static_view']) else: kwargs['static_view'] = False if 'cache_max_age' in kwargs: kwargs['cache_max_age'] = int(kwargs.pop('cache_max_age')) else: kwargs['cache_max_age'] = None if 'load_path' in kwargs: # force load_path to be an array and split on whitespace if not isinstance(kwargs['load_path'], list): kwargs['load_path'] = kwargs['load_path'].split() paths = kwargs.pop('paths', None) if 'bundles' in kwargs: if isinstance(kwargs['bundles'], six.string_types): kwargs['bundles'] = kwargs['bundles'].split() bundles = kwargs.pop('bundles', None) assets_env = Environment(asset_dir, asset_url, **kwargs) if paths is not None: for map_path, map_url in json.loads(paths).items(): assets_env.append_path(map_path, map_url) def yaml_stream(fname, mode): if path.exists(fname): return open(fname, mode) else: return assets_env.resolver.resolver.resolve(fname).stream() if isinstance(bundles, list): fnames = reversed(bundles) fin = fileinput.input(fnames, openhook=yaml_stream) with closing(fin): lines = [text(line).rstrip() for line in fin] yamlin = six.StringIO('\n'.join(lines)) loader = YAMLLoader(yamlin) result = loader.load_bundles() assets_env.register(result) elif isinstance(bundles, dict): assets_env.register(bundles) return assets_env
[ "This", "function", "will", "take", "all", "webassets", ".", "*", "parameters", "and", "call", "the", "Environment", "()", "constructor", "with", "kwargs", "passed", "in", "." ]
sontek/pyramid_webassets
python
https://github.com/sontek/pyramid_webassets/blob/d81a8f0c55aa49181ced4650fc88d434bbf94e62/pyramid_webassets/__init__.py#L207-L328
[ "def", "get_webassets_env_from_settings", "(", "settings", ",", "prefix", "=", "'webassets'", ")", ":", "# Make a dictionary of the webassets.* elements...", "kwargs", "=", "{", "}", "# assets settings", "cut_prefix", "=", "len", "(", "prefix", ")", "+", "1", "for", "k", "in", "settings", ":", "if", "k", ".", "startswith", "(", "prefix", ")", ":", "val", "=", "settings", "[", "k", "]", "if", "isinstance", "(", "val", ",", "six", ".", "string_types", ")", ":", "if", "val", ".", "lower", "(", ")", "in", "auto_booly", ":", "val", "=", "asbool", "(", "val", ")", "elif", "val", ".", "lower", "(", ")", ".", "startswith", "(", "'json:'", ")", "and", "k", "[", "cut_prefix", ":", "]", "!=", "'manifest'", ":", "val", "=", "json", ".", "loads", "(", "val", "[", "5", ":", "]", ")", "kwargs", "[", "k", "[", "cut_prefix", ":", "]", "]", "=", "val", "if", "'base_dir'", "not", "in", "kwargs", ":", "raise", "Exception", "(", "\"You need to provide webassets.base_dir in your configuration\"", ")", "if", "'base_url'", "not", "in", "kwargs", ":", "raise", "Exception", "(", "\"You need to provide webassets.base_url in your configuration\"", ")", "asset_dir", "=", "kwargs", ".", "pop", "(", "'base_dir'", ")", "asset_url", "=", "kwargs", ".", "pop", "(", "'base_url'", ")", "if", "':'", "in", "asset_dir", ":", "try", ":", "resolved_dir", "=", "AssetResolver", "(", "None", ")", ".", "resolve", "(", "asset_dir", ")", ".", "abspath", "(", ")", "except", "ImportError", ":", "pass", "else", ":", "# Store the original asset spec to use later", "kwargs", "[", "'asset_base'", "]", "=", "asset_dir", "asset_dir", "=", "resolved_dir", "if", "not", "asset_url", ".", "startswith", "(", "'/'", ")", ":", "if", "six", ".", "moves", ".", "urllib", ".", "parse", ".", "urlparse", "(", "asset_url", ")", ".", "scheme", "==", "''", ":", "asset_url", "=", "'/'", "+", "asset_url", "if", "'debug'", "in", "kwargs", ":", "kwargs", "[", "'debug'", "]", "=", "maybebool", "(", "kwargs", "[", "'debug'", "]", ")", "if", "'cache'", "in", "kwargs", ":", "cache", "=", "kwargs", "[", "'cache'", "]", "=", "maybebool", "(", "kwargs", "[", "'cache'", "]", ")", "if", "cache", "and", "isinstance", "(", "cache", ",", "six", ".", "string_types", ")", "and", "not", "path", ".", "isdir", "(", "cache", ")", ":", "makedirs", "(", "cache", ")", "# 'updater' is just passed in...", "if", "'auto_build'", "in", "kwargs", ":", "kwargs", "[", "'auto_build'", "]", "=", "maybebool", "(", "kwargs", "[", "'auto_build'", "]", ")", "if", "'jst_compiler'", "in", "kwargs", ":", "kwargs", "[", "'JST_COMPILER'", "]", "=", "kwargs", ".", "pop", "(", "'jst_compiler'", ")", "if", "'jst_namespace'", "in", "kwargs", ":", "kwargs", "[", "'JST_NAMESPACE'", "]", "=", "kwargs", ".", "pop", "(", "'jst_namespace'", ")", "if", "'manifest'", "in", "kwargs", ":", "kwargs", "[", "'manifest'", "]", "=", "maybebool", "(", "kwargs", "[", "'manifest'", "]", ")", "if", "'url_expire'", "in", "kwargs", ":", "kwargs", "[", "'url_expire'", "]", "=", "maybebool", "(", "kwargs", "[", "'url_expire'", "]", ")", "if", "'static_view'", "in", "kwargs", ":", "kwargs", "[", "'static_view'", "]", "=", "asbool", "(", "kwargs", "[", "'static_view'", "]", ")", "else", ":", "kwargs", "[", "'static_view'", "]", "=", "False", "if", "'cache_max_age'", "in", "kwargs", ":", "kwargs", "[", "'cache_max_age'", "]", "=", "int", "(", "kwargs", ".", "pop", "(", "'cache_max_age'", ")", ")", "else", ":", "kwargs", "[", "'cache_max_age'", "]", "=", "None", "if", "'load_path'", "in", "kwargs", ":", "# force load_path to be an array and split on whitespace", "if", "not", "isinstance", "(", "kwargs", "[", "'load_path'", "]", ",", "list", ")", ":", "kwargs", "[", "'load_path'", "]", "=", "kwargs", "[", "'load_path'", "]", ".", "split", "(", ")", "paths", "=", "kwargs", ".", "pop", "(", "'paths'", ",", "None", ")", "if", "'bundles'", "in", "kwargs", ":", "if", "isinstance", "(", "kwargs", "[", "'bundles'", "]", ",", "six", ".", "string_types", ")", ":", "kwargs", "[", "'bundles'", "]", "=", "kwargs", "[", "'bundles'", "]", ".", "split", "(", ")", "bundles", "=", "kwargs", ".", "pop", "(", "'bundles'", ",", "None", ")", "assets_env", "=", "Environment", "(", "asset_dir", ",", "asset_url", ",", "*", "*", "kwargs", ")", "if", "paths", "is", "not", "None", ":", "for", "map_path", ",", "map_url", "in", "json", ".", "loads", "(", "paths", ")", ".", "items", "(", ")", ":", "assets_env", ".", "append_path", "(", "map_path", ",", "map_url", ")", "def", "yaml_stream", "(", "fname", ",", "mode", ")", ":", "if", "path", ".", "exists", "(", "fname", ")", ":", "return", "open", "(", "fname", ",", "mode", ")", "else", ":", "return", "assets_env", ".", "resolver", ".", "resolver", ".", "resolve", "(", "fname", ")", ".", "stream", "(", ")", "if", "isinstance", "(", "bundles", ",", "list", ")", ":", "fnames", "=", "reversed", "(", "bundles", ")", "fin", "=", "fileinput", ".", "input", "(", "fnames", ",", "openhook", "=", "yaml_stream", ")", "with", "closing", "(", "fin", ")", ":", "lines", "=", "[", "text", "(", "line", ")", ".", "rstrip", "(", ")", "for", "line", "in", "fin", "]", "yamlin", "=", "six", ".", "StringIO", "(", "'\\n'", ".", "join", "(", "lines", ")", ")", "loader", "=", "YAMLLoader", "(", "yamlin", ")", "result", "=", "loader", ".", "load_bundles", "(", ")", "assets_env", ".", "register", "(", "result", ")", "elif", "isinstance", "(", "bundles", ",", "dict", ")", ":", "assets_env", ".", "register", "(", "bundles", ")", "return", "assets_env" ]
d81a8f0c55aa49181ced4650fc88d434bbf94e62
test
classifier.format_data
Function for converting a dict to an array suitable for sklearn. Parameters ---------- data : dict A dict of data, containing all elements of `analytes` as items. scale : bool Whether or not to scale the data. Should always be `True`, unless used by `classifier.fitting_data` where a scaler hasn't been created yet. Returns ------- A data array suitable for use with `sklearn.cluster`.
latools/filtering/classifier_obj.py
def format_data(self, data, scale=True): """ Function for converting a dict to an array suitable for sklearn. Parameters ---------- data : dict A dict of data, containing all elements of `analytes` as items. scale : bool Whether or not to scale the data. Should always be `True`, unless used by `classifier.fitting_data` where a scaler hasn't been created yet. Returns ------- A data array suitable for use with `sklearn.cluster`. """ if len(self.analytes) == 1: # if single analyte d = nominal_values(data[self.analytes[0]]) ds = np.array(list(zip(d, np.zeros(len(d))))) else: # package multiple analytes d = [nominal_values(data[a]) for a in self.analytes] ds = np.vstack(d).T # identify all nan values finite = np.isfinite(ds).sum(1) == ds.shape[1] # remember which values are sampled sampled = np.arange(data[self.analytes[0]].size)[finite] # remove all nan values ds = ds[finite] if scale: ds = self.scaler.transform(ds) return ds, sampled
def format_data(self, data, scale=True): """ Function for converting a dict to an array suitable for sklearn. Parameters ---------- data : dict A dict of data, containing all elements of `analytes` as items. scale : bool Whether or not to scale the data. Should always be `True`, unless used by `classifier.fitting_data` where a scaler hasn't been created yet. Returns ------- A data array suitable for use with `sklearn.cluster`. """ if len(self.analytes) == 1: # if single analyte d = nominal_values(data[self.analytes[0]]) ds = np.array(list(zip(d, np.zeros(len(d))))) else: # package multiple analytes d = [nominal_values(data[a]) for a in self.analytes] ds = np.vstack(d).T # identify all nan values finite = np.isfinite(ds).sum(1) == ds.shape[1] # remember which values are sampled sampled = np.arange(data[self.analytes[0]].size)[finite] # remove all nan values ds = ds[finite] if scale: ds = self.scaler.transform(ds) return ds, sampled
[ "Function", "for", "converting", "a", "dict", "to", "an", "array", "suitable", "for", "sklearn", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L28-L65
[ "def", "format_data", "(", "self", ",", "data", ",", "scale", "=", "True", ")", ":", "if", "len", "(", "self", ".", "analytes", ")", "==", "1", ":", "# if single analyte", "d", "=", "nominal_values", "(", "data", "[", "self", ".", "analytes", "[", "0", "]", "]", ")", "ds", "=", "np", ".", "array", "(", "list", "(", "zip", "(", "d", ",", "np", ".", "zeros", "(", "len", "(", "d", ")", ")", ")", ")", ")", "else", ":", "# package multiple analytes", "d", "=", "[", "nominal_values", "(", "data", "[", "a", "]", ")", "for", "a", "in", "self", ".", "analytes", "]", "ds", "=", "np", ".", "vstack", "(", "d", ")", ".", "T", "# identify all nan values", "finite", "=", "np", ".", "isfinite", "(", "ds", ")", ".", "sum", "(", "1", ")", "==", "ds", ".", "shape", "[", "1", "]", "# remember which values are sampled", "sampled", "=", "np", ".", "arange", "(", "data", "[", "self", ".", "analytes", "[", "0", "]", "]", ".", "size", ")", "[", "finite", "]", "# remove all nan values", "ds", "=", "ds", "[", "finite", "]", "if", "scale", ":", "ds", "=", "self", ".", "scaler", ".", "transform", "(", "ds", ")", "return", "ds", ",", "sampled" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.fitting_data
Function to format data for cluster fitting. Parameters ---------- data : dict A dict of data, containing all elements of `analytes` as items. Returns ------- A data array for initial cluster fitting.
latools/filtering/classifier_obj.py
def fitting_data(self, data): """ Function to format data for cluster fitting. Parameters ---------- data : dict A dict of data, containing all elements of `analytes` as items. Returns ------- A data array for initial cluster fitting. """ ds_fit, _ = self.format_data(data, scale=False) # define scaler self.scaler = preprocessing.StandardScaler().fit(ds_fit) # scale data and return return self.scaler.transform(ds_fit)
def fitting_data(self, data): """ Function to format data for cluster fitting. Parameters ---------- data : dict A dict of data, containing all elements of `analytes` as items. Returns ------- A data array for initial cluster fitting. """ ds_fit, _ = self.format_data(data, scale=False) # define scaler self.scaler = preprocessing.StandardScaler().fit(ds_fit) # scale data and return return self.scaler.transform(ds_fit)
[ "Function", "to", "format", "data", "for", "cluster", "fitting", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L67-L87
[ "def", "fitting_data", "(", "self", ",", "data", ")", ":", "ds_fit", ",", "_", "=", "self", ".", "format_data", "(", "data", ",", "scale", "=", "False", ")", "# define scaler", "self", ".", "scaler", "=", "preprocessing", ".", "StandardScaler", "(", ")", ".", "fit", "(", "ds_fit", ")", "# scale data and return", "return", "self", ".", "scaler", ".", "transform", "(", "ds_fit", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.fit_kmeans
Fit KMeans clustering algorithm to data. Parameters ---------- data : array-like A dataset formatted by `classifier.fitting_data`. n_clusters : int The number of clusters in the data. **kwargs passed to `sklearn.cluster.KMeans`. Returns ------- Fitted `sklearn.cluster.KMeans` object.
latools/filtering/classifier_obj.py
def fit_kmeans(self, data, n_clusters, **kwargs): """ Fit KMeans clustering algorithm to data. Parameters ---------- data : array-like A dataset formatted by `classifier.fitting_data`. n_clusters : int The number of clusters in the data. **kwargs passed to `sklearn.cluster.KMeans`. Returns ------- Fitted `sklearn.cluster.KMeans` object. """ km = cl.KMeans(n_clusters=n_clusters, **kwargs) km.fit(data) return km
def fit_kmeans(self, data, n_clusters, **kwargs): """ Fit KMeans clustering algorithm to data. Parameters ---------- data : array-like A dataset formatted by `classifier.fitting_data`. n_clusters : int The number of clusters in the data. **kwargs passed to `sklearn.cluster.KMeans`. Returns ------- Fitted `sklearn.cluster.KMeans` object. """ km = cl.KMeans(n_clusters=n_clusters, **kwargs) km.fit(data) return km
[ "Fit", "KMeans", "clustering", "algorithm", "to", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L89-L108
[ "def", "fit_kmeans", "(", "self", ",", "data", ",", "n_clusters", ",", "*", "*", "kwargs", ")", ":", "km", "=", "cl", ".", "KMeans", "(", "n_clusters", "=", "n_clusters", ",", "*", "*", "kwargs", ")", "km", ".", "fit", "(", "data", ")", "return", "km" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.fit_meanshift
Fit MeanShift clustering algorithm to data. Parameters ---------- data : array-like A dataset formatted by `classifier.fitting_data`. bandwidth : float The bandwidth value used during clustering. If none, determined automatically. Note: the data are scaled before clutering, so this is not in the same units as the data. bin_seeding : bool Whether or not to use 'bin_seeding'. See documentation for `sklearn.cluster.MeanShift`. **kwargs passed to `sklearn.cluster.MeanShift`. Returns ------- Fitted `sklearn.cluster.MeanShift` object.
latools/filtering/classifier_obj.py
def fit_meanshift(self, data, bandwidth=None, bin_seeding=False, **kwargs): """ Fit MeanShift clustering algorithm to data. Parameters ---------- data : array-like A dataset formatted by `classifier.fitting_data`. bandwidth : float The bandwidth value used during clustering. If none, determined automatically. Note: the data are scaled before clutering, so this is not in the same units as the data. bin_seeding : bool Whether or not to use 'bin_seeding'. See documentation for `sklearn.cluster.MeanShift`. **kwargs passed to `sklearn.cluster.MeanShift`. Returns ------- Fitted `sklearn.cluster.MeanShift` object. """ if bandwidth is None: bandwidth = cl.estimate_bandwidth(data) ms = cl.MeanShift(bandwidth=bandwidth, bin_seeding=bin_seeding) ms.fit(data) return ms
def fit_meanshift(self, data, bandwidth=None, bin_seeding=False, **kwargs): """ Fit MeanShift clustering algorithm to data. Parameters ---------- data : array-like A dataset formatted by `classifier.fitting_data`. bandwidth : float The bandwidth value used during clustering. If none, determined automatically. Note: the data are scaled before clutering, so this is not in the same units as the data. bin_seeding : bool Whether or not to use 'bin_seeding'. See documentation for `sklearn.cluster.MeanShift`. **kwargs passed to `sklearn.cluster.MeanShift`. Returns ------- Fitted `sklearn.cluster.MeanShift` object. """ if bandwidth is None: bandwidth = cl.estimate_bandwidth(data) ms = cl.MeanShift(bandwidth=bandwidth, bin_seeding=bin_seeding) ms.fit(data) return ms
[ "Fit", "MeanShift", "clustering", "algorithm", "to", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L110-L137
[ "def", "fit_meanshift", "(", "self", ",", "data", ",", "bandwidth", "=", "None", ",", "bin_seeding", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "bandwidth", "is", "None", ":", "bandwidth", "=", "cl", ".", "estimate_bandwidth", "(", "data", ")", "ms", "=", "cl", ".", "MeanShift", "(", "bandwidth", "=", "bandwidth", ",", "bin_seeding", "=", "bin_seeding", ")", "ms", ".", "fit", "(", "data", ")", "return", "ms" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.fit
fit classifiers from large dataset. Parameters ---------- data : dict A dict of data for clustering. Must contain items with the same name as analytes used for clustering. method : str A string defining the clustering method used. Can be: * 'kmeans' : K-Means clustering algorithm * 'meanshift' : Meanshift algorithm n_clusters : int *K-Means only*. The numebr of clusters to identify bandwidth : float *Meanshift only.* The bandwidth value used during clustering. If none, determined automatically. Note: the data are scaled before clutering, so this is not in the same units as the data. bin_seeding : bool *Meanshift only.* Whether or not to use 'bin_seeding'. See documentation for `sklearn.cluster.MeanShift`. **kwargs : passed to `sklearn.cluster.MeanShift`. Returns ------- list
latools/filtering/classifier_obj.py
def fit(self, data, method='kmeans', **kwargs): """ fit classifiers from large dataset. Parameters ---------- data : dict A dict of data for clustering. Must contain items with the same name as analytes used for clustering. method : str A string defining the clustering method used. Can be: * 'kmeans' : K-Means clustering algorithm * 'meanshift' : Meanshift algorithm n_clusters : int *K-Means only*. The numebr of clusters to identify bandwidth : float *Meanshift only.* The bandwidth value used during clustering. If none, determined automatically. Note: the data are scaled before clutering, so this is not in the same units as the data. bin_seeding : bool *Meanshift only.* Whether or not to use 'bin_seeding'. See documentation for `sklearn.cluster.MeanShift`. **kwargs : passed to `sklearn.cluster.MeanShift`. Returns ------- list """ self.method = method ds_fit = self.fitting_data(data) mdict = {'kmeans': self.fit_kmeans, 'meanshift': self.fit_meanshift} clust = mdict[method] self.classifier = clust(data=ds_fit, **kwargs) # sort cluster centers by value of first column, to avoid random variation. c0 = self.classifier.cluster_centers_.T[self.sort_by] self.classifier.cluster_centers_ = self.classifier.cluster_centers_[np.argsort(c0)] # recalculate the labels, so it's consistent with cluster centers self.classifier.labels_ = self.classifier.predict(ds_fit) self.classifier.ulabels_ = np.unique(self.classifier.labels_) return
def fit(self, data, method='kmeans', **kwargs): """ fit classifiers from large dataset. Parameters ---------- data : dict A dict of data for clustering. Must contain items with the same name as analytes used for clustering. method : str A string defining the clustering method used. Can be: * 'kmeans' : K-Means clustering algorithm * 'meanshift' : Meanshift algorithm n_clusters : int *K-Means only*. The numebr of clusters to identify bandwidth : float *Meanshift only.* The bandwidth value used during clustering. If none, determined automatically. Note: the data are scaled before clutering, so this is not in the same units as the data. bin_seeding : bool *Meanshift only.* Whether or not to use 'bin_seeding'. See documentation for `sklearn.cluster.MeanShift`. **kwargs : passed to `sklearn.cluster.MeanShift`. Returns ------- list """ self.method = method ds_fit = self.fitting_data(data) mdict = {'kmeans': self.fit_kmeans, 'meanshift': self.fit_meanshift} clust = mdict[method] self.classifier = clust(data=ds_fit, **kwargs) # sort cluster centers by value of first column, to avoid random variation. c0 = self.classifier.cluster_centers_.T[self.sort_by] self.classifier.cluster_centers_ = self.classifier.cluster_centers_[np.argsort(c0)] # recalculate the labels, so it's consistent with cluster centers self.classifier.labels_ = self.classifier.predict(ds_fit) self.classifier.ulabels_ = np.unique(self.classifier.labels_) return
[ "fit", "classifiers", "from", "large", "dataset", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L139-L190
[ "def", "fit", "(", "self", ",", "data", ",", "method", "=", "'kmeans'", ",", "*", "*", "kwargs", ")", ":", "self", ".", "method", "=", "method", "ds_fit", "=", "self", ".", "fitting_data", "(", "data", ")", "mdict", "=", "{", "'kmeans'", ":", "self", ".", "fit_kmeans", ",", "'meanshift'", ":", "self", ".", "fit_meanshift", "}", "clust", "=", "mdict", "[", "method", "]", "self", ".", "classifier", "=", "clust", "(", "data", "=", "ds_fit", ",", "*", "*", "kwargs", ")", "# sort cluster centers by value of first column, to avoid random variation.", "c0", "=", "self", ".", "classifier", ".", "cluster_centers_", ".", "T", "[", "self", ".", "sort_by", "]", "self", ".", "classifier", ".", "cluster_centers_", "=", "self", ".", "classifier", ".", "cluster_centers_", "[", "np", ".", "argsort", "(", "c0", ")", "]", "# recalculate the labels, so it's consistent with cluster centers", "self", ".", "classifier", ".", "labels_", "=", "self", ".", "classifier", ".", "predict", "(", "ds_fit", ")", "self", ".", "classifier", ".", "ulabels_", "=", "np", ".", "unique", "(", "self", ".", "classifier", ".", "labels_", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.predict
Label new data with cluster identities. Parameters ---------- data : dict A data dict containing the same analytes used to fit the classifier. sort_by : str The name of an analyte used to sort the resulting clusters. If None, defaults to the first analyte used in fitting. Returns ------- array of clusters the same length as the data.
