repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
aouyar/PyMunin
pysysinfo/filesystem.py
FilesystemInfo.getSpaceUse
def getSpaceUse(self): """Get disk space usage. @return: Dictionary of filesystem space utilization stats for filesystems. """ stats = {} try: out = subprocess.Popen([dfCmd, "-Pk"], stdout=subprocess.PIPE).communicate()[0] except: raise Exception('Execution of command %s failed.' % dfCmd) lines = out.splitlines() if len(lines) > 1: for line in lines[1:]: fsstats = {} cols = line.split() fsstats['device'] = cols[0] fsstats['type'] = self._fstypeDict[cols[5]] fsstats['total'] = 1024 * int(cols[1]) fsstats['inuse'] = 1024 * int(cols[2]) fsstats['avail'] = 1024 * int(cols[3]) fsstats['inuse_pcent'] = int(cols[4][:-1]) stats[cols[5]] = fsstats return stats
python
def getSpaceUse(self): """Get disk space usage. @return: Dictionary of filesystem space utilization stats for filesystems. """ stats = {} try: out = subprocess.Popen([dfCmd, "-Pk"], stdout=subprocess.PIPE).communicate()[0] except: raise Exception('Execution of command %s failed.' % dfCmd) lines = out.splitlines() if len(lines) > 1: for line in lines[1:]: fsstats = {} cols = line.split() fsstats['device'] = cols[0] fsstats['type'] = self._fstypeDict[cols[5]] fsstats['total'] = 1024 * int(cols[1]) fsstats['inuse'] = 1024 * int(cols[2]) fsstats['avail'] = 1024 * int(cols[3]) fsstats['inuse_pcent'] = int(cols[4][:-1]) stats[cols[5]] = fsstats return stats
[ "def", "getSpaceUse", "(", "self", ")", ":", "stats", "=", "{", "}", "try", ":", "out", "=", "subprocess", ".", "Popen", "(", "[", "dfCmd", ",", "\"-Pk\"", "]", ",", "stdout", "=", "subprocess", ".", "PIPE", ")", ".", "communicate", "(", ")", "[", "0", "]", "except", ":", "raise", "Exception", "(", "'Execution of command %s failed.'", "%", "dfCmd", ")", "lines", "=", "out", ".", "splitlines", "(", ")", "if", "len", "(", "lines", ")", ">", "1", ":", "for", "line", "in", "lines", "[", "1", ":", "]", ":", "fsstats", "=", "{", "}", "cols", "=", "line", ".", "split", "(", ")", "fsstats", "[", "'device'", "]", "=", "cols", "[", "0", "]", "fsstats", "[", "'type'", "]", "=", "self", ".", "_fstypeDict", "[", "cols", "[", "5", "]", "]", "fsstats", "[", "'total'", "]", "=", "1024", "*", "int", "(", "cols", "[", "1", "]", ")", "fsstats", "[", "'inuse'", "]", "=", "1024", "*", "int", "(", "cols", "[", "2", "]", ")", "fsstats", "[", "'avail'", "]", "=", "1024", "*", "int", "(", "cols", "[", "3", "]", ")", "fsstats", "[", "'inuse_pcent'", "]", "=", "int", "(", "cols", "[", "4", "]", "[", ":", "-", "1", "]", ")", "stats", "[", "cols", "[", "5", "]", "]", "=", "fsstats", "return", "stats" ]
Get disk space usage. @return: Dictionary of filesystem space utilization stats for filesystems.
[ "Get", "disk", "space", "usage", "." ]
train
https://github.com/aouyar/PyMunin/blob/4f58a64b6b37c85a84cc7e1e07aafaa0321b249d/pysysinfo/filesystem.py#L67-L91
aouyar/PyMunin
pymunin/plugins/pgstats.py
MuninPgPlugin.retrieveVals
def retrieveVals(self): """Retrieve values for graphs.""" stats = self._dbconn.getDatabaseStats() databases = stats.get('databases') totals = stats.get('totals') if self.hasGraph('pg_connections'): limit = self._dbconn.getParam('max_connections') self.setGraphVal('pg_connections', 'max_conn', limit) for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_connections', db, dbstats['numbackends']) self.setGraphVal('pg_connections', 'total', totals['numbackends']) if self.hasGraph('pg_diskspace'): for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_diskspace', db, dbstats['disk_size']) self.setGraphVal('pg_diskspace', 'total', totals['disk_size']) if self.hasGraph('pg_blockreads'): self.setGraphVal('pg_blockreads', 'blk_hit', totals['blks_hit']) self.setGraphVal('pg_blockreads', 'blk_read', totals['blks_read']) if self.hasGraph('pg_xact'): self.setGraphVal('pg_xact', 'commits', totals['xact_commit']) self.setGraphVal('pg_xact', 'rollbacks', totals['xact_rollback']) if self.hasGraph('pg_tup_read'): self.setGraphVal('pg_tup_read', 'fetch', totals['tup_fetched']) self.setGraphVal('pg_tup_read', 'return', totals['tup_returned']) if self.hasGraph('pg_tup_write'): self.setGraphVal('pg_tup_write', 'delete', totals['tup_deleted']) self.setGraphVal('pg_tup_write', 'update', totals['tup_updated']) self.setGraphVal('pg_tup_write', 'insert', totals['tup_inserted']) lock_stats = None for lock_state in ('all', 'wait',): graph_name = "pg_lock_%s" % lock_state if self.hasGraph(graph_name): if lock_stats is None: lock_stats = self._dbconn.getLockStatsMode() mode_iter = iter(PgInfo.lockModes) for mode in ('AccessExcl', 'Excl', 'ShrRwExcl', 'Shr', 'ShrUpdExcl', 'RwExcl', 'RwShr', 'AccessShr',): self.setGraphVal(graph_name, mode, lock_stats[lock_state].get(mode_iter.next())) stats = None if self.hasGraph('pg_checkpoints'): if stats is None: stats = self._dbconn.getBgWriterStats() self.setGraphVal('pg_checkpoints', 'req', stats.get('checkpoints_req')) self.setGraphVal('pg_checkpoints', 'timed', stats.get('checkpoints_timed')) if self.hasGraph('pg_bgwriter'): if stats is None: stats = self._dbconn.getBgWriterStats() self.setGraphVal('pg_bgwriter', 'backend', stats.get('buffers_backend')) self.setGraphVal('pg_bgwriter', 'clean', stats.get('buffers_clean')) self.setGraphVal('pg_bgwriter', 'chkpoint', stats.get('buffers_checkpoint')) if self._detailGraphs: for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): if self.hasGraph('pg_blockread_detail'): self.setGraphVal('pg_blockread_detail', db, dbstats['blks_hit'] + dbstats['blks_read']) for (graph_name, attr_name) in ( ('pg_xact_commit_detail', 'xact_commit'), ('pg_xact_rollback_detail', 'xact_rollback'), ('pg_tup_return_detail', 'tup_returned'), ('pg_tup_fetch_detail', 'tup_fetched'), ('pg_tup_delete_detail', 'tup_deleted'), ('pg_tup_update_detail', 'tup_updated'), ('pg_tup_insert_detail', 'tup_inserted'), ): if self.hasGraph(graph_name): self.setGraphVal(graph_name, db, dbstats[attr_name]) lock_stats_db = None for lock_state in ('all', 'wait',): graph_name = "pg_lock_%s_detail" % lock_state if self.hasGraph(graph_name): if lock_stats_db is None: lock_stats_db = self._dbconn.getLockStatsDB() self.setGraphVal(graph_name, db, lock_stats_db[lock_state].get(db, 0)) if self._replGraphs: repl_stats = self._dbconn.getSlaveConflictStats() if self.hasGraph('pg_repl_conflicts'): for field in self.getGraphFieldList('pg_repl_conflicts'): self.setGraphVal('pg_repl_conflicts', field, repl_stats['totals'].get("confl_%s" % field)) if self._detailGraphs and self.hasGraph('pg_repl_conflicts_detail'): for (db, dbstats) in repl_stats['databases'].iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_repl_conflicts_detail', db, sum(dbstats.values()))
python
def retrieveVals(self): """Retrieve values for graphs.""" stats = self._dbconn.getDatabaseStats() databases = stats.get('databases') totals = stats.get('totals') if self.hasGraph('pg_connections'): limit = self._dbconn.getParam('max_connections') self.setGraphVal('pg_connections', 'max_conn', limit) for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_connections', db, dbstats['numbackends']) self.setGraphVal('pg_connections', 'total', totals['numbackends']) if self.hasGraph('pg_diskspace'): for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_diskspace', db, dbstats['disk_size']) self.setGraphVal('pg_diskspace', 'total', totals['disk_size']) if self.hasGraph('pg_blockreads'): self.setGraphVal('pg_blockreads', 'blk_hit', totals['blks_hit']) self.setGraphVal('pg_blockreads', 'blk_read', totals['blks_read']) if self.hasGraph('pg_xact'): self.setGraphVal('pg_xact', 'commits', totals['xact_commit']) self.setGraphVal('pg_xact', 'rollbacks', totals['xact_rollback']) if self.hasGraph('pg_tup_read'): self.setGraphVal('pg_tup_read', 'fetch', totals['tup_fetched']) self.setGraphVal('pg_tup_read', 'return', totals['tup_returned']) if self.hasGraph('pg_tup_write'): self.setGraphVal('pg_tup_write', 'delete', totals['tup_deleted']) self.setGraphVal('pg_tup_write', 'update', totals['tup_updated']) self.setGraphVal('pg_tup_write', 'insert', totals['tup_inserted']) lock_stats = None for lock_state in ('all', 'wait',): graph_name = "pg_lock_%s" % lock_state if self.hasGraph(graph_name): if lock_stats is None: lock_stats = self._dbconn.getLockStatsMode() mode_iter = iter(PgInfo.lockModes) for mode in ('AccessExcl', 'Excl', 'ShrRwExcl', 'Shr', 'ShrUpdExcl', 'RwExcl', 'RwShr', 'AccessShr',): self.setGraphVal(graph_name, mode, lock_stats[lock_state].get(mode_iter.next())) stats = None if self.hasGraph('pg_checkpoints'): if stats is None: stats = self._dbconn.getBgWriterStats() self.setGraphVal('pg_checkpoints', 'req', stats.get('checkpoints_req')) self.setGraphVal('pg_checkpoints', 'timed', stats.get('checkpoints_timed')) if self.hasGraph('pg_bgwriter'): if stats is None: stats = self._dbconn.getBgWriterStats() self.setGraphVal('pg_bgwriter', 'backend', stats.get('buffers_backend')) self.setGraphVal('pg_bgwriter', 'clean', stats.get('buffers_clean')) self.setGraphVal('pg_bgwriter', 'chkpoint', stats.get('buffers_checkpoint')) if self._detailGraphs: for (db, dbstats) in databases.iteritems(): if self.dbIncluded(db): if self.hasGraph('pg_blockread_detail'): self.setGraphVal('pg_blockread_detail', db, dbstats['blks_hit'] + dbstats['blks_read']) for (graph_name, attr_name) in ( ('pg_xact_commit_detail', 'xact_commit'), ('pg_xact_rollback_detail', 'xact_rollback'), ('pg_tup_return_detail', 'tup_returned'), ('pg_tup_fetch_detail', 'tup_fetched'), ('pg_tup_delete_detail', 'tup_deleted'), ('pg_tup_update_detail', 'tup_updated'), ('pg_tup_insert_detail', 'tup_inserted'), ): if self.hasGraph(graph_name): self.setGraphVal(graph_name, db, dbstats[attr_name]) lock_stats_db = None for lock_state in ('all', 'wait',): graph_name = "pg_lock_%s_detail" % lock_state if self.hasGraph(graph_name): if lock_stats_db is None: lock_stats_db = self._dbconn.getLockStatsDB() self.setGraphVal(graph_name, db, lock_stats_db[lock_state].get(db, 0)) if self._replGraphs: repl_stats = self._dbconn.getSlaveConflictStats() if self.hasGraph('pg_repl_conflicts'): for field in self.getGraphFieldList('pg_repl_conflicts'): self.setGraphVal('pg_repl_conflicts', field, repl_stats['totals'].get("confl_%s" % field)) if self._detailGraphs and self.hasGraph('pg_repl_conflicts_detail'): for (db, dbstats) in repl_stats['databases'].iteritems(): if self.dbIncluded(db): self.setGraphVal('pg_repl_conflicts_detail', db, sum(dbstats.values()))
[ "def", "retrieveVals", "(", "self", ")", ":", "stats", "=", "self", ".", "_dbconn", ".", "getDatabaseStats", "(", ")", "databases", "=", "stats", ".", "get", "(", "'databases'", ")", "totals", "=", "stats", ".", "get", "(", "'totals'", ")", "if", "self", ".", "hasGraph", "(", "'pg_connections'", ")", ":", "limit", "=", "self", ".", "_dbconn", ".", "getParam", "(", "'max_connections'", ")", "self", ".", "setGraphVal", "(", "'pg_connections'", ",", "'max_conn'", ",", "limit", ")", "for", "(", "db", ",", "dbstats", ")", "in", "databases", ".", "iteritems", "(", ")", ":", "if", "self", ".", "dbIncluded", "(", "db", ")", ":", "self", ".", "setGraphVal", "(", "'pg_connections'", ",", "db", ",", "dbstats", "[", "'numbackends'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_connections'", ",", "'total'", ",", "totals", "[", "'numbackends'", "]", ")", "if", "self", ".", "hasGraph", "(", "'pg_diskspace'", ")", ":", "for", "(", "db", ",", "dbstats", ")", "in", "databases", ".", "iteritems", "(", ")", ":", "if", "self", ".", "dbIncluded", "(", "db", ")", ":", "self", ".", "setGraphVal", "(", "'pg_diskspace'", ",", "db", ",", "dbstats", "[", "'disk_size'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_diskspace'", ",", "'total'", ",", "totals", "[", "'disk_size'", "]", ")", "if", "self", ".", "hasGraph", "(", "'pg_blockreads'", ")", ":", "self", ".", "setGraphVal", "(", "'pg_blockreads'", ",", "'blk_hit'", ",", "totals", "[", "'blks_hit'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_blockreads'", ",", "'blk_read'", ",", "totals", "[", "'blks_read'", "]", ")", "if", "self", ".", "hasGraph", "(", "'pg_xact'", ")", ":", "self", ".", "setGraphVal", "(", "'pg_xact'", ",", "'commits'", ",", "totals", "[", "'xact_commit'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_xact'", ",", "'rollbacks'", ",", "totals", "[", "'xact_rollback'", "]", ")", "if", "self", ".", "hasGraph", "(", "'pg_tup_read'", ")", ":", "self", ".", "setGraphVal", "(", "'pg_tup_read'", ",", "'fetch'", ",", "totals", "[", "'tup_fetched'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_tup_read'", ",", "'return'", ",", "totals", "[", "'tup_returned'", "]", ")", "if", "self", ".", "hasGraph", "(", "'pg_tup_write'", ")", ":", "self", ".", "setGraphVal", "(", "'pg_tup_write'", ",", "'delete'", ",", "totals", "[", "'tup_deleted'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_tup_write'", ",", "'update'", ",", "totals", "[", "'tup_updated'", "]", ")", "self", ".", "setGraphVal", "(", "'pg_tup_write'", ",", "'insert'", ",", "totals", "[", "'tup_inserted'", "]", ")", "lock_stats", "=", "None", "for", "lock_state", "in", "(", "'all'", ",", "'wait'", ",", ")", ":", "graph_name", "=", "\"pg_lock_%s\"", "%", "lock_state", "if", "self", ".", "hasGraph", "(", "graph_name", ")", ":", "if", "lock_stats", "is", "None", ":", "lock_stats", "=", "self", ".", "_dbconn", ".", "getLockStatsMode", "(", ")", "mode_iter", "=", "iter", "(", "PgInfo", ".", "lockModes", ")", "for", "mode", "in", "(", "'AccessExcl'", ",", "'Excl'", ",", "'ShrRwExcl'", ",", "'Shr'", ",", "'ShrUpdExcl'", ",", "'RwExcl'", ",", "'RwShr'", ",", "'AccessShr'", ",", ")", ":", "self", ".", "setGraphVal", "(", "graph_name", ",", "mode", ",", "lock_stats", "[", "lock_state", "]", ".", "get", "(", "mode_iter", ".", "next", "(", ")", ")", ")", "stats", "=", "None", "if", "self", ".", "hasGraph", "(", "'pg_checkpoints'", ")", ":", "if", "stats", "is", "None", ":", "stats", "=", "self", ".", "_dbconn", ".", "getBgWriterStats", "(", ")", "self", ".", "setGraphVal", "(", "'pg_checkpoints'", ",", "'req'", ",", "stats", ".", "get", "(", "'checkpoints_req'", ")", ")", "self", ".", "setGraphVal", "(", "'pg_checkpoints'", ",", "'timed'", ",", "stats", ".", "get", "(", "'checkpoints_timed'", ")", ")", "if", "self", ".", "hasGraph", "(", "'pg_bgwriter'", ")", ":", "if", "stats", "is", "None", ":", "stats", "=", "self", ".", "_dbconn", ".", "getBgWriterStats", "(", ")", "self", ".", "setGraphVal", "(", "'pg_bgwriter'", ",", "'backend'", ",", "stats", ".", "get", "(", "'buffers_backend'", ")", ")", "self", ".", "setGraphVal", "(", "'pg_bgwriter'", ",", "'clean'", ",", "stats", ".", "get", "(", "'buffers_clean'", ")", ")", "self", ".", "setGraphVal", "(", "'pg_bgwriter'", ",", "'chkpoint'", ",", "stats", ".", "get", "(", "'buffers_checkpoint'", ")", ")", "if", "self", ".", "_detailGraphs", ":", "for", "(", "db", ",", "dbstats", ")", "in", "databases", ".", "iteritems", "(", ")", ":", "if", "self", ".", "dbIncluded", "(", "db", ")", ":", "if", "self", ".", "hasGraph", "(", "'pg_blockread_detail'", ")", ":", "self", ".", "setGraphVal", "(", "'pg_blockread_detail'", ",", "db", ",", "dbstats", "[", "'blks_hit'", "]", "+", "dbstats", "[", "'blks_read'", "]", ")", "for", "(", "graph_name", ",", "attr_name", ")", "in", "(", "(", "'pg_xact_commit_detail'", ",", "'xact_commit'", ")", ",", "(", "'pg_xact_rollback_detail'", ",", "'xact_rollback'", ")", ",", "(", "'pg_tup_return_detail'", ",", "'tup_returned'", ")", ",", "(", "'pg_tup_fetch_detail'", ",", "'tup_fetched'", ")", ",", "(", "'pg_tup_delete_detail'", ",", "'tup_deleted'", ")", ",", "(", "'pg_tup_update_detail'", ",", "'tup_updated'", ")", ",", "(", "'pg_tup_insert_detail'", ",", "'tup_inserted'", ")", ",", ")", ":", "if", "self", ".", "hasGraph", "(", "graph_name", ")", ":", "self", ".", "setGraphVal", "(", "graph_name", ",", "db", ",", "dbstats", "[", "attr_name", "]", ")", "lock_stats_db", "=", "None", "for", "lock_state", "in", "(", "'all'", ",", "'wait'", ",", ")", ":", "graph_name", "=", "\"pg_lock_%s_detail\"", "%", "lock_state", "if", "self", ".", "hasGraph", "(", "graph_name", ")", ":", "if", "lock_stats_db", "is", "None", ":", "lock_stats_db", "=", "self", ".", "_dbconn", ".", "getLockStatsDB", "(", ")", "self", ".", "setGraphVal", "(", "graph_name", ",", "db", ",", "lock_stats_db", "[", "lock_state", "]", ".", "get", "(", "db", ",", "0", ")", ")", "if", "self", ".", "_replGraphs", ":", "repl_stats", "=", "self", ".", "_dbconn", ".", "getSlaveConflictStats", "(", ")", "if", "self", ".", "hasGraph", "(", "'pg_repl_conflicts'", ")", ":", "for", "field", "in", "self", ".", "getGraphFieldList", "(", "'pg_repl_conflicts'", ")", ":", "self", ".", "setGraphVal", "(", "'pg_repl_conflicts'", ",", "field", ",", "repl_stats", "[", "'totals'", "]", ".", "get", "(", "\"confl_%s\"", "%", "field", ")", ")", "if", "self", ".", "_detailGraphs", "and", "self", ".", "hasGraph", "(", "'pg_repl_conflicts_detail'", ")", ":", "for", "(", "db", ",", "dbstats", ")", "in", "repl_stats", "[", "'databases'", "]", ".", "iteritems", "(", ")", ":", "if", "self", ".", "dbIncluded", "(", "db", ")", ":", "self", ".", "setGraphVal", "(", "'pg_repl_conflicts_detail'", ",", "db", ",", "sum", "(", "dbstats", ".", "values", "(", ")", ")", ")" ]
Retrieve values for graphs.
[ "Retrieve", "values", "for", "graphs", "." ]
train
https://github.com/aouyar/PyMunin/blob/4f58a64b6b37c85a84cc7e1e07aafaa0321b249d/pymunin/plugins/pgstats.py#L389-L486
swilson/aqualogic
aqualogic/core.py
AquaLogic.connect
def connect(self, host, port): """Connects via a RS-485 to Ethernet adapter.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) self._reader = sock.makefile(mode='rb') self._writer = sock.makefile(mode='wb')
python
def connect(self, host, port): """Connects via a RS-485 to Ethernet adapter.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) self._reader = sock.makefile(mode='rb') self._writer = sock.makefile(mode='wb')
[ "def", "connect", "(", "self", ",", "host", ",", "port", ")", ":", "sock", "=", "socket", ".", "socket", "(", "socket", ".", "AF_INET", ",", "socket", ".", "SOCK_STREAM", ")", "sock", ".", "connect", "(", "(", "host", ",", "port", ")", ")", "self", ".", "_reader", "=", "sock", ".", "makefile", "(", "mode", "=", "'rb'", ")", "self", ".", "_writer", "=", "sock", ".", "makefile", "(", "mode", "=", "'wb'", ")" ]
Connects via a RS-485 to Ethernet adapter.