latools/filtering/classifier_obj.py
def predict(self, data): """ Label new data with cluster identities. Parameters ---------- data : dict A data dict containing the same analytes used to fit the classifier. sort_by : str The name of an analyte used to sort the resulting clusters. If None, defaults to the first analyte used in fitting. Returns ------- array of clusters the same length as the data. """ size = data[self.analytes[0]].size ds, sampled = self.format_data(data) # predict clusters cs = self.classifier.predict(ds) # map clusters to original index clusters = self.map_clusters(size, sampled, cs) return clusters
def predict(self, data): """ Label new data with cluster identities. Parameters ---------- data : dict A data dict containing the same analytes used to fit the classifier. sort_by : str The name of an analyte used to sort the resulting clusters. If None, defaults to the first analyte used in fitting. Returns ------- array of clusters the same length as the data. """ size = data[self.analytes[0]].size ds, sampled = self.format_data(data) # predict clusters cs = self.classifier.predict(ds) # map clusters to original index clusters = self.map_clusters(size, sampled, cs) return clusters
[ "Label", "new", "data", "with", "cluster", "identities", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L192-L218
[ "def", "predict", "(", "self", ",", "data", ")", ":", "size", "=", "data", "[", "self", ".", "analytes", "[", "0", "]", "]", ".", "size", "ds", ",", "sampled", "=", "self", ".", "format_data", "(", "data", ")", "# predict clusters", "cs", "=", "self", ".", "classifier", ".", "predict", "(", "ds", ")", "# map clusters to original index", "clusters", "=", "self", ".", "map_clusters", "(", "size", ",", "sampled", ",", "cs", ")", "return", "clusters" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.map_clusters
Translate cluster identity back to original data size. Parameters ---------- size : int size of original dataset sampled : array-like integer array describing location of finite values in original data. clusters : array-like integer array of cluster identities Returns ------- list of cluster identities the same length as original data. Where original data are non-finite, returns -2.
latools/filtering/classifier_obj.py
def map_clusters(self, size, sampled, clusters): """ Translate cluster identity back to original data size. Parameters ---------- size : int size of original dataset sampled : array-like integer array describing location of finite values in original data. clusters : array-like integer array of cluster identities Returns ------- list of cluster identities the same length as original data. Where original data are non-finite, returns -2. """ ids = np.zeros(size, dtype=int) ids[:] = -2 ids[sampled] = clusters return ids
def map_clusters(self, size, sampled, clusters): """ Translate cluster identity back to original data size. Parameters ---------- size : int size of original dataset sampled : array-like integer array describing location of finite values in original data. clusters : array-like integer array of cluster identities Returns ------- list of cluster identities the same length as original data. Where original data are non-finite, returns -2. """ ids = np.zeros(size, dtype=int) ids[:] = -2 ids[sampled] = clusters return ids
[ "Translate", "cluster", "identity", "back", "to", "original", "data", "size", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L220-L245
[ "def", "map_clusters", "(", "self", ",", "size", ",", "sampled", ",", "clusters", ")", ":", "ids", "=", "np", ".", "zeros", "(", "size", ",", "dtype", "=", "int", ")", "ids", "[", ":", "]", "=", "-", "2", "ids", "[", "sampled", "]", "=", "clusters", "return", "ids" ]
cd25a650cfee318152f234d992708511f7047fbe
test
classifier.sort_clusters
Sort clusters by the concentration of a particular analyte. Parameters ---------- data : dict A dataset containing sort_by as a key. cs : array-like An array of clusters, the same length as values of data. sort_by : str analyte to sort the clusters by Returns ------- array of clusters, sorted by mean value of sort_by analyte.
latools/filtering/classifier_obj.py
def sort_clusters(self, data, cs, sort_by): """ Sort clusters by the concentration of a particular analyte. Parameters ---------- data : dict A dataset containing sort_by as a key. cs : array-like An array of clusters, the same length as values of data. sort_by : str analyte to sort the clusters by Returns ------- array of clusters, sorted by mean value of sort_by analyte. """ # label the clusters according to their contents sdat = data[sort_by] means = [] nclusts = np.arange(cs.max() + 1) for c in nclusts: means.append(np.nanmean(sdat[cs == c])) # create ranks means = np.array(means) rank = np.zeros(means.size) rank[np.argsort(means)] = np.arange(means.size) csn = cs.copy() for c, o in zip(nclusts, rank): csn[cs == c] = o return csn
def sort_clusters(self, data, cs, sort_by): """ Sort clusters by the concentration of a particular analyte. Parameters ---------- data : dict A dataset containing sort_by as a key. cs : array-like An array of clusters, the same length as values of data. sort_by : str analyte to sort the clusters by Returns ------- array of clusters, sorted by mean value of sort_by analyte. """ # label the clusters according to their contents sdat = data[sort_by] means = [] nclusts = np.arange(cs.max() + 1) for c in nclusts: means.append(np.nanmean(sdat[cs == c])) # create ranks means = np.array(means) rank = np.zeros(means.size) rank[np.argsort(means)] = np.arange(means.size) csn = cs.copy() for c, o in zip(nclusts, rank): csn[cs == c] = o return csn
[ "Sort", "clusters", "by", "the", "concentration", "of", "a", "particular", "analyte", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/classifier_obj.py#L247-L281
[ "def", "sort_clusters", "(", "self", ",", "data", ",", "cs", ",", "sort_by", ")", ":", "# label the clusters according to their contents", "sdat", "=", "data", "[", "sort_by", "]", "means", "=", "[", "]", "nclusts", "=", "np", ".", "arange", "(", "cs", ".", "max", "(", ")", "+", "1", ")", "for", "c", "in", "nclusts", ":", "means", ".", "append", "(", "np", ".", "nanmean", "(", "sdat", "[", "cs", "==", "c", "]", ")", ")", "# create ranks", "means", "=", "np", ".", "array", "(", "means", ")", "rank", "=", "np", ".", "zeros", "(", "means", ".", "size", ")", "rank", "[", "np", ".", "argsort", "(", "means", ")", "]", "=", "np", ".", "arange", "(", "means", ".", "size", ")", "csn", "=", "cs", ".", "copy", "(", ")", "for", "c", ",", "o", "in", "zip", "(", "nclusts", ",", "rank", ")", ":", "csn", "[", "cs", "==", "c", "]", "=", "o", "return", "csn" ]
cd25a650cfee318152f234d992708511f7047fbe
test
get_date
Return a datetime oject from a string, with optional time format. Parameters ---------- datetime : str Date-time as string in any sensible format. time_format : datetime str (optional) String describing the datetime format. If missing uses dateutil.parser to guess time format.
latools/helpers/helpers.py
def get_date(datetime, time_format=None): """ Return a datetime oject from a string, with optional time format. Parameters ---------- datetime : str Date-time as string in any sensible format. time_format : datetime str (optional) String describing the datetime format. If missing uses dateutil.parser to guess time format. """ if time_format is None: t = du.parser.parse(datetime) else: t = dt.datetime.strftime(datetime, time_format) return t
def get_date(datetime, time_format=None): """ Return a datetime oject from a string, with optional time format. Parameters ---------- datetime : str Date-time as string in any sensible format. time_format : datetime str (optional) String describing the datetime format. If missing uses dateutil.parser to guess time format. """ if time_format is None: t = du.parser.parse(datetime) else: t = dt.datetime.strftime(datetime, time_format) return t
[ "Return", "a", "datetime", "oject", "from", "a", "string", "with", "optional", "time", "format", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L29-L45
[ "def", "get_date", "(", "datetime", ",", "time_format", "=", "None", ")", ":", "if", "time_format", "is", "None", ":", "t", "=", "du", ".", "parser", ".", "parse", "(", "datetime", ")", "else", ":", "t", "=", "dt", ".", "datetime", ".", "strftime", "(", "datetime", ",", "time_format", ")", "return", "t" ]
cd25a650cfee318152f234d992708511f7047fbe
test
get_total_n_points
Returns the total number of data points in values of dict. Paramters --------- d : dict
latools/helpers/helpers.py
def get_total_n_points(d): """ Returns the total number of data points in values of dict. Paramters --------- d : dict """ n = 0 for di in d.values(): n += len(di) return n
def get_total_n_points(d): """ Returns the total number of data points in values of dict. Paramters --------- d : dict """ n = 0 for di in d.values(): n += len(di) return n
[ "Returns", "the", "total", "number", "of", "data", "points", "in", "values", "of", "dict", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L47-L58
[ "def", "get_total_n_points", "(", "d", ")", ":", "n", "=", "0", "for", "di", "in", "d", ".", "values", "(", ")", ":", "n", "+=", "len", "(", "di", ")", "return", "n" ]
cd25a650cfee318152f234d992708511f7047fbe
test
get_total_time_span
Returns total length of analysis.
latools/helpers/helpers.py
def get_total_time_span(d): """ Returns total length of analysis. """ tmax = 0 for di in d.values(): if di.uTime.max() > tmax: tmax = di.uTime.max() return tmax
def get_total_time_span(d): """ Returns total length of analysis. """ tmax = 0 for di in d.values(): if di.uTime.max() > tmax: tmax = di.uTime.max() return tmax
[ "Returns", "total", "length", "of", "analysis", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L60-L70
[ "def", "get_total_time_span", "(", "d", ")", ":", "tmax", "=", "0", "for", "di", "in", "d", ".", "values", "(", ")", ":", "if", "di", ".", "uTime", ".", "max", "(", ")", ">", "tmax", ":", "tmax", "=", "di", ".", "uTime", ".", "max", "(", ")", "return", "tmax" ]
cd25a650cfee318152f234d992708511f7047fbe
test
unitpicker
Determines the most appropriate plotting unit for data. Parameters ---------- a : float or array-like number to optimise. If array like, the 25% quantile is optimised. llim : float minimum allowable value in scaled data. Returns ------- (float, str) (multiplier, unit)
latools/helpers/helpers.py
def unitpicker(a, llim=0.1, denominator=None, focus_stage=None): """ Determines the most appropriate plotting unit for data. Parameters ---------- a : float or array-like number to optimise. If array like, the 25% quantile is optimised. llim : float minimum allowable value in scaled data. Returns ------- (float, str) (multiplier, unit) """ if not isinstance(a, (int, float)): a = nominal_values(a) a = np.percentile(a[~np.isnan(a)], 25) if denominator is not None: pd = pretty_element(denominator) else: pd = '' if focus_stage == 'calibrated': udict = {0: 'mol/mol ' + pd, 1: 'mmol/mol ' + pd, 2: '$\mu$mol/mol ' + pd, 3: 'nmol/mol ' + pd, 4: 'pmol/mol ' + pd, 5: 'fmol/mol ' + pd} elif focus_stage == 'ratios': udict = {0: 'counts/count ' + pd, 1: '$10^{-3}$ counts/count ' + pd, 2: '$10^{-6}$ counts/count ' + pd, 3: '$10^{-9}$ counts/count ' + pd, 4: '$10^{-12}$ counts/count ' + pd, 5: '$10^{-15}$ counts/count ' + pd} elif focus_stage in ('rawdata', 'despiked', 'bkgsub'): udict = udict = {0: 'counts', 1: '$10^{-3}$ counts', 2: '$10^{-6}$ counts', 3: '$10^{-9}$ counts', 4: '$10^{-12}$ counts', 5: '$10^{-15}$ counts'} else: udict = {0: '', 1: '', 2: '', 3: '', 4: '', 5: ''} a = abs(a) n = 0 if a < llim: while a < llim: a *= 1000 n += 1 return float(1000**n), udict[n]
def unitpicker(a, llim=0.1, denominator=None, focus_stage=None): """ Determines the most appropriate plotting unit for data. Parameters ---------- a : float or array-like number to optimise. If array like, the 25% quantile is optimised. llim : float minimum allowable value in scaled data. Returns ------- (float, str) (multiplier, unit) """ if not isinstance(a, (int, float)): a = nominal_values(a) a = np.percentile(a[~np.isnan(a)], 25) if denominator is not None: pd = pretty_element(denominator) else: pd = '' if focus_stage == 'calibrated': udict = {0: 'mol/mol ' + pd, 1: 'mmol/mol ' + pd, 2: '$\mu$mol/mol ' + pd, 3: 'nmol/mol ' + pd, 4: 'pmol/mol ' + pd, 5: 'fmol/mol ' + pd} elif focus_stage == 'ratios': udict = {0: 'counts/count ' + pd, 1: '$10^{-3}$ counts/count ' + pd, 2: '$10^{-6}$ counts/count ' + pd, 3: '$10^{-9}$ counts/count ' + pd, 4: '$10^{-12}$ counts/count ' + pd, 5: '$10^{-15}$ counts/count ' + pd} elif focus_stage in ('rawdata', 'despiked', 'bkgsub'): udict = udict = {0: 'counts', 1: '$10^{-3}$ counts', 2: '$10^{-6}$ counts', 3: '$10^{-9}$ counts', 4: '$10^{-12}$ counts', 5: '$10^{-15}$ counts'} else: udict = {0: '', 1: '', 2: '', 3: '', 4: '', 5: ''} a = abs(a) n = 0 if a < llim: while a < llim: a *= 1000 n += 1 return float(1000**n), udict[n]
[ "Determines", "the", "most", "appropriate", "plotting", "unit", "for", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L72-L128
[ "def", "unitpicker", "(", "a", ",", "llim", "=", "0.1", ",", "denominator", "=", "None", ",", "focus_stage", "=", "None", ")", ":", "if", "not", "isinstance", "(", "a", ",", "(", "int", ",", "float", ")", ")", ":", "a", "=", "nominal_values", "(", "a", ")", "a", "=", "np", ".", "percentile", "(", "a", "[", "~", "np", ".", "isnan", "(", "a", ")", "]", ",", "25", ")", "if", "denominator", "is", "not", "None", ":", "pd", "=", "pretty_element", "(", "denominator", ")", "else", ":", "pd", "=", "''", "if", "focus_stage", "==", "'calibrated'", ":", "udict", "=", "{", "0", ":", "'mol/mol '", "+", "pd", ",", "1", ":", "'mmol/mol '", "+", "pd", ",", "2", ":", "'$\\mu$mol/mol '", "+", "pd", ",", "3", ":", "'nmol/mol '", "+", "pd", ",", "4", ":", "'pmol/mol '", "+", "pd", ",", "5", ":", "'fmol/mol '", "+", "pd", "}", "elif", "focus_stage", "==", "'ratios'", ":", "udict", "=", "{", "0", ":", "'counts/count '", "+", "pd", ",", "1", ":", "'$10^{-3}$ counts/count '", "+", "pd", ",", "2", ":", "'$10^{-6}$ counts/count '", "+", "pd", ",", "3", ":", "'$10^{-9}$ counts/count '", "+", "pd", ",", "4", ":", "'$10^{-12}$ counts/count '", "+", "pd", ",", "5", ":", "'$10^{-15}$ counts/count '", "+", "pd", "}", "elif", "focus_stage", "in", "(", "'rawdata'", ",", "'despiked'", ",", "'bkgsub'", ")", ":", "udict", "=", "udict", "=", "{", "0", ":", "'counts'", ",", "1", ":", "'$10^{-3}$ counts'", ",", "2", ":", "'$10^{-6}$ counts'", ",", "3", ":", "'$10^{-9}$ counts'", ",", "4", ":", "'$10^{-12}$ counts'", ",", "5", ":", "'$10^{-15}$ counts'", "}", "else", ":", "udict", "=", "{", "0", ":", "''", ",", "1", ":", "''", ",", "2", ":", "''", ",", "3", ":", "''", ",", "4", ":", "''", ",", "5", ":", "''", "}", "a", "=", "abs", "(", "a", ")", "n", "=", "0", "if", "a", "<", "llim", ":", "while", "a", "<", "llim", ":", "a", "*=", "1000", "n", "+=", "1", "return", "float", "(", "1000", "**", "n", ")", ",", "udict", "[", "n", "]" ]
cd25a650cfee318152f234d992708511f7047fbe
test
pretty_element
Returns formatted element name. Parameters ---------- s : str of format [A-Z][a-z]?[0-9]+ Returns ------- str LaTeX formatted string with superscript numbers.
latools/helpers/helpers.py
def pretty_element(s): """ Returns formatted element name. Parameters ---------- s : str of format [A-Z][a-z]?[0-9]+ Returns ------- str LaTeX formatted string with superscript numbers. """ el = re.match('.*?([A-z]{1,3}).*?', s).groups()[0] m = re.match('.*?([0-9]{1,3}).*?', s).groups()[0] return '$^{' + m + '}$' + el
def pretty_element(s): """ Returns formatted element name. Parameters ---------- s : str of format [A-Z][a-z]?[0-9]+ Returns ------- str LaTeX formatted string with superscript numbers. """ el = re.match('.*?([A-z]{1,3}).*?', s).groups()[0] m = re.match('.*?([0-9]{1,3}).*?', s).groups()[0] return '$^{' + m + '}$' + el
[ "Returns", "formatted", "element", "name", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L130-L147
[ "def", "pretty_element", "(", "s", ")", ":", "el", "=", "re", ".", "match", "(", "'.*?([A-z]{1,3}).*?'", ",", "s", ")", ".", "groups", "(", ")", "[", "0", "]", "m", "=", "re", ".", "match", "(", "'.*?([0-9]{1,3}).*?'", ",", "s", ")", ".", "groups", "(", ")", "[", "0", "]", "return", "'$^{'", "+", "m", "+", "'}$'", "+", "el" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyte_2_namemass
Converts analytes in format '27Al' to 'Al27'. Parameters ---------- s : str of format [A-z]{1,3}[0-9]{1,3} Returns ------- str Name in format [0-9]{1,3}[A-z]{1,3}
latools/helpers/helpers.py
def analyte_2_namemass(s): """ Converts analytes in format '27Al' to 'Al27'. Parameters ---------- s : str of format [A-z]{1,3}[0-9]{1,3} Returns ------- str Name in format [0-9]{1,3}[A-z]{1,3} """ el = re.match('.*?([A-z]{1,3}).*?', s).groups()[0] m = re.match('.*?([0-9]{1,3}).*?', s).groups()[0] return el + m
def analyte_2_namemass(s): """ Converts analytes in format '27Al' to 'Al27'. Parameters ---------- s : str of format [A-z]{1,3}[0-9]{1,3} Returns ------- str Name in format [0-9]{1,3}[A-z]{1,3} """ el = re.match('.*?([A-z]{1,3}).*?', s).groups()[0] m = re.match('.*?([0-9]{1,3}).*?', s).groups()[0] return el + m
[ "Converts", "analytes", "in", "format", "27Al", "to", "Al27", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L149-L166
[ "def", "analyte_2_namemass", "(", "s", ")", ":", "el", "=", "re", ".", "match", "(", "'.*?([A-z]{1,3}).*?'", ",", "s", ")", ".", "groups", "(", ")", "[", "0", "]", "m", "=", "re", ".", "match", "(", "'.*?([0-9]{1,3}).*?'", ",", "s", ")", ".", "groups", "(", ")", "[", "0", "]", "return", "el", "+", "m" ]
cd25a650cfee318152f234d992708511f7047fbe
test
analyte_2_massname
Converts analytes in format 'Al27' to '27Al'. Parameters ---------- s : str of format [0-9]{1,3}[A-z]{1,3} Returns ------- str Name in format [A-z]{1,3}[0-9]{1,3}
latools/helpers/helpers.py
def analyte_2_massname(s): """ Converts analytes in format 'Al27' to '27Al'. Parameters ---------- s : str of format [0-9]{1,3}[A-z]{1,3} Returns ------- str Name in format [A-z]{1,3}[0-9]{1,3} """ el = re.match('.*?([A-z]{1,3}).*?', s).groups()[0] m = re.match('.*?([0-9]{1,3}).*?', s).groups()[0] return m + el
def analyte_2_massname(s): """ Converts analytes in format 'Al27' to '27Al'. Parameters ---------- s : str of format [0-9]{1,3}[A-z]{1,3} Returns ------- str Name in format [A-z]{1,3}[0-9]{1,3} """ el = re.match('.*?([A-z]{1,3}).*?', s).groups()[0] m = re.match('.*?([0-9]{1,3}).*?', s).groups()[0] return m + el
[ "Converts", "analytes", "in", "format", "Al27", "to", "27Al", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L168-L185
[ "def", "analyte_2_massname", "(", "s", ")", ":", "el", "=", "re", ".", "match", "(", "'.*?([A-z]{1,3}).*?'", ",", "s", ")", ".", "groups", "(", ")", "[", "0", "]", "m", "=", "re", ".", "match", "(", "'.*?([0-9]{1,3}).*?'", ",", "s", ")", ".", "groups", "(", ")", "[", "0", "]", "return", "m", "+", "el" ]
cd25a650cfee318152f234d992708511f7047fbe
test
collate_data
Copy all csvs in nested directroy to single directory. Function to copy all csvs from a directory, and place them in a new directory. Parameters ---------- in_dir : str Input directory containing csv files in subfolders extension : str The extension that identifies your data files. Defaults to '.csv'. out_dir : str Destination directory Returns ------- None
latools/helpers/helpers.py
def collate_data(in_dir, extension='.csv', out_dir=None): """ Copy all csvs in nested directroy to single directory. Function to copy all csvs from a directory, and place them in a new directory. Parameters ---------- in_dir : str Input directory containing csv files in subfolders extension : str The extension that identifies your data files. Defaults to '.csv'. out_dir : str Destination directory Returns ------- None """ if out_dir is None: out_dir = './' + re.search('^\.(.*)', extension).groups(0)[0] if not os.path.isdir(out_dir): os.mkdir(out_dir) for p, d, fs in os.walk(in_dir): for f in fs: if extension in f: shutil.copy(p + '/' + f, out_dir + '/' + f) return
def collate_data(in_dir, extension='.csv', out_dir=None): """ Copy all csvs in nested directroy to single directory. Function to copy all csvs from a directory, and place them in a new directory. Parameters ---------- in_dir : str Input directory containing csv files in subfolders extension : str The extension that identifies your data files. Defaults to '.csv'. out_dir : str Destination directory Returns ------- None """ if out_dir is None: out_dir = './' + re.search('^\.(.*)', extension).groups(0)[0] if not os.path.isdir(out_dir): os.mkdir(out_dir) for p, d, fs in os.walk(in_dir): for f in fs: if extension in f: shutil.copy(p + '/' + f, out_dir + '/' + f) return
[ "Copy", "all", "csvs", "in", "nested", "directroy", "to", "single", "directory", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L187-L218
[ "def", "collate_data", "(", "in_dir", ",", "extension", "=", "'.csv'", ",", "out_dir", "=", "None", ")", ":", "if", "out_dir", "is", "None", ":", "out_dir", "=", "'./'", "+", "re", ".", "search", "(", "'^\\.(.*)'", ",", "extension", ")", ".", "groups", "(", "0", ")", "[", "0", "]", "if", "not", "os", ".", "path", ".", "isdir", "(", "out_dir", ")", ":", "os", ".", "mkdir", "(", "out_dir", ")", "for", "p", ",", "d", ",", "fs", "in", "os", ".", "walk", "(", "in_dir", ")", ":", "for", "f", "in", "fs", ":", "if", "extension", "in", "f", ":", "shutil", ".", "copy", "(", "p", "+", "'/'", "+", "f", ",", "out_dir", "+", "'/'", "+", "f", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
bool_2_indices
Convert boolean array into a 2D array of (start, stop) pairs.
latools/helpers/helpers.py
def bool_2_indices(a): """ Convert boolean array into a 2D array of (start, stop) pairs. """ if any(a): lims = [] lims.append(np.where(a[:-1] != a[1:])[0]) if a[0]: lims.append([0]) if a[-1]: lims.append([len(a) - 1]) lims = np.concatenate(lims) lims.sort() return np.reshape(lims, (lims.size // 2, 2)) else: return None
def bool_2_indices(a): """ Convert boolean array into a 2D array of (start, stop) pairs. """ if any(a): lims = [] lims.append(np.where(a[:-1] != a[1:])[0]) if a[0]: lims.append([0]) if a[-1]: lims.append([len(a) - 1]) lims = np.concatenate(lims) lims.sort() return np.reshape(lims, (lims.size // 2, 2)) else: return None
[ "Convert", "boolean", "array", "into", "a", "2D", "array", "of", "(", "start", "stop", ")", "pairs", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L220-L237
[ "def", "bool_2_indices", "(", "a", ")", ":", "if", "any", "(", "a", ")", ":", "lims", "=", "[", "]", "lims", ".", "append", "(", "np", ".", "where", "(", "a", "[", ":", "-", "1", "]", "!=", "a", "[", "1", ":", "]", ")", "[", "0", "]", ")", "if", "a", "[", "0", "]", ":", "lims", ".", "append", "(", "[", "0", "]", ")", "if", "a", "[", "-", "1", "]", ":", "lims", ".", "append", "(", "[", "len", "(", "a", ")", "-", "1", "]", ")", "lims", "=", "np", ".", "concatenate", "(", "lims", ")", "lims", ".", "sort", "(", ")", "return", "np", ".", "reshape", "(", "lims", ",", "(", "lims", ".", "size", "//", "2", ",", "2", ")", ")", "else", ":", "return", "None" ]
cd25a650cfee318152f234d992708511f7047fbe
test
enumerate_bool
Consecutively numbers contiguous booleans in array. i.e. a boolean sequence, and resulting numbering T F T T T F T F F F T T F 0-1 1 1 - 2 ---3 3 - where ' - ' Parameters ---------- bool_array : array_like Array of booleans. nstart : int The number of the first boolean group.
latools/helpers/helpers.py
def enumerate_bool(bool_array, nstart=0): """ Consecutively numbers contiguous booleans in array. i.e. a boolean sequence, and resulting numbering T F T T T F T F F F T T F 0-1 1 1 - 2 ---3 3 - where ' - ' Parameters ---------- bool_array : array_like Array of booleans. nstart : int The number of the first boolean group. """ ind = bool_2_indices(bool_array) ns = np.full(bool_array.size, nstart, dtype=int) for n, lims in enumerate(ind): ns[lims[0]:lims[-1] + 1] = nstart + n + 1 return ns
def enumerate_bool(bool_array, nstart=0): """ Consecutively numbers contiguous booleans in array. i.e. a boolean sequence, and resulting numbering T F T T T F T F F F T T F 0-1 1 1 - 2 ---3 3 - where ' - ' Parameters ---------- bool_array : array_like Array of booleans. nstart : int The number of the first boolean group. """ ind = bool_2_indices(bool_array) ns = np.full(bool_array.size, nstart, dtype=int) for n, lims in enumerate(ind): ns[lims[0]:lims[-1] + 1] = nstart + n + 1 return ns
[ "Consecutively", "numbers", "contiguous", "booleans", "in", "array", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L239-L260
[ "def", "enumerate_bool", "(", "bool_array", ",", "nstart", "=", "0", ")", ":", "ind", "=", "bool_2_indices", "(", "bool_array", ")", "ns", "=", "np", ".", "full", "(", "bool_array", ".", "size", ",", "nstart", ",", "dtype", "=", "int", ")", "for", "n", ",", "lims", "in", "enumerate", "(", "ind", ")", ":", "ns", "[", "lims", "[", "0", "]", ":", "lims", "[", "-", "1", "]", "+", "1", "]", "=", "nstart", "+", "n", "+", "1", "return", "ns" ]
cd25a650cfee318152f234d992708511f7047fbe
test
tuples_2_bool
Generate boolean array from list of limit tuples. Parameters ---------- tuples : array_like [2, n] array of (start, end) values x : array_like x scale the tuples are mapped to Returns ------- array_like boolean array, True where x is between each pair of tuples.
latools/helpers/helpers.py
def tuples_2_bool(tuples, x): """ Generate boolean array from list of limit tuples. Parameters ---------- tuples : array_like [2, n] array of (start, end) values x : array_like x scale the tuples are mapped to Returns ------- array_like boolean array, True where x is between each pair of tuples. """ if np.ndim(tuples) == 1: tuples = [tuples] out = np.zeros(x.size, dtype=bool) for l, u in tuples: out[(x > l) & (x < u)] = True return out
def tuples_2_bool(tuples, x): """ Generate boolean array from list of limit tuples. Parameters ---------- tuples : array_like [2, n] array of (start, end) values x : array_like x scale the tuples are mapped to Returns ------- array_like boolean array, True where x is between each pair of tuples. """ if np.ndim(tuples) == 1: tuples = [tuples] out = np.zeros(x.size, dtype=bool) for l, u in tuples: out[(x > l) & (x < u)] = True return out
[ "Generate", "boolean", "array", "from", "list", "of", "limit", "tuples", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L262-L284
[ "def", "tuples_2_bool", "(", "tuples", ",", "x", ")", ":", "if", "np", ".", "ndim", "(", "tuples", ")", "==", "1", ":", "tuples", "=", "[", "tuples", "]", "out", "=", "np", ".", "zeros", "(", "x", ".", "size", ",", "dtype", "=", "bool", ")", "for", "l", ",", "u", "in", "tuples", ":", "out", "[", "(", "x", ">", "l", ")", "&", "(", "x", "<", "u", ")", "]", "=", "True", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
rolling_window
Returns (win, len(a)) rolling - window array of data. Parameters ---------- a : array_like Array to calculate the rolling window of window : int Description of `window`. pad : same as dtype(a) Description of `pad`. Returns ------- array_like An array of shape (n, window), where n is either len(a) - window if pad is None, or len(a) if pad is not None.
latools/helpers/helpers.py
def rolling_window(a, window, pad=None): """ Returns (win, len(a)) rolling - window array of data. Parameters ---------- a : array_like Array to calculate the rolling window of window : int Description of `window`. pad : same as dtype(a) Description of `pad`. Returns ------- array_like An array of shape (n, window), where n is either len(a) - window if pad is None, or len(a) if pad is not None. """ shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1], ) out = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) # pad shape if window % 2 == 0: npre = window // 2 - 1 npost = window // 2 else: npre = npost = window // 2 if isinstance(pad, str): if pad == 'ends': prepad = np.full((npre, window), a[0]) postpad = np.full((npost, window), a[-1]) elif pad == 'mean_ends': prepad = np.full((npre, window), np.mean(a[:(window // 2)])) postpad = np.full((npost, window), np.mean(a[-(window // 2):])) elif pad == 'repeat_ends': prepad = np.full((npre, window), out[0]) postpad = np.full((npost, window), out[0]) else: raise ValueError("If pad is a string, it must be either 'ends', 'mean_ends' or 'repeat_ends'.") return np.concatenate((prepad, out, postpad)) elif pad is not None: pre_blankpad = np.empty(((npre, window))) pre_blankpad[:] = pad post_blankpad = np.empty(((npost, window))) post_blankpad[:] = pad return np.concatenate([pre_blankpad, out, post_blankpad]) else: return out
def rolling_window(a, window, pad=None): """ Returns (win, len(a)) rolling - window array of data. Parameters ---------- a : array_like Array to calculate the rolling window of window : int Description of `window`. pad : same as dtype(a) Description of `pad`. Returns ------- array_like An array of shape (n, window), where n is either len(a) - window if pad is None, or len(a) if pad is not None. """ shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1], ) out = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) # pad shape if window % 2 == 0: npre = window // 2 - 1 npost = window // 2 else: npre = npost = window // 2 if isinstance(pad, str): if pad == 'ends': prepad = np.full((npre, window), a[0]) postpad = np.full((npost, window), a[-1]) elif pad == 'mean_ends': prepad = np.full((npre, window), np.mean(a[:(window // 2)])) postpad = np.full((npost, window), np.mean(a[-(window // 2):])) elif pad == 'repeat_ends': prepad = np.full((npre, window), out[0]) postpad = np.full((npost, window), out[0]) else: raise ValueError("If pad is a string, it must be either 'ends', 'mean_ends' or 'repeat_ends'.") return np.concatenate((prepad, out, postpad)) elif pad is not None: pre_blankpad = np.empty(((npre, window))) pre_blankpad[:] = pad post_blankpad = np.empty(((npost, window))) post_blankpad[:] = pad return np.concatenate([pre_blankpad, out, post_blankpad]) else: return out
[ "Returns", "(", "win", "len", "(", "a", "))", "rolling", "-", "window", "array", "of", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L328-L377
[ "def", "rolling_window", "(", "a", ",", "window", ",", "pad", "=", "None", ")", ":", "shape", "=", "a", ".", "shape", "[", ":", "-", "1", "]", "+", "(", "a", ".", "shape", "[", "-", "1", "]", "-", "window", "+", "1", ",", "window", ")", "strides", "=", "a", ".", "strides", "+", "(", "a", ".", "strides", "[", "-", "1", "]", ",", ")", "out", "=", "np", ".", "lib", ".", "stride_tricks", ".", "as_strided", "(", "a", ",", "shape", "=", "shape", ",", "strides", "=", "strides", ")", "# pad shape", "if", "window", "%", "2", "==", "0", ":", "npre", "=", "window", "//", "2", "-", "1", "npost", "=", "window", "//", "2", "else", ":", "npre", "=", "npost", "=", "window", "//", "2", "if", "isinstance", "(", "pad", ",", "str", ")", ":", "if", "pad", "==", "'ends'", ":", "prepad", "=", "np", ".", "full", "(", "(", "npre", ",", "window", ")", ",", "a", "[", "0", "]", ")", "postpad", "=", "np", ".", "full", "(", "(", "npost", ",", "window", ")", ",", "a", "[", "-", "1", "]", ")", "elif", "pad", "==", "'mean_ends'", ":", "prepad", "=", "np", ".", "full", "(", "(", "npre", ",", "window", ")", ",", "np", ".", "mean", "(", "a", "[", ":", "(", "window", "//", "2", ")", "]", ")", ")", "postpad", "=", "np", ".", "full", "(", "(", "npost", ",", "window", ")", ",", "np", ".", "mean", "(", "a", "[", "-", "(", "window", "//", "2", ")", ":", "]", ")", ")", "elif", "pad", "==", "'repeat_ends'", ":", "prepad", "=", "np", ".", "full", "(", "(", "npre", ",", "window", ")", ",", "out", "[", "0", "]", ")", "postpad", "=", "np", ".", "full", "(", "(", "npost", ",", "window", ")", ",", "out", "[", "0", "]", ")", "else", ":", "raise", "ValueError", "(", "\"If pad is a string, it must be either 'ends', 'mean_ends' or 'repeat_ends'.\"", ")", "return", "np", ".", "concatenate", "(", "(", "prepad", ",", "out", ",", "postpad", ")", ")", "elif", "pad", "is", "not", "None", ":", "pre_blankpad", "=", "np", ".", "empty", "(", "(", "(", "npre", ",", "window", ")", ")", ")", "pre_blankpad", "[", ":", "]", "=", "pad", "post_blankpad", "=", "np", ".", "empty", "(", "(", "(", "npost", ",", "window", ")", ")", ")", "post_blankpad", "[", ":", "]", "=", "pad", "return", "np", ".", "concatenate", "(", "[", "pre_blankpad", ",", "out", ",", "post_blankpad", "]", ")", "else", ":", "return", "out" ]
cd25a650cfee318152f234d992708511f7047fbe
test
fastsmooth
Returns rolling - window smooth of a. Function to efficiently calculate the rolling mean of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale.
latools/helpers/helpers.py
def fastsmooth(a, win=11): """ Returns rolling - window smooth of a. Function to efficiently calculate the rolling mean of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale. """ # check to see if 'window' is odd (even does not work) if win % 2 == 0: win += 1 # add 1 to window if it is even. kernel = np.ones(win) / win npad = int((win - 1) / 2) spad = np.full(npad + 1, np.mean(a[:(npad + 1)])) epad = np.full(npad - 1, np.mean(a[-(npad - 1):])) return np.concatenate([spad, np.convolve(a, kernel, 'valid'), epad])
def fastsmooth(a, win=11): """ Returns rolling - window smooth of a. Function to efficiently calculate the rolling mean of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale. """ # check to see if 'window' is odd (even does not work) if win % 2 == 0: win += 1 # add 1 to window if it is even. kernel = np.ones(win) / win npad = int((win - 1) / 2) spad = np.full(npad + 1, np.mean(a[:(npad + 1)])) epad = np.full(npad - 1, np.mean(a[-(npad - 1):])) return np.concatenate([spad, np.convolve(a, kernel, 'valid'), epad])
[ "Returns", "rolling", "-", "window", "smooth", "of", "a", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L379-L406
[ "def", "fastsmooth", "(", "a", ",", "win", "=", "11", ")", ":", "# check to see if 'window' is odd (even does not work)", "if", "win", "%", "2", "==", "0", ":", "win", "+=", "1", "# add 1 to window if it is even.", "kernel", "=", "np", ".", "ones", "(", "win", ")", "/", "win", "npad", "=", "int", "(", "(", "win", "-", "1", ")", "/", "2", ")", "spad", "=", "np", ".", "full", "(", "npad", "+", "1", ",", "np", ".", "mean", "(", "a", "[", ":", "(", "npad", "+", "1", ")", "]", ")", ")", "epad", "=", "np", ".", "full", "(", "npad", "-", "1", ",", "np", ".", "mean", "(", "a", "[", "-", "(", "npad", "-", "1", ")", ":", "]", ")", ")", "return", "np", ".", "concatenate", "(", "[", "spad", ",", "np", ".", "convolve", "(", "a", ",", "kernel", ",", "'valid'", ")", ",", "epad", "]", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
fastgrad
Returns rolling - window gradient of a. Function to efficiently calculate the rolling gradient of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale.
latools/helpers/helpers.py
def fastgrad(a, win=11): """ Returns rolling - window gradient of a. Function to efficiently calculate the rolling gradient of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale. """ # check to see if 'window' is odd (even does not work) if win % 2 == 0: win += 1 # subtract 1 from window if it is even. # trick for efficient 'rolling' computation in numpy # shape = a.shape[:-1] + (a.shape[-1] - win + 1, win) # strides = a.strides + (a.strides[-1], ) # wins = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) wins = rolling_window(a, win, 'ends') # apply rolling gradient to data a = map(lambda x: np.polyfit(np.arange(win), x, 1)[0], wins) return np.array(list(a))
def fastgrad(a, win=11): """ Returns rolling - window gradient of a. Function to efficiently calculate the rolling gradient of a numpy array using 'stride_tricks' to split up a 1D array into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win]. Parameters ---------- a : array_like The 1D array to calculate the rolling gradient of. win : int The width of the rolling window. Returns ------- array_like Gradient of a, assuming as constant integer x - scale. """ # check to see if 'window' is odd (even does not work) if win % 2 == 0: win += 1 # subtract 1 from window if it is even. # trick for efficient 'rolling' computation in numpy # shape = a.shape[:-1] + (a.shape[-1] - win + 1, win) # strides = a.strides + (a.strides[-1], ) # wins = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) wins = rolling_window(a, win, 'ends') # apply rolling gradient to data a = map(lambda x: np.polyfit(np.arange(win), x, 1)[0], wins) return np.array(list(a))
[ "Returns", "rolling", "-", "window", "gradient", "of", "a", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L408-L439
[ "def", "fastgrad", "(", "a", ",", "win", "=", "11", ")", ":", "# check to see if 'window' is odd (even does not work)", "if", "win", "%", "2", "==", "0", ":", "win", "+=", "1", "# subtract 1 from window if it is even.", "# trick for efficient 'rolling' computation in numpy", "# shape = a.shape[:-1] + (a.shape[-1] - win + 1, win)", "# strides = a.strides + (a.strides[-1], )", "# wins = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)", "wins", "=", "rolling_window", "(", "a", ",", "win", ",", "'ends'", ")", "# apply rolling gradient to data", "a", "=", "map", "(", "lambda", "x", ":", "np", ".", "polyfit", "(", "np", ".", "arange", "(", "win", ")", ",", "x", ",", "1", ")", "[", "0", "]", ",", "wins", ")", "return", "np", ".", "array", "(", "list", "(", "a", ")", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
calc_grads
Calculate gradients of values in dat. Parameters ---------- x : array like Independent variable for items in dat. dat : dict {key: dependent_variable} pairs keys : str or array-like Which keys in dict to calculate the gradient of. win : int The side of the rolling window for gradient calculation Returns ------- dict of gradients
latools/helpers/helpers.py
def calc_grads(x, dat, keys=None, win=5): """ Calculate gradients of values in dat. Parameters ---------- x : array like Independent variable for items in dat. dat : dict {key: dependent_variable} pairs keys : str or array-like Which keys in dict to calculate the gradient of. win : int The side of the rolling window for gradient calculation Returns ------- dict of gradients """ if keys is None: keys = dat.keys() def grad(xy): if (~np.isnan(xy)).all(): try: return np.polyfit(xy[0], xy[1], 1)[0] except ValueError: return np.nan else: return np.nan xs = rolling_window(x, win, pad='repeat_ends') grads = Bunch() for k in keys: d = nominal_values(rolling_window(dat[k], win, pad='repeat_ends')) grads[k] = np.array(list(map(grad, zip(xs, d)))) return grads
def calc_grads(x, dat, keys=None, win=5): """ Calculate gradients of values in dat. Parameters ---------- x : array like Independent variable for items in dat. dat : dict {key: dependent_variable} pairs keys : str or array-like Which keys in dict to calculate the gradient of. win : int The side of the rolling window for gradient calculation Returns ------- dict of gradients """ if keys is None: keys = dat.keys() def grad(xy): if (~np.isnan(xy)).all(): try: return np.polyfit(xy[0], xy[1], 1)[0] except ValueError: return np.nan else: return np.nan xs = rolling_window(x, win, pad='repeat_ends') grads = Bunch() for k in keys: d = nominal_values(rolling_window(dat[k], win, pad='repeat_ends')) grads[k] = np.array(list(map(grad, zip(xs, d)))) return grads
[ "Calculate", "gradients", "of", "values", "in", "dat", ".", "Parameters", "----------", "x", ":", "array", "like", "Independent", "variable", "for", "items", "in", "dat", ".", "dat", ":", "dict", "{", "key", ":", "dependent_variable", "}", "pairs", "keys", ":", "str", "or", "array", "-", "like", "Which", "keys", "in", "dict", "to", "calculate", "the", "gradient", "of", ".", "win", ":", "int", "The", "side", "of", "the", "rolling", "window", "for", "gradient", "calculation" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L441-L479
[ "def", "calc_grads", "(", "x", ",", "dat", ",", "keys", "=", "None", ",", "win", "=", "5", ")", ":", "if", "keys", "is", "None", ":", "keys", "=", "dat", ".", "keys", "(", ")", "def", "grad", "(", "xy", ")", ":", "if", "(", "~", "np", ".", "isnan", "(", "xy", ")", ")", ".", "all", "(", ")", ":", "try", ":", "return", "np", ".", "polyfit", "(", "xy", "[", "0", "]", ",", "xy", "[", "1", "]", ",", "1", ")", "[", "0", "]", "except", "ValueError", ":", "return", "np", ".", "nan", "else", ":", "return", "np", ".", "nan", "xs", "=", "rolling_window", "(", "x", ",", "win", ",", "pad", "=", "'repeat_ends'", ")", "grads", "=", "Bunch", "(", ")", "for", "k", "in", "keys", ":", "d", "=", "nominal_values", "(", "rolling_window", "(", "dat", "[", "k", "]", ",", "win", ",", "pad", "=", "'repeat_ends'", ")", ")", "grads", "[", "k", "]", "=", "np", ".", "array", "(", "list", "(", "map", "(", "grad", ",", "zip", "(", "xs", ",", "d", ")", ")", ")", ")", "return", "grads" ]
cd25a650cfee318152f234d992708511f7047fbe
test
findmins
Function to find local minima. Parameters ---------- x, y : array_like 1D arrays of the independent (x) and dependent (y) variables. Returns ------- array_like Array of points in x where y has a local minimum.