[ "Connects", "via", "a", "RS", "-", "485", "to", "Ethernet", "adapter", "." ]
train
https://github.com/swilson/aqualogic/blob/b6e904363efc4f64c70aae127d040079587ecbc6/aqualogic/core.py#L104-L109
swilson/aqualogic
aqualogic/core.py
AquaLogic.process
def process(self, data_changed_callback): """Process data; returns when the reader signals EOF. Callback is notified when any data changes.""" # pylint: disable=too-many-locals,too-many-branches,too-many-statements while True: byte = self._reader.read(1) while True: # Search for FRAME_DLE + FRAME_STX if not byte: return if byte[0] == self.FRAME_DLE: next_byte = self._reader.read(1) if not next_byte: return if next_byte[0] == self.FRAME_STX: break else: continue byte = self._reader.read(1) frame = bytearray() byte = self._reader.read(1) while True: if not byte: return if byte[0] == self.FRAME_DLE: # Should be FRAME_ETX or 0 according to # the AQ-CO-SERIAL manual next_byte = self._reader.read(1) if not next_byte: return if next_byte[0] == self.FRAME_ETX: break elif next_byte[0] != 0: # Error? pass frame.append(byte[0]) byte = self._reader.read(1) # Verify CRC frame_crc = int.from_bytes(frame[-2:], byteorder='big') frame = frame[:-2] calculated_crc = self.FRAME_DLE + self.FRAME_STX for byte in frame: calculated_crc += byte if frame_crc != calculated_crc: _LOGGER.warning('Bad CRC') continue frame_type = frame[0:2] frame = frame[2:] if frame_type == self.FRAME_TYPE_KEEP_ALIVE: # Keep alive # If a frame has been queued for transmit, send it. if not self._send_queue.empty(): data = self._send_queue.get(block=False) self._writer.write(data['frame']) self._writer.flush() _LOGGER.info('Sent: %s', binascii.hexlify(data['frame'])) try: if data['desired_states'] is not None: # Set a timer to verify the state changes # Wait 2 seconds as it can take a while for # the state to change. Timer(2.0, self._check_state, [data]).start() except KeyError: pass continue elif frame_type == self.FRAME_TYPE_KEY_EVENT: _LOGGER.info('Key: %s', binascii.hexlify(frame)) elif frame_type == self.FRAME_TYPE_LEDS: _LOGGER.debug('LEDs: %s', binascii.hexlify(frame)) # First 4 bytes are the LEDs that are on; # second 4 bytes_ are the LEDs that are flashing states = int.from_bytes(frame[0:4], byteorder='little') flashing_states = int.from_bytes(frame[4:8], byteorder='little') states |= flashing_states if (states != self._states or flashing_states != self._flashing_states): self._states = states self._flashing_states = flashing_states data_changed_callback(self) elif frame_type == self.FRAME_TYPE_PUMP_SPEED_REQUEST: value = int.from_bytes(frame[0:2], byteorder='big') _LOGGER.debug('Pump speed request: %d%%', value) if self._pump_speed != value: self._pump_speed = value data_changed_callback(self) elif frame_type == self.FRAME_TYPE_PUMP_STATUS: # Pump status messages sent out by Hayward VSP pumps self._multi_speed_pump = True speed = frame[2] # Power is in BCD power = ((((frame[3] & 0xf0) >> 4) * 1000) + (((frame[3] & 0x0f)) * 100) + (((frame[4] & 0xf0) >> 4) * 10) + (((frame[4] & 0x0f)))) _LOGGER.debug('Pump speed: %d%%, power: %d watts', speed, power) if self._pump_power != power: self._pump_power = power data_changed_callback(self) elif frame_type == self.FRAME_TYPE_DISPLAY_UPDATE: parts = frame.decode('latin-1').split() _LOGGER.debug('Display update: %s', parts) try: if parts[0] == 'Pool' and parts[1] == 'Temp': # Pool Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._pool_temp != value: self._pool_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Spa' and parts[1] == 'Temp': # Spa Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._spa_temp != value: self._spa_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Air' and parts[1] == 'Temp': # Air Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._air_temp != value: self._air_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Pool' and parts[1] == 'Chlorinator': # Pool Chlorinator <value>% value = int(parts[2][:-1]) if self._pool_chlorinator != value: self._pool_chlorinator = value data_changed_callback(self) elif parts[0] == 'Spa' and parts[1] == 'Chlorinator': # Spa Chlorinator <value>% value = int(parts[2][:-1]) if self._spa_chlorinator != value: self._spa_chlorinator = value data_changed_callback(self) elif parts[0] == 'Salt' and parts[1] == 'Level': # Salt Level <value> [g/L|PPM| value = float(parts[2]) if self._salt_level != value: self._salt_level = value self._is_metric = parts[3] == 'g/L' data_changed_callback(self) elif parts[0] == 'Check' and parts[1] == 'System': # Check System <msg> value = ' '.join(parts[2:]) if self._check_system_msg != value: self._check_system_msg = value data_changed_callback(self) except ValueError: pass else: _LOGGER.info('Unknown frame: %s %s', binascii.hexlify(frame_type), binascii.hexlify(frame))
python
def process(self, data_changed_callback): """Process data; returns when the reader signals EOF. Callback is notified when any data changes.""" # pylint: disable=too-many-locals,too-many-branches,too-many-statements while True: byte = self._reader.read(1) while True: # Search for FRAME_DLE + FRAME_STX if not byte: return if byte[0] == self.FRAME_DLE: next_byte = self._reader.read(1) if not next_byte: return if next_byte[0] == self.FRAME_STX: break else: continue byte = self._reader.read(1) frame = bytearray() byte = self._reader.read(1) while True: if not byte: return if byte[0] == self.FRAME_DLE: # Should be FRAME_ETX or 0 according to # the AQ-CO-SERIAL manual next_byte = self._reader.read(1) if not next_byte: return if next_byte[0] == self.FRAME_ETX: break elif next_byte[0] != 0: # Error? pass frame.append(byte[0]) byte = self._reader.read(1) # Verify CRC frame_crc = int.from_bytes(frame[-2:], byteorder='big') frame = frame[:-2] calculated_crc = self.FRAME_DLE + self.FRAME_STX for byte in frame: calculated_crc += byte if frame_crc != calculated_crc: _LOGGER.warning('Bad CRC') continue frame_type = frame[0:2] frame = frame[2:] if frame_type == self.FRAME_TYPE_KEEP_ALIVE: # Keep alive # If a frame has been queued for transmit, send it. if not self._send_queue.empty(): data = self._send_queue.get(block=False) self._writer.write(data['frame']) self._writer.flush() _LOGGER.info('Sent: %s', binascii.hexlify(data['frame'])) try: if data['desired_states'] is not None: # Set a timer to verify the state changes # Wait 2 seconds as it can take a while for # the state to change. Timer(2.0, self._check_state, [data]).start() except KeyError: pass continue elif frame_type == self.FRAME_TYPE_KEY_EVENT: _LOGGER.info('Key: %s', binascii.hexlify(frame)) elif frame_type == self.FRAME_TYPE_LEDS: _LOGGER.debug('LEDs: %s', binascii.hexlify(frame)) # First 4 bytes are the LEDs that are on; # second 4 bytes_ are the LEDs that are flashing states = int.from_bytes(frame[0:4], byteorder='little') flashing_states = int.from_bytes(frame[4:8], byteorder='little') states |= flashing_states if (states != self._states or flashing_states != self._flashing_states): self._states = states self._flashing_states = flashing_states data_changed_callback(self) elif frame_type == self.FRAME_TYPE_PUMP_SPEED_REQUEST: value = int.from_bytes(frame[0:2], byteorder='big') _LOGGER.debug('Pump speed request: %d%%', value) if self._pump_speed != value: self._pump_speed = value data_changed_callback(self) elif frame_type == self.FRAME_TYPE_PUMP_STATUS: # Pump status messages sent out by Hayward VSP pumps self._multi_speed_pump = True speed = frame[2] # Power is in BCD power = ((((frame[3] & 0xf0) >> 4) * 1000) + (((frame[3] & 0x0f)) * 100) + (((frame[4] & 0xf0) >> 4) * 10) + (((frame[4] & 0x0f)))) _LOGGER.debug('Pump speed: %d%%, power: %d watts', speed, power) if self._pump_power != power: self._pump_power = power data_changed_callback(self) elif frame_type == self.FRAME_TYPE_DISPLAY_UPDATE: parts = frame.decode('latin-1').split() _LOGGER.debug('Display update: %s', parts) try: if parts[0] == 'Pool' and parts[1] == 'Temp': # Pool Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._pool_temp != value: self._pool_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Spa' and parts[1] == 'Temp': # Spa Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._spa_temp != value: self._spa_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Air' and parts[1] == 'Temp': # Air Temp <temp>°[C|F] value = int(parts[2][:-2]) if self._air_temp != value: self._air_temp = value self._is_metric = parts[2][-1:] == 'C' data_changed_callback(self) elif parts[0] == 'Pool' and parts[1] == 'Chlorinator': # Pool Chlorinator <value>% value = int(parts[2][:-1]) if self._pool_chlorinator != value: self._pool_chlorinator = value data_changed_callback(self) elif parts[0] == 'Spa' and parts[1] == 'Chlorinator': # Spa Chlorinator <value>% value = int(parts[2][:-1]) if self._spa_chlorinator != value: self._spa_chlorinator = value data_changed_callback(self) elif parts[0] == 'Salt' and parts[1] == 'Level': # Salt Level <value> [g/L|PPM| value = float(parts[2]) if self._salt_level != value: self._salt_level = value self._is_metric = parts[3] == 'g/L' data_changed_callback(self) elif parts[0] == 'Check' and parts[1] == 'System': # Check System <msg> value = ' '.join(parts[2:]) if self._check_system_msg != value: self._check_system_msg = value data_changed_callback(self) except ValueError: pass else: _LOGGER.info('Unknown frame: %s %s', binascii.hexlify(frame_type), binascii.hexlify(frame))
[ "def", "process", "(", "self", ",", "data_changed_callback", ")", ":", "# pylint: disable=too-many-locals,too-many-branches,too-many-statements", "while", "True", ":", "byte", "=", "self", ".", "_reader", ".", "read", "(", "1", ")", "while", "True", ":", "# Search for FRAME_DLE + FRAME_STX", "if", "not", "byte", ":", "return", "if", "byte", "[", "0", "]", "==", "self", ".", "FRAME_DLE", ":", "next_byte", "=", "self", ".", "_reader", ".", "read", "(", "1", ")", "if", "not", "next_byte", ":", "return", "if", "next_byte", "[", "0", "]", "==", "self", ".", "FRAME_STX", ":", "break", "else", ":", "continue", "byte", "=", "self", ".", "_reader", ".", "read", "(", "1", ")", "frame", "=", "bytearray", "(", ")", "byte", "=", "self", ".", "_reader", ".", "read", "(", "1", ")", "while", "True", ":", "if", "not", "byte", ":", "return", "if", "byte", "[", "0", "]", "==", "self", ".", "FRAME_DLE", ":", "# Should be FRAME_ETX or 0 according to", "# the AQ-CO-SERIAL manual", "next_byte", "=", "self", ".", "_reader", ".", "read", "(", "1", ")", "if", "not", "next_byte", ":", "return", "if", "next_byte", "[", "0", "]", "==", "self", ".", "FRAME_ETX", ":", "break", "elif", "next_byte", "[", "0", "]", "!=", "0", ":", "# Error?", "pass", "frame", ".", "append", "(", "byte", "[", "0", "]", ")", "byte", "=", "self", ".", "_reader", ".", "read", "(", "1", ")", "# Verify CRC", "frame_crc", "=", "int", ".", "from_bytes", "(", "frame", "[", "-", "2", ":", "]", ",", "byteorder", "=", "'big'", ")", "frame", "=", "frame", "[", ":", "-", "2", "]", "calculated_crc", "=", "self", ".", "FRAME_DLE", "+", "self", ".", "FRAME_STX", "for", "byte", "in", "frame", ":", "calculated_crc", "+=", "byte", "if", "frame_crc", "!=", "calculated_crc", ":", "_LOGGER", ".", "warning", "(", "'Bad CRC'", ")", "continue", "frame_type", "=", "frame", "[", "0", ":", "2", "]", "frame", "=", "frame", "[", "2", ":", "]", "if", "frame_type", "==", "self", ".", "FRAME_TYPE_KEEP_ALIVE", ":", "# Keep alive", "# If a frame has been queued for transmit, send it.", "if", "not", "self", ".", "_send_queue", ".", "empty", "(", ")", ":", "data", "=", "self", ".", "_send_queue", ".", "get", "(", "block", "=", "False", ")", "self", ".", "_writer", ".", "write", "(", "data", "[", "'frame'", "]", ")", "self", ".", "_writer", ".", "flush", "(", ")", "_LOGGER", ".", "info", "(", "'Sent: %s'", ",", "binascii", ".", "hexlify", "(", "data", "[", "'frame'", "]", ")", ")", "try", ":", "if", "data", "[", "'desired_states'", "]", "is", "not", "None", ":", "# Set a timer to verify the state changes", "# Wait 2 seconds as it can take a while for", "# the state to change.", "Timer", "(", "2.0", ",", "self", ".", "_check_state", ",", "[", "data", "]", ")", ".", "start", "(", ")", "except", "KeyError", ":", "pass", "continue", "elif", "frame_type", "==", "self", ".", "FRAME_TYPE_KEY_EVENT", ":", "_LOGGER", ".", "info", "(", "'Key: %s'", ",", "binascii", ".", "hexlify", "(", "frame", ")", ")", "elif", "frame_type", "==", "self", ".", "FRAME_TYPE_LEDS", ":", "_LOGGER", ".", "debug", "(", "'LEDs: %s'", ",", "binascii", ".", "hexlify", "(", "frame", ")", ")", "# First 4 bytes are the LEDs that are on;", "# second 4 bytes_ are the LEDs that are flashing", "states", "=", "int", ".", "from_bytes", "(", "frame", "[", "0", ":", "4", "]", ",", "byteorder", "=", "'little'", ")", "flashing_states", "=", "int", ".", "from_bytes", "(", "frame", "[", "4", ":", "8", "]", ",", "byteorder", "=", "'little'", ")", "states", "|=", "flashing_states", "if", "(", "states", "!=", "self", ".", "_states", "or", "flashing_states", "!=", "self", ".", "_flashing_states", ")", ":", "self", ".", "_states", "=", "states", "self", ".", "_flashing_states", "=", "flashing_states", "data_changed_callback", "(", "self", ")", "elif", "frame_type", "==", "self", ".", "FRAME_TYPE_PUMP_SPEED_REQUEST", ":", "value", "=", "int", ".", "from_bytes", "(", "frame", "[", "0", ":", "2", "]", ",", "byteorder", "=", "'big'", ")", "_LOGGER", ".", "debug", "(", "'Pump speed request: %d%%'", ",", "value", ")", "if", "self", ".", "_pump_speed", "!=", "value", ":", "self", ".", "_pump_speed", "=", "value", "data_changed_callback", "(", "self", ")", "elif", "frame_type", "==", "self", ".", "FRAME_TYPE_PUMP_STATUS", ":", "# Pump status messages sent out by Hayward VSP pumps", "self", ".", "_multi_speed_pump", "=", "True", "speed", "=", "frame", "[", "2", "]", "# Power is in BCD", "power", "=", "(", "(", "(", "(", "frame", "[", "3", "]", "&", "0xf0", ")", ">>", "4", ")", "*", "1000", ")", "+", "(", "(", "(", "frame", "[", "3", "]", "&", "0x0f", ")", ")", "*", "100", ")", "+", "(", "(", "(", "frame", "[", "4", "]", "&", "0xf0", ")", ">>", "4", ")", "*", "10", ")", "+", "(", "(", "(", "frame", "[", "4", "]", "&", "0x0f", ")", ")", ")", ")", "_LOGGER", ".", "debug", "(", "'Pump speed: %d%%, power: %d watts'", ",", "speed", ",", "power", ")", "if", "self", ".", "_pump_power", "!=", "power", ":", "self", ".", "_pump_power", "=", "power", "data_changed_callback", "(", "self", ")", "elif", "frame_type", "==", "self", ".", "FRAME_TYPE_DISPLAY_UPDATE", ":", "parts", "=", "frame", ".", "decode", "(", "'latin-1'", ")", ".", "split", "(", ")", "_LOGGER", ".", "debug", "(", "'Display update: %s'", ",", "parts", ")", "try", ":", "if", "parts", "[", "0", "]", "==", "'Pool'", "and", "parts", "[", "1", "]", "==", "'Temp'", ":", "# Pool Temp <temp>°[C|F]", "value", "=", "int", "(", "parts", "[", "2", "]", "[", ":", "-", "2", "]", ")", "if", "self", ".", "_pool_temp", "!=", "value", ":", "self", ".", "_pool_temp", "=", "value", "self", ".", "_is_metric", "=", "parts", "[", "2", "]", "[", "-", "1", ":", "]", "==", "'C'", "data_changed_callback", "(", "self", ")", "elif", "parts", "[", "0", "]", "==", "'Spa'", "and", "parts", "[", "1", "]", "==", "'Temp'", ":", "# Spa Temp <temp>°[C|F]", "value", "=", "int", "(", "parts", "[", "2", "]", "[", ":", "-", "2", "]", ")", "if", "self", ".", "_spa_temp", "!=", "value", ":", "self", ".", "_spa_temp", "=", "value", "self", ".", "_is_metric", "=", "parts", "[", "2", "]", "[", "-", "1", ":", "]", "==", "'C'", "data_changed_callback", "(", "self", ")", "elif", "parts", "[", "0", "]", "==", "'Air'", "and", "parts", "[", "1", "]", "==", "'Temp'", ":", "# Air Temp <temp>°[C|F]", "value", "=", "int", "(", "parts", "[", "2", "]", "[", ":", "-", "2", "]", ")", "if", "self", ".", "_air_temp", "!=", "value", ":", "self", ".", "_air_temp", "=", "value", "self", ".", "_is_metric", "=", "parts", "[", "2", "]", "[", "-", "1", ":", "]", "==", "'C'", "data_changed_callback", "(", "self", ")", "elif", "parts", "[", "0", "]", "==", "'Pool'", "and", "parts", "[", "1", "]", "==", "'Chlorinator'", ":", "# Pool Chlorinator <value>%", "value", "=", "int", "(", "parts", "[", "2", "]", "[", ":", "-", "1", "]", ")", "if", "self", ".", "_pool_chlorinator", "!=", "value", ":", "self", ".", "_pool_chlorinator", "=", "value", "data_changed_callback", "(", "self", ")", "elif", "parts", "[", "0", "]", "==", "'Spa'", "and", "parts", "[", "1", "]", "==", "'Chlorinator'", ":", "# Spa Chlorinator <value>%", "value", "=", "int", "(", "parts", "[", "2", "]", "[", ":", "-", "1", "]", ")", "if", "self", ".", "_spa_chlorinator", "!=", "value", ":", "self", ".", "_spa_chlorinator", "=", "value", "data_changed_callback", "(", "self", ")", "elif", "parts", "[", "0", "]", "==", "'Salt'", "and", "parts", "[", "1", "]", "==", "'Level'", ":", "# Salt Level <value> [g/L|PPM|", "value", "=", "float", "(", "parts", "[", "2", "]", ")", "if", "self", ".", "_salt_level", "!=", "value", ":", "self", ".", "_salt_level", "=", "value", "self", ".", "_is_metric", "=", "parts", "[", "3", "]", "==", "'g/L'", "data_changed_callback", "(", "self", ")", "elif", "parts", "[", "0", "]", "==", "'Check'", "and", "parts", "[", "1", "]", "==", "'System'", ":", "# Check System <msg>", "value", "=", "' '", ".", "join", "(", "parts", "[", "2", ":", "]", ")", "if", "self", ".", "_check_system_msg", "!=", "value", ":", "self", ".", "_check_system_msg", "=", "value", "data_changed_callback", "(", "self", ")", "except", "ValueError", ":", "pass", "else", ":", "_LOGGER", ".", "info", "(", "'Unknown frame: %s %s'", ",", "binascii", ".", "hexlify", "(", "frame_type", ")", ",", "binascii", ".", "hexlify", "(", "frame", ")", ")" ]
Process data; returns when the reader signals EOF. Callback is notified when any data changes.
[ "Process", "data", ";", "returns", "when", "the", "reader", "signals", "EOF", ".", "Callback", "is", "notified", "when", "any", "data", "changes", "." ]
train
https://github.com/swilson/aqualogic/blob/b6e904363efc4f64c70aae127d040079587ecbc6/aqualogic/core.py#L125-L292
swilson/aqualogic
aqualogic/core.py
AquaLogic.send_key
def send_key(self, key): """Sends a key.""" _LOGGER.info('Queueing key %s', key) frame = self._get_key_event_frame(key) # Queue it to send immediately following the reception # of a keep-alive packet in an attempt to avoid bus collisions. self._send_queue.put({'frame': frame})
python
def send_key(self, key): """Sends a key.""" _LOGGER.info('Queueing key %s', key) frame = self._get_key_event_frame(key) # Queue it to send immediately following the reception # of a keep-alive packet in an attempt to avoid bus collisions. self._send_queue.put({'frame': frame})
[ "def", "send_key", "(", "self", ",", "key", ")", ":", "_LOGGER", ".", "info", "(", "'Queueing key %s'", ",", "key", ")", "frame", "=", "self", ".", "_get_key_event_frame", "(", "key", ")", "# Queue it to send immediately following the reception", "# of a keep-alive packet in an attempt to avoid bus collisions.", "self", ".", "_send_queue", ".", "put", "(", "{", "'frame'", ":", "frame", "}", ")" ]
Sends a key.
[ "Sends", "a", "key", "." ]
train
https://github.com/swilson/aqualogic/blob/b6e904363efc4f64c70aae127d040079587ecbc6/aqualogic/core.py#L319-L326
swilson/aqualogic
aqualogic/core.py
AquaLogic.states
def states(self): """Returns a set containing the enabled states.""" state_list = [] for state in States: if state.value & self._states != 0: state_list.append(state) if (self._flashing_states & States.FILTER) != 0: state_list.append(States.FILTER_LOW_SPEED) return state_list
python
def states(self): """Returns a set containing the enabled states.""" state_list = [] for state in States: if state.value & self._states != 0: state_list.append(state) if (self._flashing_states & States.FILTER) != 0: state_list.append(States.FILTER_LOW_SPEED) return state_list
[ "def", "states", "(", "self", ")", ":", "state_list", "=", "[", "]", "for", "state", "in", "States", ":", "if", "state", ".", "value", "&", "self", ".", "_states", "!=", "0", ":", "state_list", ".", "append", "(", "state", ")", "if", "(", "self", ".", "_flashing_states", "&", "States", ".", "FILTER", ")", "!=", "0", ":", "state_list", ".", "append", "(", "States", ".", "FILTER_LOW_SPEED", ")", "return", "state_list" ]
Returns a set containing the enabled states.
[ "Returns", "a", "set", "containing", "the", "enabled", "states", "." ]
train
https://github.com/swilson/aqualogic/blob/b6e904363efc4f64c70aae127d040079587ecbc6/aqualogic/core.py#L392-L402
swilson/aqualogic
aqualogic/core.py
AquaLogic.get_state
def get_state(self, state): """Returns True if the specified state is enabled.""" # Check to see if we have a change request pending; if we do # return the value we expect it to change to. for data in list(self._send_queue.queue): desired_states = data['desired_states'] for desired_state in desired_states: if desired_state['state'] == state: return desired_state['enabled'] if state == States.FILTER_LOW_SPEED: return (States.FILTER.value & self._flashing_states) != 0 return (state.value & self._states) != 0
python
def get_state(self, state): """Returns True if the specified state is enabled.""" # Check to see if we have a change request pending; if we do # return the value we expect it to change to. for data in list(self._send_queue.queue): desired_states = data['desired_states'] for desired_state in desired_states: if desired_state['state'] == state: return desired_state['enabled'] if state == States.FILTER_LOW_SPEED: return (States.FILTER.value & self._flashing_states) != 0 return (state.value & self._states) != 0
[ "def", "get_state", "(", "self", ",", "state", ")", ":", "# Check to see if we have a change request pending; if we do", "# return the value we expect it to change to.", "for", "data", "in", "list", "(", "self", ".", "_send_queue", ".", "queue", ")", ":", "desired_states", "=", "data", "[", "'desired_states'", "]", "for", "desired_state", "in", "desired_states", ":", "if", "desired_state", "[", "'state'", "]", "==", "state", ":", "return", "desired_state", "[", "'enabled'", "]", "if", "state", "==", "States", ".", "FILTER_LOW_SPEED", ":", "return", "(", "States", ".", "FILTER", ".", "value", "&", "self", ".", "_flashing_states", ")", "!=", "0", "return", "(", "state", ".", "value", "&", "self", ".", "_states", ")", "!=", "0" ]
Returns True if the specified state is enabled.
[ "Returns", "True", "if", "the", "specified", "state", "is", "enabled", "." ]
train
https://github.com/swilson/aqualogic/blob/b6e904363efc4f64c70aae127d040079587ecbc6/aqualogic/core.py#L404-L415
swilson/aqualogic
aqualogic/core.py
AquaLogic.set_state
def set_state(self, state, enable): """Set the state.""" is_enabled = self.get_state(state) if is_enabled == enable: return True key = None desired_states = [{'state': state, 'enabled': not is_enabled}] if state == States.FILTER_LOW_SPEED: if not self._multi_speed_pump: return False # Send the FILTER key once. # If the pump is in high speed, it wil switch to low speed. # If the pump is off the retry mechanism will send an additional # FILTER key to switch into low speed. # If the pump is in low speed then we pretend the pump is off; # the retry mechanism will send an additional FILTER key # to switch into high speed. key = Keys.FILTER desired_states.append({'state': States.FILTER, 'enabled': True}) else: # See if this state has a corresponding Key try: key = Keys[state.name] except KeyError: # TODO: send the appropriate combination of keys # to enable the state return False frame = self._get_key_event_frame(key) # Queue it to send immediately following the reception # of a keep-alive packet in an attempt to avoid bus collisions. self._send_queue.put({'frame': frame, 'desired_states': desired_states, 'retries': 10}) return True
python
def set_state(self, state, enable): """Set the state.""" is_enabled = self.get_state(state) if is_enabled == enable: return True key = None desired_states = [{'state': state, 'enabled': not is_enabled}] if state == States.FILTER_LOW_SPEED: if not self._multi_speed_pump: return False # Send the FILTER key once. # If the pump is in high speed, it wil switch to low speed. # If the pump is off the retry mechanism will send an additional # FILTER key to switch into low speed. # If the pump is in low speed then we pretend the pump is off; # the retry mechanism will send an additional FILTER key # to switch into high speed. key = Keys.FILTER desired_states.append({'state': States.FILTER, 'enabled': True}) else: # See if this state has a corresponding Key try: key = Keys[state.name] except KeyError: # TODO: send the appropriate combination of keys # to enable the state return False frame = self._get_key_event_frame(key) # Queue it to send immediately following the reception # of a keep-alive packet in an attempt to avoid bus collisions. self._send_queue.put({'frame': frame, 'desired_states': desired_states, 'retries': 10}) return True
[ "def", "set_state", "(", "self", ",", "state", ",", "enable", ")", ":", "is_enabled", "=", "self", ".", "get_state", "(", "state", ")", "if", "is_enabled", "==", "enable", ":", "return", "True", "key", "=", "None", "desired_states", "=", "[", "{", "'state'", ":", "state", ",", "'enabled'", ":", "not", "is_enabled", "}", "]", "if", "state", "==", "States", ".", "FILTER_LOW_SPEED", ":", "if", "not", "self", ".", "_multi_speed_pump", ":", "return", "False", "# Send the FILTER key once.", "# If the pump is in high speed, it wil switch to low speed.", "# If the pump is off the retry mechanism will send an additional", "# FILTER key to switch into low speed.", "# If the pump is in low speed then we pretend the pump is off;", "# the retry mechanism will send an additional FILTER key", "# to switch into high speed.", "key", "=", "Keys", ".", "FILTER", "desired_states", ".", "append", "(", "{", "'state'", ":", "States", ".", "FILTER", ",", "'enabled'", ":", "True", "}", ")", "else", ":", "# See if this state has a corresponding Key", "try", ":", "key", "=", "Keys", "[", "state", ".", "name", "]", "except", "KeyError", ":", "# TODO: send the appropriate combination of keys", "# to enable the state", "return", "False", "frame", "=", "self", ".", "_get_key_event_frame", "(", "key", ")", "# Queue it to send immediately following the reception", "# of a keep-alive packet in an attempt to avoid bus collisions.", "self", ".", "_send_queue", ".", "put", "(", "{", "'frame'", ":", "frame", ",", "'desired_states'", ":", "desired_states", ",", "'retries'", ":", "10", "}", ")", "return", "True" ]
Set the state.
[ "Set", "the", "state", "." ]
train
https://github.com/swilson/aqualogic/blob/b6e904363efc4f64c70aae127d040079587ecbc6/aqualogic/core.py#L417-L455
vokimon/python-qgmap
qgmap/__init__.py
trace
def trace(function, *args, **k) : """Decorates a function by tracing the begining and end of the function execution, if doTrace global is True""" if doTrace : print ("> "+function.__name__, args, k) result = function(*args, **k) if doTrace : print ("< "+function.__name__, args, k, "->", result) return result
python
def trace(function, *args, **k) : """Decorates a function by tracing the begining and end of the function execution, if doTrace global is True""" if doTrace : print ("> "+function.__name__, args, k) result = function(*args, **k) if doTrace : print ("< "+function.__name__, args, k, "->", result) return result
[ "def", "trace", "(", "function", ",", "*", "args", ",", "*", "*", "k", ")", ":", "if", "doTrace", ":", "print", "(", "\"> \"", "+", "function", ".", "__name__", ",", "args", ",", "k", ")", "result", "=", "function", "(", "*", "args", ",", "*", "*", "k", ")", "if", "doTrace", ":", "print", "(", "\"< \"", "+", "function", ".", "__name__", ",", "args", ",", "k", ",", "\"->\"", ",", "result", ")", "return", "result" ]
Decorates a function by tracing the begining and end of the function execution, if doTrace global is True
[ "Decorates", "a", "function", "by", "tracing", "the", "begining", "and", "end", "of", "the", "function", "execution", "if", "doTrace", "global", "is", "True" ]
train
https://github.com/vokimon/python-qgmap/blob/9b01b48c5a8f4726938d38326f89644e7fb95f51/qgmap/__init__.py#L18-L25
vokimon/python-qgmap
qgmap/__init__.py
GeoCoder.geocode
def geocode(self, location) : url = QtCore.QUrl("http://maps.googleapis.com/maps/api/geocode/xml") url.addQueryItem("address", location) url.addQueryItem("sensor", "false") """ url = QtCore.QUrl("http://maps.google.com/maps/geo/") url.addQueryItem("q", location) url.addQueryItem("output", "csv") url.addQueryItem("sensor", "false") """ request = QtNetwork.QNetworkRequest(url) reply = self.get(request) while reply.isRunning() : QtGui.QApplication.processEvents() reply.deleteLater() self.deleteLater() return self._parseResult(reply)
python
def geocode(self, location) : url = QtCore.QUrl("http://maps.googleapis.com/maps/api/geocode/xml") url.addQueryItem("address", location) url.addQueryItem("sensor", "false") """ url = QtCore.QUrl("http://maps.google.com/maps/geo/") url.addQueryItem("q", location) url.addQueryItem("output", "csv") url.addQueryItem("sensor", "false") """ request = QtNetwork.QNetworkRequest(url) reply = self.get(request) while reply.isRunning() : QtGui.QApplication.processEvents() reply.deleteLater() self.deleteLater() return self._parseResult(reply)
[ "def", "geocode", "(", "self", ",", "location", ")", ":", "url", "=", "QtCore", ".", "QUrl", "(", "\"http://maps.googleapis.com/maps/api/geocode/xml\"", ")", "url", ".", "addQueryItem", "(", "\"address\"", ",", "location", ")", "url", ".", "addQueryItem", "(", "\"sensor\"", ",", "\"false\"", ")", "request", "=", "QtNetwork", ".", "QNetworkRequest", "(", "url", ")", "reply", "=", "self", ".", "get", "(", "request", ")", "while", "reply", ".", "isRunning", "(", ")", ":", "QtGui", ".", "QApplication", ".", "processEvents", "(", ")", "reply", ".", "deleteLater", "(", ")", "self", ".", "deleteLater", "(", ")", "return", "self", ".", "_parseResult", "(", "reply", ")" ]
url = QtCore.QUrl("http://maps.google.com/maps/geo/") url.addQueryItem("q", location) url.addQueryItem("output", "csv") url.addQueryItem("sensor", "false")
[ "url", "=", "QtCore", ".", "QUrl", "(", "http", ":", "//", "maps", ".", "google", ".", "com", "/", "maps", "/", "geo", "/", ")", "url", ".", "addQueryItem", "(", "q", "location", ")", "url", ".", "addQueryItem", "(", "output", "csv", ")", "url", ".", "addQueryItem", "(", "sensor", "false", ")" ]
train
https://github.com/vokimon/python-qgmap/blob/9b01b48c5a8f4726938d38326f89644e7fb95f51/qgmap/__init__.py#L40-L57
tisimst/mcerp
mcerp/correlate.py
correlate
def correlate(params, corrmat): """ Force a correlation matrix on a set of statistically distributed objects. This function works on objects in-place. Parameters ---------- params : array An array of of uv objects. corrmat : 2d-array The correlation matrix to be imposed """ # Make sure all inputs are compatible assert all( [isinstance(param, UncertainFunction) for param in params] ), 'All inputs to "correlate" must be of type "UncertainFunction"' # Put each ufunc's samples in a column-wise matrix data = np.vstack([param._mcpts for param in params]).T # Apply the correlation matrix to the sampled data new_data = induce_correlations(data, corrmat) # Re-set the samples to the respective variables for i in range(len(params)): params[i]._mcpts = new_data[:, i]
python
def correlate(params, corrmat): """ Force a correlation matrix on a set of statistically distributed objects. This function works on objects in-place. Parameters ---------- params : array An array of of uv objects. corrmat : 2d-array The correlation matrix to be imposed """ # Make sure all inputs are compatible assert all( [isinstance(param, UncertainFunction) for param in params] ), 'All inputs to "correlate" must be of type "UncertainFunction"' # Put each ufunc's samples in a column-wise matrix data = np.vstack([param._mcpts for param in params]).T # Apply the correlation matrix to the sampled data new_data = induce_correlations(data, corrmat) # Re-set the samples to the respective variables for i in range(len(params)): params[i]._mcpts = new_data[:, i]
[ "def", "correlate", "(", "params", ",", "corrmat", ")", ":", "# Make sure all inputs are compatible\r", "assert", "all", "(", "[", "isinstance", "(", "param", ",", "UncertainFunction", ")", "for", "param", "in", "params", "]", ")", ",", "'All inputs to \"correlate\" must be of type \"UncertainFunction\"'", "# Put each ufunc's samples in a column-wise matrix\r", "data", "=", "np", ".", "vstack", "(", "[", "param", ".", "_mcpts", "for", "param", "in", "params", "]", ")", ".", "T", "# Apply the correlation matrix to the sampled data\r", "new_data", "=", "induce_correlations", "(", "data", ",", "corrmat", ")", "# Re-set the samples to the respective variables\r", "for", "i", "in", "range", "(", "len", "(", "params", ")", ")", ":", "params", "[", "i", "]", ".", "_mcpts", "=", "new_data", "[", ":", ",", "i", "]" ]
Force a correlation matrix on a set of statistically distributed objects. This function works on objects in-place. Parameters ---------- params : array An array of of uv objects. corrmat : 2d-array The correlation matrix to be imposed
[ "Force", "a", "correlation", "matrix", "on", "a", "set", "of", "statistically", "distributed", "objects", ".", "This", "function", "works", "on", "objects", "in", "-", "place", ".", "Parameters", "----------", "params", ":", "array", "An", "array", "of", "of", "uv", "objects", ".", "corrmat", ":", "2d", "-", "array", "The", "correlation", "matrix", "to", "be", "imposed" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/correlate.py#L8-L34
tisimst/mcerp
mcerp/correlate.py
induce_correlations
def induce_correlations(data, corrmat): """ Induce a set of correlations on a column-wise dataset Parameters ---------- data : 2d-array An m-by-n array where m is the number of samples and n is the number of independent variables, each column of the array corresponding to each variable corrmat : 2d-array An n-by-n array that defines the desired correlation coefficients (between -1 and 1). Note: the matrix must be symmetric and positive-definite in order to induce. Returns ------- new_data : 2d-array An m-by-n array that has the desired correlations. """ # Create an rank-matrix data_rank = np.vstack([rankdata(datai) for datai in data.T]).T # Generate van der Waerden scores data_rank_score = data_rank / (data_rank.shape[0] + 1.0) data_rank_score = norm(0, 1).ppf(data_rank_score) # Calculate the lower triangular matrix of the Cholesky decomposition # of the desired correlation matrix p = chol(corrmat) # Calculate the current correlations t = np.corrcoef(data_rank_score, rowvar=0) # Calculate the lower triangular matrix of the Cholesky decomposition # of the current correlation matrix q = chol(t) # Calculate the re-correlation matrix s = np.dot(p, np.linalg.inv(q)) # Calculate the re-sampled matrix new_data = np.dot(data_rank_score, s.T) # Create the new rank matrix new_data_rank = np.vstack([rankdata(datai) for datai in new_data.T]).T # Sort the original data according to new_data_rank for i in range(data.shape[1]): vals, order = np.unique( np.hstack((data_rank[:, i], new_data_rank[:, i])), return_inverse=True ) old_order = order[: new_data_rank.shape[0]] new_order = order[-new_data_rank.shape[0] :] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] return data
python
def induce_correlations(data, corrmat): """ Induce a set of correlations on a column-wise dataset Parameters ---------- data : 2d-array An m-by-n array where m is the number of samples and n is the number of independent variables, each column of the array corresponding to each variable corrmat : 2d-array An n-by-n array that defines the desired correlation coefficients (between -1 and 1). Note: the matrix must be symmetric and positive-definite in order to induce. Returns ------- new_data : 2d-array An m-by-n array that has the desired correlations. """ # Create an rank-matrix data_rank = np.vstack([rankdata(datai) for datai in data.T]).T # Generate van der Waerden scores data_rank_score = data_rank / (data_rank.shape[0] + 1.0) data_rank_score = norm(0, 1).ppf(data_rank_score) # Calculate the lower triangular matrix of the Cholesky decomposition # of the desired correlation matrix p = chol(corrmat) # Calculate the current correlations t = np.corrcoef(data_rank_score, rowvar=0) # Calculate the lower triangular matrix of the Cholesky decomposition # of the current correlation matrix q = chol(t) # Calculate the re-correlation matrix s = np.dot(p, np.linalg.inv(q)) # Calculate the re-sampled matrix new_data = np.dot(data_rank_score, s.T) # Create the new rank matrix new_data_rank = np.vstack([rankdata(datai) for datai in new_data.T]).T # Sort the original data according to new_data_rank for i in range(data.shape[1]): vals, order = np.unique( np.hstack((data_rank[:, i], new_data_rank[:, i])), return_inverse=True ) old_order = order[: new_data_rank.shape[0]] new_order = order[-new_data_rank.shape[0] :] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] return data
[ "def", "induce_correlations", "(", "data", ",", "corrmat", ")", ":", "# Create an rank-matrix\r", "data_rank", "=", "np", ".", "vstack", "(", "[", "rankdata", "(", "datai", ")", "for", "datai", "in", "data", ".", "T", "]", ")", ".", "T", "# Generate van der Waerden scores\r", "data_rank_score", "=", "data_rank", "/", "(", "data_rank", ".", "shape", "[", "0", "]", "+", "1.0", ")", "data_rank_score", "=", "norm", "(", "0", ",", "1", ")", ".", "ppf", "(", "data_rank_score", ")", "# Calculate the lower triangular matrix of the Cholesky decomposition\r", "# of the desired correlation matrix\r", "p", "=", "chol", "(", "corrmat", ")", "# Calculate the current correlations\r", "t", "=", "np", ".", "corrcoef", "(", "data_rank_score", ",", "rowvar", "=", "0", ")", "# Calculate the lower triangular matrix of the Cholesky decomposition\r", "# of the current correlation matrix\r", "q", "=", "chol", "(", "t", ")", "# Calculate the re-correlation matrix\r", "s", "=", "np", ".", "dot", "(", "p", ",", "np", ".", "linalg", ".", "inv", "(", "q", ")", ")", "# Calculate the re-sampled matrix\r", "new_data", "=", "np", ".", "dot", "(", "data_rank_score", ",", "s", ".", "T", ")", "# Create the new rank matrix\r", "new_data_rank", "=", "np", ".", "vstack", "(", "[", "rankdata", "(", "datai", ")", "for", "datai", "in", "new_data", ".", "T", "]", ")", ".", "T", "# Sort the original data according to new_data_rank\r", "for", "i", "in", "range", "(", "data", ".", "shape", "[", "1", "]", ")", ":", "vals", ",", "order", "=", "np", ".", "unique", "(", "np", ".", "hstack", "(", "(", "data_rank", "[", ":", ",", "i", "]", ",", "new_data_rank", "[", ":", ",", "i", "]", ")", ")", ",", "return_inverse", "=", "True", ")", "old_order", "=", "order", "[", ":", "new_data_rank", ".", "shape", "[", "0", "]", "]", "new_order", "=", "order", "[", "-", "new_data_rank", ".", "shape", "[", "0", "]", ":", "]", "tmp", "=", "data", "[", "np", ".", "argsort", "(", "old_order", ")", ",", "i", "]", "[", "new_order", "]", "data", "[", ":", ",", "i", "]", "=", "tmp", "[", ":", "]", "return", "data" ]
Induce a set of correlations on a column-wise dataset Parameters ---------- data : 2d-array An m-by-n array where m is the number of samples and n is the number of independent variables, each column of the array corresponding to each variable corrmat : 2d-array An n-by-n array that defines the desired correlation coefficients (between -1 and 1). Note: the matrix must be symmetric and positive-definite in order to induce. Returns ------- new_data : 2d-array An m-by-n array that has the desired correlations.