latools/helpers/helpers.py
def findmins(x, y): """ Function to find local minima. Parameters ---------- x, y : array_like 1D arrays of the independent (x) and dependent (y) variables. Returns ------- array_like Array of points in x where y has a local minimum. """ return x[np.r_[False, y[1:] < y[:-1]] & np.r_[y[:-1] < y[1:], False]]
def findmins(x, y): """ Function to find local minima. Parameters ---------- x, y : array_like 1D arrays of the independent (x) and dependent (y) variables. Returns ------- array_like Array of points in x where y has a local minimum. """ return x[np.r_[False, y[1:] < y[:-1]] & np.r_[y[:-1] < y[1:], False]]
[ "Function", "to", "find", "local", "minima", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L481-L494
[ "def", "findmins", "(", "x", ",", "y", ")", ":", "return", "x", "[", "np", ".", "r_", "[", "False", ",", "y", "[", "1", ":", "]", "<", "y", "[", ":", "-", "1", "]", "]", "&", "np", ".", "r_", "[", "y", "[", ":", "-", "1", "]", "<", "y", "[", "1", ":", "]", ",", "False", "]", "]" ]
cd25a650cfee318152f234d992708511f7047fbe
test
stack_keys
Combine elements of ddict into an array of shape (len(ddict[key]), len(keys)). Useful for preparing data for sklearn. Parameters ---------- ddict : dict A dict containing arrays or lists to be stacked. Must be of equal length. keys : list or str The keys of dict to stack. Must be present in ddict. extra : list (optional) A list of additional arrays to stack. Elements of extra must be the same length as arrays in ddict. Extras are inserted as the first columns of output.
latools/helpers/helpers.py
def stack_keys(ddict, keys, extra=None): """ Combine elements of ddict into an array of shape (len(ddict[key]), len(keys)). Useful for preparing data for sklearn. Parameters ---------- ddict : dict A dict containing arrays or lists to be stacked. Must be of equal length. keys : list or str The keys of dict to stack. Must be present in ddict. extra : list (optional) A list of additional arrays to stack. Elements of extra must be the same length as arrays in ddict. Extras are inserted as the first columns of output. """ if isinstance(keys, str): d = [ddict[keys]] else: d = [ddict[k] for k in keys] if extra is not None: d = extra + d return np.vstack(d).T
def stack_keys(ddict, keys, extra=None): """ Combine elements of ddict into an array of shape (len(ddict[key]), len(keys)). Useful for preparing data for sklearn. Parameters ---------- ddict : dict A dict containing arrays or lists to be stacked. Must be of equal length. keys : list or str The keys of dict to stack. Must be present in ddict. extra : list (optional) A list of additional arrays to stack. Elements of extra must be the same length as arrays in ddict. Extras are inserted as the first columns of output. """ if isinstance(keys, str): d = [ddict[keys]] else: d = [ddict[k] for k in keys] if extra is not None: d = extra + d return np.vstack(d).T
[ "Combine", "elements", "of", "ddict", "into", "an", "array", "of", "shape", "(", "len", "(", "ddict", "[", "key", "]", ")", "len", "(", "keys", "))", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/helpers.py#L496-L520
[ "def", "stack_keys", "(", "ddict", ",", "keys", ",", "extra", "=", "None", ")", ":", "if", "isinstance", "(", "keys", ",", "str", ")", ":", "d", "=", "[", "ddict", "[", "keys", "]", "]", "else", ":", "d", "=", "[", "ddict", "[", "k", "]", "for", "k", "in", "keys", "]", "if", "extra", "is", "not", "None", ":", "d", "=", "extra", "+", "d", "return", "np", ".", "vstack", "(", "d", ")", ".", "T" ]
cd25a650cfee318152f234d992708511f7047fbe
test
cluster_meanshift
Identify clusters using Meanshift algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. bandwidth : float or None If None, bandwidth is estimated automatically using sklean.cluster.estimate_bandwidth bin_seeding : bool Setting this option to True will speed up the algorithm. See sklearn documentation for full description. Returns ------- dict boolean array for each identified cluster.
latools/filtering/clustering.py
def cluster_meanshift(data, bandwidth=None, bin_seeding=False, **kwargs): """ Identify clusters using Meanshift algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. bandwidth : float or None If None, bandwidth is estimated automatically using sklean.cluster.estimate_bandwidth bin_seeding : bool Setting this option to True will speed up the algorithm. See sklearn documentation for full description. Returns ------- dict boolean array for each identified cluster. """ if bandwidth is None: bandwidth = cl.estimate_bandwidth(data) ms = cl.MeanShift(bandwidth=bandwidth, bin_seeding=bin_seeding, **kwargs) ms.fit(data) labels = ms.labels_ return labels, [np.nan]
def cluster_meanshift(data, bandwidth=None, bin_seeding=False, **kwargs): """ Identify clusters using Meanshift algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. bandwidth : float or None If None, bandwidth is estimated automatically using sklean.cluster.estimate_bandwidth bin_seeding : bool Setting this option to True will speed up the algorithm. See sklearn documentation for full description. Returns ------- dict boolean array for each identified cluster. """ if bandwidth is None: bandwidth = cl.estimate_bandwidth(data) ms = cl.MeanShift(bandwidth=bandwidth, bin_seeding=bin_seeding, **kwargs) ms.fit(data) labels = ms.labels_ return labels, [np.nan]
[ "Identify", "clusters", "using", "Meanshift", "algorithm", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/clustering.py#L5-L33
[ "def", "cluster_meanshift", "(", "data", ",", "bandwidth", "=", "None", ",", "bin_seeding", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "bandwidth", "is", "None", ":", "bandwidth", "=", "cl", ".", "estimate_bandwidth", "(", "data", ")", "ms", "=", "cl", ".", "MeanShift", "(", "bandwidth", "=", "bandwidth", ",", "bin_seeding", "=", "bin_seeding", ",", "*", "*", "kwargs", ")", "ms", ".", "fit", "(", "data", ")", "labels", "=", "ms", ".", "labels_", "return", "labels", ",", "[", "np", ".", "nan", "]" ]
cd25a650cfee318152f234d992708511f7047fbe
test
cluster_kmeans
Identify clusters using K - Means algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. n_clusters : int The number of clusters expected in the data. Returns ------- dict boolean array for each identified cluster.
latools/filtering/clustering.py
def cluster_kmeans(data, n_clusters, **kwargs): """ Identify clusters using K - Means algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. n_clusters : int The number of clusters expected in the data. Returns ------- dict boolean array for each identified cluster. """ km = cl.KMeans(n_clusters, **kwargs) kmf = km.fit(data) labels = kmf.labels_ return labels, [np.nan]
def cluster_kmeans(data, n_clusters, **kwargs): """ Identify clusters using K - Means algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. n_clusters : int The number of clusters expected in the data. Returns ------- dict boolean array for each identified cluster. """ km = cl.KMeans(n_clusters, **kwargs) kmf = km.fit(data) labels = kmf.labels_ return labels, [np.nan]
[ "Identify", "clusters", "using", "K", "-", "Means", "algorithm", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/clustering.py#L35-L56
[ "def", "cluster_kmeans", "(", "data", ",", "n_clusters", ",", "*", "*", "kwargs", ")", ":", "km", "=", "cl", ".", "KMeans", "(", "n_clusters", ",", "*", "*", "kwargs", ")", "kmf", "=", "km", ".", "fit", "(", "data", ")", "labels", "=", "kmf", ".", "labels_", "return", "labels", ",", "[", "np", ".", "nan", "]" ]
cd25a650cfee318152f234d992708511f7047fbe
test
cluster_DBSCAN
Identify clusters using DBSCAN algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. eps : float The minimum 'distance' points must be apart for them to be in the same cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is in terms of total sample variance. Normalised data have a mean of 0 and a variance of 1. min_samples : int The minimum number of samples within distance `eps` required to be considered as an independent cluster. n_clusters : int The number of clusters expected. If specified, `eps` will be incrementally reduced until the expected number of clusters is found. maxiter : int The maximum number of iterations DBSCAN will run. Returns ------- dict boolean array for each identified cluster and core samples.
latools/filtering/clustering.py
def cluster_DBSCAN(data, eps=None, min_samples=None, n_clusters=None, maxiter=200, **kwargs): """ Identify clusters using DBSCAN algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. eps : float The minimum 'distance' points must be apart for them to be in the same cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is in terms of total sample variance. Normalised data have a mean of 0 and a variance of 1. min_samples : int The minimum number of samples within distance `eps` required to be considered as an independent cluster. n_clusters : int The number of clusters expected. If specified, `eps` will be incrementally reduced until the expected number of clusters is found. maxiter : int The maximum number of iterations DBSCAN will run. Returns ------- dict boolean array for each identified cluster and core samples. """ if n_clusters is None: if eps is None: eps = 0.3 db = cl.DBSCAN(eps=eps, min_samples=min_samples, **kwargs).fit(data) else: clusters = 0 eps_temp = 1 / .95 niter = 0 while clusters < n_clusters: clusters_last = clusters eps_temp *= 0.95 db = cl.DBSCAN(eps=eps_temp, min_samples=min_samples, **kwargs).fit(data) clusters = (len(set(db.labels_)) - (1 if -1 in db.labels_ else 0)) if clusters < clusters_last: eps_temp *= 1 / 0.95 db = cl.DBSCAN(eps=eps_temp, min_samples=min_samples, **kwargs).fit(data) clusters = (len(set(db.labels_)) - (1 if -1 in db.labels_ else 0)) warnings.warn(('\n\n***Unable to find {:.0f} clusters in ' 'data. Found {:.0f} with an eps of {:.2e}' '').format(n_clusters, clusters, eps_temp)) break niter += 1 if niter == maxiter: warnings.warn(('\n\n***Maximum iterations ({:.0f}) reached' ', {:.0f} clusters not found.\nDeacrease ' 'min_samples or n_clusters (or increase ' 'maxiter).').format(maxiter, n_clusters)) break labels = db.labels_ core_samples_mask = np.zeros_like(labels) core_samples_mask[db.core_sample_indices_] = True return labels, core_samples_mask
def cluster_DBSCAN(data, eps=None, min_samples=None, n_clusters=None, maxiter=200, **kwargs): """ Identify clusters using DBSCAN algorithm. Parameters ---------- data : array_like array of size [n_samples, n_features]. eps : float The minimum 'distance' points must be apart for them to be in the same cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is in terms of total sample variance. Normalised data have a mean of 0 and a variance of 1. min_samples : int The minimum number of samples within distance `eps` required to be considered as an independent cluster. n_clusters : int The number of clusters expected. If specified, `eps` will be incrementally reduced until the expected number of clusters is found. maxiter : int The maximum number of iterations DBSCAN will run. Returns ------- dict boolean array for each identified cluster and core samples. """ if n_clusters is None: if eps is None: eps = 0.3 db = cl.DBSCAN(eps=eps, min_samples=min_samples, **kwargs).fit(data) else: clusters = 0 eps_temp = 1 / .95 niter = 0 while clusters < n_clusters: clusters_last = clusters eps_temp *= 0.95 db = cl.DBSCAN(eps=eps_temp, min_samples=min_samples, **kwargs).fit(data) clusters = (len(set(db.labels_)) - (1 if -1 in db.labels_ else 0)) if clusters < clusters_last: eps_temp *= 1 / 0.95 db = cl.DBSCAN(eps=eps_temp, min_samples=min_samples, **kwargs).fit(data) clusters = (len(set(db.labels_)) - (1 if -1 in db.labels_ else 0)) warnings.warn(('\n\n***Unable to find {:.0f} clusters in ' 'data. Found {:.0f} with an eps of {:.2e}' '').format(n_clusters, clusters, eps_temp)) break niter += 1 if niter == maxiter: warnings.warn(('\n\n***Maximum iterations ({:.0f}) reached' ', {:.0f} clusters not found.\nDeacrease ' 'min_samples or n_clusters (or increase ' 'maxiter).').format(maxiter, n_clusters)) break labels = db.labels_ core_samples_mask = np.zeros_like(labels) core_samples_mask[db.core_sample_indices_] = True return labels, core_samples_mask
[ "Identify", "clusters", "using", "DBSCAN", "algorithm", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/clustering.py#L58-L123
[ "def", "cluster_DBSCAN", "(", "data", ",", "eps", "=", "None", ",", "min_samples", "=", "None", ",", "n_clusters", "=", "None", ",", "maxiter", "=", "200", ",", "*", "*", "kwargs", ")", ":", "if", "n_clusters", "is", "None", ":", "if", "eps", "is", "None", ":", "eps", "=", "0.3", "db", "=", "cl", ".", "DBSCAN", "(", "eps", "=", "eps", ",", "min_samples", "=", "min_samples", ",", "*", "*", "kwargs", ")", ".", "fit", "(", "data", ")", "else", ":", "clusters", "=", "0", "eps_temp", "=", "1", "/", ".95", "niter", "=", "0", "while", "clusters", "<", "n_clusters", ":", "clusters_last", "=", "clusters", "eps_temp", "*=", "0.95", "db", "=", "cl", ".", "DBSCAN", "(", "eps", "=", "eps_temp", ",", "min_samples", "=", "min_samples", ",", "*", "*", "kwargs", ")", ".", "fit", "(", "data", ")", "clusters", "=", "(", "len", "(", "set", "(", "db", ".", "labels_", ")", ")", "-", "(", "1", "if", "-", "1", "in", "db", ".", "labels_", "else", "0", ")", ")", "if", "clusters", "<", "clusters_last", ":", "eps_temp", "*=", "1", "/", "0.95", "db", "=", "cl", ".", "DBSCAN", "(", "eps", "=", "eps_temp", ",", "min_samples", "=", "min_samples", ",", "*", "*", "kwargs", ")", ".", "fit", "(", "data", ")", "clusters", "=", "(", "len", "(", "set", "(", "db", ".", "labels_", ")", ")", "-", "(", "1", "if", "-", "1", "in", "db", ".", "labels_", "else", "0", ")", ")", "warnings", ".", "warn", "(", "(", "'\\n\\n***Unable to find {:.0f} clusters in '", "'data. Found {:.0f} with an eps of {:.2e}'", "''", ")", ".", "format", "(", "n_clusters", ",", "clusters", ",", "eps_temp", ")", ")", "break", "niter", "+=", "1", "if", "niter", "==", "maxiter", ":", "warnings", ".", "warn", "(", "(", "'\\n\\n***Maximum iterations ({:.0f}) reached'", "', {:.0f} clusters not found.\\nDeacrease '", "'min_samples or n_clusters (or increase '", "'maxiter).'", ")", ".", "format", "(", "maxiter", ",", "n_clusters", ")", ")", "break", "labels", "=", "db", ".", "labels_", "core_samples_mask", "=", "np", ".", "zeros_like", "(", "labels", ")", "core_samples_mask", "[", "db", ".", "core_sample_indices_", "]", "=", "True", "return", "labels", ",", "core_samples_mask" ]
cd25a650cfee318152f234d992708511f7047fbe
test
get_defined_srms
Returns list of SRMS defined in the SRM database
latools/helpers/srm.py
def get_defined_srms(srm_file): """ Returns list of SRMS defined in the SRM database """ srms = read_table(srm_file) return np.asanyarray(srms.index.unique())
def get_defined_srms(srm_file): """ Returns list of SRMS defined in the SRM database """ srms = read_table(srm_file) return np.asanyarray(srms.index.unique())
[ "Returns", "list", "of", "SRMS", "defined", "in", "the", "SRM", "database" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/srm.py#L22-L27
[ "def", "get_defined_srms", "(", "srm_file", ")", ":", "srms", "=", "read_table", "(", "srm_file", ")", "return", "np", ".", "asanyarray", "(", "srms", ".", "index", ".", "unique", "(", ")", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
read_configuration
Read LAtools configuration file, and return parameters as dict.
latools/helpers/config.py
def read_configuration(config='DEFAULT'): """ Read LAtools configuration file, and return parameters as dict. """ # read configuration file _, conf = read_latoolscfg() # if 'DEFAULT', check which is the default configuration if config == 'DEFAULT': config = conf['DEFAULT']['config'] # grab the chosen configuration conf = dict(conf[config]) # update config name with chosen conf['config'] = config return conf
def read_configuration(config='DEFAULT'): """ Read LAtools configuration file, and return parameters as dict. """ # read configuration file _, conf = read_latoolscfg() # if 'DEFAULT', check which is the default configuration if config == 'DEFAULT': config = conf['DEFAULT']['config'] # grab the chosen configuration conf = dict(conf[config]) # update config name with chosen conf['config'] = config return conf
[ "Read", "LAtools", "configuration", "file", "and", "return", "parameters", "as", "dict", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/config.py#L13-L27
[ "def", "read_configuration", "(", "config", "=", "'DEFAULT'", ")", ":", "# read configuration file", "_", ",", "conf", "=", "read_latoolscfg", "(", ")", "# if 'DEFAULT', check which is the default configuration", "if", "config", "==", "'DEFAULT'", ":", "config", "=", "conf", "[", "'DEFAULT'", "]", "[", "'config'", "]", "# grab the chosen configuration", "conf", "=", "dict", "(", "conf", "[", "config", "]", ")", "# update config name with chosen", "conf", "[", "'config'", "]", "=", "config", "return", "conf" ]
cd25a650cfee318152f234d992708511f7047fbe
test
read_latoolscfg
Reads configuration, returns a ConfigParser object. Distinct from read_configuration, which returns a dict.
latools/helpers/config.py
def read_latoolscfg(): """ Reads configuration, returns a ConfigParser object. Distinct from read_configuration, which returns a dict. """ config_file = pkgrs.resource_filename('latools', 'latools.cfg') cf = configparser.ConfigParser() cf.read(config_file) return config_file, cf
def read_latoolscfg(): """ Reads configuration, returns a ConfigParser object. Distinct from read_configuration, which returns a dict. """ config_file = pkgrs.resource_filename('latools', 'latools.cfg') cf = configparser.ConfigParser() cf.read(config_file) return config_file, cf
[ "Reads", "configuration", "returns", "a", "ConfigParser", "object", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/config.py#L30-L39
[ "def", "read_latoolscfg", "(", ")", ":", "config_file", "=", "pkgrs", ".", "resource_filename", "(", "'latools'", ",", "'latools.cfg'", ")", "cf", "=", "configparser", ".", "ConfigParser", "(", ")", "cf", ".", "read", "(", "config_file", ")", "return", "config_file", ",", "cf" ]
cd25a650cfee318152f234d992708511f7047fbe
test
print_all
Prints all currently defined configurations.
latools/helpers/config.py
def print_all(): """ Prints all currently defined configurations. """ # read configuration file _, conf = read_latoolscfg() default = conf['DEFAULT']['config'] pstr = '\nCurrently defined LAtools configurations:\n\n' for s in conf.sections(): if s == default: pstr += s + ' [DEFAULT]\n' elif s == 'REPRODUCE': pstr += s + ' [DO NOT ALTER]\n' else: pstr += s + '\n' for k, v in conf[s].items(): if k != 'config': if v[:9] == 'resources': v = pkgrs.resource_filename('latools', v) pstr += ' ' + k + ': ' + v + '\n' pstr += '\n' print(pstr) return
def print_all(): """ Prints all currently defined configurations. """ # read configuration file _, conf = read_latoolscfg() default = conf['DEFAULT']['config'] pstr = '\nCurrently defined LAtools configurations:\n\n' for s in conf.sections(): if s == default: pstr += s + ' [DEFAULT]\n' elif s == 'REPRODUCE': pstr += s + ' [DO NOT ALTER]\n' else: pstr += s + '\n' for k, v in conf[s].items(): if k != 'config': if v[:9] == 'resources': v = pkgrs.resource_filename('latools', v) pstr += ' ' + k + ': ' + v + '\n' pstr += '\n' print(pstr) return
[ "Prints", "all", "currently", "defined", "configurations", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/config.py#L50-L76
[ "def", "print_all", "(", ")", ":", "# read configuration file", "_", ",", "conf", "=", "read_latoolscfg", "(", ")", "default", "=", "conf", "[", "'DEFAULT'", "]", "[", "'config'", "]", "pstr", "=", "'\\nCurrently defined LAtools configurations:\\n\\n'", "for", "s", "in", "conf", ".", "sections", "(", ")", ":", "if", "s", "==", "default", ":", "pstr", "+=", "s", "+", "' [DEFAULT]\\n'", "elif", "s", "==", "'REPRODUCE'", ":", "pstr", "+=", "s", "+", "' [DO NOT ALTER]\\n'", "else", ":", "pstr", "+=", "s", "+", "'\\n'", "for", "k", ",", "v", "in", "conf", "[", "s", "]", ".", "items", "(", ")", ":", "if", "k", "!=", "'config'", ":", "if", "v", "[", ":", "9", "]", "==", "'resources'", ":", "v", "=", "pkgrs", ".", "resource_filename", "(", "'latools'", ",", "v", ")", "pstr", "+=", "' '", "+", "k", "+", "': '", "+", "v", "+", "'\\n'", "pstr", "+=", "'\\n'", "print", "(", "pstr", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
copy_SRM_file
Creates a copy of the default SRM table at the specified location. Parameters ---------- destination : str The save location for the SRM file. If no location specified, saves it as 'LAtools_[config]_SRMTable.csv' in the current working directory. config : str It's possible to set up different configurations with different SRM files. This specifies the name of the configuration that you want to copy the SRM file from. If not specified, the 'DEFAULT' configuration is used.
latools/helpers/config.py
def copy_SRM_file(destination=None, config='DEFAULT'): """ Creates a copy of the default SRM table at the specified location. Parameters ---------- destination : str The save location for the SRM file. If no location specified, saves it as 'LAtools_[config]_SRMTable.csv' in the current working directory. config : str It's possible to set up different configurations with different SRM files. This specifies the name of the configuration that you want to copy the SRM file from. If not specified, the 'DEFAULT' configuration is used. """ # find SRM file from configuration conf = read_configuration() src = pkgrs.resource_filename('latools', conf['srmfile']) # work out destination path (if not given) if destination is None: destination = './LAtools_' + conf['config'] + '_SRMTable.csv' if os.path.isdir(destination): destination += 'LAtools_' + conf['config'] + '_SRMTable.csv' copyfile(src, destination) print(src + ' \n copied to:\n ' + destination) return
def copy_SRM_file(destination=None, config='DEFAULT'): """ Creates a copy of the default SRM table at the specified location. Parameters ---------- destination : str The save location for the SRM file. If no location specified, saves it as 'LAtools_[config]_SRMTable.csv' in the current working directory. config : str It's possible to set up different configurations with different SRM files. This specifies the name of the configuration that you want to copy the SRM file from. If not specified, the 'DEFAULT' configuration is used. """ # find SRM file from configuration conf = read_configuration() src = pkgrs.resource_filename('latools', conf['srmfile']) # work out destination path (if not given) if destination is None: destination = './LAtools_' + conf['config'] + '_SRMTable.csv' if os.path.isdir(destination): destination += 'LAtools_' + conf['config'] + '_SRMTable.csv' copyfile(src, destination) print(src + ' \n copied to:\n ' + destination) return
[ "Creates", "a", "copy", "of", "the", "default", "SRM", "table", "at", "the", "specified", "location", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/config.py#L78-L109
[ "def", "copy_SRM_file", "(", "destination", "=", "None", ",", "config", "=", "'DEFAULT'", ")", ":", "# find SRM file from configuration ", "conf", "=", "read_configuration", "(", ")", "src", "=", "pkgrs", ".", "resource_filename", "(", "'latools'", ",", "conf", "[", "'srmfile'", "]", ")", "# work out destination path (if not given)", "if", "destination", "is", "None", ":", "destination", "=", "'./LAtools_'", "+", "conf", "[", "'config'", "]", "+", "'_SRMTable.csv'", "if", "os", ".", "path", ".", "isdir", "(", "destination", ")", ":", "destination", "+=", "'LAtools_'", "+", "conf", "[", "'config'", "]", "+", "'_SRMTable.csv'", "copyfile", "(", "src", ",", "destination", ")", "print", "(", "src", "+", "' \\n copied to:\\n '", "+", "destination", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
create
Adds a new configuration to latools.cfg. Parameters ---------- config_name : str The name of the new configuration. This should be descriptive (e.g. UC Davis Foram Group) srmfile : str (optional) The location of the srm file used for calibration. dataformat : str (optional) The location of the dataformat definition to use. base_on : str The name of the existing configuration to base the new one on. If either srm_file or dataformat are not specified, the new config will copy this information from the base_on config. make_default : bool Whether or not to make the new configuration the default for future analyses. Default = False. Returns ------- None
latools/helpers/config.py
def create(config_name, srmfile=None, dataformat=None, base_on='DEFAULT', make_default=False): """ Adds a new configuration to latools.cfg. Parameters ---------- config_name : str The name of the new configuration. This should be descriptive (e.g. UC Davis Foram Group) srmfile : str (optional) The location of the srm file used for calibration. dataformat : str (optional) The location of the dataformat definition to use. base_on : str The name of the existing configuration to base the new one on. If either srm_file or dataformat are not specified, the new config will copy this information from the base_on config. make_default : bool Whether or not to make the new configuration the default for future analyses. Default = False. Returns ------- None """ base_config = read_configuration(base_on) # read config file config_file, cf = read_latoolscfg() # if config doesn't already exist, create it. if config_name not in cf.sections(): cf.add_section(config_name) # set parameter values if dataformat is None: dataformat = base_config['dataformat'] cf.set(config_name, 'dataformat', dataformat) if srmfile is None: srmfile = base_config['srmfile'] cf.set(config_name, 'srmfile', srmfile) # make the parameter set default, if requested if make_default: cf.set('DEFAULT', 'config', config_name) with open(config_file, 'w') as f: cf.write(f) return
def create(config_name, srmfile=None, dataformat=None, base_on='DEFAULT', make_default=False): """ Adds a new configuration to latools.cfg. Parameters ---------- config_name : str The name of the new configuration. This should be descriptive (e.g. UC Davis Foram Group) srmfile : str (optional) The location of the srm file used for calibration. dataformat : str (optional) The location of the dataformat definition to use. base_on : str The name of the existing configuration to base the new one on. If either srm_file or dataformat are not specified, the new config will copy this information from the base_on config. make_default : bool Whether or not to make the new configuration the default for future analyses. Default = False. Returns ------- None """ base_config = read_configuration(base_on) # read config file config_file, cf = read_latoolscfg() # if config doesn't already exist, create it. if config_name not in cf.sections(): cf.add_section(config_name) # set parameter values if dataformat is None: dataformat = base_config['dataformat'] cf.set(config_name, 'dataformat', dataformat) if srmfile is None: srmfile = base_config['srmfile'] cf.set(config_name, 'srmfile', srmfile) # make the parameter set default, if requested if make_default: cf.set('DEFAULT', 'config', config_name) with open(config_file, 'w') as f: cf.write(f) return
[ "Adds", "a", "new", "configuration", "to", "latools", ".", "cfg", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/config.py#L111-L161
[ "def", "create", "(", "config_name", ",", "srmfile", "=", "None", ",", "dataformat", "=", "None", ",", "base_on", "=", "'DEFAULT'", ",", "make_default", "=", "False", ")", ":", "base_config", "=", "read_configuration", "(", "base_on", ")", "# read config file", "config_file", ",", "cf", "=", "read_latoolscfg", "(", ")", "# if config doesn't already exist, create it.", "if", "config_name", "not", "in", "cf", ".", "sections", "(", ")", ":", "cf", ".", "add_section", "(", "config_name", ")", "# set parameter values", "if", "dataformat", "is", "None", ":", "dataformat", "=", "base_config", "[", "'dataformat'", "]", "cf", ".", "set", "(", "config_name", ",", "'dataformat'", ",", "dataformat", ")", "if", "srmfile", "is", "None", ":", "srmfile", "=", "base_config", "[", "'srmfile'", "]", "cf", ".", "set", "(", "config_name", ",", "'srmfile'", ",", "srmfile", ")", "# make the parameter set default, if requested", "if", "make_default", ":", "cf", ".", "set", "(", "'DEFAULT'", ",", "'config'", ",", "config_name", ")", "with", "open", "(", "config_file", ",", "'w'", ")", "as", "f", ":", "cf", ".", "write", "(", "f", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
change_default
Change the default configuration.
latools/helpers/config.py
def change_default(config): """ Change the default configuration. """ config_file, cf = read_latoolscfg() if config not in cf.sections(): raise ValueError("\n'{:s}' is not a defined configuration.".format(config)) if config == 'REPRODUCE': pstr = ('Are you SURE you want to set REPRODUCE as your default configuration?\n' + ' ... this is an odd thing to be doing.') else: pstr = ('Are you sure you want to change the default configuration from {:s}'.format(cf['DEFAULT']['config']) + 'to {:s}?'.format(config)) response = input(pstr + '\n> [N/y]: ') if response.lower() == 'y': cf.set('DEFAULT', 'config', config) with open(config_file, 'w') as f: cf.write(f) print(' Default changed!') else: print(' Done nothing.')
def change_default(config): """ Change the default configuration. """ config_file, cf = read_latoolscfg() if config not in cf.sections(): raise ValueError("\n'{:s}' is not a defined configuration.".format(config)) if config == 'REPRODUCE': pstr = ('Are you SURE you want to set REPRODUCE as your default configuration?\n' + ' ... this is an odd thing to be doing.') else: pstr = ('Are you sure you want to change the default configuration from {:s}'.format(cf['DEFAULT']['config']) + 'to {:s}?'.format(config)) response = input(pstr + '\n> [N/y]: ') if response.lower() == 'y': cf.set('DEFAULT', 'config', config) with open(config_file, 'w') as f: cf.write(f) print(' Default changed!') else: print(' Done nothing.')
[ "Change", "the", "default", "configuration", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/helpers/config.py#L209-L233
[ "def", "change_default", "(", "config", ")", ":", "config_file", ",", "cf", "=", "read_latoolscfg", "(", ")", "if", "config", "not", "in", "cf", ".", "sections", "(", ")", ":", "raise", "ValueError", "(", "\"\\n'{:s}' is not a defined configuration.\"", ".", "format", "(", "config", ")", ")", "if", "config", "==", "'REPRODUCE'", ":", "pstr", "=", "(", "'Are you SURE you want to set REPRODUCE as your default configuration?\\n'", "+", "' ... this is an odd thing to be doing.'", ")", "else", ":", "pstr", "=", "(", "'Are you sure you want to change the default configuration from {:s}'", ".", "format", "(", "cf", "[", "'DEFAULT'", "]", "[", "'config'", "]", ")", "+", "'to {:s}?'", ".", "format", "(", "config", ")", ")", "response", "=", "input", "(", "pstr", "+", "'\\n> [N/y]: '", ")", "if", "response", ".", "lower", "(", ")", "==", "'y'", ":", "cf", ".", "set", "(", "'DEFAULT'", ",", "'config'", ",", "config", ")", "with", "open", "(", "config_file", ",", "'w'", ")", "as", "f", ":", "cf", ".", "write", "(", "f", ")", "print", "(", "' Default changed!'", ")", "else", ":", "print", "(", "' Done nothing.'", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
threshold
Return boolean arrays where a >= and < threshold. Parameters ---------- values : array-like Array of real values. threshold : float Threshold value Returns ------- (below, above) : tuple or boolean arrays
latools/filtering/filters.py
def threshold(values, threshold): """ Return boolean arrays where a >= and < threshold. Parameters ---------- values : array-like Array of real values. threshold : float Threshold value Returns ------- (below, above) : tuple or boolean arrays """ values = nominal_values(values) return (values < threshold, values >= threshold)
def threshold(values, threshold): """ Return boolean arrays where a >= and < threshold. Parameters ---------- values : array-like Array of real values. threshold : float Threshold value Returns ------- (below, above) : tuple or boolean arrays """ values = nominal_values(values) return (values < threshold, values >= threshold)
[ "Return", "boolean", "arrays", "where", "a", ">", "=", "and", "<", "threshold", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/filters.py#L7-L23
[ "def", "threshold", "(", "values", ",", "threshold", ")", ":", "values", "=", "nominal_values", "(", "values", ")", "return", "(", "values", "<", "threshold", ",", "values", ">=", "threshold", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
exclude_downhole
Exclude all data after the first excluded portion. This makes sense for spot measurements where, because of the signal mixing inherent in LA-ICPMS, once a contaminant is ablated, it will always be present to some degree in signals from further down the ablation pit. Parameters ---------- filt : boolean array threshold : int Returns ------- filter : boolean array
latools/filtering/filters.py
def exclude_downhole(filt, threshold=2): """ Exclude all data after the first excluded portion. This makes sense for spot measurements where, because of the signal mixing inherent in LA-ICPMS, once a contaminant is ablated, it will always be present to some degree in signals from further down the ablation pit. Parameters ---------- filt : boolean array threshold : int Returns ------- filter : boolean array """ cfilt = filt.copy() inds = bool_2_indices(~filt) rem = (np.diff(inds) >= threshold)[:, 0] if any(rem): if inds[rem].shape[0] > 1: limit = inds[rem][1, 0] cfilt[limit:] = False return cfilt
def exclude_downhole(filt, threshold=2): """ Exclude all data after the first excluded portion. This makes sense for spot measurements where, because of the signal mixing inherent in LA-ICPMS, once a contaminant is ablated, it will always be present to some degree in signals from further down the ablation pit. Parameters ---------- filt : boolean array threshold : int Returns ------- filter : boolean array """ cfilt = filt.copy() inds = bool_2_indices(~filt) rem = (np.diff(inds) >= threshold)[:, 0] if any(rem): if inds[rem].shape[0] > 1: limit = inds[rem][1, 0] cfilt[limit:] = False return cfilt
[ "Exclude", "all", "data", "after", "the", "first", "excluded", "portion", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/filters.py#L26-L56
[ "def", "exclude_downhole", "(", "filt", ",", "threshold", "=", "2", ")", ":", "cfilt", "=", "filt", ".", "copy", "(", ")", "inds", "=", "bool_2_indices", "(", "~", "filt", ")", "rem", "=", "(", "np", ".", "diff", "(", "inds", ")", ">=", "threshold", ")", "[", ":", ",", "0", "]", "if", "any", "(", "rem", ")", ":", "if", "inds", "[", "rem", "]", ".", "shape", "[", "0", "]", ">", "1", ":", "limit", "=", "inds", "[", "rem", "]", "[", "1", ",", "0", "]", "cfilt", "[", "limit", ":", "]", "=", "False", "return", "cfilt" ]
cd25a650cfee318152f234d992708511f7047fbe
test
defrag
'Defragment' a filter. Parameters ---------- filt : boolean array A filter threshold : int Consecutive values equal to or below this threshold length are considered fragments, and will be removed. mode : str Wheter to change False fragments to True ('include') or True fragments to False ('exclude') Returns ------- defragmented filter : boolean array
latools/filtering/filters.py
def defrag(filt, threshold=3, mode='include'): """ 'Defragment' a filter. Parameters ---------- filt : boolean array A filter threshold : int Consecutive values equal to or below this threshold length are considered fragments, and will be removed. mode : str Wheter to change False fragments to True ('include') or True fragments to False ('exclude') Returns ------- defragmented filter : boolean array """ if bool_2_indices(filt) is None: return filt if mode == 'include': inds = bool_2_indices(~filt) + 1 rep = True if mode == 'exclude': inds = bool_2_indices(filt) + 1 rep = False rem = (np.diff(inds) <= threshold)[:, 0] cfilt = filt.copy() if any(rem): for lo, hi in inds[rem]: cfilt[lo:hi] = rep return cfilt
def defrag(filt, threshold=3, mode='include'): """ 'Defragment' a filter. Parameters ---------- filt : boolean array A filter threshold : int Consecutive values equal to or below this threshold length are considered fragments, and will be removed. mode : str Wheter to change False fragments to True ('include') or True fragments to False ('exclude') Returns ------- defragmented filter : boolean array """ if bool_2_indices(filt) is None: return filt if mode == 'include': inds = bool_2_indices(~filt) + 1 rep = True if mode == 'exclude': inds = bool_2_indices(filt) + 1 rep = False rem = (np.diff(inds) <= threshold)[:, 0] cfilt = filt.copy() if any(rem): for lo, hi in inds[rem]: cfilt[lo:hi] = rep return cfilt
[ "Defragment", "a", "filter", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/filters.py#L58-L94
[ "def", "defrag", "(", "filt", ",", "threshold", "=", "3", ",", "mode", "=", "'include'", ")", ":", "if", "bool_2_indices", "(", "filt", ")", "is", "None", ":", "return", "filt", "if", "mode", "==", "'include'", ":", "inds", "=", "bool_2_indices", "(", "~", "filt", ")", "+", "1", "rep", "=", "True", "if", "mode", "==", "'exclude'", ":", "inds", "=", "bool_2_indices", "(", "filt", ")", "+", "1", "rep", "=", "False", "rem", "=", "(", "np", ".", "diff", "(", "inds", ")", "<=", "threshold", ")", "[", ":", ",", "0", "]", "cfilt", "=", "filt", ".", "copy", "(", ")", "if", "any", "(", "rem", ")", ":", "for", "lo", ",", "hi", "in", "inds", "[", "rem", "]", ":", "cfilt", "[", "lo", ":", "hi", "]", "=", "rep", "return", "cfilt" ]
cd25a650cfee318152f234d992708511f7047fbe
test
trim
Remove points from the start and end of True regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. ind : boolean array Which filter to trim. If True, applies to currently active filters.
latools/filtering/filters.py
def trim(ind, start=1, end=0): """ Remove points from the start and end of True regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. ind : boolean array Which filter to trim. If True, applies to currently active filters. """ return np.roll(ind, start) & np.roll(ind, -end)
def trim(ind, start=1, end=0): """ Remove points from the start and end of True regions. Parameters ---------- start, end : int The number of points to remove from the start and end of the specified filter. ind : boolean array Which filter to trim. If True, applies to currently active filters. """ return np.roll(ind, start) & np.roll(ind, -end)
[ "Remove", "points", "from", "the", "start", "and", "end", "of", "True", "regions", ".", "Parameters", "----------", "start", "end", ":", "int", "The", "number", "of", "points", "to", "remove", "from", "the", "start", "and", "end", "of", "the", "specified", "filter", ".", "ind", ":", "boolean", "array", "Which", "filter", "to", "trim", ".", "If", "True", "applies", "to", "currently", "active", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/filters.py#L96-L110
[ "def", "trim", "(", "ind", ",", "start", "=", "1", ",", "end", "=", "0", ")", ":", "return", "np", ".", "roll", "(", "ind", ",", "start", ")", "&", "np", ".", "roll", "(", "ind", ",", "-", "end", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.setfocus
Set the 'focus' attribute of the data file. The 'focus' attribute of the object points towards data from a particular stage of analysis. It is used to identify the 'working stage' of the data. Processing functions operate on the 'focus' stage, so if steps are done out of sequence, things will break. Names of analysis stages: * 'rawdata': raw data, loaded from csv file when object is initialised. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data, padded with np.nan. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Parameters ---------- focus : str The name of the analysis stage desired. Returns ------- None
latools/D_obj.py
def setfocus(self, focus): """ Set the 'focus' attribute of the data file. The 'focus' attribute of the object points towards data from a particular stage of analysis. It is used to identify the 'working stage' of the data. Processing functions operate on the 'focus' stage, so if steps are done out of sequence, things will break. Names of analysis stages: * 'rawdata': raw data, loaded from csv file when object is initialised. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data, padded with np.nan. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Parameters ---------- focus : str The name of the analysis stage desired. Returns ------- None """ self.focus = self.data[focus] self.focus_stage = focus self.__dict__.update(self.focus)
def setfocus(self, focus): """ Set the 'focus' attribute of the data file. The 'focus' attribute of the object points towards data from a particular stage of analysis. It is used to identify the 'working stage' of the data. Processing functions operate on the 'focus' stage, so if steps are done out of sequence, things will break. Names of analysis stages: * 'rawdata': raw data, loaded from csv file when object is initialised. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data, padded with np.nan. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Parameters ---------- focus : str The name of the analysis stage desired. Returns ------- None """ self.focus = self.data[focus] self.focus_stage = focus self.__dict__.update(self.focus)
[ "Set", "the", "focus", "attribute", "of", "the", "data", "file", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L155-L191
[ "def", "setfocus", "(", "self", ",", "focus", ")", ":", "self", ".", "focus", "=", "self", ".", "data", "[", "focus", "]", "self", ".", "focus_stage", "=", "focus", "self", ".", "__dict__", ".", "update", "(", "self", ".", "focus", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.despike
Applies expdecay_despiker and noise_despiker to data. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. maxiter : int The max number of times that the fitler is applied. Returns ------- None
latools/D_obj.py
def despike(self, expdecay_despiker=True, exponent=None, noise_despiker=True, win=3, nlim=12., maxiter=3): """ Applies expdecay_despiker and noise_despiker to data. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. maxiter : int The max number of times that the fitler is applied. Returns ------- None """ if not hasattr(self, 'despiked'): self.data['despiked'] = Bunch() out = {} for a, v in self.focus.items(): if 'time' not in a.lower(): sig = v.copy() # copy data if expdecay_despiker: if exponent is not None: sig = proc.expdecay_despike(sig, exponent, self.tstep, maxiter) else: warnings.warn('exponent is None - either provide exponent, or run at `analyse`\nlevel to automatically calculate it.') if noise_despiker: sig = proc.noise_despike(sig, int(win), nlim, maxiter) out[a] = sig self.data['despiked'].update(out) # recalculate total counts self.data['total_counts'] = sum(self.data['despiked'].values()) self.setfocus('despiked') return
def despike(self, expdecay_despiker=True, exponent=None, noise_despiker=True, win=3, nlim=12., maxiter=3): """ Applies expdecay_despiker and noise_despiker to data. Parameters ---------- expdecay_despiker : bool Whether or not to apply the exponential decay filter. exponent : None or float The exponent for the exponential decay filter. If None, it is determined automatically using `find_expocoef`. noise_despiker : bool Whether or not to apply the standard deviation spike filter. win : int The rolling window over which the spike filter calculates the trace statistics. nlim : float The number of standard deviations above the rolling mean that data are excluded. maxiter : int The max number of times that the fitler is applied. Returns ------- None """ if not hasattr(self, 'despiked'): self.data['despiked'] = Bunch() out = {} for a, v in self.focus.items(): if 'time' not in a.lower(): sig = v.copy() # copy data if expdecay_despiker: if exponent is not None: sig = proc.expdecay_despike(sig, exponent, self.tstep, maxiter) else: warnings.warn('exponent is None - either provide exponent, or run at `analyse`\nlevel to automatically calculate it.') if noise_despiker: sig = proc.noise_despike(sig, int(win), nlim, maxiter) out[a] = sig self.data['despiked'].update(out) # recalculate total counts self.data['total_counts'] = sum(self.data['despiked'].values()) self.setfocus('despiked') return
[ "Applies", "expdecay_despiker", "and", "noise_despiker", "to", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L196-L245
[ "def", "despike", "(", "self", ",", "expdecay_despiker", "=", "True", ",", "exponent", "=", "None", ",", "noise_despiker", "=", "True", ",", "win", "=", "3", ",", "nlim", "=", "12.", ",", "maxiter", "=", "3", ")", ":", "if", "not", "hasattr", "(", "self", ",", "'despiked'", ")", ":", "self", ".", "data", "[", "'despiked'", "]", "=", "Bunch", "(", ")", "out", "=", "{", "}", "for", "a", ",", "v", "in", "self", ".", "focus", ".", "items", "(", ")", ":", "if", "'time'", "not", "in", "a", ".", "lower", "(", ")", ":", "sig", "=", "v", ".", "copy", "(", ")", "# copy data", "if", "expdecay_despiker", ":", "if", "exponent", "is", "not", "None", ":", "sig", "=", "proc", ".", "expdecay_despike", "(", "sig", ",", "exponent", ",", "self", ".", "tstep", ",", "maxiter", ")", "else", ":", "warnings", ".", "warn", "(", "'exponent is None - either provide exponent, or run at `analyse`\\nlevel to automatically calculate it.'", ")", "if", "noise_despiker", ":", "sig", "=", "proc", ".", "noise_despike", "(", "sig", ",", "int", "(", "win", ")", ",", "nlim", ",", "maxiter", ")", "out", "[", "a", "]", "=", "sig", "self", ".", "data", "[", "'despiked'", "]", ".", "update", "(", "out", ")", "# recalculate total counts", "self", ".", "data", "[", "'total_counts'", "]", "=", "sum", "(", "self", ".", "data", "[", "'despiked'", "]", ".", "values", "(", ")", ")", "self", ".", "setfocus", "(", "'despiked'", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.autorange
Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. on_mult and off_mult : tuple, len=2 Factors to control the width of the excluded transition regions. A region n times the full - width - half - maximum of the transition gradient will be removed either side of the transition center. `on_mult` and `off_mult` refer to the laser - on and laser - off transitions, respectively. See manual for full explanation. Defaults to (1.5, 1) and (1, 1.5). Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays.