[ "Induce", "a", "set", "of", "correlations", "on", "a", "column", "-", "wise", "dataset", "Parameters", "----------", "data", ":", "2d", "-", "array", "An", "m", "-", "by", "-", "n", "array", "where", "m", "is", "the", "number", "of", "samples", "and", "n", "is", "the", "number", "of", "independent", "variables", "each", "column", "of", "the", "array", "corresponding", "to", "each", "variable", "corrmat", ":", "2d", "-", "array", "An", "n", "-", "by", "-", "n", "array", "that", "defines", "the", "desired", "correlation", "coefficients", "(", "between", "-", "1", "and", "1", ")", ".", "Note", ":", "the", "matrix", "must", "be", "symmetric", "and", "positive", "-", "definite", "in", "order", "to", "induce", ".", "Returns", "-------", "new_data", ":", "2d", "-", "array", "An", "m", "-", "by", "-", "n", "array", "that", "has", "the", "desired", "correlations", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/correlate.py#L37-L95
tisimst/mcerp
mcerp/correlate.py
plotcorr
def plotcorr(X, plotargs=None, full=True, labels=None): """ Plots a scatterplot matrix of subplots. Usage: plotcorr(X) plotcorr(..., plotargs=...) # e.g., 'r*', 'bo', etc. plotcorr(..., full=...) # e.g., True or False plotcorr(..., labels=...) # e.g., ['label1', 'label2', ...] Each column of "X" is plotted against other columns, resulting in a ncols by ncols grid of subplots with the diagonal subplots labeled with "labels". "X" is an array of arrays (i.e., a 2d matrix), a 1d array of MCERP.UncertainFunction/Variable objects, or a mixture of the two. Additional keyword arguments are passed on to matplotlib's "plot" command. Returns the matplotlib figure object containing the subplot grid. """ import matplotlib.pyplot as plt X = [Xi._mcpts if isinstance(Xi, UncertainFunction) else Xi for Xi in X] X = np.atleast_2d(X) numvars, numdata = X.shape fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(8, 8)) fig.subplots_adjust(hspace=0.0, wspace=0.0) for ax in axes.flat: # Hide all ticks and labels ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) # Set up ticks only on one side for the "edge" subplots... if full: if ax.is_first_col(): ax.yaxis.set_ticks_position("left") if ax.is_last_col(): ax.yaxis.set_ticks_position("right") if ax.is_first_row(): ax.xaxis.set_ticks_position("top") if ax.is_last_row(): ax.xaxis.set_ticks_position("bottom") else: if ax.is_first_row(): ax.xaxis.set_ticks_position("top") if ax.is_last_col(): ax.yaxis.set_ticks_position("right") # Label the diagonal subplots... if not labels: labels = ["x" + str(i) for i in range(numvars)] for i, label in enumerate(labels): axes[i, i].annotate( label, (0.5, 0.5), xycoords="axes fraction", ha="center", va="center" ) # Plot the data for i, j in zip(*np.triu_indices_from(axes, k=1)): if full: idx = [(i, j), (j, i)] else: idx = [(i, j)] for x, y in idx: # FIX #1: this needed to be changed from ...(data[x], data[y],...) if plotargs is None: if len(X[x]) > 100: plotargs = ",b" # pixel marker else: plotargs = ".b" # point marker axes[x, y].plot(X[y], X[x], plotargs) ylim = min(X[y]), max(X[y]) xlim = min(X[x]), max(X[x]) axes[x, y].set_ylim( xlim[0] - (xlim[1] - xlim[0]) * 0.1, xlim[1] + (xlim[1] - xlim[0]) * 0.1 ) axes[x, y].set_xlim( ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1] + (ylim[1] - ylim[0]) * 0.1 ) # Turn on the proper x or y axes ticks. if full: for i, j in zip(list(range(numvars)), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) axes[i, j].yaxis.set_visible(True) else: for i in range(numvars - 1): axes[0, i + 1].xaxis.set_visible(True) axes[i, -1].yaxis.set_visible(True) for i in range(1, numvars): for j in range(0, i): fig.delaxes(axes[i, j]) # FIX #2: if numvars is odd, the bottom right corner plot doesn't have the # correct axes limits, so we pull them from other axes if numvars % 2: xlimits = axes[0, -1].get_xlim() ylimits = axes[-1, 0].get_ylim() axes[-1, -1].set_xlim(xlimits) axes[-1, -1].set_ylim(ylimits) return fig
python
def plotcorr(X, plotargs=None, full=True, labels=None): """ Plots a scatterplot matrix of subplots. Usage: plotcorr(X) plotcorr(..., plotargs=...) # e.g., 'r*', 'bo', etc. plotcorr(..., full=...) # e.g., True or False plotcorr(..., labels=...) # e.g., ['label1', 'label2', ...] Each column of "X" is plotted against other columns, resulting in a ncols by ncols grid of subplots with the diagonal subplots labeled with "labels". "X" is an array of arrays (i.e., a 2d matrix), a 1d array of MCERP.UncertainFunction/Variable objects, or a mixture of the two. Additional keyword arguments are passed on to matplotlib's "plot" command. Returns the matplotlib figure object containing the subplot grid. """ import matplotlib.pyplot as plt X = [Xi._mcpts if isinstance(Xi, UncertainFunction) else Xi for Xi in X] X = np.atleast_2d(X) numvars, numdata = X.shape fig, axes = plt.subplots(nrows=numvars, ncols=numvars, figsize=(8, 8)) fig.subplots_adjust(hspace=0.0, wspace=0.0) for ax in axes.flat: # Hide all ticks and labels ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) # Set up ticks only on one side for the "edge" subplots... if full: if ax.is_first_col(): ax.yaxis.set_ticks_position("left") if ax.is_last_col(): ax.yaxis.set_ticks_position("right") if ax.is_first_row(): ax.xaxis.set_ticks_position("top") if ax.is_last_row(): ax.xaxis.set_ticks_position("bottom") else: if ax.is_first_row(): ax.xaxis.set_ticks_position("top") if ax.is_last_col(): ax.yaxis.set_ticks_position("right") # Label the diagonal subplots... if not labels: labels = ["x" + str(i) for i in range(numvars)] for i, label in enumerate(labels): axes[i, i].annotate( label, (0.5, 0.5), xycoords="axes fraction", ha="center", va="center" ) # Plot the data for i, j in zip(*np.triu_indices_from(axes, k=1)): if full: idx = [(i, j), (j, i)] else: idx = [(i, j)] for x, y in idx: # FIX #1: this needed to be changed from ...(data[x], data[y],...) if plotargs is None: if len(X[x]) > 100: plotargs = ",b" # pixel marker else: plotargs = ".b" # point marker axes[x, y].plot(X[y], X[x], plotargs) ylim = min(X[y]), max(X[y]) xlim = min(X[x]), max(X[x]) axes[x, y].set_ylim( xlim[0] - (xlim[1] - xlim[0]) * 0.1, xlim[1] + (xlim[1] - xlim[0]) * 0.1 ) axes[x, y].set_xlim( ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1] + (ylim[1] - ylim[0]) * 0.1 ) # Turn on the proper x or y axes ticks. if full: for i, j in zip(list(range(numvars)), itertools.cycle((-1, 0))): axes[j, i].xaxis.set_visible(True) axes[i, j].yaxis.set_visible(True) else: for i in range(numvars - 1): axes[0, i + 1].xaxis.set_visible(True) axes[i, -1].yaxis.set_visible(True) for i in range(1, numvars): for j in range(0, i): fig.delaxes(axes[i, j]) # FIX #2: if numvars is odd, the bottom right corner plot doesn't have the # correct axes limits, so we pull them from other axes if numvars % 2: xlimits = axes[0, -1].get_xlim() ylimits = axes[-1, 0].get_ylim() axes[-1, -1].set_xlim(xlimits) axes[-1, -1].set_ylim(ylimits) return fig
[ "def", "plotcorr", "(", "X", ",", "plotargs", "=", "None", ",", "full", "=", "True", ",", "labels", "=", "None", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "X", "=", "[", "Xi", ".", "_mcpts", "if", "isinstance", "(", "Xi", ",", "UncertainFunction", ")", "else", "Xi", "for", "Xi", "in", "X", "]", "X", "=", "np", ".", "atleast_2d", "(", "X", ")", "numvars", ",", "numdata", "=", "X", ".", "shape", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "nrows", "=", "numvars", ",", "ncols", "=", "numvars", ",", "figsize", "=", "(", "8", ",", "8", ")", ")", "fig", ".", "subplots_adjust", "(", "hspace", "=", "0.0", ",", "wspace", "=", "0.0", ")", "for", "ax", "in", "axes", ".", "flat", ":", "# Hide all ticks and labels\r", "ax", ".", "xaxis", ".", "set_visible", "(", "False", ")", "ax", ".", "yaxis", ".", "set_visible", "(", "False", ")", "# Set up ticks only on one side for the \"edge\" subplots...\r", "if", "full", ":", "if", "ax", ".", "is_first_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "\"left\"", ")", "if", "ax", ".", "is_last_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "\"right\"", ")", "if", "ax", ".", "is_first_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "\"top\"", ")", "if", "ax", ".", "is_last_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "\"bottom\"", ")", "else", ":", "if", "ax", ".", "is_first_row", "(", ")", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "\"top\"", ")", "if", "ax", ".", "is_last_col", "(", ")", ":", "ax", ".", "yaxis", ".", "set_ticks_position", "(", "\"right\"", ")", "# Label the diagonal subplots...\r", "if", "not", "labels", ":", "labels", "=", "[", "\"x\"", "+", "str", "(", "i", ")", "for", "i", "in", "range", "(", "numvars", ")", "]", "for", "i", ",", "label", "in", "enumerate", "(", "labels", ")", ":", "axes", "[", "i", ",", "i", "]", ".", "annotate", "(", "label", ",", "(", "0.5", ",", "0.5", ")", ",", "xycoords", "=", "\"axes fraction\"", ",", "ha", "=", "\"center\"", ",", "va", "=", "\"center\"", ")", "# Plot the data\r", "for", "i", ",", "j", "in", "zip", "(", "*", "np", ".", "triu_indices_from", "(", "axes", ",", "k", "=", "1", ")", ")", ":", "if", "full", ":", "idx", "=", "[", "(", "i", ",", "j", ")", ",", "(", "j", ",", "i", ")", "]", "else", ":", "idx", "=", "[", "(", "i", ",", "j", ")", "]", "for", "x", ",", "y", "in", "idx", ":", "# FIX #1: this needed to be changed from ...(data[x], data[y],...)\r", "if", "plotargs", "is", "None", ":", "if", "len", "(", "X", "[", "x", "]", ")", ">", "100", ":", "plotargs", "=", "\",b\"", "# pixel marker\r", "else", ":", "plotargs", "=", "\".b\"", "# point marker\r", "axes", "[", "x", ",", "y", "]", ".", "plot", "(", "X", "[", "y", "]", ",", "X", "[", "x", "]", ",", "plotargs", ")", "ylim", "=", "min", "(", "X", "[", "y", "]", ")", ",", "max", "(", "X", "[", "y", "]", ")", "xlim", "=", "min", "(", "X", "[", "x", "]", ")", ",", "max", "(", "X", "[", "x", "]", ")", "axes", "[", "x", ",", "y", "]", ".", "set_ylim", "(", "xlim", "[", "0", "]", "-", "(", "xlim", "[", "1", "]", "-", "xlim", "[", "0", "]", ")", "*", "0.1", ",", "xlim", "[", "1", "]", "+", "(", "xlim", "[", "1", "]", "-", "xlim", "[", "0", "]", ")", "*", "0.1", ")", "axes", "[", "x", ",", "y", "]", ".", "set_xlim", "(", "ylim", "[", "0", "]", "-", "(", "ylim", "[", "1", "]", "-", "ylim", "[", "0", "]", ")", "*", "0.1", ",", "ylim", "[", "1", "]", "+", "(", "ylim", "[", "1", "]", "-", "ylim", "[", "0", "]", ")", "*", "0.1", ")", "# Turn on the proper x or y axes ticks.\r", "if", "full", ":", "for", "i", ",", "j", "in", "zip", "(", "list", "(", "range", "(", "numvars", ")", ")", ",", "itertools", ".", "cycle", "(", "(", "-", "1", ",", "0", ")", ")", ")", ":", "axes", "[", "j", ",", "i", "]", ".", "xaxis", ".", "set_visible", "(", "True", ")", "axes", "[", "i", ",", "j", "]", ".", "yaxis", ".", "set_visible", "(", "True", ")", "else", ":", "for", "i", "in", "range", "(", "numvars", "-", "1", ")", ":", "axes", "[", "0", ",", "i", "+", "1", "]", ".", "xaxis", ".", "set_visible", "(", "True", ")", "axes", "[", "i", ",", "-", "1", "]", ".", "yaxis", ".", "set_visible", "(", "True", ")", "for", "i", "in", "range", "(", "1", ",", "numvars", ")", ":", "for", "j", "in", "range", "(", "0", ",", "i", ")", ":", "fig", ".", "delaxes", "(", "axes", "[", "i", ",", "j", "]", ")", "# FIX #2: if numvars is odd, the bottom right corner plot doesn't have the\r", "# correct axes limits, so we pull them from other axes\r", "if", "numvars", "%", "2", ":", "xlimits", "=", "axes", "[", "0", ",", "-", "1", "]", ".", "get_xlim", "(", ")", "ylimits", "=", "axes", "[", "-", "1", ",", "0", "]", ".", "get_ylim", "(", ")", "axes", "[", "-", "1", ",", "-", "1", "]", ".", "set_xlim", "(", "xlimits", ")", "axes", "[", "-", "1", ",", "-", "1", "]", ".", "set_ylim", "(", "ylimits", ")", "return", "fig" ]
Plots a scatterplot matrix of subplots. Usage: plotcorr(X) plotcorr(..., plotargs=...) # e.g., 'r*', 'bo', etc. plotcorr(..., full=...) # e.g., True or False plotcorr(..., labels=...) # e.g., ['label1', 'label2', ...] Each column of "X" is plotted against other columns, resulting in a ncols by ncols grid of subplots with the diagonal subplots labeled with "labels". "X" is an array of arrays (i.e., a 2d matrix), a 1d array of MCERP.UncertainFunction/Variable objects, or a mixture of the two. Additional keyword arguments are passed on to matplotlib's "plot" command. Returns the matplotlib figure object containing the subplot grid.
[ "Plots", "a", "scatterplot", "matrix", "of", "subplots", ".", "Usage", ":", "plotcorr", "(", "X", ")", "plotcorr", "(", "...", "plotargs", "=", "...", ")", "#", "e", ".", "g", ".", "r", "*", "bo", "etc", ".", "plotcorr", "(", "...", "full", "=", "...", ")", "#", "e", ".", "g", ".", "True", "or", "False", "plotcorr", "(", "...", "labels", "=", "...", ")", "#", "e", ".", "g", ".", "[", "label1", "label2", "...", "]", "Each", "column", "of", "X", "is", "plotted", "against", "other", "columns", "resulting", "in", "a", "ncols", "by", "ncols", "grid", "of", "subplots", "with", "the", "diagonal", "subplots", "labeled", "with", "labels", ".", "X", "is", "an", "array", "of", "arrays", "(", "i", ".", "e", ".", "a", "2d", "matrix", ")", "a", "1d", "array", "of", "MCERP", ".", "UncertainFunction", "/", "Variable", "objects", "or", "a", "mixture", "of", "the", "two", ".", "Additional", "keyword", "arguments", "are", "passed", "on", "to", "matplotlib", "s", "plot", "command", ".", "Returns", "the", "matplotlib", "figure", "object", "containing", "the", "subplot", "grid", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/correlate.py#L98-L201
tisimst/mcerp
mcerp/correlate.py
chol
def chol(A): """ Calculate the lower triangular matrix of the Cholesky decomposition of a symmetric, positive-definite matrix. """ A = np.array(A) assert A.shape[0] == A.shape[1], "Input matrix must be square" L = [[0.0] * len(A) for _ in range(len(A))] for i in range(len(A)): for j in range(i + 1): s = sum(L[i][k] * L[j][k] for k in range(j)) L[i][j] = ( (A[i][i] - s) ** 0.5 if (i == j) else (1.0 / L[j][j] * (A[i][j] - s)) ) return np.array(L)
python
def chol(A): """ Calculate the lower triangular matrix of the Cholesky decomposition of a symmetric, positive-definite matrix. """ A = np.array(A) assert A.shape[0] == A.shape[1], "Input matrix must be square" L = [[0.0] * len(A) for _ in range(len(A))] for i in range(len(A)): for j in range(i + 1): s = sum(L[i][k] * L[j][k] for k in range(j)) L[i][j] = ( (A[i][i] - s) ** 0.5 if (i == j) else (1.0 / L[j][j] * (A[i][j] - s)) ) return np.array(L)
[ "def", "chol", "(", "A", ")", ":", "A", "=", "np", ".", "array", "(", "A", ")", "assert", "A", ".", "shape", "[", "0", "]", "==", "A", ".", "shape", "[", "1", "]", ",", "\"Input matrix must be square\"", "L", "=", "[", "[", "0.0", "]", "*", "len", "(", "A", ")", "for", "_", "in", "range", "(", "len", "(", "A", ")", ")", "]", "for", "i", "in", "range", "(", "len", "(", "A", ")", ")", ":", "for", "j", "in", "range", "(", "i", "+", "1", ")", ":", "s", "=", "sum", "(", "L", "[", "i", "]", "[", "k", "]", "*", "L", "[", "j", "]", "[", "k", "]", "for", "k", "in", "range", "(", "j", ")", ")", "L", "[", "i", "]", "[", "j", "]", "=", "(", "(", "A", "[", "i", "]", "[", "i", "]", "-", "s", ")", "**", "0.5", "if", "(", "i", "==", "j", ")", "else", "(", "1.0", "/", "L", "[", "j", "]", "[", "j", "]", "*", "(", "A", "[", "i", "]", "[", "j", "]", "-", "s", ")", ")", ")", "return", "np", ".", "array", "(", "L", ")" ]
Calculate the lower triangular matrix of the Cholesky decomposition of a symmetric, positive-definite matrix.
[ "Calculate", "the", "lower", "triangular", "matrix", "of", "the", "Cholesky", "decomposition", "of", "a", "symmetric", "positive", "-", "definite", "matrix", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/correlate.py#L204-L220
opendns/pyinvestigate
investigate/investigate.py
Investigate.get
def get(self, uri, params={}): '''A generic method to make GET requests to the OpenDNS Investigate API on the given URI. ''' return self._session.get(urljoin(Investigate.BASE_URL, uri), params=params, headers=self._auth_header, proxies=self.proxies )
python
def get(self, uri, params={}): '''A generic method to make GET requests to the OpenDNS Investigate API on the given URI. ''' return self._session.get(urljoin(Investigate.BASE_URL, uri), params=params, headers=self._auth_header, proxies=self.proxies )
[ "def", "get", "(", "self", ",", "uri", ",", "params", "=", "{", "}", ")", ":", "return", "self", ".", "_session", ".", "get", "(", "urljoin", "(", "Investigate", ".", "BASE_URL", ",", "uri", ")", ",", "params", "=", "params", ",", "headers", "=", "self", ".", "_auth_header", ",", "proxies", "=", "self", ".", "proxies", ")" ]
A generic method to make GET requests to the OpenDNS Investigate API on the given URI.
[ "A", "generic", "method", "to", "make", "GET", "requests", "to", "the", "OpenDNS", "Investigate", "API", "on", "the", "given", "URI", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L62-L68
opendns/pyinvestigate
investigate/investigate.py
Investigate.post
def post(self, uri, params={}, data={}): '''A generic method to make POST requests to the OpenDNS Investigate API on the given URI. ''' return self._session.post( urljoin(Investigate.BASE_URL, uri), params=params, data=data, headers=self._auth_header, proxies=self.proxies )
python
def post(self, uri, params={}, data={}): '''A generic method to make POST requests to the OpenDNS Investigate API on the given URI. ''' return self._session.post( urljoin(Investigate.BASE_URL, uri), params=params, data=data, headers=self._auth_header, proxies=self.proxies )
[ "def", "post", "(", "self", ",", "uri", ",", "params", "=", "{", "}", ",", "data", "=", "{", "}", ")", ":", "return", "self", ".", "_session", ".", "post", "(", "urljoin", "(", "Investigate", ".", "BASE_URL", ",", "uri", ")", ",", "params", "=", "params", ",", "data", "=", "data", ",", "headers", "=", "self", ".", "_auth_header", ",", "proxies", "=", "self", ".", "proxies", ")" ]
A generic method to make POST requests to the OpenDNS Investigate API on the given URI.
[ "A", "generic", "method", "to", "make", "POST", "requests", "to", "the", "OpenDNS", "Investigate", "API", "on", "the", "given", "URI", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L70-L78
opendns/pyinvestigate
investigate/investigate.py
Investigate.get_parse
def get_parse(self, uri, params={}): '''Convenience method to call get() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status. ''' return self._request_parse(self.get, uri, params)
python
def get_parse(self, uri, params={}): '''Convenience method to call get() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status. ''' return self._request_parse(self.get, uri, params)
[ "def", "get_parse", "(", "self", ",", "uri", ",", "params", "=", "{", "}", ")", ":", "return", "self", ".", "_request_parse", "(", "self", ".", "get", ",", "uri", ",", "params", ")" ]
Convenience method to call get() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status.
[ "Convenience", "method", "to", "call", "get", "()", "on", "an", "arbitrary", "URI", "and", "parse", "the", "response", "into", "a", "JSON", "object", ".", "Raises", "an", "error", "on", "non", "-", "200", "response", "status", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L85-L89
opendns/pyinvestigate
investigate/investigate.py
Investigate.post_parse
def post_parse(self, uri, params={}, data={}): '''Convenience method to call post() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status. ''' return self._request_parse(self.post, uri, params, data)
python
def post_parse(self, uri, params={}, data={}): '''Convenience method to call post() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status. ''' return self._request_parse(self.post, uri, params, data)
[ "def", "post_parse", "(", "self", ",", "uri", ",", "params", "=", "{", "}", ",", "data", "=", "{", "}", ")", ":", "return", "self", ".", "_request_parse", "(", "self", ".", "post", ",", "uri", ",", "params", ",", "data", ")" ]
Convenience method to call post() on an arbitrary URI and parse the response into a JSON object. Raises an error on non-200 response status.
[ "Convenience", "method", "to", "call", "post", "()", "on", "an", "arbitrary", "URI", "and", "parse", "the", "response", "into", "a", "JSON", "object", ".", "Raises", "an", "error", "on", "non", "-", "200", "response", "status", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L91-L95
opendns/pyinvestigate
investigate/investigate.py
Investigate.categorization
def categorization(self, domains, labels=False): '''Get the domain status and categorization of a domain or list of domains. 'domains' can be either a single domain, or a list of domains. Setting 'labels' to True will give back categorizations in human-readable form. For more detail, see https://investigate.umbrella.com/docs/api#categorization ''' if type(domains) is str: return self._get_categorization(domains, labels) elif type(domains) is list: return self._post_categorization(domains, labels) else: raise Investigate.DOMAIN_ERR
python
def categorization(self, domains, labels=False): '''Get the domain status and categorization of a domain or list of domains. 'domains' can be either a single domain, or a list of domains. Setting 'labels' to True will give back categorizations in human-readable form. For more detail, see https://investigate.umbrella.com/docs/api#categorization ''' if type(domains) is str: return self._get_categorization(domains, labels) elif type(domains) is list: return self._post_categorization(domains, labels) else: raise Investigate.DOMAIN_ERR
[ "def", "categorization", "(", "self", ",", "domains", ",", "labels", "=", "False", ")", ":", "if", "type", "(", "domains", ")", "is", "str", ":", "return", "self", ".", "_get_categorization", "(", "domains", ",", "labels", ")", "elif", "type", "(", "domains", ")", "is", "list", ":", "return", "self", ".", "_post_categorization", "(", "domains", ",", "labels", ")", "else", ":", "raise", "Investigate", ".", "DOMAIN_ERR" ]
Get the domain status and categorization of a domain or list of domains. 'domains' can be either a single domain, or a list of domains. Setting 'labels' to True will give back categorizations in human-readable form. For more detail, see https://investigate.umbrella.com/docs/api#categorization
[ "Get", "the", "domain", "status", "and", "categorization", "of", "a", "domain", "or", "list", "of", "domains", ".", "domains", "can", "be", "either", "a", "single", "domain", "or", "a", "list", "of", "domains", ".", "Setting", "labels", "to", "True", "will", "give", "back", "categorizations", "in", "human", "-", "readable", "form", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L108-L121
opendns/pyinvestigate
investigate/investigate.py
Investigate.cooccurrences
def cooccurrences(self, domain): '''Get the cooccurrences of the given domain. For details, see https://investigate.umbrella.com/docs/api#co-occurrences ''' uri = self._uris["cooccurrences"].format(domain) return self.get_parse(uri)
python
def cooccurrences(self, domain): '''Get the cooccurrences of the given domain. For details, see https://investigate.umbrella.com/docs/api#co-occurrences ''' uri = self._uris["cooccurrences"].format(domain) return self.get_parse(uri)
[ "def", "cooccurrences", "(", "self", ",", "domain", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"cooccurrences\"", "]", ".", "format", "(", "domain", ")", "return", "self", ".", "get_parse", "(", "uri", ")" ]
Get the cooccurrences of the given domain. For details, see https://investigate.umbrella.com/docs/api#co-occurrences
[ "Get", "the", "cooccurrences", "of", "the", "given", "domain", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L123-L129
opendns/pyinvestigate
investigate/investigate.py
Investigate.related
def related(self, domain): '''Get the related domains of the given domain. For details, see https://investigate.umbrella.com/docs/api#relatedDomains ''' uri = self._uris["related"].format(domain) return self.get_parse(uri)
python
def related(self, domain): '''Get the related domains of the given domain. For details, see https://investigate.umbrella.com/docs/api#relatedDomains ''' uri = self._uris["related"].format(domain) return self.get_parse(uri)
[ "def", "related", "(", "self", ",", "domain", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"related\"", "]", ".", "format", "(", "domain", ")", "return", "self", ".", "get_parse", "(", "uri", ")" ]
Get the related domains of the given domain. For details, see https://investigate.umbrella.com/docs/api#relatedDomains
[ "Get", "the", "related", "domains", "of", "the", "given", "domain", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L131-L137
opendns/pyinvestigate
investigate/investigate.py
Investigate.security
def security(self, domain): '''Get the Security Information for the given domain. For details, see https://investigate.umbrella.com/docs/api#securityInfo ''' uri = self._uris["security"].format(domain) return self.get_parse(uri)
python
def security(self, domain): '''Get the Security Information for the given domain. For details, see https://investigate.umbrella.com/docs/api#securityInfo ''' uri = self._uris["security"].format(domain) return self.get_parse(uri)
[ "def", "security", "(", "self", ",", "domain", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"security\"", "]", ".", "format", "(", "domain", ")", "return", "self", ".", "get_parse", "(", "uri", ")" ]
Get the Security Information for the given domain. For details, see https://investigate.umbrella.com/docs/api#securityInfo
[ "Get", "the", "Security", "Information", "for", "the", "given", "domain", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L139-L145
opendns/pyinvestigate
investigate/investigate.py
Investigate.rr_history
def rr_history(self, query, query_type="A"): '''Get the RR (Resource Record) History of the given domain or IP. The default query type is for 'A' records, but the following query types are supported: A, NS, MX, TXT, CNAME For details, see https://investigate.umbrella.com/docs/api#dnsrr_domain ''' if query_type not in Investigate.SUPPORTED_DNS_TYPES: raise Investigate.UNSUPPORTED_DNS_QUERY # if this is an IP address, query the IP if Investigate.IP_PATTERN.match(query): return self._ip_rr_history(query, query_type) # otherwise, query the domain return self._domain_rr_history(query, query_type)
python
def rr_history(self, query, query_type="A"): '''Get the RR (Resource Record) History of the given domain or IP. The default query type is for 'A' records, but the following query types are supported: A, NS, MX, TXT, CNAME For details, see https://investigate.umbrella.com/docs/api#dnsrr_domain ''' if query_type not in Investigate.SUPPORTED_DNS_TYPES: raise Investigate.UNSUPPORTED_DNS_QUERY # if this is an IP address, query the IP if Investigate.IP_PATTERN.match(query): return self._ip_rr_history(query, query_type) # otherwise, query the domain return self._domain_rr_history(query, query_type)
[ "def", "rr_history", "(", "self", ",", "query", ",", "query_type", "=", "\"A\"", ")", ":", "if", "query_type", "not", "in", "Investigate", ".", "SUPPORTED_DNS_TYPES", ":", "raise", "Investigate", ".", "UNSUPPORTED_DNS_QUERY", "# if this is an IP address, query the IP", "if", "Investigate", ".", "IP_PATTERN", ".", "match", "(", "query", ")", ":", "return", "self", ".", "_ip_rr_history", "(", "query", ",", "query_type", ")", "# otherwise, query the domain", "return", "self", ".", "_domain_rr_history", "(", "query", ",", "query_type", ")" ]
Get the RR (Resource Record) History of the given domain or IP. The default query type is for 'A' records, but the following query types are supported: A, NS, MX, TXT, CNAME For details, see https://investigate.umbrella.com/docs/api#dnsrr_domain
[ "Get", "the", "RR", "(", "Resource", "Record", ")", "History", "of", "the", "given", "domain", "or", "IP", ".", "The", "default", "query", "type", "is", "for", "A", "records", "but", "the", "following", "query", "types", "are", "supported", ":" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L155-L172
opendns/pyinvestigate
investigate/investigate.py
Investigate.domain_whois
def domain_whois(self, domain): '''Gets whois information for a domain''' uri = self._uris["whois_domain"].format(domain) resp_json = self.get_parse(uri) return resp_json
python
def domain_whois(self, domain): '''Gets whois information for a domain''' uri = self._uris["whois_domain"].format(domain) resp_json = self.get_parse(uri) return resp_json
[ "def", "domain_whois", "(", "self", ",", "domain", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"whois_domain\"", "]", ".", "format", "(", "domain", ")", "resp_json", "=", "self", ".", "get_parse", "(", "uri", ")", "return", "resp_json" ]
Gets whois information for a domain
[ "Gets", "whois", "information", "for", "a", "domain" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L187-L191
opendns/pyinvestigate
investigate/investigate.py
Investigate.domain_whois_history
def domain_whois_history(self, domain, limit=None): '''Gets whois history for a domain''' params = dict() if limit is not None: params['limit'] = limit uri = self._uris["whois_domain_history"].format(domain) resp_json = self.get_parse(uri, params) return resp_json
python
def domain_whois_history(self, domain, limit=None): '''Gets whois history for a domain''' params = dict() if limit is not None: params['limit'] = limit uri = self._uris["whois_domain_history"].format(domain) resp_json = self.get_parse(uri, params) return resp_json
[ "def", "domain_whois_history", "(", "self", ",", "domain", ",", "limit", "=", "None", ")", ":", "params", "=", "dict", "(", ")", "if", "limit", "is", "not", "None", ":", "params", "[", "'limit'", "]", "=", "limit", "uri", "=", "self", ".", "_uris", "[", "\"whois_domain_history\"", "]", ".", "format", "(", "domain", ")", "resp_json", "=", "self", ".", "get_parse", "(", "uri", ",", "params", ")", "return", "resp_json" ]
Gets whois history for a domain
[ "Gets", "whois", "history", "for", "a", "domain" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L193-L202
opendns/pyinvestigate
investigate/investigate.py
Investigate.ns_whois
def ns_whois(self, nameservers, limit=DEFAULT_LIMIT, offset=DEFAULT_OFFSET, sort_field=DEFAULT_SORT): '''Gets the domains that have been registered with a nameserver or nameservers''' if not isinstance(nameservers, list): uri = self._uris["whois_ns"].format(nameservers) params = {'limit': limit, 'offset': offset, 'sortField': sort_field} else: uri = self._uris["whois_ns"].format('') params = {'emailList' : ','.join(nameservers), 'limit': limit, 'offset': offset, 'sortField': sort_field} resp_json = self.get_parse(uri, params=params) return resp_json
python
def ns_whois(self, nameservers, limit=DEFAULT_LIMIT, offset=DEFAULT_OFFSET, sort_field=DEFAULT_SORT): '''Gets the domains that have been registered with a nameserver or nameservers''' if not isinstance(nameservers, list): uri = self._uris["whois_ns"].format(nameservers) params = {'limit': limit, 'offset': offset, 'sortField': sort_field} else: uri = self._uris["whois_ns"].format('') params = {'emailList' : ','.join(nameservers), 'limit': limit, 'offset': offset, 'sortField': sort_field} resp_json = self.get_parse(uri, params=params) return resp_json
[ "def", "ns_whois", "(", "self", ",", "nameservers", ",", "limit", "=", "DEFAULT_LIMIT", ",", "offset", "=", "DEFAULT_OFFSET", ",", "sort_field", "=", "DEFAULT_SORT", ")", ":", "if", "not", "isinstance", "(", "nameservers", ",", "list", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"whois_ns\"", "]", ".", "format", "(", "nameservers", ")", "params", "=", "{", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", ",", "'sortField'", ":", "sort_field", "}", "else", ":", "uri", "=", "self", ".", "_uris", "[", "\"whois_ns\"", "]", ".", "format", "(", "''", ")", "params", "=", "{", "'emailList'", ":", "','", ".", "join", "(", "nameservers", ")", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", ",", "'sortField'", ":", "sort_field", "}", "resp_json", "=", "self", ".", "get_parse", "(", "uri", ",", "params", "=", "params", ")", "return", "resp_json" ]
Gets the domains that have been registered with a nameserver or nameservers
[ "Gets", "the", "domains", "that", "have", "been", "registered", "with", "a", "nameserver", "or", "nameservers" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L204-L215
opendns/pyinvestigate
investigate/investigate.py
Investigate.search
def search(self, pattern, start=None, limit=None, include_category=None): '''Searches for domains that match a given pattern''' params = dict() if start is None: start = datetime.timedelta(days=30) if isinstance(start, datetime.timedelta): params['start'] = int(time.mktime((datetime.datetime.utcnow() - start).timetuple()) * 1000) elif isinstance(start, datetime.datetime): params['start'] = int(time.mktime(start.timetuple()) * 1000) else: raise Investigate.SEARCH_ERR if limit is not None and isinstance(limit, int): params['limit'] = limit if include_category is not None and isinstance(include_category, bool): params['includeCategory'] = str(include_category).lower() uri = self._uris['search'].format(quote_plus(pattern)) return self.get_parse(uri, params)
python
def search(self, pattern, start=None, limit=None, include_category=None): '''Searches for domains that match a given pattern''' params = dict() if start is None: start = datetime.timedelta(days=30) if isinstance(start, datetime.timedelta): params['start'] = int(time.mktime((datetime.datetime.utcnow() - start).timetuple()) * 1000) elif isinstance(start, datetime.datetime): params['start'] = int(time.mktime(start.timetuple()) * 1000) else: raise Investigate.SEARCH_ERR if limit is not None and isinstance(limit, int): params['limit'] = limit if include_category is not None and isinstance(include_category, bool): params['includeCategory'] = str(include_category).lower() uri = self._uris['search'].format(quote_plus(pattern)) return self.get_parse(uri, params)
[ "def", "search", "(", "self", ",", "pattern", ",", "start", "=", "None", ",", "limit", "=", "None", ",", "include_category", "=", "None", ")", ":", "params", "=", "dict", "(", ")", "if", "start", "is", "None", ":", "start", "=", "datetime", ".", "timedelta", "(", "days", "=", "30", ")", "if", "isinstance", "(", "start", ",", "datetime", ".", "timedelta", ")", ":", "params", "[", "'start'", "]", "=", "int", "(", "time", ".", "mktime", "(", "(", "datetime", ".", "datetime", ".", "utcnow", "(", ")", "-", "start", ")", ".", "timetuple", "(", ")", ")", "*", "1000", ")", "elif", "isinstance", "(", "start", ",", "datetime", ".", "datetime", ")", ":", "params", "[", "'start'", "]", "=", "int", "(", "time", ".", "mktime", "(", "start", ".", "timetuple", "(", ")", ")", "*", "1000", ")", "else", ":", "raise", "Investigate", ".", "SEARCH_ERR", "if", "limit", "is", "not", "None", "and", "isinstance", "(", "limit", ",", "int", ")", ":", "params", "[", "'limit'", "]", "=", "limit", "if", "include_category", "is", "not", "None", "and", "isinstance", "(", "include_category", ",", "bool", ")", ":", "params", "[", "'includeCategory'", "]", "=", "str", "(", "include_category", ")", ".", "lower", "(", ")", "uri", "=", "self", ".", "_uris", "[", "'search'", "]", ".", "format", "(", "quote_plus", "(", "pattern", ")", ")", "return", "self", ".", "get_parse", "(", "uri", ",", "params", ")" ]
Searches for domains that match a given pattern
[ "Searches", "for", "domains", "that", "match", "a", "given", "pattern" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L231-L253
opendns/pyinvestigate
investigate/investigate.py
Investigate.samples
def samples(self, anystring, limit=None, offset=None, sortby=None): '''Return an object representing the samples identified by the input domain, IP, or URL''' uri = self._uris['samples'].format(anystring) params = {'limit': limit, 'offset': offset, 'sortby': sortby} return self.get_parse(uri, params)
python
def samples(self, anystring, limit=None, offset=None, sortby=None): '''Return an object representing the samples identified by the input domain, IP, or URL''' uri = self._uris['samples'].format(anystring) params = {'limit': limit, 'offset': offset, 'sortby': sortby} return self.get_parse(uri, params)
[ "def", "samples", "(", "self", ",", "anystring", ",", "limit", "=", "None", ",", "offset", "=", "None", ",", "sortby", "=", "None", ")", ":", "uri", "=", "self", ".", "_uris", "[", "'samples'", "]", ".", "format", "(", "anystring", ")", "params", "=", "{", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", ",", "'sortby'", ":", "sortby", "}", "return", "self", ".", "get_parse", "(", "uri", ",", "params", ")" ]
Return an object representing the samples identified by the input domain, IP, or URL
[ "Return", "an", "object", "representing", "the", "samples", "identified", "by", "the", "input", "domain", "IP", "or", "URL" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L255-L261
opendns/pyinvestigate
investigate/investigate.py
Investigate.sample
def sample(self, hash, limit=None, offset=None): '''Return an object representing the sample identified by the input hash, or an empty object if that sample is not found''' uri = self._uris['sample'].format(hash) params = {'limit': limit, 'offset': offset} return self.get_parse(uri, params)
python
def sample(self, hash, limit=None, offset=None): '''Return an object representing the sample identified by the input hash, or an empty object if that sample is not found''' uri = self._uris['sample'].format(hash) params = {'limit': limit, 'offset': offset} return self.get_parse(uri, params)
[ "def", "sample", "(", "self", ",", "hash", ",", "limit", "=", "None", ",", "offset", "=", "None", ")", ":", "uri", "=", "self", ".", "_uris", "[", "'sample'", "]", ".", "format", "(", "hash", ")", "params", "=", "{", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", "}", "return", "self", ".", "get_parse", "(", "uri", ",", "params", ")" ]
Return an object representing the sample identified by the input hash, or an empty object if that sample is not found
[ "Return", "an", "object", "representing", "the", "sample", "identified", "by", "the", "input", "hash", "or", "an", "empty", "object", "if", "that", "sample", "is", "not", "found" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L263-L269
opendns/pyinvestigate
investigate/investigate.py
Investigate.as_for_ip
def as_for_ip(self, ip): '''Gets the AS information for a given IP address.''' if not Investigate.IP_PATTERN.match(ip): raise Investigate.IP_ERR uri = self._uris["as_for_ip"].format(ip) resp_json = self.get_parse(uri) return resp_json
python
def as_for_ip(self, ip): '''Gets the AS information for a given IP address.''' if not Investigate.IP_PATTERN.match(ip): raise Investigate.IP_ERR uri = self._uris["as_for_ip"].format(ip) resp_json = self.get_parse(uri) return resp_json
[ "def", "as_for_ip", "(", "self", ",", "ip", ")", ":", "if", "not", "Investigate", ".", "IP_PATTERN", ".", "match", "(", "ip", ")", ":", "raise", "Investigate", ".", "IP_ERR", "uri", "=", "self", ".", "_uris", "[", "\"as_for_ip\"", "]", ".", "format", "(", "ip", ")", "resp_json", "=", "self", ".", "get_parse", "(", "uri", ")", "return", "resp_json" ]
Gets the AS information for a given IP address.
[ "Gets", "the", "AS", "information", "for", "a", "given", "IP", "address", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L298-L306
opendns/pyinvestigate
investigate/investigate.py
Investigate.prefixes_for_asn
def prefixes_for_asn(self, asn): '''Gets the AS information for a given ASN. Return the CIDR and geolocation associated with the AS.''' uri = self._uris["prefixes_for_asn"].format(asn) resp_json = self.get_parse(uri) return resp_json
python
def prefixes_for_asn(self, asn): '''Gets the AS information for a given ASN. Return the CIDR and geolocation associated with the AS.''' uri = self._uris["prefixes_for_asn"].format(asn) resp_json = self.get_parse(uri) return resp_json
[ "def", "prefixes_for_asn", "(", "self", ",", "asn", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"prefixes_for_asn\"", "]", ".", "format", "(", "asn", ")", "resp_json", "=", "self", ".", "get_parse", "(", "uri", ")", "return", "resp_json" ]
Gets the AS information for a given ASN. Return the CIDR and geolocation associated with the AS.
[ "Gets", "the", "AS", "information", "for", "a", "given", "ASN", ".", "Return", "the", "CIDR", "and", "geolocation", "associated", "with", "the", "AS", "." ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L308-L314
opendns/pyinvestigate
investigate/investigate.py
Investigate.timeline
def timeline(self, uri): '''Get the domain tagging timeline for a given uri. Could be a domain, ip, or url. For details, see https://docs.umbrella.com/investigate-api/docs/timeline ''' uri = self._uris["timeline"].format(uri) resp_json = self.get_parse(uri) return resp_json
python
def timeline(self, uri): '''Get the domain tagging timeline for a given uri. Could be a domain, ip, or url. For details, see https://docs.umbrella.com/investigate-api/docs/timeline ''' uri = self._uris["timeline"].format(uri) resp_json = self.get_parse(uri) return resp_json
[ "def", "timeline", "(", "self", ",", "uri", ")", ":", "uri", "=", "self", ".", "_uris", "[", "\"timeline\"", "]", ".", "format", "(", "uri", ")", "resp_json", "=", "self", ".", "get_parse", "(", "uri", ")", "return", "resp_json" ]
Get the domain tagging timeline for a given uri. Could be a domain, ip, or url. For details, see https://docs.umbrella.com/investigate-api/docs/timeline
[ "Get", "the", "domain", "tagging", "timeline", "for", "a", "given", "uri", ".", "Could", "be", "a", "domain", "ip", "or", "url", ".", "For", "details", "see", "https", ":", "//", "docs", ".", "umbrella", ".", "com", "/", "investigate", "-", "api", "/", "docs", "/", "timeline" ]
train
https://github.com/opendns/pyinvestigate/blob/a182e73a750f03e906d9b25842d556db8d2fd54f/investigate/investigate.py#L316-L324
tisimst/mcerp
mcerp/umath.py
abs
def abs(x): """ Absolute value """ if isinstance(x, UncertainFunction): mcpts = np.abs(x._mcpts) return UncertainFunction(mcpts) else: return np.abs(x)
python
def abs(x): """ Absolute value """ if isinstance(x, UncertainFunction): mcpts = np.abs(x._mcpts) return UncertainFunction(mcpts) else: return np.abs(x)
[ "def", "abs", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "abs", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "abs", "(", "x", ")" ]
Absolute value
[ "Absolute", "value" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L18-L26
tisimst/mcerp
mcerp/umath.py
acos
def acos(x): """ Inverse cosine """ if isinstance(x, UncertainFunction): mcpts = np.arccos(x._mcpts) return UncertainFunction(mcpts) else: return np.arccos(x)
python
def acos(x): """ Inverse cosine """ if isinstance(x, UncertainFunction): mcpts = np.arccos(x._mcpts) return UncertainFunction(mcpts) else: return np.arccos(x)
[ "def", "acos", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "arccos", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "arccos", "(", "x", ")" ]
Inverse cosine
[ "Inverse", "cosine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L29-L37
tisimst/mcerp
mcerp/umath.py
acosh
def acosh(x): """ Inverse hyperbolic cosine """ if isinstance(x, UncertainFunction): mcpts = np.arccosh(x._mcpts) return UncertainFunction(mcpts) else: return np.arccosh(x)
python
def acosh(x): """ Inverse hyperbolic cosine """ if isinstance(x, UncertainFunction): mcpts = np.arccosh(x._mcpts) return UncertainFunction(mcpts) else: return np.arccosh(x)
[ "def", "acosh", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "arccosh", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "arccosh", "(", "x", ")" ]
Inverse hyperbolic cosine
[ "Inverse", "hyperbolic", "cosine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L40-L48
tisimst/mcerp
mcerp/umath.py
asin
def asin(x): """ Inverse sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsin(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsin(x)
python
def asin(x): """ Inverse sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsin(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsin(x)
[ "def", "asin", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "arcsin", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "arcsin", "(", "x", ")" ]
Inverse sine
[ "Inverse", "sine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L51-L59
tisimst/mcerp
mcerp/umath.py
asinh
def asinh(x): """ Inverse hyperbolic sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsinh(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsinh(x)
python
def asinh(x): """ Inverse hyperbolic sine """ if isinstance(x, UncertainFunction): mcpts = np.arcsinh(x._mcpts) return UncertainFunction(mcpts) else: return np.arcsinh(x)
[ "def", "asinh", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "arcsinh", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "arcsinh", "(", "x", ")" ]
Inverse hyperbolic sine
[ "Inverse", "hyperbolic", "sine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L62-L70
tisimst/mcerp
mcerp/umath.py
atan
def atan(x): """ Inverse tangent """ if isinstance(x, UncertainFunction): mcpts = np.arctan(x._mcpts) return UncertainFunction(mcpts) else: return np.arctan(x)
python
def atan(x): """ Inverse tangent """ if isinstance(x, UncertainFunction): mcpts = np.arctan(x._mcpts) return UncertainFunction(mcpts) else: return np.arctan(x)
[ "def", "atan", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "arctan", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "arctan", "(", "x", ")" ]
Inverse tangent
[ "Inverse", "tangent" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L73-L81
tisimst/mcerp
mcerp/umath.py
atanh
def atanh(x): """ Inverse hyperbolic tangent """ if isinstance(x, UncertainFunction): mcpts = np.arctanh(x._mcpts) return UncertainFunction(mcpts) else: return np.arctanh(x)
python
def atanh(x): """ Inverse hyperbolic tangent """ if isinstance(x, UncertainFunction): mcpts = np.arctanh(x._mcpts) return UncertainFunction(mcpts) else: return np.arctanh(x)
[ "def", "atanh", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "arctanh", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "arctanh", "(", "x", ")" ]
Inverse hyperbolic tangent
[ "Inverse", "hyperbolic", "tangent" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L84-L92
tisimst/mcerp
mcerp/umath.py
ceil
def ceil(x): """ Ceiling function (round towards positive infinity) """ if isinstance(x, UncertainFunction): mcpts = np.ceil(x._mcpts) return UncertainFunction(mcpts) else: return np.ceil(x)
python
def ceil(x): """ Ceiling function (round towards positive infinity) """ if isinstance(x, UncertainFunction): mcpts = np.ceil(x._mcpts) return UncertainFunction(mcpts) else: return np.ceil(x)
[ "def", "ceil", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "ceil", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "ceil", "(", "x", ")" ]
Ceiling function (round towards positive infinity)
[ "Ceiling", "function", "(", "round", "towards", "positive", "infinity", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L95-L103
tisimst/mcerp
mcerp/umath.py
cos
def cos(x): """ Cosine """ if isinstance(x, UncertainFunction): mcpts = np.cos(x._mcpts) return UncertainFunction(mcpts) else: return np.cos(x)
python
def cos(x): """ Cosine """ if isinstance(x, UncertainFunction): mcpts = np.cos(x._mcpts) return UncertainFunction(mcpts) else: return np.cos(x)
[ "def", "cos", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "cos", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "cos", "(", "x", ")" ]
Cosine
[ "Cosine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L106-L114
tisimst/mcerp
mcerp/umath.py
cosh
def cosh(x): """ Hyperbolic cosine """ if isinstance(x, UncertainFunction): mcpts = np.cosh(x._mcpts) return UncertainFunction(mcpts) else: return np.cosh(x)
python
def cosh(x): """ Hyperbolic cosine """ if isinstance(x, UncertainFunction): mcpts = np.cosh(x._mcpts) return UncertainFunction(mcpts) else: return np.cosh(x)
[ "def", "cosh", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "cosh", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "cosh", "(", "x", ")" ]
Hyperbolic cosine
[ "Hyperbolic", "cosine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L117-L125
tisimst/mcerp
mcerp/umath.py
degrees
def degrees(x): """ Convert radians to degrees """ if isinstance(x, UncertainFunction): mcpts = np.degrees(x._mcpts) return UncertainFunction(mcpts) else: return np.degrees(x)
python
def degrees(x): """ Convert radians to degrees """ if isinstance(x, UncertainFunction): mcpts = np.degrees(x._mcpts) return UncertainFunction(mcpts) else: return np.degrees(x)
[ "def", "degrees", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "degrees", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "degrees", "(", "x", ")" ]
Convert radians to degrees
[ "Convert", "radians", "to", "degrees" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L128-L136
tisimst/mcerp
mcerp/umath.py
exp
def exp(x): """ Exponential function """ if isinstance(x, UncertainFunction): mcpts = np.exp(x._mcpts) return UncertainFunction(mcpts) else: return np.exp(x)
python
def exp(x): """ Exponential function """ if isinstance(x, UncertainFunction): mcpts = np.exp(x._mcpts) return UncertainFunction(mcpts) else: return np.exp(x)
[ "def", "exp", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "exp", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "exp", "(", "x", ")" ]
Exponential function
[ "Exponential", "function" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L139-L147
tisimst/mcerp
mcerp/umath.py
expm1
def expm1(x): """ Calculate exp(x) - 1 """ if isinstance(x, UncertainFunction): mcpts = np.expm1(x._mcpts) return UncertainFunction(mcpts) else: return np.expm1(x)
python
def expm1(x): """ Calculate exp(x) - 1 """ if isinstance(x, UncertainFunction): mcpts = np.expm1(x._mcpts) return UncertainFunction(mcpts) else: return np.expm1(x)
[ "def", "expm1", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "expm1", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "expm1", "(", "x", ")" ]
Calculate exp(x) - 1
[ "Calculate", "exp", "(", "x", ")", "-", "1" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L150-L158
tisimst/mcerp
mcerp/umath.py
fabs
def fabs(x): """ Absolute value function """ if isinstance(x, UncertainFunction): mcpts = np.fabs(x._mcpts) return UncertainFunction(mcpts) else: return np.fabs(x)
python
def fabs(x): """ Absolute value function """ if isinstance(x, UncertainFunction): mcpts = np.fabs(x._mcpts) return UncertainFunction(mcpts) else: return np.fabs(x)
[ "def", "fabs", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "fabs", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "fabs", "(", "x", ")" ]
Absolute value function
[ "Absolute", "value", "function" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L161-L169
tisimst/mcerp
mcerp/umath.py
floor
def floor(x): """ Floor function (round towards negative infinity) """ if isinstance(x, UncertainFunction): mcpts = np.floor(x._mcpts) return UncertainFunction(mcpts) else: return np.floor(x)
python
def floor(x): """ Floor function (round towards negative infinity) """ if isinstance(x, UncertainFunction): mcpts = np.floor(x._mcpts) return UncertainFunction(mcpts) else: return np.floor(x)
[ "def", "floor", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "floor", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "floor", "(", "x", ")" ]
Floor function (round towards negative infinity)
[ "Floor", "function", "(", "round", "towards", "negative", "infinity", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L172-L180
tisimst/mcerp
mcerp/umath.py
hypot
def hypot(x, y): """ Calculate the hypotenuse given two "legs" of a right triangle """ if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction): ufx = to_uncertain_func(x) ufy = to_uncertain_func(y) mcpts = np.hypot(ufx._mcpts, ufy._mcpts) return UncertainFunction(mcpts) else: return np.hypot(x, y)
python
def hypot(x, y): """ Calculate the hypotenuse given two "legs" of a right triangle """ if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction): ufx = to_uncertain_func(x) ufy = to_uncertain_func(y) mcpts = np.hypot(ufx._mcpts, ufy._mcpts) return UncertainFunction(mcpts) else: return np.hypot(x, y)
[ "def", "hypot", "(", "x", ",", "y", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", "or", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "ufx", "=", "to_uncertain_func", "(", "x", ")", "ufy", "=", "to_uncertain_func", "(", "y", ")", "mcpts", "=", "np", ".", "hypot", "(", "ufx", ".", "_mcpts", ",", "ufy", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "hypot", "(", "x", ",", "y", ")" ]
Calculate the hypotenuse given two "legs" of a right triangle
[ "Calculate", "the", "hypotenuse", "given", "two", "legs", "of", "a", "right", "triangle" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L183-L193
tisimst/mcerp
mcerp/umath.py
log
def log(x): """ Natural logarithm """ if isinstance(x, UncertainFunction): mcpts = np.log(x._mcpts) return UncertainFunction(mcpts) else: return np.log(x)
python
def log(x): """ Natural logarithm """ if isinstance(x, UncertainFunction): mcpts = np.log(x._mcpts) return UncertainFunction(mcpts) else: return np.log(x)
[ "def", "log", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "log", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "log", "(", "x", ")" ]
Natural logarithm