latools/D_obj.py
def autorange(self, analyte='total_counts', gwin=5, swin=3, win=30, on_mult=[1., 1.], off_mult=[1., 1.5], ploterrs=True, transform='log', **kwargs): """ Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. on_mult and off_mult : tuple, len=2 Factors to control the width of the excluded transition regions. A region n times the full - width - half - maximum of the transition gradient will be removed either side of the transition center. `on_mult` and `off_mult` refer to the laser - on and laser - off transitions, respectively. See manual for full explanation. Defaults to (1.5, 1) and (1, 1.5). Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays. """ if analyte is None: # sig = self.focus[self.internal_standard] sig = self.data['total_counts'] elif analyte == 'total_counts': sig = self.data['total_counts'] elif analyte in self.analytes: sig = self.focus[analyte] else: raise ValueError('Invalid analyte.') (self.bkg, self.sig, self.trn, failed) = proc.autorange(self.Time, sig, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult, transform=transform) self.mkrngs() errs_to_plot = False if len(failed) > 0: errs_to_plot = True plotlines = [] for f in failed: if f != self.Time[-1]: plotlines.append(f) # warnings.warn(("\n\nSample {:s}: ".format(self.sample) + # "Transition identification at " + # "{:.1f} failed.".format(f) + # "\n **This is not necessarily a problem**" # "\nBut please check the data plots and make sure " + # "everything is OK.\n")) if ploterrs and errs_to_plot and len(plotlines) > 0: f, ax = self.tplot(ranges=True) for pl in plotlines: ax.axvline(pl, c='r', alpha=0.6, lw=3, ls='dashed') return f, plotlines else: return
def autorange(self, analyte='total_counts', gwin=5, swin=3, win=30, on_mult=[1., 1.], off_mult=[1., 1.5], ploterrs=True, transform='log', **kwargs): """ Automatically separates signal and background data regions. Automatically detect signal and background regions in the laser data, based on the behaviour of a single analyte. The analyte used should be abundant and homogenous in the sample. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- analyte : str The analyte that autorange should consider. For best results, choose an analyte that is present homogeneously in high concentrations. gwin : int The smoothing window used for calculating the first derivative. Must be odd. win : int Determines the width (c +/- win) of the transition data subsets. on_mult and off_mult : tuple, len=2 Factors to control the width of the excluded transition regions. A region n times the full - width - half - maximum of the transition gradient will be removed either side of the transition center. `on_mult` and `off_mult` refer to the laser - on and laser - off transitions, respectively. See manual for full explanation. Defaults to (1.5, 1) and (1, 1.5). Returns ------- Outputs added as instance attributes. Returns None. bkg, sig, trn : iterable, bool Boolean arrays identifying background, signal and transision regions bkgrng, sigrng and trnrng : iterable (min, max) pairs identifying the boundaries of contiguous True regions in the boolean arrays. """ if analyte is None: # sig = self.focus[self.internal_standard] sig = self.data['total_counts'] elif analyte == 'total_counts': sig = self.data['total_counts'] elif analyte in self.analytes: sig = self.focus[analyte] else: raise ValueError('Invalid analyte.') (self.bkg, self.sig, self.trn, failed) = proc.autorange(self.Time, sig, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult, transform=transform) self.mkrngs() errs_to_plot = False if len(failed) > 0: errs_to_plot = True plotlines = [] for f in failed: if f != self.Time[-1]: plotlines.append(f) # warnings.warn(("\n\nSample {:s}: ".format(self.sample) + # "Transition identification at " + # "{:.1f} failed.".format(f) + # "\n **This is not necessarily a problem**" # "\nBut please check the data plots and make sure " + # "everything is OK.\n")) if ploterrs and errs_to_plot and len(plotlines) > 0: f, ax = self.tplot(ranges=True) for pl in plotlines: ax.axvline(pl, c='r', alpha=0.6, lw=3, ls='dashed') return f, plotlines else: return
[ "Automatically", "separates", "signal", "and", "background", "data", "regions", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L248-L346
[ "def", "autorange", "(", "self", ",", "analyte", "=", "'total_counts'", ",", "gwin", "=", "5", ",", "swin", "=", "3", ",", "win", "=", "30", ",", "on_mult", "=", "[", "1.", ",", "1.", "]", ",", "off_mult", "=", "[", "1.", ",", "1.5", "]", ",", "ploterrs", "=", "True", ",", "transform", "=", "'log'", ",", "*", "*", "kwargs", ")", ":", "if", "analyte", "is", "None", ":", "# sig = self.focus[self.internal_standard]", "sig", "=", "self", ".", "data", "[", "'total_counts'", "]", "elif", "analyte", "==", "'total_counts'", ":", "sig", "=", "self", ".", "data", "[", "'total_counts'", "]", "elif", "analyte", "in", "self", ".", "analytes", ":", "sig", "=", "self", ".", "focus", "[", "analyte", "]", "else", ":", "raise", "ValueError", "(", "'Invalid analyte.'", ")", "(", "self", ".", "bkg", ",", "self", ".", "sig", ",", "self", ".", "trn", ",", "failed", ")", "=", "proc", ".", "autorange", "(", "self", ".", "Time", ",", "sig", ",", "gwin", "=", "gwin", ",", "swin", "=", "swin", ",", "win", "=", "win", ",", "on_mult", "=", "on_mult", ",", "off_mult", "=", "off_mult", ",", "transform", "=", "transform", ")", "self", ".", "mkrngs", "(", ")", "errs_to_plot", "=", "False", "if", "len", "(", "failed", ")", ">", "0", ":", "errs_to_plot", "=", "True", "plotlines", "=", "[", "]", "for", "f", "in", "failed", ":", "if", "f", "!=", "self", ".", "Time", "[", "-", "1", "]", ":", "plotlines", ".", "append", "(", "f", ")", "# warnings.warn((\"\\n\\nSample {:s}: \".format(self.sample) +", "# \"Transition identification at \" +", "# \"{:.1f} failed.\".format(f) +", "# \"\\n **This is not necessarily a problem**\"", "# \"\\nBut please check the data plots and make sure \" +", "# \"everything is OK.\\n\"))", "if", "ploterrs", "and", "errs_to_plot", "and", "len", "(", "plotlines", ")", ">", "0", ":", "f", ",", "ax", "=", "self", ".", "tplot", "(", "ranges", "=", "True", ")", "for", "pl", "in", "plotlines", ":", "ax", ".", "axvline", "(", "pl", ",", "c", "=", "'r'", ",", "alpha", "=", "0.6", ",", "lw", "=", "3", ",", "ls", "=", "'dashed'", ")", "return", "f", ",", "plotlines", "else", ":", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.autorange_plot
Plot a detailed autorange report for this sample.
latools/D_obj.py
def autorange_plot(self, analyte='total_counts', gwin=7, swin=None, win=20, on_mult=[1.5, 1.], off_mult=[1., 1.5], transform='log'): """ Plot a detailed autorange report for this sample. """ if analyte is None: # sig = self.focus[self.internal_standard] sig = self.data['total_counts'] elif analyte == 'total_counts': sig = self.data['total_counts'] elif analyte in self.analytes: sig = self.focus[analyte] else: raise ValueError('Invalid analyte.') if transform == 'log': sig = np.log10(sig) fig, axs = plot.autorange_plot(t=self.Time, sig=sig, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult) return fig, axs
def autorange_plot(self, analyte='total_counts', gwin=7, swin=None, win=20, on_mult=[1.5, 1.], off_mult=[1., 1.5], transform='log'): """ Plot a detailed autorange report for this sample. """ if analyte is None: # sig = self.focus[self.internal_standard] sig = self.data['total_counts'] elif analyte == 'total_counts': sig = self.data['total_counts'] elif analyte in self.analytes: sig = self.focus[analyte] else: raise ValueError('Invalid analyte.') if transform == 'log': sig = np.log10(sig) fig, axs = plot.autorange_plot(t=self.Time, sig=sig, gwin=gwin, swin=swin, win=win, on_mult=on_mult, off_mult=off_mult) return fig, axs
[ "Plot", "a", "detailed", "autorange", "report", "for", "this", "sample", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L348-L371
[ "def", "autorange_plot", "(", "self", ",", "analyte", "=", "'total_counts'", ",", "gwin", "=", "7", ",", "swin", "=", "None", ",", "win", "=", "20", ",", "on_mult", "=", "[", "1.5", ",", "1.", "]", ",", "off_mult", "=", "[", "1.", ",", "1.5", "]", ",", "transform", "=", "'log'", ")", ":", "if", "analyte", "is", "None", ":", "# sig = self.focus[self.internal_standard]", "sig", "=", "self", ".", "data", "[", "'total_counts'", "]", "elif", "analyte", "==", "'total_counts'", ":", "sig", "=", "self", ".", "data", "[", "'total_counts'", "]", "elif", "analyte", "in", "self", ".", "analytes", ":", "sig", "=", "self", ".", "focus", "[", "analyte", "]", "else", ":", "raise", "ValueError", "(", "'Invalid analyte.'", ")", "if", "transform", "==", "'log'", ":", "sig", "=", "np", ".", "log10", "(", "sig", ")", "fig", ",", "axs", "=", "plot", ".", "autorange_plot", "(", "t", "=", "self", ".", "Time", ",", "sig", "=", "sig", ",", "gwin", "=", "gwin", ",", "swin", "=", "swin", ",", "win", "=", "win", ",", "on_mult", "=", "on_mult", ",", "off_mult", "=", "off_mult", ")", "return", "fig", ",", "axs" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.mkrngs
Transform boolean arrays into list of limit pairs. Gets Time limits of signal/background boolean arrays and stores them as sigrng and bkgrng arrays. These arrays can be saved by 'save_ranges' in the analyse object.
latools/D_obj.py
def mkrngs(self): """ Transform boolean arrays into list of limit pairs. Gets Time limits of signal/background boolean arrays and stores them as sigrng and bkgrng arrays. These arrays can be saved by 'save_ranges' in the analyse object. """ bbool = bool_2_indices(self.bkg) if bbool is not None: self.bkgrng = self.Time[bbool] else: self.bkgrng = [[np.nan, np.nan]] sbool = bool_2_indices(self.sig) if sbool is not None: self.sigrng = self.Time[sbool] else: self.sigrng = [[np.nan, np.nan]] tbool = bool_2_indices(self.trn) if tbool is not None: self.trnrng = self.Time[tbool] else: self.trnrng = [[np.nan, np.nan]] self.ns = np.zeros(self.Time.size) n = 1 for i in range(len(self.sig) - 1): if self.sig[i]: self.ns[i] = n if self.sig[i] and ~self.sig[i + 1]: n += 1 self.n = int(max(self.ns)) # record number of traces return
def mkrngs(self): """ Transform boolean arrays into list of limit pairs. Gets Time limits of signal/background boolean arrays and stores them as sigrng and bkgrng arrays. These arrays can be saved by 'save_ranges' in the analyse object. """ bbool = bool_2_indices(self.bkg) if bbool is not None: self.bkgrng = self.Time[bbool] else: self.bkgrng = [[np.nan, np.nan]] sbool = bool_2_indices(self.sig) if sbool is not None: self.sigrng = self.Time[sbool] else: self.sigrng = [[np.nan, np.nan]] tbool = bool_2_indices(self.trn) if tbool is not None: self.trnrng = self.Time[tbool] else: self.trnrng = [[np.nan, np.nan]] self.ns = np.zeros(self.Time.size) n = 1 for i in range(len(self.sig) - 1): if self.sig[i]: self.ns[i] = n if self.sig[i] and ~self.sig[i + 1]: n += 1 self.n = int(max(self.ns)) # record number of traces return
[ "Transform", "boolean", "arrays", "into", "list", "of", "limit", "pairs", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L373-L406
[ "def", "mkrngs", "(", "self", ")", ":", "bbool", "=", "bool_2_indices", "(", "self", ".", "bkg", ")", "if", "bbool", "is", "not", "None", ":", "self", ".", "bkgrng", "=", "self", ".", "Time", "[", "bbool", "]", "else", ":", "self", ".", "bkgrng", "=", "[", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", "]", "sbool", "=", "bool_2_indices", "(", "self", ".", "sig", ")", "if", "sbool", "is", "not", "None", ":", "self", ".", "sigrng", "=", "self", ".", "Time", "[", "sbool", "]", "else", ":", "self", ".", "sigrng", "=", "[", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", "]", "tbool", "=", "bool_2_indices", "(", "self", ".", "trn", ")", "if", "tbool", "is", "not", "None", ":", "self", ".", "trnrng", "=", "self", ".", "Time", "[", "tbool", "]", "else", ":", "self", ".", "trnrng", "=", "[", "[", "np", ".", "nan", ",", "np", ".", "nan", "]", "]", "self", ".", "ns", "=", "np", ".", "zeros", "(", "self", ".", "Time", ".", "size", ")", "n", "=", "1", "for", "i", "in", "range", "(", "len", "(", "self", ".", "sig", ")", "-", "1", ")", ":", "if", "self", ".", "sig", "[", "i", "]", ":", "self", ".", "ns", "[", "i", "]", "=", "n", "if", "self", ".", "sig", "[", "i", "]", "and", "~", "self", ".", "sig", "[", "i", "+", "1", "]", ":", "n", "+=", "1", "self", ".", "n", "=", "int", "(", "max", "(", "self", ".", "ns", ")", ")", "# record number of traces", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.bkg_subtract
Subtract provided background from signal (focus stage). Results is saved in new 'bkgsub' focus stage Returns ------- None
latools/D_obj.py
def bkg_subtract(self, analyte, bkg, ind=None, focus_stage='despiked'): """ Subtract provided background from signal (focus stage). Results is saved in new 'bkgsub' focus stage Returns ------- None """ if 'bkgsub' not in self.data.keys(): self.data['bkgsub'] = Bunch() self.data['bkgsub'][analyte] = self.data[focus_stage][analyte] - bkg if ind is not None: self.data['bkgsub'][analyte][ind] = np.nan return
def bkg_subtract(self, analyte, bkg, ind=None, focus_stage='despiked'): """ Subtract provided background from signal (focus stage). Results is saved in new 'bkgsub' focus stage Returns ------- None """ if 'bkgsub' not in self.data.keys(): self.data['bkgsub'] = Bunch() self.data['bkgsub'][analyte] = self.data[focus_stage][analyte] - bkg if ind is not None: self.data['bkgsub'][analyte][ind] = np.nan return
[ "Subtract", "provided", "background", "from", "signal", "(", "focus", "stage", ")", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L409-L427
[ "def", "bkg_subtract", "(", "self", ",", "analyte", ",", "bkg", ",", "ind", "=", "None", ",", "focus_stage", "=", "'despiked'", ")", ":", "if", "'bkgsub'", "not", "in", "self", ".", "data", ".", "keys", "(", ")", ":", "self", ".", "data", "[", "'bkgsub'", "]", "=", "Bunch", "(", ")", "self", ".", "data", "[", "'bkgsub'", "]", "[", "analyte", "]", "=", "self", ".", "data", "[", "focus_stage", "]", "[", "analyte", "]", "-", "bkg", "if", "ind", "is", "not", "None", ":", "self", ".", "data", "[", "'bkgsub'", "]", "[", "analyte", "]", "[", "ind", "]", "=", "np", ".", "nan", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.correct_spectral_interference
Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None
latools/D_obj.py
def correct_spectral_interference(self, target_analyte, source_analyte, f): """ Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None """ if target_analyte not in self.analytes: raise ValueError('target_analyte: {:} not in available analytes ({:})'.format(target_analyte, ', '.join(self.analytes))) if source_analyte not in self.analytes: raise ValueError('source_analyte: {:} not in available analytes ({:})'.format(source_analyte, ', '.join(self.analytes))) self.data['bkgsub'][target_analyte] -= self.data['bkgsub'][source_analyte] * f
def correct_spectral_interference(self, target_analyte, source_analyte, f): """ Correct spectral interference. Subtract interference counts from target_analyte, based on the intensity of a source_analayte and a known fractional contribution (f). Correction takes the form: target_analyte -= source_analyte * f Only operates on background-corrected data ('bkgsub'). To undo a correction, rerun `self.bkg_subtract()`. Parameters ---------- target_analyte : str The name of the analyte to modify. source_analyte : str The name of the analyte to base the correction on. f : float The fraction of the intensity of the source_analyte to subtract from the target_analyte. Correction is: target_analyte - source_analyte * f Returns ------- None """ if target_analyte not in self.analytes: raise ValueError('target_analyte: {:} not in available analytes ({:})'.format(target_analyte, ', '.join(self.analytes))) if source_analyte not in self.analytes: raise ValueError('source_analyte: {:} not in available analytes ({:})'.format(source_analyte, ', '.join(self.analytes))) self.data['bkgsub'][target_analyte] -= self.data['bkgsub'][source_analyte] * f
[ "Correct", "spectral", "interference", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L430-L467
[ "def", "correct_spectral_interference", "(", "self", ",", "target_analyte", ",", "source_analyte", ",", "f", ")", ":", "if", "target_analyte", "not", "in", "self", ".", "analytes", ":", "raise", "ValueError", "(", "'target_analyte: {:} not in available analytes ({:})'", ".", "format", "(", "target_analyte", ",", "', '", ".", "join", "(", "self", ".", "analytes", ")", ")", ")", "if", "source_analyte", "not", "in", "self", ".", "analytes", ":", "raise", "ValueError", "(", "'source_analyte: {:} not in available analytes ({:})'", ".", "format", "(", "source_analyte", ",", "', '", ".", "join", "(", "self", ".", "analytes", ")", ")", ")", "self", ".", "data", "[", "'bkgsub'", "]", "[", "target_analyte", "]", "-=", "self", ".", "data", "[", "'bkgsub'", "]", "[", "source_analyte", "]", "*", "f" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.ratio
Divide all analytes by a specified internal_standard analyte. Parameters ---------- internal_standard : str The analyte used as the internal_standard. Returns ------- None
latools/D_obj.py
def ratio(self, internal_standard=None): """ Divide all analytes by a specified internal_standard analyte. Parameters ---------- internal_standard : str The analyte used as the internal_standard. Returns ------- None """ if internal_standard is not None: self.internal_standard = internal_standard self.data['ratios'] = Bunch() for a in self.analytes: self.data['ratios'][a] = (self.data['bkgsub'][a] / self.data['bkgsub'][self.internal_standard]) self.setfocus('ratios') return
def ratio(self, internal_standard=None): """ Divide all analytes by a specified internal_standard analyte. Parameters ---------- internal_standard : str The analyte used as the internal_standard. Returns ------- None """ if internal_standard is not None: self.internal_standard = internal_standard self.data['ratios'] = Bunch() for a in self.analytes: self.data['ratios'][a] = (self.data['bkgsub'][a] / self.data['bkgsub'][self.internal_standard]) self.setfocus('ratios') return
[ "Divide", "all", "analytes", "by", "a", "specified", "internal_standard", "analyte", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L470-L491
[ "def", "ratio", "(", "self", ",", "internal_standard", "=", "None", ")", ":", "if", "internal_standard", "is", "not", "None", ":", "self", ".", "internal_standard", "=", "internal_standard", "self", ".", "data", "[", "'ratios'", "]", "=", "Bunch", "(", ")", "for", "a", "in", "self", ".", "analytes", ":", "self", ".", "data", "[", "'ratios'", "]", "[", "a", "]", "=", "(", "self", ".", "data", "[", "'bkgsub'", "]", "[", "a", "]", "/", "self", ".", "data", "[", "'bkgsub'", "]", "[", "self", ".", "internal_standard", "]", ")", "self", ".", "setfocus", "(", "'ratios'", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.calibrate
Apply calibration to data. The `calib_dict` must be calculated at the `analyse` level, and passed to this calibrate function. Parameters ---------- calib_dict : dict A dict of calibration values to apply to each analyte. Returns ------- None
latools/D_obj.py
def calibrate(self, calib_ps, analytes=None): """ Apply calibration to data. The `calib_dict` must be calculated at the `analyse` level, and passed to this calibrate function. Parameters ---------- calib_dict : dict A dict of calibration values to apply to each analyte. Returns ------- None """ # can have calibration function stored in self and pass *coefs? if analytes is None: analytes = self.analytes if 'calibrated' not in self.data.keys(): self.data['calibrated'] = Bunch() for a in analytes: m = calib_ps[a]['m'].new(self.uTime) if 'c' in calib_ps[a]: c = calib_ps[a]['c'].new(self.uTime) else: c = 0 self.data['calibrated'][a] = self.data['ratios'][a] * m + c if self.internal_standard not in analytes: self.data['calibrated'][self.internal_standard] = \ np.empty(len(self.data['ratios'][self.internal_standard])) self.setfocus('calibrated') return
def calibrate(self, calib_ps, analytes=None): """ Apply calibration to data. The `calib_dict` must be calculated at the `analyse` level, and passed to this calibrate function. Parameters ---------- calib_dict : dict A dict of calibration values to apply to each analyte. Returns ------- None """ # can have calibration function stored in self and pass *coefs? if analytes is None: analytes = self.analytes if 'calibrated' not in self.data.keys(): self.data['calibrated'] = Bunch() for a in analytes: m = calib_ps[a]['m'].new(self.uTime) if 'c' in calib_ps[a]: c = calib_ps[a]['c'].new(self.uTime) else: c = 0 self.data['calibrated'][a] = self.data['ratios'][a] * m + c if self.internal_standard not in analytes: self.data['calibrated'][self.internal_standard] = \ np.empty(len(self.data['ratios'][self.internal_standard])) self.setfocus('calibrated') return
[ "Apply", "calibration", "to", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L494-L532
[ "def", "calibrate", "(", "self", ",", "calib_ps", ",", "analytes", "=", "None", ")", ":", "# can have calibration function stored in self and pass *coefs?", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "if", "'calibrated'", "not", "in", "self", ".", "data", ".", "keys", "(", ")", ":", "self", ".", "data", "[", "'calibrated'", "]", "=", "Bunch", "(", ")", "for", "a", "in", "analytes", ":", "m", "=", "calib_ps", "[", "a", "]", "[", "'m'", "]", ".", "new", "(", "self", ".", "uTime", ")", "if", "'c'", "in", "calib_ps", "[", "a", "]", ":", "c", "=", "calib_ps", "[", "a", "]", "[", "'c'", "]", ".", "new", "(", "self", ".", "uTime", ")", "else", ":", "c", "=", "0", "self", ".", "data", "[", "'calibrated'", "]", "[", "a", "]", "=", "self", ".", "data", "[", "'ratios'", "]", "[", "a", "]", "*", "m", "+", "c", "if", "self", ".", "internal_standard", "not", "in", "analytes", ":", "self", ".", "data", "[", "'calibrated'", "]", "[", "self", ".", "internal_standard", "]", "=", "np", ".", "empty", "(", "len", "(", "self", ".", "data", "[", "'ratios'", "]", "[", "self", ".", "internal_standard", "]", ")", ")", "self", ".", "setfocus", "(", "'calibrated'", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.sample_stats
Calculate sample statistics Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Parameters ---------- analytes : array_like List of analytes to calculate the statistic on filt : bool or str The filter to apply to the data when calculating sample statistics. bool: True applies filter specified in filt.switches. str: logical string specifying a partucular filter stat_fns : dict Dict of {name: function} pairs. Functions that take a single array_like input, and return a single statistic. Function should be able to cope with NaN values. eachtrace : bool True: per - ablation statistics False: whole sample statistics Returns ------- None
latools/D_obj.py
def sample_stats(self, analytes=None, filt=True, stat_fns={}, eachtrace=True): """ Calculate sample statistics Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Parameters ---------- analytes : array_like List of analytes to calculate the statistic on filt : bool or str The filter to apply to the data when calculating sample statistics. bool: True applies filter specified in filt.switches. str: logical string specifying a partucular filter stat_fns : dict Dict of {name: function} pairs. Functions that take a single array_like input, and return a single statistic. Function should be able to cope with NaN values. eachtrace : bool True: per - ablation statistics False: whole sample statistics Returns ------- None """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] self.stats = Bunch() self.stats['analytes'] = analytes with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) for n, f in stat_fns.items(): self.stats[n] = [] for a in analytes: ind = self.filt.grab_filt(filt, a) dat = nominal_values(self.focus[a]) if eachtrace: sts = [] for t in np.arange(self.n) + 1: sts.append(f(dat[ind & (self.ns == t)])) self.stats[n].append(sts) else: self.stats[n].append(f(dat[ind])) self.stats[n] = np.array(self.stats[n]) return
def sample_stats(self, analytes=None, filt=True, stat_fns={}, eachtrace=True): """ Calculate sample statistics Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Parameters ---------- analytes : array_like List of analytes to calculate the statistic on filt : bool or str The filter to apply to the data when calculating sample statistics. bool: True applies filter specified in filt.switches. str: logical string specifying a partucular filter stat_fns : dict Dict of {name: function} pairs. Functions that take a single array_like input, and return a single statistic. Function should be able to cope with NaN values. eachtrace : bool True: per - ablation statistics False: whole sample statistics Returns ------- None """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] self.stats = Bunch() self.stats['analytes'] = analytes with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) for n, f in stat_fns.items(): self.stats[n] = [] for a in analytes: ind = self.filt.grab_filt(filt, a) dat = nominal_values(self.focus[a]) if eachtrace: sts = [] for t in np.arange(self.n) + 1: sts.append(f(dat[ind & (self.ns == t)])) self.stats[n].append(sts) else: self.stats[n].append(f(dat[ind])) self.stats[n] = np.array(self.stats[n]) return
[ "Calculate", "sample", "statistics" ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L536-L590
[ "def", "sample_stats", "(", "self", ",", "analytes", "=", "None", ",", "filt", "=", "True", ",", "stat_fns", "=", "{", "}", ",", "eachtrace", "=", "True", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "self", ".", "stats", "=", "Bunch", "(", ")", "self", ".", "stats", "[", "'analytes'", "]", "=", "analytes", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "warnings", ".", "simplefilter", "(", "\"ignore\"", ",", "category", "=", "RuntimeWarning", ")", "for", "n", ",", "f", "in", "stat_fns", ".", "items", "(", ")", ":", "self", ".", "stats", "[", "n", "]", "=", "[", "]", "for", "a", "in", "analytes", ":", "ind", "=", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "a", ")", "dat", "=", "nominal_values", "(", "self", ".", "focus", "[", "a", "]", ")", "if", "eachtrace", ":", "sts", "=", "[", "]", "for", "t", "in", "np", ".", "arange", "(", "self", ".", "n", ")", "+", "1", ":", "sts", ".", "append", "(", "f", "(", "dat", "[", "ind", "&", "(", "self", ".", "ns", "==", "t", ")", "]", ")", ")", "self", ".", "stats", "[", "n", "]", ".", "append", "(", "sts", ")", "else", ":", "self", ".", "stats", "[", "n", "]", ".", "append", "(", "f", "(", "dat", "[", "ind", "]", ")", ")", "self", ".", "stats", "[", "n", "]", "=", "np", ".", "array", "(", "self", ".", "stats", "[", "n", "]", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.ablation_times
Function for calculating the ablation time for each ablation. Returns ------- dict of times for each ablation.
latools/D_obj.py
def ablation_times(self): """ Function for calculating the ablation time for each ablation. Returns ------- dict of times for each ablation. """ ats = {} for n in np.arange(self.n) + 1: t = self.Time[self.ns == n] ats[n - 1] = t.max() - t.min() return ats
def ablation_times(self): """ Function for calculating the ablation time for each ablation. Returns ------- dict of times for each ablation. """ ats = {} for n in np.arange(self.n) + 1: t = self.Time[self.ns == n] ats[n - 1] = t.max() - t.min() return ats
[ "Function", "for", "calculating", "the", "ablation", "time", "for", "each", "ablation", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L593-L606
[ "def", "ablation_times", "(", "self", ")", ":", "ats", "=", "{", "}", "for", "n", "in", "np", ".", "arange", "(", "self", ".", "n", ")", "+", "1", ":", "t", "=", "self", ".", "Time", "[", "self", ".", "ns", "==", "n", "]", "ats", "[", "n", "-", "1", "]", "=", "t", ".", "max", "(", ")", "-", "t", ".", "min", "(", ")", "return", "ats" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_threshold
Apply threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : TYPE Description of `analyte`. threshold : TYPE Description of `threshold`. Returns ------- None
latools/D_obj.py
def filter_threshold(self, analyte, threshold): """ Apply threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : TYPE Description of `analyte`. threshold : TYPE Description of `threshold`. Returns ------- None """ params = locals() del(params['self']) # generate filter below, above = filters.threshold(self.focus[analyte], threshold) setn = self.filt.maxset + 1 self.filt.add(analyte + '_thresh_below', below, 'Keep below {:.3e} '.format(threshold) + analyte, params, setn=setn) self.filt.add(analyte + '_thresh_above', above, 'Keep above {:.3e} '.format(threshold) + analyte, params, setn=setn)
def filter_threshold(self, analyte, threshold): """ Apply threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : TYPE Description of `analyte`. threshold : TYPE Description of `threshold`. Returns ------- None """ params = locals() del(params['self']) # generate filter below, above = filters.threshold(self.focus[analyte], threshold) setn = self.filt.maxset + 1 self.filt.add(analyte + '_thresh_below', below, 'Keep below {:.3e} '.format(threshold) + analyte, params, setn=setn) self.filt.add(analyte + '_thresh_above', above, 'Keep above {:.3e} '.format(threshold) + analyte, params, setn=setn)
[ "Apply", "threshold", "filter", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L610-L650
[ "def", "filter_threshold", "(", "self", ",", "analyte", ",", "threshold", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "# generate filter", "below", ",", "above", "=", "filters", ".", "threshold", "(", "self", ".", "focus", "[", "analyte", "]", ",", "threshold", ")", "setn", "=", "self", ".", "filt", ".", "maxset", "+", "1", "self", ".", "filt", ".", "add", "(", "analyte", "+", "'_thresh_below'", ",", "below", ",", "'Keep below {:.3e} '", ".", "format", "(", "threshold", ")", "+", "analyte", ",", "params", ",", "setn", "=", "setn", ")", "self", ".", "filt", ".", "add", "(", "analyte", "+", "'_thresh_above'", ",", "above", ",", "'Keep above {:.3e} '", ".", "format", "(", "threshold", ")", "+", "analyte", ",", "params", ",", "setn", "=", "setn", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_gradient_threshold
Apply gradient threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : str Description of `analyte`. threshold : float Description of `threshold`. win : int Window used to calculate gradients (n points) recalc : bool Whether or not to re-calculate the gradients. Returns ------- None
latools/D_obj.py
def filter_gradient_threshold(self, analyte, win, threshold, recalc=True): """ Apply gradient threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : str Description of `analyte`. threshold : float Description of `threshold`. win : int Window used to calculate gradients (n points) recalc : bool Whether or not to re-calculate the gradients. Returns ------- None """ params = locals() del(params['self']) # calculate absolute gradient if recalc or not self.grads_calced: self.grads = calc_grads(self.Time, self.focus, [analyte], win) self.grads_calced = True below, above = filters.threshold(abs(self.grads[analyte]), threshold) setn = self.filt.maxset + 1 self.filt.add(analyte + '_gthresh_below', below, 'Keep gradient below {:.3e} '.format(threshold) + analyte, params, setn=setn) self.filt.add(analyte + '_gthresh_above', above, 'Keep gradient above {:.3e} '.format(threshold) + analyte, params, setn=setn)
def filter_gradient_threshold(self, analyte, win, threshold, recalc=True): """ Apply gradient threshold filter. Generates threshold filters for the given analytes above and below the specified threshold. Two filters are created with prefixes '_above' and '_below'. '_above' keeps all the data above the threshold. '_below' keeps all the data below the threshold. i.e. to select data below the threshold value, you should turn the '_above' filter off. Parameters ---------- analyte : str Description of `analyte`. threshold : float Description of `threshold`. win : int Window used to calculate gradients (n points) recalc : bool Whether or not to re-calculate the gradients. Returns ------- None """ params = locals() del(params['self']) # calculate absolute gradient if recalc or not self.grads_calced: self.grads = calc_grads(self.Time, self.focus, [analyte], win) self.grads_calced = True below, above = filters.threshold(abs(self.grads[analyte]), threshold) setn = self.filt.maxset + 1 self.filt.add(analyte + '_gthresh_below', below, 'Keep gradient below {:.3e} '.format(threshold) + analyte, params, setn=setn) self.filt.add(analyte + '_gthresh_above', above, 'Keep gradient above {:.3e} '.format(threshold) + analyte, params, setn=setn)
[ "Apply", "gradient", "threshold", "filter", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L653-L702
[ "def", "filter_gradient_threshold", "(", "self", ",", "analyte", ",", "win", ",", "threshold", ",", "recalc", "=", "True", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "# calculate absolute gradient", "if", "recalc", "or", "not", "self", ".", "grads_calced", ":", "self", ".", "grads", "=", "calc_grads", "(", "self", ".", "Time", ",", "self", ".", "focus", ",", "[", "analyte", "]", ",", "win", ")", "self", ".", "grads_calced", "=", "True", "below", ",", "above", "=", "filters", ".", "threshold", "(", "abs", "(", "self", ".", "grads", "[", "analyte", "]", ")", ",", "threshold", ")", "setn", "=", "self", ".", "filt", ".", "maxset", "+", "1", "self", ".", "filt", ".", "add", "(", "analyte", "+", "'_gthresh_below'", ",", "below", ",", "'Keep gradient below {:.3e} '", ".", "format", "(", "threshold", ")", "+", "analyte", ",", "params", ",", "setn", "=", "setn", ")", "self", ".", "filt", ".", "add", "(", "analyte", "+", "'_gthresh_above'", ",", "above", ",", "'Keep gradient above {:.3e} '", ".", "format", "(", "threshold", ")", "+", "analyte", ",", "params", ",", "setn", "=", "setn", ")" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_clustering
Applies an n - dimensional clustering filter to the data. Available Clustering Algorithms * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. * 'DBSCAN': The `sklearn.cluster.DBSCAN` algorithm. Automatically determines the number and characteristics of clusters within the data based on the 'connectivity' of the data (i.e. how far apart each data point is in a multi - dimensional parameter space). Requires you to set `eps`, the minimum distance point must be from another point to be considered in the same cluster, and `min_samples`, the minimum number of points that must be within the minimum distance for it to be considered a cluster. It may also be run in automatic mode by specifying `n_clusters` alongside `min_samples`, where eps is decreased until the desired number of clusters is obtained. For more information on these algorithms, refer to the documentation. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use (see above). include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. sort : bool, str or array-like Whether or not to label the resulting clusters according to their contents. If used, the cluster with the lowest values will be labelled from 0, in order of increasing cluster mean value.analytes. The sorting rules depend on the value of 'sort', which can be the name of a single analyte (str), a list of several analyte names (array-like) or True (bool), to specify all analytes used to calcualte the cluster. min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters -------------------- bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters ------------------ n_clusters : int The number of clusters expected in the data. DBSCAN Parameters ----------------- eps : float The minimum 'distance' points must be apart for them to be in the same cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is in terms of total sample variance. Normalised data have a mean of 0 and a variance of 1. min_samples : int The minimum number of samples within distance `eps` required to be considered as an independent cluster. n_clusters : int The number of clusters expected. If specified, `eps` will be incrementally reduced until the expected number of clusters is found. maxiter : int The maximum number of iterations DBSCAN will run. Returns ------- None
latools/D_obj.py
def filter_clustering(self, analytes, filt=False, normalise=True, method='meanshift', include_time=False, sort=None, min_data=10, **kwargs): """ Applies an n - dimensional clustering filter to the data. Available Clustering Algorithms * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. * 'DBSCAN': The `sklearn.cluster.DBSCAN` algorithm. Automatically determines the number and characteristics of clusters within the data based on the 'connectivity' of the data (i.e. how far apart each data point is in a multi - dimensional parameter space). Requires you to set `eps`, the minimum distance point must be from another point to be considered in the same cluster, and `min_samples`, the minimum number of points that must be within the minimum distance for it to be considered a cluster. It may also be run in automatic mode by specifying `n_clusters` alongside `min_samples`, where eps is decreased until the desired number of clusters is obtained. For more information on these algorithms, refer to the documentation. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use (see above). include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. sort : bool, str or array-like Whether or not to label the resulting clusters according to their contents. If used, the cluster with the lowest values will be labelled from 0, in order of increasing cluster mean value.analytes. The sorting rules depend on the value of 'sort', which can be the name of a single analyte (str), a list of several analyte names (array-like) or True (bool), to specify all analytes used to calcualte the cluster. min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters -------------------- bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters ------------------ n_clusters : int The number of clusters expected in the data. DBSCAN Parameters ----------------- eps : float The minimum 'distance' points must be apart for them to be in the same cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is in terms of total sample variance. Normalised data have a mean of 0 and a variance of 1. min_samples : int The minimum number of samples within distance `eps` required to be considered as an independent cluster. n_clusters : int The number of clusters expected. If specified, `eps` will be incrementally reduced until the expected number of clusters is found. maxiter : int The maximum number of iterations DBSCAN will run. Returns ------- None """ params = locals() del(params['self']) # convert string to list, if single analyte if isinstance(analytes, str): analytes = [analytes] setn = self.filt.maxset + 1 # generate filter vals = np.vstack(nominal_values(list(self.focus.values()))) if filt is not None: ind = (self.filt.grab_filt(filt, analytes) & np.apply_along_axis(all, 0, ~np.isnan(vals))) else: ind = np.apply_along_axis(all, 0, ~np.isnan(vals)) if sum(ind) > min_data: # get indices for data passed to clustering sampled = np.arange(self.Time.size)[ind] # generate data for clustering if include_time: extra = self.Time else: extra = None # get data as array ds = stack_keys(self.focus, analytes, extra) # apply filter, and get nominal values ds = nominal_values(ds[ind, :]) if normalise | (len(analytes) > 1): ds = preprocessing.scale(ds) method_key = {'kmeans': clustering.cluster_kmeans, # 'DBSCAN': clustering.cluster_DBSCAN, 'meanshift': clustering.cluster_meanshift} cfun = method_key[method] labels, core_samples_mask = cfun(ds, **kwargs) # return labels, and if DBSCAN core_sample_mask labels_unique = np.unique(labels) # label the clusters according to their contents if (sort is not None) & (sort is not False): if isinstance(sort, str): sort = [sort] sanalytes = analytes # make boolean filter to select analytes if sort is True: sortk = np.array([True] * len(sanalytes)) else: sortk = np.array([s in sort for s in sanalytes]) # create per-point mean based on selected analytes. sd = np.apply_along_axis(sum, 1, ds[:, sortk]) # calculate per-cluster means avs = [np.nanmean(sd[labels == lab]) for lab in labels_unique] # re-order the cluster labels based on their means order = [x[0] for x in sorted(enumerate(avs), key=lambda x:x[1])] sdict = dict(zip(order, labels_unique)) else: sdict = dict(zip(labels_unique, labels_unique)) filts = {} for ind, lab in sdict.items(): filts[lab] = labels == ind # only applies to DBSCAN results. if not all(np.isnan(core_samples_mask)): filts['core'] = core_samples_mask resized = {} for k, v in filts.items(): resized[k] = np.zeros(self.Time.size, dtype=bool) resized[k][sampled] = v namebase = '-'.join(analytes) + '_cluster-' + method info = '-'.join(analytes) + ' cluster filter.' if method == 'DBSCAN': for k, v in resized.items(): if isinstance(k, str): name = namebase + '_core' elif k < 0: name = namebase + '_noise' else: name = namebase + '_{:.0f}'.format(k) self.filt.add(name, v, info=info, params=params, setn=setn) else: for k, v in resized.items(): name = namebase + '_{:.0f}'.format(k) self.filt.add(name, v, info=info, params=params, setn=setn) else: # if there are no data name = '-'.join(analytes) + '_cluster-' + method + '_0' info = '-'.join(analytes) + ' cluster filter failed.' self.filt.add(name, np.zeros(self.Time.size, dtype=bool), info=info, params=params, setn=setn) return
def filter_clustering(self, analytes, filt=False, normalise=True, method='meanshift', include_time=False, sort=None, min_data=10, **kwargs): """ Applies an n - dimensional clustering filter to the data. Available Clustering Algorithms * 'meanshift': The `sklearn.cluster.MeanShift` algorithm. Automatically determines number of clusters in data based on the `bandwidth` of expected variation. * 'kmeans': The `sklearn.cluster.KMeans` algorithm. Determines the characteristics of a known number of clusters within the data. Must provide `n_clusters` to specify the expected number of clusters. * 'DBSCAN': The `sklearn.cluster.DBSCAN` algorithm. Automatically determines the number and characteristics of clusters within the data based on the 'connectivity' of the data (i.e. how far apart each data point is in a multi - dimensional parameter space). Requires you to set `eps`, the minimum distance point must be from another point to be considered in the same cluster, and `min_samples`, the minimum number of points that must be within the minimum distance for it to be considered a cluster. It may also be run in automatic mode by specifying `n_clusters` alongside `min_samples`, where eps is decreased until the desired number of clusters is obtained. For more information on these algorithms, refer to the documentation. Parameters ---------- analytes : str The analyte(s) that the filter applies to. filt : bool Whether or not to apply existing filters to the data before calculating this filter. normalise : bool Whether or not to normalise the data to zero mean and unit variance. Reccomended if clustering based on more than 1 analyte. Uses `sklearn.preprocessing.scale`. method : str Which clustering algorithm to use (see above). include_time : bool Whether or not to include the Time variable in the clustering analysis. Useful if you're looking for spatially continuous clusters in your data, i.e. this will identify each spot in your analysis as an individual cluster. sort : bool, str or array-like Whether or not to label the resulting clusters according to their contents. If used, the cluster with the lowest values will be labelled from 0, in order of increasing cluster mean value.analytes. The sorting rules depend on the value of 'sort', which can be the name of a single analyte (str), a list of several analyte names (array-like) or True (bool), to specify all analytes used to calcualte the cluster. min_data : int The minimum number of data points that should be considered by the filter. Default = 10. **kwargs Parameters passed to the clustering algorithm specified by `method`. Meanshift Parameters -------------------- bandwidth : str or float The bandwith (float) or bandwidth method ('scott' or 'silverman') used to estimate the data bandwidth. bin_seeding : bool Modifies the behaviour of the meanshift algorithm. Refer to sklearn.cluster.meanshift documentation. K - Means Parameters ------------------ n_clusters : int The number of clusters expected in the data. DBSCAN Parameters ----------------- eps : float The minimum 'distance' points must be apart for them to be in the same cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is in terms of total sample variance. Normalised data have a mean of 0 and a variance of 1. min_samples : int The minimum number of samples within distance `eps` required to be considered as an independent cluster. n_clusters : int The number of clusters expected. If specified, `eps` will be incrementally reduced until the expected number of clusters is found. maxiter : int The maximum number of iterations DBSCAN will run. Returns ------- None """ params = locals() del(params['self']) # convert string to list, if single analyte if isinstance(analytes, str): analytes = [analytes] setn = self.filt.maxset + 1 # generate filter vals = np.vstack(nominal_values(list(self.focus.values()))) if filt is not None: ind = (self.filt.grab_filt(filt, analytes) & np.apply_along_axis(all, 0, ~np.isnan(vals))) else: ind = np.apply_along_axis(all, 0, ~np.isnan(vals)) if sum(ind) > min_data: # get indices for data passed to clustering sampled = np.arange(self.Time.size)[ind] # generate data for clustering if include_time: extra = self.Time else: extra = None # get data as array ds = stack_keys(self.focus, analytes, extra) # apply filter, and get nominal values ds = nominal_values(ds[ind, :]) if normalise | (len(analytes) > 1): ds = preprocessing.scale(ds) method_key = {'kmeans': clustering.cluster_kmeans, # 'DBSCAN': clustering.cluster_DBSCAN, 'meanshift': clustering.cluster_meanshift} cfun = method_key[method] labels, core_samples_mask = cfun(ds, **kwargs) # return labels, and if DBSCAN core_sample_mask labels_unique = np.unique(labels) # label the clusters according to their contents if (sort is not None) & (sort is not False): if isinstance(sort, str): sort = [sort] sanalytes = analytes # make boolean filter to select analytes if sort is True: sortk = np.array([True] * len(sanalytes)) else: sortk = np.array([s in sort for s in sanalytes]) # create per-point mean based on selected analytes. sd = np.apply_along_axis(sum, 1, ds[:, sortk]) # calculate per-cluster means avs = [np.nanmean(sd[labels == lab]) for lab in labels_unique] # re-order the cluster labels based on their means order = [x[0] for x in sorted(enumerate(avs), key=lambda x:x[1])] sdict = dict(zip(order, labels_unique)) else: sdict = dict(zip(labels_unique, labels_unique)) filts = {} for ind, lab in sdict.items(): filts[lab] = labels == ind # only applies to DBSCAN results. if not all(np.isnan(core_samples_mask)): filts['core'] = core_samples_mask resized = {} for k, v in filts.items(): resized[k] = np.zeros(self.Time.size, dtype=bool) resized[k][sampled] = v namebase = '-'.join(analytes) + '_cluster-' + method info = '-'.join(analytes) + ' cluster filter.' if method == 'DBSCAN': for k, v in resized.items(): if isinstance(k, str): name = namebase + '_core' elif k < 0: name = namebase + '_noise' else: name = namebase + '_{:.0f}'.format(k) self.filt.add(name, v, info=info, params=params, setn=setn) else: for k, v in resized.items(): name = namebase + '_{:.0f}'.format(k) self.filt.add(name, v, info=info, params=params, setn=setn) else: # if there are no data name = '-'.join(analytes) + '_cluster-' + method + '_0' info = '-'.join(analytes) + ' cluster filter failed.' self.filt.add(name, np.zeros(self.Time.size, dtype=bool), info=info, params=params, setn=setn) return