[ "Natural", "logarithm" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L203-L211
tisimst/mcerp
mcerp/umath.py
log10
def log10(x): """ Base-10 logarithm """ if isinstance(x, UncertainFunction): mcpts = np.log10(x._mcpts) return UncertainFunction(mcpts) else: return np.log10(x)
python
def log10(x): """ Base-10 logarithm """ if isinstance(x, UncertainFunction): mcpts = np.log10(x._mcpts) return UncertainFunction(mcpts) else: return np.log10(x)
[ "def", "log10", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "log10", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "log10", "(", "x", ")" ]
Base-10 logarithm
[ "Base", "-", "10", "logarithm" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L214-L222
tisimst/mcerp
mcerp/umath.py
log1p
def log1p(x): """ Natural logarithm of (1 + x) """ if isinstance(x, UncertainFunction): mcpts = np.log1p(x._mcpts) return UncertainFunction(mcpts) else: return np.log1p(x)
python
def log1p(x): """ Natural logarithm of (1 + x) """ if isinstance(x, UncertainFunction): mcpts = np.log1p(x._mcpts) return UncertainFunction(mcpts) else: return np.log1p(x)
[ "def", "log1p", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "log1p", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "log1p", "(", "x", ")" ]
Natural logarithm of (1 + x)
[ "Natural", "logarithm", "of", "(", "1", "+", "x", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L225-L233
tisimst/mcerp
mcerp/umath.py
radians
def radians(x): """ Convert degrees to radians """ if isinstance(x, UncertainFunction): mcpts = np.radians(x._mcpts) return UncertainFunction(mcpts) else: return np.radians(x)
python
def radians(x): """ Convert degrees to radians """ if isinstance(x, UncertainFunction): mcpts = np.radians(x._mcpts) return UncertainFunction(mcpts) else: return np.radians(x)
[ "def", "radians", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "radians", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "radians", "(", "x", ")" ]
Convert degrees to radians
[ "Convert", "degrees", "to", "radians" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L236-L244
tisimst/mcerp
mcerp/umath.py
sin
def sin(x): """ Sine """ if isinstance(x, UncertainFunction): mcpts = np.sin(x._mcpts) return UncertainFunction(mcpts) else: return np.sin(x)
python
def sin(x): """ Sine """ if isinstance(x, UncertainFunction): mcpts = np.sin(x._mcpts) return UncertainFunction(mcpts) else: return np.sin(x)
[ "def", "sin", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "sin", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "sin", "(", "x", ")" ]
Sine
[ "Sine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L247-L255
tisimst/mcerp
mcerp/umath.py
sinh
def sinh(x): """ Hyperbolic sine """ if isinstance(x, UncertainFunction): mcpts = np.sinh(x._mcpts) return UncertainFunction(mcpts) else: return np.sinh(x)
python
def sinh(x): """ Hyperbolic sine """ if isinstance(x, UncertainFunction): mcpts = np.sinh(x._mcpts) return UncertainFunction(mcpts) else: return np.sinh(x)
[ "def", "sinh", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "sinh", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "sinh", "(", "x", ")" ]
Hyperbolic sine
[ "Hyperbolic", "sine" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L258-L266
tisimst/mcerp
mcerp/umath.py
sqrt
def sqrt(x): """ Square-root function """ if isinstance(x, UncertainFunction): mcpts = np.sqrt(x._mcpts) return UncertainFunction(mcpts) else: return np.sqrt(x)
python
def sqrt(x): """ Square-root function """ if isinstance(x, UncertainFunction): mcpts = np.sqrt(x._mcpts) return UncertainFunction(mcpts) else: return np.sqrt(x)
[ "def", "sqrt", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "sqrt", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "sqrt", "(", "x", ")" ]
Square-root function
[ "Square", "-", "root", "function" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L269-L277
tisimst/mcerp
mcerp/umath.py
tan
def tan(x): """ Tangent """ if isinstance(x, UncertainFunction): mcpts = np.tan(x._mcpts) return UncertainFunction(mcpts) else: return np.tan(x)
python
def tan(x): """ Tangent """ if isinstance(x, UncertainFunction): mcpts = np.tan(x._mcpts) return UncertainFunction(mcpts) else: return np.tan(x)
[ "def", "tan", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "tan", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "tan", "(", "x", ")" ]
Tangent
[ "Tangent" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L280-L288
tisimst/mcerp
mcerp/umath.py
tanh
def tanh(x): """ Hyperbolic tangent """ if isinstance(x, UncertainFunction): mcpts = np.tanh(x._mcpts) return UncertainFunction(mcpts) else: return np.tanh(x)
python
def tanh(x): """ Hyperbolic tangent """ if isinstance(x, UncertainFunction): mcpts = np.tanh(x._mcpts) return UncertainFunction(mcpts) else: return np.tanh(x)
[ "def", "tanh", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "tanh", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "tanh", "(", "x", ")" ]
Hyperbolic tangent
[ "Hyperbolic", "tangent" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L291-L299
tisimst/mcerp
mcerp/umath.py
trunc
def trunc(x): """ Truncate the values to the integer value without rounding """ if isinstance(x, UncertainFunction): mcpts = np.trunc(x._mcpts) return UncertainFunction(mcpts) else: return np.trunc(x)
python
def trunc(x): """ Truncate the values to the integer value without rounding """ if isinstance(x, UncertainFunction): mcpts = np.trunc(x._mcpts) return UncertainFunction(mcpts) else: return np.trunc(x)
[ "def", "trunc", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "mcpts", "=", "np", ".", "trunc", "(", "x", ".", "_mcpts", ")", "return", "UncertainFunction", "(", "mcpts", ")", "else", ":", "return", "np", ".", "trunc", "(", "x", ")" ]
Truncate the values to the integer value without rounding
[ "Truncate", "the", "values", "to", "the", "integer", "value", "without", "rounding" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/umath.py#L302-L310
tisimst/mcerp
mcerp/lhd.py
lhd
def lhd( dist=None, size=None, dims=1, form="randomized", iterations=100, showcorrelations=False, ): """ Create a Latin-Hypercube sample design based on distributions defined in the `scipy.stats` module Parameters ---------- dist: array_like frozen scipy.stats.rv_continuous or rv_discrete distribution objects that are defined previous to calling LHD size: int integer value for the number of samples to generate for each distribution object dims: int, optional if dist is a single distribution object, and dims > 1, the one distribution will be used to generate a size-by-dims sampled design form: str, optional (non-functional at the moment) determines how the sampling is to occur, with the following optional values: - 'randomized' - completely randomized sampling - 'spacefilling' - space-filling sampling (generally gives a more accurate sampling of the design when the number of sample points is small) - 'orthogonal' - balanced space-filling sampling (experimental) The 'spacefilling' and 'orthogonal' forms require some iterations to determine the optimal sampling pattern. iterations: int, optional (non-functional at the moment) used to control the number of allowable search iterations for generating 'spacefilling' and 'orthogonal' designs Returns ------- out: 2d-array, A 2d-array where each column corresponds to each input distribution and each row is a sample in the design Examples -------- Single distribution: - uniform distribution, low = -1, width = 2 >>> import scipy.stats as ss >>> d0 = ss.uniform(loc=-1,scale=2) >>> print lhd(dist=d0,size=5) [[ 0.51031081] [-0.28961427] [-0.68342107] [ 0.69784371] [ 0.12248842]] Single distribution for multiple variables: - normal distribution, mean = 0, stdev = 1 >>> d1 = ss.norm(loc=0,scale=1) >>> print lhd(dist=d1,size=7,dims=5) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] Multiple distributions: - beta distribution, alpha = 2, beta = 5 - exponential distribution, lambda = 1.5 >>> d2 = ss.beta(2,5) >>> d3 = ss.expon(scale=1/1.5) >>> print lhd(dist=(d1,d2,d3),size=6) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] """ assert dims > 0, 'kwarg "dims" must be at least 1' if not size or not dist: return None def _lhs(x, samples=20): """ _lhs(x) returns a latin-hypercube matrix (each row is a different set of sample inputs) using a default sample size of 20 for each column of X. X must be a 2xN matrix that contains the lower and upper bounds of each column. The lower bound(s) should be in the first row and the upper bound(s) should be in the second row. _lhs(x,samples=N) uses the sample size of N instead of the default (20). Example: >>> x = np.array([[0,-1,3],[1,2,6]]) >>> print 'x:'; print x x: [[ 0 -1 3] [ 1 2 6]] >>> print 'lhs(x):'; print _lhs(x) lhs(x): [[ 0.02989122 -0.93918734 3.14432618] [ 0.08869833 -0.82140706 3.19875152] [ 0.10627442 -0.66999234 3.33814979] [ 0.15202861 -0.44157763 3.57036894] [ 0.2067089 -0.34845384 3.66930908] [ 0.26542056 -0.23706445 3.76361414] [ 0.34201421 -0.00779306 3.90818257] [ 0.37891646 0.15458423 4.15031708] [ 0.43501575 0.23561118 4.20320064] [ 0.4865449 0.36350601 4.45792314] [ 0.54804367 0.56069855 4.60911539] [ 0.59400712 0.7468415 4.69923486] [ 0.63708876 0.9159176 4.83611204] [ 0.68819855 0.98596354 4.97659182] [ 0.7368695 1.18923511 5.11135111] [ 0.78885724 1.28369441 5.2900157 ] [ 0.80966513 1.47415703 5.4081971 ] [ 0.86196731 1.57844205 5.61067689] [ 0.94784517 1.71823504 5.78021164] [ 0.96739728 1.94169017 5.88604772]] >>> print 'lhs(x,samples=5):'; print _lhs(x,samples=5) lhs(x,samples=5): [[ 0.1949127 -0.54124725 3.49238369] [ 0.21128576 -0.13439798 3.65652016] [ 0.47516308 0.39957406 4.5797308 ] [ 0.64400392 0.90890999 4.92379431] [ 0.96279472 1.79415307 5.52028238]] """ # determine the segment size segmentSize = 1.0 / samples # get the number of dimensions to sample (number of columns) numVars = x.shape[1] # populate each dimension out = np.zeros((samples, numVars)) pointValue = np.zeros(samples) for n in range(numVars): for i in range(samples): segmentMin = i * segmentSize point = segmentMin + (np.random.random() * segmentSize) pointValue[i] = (point * (x[1, n] - x[0, n])) + x[0, n] out[:, n] = pointValue # now randomly arrange the different segments return _mix(out) def _mix(data, dim="cols"): """ Takes a data matrix and mixes up the values along dim (either "rows" or "cols"). In other words, if dim='rows', then each row's data is mixed ONLY WITHIN ITSELF. Likewise, if dim='cols', then each column's data is mixed ONLY WITHIN ITSELF. """ data = np.atleast_2d(data) n = data.shape[0] if dim == "rows": data = data.T data_rank = list(range(n)) for i in range(data.shape[1]): new_data_rank = np.random.permutation(data_rank) vals, order = np.unique( np.hstack((data_rank, new_data_rank)), return_inverse=True ) old_order = order[:n] new_order = order[-n:] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] if dim == "rows": data = data.T return data if form is "randomized": if hasattr(dist, "__getitem__"): # if multiple distributions were input nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: # if a single distribution was input nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is "spacefilling": def euclid_distance(arr): n = arr.shape[0] ans = 0.0 for i in range(n - 1): for j in range(i + 1, n): d = np.sqrt( np.sum( [(arr[i, k] - arr[j, k]) ** 2 for k in range(arr.shape[1])] ) ) ans += 1.0 / d ** 2 return ans def fill_space(data): best = 1e8 for it in range(iterations): d = euclid_distance(data) if d < best: d_opt = d data_opt = data.copy() data = _mix(data) print("Optimized Distance:", d_opt) return data_opt if hasattr(dist, "__getitem__"): # if multiple distributions were input nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: # if a single distribution was input nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is "orthogonal": raise NotImplementedError( "Sorry. The orthogonal space-filling algorithm hasn't been implemented yet." ) else: raise ValueError('Invalid "form" value: %s' % (form)) if dist_data.shape[1] > 1: cor_matrix = np.zeros((nvars, nvars)) for i in range(nvars): for j in range(nvars): x_data = dist_data[:, i].copy() y_data = dist_data[:, j].copy() x_mean = x_data.mean() y_mean = y_data.mean() num = np.sum((x_data - x_mean) * (y_data - y_mean)) den = np.sqrt( np.sum((x_data - x_mean) ** 2) * np.sum((y_data - y_mean) ** 2) ) cor_matrix[i, j] = num / den cor_matrix[j, i] = num / den inv_cor_matrix = np.linalg.pinv(cor_matrix) VIF = np.max(np.diag(inv_cor_matrix)) if showcorrelations: print("Correlation Matrix:\n", cor_matrix) print("Inverted Correlation Matrix:\n", inv_cor_matrix) print("Variance Inflation Factor (VIF):", VIF) return dist_data
python
def lhd( dist=None, size=None, dims=1, form="randomized", iterations=100, showcorrelations=False, ): """ Create a Latin-Hypercube sample design based on distributions defined in the `scipy.stats` module Parameters ---------- dist: array_like frozen scipy.stats.rv_continuous or rv_discrete distribution objects that are defined previous to calling LHD size: int integer value for the number of samples to generate for each distribution object dims: int, optional if dist is a single distribution object, and dims > 1, the one distribution will be used to generate a size-by-dims sampled design form: str, optional (non-functional at the moment) determines how the sampling is to occur, with the following optional values: - 'randomized' - completely randomized sampling - 'spacefilling' - space-filling sampling (generally gives a more accurate sampling of the design when the number of sample points is small) - 'orthogonal' - balanced space-filling sampling (experimental) The 'spacefilling' and 'orthogonal' forms require some iterations to determine the optimal sampling pattern. iterations: int, optional (non-functional at the moment) used to control the number of allowable search iterations for generating 'spacefilling' and 'orthogonal' designs Returns ------- out: 2d-array, A 2d-array where each column corresponds to each input distribution and each row is a sample in the design Examples -------- Single distribution: - uniform distribution, low = -1, width = 2 >>> import scipy.stats as ss >>> d0 = ss.uniform(loc=-1,scale=2) >>> print lhd(dist=d0,size=5) [[ 0.51031081] [-0.28961427] [-0.68342107] [ 0.69784371] [ 0.12248842]] Single distribution for multiple variables: - normal distribution, mean = 0, stdev = 1 >>> d1 = ss.norm(loc=0,scale=1) >>> print lhd(dist=d1,size=7,dims=5) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] Multiple distributions: - beta distribution, alpha = 2, beta = 5 - exponential distribution, lambda = 1.5 >>> d2 = ss.beta(2,5) >>> d3 = ss.expon(scale=1/1.5) >>> print lhd(dist=(d1,d2,d3),size=6) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] """ assert dims > 0, 'kwarg "dims" must be at least 1' if not size or not dist: return None def _lhs(x, samples=20): """ _lhs(x) returns a latin-hypercube matrix (each row is a different set of sample inputs) using a default sample size of 20 for each column of X. X must be a 2xN matrix that contains the lower and upper bounds of each column. The lower bound(s) should be in the first row and the upper bound(s) should be in the second row. _lhs(x,samples=N) uses the sample size of N instead of the default (20). Example: >>> x = np.array([[0,-1,3],[1,2,6]]) >>> print 'x:'; print x x: [[ 0 -1 3] [ 1 2 6]] >>> print 'lhs(x):'; print _lhs(x) lhs(x): [[ 0.02989122 -0.93918734 3.14432618] [ 0.08869833 -0.82140706 3.19875152] [ 0.10627442 -0.66999234 3.33814979] [ 0.15202861 -0.44157763 3.57036894] [ 0.2067089 -0.34845384 3.66930908] [ 0.26542056 -0.23706445 3.76361414] [ 0.34201421 -0.00779306 3.90818257] [ 0.37891646 0.15458423 4.15031708] [ 0.43501575 0.23561118 4.20320064] [ 0.4865449 0.36350601 4.45792314] [ 0.54804367 0.56069855 4.60911539] [ 0.59400712 0.7468415 4.69923486] [ 0.63708876 0.9159176 4.83611204] [ 0.68819855 0.98596354 4.97659182] [ 0.7368695 1.18923511 5.11135111] [ 0.78885724 1.28369441 5.2900157 ] [ 0.80966513 1.47415703 5.4081971 ] [ 0.86196731 1.57844205 5.61067689] [ 0.94784517 1.71823504 5.78021164] [ 0.96739728 1.94169017 5.88604772]] >>> print 'lhs(x,samples=5):'; print _lhs(x,samples=5) lhs(x,samples=5): [[ 0.1949127 -0.54124725 3.49238369] [ 0.21128576 -0.13439798 3.65652016] [ 0.47516308 0.39957406 4.5797308 ] [ 0.64400392 0.90890999 4.92379431] [ 0.96279472 1.79415307 5.52028238]] """ # determine the segment size segmentSize = 1.0 / samples # get the number of dimensions to sample (number of columns) numVars = x.shape[1] # populate each dimension out = np.zeros((samples, numVars)) pointValue = np.zeros(samples) for n in range(numVars): for i in range(samples): segmentMin = i * segmentSize point = segmentMin + (np.random.random() * segmentSize) pointValue[i] = (point * (x[1, n] - x[0, n])) + x[0, n] out[:, n] = pointValue # now randomly arrange the different segments return _mix(out) def _mix(data, dim="cols"): """ Takes a data matrix and mixes up the values along dim (either "rows" or "cols"). In other words, if dim='rows', then each row's data is mixed ONLY WITHIN ITSELF. Likewise, if dim='cols', then each column's data is mixed ONLY WITHIN ITSELF. """ data = np.atleast_2d(data) n = data.shape[0] if dim == "rows": data = data.T data_rank = list(range(n)) for i in range(data.shape[1]): new_data_rank = np.random.permutation(data_rank) vals, order = np.unique( np.hstack((data_rank, new_data_rank)), return_inverse=True ) old_order = order[:n] new_order = order[-n:] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] if dim == "rows": data = data.T return data if form is "randomized": if hasattr(dist, "__getitem__"): # if multiple distributions were input nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: # if a single distribution was input nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is "spacefilling": def euclid_distance(arr): n = arr.shape[0] ans = 0.0 for i in range(n - 1): for j in range(i + 1, n): d = np.sqrt( np.sum( [(arr[i, k] - arr[j, k]) ** 2 for k in range(arr.shape[1])] ) ) ans += 1.0 / d ** 2 return ans def fill_space(data): best = 1e8 for it in range(iterations): d = euclid_distance(data) if d < best: d_opt = d data_opt = data.copy() data = _mix(data) print("Optimized Distance:", d_opt) return data_opt if hasattr(dist, "__getitem__"): # if multiple distributions were input nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: # if a single distribution was input nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is "orthogonal": raise NotImplementedError( "Sorry. The orthogonal space-filling algorithm hasn't been implemented yet." ) else: raise ValueError('Invalid "form" value: %s' % (form)) if dist_data.shape[1] > 1: cor_matrix = np.zeros((nvars, nvars)) for i in range(nvars): for j in range(nvars): x_data = dist_data[:, i].copy() y_data = dist_data[:, j].copy() x_mean = x_data.mean() y_mean = y_data.mean() num = np.sum((x_data - x_mean) * (y_data - y_mean)) den = np.sqrt( np.sum((x_data - x_mean) ** 2) * np.sum((y_data - y_mean) ** 2) ) cor_matrix[i, j] = num / den cor_matrix[j, i] = num / den inv_cor_matrix = np.linalg.pinv(cor_matrix) VIF = np.max(np.diag(inv_cor_matrix)) if showcorrelations: print("Correlation Matrix:\n", cor_matrix) print("Inverted Correlation Matrix:\n", inv_cor_matrix) print("Variance Inflation Factor (VIF):", VIF) return dist_data
[ "def", "lhd", "(", "dist", "=", "None", ",", "size", "=", "None", ",", "dims", "=", "1", ",", "form", "=", "\"randomized\"", ",", "iterations", "=", "100", ",", "showcorrelations", "=", "False", ",", ")", ":", "assert", "dims", ">", "0", ",", "'kwarg \"dims\" must be at least 1'", "if", "not", "size", "or", "not", "dist", ":", "return", "None", "def", "_lhs", "(", "x", ",", "samples", "=", "20", ")", ":", "\"\"\"\n _lhs(x) returns a latin-hypercube matrix (each row is a different\n set of sample inputs) using a default sample size of 20 for each column\n of X. X must be a 2xN matrix that contains the lower and upper bounds of\n each column. The lower bound(s) should be in the first row and the upper\n bound(s) should be in the second row.\n \n _lhs(x,samples=N) uses the sample size of N instead of the default (20).\n \n Example:\n >>> x = np.array([[0,-1,3],[1,2,6]])\n >>> print 'x:'; print x\n x:\n [[ 0 -1 3]\n [ 1 2 6]]\n\n >>> print 'lhs(x):'; print _lhs(x)\n lhs(x):\n [[ 0.02989122 -0.93918734 3.14432618]\n [ 0.08869833 -0.82140706 3.19875152]\n [ 0.10627442 -0.66999234 3.33814979]\n [ 0.15202861 -0.44157763 3.57036894]\n [ 0.2067089 -0.34845384 3.66930908]\n [ 0.26542056 -0.23706445 3.76361414]\n [ 0.34201421 -0.00779306 3.90818257]\n [ 0.37891646 0.15458423 4.15031708]\n [ 0.43501575 0.23561118 4.20320064]\n [ 0.4865449 0.36350601 4.45792314]\n [ 0.54804367 0.56069855 4.60911539]\n [ 0.59400712 0.7468415 4.69923486]\n [ 0.63708876 0.9159176 4.83611204]\n [ 0.68819855 0.98596354 4.97659182]\n [ 0.7368695 1.18923511 5.11135111]\n [ 0.78885724 1.28369441 5.2900157 ]\n [ 0.80966513 1.47415703 5.4081971 ]\n [ 0.86196731 1.57844205 5.61067689]\n [ 0.94784517 1.71823504 5.78021164]\n [ 0.96739728 1.94169017 5.88604772]]\n\n >>> print 'lhs(x,samples=5):'; print _lhs(x,samples=5)\n lhs(x,samples=5):\n [[ 0.1949127 -0.54124725 3.49238369]\n [ 0.21128576 -0.13439798 3.65652016]\n [ 0.47516308 0.39957406 4.5797308 ]\n [ 0.64400392 0.90890999 4.92379431]\n [ 0.96279472 1.79415307 5.52028238]] \n \"\"\"", "# determine the segment size", "segmentSize", "=", "1.0", "/", "samples", "# get the number of dimensions to sample (number of columns)", "numVars", "=", "x", ".", "shape", "[", "1", "]", "# populate each dimension", "out", "=", "np", ".", "zeros", "(", "(", "samples", ",", "numVars", ")", ")", "pointValue", "=", "np", ".", "zeros", "(", "samples", ")", "for", "n", "in", "range", "(", "numVars", ")", ":", "for", "i", "in", "range", "(", "samples", ")", ":", "segmentMin", "=", "i", "*", "segmentSize", "point", "=", "segmentMin", "+", "(", "np", ".", "random", ".", "random", "(", ")", "*", "segmentSize", ")", "pointValue", "[", "i", "]", "=", "(", "point", "*", "(", "x", "[", "1", ",", "n", "]", "-", "x", "[", "0", ",", "n", "]", ")", ")", "+", "x", "[", "0", ",", "n", "]", "out", "[", ":", ",", "n", "]", "=", "pointValue", "# now randomly arrange the different segments", "return", "_mix", "(", "out", ")", "def", "_mix", "(", "data", ",", "dim", "=", "\"cols\"", ")", ":", "\"\"\"\n Takes a data matrix and mixes up the values along dim (either \"rows\" or \n \"cols\"). In other words, if dim='rows', then each row's data is mixed\n ONLY WITHIN ITSELF. Likewise, if dim='cols', then each column's data is\n mixed ONLY WITHIN ITSELF.\n \"\"\"", "data", "=", "np", ".", "atleast_2d", "(", "data", ")", "n", "=", "data", ".", "shape", "[", "0", "]", "if", "dim", "==", "\"rows\"", ":", "data", "=", "data", ".", "T", "data_rank", "=", "list", "(", "range", "(", "n", ")", ")", "for", "i", "in", "range", "(", "data", ".", "shape", "[", "1", "]", ")", ":", "new_data_rank", "=", "np", ".", "random", ".", "permutation", "(", "data_rank", ")", "vals", ",", "order", "=", "np", ".", "unique", "(", "np", ".", "hstack", "(", "(", "data_rank", ",", "new_data_rank", ")", ")", ",", "return_inverse", "=", "True", ")", "old_order", "=", "order", "[", ":", "n", "]", "new_order", "=", "order", "[", "-", "n", ":", "]", "tmp", "=", "data", "[", "np", ".", "argsort", "(", "old_order", ")", ",", "i", "]", "[", "new_order", "]", "data", "[", ":", ",", "i", "]", "=", "tmp", "[", ":", "]", "if", "dim", "==", "\"rows\"", ":", "data", "=", "data", ".", "T", "return", "data", "if", "form", "is", "\"randomized\"", ":", "if", "hasattr", "(", "dist", ",", "\"__getitem__\"", ")", ":", "# if multiple distributions were input", "nvars", "=", "len", "(", "dist", ")", "x", "=", "np", ".", "vstack", "(", "(", "np", ".", "zeros", "(", "nvars", ")", ",", "np", ".", "ones", "(", "nvars", ")", ")", ")", "unif_data", "=", "_lhs", "(", "x", ",", "samples", "=", "size", ")", "dist_data", "=", "np", ".", "empty_like", "(", "unif_data", ")", "for", "i", ",", "d", "in", "enumerate", "(", "dist", ")", ":", "dist_data", "[", ":", ",", "i", "]", "=", "d", ".", "ppf", "(", "unif_data", "[", ":", ",", "i", "]", ")", "else", ":", "# if a single distribution was input", "nvars", "=", "dims", "x", "=", "np", ".", "vstack", "(", "(", "np", ".", "zeros", "(", "nvars", ")", ",", "np", ".", "ones", "(", "nvars", ")", ")", ")", "unif_data", "=", "_lhs", "(", "x", ",", "samples", "=", "size", ")", "dist_data", "=", "np", ".", "empty_like", "(", "unif_data", ")", "for", "i", "in", "range", "(", "nvars", ")", ":", "dist_data", "[", ":", ",", "i", "]", "=", "dist", ".", "ppf", "(", "unif_data", "[", ":", ",", "i", "]", ")", "elif", "form", "is", "\"spacefilling\"", ":", "def", "euclid_distance", "(", "arr", ")", ":", "n", "=", "arr", ".", "shape", "[", "0", "]", "ans", "=", "0.0", "for", "i", "in", "range", "(", "n", "-", "1", ")", ":", "for", "j", "in", "range", "(", "i", "+", "1", ",", "n", ")", ":", "d", "=", "np", ".", "sqrt", "(", "np", ".", "sum", "(", "[", "(", "arr", "[", "i", ",", "k", "]", "-", "arr", "[", "j", ",", "k", "]", ")", "**", "2", "for", "k", "in", "range", "(", "arr", ".", "shape", "[", "1", "]", ")", "]", ")", ")", "ans", "+=", "1.0", "/", "d", "**", "2", "return", "ans", "def", "fill_space", "(", "data", ")", ":", "best", "=", "1e8", "for", "it", "in", "range", "(", "iterations", ")", ":", "d", "=", "euclid_distance", "(", "data", ")", "if", "d", "<", "best", ":", "d_opt", "=", "d", "data_opt", "=", "data", ".", "copy", "(", ")", "data", "=", "_mix", "(", "data", ")", "print", "(", "\"Optimized Distance:\"", ",", "d_opt", ")", "return", "data_opt", "if", "hasattr", "(", "dist", ",", "\"__getitem__\"", ")", ":", "# if multiple distributions were input", "nvars", "=", "len", "(", "dist", ")", "x", "=", "np", ".", "vstack", "(", "(", "np", ".", "zeros", "(", "nvars", ")", ",", "np", ".", "ones", "(", "nvars", ")", ")", ")", "unif_data", "=", "fill_space", "(", "_lhs", "(", "x", ",", "samples", "=", "size", ")", ")", "dist_data", "=", "np", ".", "empty_like", "(", "unif_data", ")", "for", "i", ",", "d", "in", "enumerate", "(", "dist", ")", ":", "dist_data", "[", ":", ",", "i", "]", "=", "d", ".", "ppf", "(", "unif_data", "[", ":", ",", "i", "]", ")", "else", ":", "# if a single distribution was input", "nvars", "=", "dims", "x", "=", "np", ".", "vstack", "(", "(", "np", ".", "zeros", "(", "nvars", ")", ",", "np", ".", "ones", "(", "nvars", ")", ")", ")", "unif_data", "=", "fill_space", "(", "_lhs", "(", "x", ",", "samples", "=", "size", ")", ")", "dist_data", "=", "np", ".", "empty_like", "(", "unif_data", ")", "for", "i", "in", "range", "(", "nvars", ")", ":", "dist_data", "[", ":", ",", "i", "]", "=", "dist", ".", "ppf", "(", "unif_data", "[", ":", ",", "i", "]", ")", "elif", "form", "is", "\"orthogonal\"", ":", "raise", "NotImplementedError", "(", "\"Sorry. The orthogonal space-filling algorithm hasn't been implemented yet.\"", ")", "else", ":", "raise", "ValueError", "(", "'Invalid \"form\" value: %s'", "%", "(", "form", ")", ")", "if", "dist_data", ".", "shape", "[", "1", "]", ">", "1", ":", "cor_matrix", "=", "np", ".", "zeros", "(", "(", "nvars", ",", "nvars", ")", ")", "for", "i", "in", "range", "(", "nvars", ")", ":", "for", "j", "in", "range", "(", "nvars", ")", ":", "x_data", "=", "dist_data", "[", ":", ",", "i", "]", ".", "copy", "(", ")", "y_data", "=", "dist_data", "[", ":", ",", "j", "]", ".", "copy", "(", ")", "x_mean", "=", "x_data", ".", "mean", "(", ")", "y_mean", "=", "y_data", ".", "mean", "(", ")", "num", "=", "np", ".", "sum", "(", "(", "x_data", "-", "x_mean", ")", "*", "(", "y_data", "-", "y_mean", ")", ")", "den", "=", "np", ".", "sqrt", "(", "np", ".", "sum", "(", "(", "x_data", "-", "x_mean", ")", "**", "2", ")", "*", "np", ".", "sum", "(", "(", "y_data", "-", "y_mean", ")", "**", "2", ")", ")", "cor_matrix", "[", "i", ",", "j", "]", "=", "num", "/", "den", "cor_matrix", "[", "j", ",", "i", "]", "=", "num", "/", "den", "inv_cor_matrix", "=", "np", ".", "linalg", ".", "pinv", "(", "cor_matrix", ")", "VIF", "=", "np", ".", "max", "(", "np", ".", "diag", "(", "inv_cor_matrix", ")", ")", "if", "showcorrelations", ":", "print", "(", "\"Correlation Matrix:\\n\"", ",", "cor_matrix", ")", "print", "(", "\"Inverted Correlation Matrix:\\n\"", ",", "inv_cor_matrix", ")", "print", "(", "\"Variance Inflation Factor (VIF):\"", ",", "VIF", ")", "return", "dist_data" ]
Create a Latin-Hypercube sample design based on distributions defined in the `scipy.stats` module Parameters ---------- dist: array_like frozen scipy.stats.rv_continuous or rv_discrete distribution objects that are defined previous to calling LHD size: int integer value for the number of samples to generate for each distribution object dims: int, optional if dist is a single distribution object, and dims > 1, the one distribution will be used to generate a size-by-dims sampled design form: str, optional (non-functional at the moment) determines how the sampling is to occur, with the following optional values: - 'randomized' - completely randomized sampling - 'spacefilling' - space-filling sampling (generally gives a more accurate sampling of the design when the number of sample points is small) - 'orthogonal' - balanced space-filling sampling (experimental) The 'spacefilling' and 'orthogonal' forms require some iterations to determine the optimal sampling pattern. iterations: int, optional (non-functional at the moment) used to control the number of allowable search iterations for generating 'spacefilling' and 'orthogonal' designs Returns ------- out: 2d-array, A 2d-array where each column corresponds to each input distribution and each row is a sample in the design Examples -------- Single distribution: - uniform distribution, low = -1, width = 2 >>> import scipy.stats as ss >>> d0 = ss.uniform(loc=-1,scale=2) >>> print lhd(dist=d0,size=5) [[ 0.51031081] [-0.28961427] [-0.68342107] [ 0.69784371] [ 0.12248842]] Single distribution for multiple variables: - normal distribution, mean = 0, stdev = 1 >>> d1 = ss.norm(loc=0,scale=1) >>> print lhd(dist=d1,size=7,dims=5) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]] Multiple distributions: - beta distribution, alpha = 2, beta = 5 - exponential distribution, lambda = 1.5 >>> d2 = ss.beta(2,5) >>> d3 = ss.expon(scale=1/1.5) >>> print lhd(dist=(d1,d2,d3),size=6) [[-0.8612785 0.23034412 0.21808001] [ 0.0455778 0.07001606 0.31586419] [-0.978553 0.30394663 0.78483995] [-0.26415983 0.15235896 0.51462024] [ 0.80805686 0.38891031 0.02076505] [ 1.63028931 0.52104917 1.48016008]]
[ "Create", "a", "Latin", "-", "Hypercube", "sample", "design", "based", "on", "distributions", "defined", "in", "the", "scipy", ".", "stats", "module", "Parameters", "----------", "dist", ":", "array_like", "frozen", "scipy", ".", "stats", ".", "rv_continuous", "or", "rv_discrete", "distribution", "objects", "that", "are", "defined", "previous", "to", "calling", "LHD" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/lhd.py#L5-L286
tisimst/mcerp
mcerp/__init__.py
to_uncertain_func
def to_uncertain_func(x): """ Transforms x into an UncertainFunction-compatible object, unless it is already an UncertainFunction (in which case x is returned unchanged). Raises an exception unless 'x' belongs to some specific classes of objects that are known not to depend on UncertainFunction objects (which then cannot be considered as constants). """ if isinstance(x, UncertainFunction): return x # ! In Python 2.6+, numbers.Number could be used instead, here: elif isinstance(x, CONSTANT_TYPES): # No variable => no derivative to define: return UncertainFunction([x] * npts) raise NotUpcast("%s cannot be converted to a number with" " uncertainty" % type(x))
python
def to_uncertain_func(x): """ Transforms x into an UncertainFunction-compatible object, unless it is already an UncertainFunction (in which case x is returned unchanged). Raises an exception unless 'x' belongs to some specific classes of objects that are known not to depend on UncertainFunction objects (which then cannot be considered as constants). """ if isinstance(x, UncertainFunction): return x # ! In Python 2.6+, numbers.Number could be used instead, here: elif isinstance(x, CONSTANT_TYPES): # No variable => no derivative to define: return UncertainFunction([x] * npts) raise NotUpcast("%s cannot be converted to a number with" " uncertainty" % type(x))
[ "def", "to_uncertain_func", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "UncertainFunction", ")", ":", "return", "x", "# ! In Python 2.6+, numbers.Number could be used instead, here:", "elif", "isinstance", "(", "x", ",", "CONSTANT_TYPES", ")", ":", "# No variable => no derivative to define:", "return", "UncertainFunction", "(", "[", "x", "]", "*", "npts", ")", "raise", "NotUpcast", "(", "\"%s cannot be converted to a number with\"", "\" uncertainty\"", "%", "type", "(", "x", ")", ")" ]
Transforms x into an UncertainFunction-compatible object, unless it is already an UncertainFunction (in which case x is returned unchanged). Raises an exception unless 'x' belongs to some specific classes of objects that are known not to depend on UncertainFunction objects (which then cannot be considered as constants).