[ "Applies", "an", "n", "-", "dimensional", "clustering", "filter", "to", "the", "data", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L705-L912
[ "def", "filter_clustering", "(", "self", ",", "analytes", ",", "filt", "=", "False", ",", "normalise", "=", "True", ",", "method", "=", "'meanshift'", ",", "include_time", "=", "False", ",", "sort", "=", "None", ",", "min_data", "=", "10", ",", "*", "*", "kwargs", ")", ":", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "# convert string to list, if single analyte", "if", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "setn", "=", "self", ".", "filt", ".", "maxset", "+", "1", "# generate filter", "vals", "=", "np", ".", "vstack", "(", "nominal_values", "(", "list", "(", "self", ".", "focus", ".", "values", "(", ")", ")", ")", ")", "if", "filt", "is", "not", "None", ":", "ind", "=", "(", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "analytes", ")", "&", "np", ".", "apply_along_axis", "(", "all", ",", "0", ",", "~", "np", ".", "isnan", "(", "vals", ")", ")", ")", "else", ":", "ind", "=", "np", ".", "apply_along_axis", "(", "all", ",", "0", ",", "~", "np", ".", "isnan", "(", "vals", ")", ")", "if", "sum", "(", "ind", ")", ">", "min_data", ":", "# get indices for data passed to clustering", "sampled", "=", "np", ".", "arange", "(", "self", ".", "Time", ".", "size", ")", "[", "ind", "]", "# generate data for clustering", "if", "include_time", ":", "extra", "=", "self", ".", "Time", "else", ":", "extra", "=", "None", "# get data as array", "ds", "=", "stack_keys", "(", "self", ".", "focus", ",", "analytes", ",", "extra", ")", "# apply filter, and get nominal values", "ds", "=", "nominal_values", "(", "ds", "[", "ind", ",", ":", "]", ")", "if", "normalise", "|", "(", "len", "(", "analytes", ")", ">", "1", ")", ":", "ds", "=", "preprocessing", ".", "scale", "(", "ds", ")", "method_key", "=", "{", "'kmeans'", ":", "clustering", ".", "cluster_kmeans", ",", "# 'DBSCAN': clustering.cluster_DBSCAN,", "'meanshift'", ":", "clustering", ".", "cluster_meanshift", "}", "cfun", "=", "method_key", "[", "method", "]", "labels", ",", "core_samples_mask", "=", "cfun", "(", "ds", ",", "*", "*", "kwargs", ")", "# return labels, and if DBSCAN core_sample_mask", "labels_unique", "=", "np", ".", "unique", "(", "labels", ")", "# label the clusters according to their contents", "if", "(", "sort", "is", "not", "None", ")", "&", "(", "sort", "is", "not", "False", ")", ":", "if", "isinstance", "(", "sort", ",", "str", ")", ":", "sort", "=", "[", "sort", "]", "sanalytes", "=", "analytes", "# make boolean filter to select analytes", "if", "sort", "is", "True", ":", "sortk", "=", "np", ".", "array", "(", "[", "True", "]", "*", "len", "(", "sanalytes", ")", ")", "else", ":", "sortk", "=", "np", ".", "array", "(", "[", "s", "in", "sort", "for", "s", "in", "sanalytes", "]", ")", "# create per-point mean based on selected analytes.", "sd", "=", "np", ".", "apply_along_axis", "(", "sum", ",", "1", ",", "ds", "[", ":", ",", "sortk", "]", ")", "# calculate per-cluster means", "avs", "=", "[", "np", ".", "nanmean", "(", "sd", "[", "labels", "==", "lab", "]", ")", "for", "lab", "in", "labels_unique", "]", "# re-order the cluster labels based on their means", "order", "=", "[", "x", "[", "0", "]", "for", "x", "in", "sorted", "(", "enumerate", "(", "avs", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ")", "]", "sdict", "=", "dict", "(", "zip", "(", "order", ",", "labels_unique", ")", ")", "else", ":", "sdict", "=", "dict", "(", "zip", "(", "labels_unique", ",", "labels_unique", ")", ")", "filts", "=", "{", "}", "for", "ind", ",", "lab", "in", "sdict", ".", "items", "(", ")", ":", "filts", "[", "lab", "]", "=", "labels", "==", "ind", "# only applies to DBSCAN results.", "if", "not", "all", "(", "np", ".", "isnan", "(", "core_samples_mask", ")", ")", ":", "filts", "[", "'core'", "]", "=", "core_samples_mask", "resized", "=", "{", "}", "for", "k", ",", "v", "in", "filts", ".", "items", "(", ")", ":", "resized", "[", "k", "]", "=", "np", ".", "zeros", "(", "self", ".", "Time", ".", "size", ",", "dtype", "=", "bool", ")", "resized", "[", "k", "]", "[", "sampled", "]", "=", "v", "namebase", "=", "'-'", ".", "join", "(", "analytes", ")", "+", "'_cluster-'", "+", "method", "info", "=", "'-'", ".", "join", "(", "analytes", ")", "+", "' cluster filter.'", "if", "method", "==", "'DBSCAN'", ":", "for", "k", ",", "v", "in", "resized", ".", "items", "(", ")", ":", "if", "isinstance", "(", "k", ",", "str", ")", ":", "name", "=", "namebase", "+", "'_core'", "elif", "k", "<", "0", ":", "name", "=", "namebase", "+", "'_noise'", "else", ":", "name", "=", "namebase", "+", "'_{:.0f}'", ".", "format", "(", "k", ")", "self", ".", "filt", ".", "add", "(", "name", ",", "v", ",", "info", "=", "info", ",", "params", "=", "params", ",", "setn", "=", "setn", ")", "else", ":", "for", "k", ",", "v", "in", "resized", ".", "items", "(", ")", ":", "name", "=", "namebase", "+", "'_{:.0f}'", ".", "format", "(", "k", ")", "self", ".", "filt", ".", "add", "(", "name", ",", "v", ",", "info", "=", "info", ",", "params", "=", "params", ",", "setn", "=", "setn", ")", "else", ":", "# if there are no data", "name", "=", "'-'", ".", "join", "(", "analytes", ")", "+", "'_cluster-'", "+", "method", "+", "'_0'", "info", "=", "'-'", ".", "join", "(", "analytes", ")", "+", "' cluster filter failed.'", "self", ".", "filt", ".", "add", "(", "name", ",", "np", ".", "zeros", "(", "self", ".", "Time", ".", "size", ",", "dtype", "=", "bool", ")", ",", "info", "=", "info", ",", "params", "=", "params", ",", "setn", "=", "setn", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.calc_correlation
Calculate local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None
latools/D_obj.py
def calc_correlation(self, x_analyte, y_analyte, window=15, filt=True, recalc=True): """ Calculate local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) if label in self.correlations and not recalc: return # make window odd if window % 2 != 1: window += 1 # get filter ind = self.filt.grab_filt(filt, [x_analyte, y_analyte]) x = nominal_values(self.focus[x_analyte]) x[~ind] = np.nan xr = rolling_window(x, window, pad=np.nan) y = nominal_values(self.focus[y_analyte]) y[~ind] = np.nan yr = rolling_window(y, window, pad=np.nan) r, p = zip(*map(nan_pearsonr, xr, yr)) r = np.array(r) p = np.array(p) # save correlation info self.correlations[label] = r, p return
def calc_correlation(self, x_analyte, y_analyte, window=15, filt=True, recalc=True): """ Calculate local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) if label in self.correlations and not recalc: return # make window odd if window % 2 != 1: window += 1 # get filter ind = self.filt.grab_filt(filt, [x_analyte, y_analyte]) x = nominal_values(self.focus[x_analyte]) x[~ind] = np.nan xr = rolling_window(x, window, pad=np.nan) y = nominal_values(self.focus[y_analyte]) y[~ind] = np.nan yr = rolling_window(y, window, pad=np.nan) r, p = zip(*map(nan_pearsonr, xr, yr)) r = np.array(r) p = np.array(p) # save correlation info self.correlations[label] = r, p return
[ "Calculate", "local", "correlation", "between", "two", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L915-L963
[ "def", "calc_correlation", "(", "self", ",", "x_analyte", ",", "y_analyte", ",", "window", "=", "15", ",", "filt", "=", "True", ",", "recalc", "=", "True", ")", ":", "label", "=", "'{:}_{:}_{:.0f}'", ".", "format", "(", "x_analyte", ",", "y_analyte", ",", "window", ")", "if", "label", "in", "self", ".", "correlations", "and", "not", "recalc", ":", "return", "# make window odd", "if", "window", "%", "2", "!=", "1", ":", "window", "+=", "1", "# get filter", "ind", "=", "self", ".", "filt", ".", "grab_filt", "(", "filt", ",", "[", "x_analyte", ",", "y_analyte", "]", ")", "x", "=", "nominal_values", "(", "self", ".", "focus", "[", "x_analyte", "]", ")", "x", "[", "~", "ind", "]", "=", "np", ".", "nan", "xr", "=", "rolling_window", "(", "x", ",", "window", ",", "pad", "=", "np", ".", "nan", ")", "y", "=", "nominal_values", "(", "self", ".", "focus", "[", "y_analyte", "]", ")", "y", "[", "~", "ind", "]", "=", "np", ".", "nan", "yr", "=", "rolling_window", "(", "y", ",", "window", ",", "pad", "=", "np", ".", "nan", ")", "r", ",", "p", "=", "zip", "(", "*", "map", "(", "nan_pearsonr", ",", "xr", ",", "yr", ")", ")", "r", "=", "np", ".", "array", "(", "r", ")", "p", "=", "np", ".", "array", "(", "p", ")", "# save correlation info", "self", ".", "correlations", "[", "label", "]", "=", "r", ",", "p", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_correlation
Calculate correlation filter. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None
latools/D_obj.py
def filter_correlation(self, x_analyte, y_analyte, window=15, r_threshold=0.9, p_threshold=0.05, filt=True, recalc=False): """ Calculate correlation filter. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ # make window odd if window % 2 != 1: window += 1 params = locals() del(params['self']) setn = self.filt.maxset + 1 label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) self.calc_correlation(x_analyte, y_analyte, window, filt, recalc) r, p = self.correlations[label] cfilt = (abs(r) > r_threshold) & (p < p_threshold) cfilt = ~cfilt name = x_analyte + '_' + y_analyte + '_corr' self.filt.add(name=name, filt=cfilt, info=(x_analyte + ' vs. ' + y_analyte + ' correlation filter.'), params=params, setn=setn) self.filt.off(filt=name) self.filt.on(analyte=y_analyte, filt=name) return
def filter_correlation(self, x_analyte, y_analyte, window=15, r_threshold=0.9, p_threshold=0.05, filt=True, recalc=False): """ Calculate correlation filter. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. r_threshold : float The correlation index above which to exclude data. Note: the absolute pearson R value is considered, so negative correlations below -`r_threshold` will also be excluded. p_threshold : float The significant level below which data are excluded. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- None """ # make window odd if window % 2 != 1: window += 1 params = locals() del(params['self']) setn = self.filt.maxset + 1 label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) self.calc_correlation(x_analyte, y_analyte, window, filt, recalc) r, p = self.correlations[label] cfilt = (abs(r) > r_threshold) & (p < p_threshold) cfilt = ~cfilt name = x_analyte + '_' + y_analyte + '_corr' self.filt.add(name=name, filt=cfilt, info=(x_analyte + ' vs. ' + y_analyte + ' correlation filter.'), params=params, setn=setn) self.filt.off(filt=name) self.filt.on(analyte=y_analyte, filt=name) return
[ "Calculate", "correlation", "filter", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L966-L1021
[ "def", "filter_correlation", "(", "self", ",", "x_analyte", ",", "y_analyte", ",", "window", "=", "15", ",", "r_threshold", "=", "0.9", ",", "p_threshold", "=", "0.05", ",", "filt", "=", "True", ",", "recalc", "=", "False", ")", ":", "# make window odd", "if", "window", "%", "2", "!=", "1", ":", "window", "+=", "1", "params", "=", "locals", "(", ")", "del", "(", "params", "[", "'self'", "]", ")", "setn", "=", "self", ".", "filt", ".", "maxset", "+", "1", "label", "=", "'{:}_{:}_{:.0f}'", ".", "format", "(", "x_analyte", ",", "y_analyte", ",", "window", ")", "self", ".", "calc_correlation", "(", "x_analyte", ",", "y_analyte", ",", "window", ",", "filt", ",", "recalc", ")", "r", ",", "p", "=", "self", ".", "correlations", "[", "label", "]", "cfilt", "=", "(", "abs", "(", "r", ")", ">", "r_threshold", ")", "&", "(", "p", "<", "p_threshold", ")", "cfilt", "=", "~", "cfilt", "name", "=", "x_analyte", "+", "'_'", "+", "y_analyte", "+", "'_corr'", "self", ".", "filt", ".", "add", "(", "name", "=", "name", ",", "filt", "=", "cfilt", ",", "info", "=", "(", "x_analyte", "+", "' vs. '", "+", "y_analyte", "+", "' correlation filter.'", ")", ",", "params", "=", "params", ",", "setn", "=", "setn", ")", "self", ".", "filt", ".", "off", "(", "filt", "=", "name", ")", "self", ".", "filt", ".", "on", "(", "analyte", "=", "y_analyte", ",", "filt", "=", "name", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.correlation_plot
Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- fig, axs : figure and axes objects
latools/D_obj.py
def correlation_plot(self, x_analyte, y_analyte, window=15, filt=True, recalc=False): """ Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- fig, axs : figure and axes objects """ label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) self.calc_correlation(x_analyte, y_analyte, window, filt, recalc) r, p = self.correlations[label] fig, axs = plt.subplots(3, 1, figsize=[7, 5], sharex=True) # plot analytes ax = axs[0] ax.plot(self.Time, nominal_values(self.focus[x_analyte]), color=self.cmap[x_analyte], label=x_analyte) ax.plot(self.Time, nominal_values(self.focus[y_analyte]), color=self.cmap[y_analyte], label=y_analyte) ax.set_yscale('log') ax.legend() ax.set_ylabel('Signals') # plot r ax = axs[1] ax.plot(self.Time, r) ax.set_ylabel('Pearson R') # plot p ax = axs[2] ax.plot(self.Time, p) ax.set_ylabel('pignificance Level (p)') fig.tight_layout() return fig, axs
def correlation_plot(self, x_analyte, y_analyte, window=15, filt=True, recalc=False): """ Plot the local correlation between two analytes. Parameters ---------- x_analyte, y_analyte : str The names of the x and y analytes to correlate. window : int, None The rolling window used when calculating the correlation. filt : bool Whether or not to apply existing filters to the data before calculating this filter. recalc : bool If True, the correlation is re-calculated, even if it is already present. Returns ------- fig, axs : figure and axes objects """ label = '{:}_{:}_{:.0f}'.format(x_analyte, y_analyte, window) self.calc_correlation(x_analyte, y_analyte, window, filt, recalc) r, p = self.correlations[label] fig, axs = plt.subplots(3, 1, figsize=[7, 5], sharex=True) # plot analytes ax = axs[0] ax.plot(self.Time, nominal_values(self.focus[x_analyte]), color=self.cmap[x_analyte], label=x_analyte) ax.plot(self.Time, nominal_values(self.focus[y_analyte]), color=self.cmap[y_analyte], label=y_analyte) ax.set_yscale('log') ax.legend() ax.set_ylabel('Signals') # plot r ax = axs[1] ax.plot(self.Time, r) ax.set_ylabel('Pearson R') # plot p ax = axs[2] ax.plot(self.Time, p) ax.set_ylabel('pignificance Level (p)') fig.tight_layout() return fig, axs
[ "Plot", "the", "local", "correlation", "between", "two", "analytes", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1024-L1073
[ "def", "correlation_plot", "(", "self", ",", "x_analyte", ",", "y_analyte", ",", "window", "=", "15", ",", "filt", "=", "True", ",", "recalc", "=", "False", ")", ":", "label", "=", "'{:}_{:}_{:.0f}'", ".", "format", "(", "x_analyte", ",", "y_analyte", ",", "window", ")", "self", ".", "calc_correlation", "(", "x_analyte", ",", "y_analyte", ",", "window", ",", "filt", ",", "recalc", ")", "r", ",", "p", "=", "self", ".", "correlations", "[", "label", "]", "fig", ",", "axs", "=", "plt", ".", "subplots", "(", "3", ",", "1", ",", "figsize", "=", "[", "7", ",", "5", "]", ",", "sharex", "=", "True", ")", "# plot analytes", "ax", "=", "axs", "[", "0", "]", "ax", ".", "plot", "(", "self", ".", "Time", ",", "nominal_values", "(", "self", ".", "focus", "[", "x_analyte", "]", ")", ",", "color", "=", "self", ".", "cmap", "[", "x_analyte", "]", ",", "label", "=", "x_analyte", ")", "ax", ".", "plot", "(", "self", ".", "Time", ",", "nominal_values", "(", "self", ".", "focus", "[", "y_analyte", "]", ")", ",", "color", "=", "self", ".", "cmap", "[", "y_analyte", "]", ",", "label", "=", "y_analyte", ")", "ax", ".", "set_yscale", "(", "'log'", ")", "ax", ".", "legend", "(", ")", "ax", ".", "set_ylabel", "(", "'Signals'", ")", "# plot r", "ax", "=", "axs", "[", "1", "]", "ax", ".", "plot", "(", "self", ".", "Time", ",", "r", ")", "ax", ".", "set_ylabel", "(", "'Pearson R'", ")", "# plot p", "ax", "=", "axs", "[", "2", "]", "ax", ".", "plot", "(", "self", ".", "Time", ",", "p", ")", "ax", ".", "set_ylabel", "(", "'pignificance Level (p)'", ")", "fig", ".", "tight_layout", "(", ")", "return", "fig", ",", "axs" ]
cd25a650cfee318152f234d992708511f7047fbe
test
D.filter_new
Make new filter from combination of other filters. Parameters ---------- name : str The name of the new filter. Should be unique. filt_str : str A logical combination of partial strings which will create the new filter. For example, 'Albelow & Mnbelow' will combine all filters that partially match 'Albelow' with those that partially match 'Mnbelow' using the 'AND' logical operator. Returns ------- None
latools/D_obj.py
def filter_new(self, name, filt_str): """ Make new filter from combination of other filters. Parameters ---------- name : str The name of the new filter. Should be unique. filt_str : str A logical combination of partial strings which will create the new filter. For example, 'Albelow & Mnbelow' will combine all filters that partially match 'Albelow' with those that partially match 'Mnbelow' using the 'AND' logical operator. Returns ------- None """ filt = self.filt.grab_filt(filt=filt_str) self.filt.add(name, filt, info=filt_str) return
def filter_new(self, name, filt_str): """ Make new filter from combination of other filters. Parameters ---------- name : str The name of the new filter. Should be unique. filt_str : str A logical combination of partial strings which will create the new filter. For example, 'Albelow & Mnbelow' will combine all filters that partially match 'Albelow' with those that partially match 'Mnbelow' using the 'AND' logical operator. Returns ------- None """ filt = self.filt.grab_filt(filt=filt_str) self.filt.add(name, filt, info=filt_str) return
[ "Make", "new", "filter", "from", "combination", "of", "other", "filters", "." ]
oscarbranson/latools
python
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/D_obj.py#L1076-L1096
[ "def", "filter_new", "(", "self", ",", "name", ",", "filt_str", ")", ":", "filt", "=", "self", ".", "filt", ".", "grab_filt", "(", "filt", "=", "filt_str", ")", "self", ".", "filt", ".", "add", "(", "name", ",", "filt", ",", "info", "=", "filt_str", ")", "return" ]
cd25a650cfee318152f234d992708511f7047fbe