[ "Transforms", "x", "into", "an", "UncertainFunction", "-", "compatible", "object", "unless", "it", "is", "already", "an", "UncertainFunction", "(", "in", "which", "case", "x", "is", "returned", "unchanged", ")", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L31-L49
tisimst/mcerp
mcerp/__init__.py
Beta
def Beta(alpha, beta, low=0, high=1, tag=None): """ A Beta random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter Optional -------- low : scalar Lower bound of the distribution support (default=0) high : scalar Upper bound of the distribution support (default=1) """ assert ( alpha > 0 and beta > 0 ), 'Beta "alpha" and "beta" parameters must be greater than zero' assert low < high, 'Beta "low" must be less than "high"' return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)
python
def Beta(alpha, beta, low=0, high=1, tag=None): """ A Beta random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter Optional -------- low : scalar Lower bound of the distribution support (default=0) high : scalar Upper bound of the distribution support (default=1) """ assert ( alpha > 0 and beta > 0 ), 'Beta "alpha" and "beta" parameters must be greater than zero' assert low < high, 'Beta "low" must be less than "high"' return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)
[ "def", "Beta", "(", "alpha", ",", "beta", ",", "low", "=", "0", ",", "high", "=", "1", ",", "tag", "=", "None", ")", ":", "assert", "(", "alpha", ">", "0", "and", "beta", ">", "0", ")", ",", "'Beta \"alpha\" and \"beta\" parameters must be greater than zero'", "assert", "low", "<", "high", ",", "'Beta \"low\" must be less than \"high\"'", "return", "uv", "(", "ss", ".", "beta", "(", "alpha", ",", "beta", ",", "loc", "=", "low", ",", "scale", "=", "high", "-", "low", ")", ",", "tag", "=", "tag", ")" ]
A Beta random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter Optional -------- low : scalar Lower bound of the distribution support (default=0) high : scalar Upper bound of the distribution support (default=1)
[ "A", "Beta", "random", "variate", "Parameters", "----------", "alpha", ":", "scalar", "The", "first", "shape", "parameter", "beta", ":", "scalar", "The", "second", "shape", "parameter", "Optional", "--------", "low", ":", "scalar", "Lower", "bound", "of", "the", "distribution", "support", "(", "default", "=", "0", ")", "high", ":", "scalar", "Upper", "bound", "of", "the", "distribution", "support", "(", "default", "=", "1", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L721-L743
tisimst/mcerp
mcerp/__init__.py
BetaPrime
def BetaPrime(alpha, beta, tag=None): """ A BetaPrime random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter """ assert ( alpha > 0 and beta > 0 ), 'BetaPrime "alpha" and "beta" parameters must be greater than zero' x = Beta(alpha, beta, tag) return x / (1 - x)
python
def BetaPrime(alpha, beta, tag=None): """ A BetaPrime random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter """ assert ( alpha > 0 and beta > 0 ), 'BetaPrime "alpha" and "beta" parameters must be greater than zero' x = Beta(alpha, beta, tag) return x / (1 - x)
[ "def", "BetaPrime", "(", "alpha", ",", "beta", ",", "tag", "=", "None", ")", ":", "assert", "(", "alpha", ">", "0", "and", "beta", ">", "0", ")", ",", "'BetaPrime \"alpha\" and \"beta\" parameters must be greater than zero'", "x", "=", "Beta", "(", "alpha", ",", "beta", ",", "tag", ")", "return", "x", "/", "(", "1", "-", "x", ")" ]
A BetaPrime random variate Parameters ---------- alpha : scalar The first shape parameter beta : scalar The second shape parameter
[ "A", "BetaPrime", "random", "variate", "Parameters", "----------", "alpha", ":", "scalar", "The", "first", "shape", "parameter", "beta", ":", "scalar", "The", "second", "shape", "parameter" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L746-L762
tisimst/mcerp
mcerp/__init__.py
Bradford
def Bradford(q, low=0, high=1, tag=None): """ A Bradford random variate Parameters ---------- q : scalar The shape parameter low : scalar The lower bound of the distribution (default=0) high : scalar The upper bound of the distribution (default=1) """ assert q > 0, 'Bradford "q" parameter must be greater than zero' assert low < high, 'Bradford "low" parameter must be less than "high"' return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)
python
def Bradford(q, low=0, high=1, tag=None): """ A Bradford random variate Parameters ---------- q : scalar The shape parameter low : scalar The lower bound of the distribution (default=0) high : scalar The upper bound of the distribution (default=1) """ assert q > 0, 'Bradford "q" parameter must be greater than zero' assert low < high, 'Bradford "low" parameter must be less than "high"' return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)
[ "def", "Bradford", "(", "q", ",", "low", "=", "0", ",", "high", "=", "1", ",", "tag", "=", "None", ")", ":", "assert", "q", ">", "0", ",", "'Bradford \"q\" parameter must be greater than zero'", "assert", "low", "<", "high", ",", "'Bradford \"low\" parameter must be less than \"high\"'", "return", "uv", "(", "ss", ".", "bradford", "(", "q", ",", "loc", "=", "low", ",", "scale", "=", "high", "-", "low", ")", ",", "tag", "=", "tag", ")" ]
A Bradford random variate Parameters ---------- q : scalar The shape parameter low : scalar The lower bound of the distribution (default=0) high : scalar The upper bound of the distribution (default=1)
[ "A", "Bradford", "random", "variate", "Parameters", "----------", "q", ":", "scalar", "The", "shape", "parameter", "low", ":", "scalar", "The", "lower", "bound", "of", "the", "distribution", "(", "default", "=", "0", ")", "high", ":", "scalar", "The", "upper", "bound", "of", "the", "distribution", "(", "default", "=", "1", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L765-L780
tisimst/mcerp
mcerp/__init__.py
Burr
def Burr(c, k, tag=None): """ A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter """ assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero' return uv(ss.burr(c, k), tag=tag)
python
def Burr(c, k, tag=None): """ A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter """ assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero' return uv(ss.burr(c, k), tag=tag)
[ "def", "Burr", "(", "c", ",", "k", ",", "tag", "=", "None", ")", ":", "assert", "c", ">", "0", "and", "k", ">", "0", ",", "'Burr \"c\" and \"k\" parameters must be greater than zero'", "return", "uv", "(", "ss", ".", "burr", "(", "c", ",", "k", ")", ",", "tag", "=", "tag", ")" ]
A Burr random variate Parameters ---------- c : scalar The first shape parameter k : scalar The second shape parameter
[ "A", "Burr", "random", "variate", "Parameters", "----------", "c", ":", "scalar", "The", "first", "shape", "parameter", "k", ":", "scalar", "The", "second", "shape", "parameter" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L783-L796
tisimst/mcerp
mcerp/__init__.py
ChiSquared
def ChiSquared(k, tag=None): """ A Chi-Squared random variate Parameters ---------- k : int The degrees of freedom of the distribution (must be greater than one) """ assert int(k) == k and k >= 1, 'Chi-Squared "k" must be an integer greater than 0' return uv(ss.chi2(k), tag=tag)
python
def ChiSquared(k, tag=None): """ A Chi-Squared random variate Parameters ---------- k : int The degrees of freedom of the distribution (must be greater than one) """ assert int(k) == k and k >= 1, 'Chi-Squared "k" must be an integer greater than 0' return uv(ss.chi2(k), tag=tag)
[ "def", "ChiSquared", "(", "k", ",", "tag", "=", "None", ")", ":", "assert", "int", "(", "k", ")", "==", "k", "and", "k", ">=", "1", ",", "'Chi-Squared \"k\" must be an integer greater than 0'", "return", "uv", "(", "ss", ".", "chi2", "(", "k", ")", ",", "tag", "=", "tag", ")" ]
A Chi-Squared random variate Parameters ---------- k : int The degrees of freedom of the distribution (must be greater than one)
[ "A", "Chi", "-", "Squared", "random", "variate", "Parameters", "----------", "k", ":", "int", "The", "degrees", "of", "freedom", "of", "the", "distribution", "(", "must", "be", "greater", "than", "one", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L799-L809
tisimst/mcerp
mcerp/__init__.py
Erlang
def Erlang(k, lamda, tag=None): """ An Erlang random variate. This distribution is the same as a Gamma(k, theta) distribution, but with the restriction that k must be a positive integer. This is provided for greater compatibility with other simulation tools, but provides no advantage over the Gamma distribution in its applications. Parameters ---------- k : int The shape parameter (must be a positive integer) lamda : scalar The scale parameter (must be greater than zero) """ assert int(k) == k and k > 0, 'Erlang "k" must be a positive integer' assert lamda > 0, 'Erlang "lamda" must be greater than zero' return Gamma(k, lamda, tag)
python
def Erlang(k, lamda, tag=None): """ An Erlang random variate. This distribution is the same as a Gamma(k, theta) distribution, but with the restriction that k must be a positive integer. This is provided for greater compatibility with other simulation tools, but provides no advantage over the Gamma distribution in its applications. Parameters ---------- k : int The shape parameter (must be a positive integer) lamda : scalar The scale parameter (must be greater than zero) """ assert int(k) == k and k > 0, 'Erlang "k" must be a positive integer' assert lamda > 0, 'Erlang "lamda" must be greater than zero' return Gamma(k, lamda, tag)
[ "def", "Erlang", "(", "k", ",", "lamda", ",", "tag", "=", "None", ")", ":", "assert", "int", "(", "k", ")", "==", "k", "and", "k", ">", "0", ",", "'Erlang \"k\" must be a positive integer'", "assert", "lamda", ">", "0", ",", "'Erlang \"lamda\" must be greater than zero'", "return", "Gamma", "(", "k", ",", "lamda", ",", "tag", ")" ]
An Erlang random variate. This distribution is the same as a Gamma(k, theta) distribution, but with the restriction that k must be a positive integer. This is provided for greater compatibility with other simulation tools, but provides no advantage over the Gamma distribution in its applications. Parameters ---------- k : int The shape parameter (must be a positive integer) lamda : scalar The scale parameter (must be greater than zero)
[ "An", "Erlang", "random", "variate", ".", "This", "distribution", "is", "the", "same", "as", "a", "Gamma", "(", "k", "theta", ")", "distribution", "but", "with", "the", "restriction", "that", "k", "must", "be", "a", "positive", "integer", ".", "This", "is", "provided", "for", "greater", "compatibility", "with", "other", "simulation", "tools", "but", "provides", "no", "advantage", "over", "the", "Gamma", "distribution", "in", "its", "applications", ".", "Parameters", "----------", "k", ":", "int", "The", "shape", "parameter", "(", "must", "be", "a", "positive", "integer", ")", "lamda", ":", "scalar", "The", "scale", "parameter", "(", "must", "be", "greater", "than", "zero", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L832-L850
tisimst/mcerp
mcerp/__init__.py
Exponential
def Exponential(lamda, tag=None): """ An Exponential random variate Parameters ---------- lamda : scalar The inverse scale (as shown on Wikipedia). (FYI: mu = 1/lamda.) """ assert lamda > 0, 'Exponential "lamda" must be greater than zero' return uv(ss.expon(scale=1.0 / lamda), tag=tag)
python
def Exponential(lamda, tag=None): """ An Exponential random variate Parameters ---------- lamda : scalar The inverse scale (as shown on Wikipedia). (FYI: mu = 1/lamda.) """ assert lamda > 0, 'Exponential "lamda" must be greater than zero' return uv(ss.expon(scale=1.0 / lamda), tag=tag)
[ "def", "Exponential", "(", "lamda", ",", "tag", "=", "None", ")", ":", "assert", "lamda", ">", "0", ",", "'Exponential \"lamda\" must be greater than zero'", "return", "uv", "(", "ss", ".", "expon", "(", "scale", "=", "1.0", "/", "lamda", ")", ",", "tag", "=", "tag", ")" ]
An Exponential random variate Parameters ---------- lamda : scalar The inverse scale (as shown on Wikipedia). (FYI: mu = 1/lamda.)
[ "An", "Exponential", "random", "variate", "Parameters", "----------", "lamda", ":", "scalar", "The", "inverse", "scale", "(", "as", "shown", "on", "Wikipedia", ")", ".", "(", "FYI", ":", "mu", "=", "1", "/", "lamda", ".", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L853-L863
tisimst/mcerp
mcerp/__init__.py
ExtValueMax
def ExtValueMax(mu, sigma, tag=None): """ An Extreme Value Maximum random variate. Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be greater than zero) """ assert sigma > 0, 'ExtremeValueMax "sigma" must be greater than zero' p = U(0, 1)._mcpts[:] return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)
python
def ExtValueMax(mu, sigma, tag=None): """ An Extreme Value Maximum random variate. Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be greater than zero) """ assert sigma > 0, 'ExtremeValueMax "sigma" must be greater than zero' p = U(0, 1)._mcpts[:] return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)
[ "def", "ExtValueMax", "(", "mu", ",", "sigma", ",", "tag", "=", "None", ")", ":", "assert", "sigma", ">", "0", ",", "'ExtremeValueMax \"sigma\" must be greater than zero'", "p", "=", "U", "(", "0", ",", "1", ")", ".", "_mcpts", "[", ":", "]", "return", "UncertainFunction", "(", "mu", "-", "sigma", "*", "np", ".", "log", "(", "-", "np", ".", "log", "(", "p", ")", ")", ",", "tag", "=", "tag", ")" ]
An Extreme Value Maximum random variate. Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be greater than zero)
[ "An", "Extreme", "Value", "Maximum", "random", "variate", ".", "Parameters", "----------", "mu", ":", "scalar", "The", "location", "parameter", "sigma", ":", "scalar", "The", "scale", "parameter", "(", "must", "be", "greater", "than", "zero", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L869-L882
tisimst/mcerp
mcerp/__init__.py
Fisher
def Fisher(d1, d2, tag=None): """ An F (fisher) random variate Parameters ---------- d1 : int Numerator degrees of freedom d2 : int Denominator degrees of freedom """ assert ( int(d1) == d1 and d1 >= 1 ), 'Fisher (F) "d1" must be an integer greater than 0' assert ( int(d2) == d2 and d2 >= 1 ), 'Fisher (F) "d2" must be an integer greater than 0' return uv(ss.f(d1, d2), tag=tag)
python
def Fisher(d1, d2, tag=None): """ An F (fisher) random variate Parameters ---------- d1 : int Numerator degrees of freedom d2 : int Denominator degrees of freedom """ assert ( int(d1) == d1 and d1 >= 1 ), 'Fisher (F) "d1" must be an integer greater than 0' assert ( int(d2) == d2 and d2 >= 1 ), 'Fisher (F) "d2" must be an integer greater than 0' return uv(ss.f(d1, d2), tag=tag)
[ "def", "Fisher", "(", "d1", ",", "d2", ",", "tag", "=", "None", ")", ":", "assert", "(", "int", "(", "d1", ")", "==", "d1", "and", "d1", ">=", "1", ")", ",", "'Fisher (F) \"d1\" must be an integer greater than 0'", "assert", "(", "int", "(", "d2", ")", "==", "d2", "and", "d2", ">=", "1", ")", ",", "'Fisher (F) \"d2\" must be an integer greater than 0'", "return", "uv", "(", "ss", ".", "f", "(", "d1", ",", "d2", ")", ",", "tag", "=", "tag", ")" ]
An F (fisher) random variate Parameters ---------- d1 : int Numerator degrees of freedom d2 : int Denominator degrees of freedom
[ "An", "F", "(", "fisher", ")", "random", "variate", "Parameters", "----------", "d1", ":", "int", "Numerator", "degrees", "of", "freedom", "d2", ":", "int", "Denominator", "degrees", "of", "freedom" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L907-L924
tisimst/mcerp
mcerp/__init__.py
Gamma
def Gamma(k, theta, tag=None): """ A Gamma random variate Parameters ---------- k : scalar The shape parameter (must be positive and non-zero) theta : scalar The scale parameter (must be positive and non-zero) """ assert ( k > 0 and theta > 0 ), 'Gamma "k" and "theta" parameters must be greater than zero' return uv(ss.gamma(k, scale=theta), tag=tag)
python
def Gamma(k, theta, tag=None): """ A Gamma random variate Parameters ---------- k : scalar The shape parameter (must be positive and non-zero) theta : scalar The scale parameter (must be positive and non-zero) """ assert ( k > 0 and theta > 0 ), 'Gamma "k" and "theta" parameters must be greater than zero' return uv(ss.gamma(k, scale=theta), tag=tag)
[ "def", "Gamma", "(", "k", ",", "theta", ",", "tag", "=", "None", ")", ":", "assert", "(", "k", ">", "0", "and", "theta", ">", "0", ")", ",", "'Gamma \"k\" and \"theta\" parameters must be greater than zero'", "return", "uv", "(", "ss", ".", "gamma", "(", "k", ",", "scale", "=", "theta", ")", ",", "tag", "=", "tag", ")" ]
A Gamma random variate Parameters ---------- k : scalar The shape parameter (must be positive and non-zero) theta : scalar The scale parameter (must be positive and non-zero)
[ "A", "Gamma", "random", "variate", "Parameters", "----------", "k", ":", "scalar", "The", "shape", "parameter", "(", "must", "be", "positive", "and", "non", "-", "zero", ")", "theta", ":", "scalar", "The", "scale", "parameter", "(", "must", "be", "positive", "and", "non", "-", "zero", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L930-L944
tisimst/mcerp
mcerp/__init__.py
LogNormal
def LogNormal(mu, sigma, tag=None): """ A Log-Normal random variate Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be positive and non-zero) """ assert sigma > 0, 'Log-Normal "sigma" must be positive' return uv(ss.lognorm(sigma, loc=mu), tag=tag)
python
def LogNormal(mu, sigma, tag=None): """ A Log-Normal random variate Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be positive and non-zero) """ assert sigma > 0, 'Log-Normal "sigma" must be positive' return uv(ss.lognorm(sigma, loc=mu), tag=tag)
[ "def", "LogNormal", "(", "mu", ",", "sigma", ",", "tag", "=", "None", ")", ":", "assert", "sigma", ">", "0", ",", "'Log-Normal \"sigma\" must be positive'", "return", "uv", "(", "ss", ".", "lognorm", "(", "sigma", ",", "loc", "=", "mu", ")", ",", "tag", "=", "tag", ")" ]
A Log-Normal random variate Parameters ---------- mu : scalar The location parameter sigma : scalar The scale parameter (must be positive and non-zero)
[ "A", "Log", "-", "Normal", "random", "variate", "Parameters", "----------", "mu", ":", "scalar", "The", "location", "parameter", "sigma", ":", "scalar", "The", "scale", "parameter", "(", "must", "be", "positive", "and", "non", "-", "zero", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L947-L959
tisimst/mcerp
mcerp/__init__.py
Normal
def Normal(mu, sigma, tag=None): """ A Normal (or Gaussian) random variate Parameters ---------- mu : scalar The mean value of the distribution sigma : scalar The standard deviation (must be positive and non-zero) """ assert sigma > 0, 'Normal "sigma" must be greater than zero' return uv(ss.norm(loc=mu, scale=sigma), tag=tag)
python
def Normal(mu, sigma, tag=None): """ A Normal (or Gaussian) random variate Parameters ---------- mu : scalar The mean value of the distribution sigma : scalar The standard deviation (must be positive and non-zero) """ assert sigma > 0, 'Normal "sigma" must be greater than zero' return uv(ss.norm(loc=mu, scale=sigma), tag=tag)
[ "def", "Normal", "(", "mu", ",", "sigma", ",", "tag", "=", "None", ")", ":", "assert", "sigma", ">", "0", ",", "'Normal \"sigma\" must be greater than zero'", "return", "uv", "(", "ss", ".", "norm", "(", "loc", "=", "mu", ",", "scale", "=", "sigma", ")", ",", "tag", "=", "tag", ")" ]
A Normal (or Gaussian) random variate Parameters ---------- mu : scalar The mean value of the distribution sigma : scalar The standard deviation (must be positive and non-zero)
[ "A", "Normal", "(", "or", "Gaussian", ")", "random", "variate", "Parameters", "----------", "mu", ":", "scalar", "The", "mean", "value", "of", "the", "distribution", "sigma", ":", "scalar", "The", "standard", "deviation", "(", "must", "be", "positive", "and", "non", "-", "zero", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L965-L977
tisimst/mcerp
mcerp/__init__.py
Pareto
def Pareto(q, a, tag=None): """ A Pareto random variate (first kind) Parameters ---------- q : scalar The scale parameter a : scalar The shape parameter (the minimum possible value) """ assert q > 0 and a > 0, 'Pareto "q" and "a" must be positive scalars' p = Uniform(0, 1, tag) return a * (1 - p) ** (-1.0 / q)
python
def Pareto(q, a, tag=None): """ A Pareto random variate (first kind) Parameters ---------- q : scalar The scale parameter a : scalar The shape parameter (the minimum possible value) """ assert q > 0 and a > 0, 'Pareto "q" and "a" must be positive scalars' p = Uniform(0, 1, tag) return a * (1 - p) ** (-1.0 / q)
[ "def", "Pareto", "(", "q", ",", "a", ",", "tag", "=", "None", ")", ":", "assert", "q", ">", "0", "and", "a", ">", "0", ",", "'Pareto \"q\" and \"a\" must be positive scalars'", "p", "=", "Uniform", "(", "0", ",", "1", ",", "tag", ")", "return", "a", "*", "(", "1", "-", "p", ")", "**", "(", "-", "1.0", "/", "q", ")" ]
A Pareto random variate (first kind) Parameters ---------- q : scalar The scale parameter a : scalar The shape parameter (the minimum possible value)
[ "A", "Pareto", "random", "variate", "(", "first", "kind", ")", "Parameters", "----------", "q", ":", "scalar", "The", "scale", "parameter", "a", ":", "scalar", "The", "shape", "parameter", "(", "the", "minimum", "possible", "value", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L983-L996
tisimst/mcerp
mcerp/__init__.py
Pareto2
def Pareto2(q, b, tag=None): """ A Pareto random variate (second kind). This form always starts at the origin. Parameters ---------- q : scalar The scale parameter b : scalar The shape parameter """ assert q > 0 and b > 0, 'Pareto2 "q" and "b" must be positive scalars' return Pareto(q, b, tag) - b
python
def Pareto2(q, b, tag=None): """ A Pareto random variate (second kind). This form always starts at the origin. Parameters ---------- q : scalar The scale parameter b : scalar The shape parameter """ assert q > 0 and b > 0, 'Pareto2 "q" and "b" must be positive scalars' return Pareto(q, b, tag) - b
[ "def", "Pareto2", "(", "q", ",", "b", ",", "tag", "=", "None", ")", ":", "assert", "q", ">", "0", "and", "b", ">", "0", ",", "'Pareto2 \"q\" and \"b\" must be positive scalars'", "return", "Pareto", "(", "q", ",", "b", ",", "tag", ")", "-", "b" ]
A Pareto random variate (second kind). This form always starts at the origin. Parameters ---------- q : scalar The scale parameter b : scalar The shape parameter
[ "A", "Pareto", "random", "variate", "(", "second", "kind", ")", ".", "This", "form", "always", "starts", "at", "the", "origin", ".", "Parameters", "----------", "q", ":", "scalar", "The", "scale", "parameter", "b", ":", "scalar", "The", "shape", "parameter" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L999-L1012
tisimst/mcerp
mcerp/__init__.py
PERT
def PERT(low, peak, high, g=4.0, tag=None): """ A PERT random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the distribution's peak (low <= peak <= high) high : scalar Upper bound of the distribution support Optional -------- g : scalar Controls the uncertainty of the distribution around the peak. Smaller values make the distribution flatter and more uncertain around the peak while larger values make it focused and less uncertain around the peak. (Default: 4) """ a, b, c = [float(x) for x in [low, peak, high]] assert a <= b <= c, 'PERT "peak" must be greater than "low" and less than "high"' assert g >= 0, 'PERT "g" must be non-negative' mu = (a + g * b + c) / (g + 2) if mu == b: a1 = a2 = 3.0 else: a1 = ((mu - a) * (2 * b - a - c)) / ((b - mu) * (c - a)) a2 = a1 * (c - mu) / (mu - a) return Beta(a1, a2, a, c, tag)
python
def PERT(low, peak, high, g=4.0, tag=None): """ A PERT random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the distribution's peak (low <= peak <= high) high : scalar Upper bound of the distribution support Optional -------- g : scalar Controls the uncertainty of the distribution around the peak. Smaller values make the distribution flatter and more uncertain around the peak while larger values make it focused and less uncertain around the peak. (Default: 4) """ a, b, c = [float(x) for x in [low, peak, high]] assert a <= b <= c, 'PERT "peak" must be greater than "low" and less than "high"' assert g >= 0, 'PERT "g" must be non-negative' mu = (a + g * b + c) / (g + 2) if mu == b: a1 = a2 = 3.0 else: a1 = ((mu - a) * (2 * b - a - c)) / ((b - mu) * (c - a)) a2 = a1 * (c - mu) / (mu - a) return Beta(a1, a2, a, c, tag)
[ "def", "PERT", "(", "low", ",", "peak", ",", "high", ",", "g", "=", "4.0", ",", "tag", "=", "None", ")", ":", "a", ",", "b", ",", "c", "=", "[", "float", "(", "x", ")", "for", "x", "in", "[", "low", ",", "peak", ",", "high", "]", "]", "assert", "a", "<=", "b", "<=", "c", ",", "'PERT \"peak\" must be greater than \"low\" and less than \"high\"'", "assert", "g", ">=", "0", ",", "'PERT \"g\" must be non-negative'", "mu", "=", "(", "a", "+", "g", "*", "b", "+", "c", ")", "/", "(", "g", "+", "2", ")", "if", "mu", "==", "b", ":", "a1", "=", "a2", "=", "3.0", "else", ":", "a1", "=", "(", "(", "mu", "-", "a", ")", "*", "(", "2", "*", "b", "-", "a", "-", "c", ")", ")", "/", "(", "(", "b", "-", "mu", ")", "*", "(", "c", "-", "a", ")", ")", "a2", "=", "a1", "*", "(", "c", "-", "mu", ")", "/", "(", "mu", "-", "a", ")", "return", "Beta", "(", "a1", ",", "a2", ",", "a", ",", "c", ",", "tag", ")" ]
A PERT random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the distribution's peak (low <= peak <= high) high : scalar Upper bound of the distribution support Optional -------- g : scalar Controls the uncertainty of the distribution around the peak. Smaller values make the distribution flatter and more uncertain around the peak while larger values make it focused and less uncertain around the peak. (Default: 4)
[ "A", "PERT", "random", "variate", "Parameters", "----------", "low", ":", "scalar", "Lower", "bound", "of", "the", "distribution", "support", "peak", ":", "scalar", "The", "location", "of", "the", "distribution", "s", "peak", "(", "low", "<", "=", "peak", "<", "=", "high", ")", "high", ":", "scalar", "Upper", "bound", "of", "the", "distribution", "support", "Optional", "--------", "g", ":", "scalar", "Controls", "the", "uncertainty", "of", "the", "distribution", "around", "the", "peak", ".", "Smaller", "values", "make", "the", "distribution", "flatter", "and", "more", "uncertain", "around", "the", "peak", "while", "larger", "values", "make", "it", "focused", "and", "less", "uncertain", "around", "the", "peak", ".", "(", "Default", ":", "4", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1015-L1046
tisimst/mcerp
mcerp/__init__.py
StudentT
def StudentT(v, tag=None): """ A Student-T random variate Parameters ---------- v : int The degrees of freedom of the distribution (must be greater than one) """ assert int(v) == v and v >= 1, 'Student-T "v" must be an integer greater than 0' return uv(ss.t(v), tag=tag)
python
def StudentT(v, tag=None): """ A Student-T random variate Parameters ---------- v : int The degrees of freedom of the distribution (must be greater than one) """ assert int(v) == v and v >= 1, 'Student-T "v" must be an integer greater than 0' return uv(ss.t(v), tag=tag)
[ "def", "StudentT", "(", "v", ",", "tag", "=", "None", ")", ":", "assert", "int", "(", "v", ")", "==", "v", "and", "v", ">=", "1", ",", "'Student-T \"v\" must be an integer greater than 0'", "return", "uv", "(", "ss", ".", "t", "(", "v", ")", ",", "tag", "=", "tag", ")" ]
A Student-T random variate Parameters ---------- v : int The degrees of freedom of the distribution (must be greater than one)
[ "A", "Student", "-", "T", "random", "variate", "Parameters", "----------", "v", ":", "int", "The", "degrees", "of", "freedom", "of", "the", "distribution", "(", "must", "be", "greater", "than", "one", ")" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1049-L1059
tisimst/mcerp
mcerp/__init__.py
Triangular
def Triangular(low, peak, high, tag=None): """ A triangular random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the triangle's peak (low <= peak <= high) high : scalar Upper bound of the distribution support """ assert low <= peak <= high, 'Triangular "peak" must lie between "low" and "high"' low, peak, high = [float(x) for x in [low, peak, high]] return uv( ss.triang((1.0 * peak - low) / (high - low), loc=low, scale=(high - low)), tag=tag, )
python
def Triangular(low, peak, high, tag=None): """ A triangular random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the triangle's peak (low <= peak <= high) high : scalar Upper bound of the distribution support """ assert low <= peak <= high, 'Triangular "peak" must lie between "low" and "high"' low, peak, high = [float(x) for x in [low, peak, high]] return uv( ss.triang((1.0 * peak - low) / (high - low), loc=low, scale=(high - low)), tag=tag, )
[ "def", "Triangular", "(", "low", ",", "peak", ",", "high", ",", "tag", "=", "None", ")", ":", "assert", "low", "<=", "peak", "<=", "high", ",", "'Triangular \"peak\" must lie between \"low\" and \"high\"'", "low", ",", "peak", ",", "high", "=", "[", "float", "(", "x", ")", "for", "x", "in", "[", "low", ",", "peak", ",", "high", "]", "]", "return", "uv", "(", "ss", ".", "triang", "(", "(", "1.0", "*", "peak", "-", "low", ")", "/", "(", "high", "-", "low", ")", ",", "loc", "=", "low", ",", "scale", "=", "(", "high", "-", "low", ")", ")", ",", "tag", "=", "tag", ",", ")" ]
A triangular random variate Parameters ---------- low : scalar Lower bound of the distribution support peak : scalar The location of the triangle's peak (low <= peak <= high) high : scalar Upper bound of the distribution support
[ "A", "triangular", "random", "variate", "Parameters", "----------", "low", ":", "scalar", "Lower", "bound", "of", "the", "distribution", "support", "peak", ":", "scalar", "The", "location", "of", "the", "triangle", "s", "peak", "(", "low", "<", "=", "peak", "<", "=", "high", ")", "high", ":", "scalar", "Upper", "bound", "of", "the", "distribution", "support" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1065-L1083
tisimst/mcerp
mcerp/__init__.py
Uniform
def Uniform(low, high, tag=None): """ A Uniform random variate Parameters ---------- low : scalar Lower bound of the distribution support. high : scalar Upper bound of the distribution support. """ assert low < high, 'Uniform "low" must be less than "high"' return uv(ss.uniform(loc=low, scale=high - low), tag=tag)
python
def Uniform(low, high, tag=None): """ A Uniform random variate Parameters ---------- low : scalar Lower bound of the distribution support. high : scalar Upper bound of the distribution support. """ assert low < high, 'Uniform "low" must be less than "high"' return uv(ss.uniform(loc=low, scale=high - low), tag=tag)
[ "def", "Uniform", "(", "low", ",", "high", ",", "tag", "=", "None", ")", ":", "assert", "low", "<", "high", ",", "'Uniform \"low\" must be less than \"high\"'", "return", "uv", "(", "ss", ".", "uniform", "(", "loc", "=", "low", ",", "scale", "=", "high", "-", "low", ")", ",", "tag", "=", "tag", ")" ]
A Uniform random variate Parameters ---------- low : scalar Lower bound of the distribution support. high : scalar Upper bound of the distribution support.
[ "A", "Uniform", "random", "variate", "Parameters", "----------", "low", ":", "scalar", "Lower", "bound", "of", "the", "distribution", "support", ".", "high", ":", "scalar", "Upper", "bound", "of", "the", "distribution", "support", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1089-L1101
tisimst/mcerp
mcerp/__init__.py
Weibull
def Weibull(lamda, k, tag=None): """ A Weibull random variate Parameters ---------- lamda : scalar The scale parameter k : scalar The shape parameter """ assert ( lamda > 0 and k > 0 ), 'Weibull "lamda" and "k" parameters must be greater than zero' return uv(ss.exponweib(lamda, k), tag=tag)
python
def Weibull(lamda, k, tag=None): """ A Weibull random variate Parameters ---------- lamda : scalar The scale parameter k : scalar The shape parameter """ assert ( lamda > 0 and k > 0 ), 'Weibull "lamda" and "k" parameters must be greater than zero' return uv(ss.exponweib(lamda, k), tag=tag)
[ "def", "Weibull", "(", "lamda", ",", "k", ",", "tag", "=", "None", ")", ":", "assert", "(", "lamda", ">", "0", "and", "k", ">", "0", ")", ",", "'Weibull \"lamda\" and \"k\" parameters must be greater than zero'", "return", "uv", "(", "ss", ".", "exponweib", "(", "lamda", ",", "k", ")", ",", "tag", "=", "tag", ")" ]
A Weibull random variate Parameters ---------- lamda : scalar The scale parameter k : scalar The shape parameter
[ "A", "Weibull", "random", "variate", "Parameters", "----------", "lamda", ":", "scalar", "The", "scale", "parameter", "k", ":", "scalar", "The", "shape", "parameter" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1107-L1121
tisimst/mcerp
mcerp/__init__.py
Bernoulli
def Bernoulli(p, tag=None): """ A Bernoulli random variate Parameters ---------- p : scalar The probability of success """ assert ( 0 < p < 1 ), 'Bernoulli probability "p" must be between zero and one, non-inclusive' return uv(ss.bernoulli(p), tag=tag)
python
def Bernoulli(p, tag=None): """ A Bernoulli random variate Parameters ---------- p : scalar The probability of success """ assert ( 0 < p < 1 ), 'Bernoulli probability "p" must be between zero and one, non-inclusive' return uv(ss.bernoulli(p), tag=tag)
[ "def", "Bernoulli", "(", "p", ",", "tag", "=", "None", ")", ":", "assert", "(", "0", "<", "p", "<", "1", ")", ",", "'Bernoulli probability \"p\" must be between zero and one, non-inclusive'", "return", "uv", "(", "ss", ".", "bernoulli", "(", "p", ")", ",", "tag", "=", "tag", ")" ]
A Bernoulli random variate Parameters ---------- p : scalar The probability of success
[ "A", "Bernoulli", "random", "variate", "Parameters", "----------", "p", ":", "scalar", "The", "probability", "of", "success" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1132-L1144
tisimst/mcerp
mcerp/__init__.py
Binomial
def Binomial(n, p, tag=None): """ A Binomial random variate Parameters ---------- n : int The number of trials p : scalar The probability of success """ assert ( int(n) == n and n > 0 ), 'Binomial number of trials "n" must be an integer greater than zero' assert ( 0 < p < 1 ), 'Binomial probability "p" must be between zero and one, non-inclusive' return uv(ss.binom(n, p), tag=tag)
python
def Binomial(n, p, tag=None): """ A Binomial random variate Parameters ---------- n : int The number of trials p : scalar The probability of success """ assert ( int(n) == n and n > 0 ), 'Binomial number of trials "n" must be an integer greater than zero' assert ( 0 < p < 1 ), 'Binomial probability "p" must be between zero and one, non-inclusive' return uv(ss.binom(n, p), tag=tag)
[ "def", "Binomial", "(", "n", ",", "p", ",", "tag", "=", "None", ")", ":", "assert", "(", "int", "(", "n", ")", "==", "n", "and", "n", ">", "0", ")", ",", "'Binomial number of trials \"n\" must be an integer greater than zero'", "assert", "(", "0", "<", "p", "<", "1", ")", ",", "'Binomial probability \"p\" must be between zero and one, non-inclusive'", "return", "uv", "(", "ss", ".", "binom", "(", "n", ",", "p", ")", ",", "tag", "=", "tag", ")" ]
A Binomial random variate Parameters ---------- n : int The number of trials p : scalar The probability of success
[ "A", "Binomial", "random", "variate", "Parameters", "----------", "n", ":", "int", "The", "number", "of", "trials", "p", ":", "scalar", "The", "probability", "of", "success" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1150-L1167
tisimst/mcerp
mcerp/__init__.py
Geometric
def Geometric(p, tag=None): """ A Geometric random variate Parameters ---------- p : scalar The probability of success """ assert ( 0 < p < 1 ), 'Geometric probability "p" must be between zero and one, non-inclusive' return uv(ss.geom(p), tag=tag)
python
def Geometric(p, tag=None): """ A Geometric random variate Parameters ---------- p : scalar The probability of success """ assert ( 0 < p < 1 ), 'Geometric probability "p" must be between zero and one, non-inclusive' return uv(ss.geom(p), tag=tag)
[ "def", "Geometric", "(", "p", ",", "tag", "=", "None", ")", ":", "assert", "(", "0", "<", "p", "<", "1", ")", ",", "'Geometric probability \"p\" must be between zero and one, non-inclusive'", "return", "uv", "(", "ss", ".", "geom", "(", "p", ")", ",", "tag", "=", "tag", ")" ]
A Geometric random variate Parameters ---------- p : scalar The probability of success
[ "A", "Geometric", "random", "variate", "Parameters", "----------", "p", ":", "scalar", "The", "probability", "of", "success" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1173-L1185
tisimst/mcerp
mcerp/__init__.py
Hypergeometric
def Hypergeometric(N, n, K, tag=None): """ A Hypergeometric random variate Parameters ---------- N : int The total population size n : int The number of individuals of interest in the population K : int The number of individuals that will be chosen from the population Example ------- (Taken from the wikipedia page) Assume we have an urn with two types of marbles, 45 black ones and 5 white ones. Standing next to the urn, you close your eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are white? :: >>> black = 45 >>> white = 5 >>> draw = 10 # Now we create the distribution >>> h = H(black + white, white, draw) # To check the probability, in this case, we can use the underlying # scipy.stats object >>> h.rv.pmf(4) # What is the probability that white count = 4? 0.0039645830580151975 """ assert ( int(N) == N and N > 0 ), 'Hypergeometric total population size "N" must be an integer greater than zero.' assert ( int(n) == n and 0 < n <= N ), 'Hypergeometric interest population size "n" must be an integer greater than zero and no more than the total population size.' assert ( int(K) == K and 0 < K <= N ), 'Hypergeometric chosen population size "K" must be an integer greater than zero and no more than the total population size.' return uv(ss.hypergeom(N, n, K), tag=tag)
python
def Hypergeometric(N, n, K, tag=None): """ A Hypergeometric random variate Parameters ---------- N : int The total population size n : int The number of individuals of interest in the population K : int The number of individuals that will be chosen from the population Example ------- (Taken from the wikipedia page) Assume we have an urn with two types of marbles, 45 black ones and 5 white ones. Standing next to the urn, you close your eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are white? :: >>> black = 45 >>> white = 5 >>> draw = 10 # Now we create the distribution >>> h = H(black + white, white, draw) # To check the probability, in this case, we can use the underlying # scipy.stats object >>> h.rv.pmf(4) # What is the probability that white count = 4? 0.0039645830580151975 """ assert ( int(N) == N and N > 0 ), 'Hypergeometric total population size "N" must be an integer greater than zero.' assert ( int(n) == n and 0 < n <= N ), 'Hypergeometric interest population size "n" must be an integer greater than zero and no more than the total population size.' assert ( int(K) == K and 0 < K <= N ), 'Hypergeometric chosen population size "K" must be an integer greater than zero and no more than the total population size.' return uv(ss.hypergeom(N, n, K), tag=tag)
[ "def", "Hypergeometric", "(", "N", ",", "n", ",", "K", ",", "tag", "=", "None", ")", ":", "assert", "(", "int", "(", "N", ")", "==", "N", "and", "N", ">", "0", ")", ",", "'Hypergeometric total population size \"N\" must be an integer greater than zero.'", "assert", "(", "int", "(", "n", ")", "==", "n", "and", "0", "<", "n", "<=", "N", ")", ",", "'Hypergeometric interest population size \"n\" must be an integer greater than zero and no more than the total population size.'", "assert", "(", "int", "(", "K", ")", "==", "K", "and", "0", "<", "K", "<=", "N", ")", ",", "'Hypergeometric chosen population size \"K\" must be an integer greater than zero and no more than the total population size.'", "return", "uv", "(", "ss", ".", "hypergeom", "(", "N", ",", "n", ",", "K", ")", ",", "tag", "=", "tag", ")" ]
A Hypergeometric random variate Parameters ---------- N : int The total population size n : int The number of individuals of interest in the population K : int The number of individuals that will be chosen from the population Example ------- (Taken from the wikipedia page) Assume we have an urn with two types of marbles, 45 black ones and 5 white ones. Standing next to the urn, you close your eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are white? :: >>> black = 45 >>> white = 5 >>> draw = 10 # Now we create the distribution >>> h = H(black + white, white, draw) # To check the probability, in this case, we can use the underlying # scipy.stats object >>> h.rv.pmf(4) # What is the probability that white count = 4? 0.0039645830580151975
[ "A", "Hypergeometric", "random", "variate", "Parameters", "----------", "N", ":", "int", "The", "total", "population", "size", "n", ":", "int", "The", "number", "of", "individuals", "of", "interest", "in", "the", "population", "K", ":", "int", "The", "number", "of", "individuals", "that", "will", "be", "chosen", "from", "the", "population", "Example", "-------", "(", "Taken", "from", "the", "wikipedia", "page", ")", "Assume", "we", "have", "an", "urn", "with", "two", "types", "of", "marbles", "45", "black", "ones", "and", "5", "white", "ones", ".", "Standing", "next", "to", "the", "urn", "you", "close", "your", "eyes", "and", "draw", "10", "marbles", "without", "replacement", ".", "What", "is", "the", "probability", "that", "exactly", "4", "of", "the", "10", "are", "white?", "::", ">>>", "black", "=", "45", ">>>", "white", "=", "5", ">>>", "draw", "=", "10", "#", "Now", "we", "create", "the", "distribution", ">>>", "h", "=", "H", "(", "black", "+", "white", "white", "draw", ")", "#", "To", "check", "the", "probability", "in", "this", "case", "we", "can", "use", "the", "underlying", "#", "scipy", ".", "stats", "object", ">>>", "h", ".", "rv", ".", "pmf", "(", "4", ")", "#", "What", "is", "the", "probability", "that", "white", "count", "=", "4?", "0", ".", "0039645830580151975" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1191-L1234
tisimst/mcerp
mcerp/__init__.py
Poisson
def Poisson(lamda, tag=None): """ A Poisson random variate Parameters ---------- lamda : scalar The rate of an occurance within a specified interval of time or space. """ assert lamda > 0, 'Poisson "lamda" must be greater than zero.' return uv(ss.poisson(lamda), tag=tag)
python
def Poisson(lamda, tag=None): """ A Poisson random variate Parameters ---------- lamda : scalar The rate of an occurance within a specified interval of time or space. """ assert lamda > 0, 'Poisson "lamda" must be greater than zero.' return uv(ss.poisson(lamda), tag=tag)
[ "def", "Poisson", "(", "lamda", ",", "tag", "=", "None", ")", ":", "assert", "lamda", ">", "0", ",", "'Poisson \"lamda\" must be greater than zero.'", "return", "uv", "(", "ss", ".", "poisson", "(", "lamda", ")", ",", "tag", "=", "tag", ")" ]
A Poisson random variate Parameters ---------- lamda : scalar The rate of an occurance within a specified interval of time or space.
[ "A", "Poisson", "random", "variate", "Parameters", "----------", "lamda", ":", "scalar", "The", "rate", "of", "an", "occurance", "within", "a", "specified", "interval", "of", "time", "or", "space", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1240-L1250
tisimst/mcerp
mcerp/__init__.py
covariance_matrix
def covariance_matrix(nums_with_uncert): """ Calculate the covariance matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- cov_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> covariance_matrix([x,y,z]) [[ 9.99694861e-03 2.54000840e-05 1.00477488e-02] [ 2.54000840e-05 9.99823207e-03 2.00218642e-02] [ 1.00477488e-02 2.00218642e-02 5.00914772e-02]] """ ufuncs = list(map(to_uncertain_func, nums_with_uncert)) cov_matrix = [] for (i1, expr1) in enumerate(ufuncs): coefs_expr1 = [] mean1 = expr1.mean for (i2, expr2) in enumerate(ufuncs[: i1 + 1]): mean2 = expr2.mean coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2)) coefs_expr1.append(coef) cov_matrix.append(coefs_expr1) # We symmetrize the matrix: for (i, covariance_coefs) in enumerate(cov_matrix): covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len(cov_matrix))) return cov_matrix
python
def covariance_matrix(nums_with_uncert): """ Calculate the covariance matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- cov_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> covariance_matrix([x,y,z]) [[ 9.99694861e-03 2.54000840e-05 1.00477488e-02] [ 2.54000840e-05 9.99823207e-03 2.00218642e-02] [ 1.00477488e-02 2.00218642e-02 5.00914772e-02]] """ ufuncs = list(map(to_uncertain_func, nums_with_uncert)) cov_matrix = [] for (i1, expr1) in enumerate(ufuncs): coefs_expr1 = [] mean1 = expr1.mean for (i2, expr2) in enumerate(ufuncs[: i1 + 1]): mean2 = expr2.mean coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2)) coefs_expr1.append(coef) cov_matrix.append(coefs_expr1) # We symmetrize the matrix: for (i, covariance_coefs) in enumerate(cov_matrix): covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len(cov_matrix))) return cov_matrix
[ "def", "covariance_matrix", "(", "nums_with_uncert", ")", ":", "ufuncs", "=", "list", "(", "map", "(", "to_uncertain_func", ",", "nums_with_uncert", ")", ")", "cov_matrix", "=", "[", "]", "for", "(", "i1", ",", "expr1", ")", "in", "enumerate", "(", "ufuncs", ")", ":", "coefs_expr1", "=", "[", "]", "mean1", "=", "expr1", ".", "mean", "for", "(", "i2", ",", "expr2", ")", "in", "enumerate", "(", "ufuncs", "[", ":", "i1", "+", "1", "]", ")", ":", "mean2", "=", "expr2", ".", "mean", "coef", "=", "np", ".", "mean", "(", "(", "expr1", ".", "_mcpts", "-", "mean1", ")", "*", "(", "expr2", ".", "_mcpts", "-", "mean2", ")", ")", "coefs_expr1", ".", "append", "(", "coef", ")", "cov_matrix", ".", "append", "(", "coefs_expr1", ")", "# We symmetrize the matrix:", "for", "(", "i", ",", "covariance_coefs", ")", "in", "enumerate", "(", "cov_matrix", ")", ":", "covariance_coefs", ".", "extend", "(", "cov_matrix", "[", "j", "]", "[", "i", "]", "for", "j", "in", "range", "(", "i", "+", "1", ",", "len", "(", "cov_matrix", ")", ")", ")", "return", "cov_matrix" ]
Calculate the covariance matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- cov_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> covariance_matrix([x,y,z]) [[ 9.99694861e-03 2.54000840e-05 1.00477488e-02] [ 2.54000840e-05 9.99823207e-03 2.00218642e-02] [ 1.00477488e-02 2.00218642e-02 5.00914772e-02]]
[ "Calculate", "the", "covariance", "matrix", "of", "uncertain", "variables", "oriented", "by", "the", "order", "of", "the", "inputs", "Parameters", "----------", "nums_with_uncert", ":", "array", "-", "like", "A", "list", "of", "variables", "that", "have", "an", "associated", "uncertainty", "Returns", "-------", "cov_matrix", ":", "2d", "-", "array", "-", "like", "A", "nested", "list", "containing", "covariance", "values", "Example", "-------", ">>>", "x", "=", "N", "(", "1", "0", ".", "1", ")", ">>>", "y", "=", "N", "(", "10", "0", ".", "1", ")", ">>>", "z", "=", "x", "+", "2", "*", "y", ">>>", "covariance_matrix", "(", "[", "x", "y", "z", "]", ")", "[[", "9", ".", "99694861e", "-", "03", "2", ".", "54000840e", "-", "05", "1", ".", "00477488e", "-", "02", "]", "[", "2", ".", "54000840e", "-", "05", "9", ".", "99823207e", "-", "03", "2", ".", "00218642e", "-", "02", "]", "[", "1", ".", "00477488e", "-", "02", "2", ".", "00218642e", "-", "02", "5", ".", "00914772e", "-", "02", "]]" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1261-L1303
tisimst/mcerp
mcerp/__init__.py
correlation_matrix
def correlation_matrix(nums_with_uncert): """ Calculate the correlation matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- corr_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> correlation_matrix([x,y,z]) [[ 0.99969486 0.00254001 0.4489385 ] [ 0.00254001 0.99982321 0.89458702] [ 0.4489385 0.89458702 1. ]] """ ufuncs = list(map(to_uncertain_func, nums_with_uncert)) data = np.vstack([ufunc._mcpts for ufunc in ufuncs]) return np.corrcoef(data.T, rowvar=0)
python
def correlation_matrix(nums_with_uncert): """ Calculate the correlation matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- corr_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> correlation_matrix([x,y,z]) [[ 0.99969486 0.00254001 0.4489385 ] [ 0.00254001 0.99982321 0.89458702] [ 0.4489385 0.89458702 1. ]] """ ufuncs = list(map(to_uncertain_func, nums_with_uncert)) data = np.vstack([ufunc._mcpts for ufunc in ufuncs]) return np.corrcoef(data.T, rowvar=0)
[ "def", "correlation_matrix", "(", "nums_with_uncert", ")", ":", "ufuncs", "=", "list", "(", "map", "(", "to_uncertain_func", ",", "nums_with_uncert", ")", ")", "data", "=", "np", ".", "vstack", "(", "[", "ufunc", ".", "_mcpts", "for", "ufunc", "in", "ufuncs", "]", ")", "return", "np", ".", "corrcoef", "(", "data", ".", "T", ",", "rowvar", "=", "0", ")" ]
Calculate the correlation matrix of uncertain variables, oriented by the order of the inputs Parameters ---------- nums_with_uncert : array-like A list of variables that have an associated uncertainty Returns ------- corr_matrix : 2d-array-like A nested list containing covariance values Example ------- >>> x = N(1, 0.1) >>> y = N(10, 0.1) >>> z = x + 2*y >>> correlation_matrix([x,y,z]) [[ 0.99969486 0.00254001 0.4489385 ] [ 0.00254001 0.99982321 0.89458702] [ 0.4489385 0.89458702 1. ]]
[ "Calculate", "the", "correlation", "matrix", "of", "uncertain", "variables", "oriented", "by", "the", "order", "of", "the", "inputs", "Parameters", "----------", "nums_with_uncert", ":", "array", "-", "like", "A", "list", "of", "variables", "that", "have", "an", "associated", "uncertainty", "Returns", "-------", "corr_matrix", ":", "2d", "-", "array", "-", "like", "A", "nested", "list", "containing", "covariance", "values", "Example", "-------", ">>>", "x", "=", "N", "(", "1", "0", ".", "1", ")", ">>>", "y", "=", "N", "(", "10", "0", ".", "1", ")", ">>>", "z", "=", "x", "+", "2", "*", "y", ">>>", "correlation_matrix", "(", "[", "x", "y", "z", "]", ")", "[[", "0", ".", "99969486", "0", ".", "00254001", "0", ".", "4489385", "]", "[", "0", ".", "00254001", "0", ".", "99982321", "0", ".", "89458702", "]", "[", "0", ".", "4489385", "0", ".", "89458702", "1", ".", "]]" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L1306-L1335
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.var
def var(self): """ Variance value as a result of an uncertainty calculation """ mn = self.mean vr = np.mean((self._mcpts - mn) ** 2) return vr
python
def var(self): """ Variance value as a result of an uncertainty calculation """ mn = self.mean vr = np.mean((self._mcpts - mn) ** 2) return vr
[ "def", "var", "(", "self", ")", ":", "mn", "=", "self", ".", "mean", "vr", "=", "np", ".", "mean", "(", "(", "self", ".", "_mcpts", "-", "mn", ")", "**", "2", ")", "return", "vr" ]
Variance value as a result of an uncertainty calculation
[ "Variance", "value", "as", "a", "result", "of", "an", "uncertainty", "calculation" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L74-L80
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.skew
def skew(self): r""" Skewness coefficient value as a result of an uncertainty calculation, defined as:: _____ m3 \/beta1 = ------ std**3 where m3 is the third central moment and std is the standard deviation """ mn = self.mean sd = self.std sk = 0.0 if abs(sd) <= 1e-8 else np.mean((self._mcpts - mn) ** 3) / sd ** 3 return sk
python
def skew(self): r""" Skewness coefficient value as a result of an uncertainty calculation, defined as:: _____ m3 \/beta1 = ------ std**3 where m3 is the third central moment and std is the standard deviation """ mn = self.mean sd = self.std sk = 0.0 if abs(sd) <= 1e-8 else np.mean((self._mcpts - mn) ** 3) / sd ** 3 return sk
[ "def", "skew", "(", "self", ")", ":", "mn", "=", "self", ".", "mean", "sd", "=", "self", ".", "std", "sk", "=", "0.0", "if", "abs", "(", "sd", ")", "<=", "1e-8", "else", "np", ".", "mean", "(", "(", "self", ".", "_mcpts", "-", "mn", ")", "**", "3", ")", "/", "sd", "**", "3", "return", "sk" ]
r""" Skewness coefficient value as a result of an uncertainty calculation, defined as:: _____ m3 \/beta1 = ------ std**3 where m3 is the third central moment and std is the standard deviation
[ "r", "Skewness", "coefficient", "value", "as", "a", "result", "of", "an", "uncertainty", "calculation", "defined", "as", "::", "_____", "m3", "\\", "/", "beta1", "=", "------", "std", "**", "3", "where", "m3", "is", "the", "third", "central", "moment", "and", "std", "is", "the", "standard", "deviation" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L95-L109
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.kurt
def kurt(self): """ Kurtosis coefficient value as a result of an uncertainty calculation, defined as:: m4 beta2 = ------ std**4 where m4 is the fourth central moment and std is the standard deviation """ mn = self.mean sd = self.std kt = 0.0 if abs(sd) <= 1e-8 else np.mean((self._mcpts - mn) ** 4) / sd ** 4 return kt
python
def kurt(self): """ Kurtosis coefficient value as a result of an uncertainty calculation, defined as:: m4 beta2 = ------ std**4 where m4 is the fourth central moment and std is the standard deviation """ mn = self.mean sd = self.std kt = 0.0 if abs(sd) <= 1e-8 else np.mean((self._mcpts - mn) ** 4) / sd ** 4 return kt
[ "def", "kurt", "(", "self", ")", ":", "mn", "=", "self", ".", "mean", "sd", "=", "self", ".", "std", "kt", "=", "0.0", "if", "abs", "(", "sd", ")", "<=", "1e-8", "else", "np", ".", "mean", "(", "(", "self", ".", "_mcpts", "-", "mn", ")", "**", "4", ")", "/", "sd", "**", "4", "return", "kt" ]
Kurtosis coefficient value as a result of an uncertainty calculation, defined as:: m4 beta2 = ------ std**4 where m4 is the fourth central moment and std is the standard deviation
[ "Kurtosis", "coefficient", "value", "as", "a", "result", "of", "an", "uncertainty", "calculation", "defined", "as", "::", "m4", "beta2", "=", "------", "std", "**", "4" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L112-L126
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.stats
def stats(self): """ The first four standard moments of a distribution: mean, variance, and standardized skewness and kurtosis coefficients. """ mn = self.mean vr = self.var sk = self.skew kt = self.kurt return [mn, vr, sk, kt]
python
def stats(self): """ The first four standard moments of a distribution: mean, variance, and standardized skewness and kurtosis coefficients. """ mn = self.mean vr = self.var sk = self.skew kt = self.kurt return [mn, vr, sk, kt]
[ "def", "stats", "(", "self", ")", ":", "mn", "=", "self", ".", "mean", "vr", "=", "self", ".", "var", "sk", "=", "self", ".", "skew", "kt", "=", "self", ".", "kurt", "return", "[", "mn", ",", "vr", ",", "sk", ",", "kt", "]" ]
The first four standard moments of a distribution: mean, variance, and standardized skewness and kurtosis coefficients.
[ "The", "first", "four", "standard", "moments", "of", "a", "distribution", ":", "mean", "variance", "and", "standardized", "skewness", "and", "kurtosis", "coefficients", "." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L129-L138
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.percentile
def percentile(self, val): """ Get the distribution value at a given percentile or set of percentiles. This follows the NIST method for calculating percentiles. Parameters ---------- val : scalar or array Either a single value or an array of values between 0 and 1. Returns ------- out : scalar or array The actual distribution value that appears at the requested percentile value or values """ try: # test to see if an input is given as an array out = [self.percentile(vi) for vi in val] except (ValueError, TypeError): if val <= 0: out = float(min(self._mcpts)) elif val >= 1: out = float(max(self._mcpts)) else: tmp = np.sort(self._mcpts) n = val * (len(tmp) + 1) k, d = int(n), n - int(n) out = float(tmp[k] + d * (tmp[k + 1] - tmp[k])) if isinstance(val, np.ndarray): out = np.array(out) return out
python
def percentile(self, val): """ Get the distribution value at a given percentile or set of percentiles. This follows the NIST method for calculating percentiles. Parameters ---------- val : scalar or array Either a single value or an array of values between 0 and 1. Returns ------- out : scalar or array The actual distribution value that appears at the requested percentile value or values """ try: # test to see if an input is given as an array out = [self.percentile(vi) for vi in val] except (ValueError, TypeError): if val <= 0: out = float(min(self._mcpts)) elif val >= 1: out = float(max(self._mcpts)) else: tmp = np.sort(self._mcpts) n = val * (len(tmp) + 1) k, d = int(n), n - int(n) out = float(tmp[k] + d * (tmp[k + 1] - tmp[k])) if isinstance(val, np.ndarray): out = np.array(out) return out
[ "def", "percentile", "(", "self", ",", "val", ")", ":", "try", ":", "# test to see if an input is given as an array", "out", "=", "[", "self", ".", "percentile", "(", "vi", ")", "for", "vi", "in", "val", "]", "except", "(", "ValueError", ",", "TypeError", ")", ":", "if", "val", "<=", "0", ":", "out", "=", "float", "(", "min", "(", "self", ".", "_mcpts", ")", ")", "elif", "val", ">=", "1", ":", "out", "=", "float", "(", "max", "(", "self", ".", "_mcpts", ")", ")", "else", ":", "tmp", "=", "np", ".", "sort", "(", "self", ".", "_mcpts", ")", "n", "=", "val", "*", "(", "len", "(", "tmp", ")", "+", "1", ")", "k", ",", "d", "=", "int", "(", "n", ")", ",", "n", "-", "int", "(", "n", ")", "out", "=", "float", "(", "tmp", "[", "k", "]", "+", "d", "*", "(", "tmp", "[", "k", "+", "1", "]", "-", "tmp", "[", "k", "]", ")", ")", "if", "isinstance", "(", "val", ",", "np", ".", "ndarray", ")", ":", "out", "=", "np", ".", "array", "(", "out", ")", "return", "out" ]
Get the distribution value at a given percentile or set of percentiles. This follows the NIST method for calculating percentiles. Parameters ---------- val : scalar or array Either a single value or an array of values between 0 and 1. Returns ------- out : scalar or array The actual distribution value that appears at the requested percentile value or values
[ "Get", "the", "distribution", "value", "at", "a", "given", "percentile", "or", "set", "of", "percentiles", ".", "This", "follows", "the", "NIST", "method", "for", "calculating", "percentiles", ".", "Parameters", "----------", "val", ":", "scalar", "or", "array", "Either", "a", "single", "value", "or", "an", "array", "of", "values", "between", "0", "and", "1", ".", "Returns", "-------", "out", ":", "scalar", "or", "array", "The", "actual", "distribution", "value", "that", "appears", "at", "the", "requested", "percentile", "value", "or", "values" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L140-L172
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.describe
def describe(self, name=None): """ Cleanly show what the four displayed distribution moments are: - Mean - Variance - Standardized Skewness Coefficient - Standardized Kurtosis Coefficient For a standard Normal distribution, these are [0, 1, 0, 3]. If the object has an associated tag, this is presented. If the optional ``name`` kwarg is utilized, this is presented as with the moments. Otherwise, no unique name is presented. Example ======= :: >>> x = N(0, 1, 'x') >>> x.describe() # print tag since assigned MCERP Uncertain Value (x): ... >>> x.describe('foobar') # 'name' kwarg takes precedence MCERP Uncertain Value (foobar): ... >>> y = x**2 >>> y.describe('y') # print name since assigned MCERP Uncertain Value (y): ... >>> y.describe() # print nothing since no tag MCERP Uncertain Value: ... """ mn, vr, sk, kt = self.stats if name is not None: s = "MCERP Uncertain Value (" + name + "):\n" elif self.tag is not None: s = "MCERP Uncertain Value (" + self.tag + "):\n" else: s = "MCERP Uncertain Value:\n" s += " > Mean................... {: }\n".format(mn) s += " > Variance............... {: }\n".format(vr) s += " > Skewness Coefficient... {: }\n".format(sk) s += " > Kurtosis Coefficient... {: }\n".format(kt) print(s)
python
def describe(self, name=None): """ Cleanly show what the four displayed distribution moments are: - Mean - Variance - Standardized Skewness Coefficient - Standardized Kurtosis Coefficient For a standard Normal distribution, these are [0, 1, 0, 3]. If the object has an associated tag, this is presented. If the optional ``name`` kwarg is utilized, this is presented as with the moments. Otherwise, no unique name is presented. Example ======= :: >>> x = N(0, 1, 'x') >>> x.describe() # print tag since assigned MCERP Uncertain Value (x): ... >>> x.describe('foobar') # 'name' kwarg takes precedence MCERP Uncertain Value (foobar): ... >>> y = x**2 >>> y.describe('y') # print name since assigned MCERP Uncertain Value (y): ... >>> y.describe() # print nothing since no tag MCERP Uncertain Value: ... """ mn, vr, sk, kt = self.stats if name is not None: s = "MCERP Uncertain Value (" + name + "):\n" elif self.tag is not None: s = "MCERP Uncertain Value (" + self.tag + "):\n" else: s = "MCERP Uncertain Value:\n" s += " > Mean................... {: }\n".format(mn) s += " > Variance............... {: }\n".format(vr) s += " > Skewness Coefficient... {: }\n".format(sk) s += " > Kurtosis Coefficient... {: }\n".format(kt) print(s)
[ "def", "describe", "(", "self", ",", "name", "=", "None", ")", ":", "mn", ",", "vr", ",", "sk", ",", "kt", "=", "self", ".", "stats", "if", "name", "is", "not", "None", ":", "s", "=", "\"MCERP Uncertain Value (\"", "+", "name", "+", "\"):\\n\"", "elif", "self", ".", "tag", "is", "not", "None", ":", "s", "=", "\"MCERP Uncertain Value (\"", "+", "self", ".", "tag", "+", "\"):\\n\"", "else", ":", "s", "=", "\"MCERP Uncertain Value:\\n\"", "s", "+=", "\" > Mean................... {: }\\n\"", ".", "format", "(", "mn", ")", "s", "+=", "\" > Variance............... {: }\\n\"", ".", "format", "(", "vr", ")", "s", "+=", "\" > Skewness Coefficient... {: }\\n\"", ".", "format", "(", "sk", ")", "s", "+=", "\" > Kurtosis Coefficient... {: }\\n\"", ".", "format", "(", "kt", ")", "print", "(", "s", ")" ]
Cleanly show what the four displayed distribution moments are: - Mean - Variance - Standardized Skewness Coefficient - Standardized Kurtosis Coefficient For a standard Normal distribution, these are [0, 1, 0, 3]. If the object has an associated tag, this is presented. If the optional ``name`` kwarg is utilized, this is presented as with the moments. Otherwise, no unique name is presented. Example ======= :: >>> x = N(0, 1, 'x') >>> x.describe() # print tag since assigned MCERP Uncertain Value (x): ... >>> x.describe('foobar') # 'name' kwarg takes precedence MCERP Uncertain Value (foobar): ... >>> y = x**2 >>> y.describe('y') # print name since assigned MCERP Uncertain Value (y): ... >>> y.describe() # print nothing since no tag MCERP Uncertain Value: ...
[ "Cleanly", "show", "what", "the", "four", "displayed", "distribution", "moments", "are", ":", "-", "Mean", "-", "Variance", "-", "Standardized", "Skewness", "Coefficient", "-", "Standardized", "Kurtosis", "Coefficient", "For", "a", "standard", "Normal", "distribution", "these", "are", "[", "0", "1", "0", "3", "]", ".", "If", "the", "object", "has", "an", "associated", "tag", "this", "is", "presented", ".", "If", "the", "optional", "name", "kwarg", "is", "utilized", "this", "is", "presented", "as", "with", "the", "moments", ".", "Otherwise", "no", "unique", "name", "is", "presented", ".", "Example", "=======", "::", ">>>", "x", "=", "N", "(", "0", "1", "x", ")", ">>>", "x", ".", "describe", "()", "#", "print", "tag", "since", "assigned", "MCERP", "Uncertain", "Value", "(", "x", ")", ":", "..." ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L191-L239
tisimst/mcerp
mcerp/__init__.py
UncertainFunction.plot
def plot(self, hist=False, show=False, **kwargs): """ Plot the distribution of the UncertainFunction. By default, the distribution is shown with a kernel density estimate (kde). Optional -------- hist : bool If true, a density histogram is displayed (histtype='stepfilled') show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot or .hist kwarg """ import matplotlib.pyplot as plt vals = self._mcpts low = min(vals) high = max(vals) p = ss.kde.gaussian_kde(vals) xp = np.linspace(low, high, 100) if hist: h = plt.hist( vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype="stepfilled", normed=True, **kwargs ) plt.ylim(0, 1.1 * h[0].max()) else: plt.plot(xp, p.evaluate(xp), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
python
def plot(self, hist=False, show=False, **kwargs): """ Plot the distribution of the UncertainFunction. By default, the distribution is shown with a kernel density estimate (kde). Optional -------- hist : bool If true, a density histogram is displayed (histtype='stepfilled') show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot or .hist kwarg """ import matplotlib.pyplot as plt vals = self._mcpts low = min(vals) high = max(vals) p = ss.kde.gaussian_kde(vals) xp = np.linspace(low, high, 100) if hist: h = plt.hist( vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype="stepfilled", normed=True, **kwargs ) plt.ylim(0, 1.1 * h[0].max()) else: plt.plot(xp, p.evaluate(xp), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
[ "def", "plot", "(", "self", ",", "hist", "=", "False", ",", "show", "=", "False", ",", "*", "*", "kwargs", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "vals", "=", "self", ".", "_mcpts", "low", "=", "min", "(", "vals", ")", "high", "=", "max", "(", "vals", ")", "p", "=", "ss", ".", "kde", ".", "gaussian_kde", "(", "vals", ")", "xp", "=", "np", ".", "linspace", "(", "low", ",", "high", ",", "100", ")", "if", "hist", ":", "h", "=", "plt", ".", "hist", "(", "vals", ",", "bins", "=", "int", "(", "np", ".", "sqrt", "(", "len", "(", "vals", ")", ")", "+", "0.5", ")", ",", "histtype", "=", "\"stepfilled\"", ",", "normed", "=", "True", ",", "*", "*", "kwargs", ")", "plt", ".", "ylim", "(", "0", ",", "1.1", "*", "h", "[", "0", "]", ".", "max", "(", ")", ")", "else", ":", "plt", ".", "plot", "(", "xp", ",", "p", ".", "evaluate", "(", "xp", ")", ",", "*", "*", "kwargs", ")", "plt", ".", "xlim", "(", "low", "-", "(", "high", "-", "low", ")", "*", "0.1", ",", "high", "+", "(", "high", "-", "low", ")", "*", "0.1", ")", "if", "show", ":", "self", ".", "show", "(", ")" ]
Plot the distribution of the UncertainFunction. By default, the distribution is shown with a kernel density estimate (kde). Optional -------- hist : bool If true, a density histogram is displayed (histtype='stepfilled') show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot or .hist kwarg
[ "Plot", "the", "distribution", "of", "the", "UncertainFunction", ".", "By", "default", "the", "distribution", "is", "shown", "with", "a", "kernel", "density", "estimate", "(", "kde", ")", ".", "Optional", "--------", "hist", ":", "bool", "If", "true", "a", "density", "histogram", "is", "displayed", "(", "histtype", "=", "stepfilled", ")", "show", ":", "bool", "If", "True", "the", "figure", "will", "be", "displayed", "after", "plotting", "the", "distribution", ".", "If", "False", "an", "explicit", "call", "to", "plt", ".", "show", "()", "is", "required", "to", "display", "the", "figure", ".", "kwargs", ":", "any", "valid", "matplotlib", ".", "pyplot", ".", "plot", "or", ".", "hist", "kwarg" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L241-L281
tisimst/mcerp
mcerp/__init__.py
UncertainVariable.plot
def plot(self, hist=False, show=False, **kwargs): """ Plot the distribution of the UncertainVariable. Continuous distributions are plotted with a line plot and discrete distributions are plotted with discrete circles. Optional -------- hist : bool If true, a histogram is displayed show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot kwarg """ import matplotlib.pyplot as plt if hist: vals = self._mcpts low = vals.min() high = vals.max() h = plt.hist( vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype="stepfilled", normed=True, **kwargs ) plt.ylim(0, 1.1 * h[0].max()) else: bound = 0.0001 low = self.rv.ppf(bound) high = self.rv.ppf(1 - bound) if hasattr(self.rv.dist, "pmf"): low = int(low) high = int(high) vals = list(range(low, high + 1)) plt.plot(vals, self.rv.pmf(vals), "o", **kwargs) else: vals = np.linspace(low, high, 500) plt.plot(vals, self.rv.pdf(vals), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
python
def plot(self, hist=False, show=False, **kwargs): """ Plot the distribution of the UncertainVariable. Continuous distributions are plotted with a line plot and discrete distributions are plotted with discrete circles. Optional -------- hist : bool If true, a histogram is displayed show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot kwarg """ import matplotlib.pyplot as plt if hist: vals = self._mcpts low = vals.min() high = vals.max() h = plt.hist( vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype="stepfilled", normed=True, **kwargs ) plt.ylim(0, 1.1 * h[0].max()) else: bound = 0.0001 low = self.rv.ppf(bound) high = self.rv.ppf(1 - bound) if hasattr(self.rv.dist, "pmf"): low = int(low) high = int(high) vals = list(range(low, high + 1)) plt.plot(vals, self.rv.pmf(vals), "o", **kwargs) else: vals = np.linspace(low, high, 500) plt.plot(vals, self.rv.pdf(vals), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
[ "def", "plot", "(", "self", ",", "hist", "=", "False", ",", "show", "=", "False", ",", "*", "*", "kwargs", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "if", "hist", ":", "vals", "=", "self", ".", "_mcpts", "low", "=", "vals", ".", "min", "(", ")", "high", "=", "vals", ".", "max", "(", ")", "h", "=", "plt", ".", "hist", "(", "vals", ",", "bins", "=", "int", "(", "np", ".", "sqrt", "(", "len", "(", "vals", ")", ")", "+", "0.5", ")", ",", "histtype", "=", "\"stepfilled\"", ",", "normed", "=", "True", ",", "*", "*", "kwargs", ")", "plt", ".", "ylim", "(", "0", ",", "1.1", "*", "h", "[", "0", "]", ".", "max", "(", ")", ")", "else", ":", "bound", "=", "0.0001", "low", "=", "self", ".", "rv", ".", "ppf", "(", "bound", ")", "high", "=", "self", ".", "rv", ".", "ppf", "(", "1", "-", "bound", ")", "if", "hasattr", "(", "self", ".", "rv", ".", "dist", ",", "\"pmf\"", ")", ":", "low", "=", "int", "(", "low", ")", "high", "=", "int", "(", "high", ")", "vals", "=", "list", "(", "range", "(", "low", ",", "high", "+", "1", ")", ")", "plt", ".", "plot", "(", "vals", ",", "self", ".", "rv", ".", "pmf", "(", "vals", ")", ",", "\"o\"", ",", "*", "*", "kwargs", ")", "else", ":", "vals", "=", "np", ".", "linspace", "(", "low", ",", "high", ",", "500", ")", "plt", ".", "plot", "(", "vals", ",", "self", ".", "rv", ".", "pdf", "(", "vals", ")", ",", "*", "*", "kwargs", ")", "plt", ".", "xlim", "(", "low", "-", "(", "high", "-", "low", ")", "*", "0.1", ",", "high", "+", "(", "high", "-", "low", ")", "*", "0.1", ")", "if", "show", ":", "self", ".", "show", "(", ")" ]
Plot the distribution of the UncertainVariable. Continuous distributions are plotted with a line plot and discrete distributions are plotted with discrete circles. Optional -------- hist : bool If true, a histogram is displayed show : bool If ``True``, the figure will be displayed after plotting the distribution. If ``False``, an explicit call to ``plt.show()`` is required to display the figure. kwargs : any valid matplotlib.pyplot.plot kwarg
[ "Plot", "the", "distribution", "of", "the", "UncertainVariable", ".", "Continuous", "distributions", "are", "plotted", "with", "a", "line", "plot", "and", "discrete", "distributions", "are", "plotted", "with", "discrete", "circles", ".", "Optional", "--------", "hist", ":", "bool", "If", "true", "a", "histogram", "is", "displayed", "show", ":", "bool", "If", "True", "the", "figure", "will", "be", "displayed", "after", "plotting", "the", "distribution", ".", "If", "False", "an", "explicit", "call", "to", "plt", ".", "show", "()", "is", "required", "to", "display", "the", "figure", ".", "kwargs", ":", "any", "valid", "matplotlib", ".", "pyplot", ".", "plot", "kwarg" ]
train
https://github.com/tisimst/mcerp/blob/2bb8260c9ad2d58a806847f1b627b6451e407de1/mcerp/__init__.py#L652-L698
shoeffner/cvloop
cvloop/functions.py
DrawHat.load_hat
def load_hat(self, path): # pylint: disable=no-self-use """Loads the hat from a picture at path. Args: path: The path to load from Returns: The hat data. """ hat = cv2.imread(path, cv2.IMREAD_UNCHANGED) if hat is None: raise ValueError('No hat image found at `{}`'.format(path)) b, g, r, a = cv2.split(hat) return cv2.merge((r, g, b, a))
python
def load_hat(self, path): # pylint: disable=no-self-use """Loads the hat from a picture at path. Args: path: The path to load from Returns: The hat data. """ hat = cv2.imread(path, cv2.IMREAD_UNCHANGED) if hat is None: raise ValueError('No hat image found at `{}`'.format(path)) b, g, r, a = cv2.split(hat) return cv2.merge((r, g, b, a))
[ "def", "load_hat", "(", "self", ",", "path", ")", ":", "# pylint: disable=no-self-use", "hat", "=", "cv2", ".", "imread", "(", "path", ",", "cv2", ".", "IMREAD_UNCHANGED", ")", "if", "hat", "is", "None", ":", "raise", "ValueError", "(", "'No hat image found at `{}`'", ".", "format", "(", "path", ")", ")", "b", ",", "g", ",", "r", ",", "a", "=", "cv2", ".", "split", "(", "hat", ")", "return", "cv2", ".", "merge", "(", "(", "r", ",", "g", ",", "b", ",", "a", ")", ")" ]
Loads the hat from a picture at path. Args: path: The path to load from Returns: The hat data.
[ "Loads", "the", "hat", "from", "a", "picture", "at", "path", "." ]
train
https://github.com/shoeffner/cvloop/blob/3ddd311e9b679d16c8fd36779931380374de343c/cvloop/functions.py#L173-L186
shoeffner/cvloop
cvloop/functions.py
DrawHat.find_faces
def find_faces(self, image, draw_box=False): """Uses a haarcascade to detect faces inside an image. Args: image: The image. draw_box: If True, the image will be marked with a rectangle. Return: The faces as returned by OpenCV's detectMultiScale method for cascades. """ frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) faces = self.cascade.detectMultiScale( frame_gray, scaleFactor=1.3, minNeighbors=5, minSize=(50, 50), flags=0) if draw_box: for x, y, w, h in faces: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) return faces
python
def find_faces(self, image, draw_box=False): """Uses a haarcascade to detect faces inside an image. Args: image: The image. draw_box: If True, the image will be marked with a rectangle. Return: The faces as returned by OpenCV's detectMultiScale method for cascades. """ frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) faces = self.cascade.detectMultiScale( frame_gray, scaleFactor=1.3, minNeighbors=5, minSize=(50, 50), flags=0) if draw_box: for x, y, w, h in faces: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) return faces
[ "def", "find_faces", "(", "self", ",", "image", ",", "draw_box", "=", "False", ")", ":", "frame_gray", "=", "cv2", ".", "cvtColor", "(", "image", ",", "cv2", ".", "COLOR_RGB2GRAY", ")", "faces", "=", "self", ".", "cascade", ".", "detectMultiScale", "(", "frame_gray", ",", "scaleFactor", "=", "1.3", ",", "minNeighbors", "=", "5", ",", "minSize", "=", "(", "50", ",", "50", ")", ",", "flags", "=", "0", ")", "if", "draw_box", ":", "for", "x", ",", "y", ",", "w", ",", "h", "in", "faces", ":", "cv2", ".", "rectangle", "(", "image", ",", "(", "x", ",", "y", ")", ",", "(", "x", "+", "w", ",", "y", "+", "h", ")", ",", "(", "0", ",", "255", ",", "0", ")", ",", "2", ")", "return", "faces" ]
Uses a haarcascade to detect faces inside an image. Args: image: The image. draw_box: If True, the image will be marked with a rectangle. Return: The faces as returned by OpenCV's detectMultiScale method for cascades.
[ "Uses", "a", "haarcascade", "to", "detect", "faces", "inside", "an", "image", "." ]
train
https://github.com/shoeffner/cvloop/blob/3ddd311e9b679d16c8fd36779931380374de343c/cvloop/functions.py#L188-L211
uber-archive/h1-python
h1/client.py
HackerOneClient.find_resources
def find_resources(self, rsrc_type, sort=None, yield_pages=False, **kwargs): """Find instances of `rsrc_type` that match the filter in `**kwargs`""" return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)
python
def find_resources(self, rsrc_type, sort=None, yield_pages=False, **kwargs): """Find instances of `rsrc_type` that match the filter in `**kwargs`""" return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)
[ "def", "find_resources", "(", "self", ",", "rsrc_type", ",", "sort", "=", "None", ",", "yield_pages", "=", "False", ",", "*", "*", "kwargs", ")", ":", "return", "rsrc_type", ".", "find", "(", "self", ",", "sort", "=", "sort", ",", "yield_pages", "=", "yield_pages", ",", "*", "*", "kwargs", ")" ]
Find instances of `rsrc_type` that match the filter in `**kwargs`
[ "Find", "instances", "of", "rsrc_type", "that", "match", "the", "filter", "in", "**", "kwargs" ]
train
https://github.com/uber-archive/h1-python/blob/c91aec6a26887e453106af39e96ec6d5c7b00c9d/h1/client.py#L111-L113
edelooff/sqlalchemy-json
sqlalchemy_json/track.py
TrackedObject.changed
def changed(self, message=None, *args): """Marks the object as changed. If a `parent` attribute is set, the `changed()` method on the parent will be called, propagating the change notification up the chain. The message (if provided) will be debug logged. """ if message is not None: self.logger.debug('%s: %s', self._repr(), message % args) self.logger.debug('%s: changed', self._repr()) if self.parent is not None: self.parent.changed() elif isinstance(self, Mutable): super(TrackedObject, self).changed()
python
def changed(self, message=None, *args): """Marks the object as changed. If a `parent` attribute is set, the `changed()` method on the parent will be called, propagating the change notification up the chain. The message (if provided) will be debug logged. """ if message is not None: self.logger.debug('%s: %s', self._repr(), message % args) self.logger.debug('%s: changed', self._repr()) if self.parent is not None: self.parent.changed() elif isinstance(self, Mutable): super(TrackedObject, self).changed()
[ "def", "changed", "(", "self", ",", "message", "=", "None", ",", "*", "args", ")", ":", "if", "message", "is", "not", "None", ":", "self", ".", "logger", ".", "debug", "(", "'%s: %s'", ",", "self", ".", "_repr", "(", ")", ",", "message", "%", "args", ")", "self", ".", "logger", ".", "debug", "(", "'%s: changed'", ",", "self", ".", "_repr", "(", ")", ")", "if", "self", ".", "parent", "is", "not", "None", ":", "self", ".", "parent", ".", "changed", "(", ")", "elif", "isinstance", "(", "self", ",", "Mutable", ")", ":", "super", "(", "TrackedObject", ",", "self", ")", ".", "changed", "(", ")" ]
Marks the object as changed. If a `parent` attribute is set, the `changed()` method on the parent will be called, propagating the change notification up the chain. The message (if provided) will be debug logged.
[ "Marks", "the", "object", "as", "changed", "." ]
train
https://github.com/edelooff/sqlalchemy-json/blob/4e5df0d61dc09ed9a52e24ab291a1f1e14aa95cc/sqlalchemy_json/track.py#L25-L39
edelooff/sqlalchemy-json
sqlalchemy_json/track.py
TrackedObject.register
def register(cls, origin_type): """Decorator for mutation tracker registration. The provided `origin_type` is mapped to the decorated class such that future calls to `convert()` will convert the object of `origin_type` to an instance of the decorated class. """ def decorator(tracked_type): """Adds the decorated class to the `_type_mapping` dictionary.""" cls._type_mapping[origin_type] = tracked_type return tracked_type return decorator
python
def register(cls, origin_type): """Decorator for mutation tracker registration. The provided `origin_type` is mapped to the decorated class such that future calls to `convert()` will convert the object of `origin_type` to an instance of the decorated class. """ def decorator(tracked_type): """Adds the decorated class to the `_type_mapping` dictionary.""" cls._type_mapping[origin_type] = tracked_type return tracked_type return decorator
[ "def", "register", "(", "cls", ",", "origin_type", ")", ":", "def", "decorator", "(", "tracked_type", ")", ":", "\"\"\"Adds the decorated class to the `_type_mapping` dictionary.\"\"\"", "cls", ".", "_type_mapping", "[", "origin_type", "]", "=", "tracked_type", "return", "tracked_type", "return", "decorator" ]
Decorator for mutation tracker registration. The provided `origin_type` is mapped to the decorated class such that future calls to `convert()` will convert the object of `origin_type` to an instance of the decorated class.
[ "Decorator", "for", "mutation", "tracker", "registration", "." ]
train
https://github.com/edelooff/sqlalchemy-json/blob/4e5df0d61dc09ed9a52e24ab291a1f1e14aa95cc/sqlalchemy_json/track.py#L42-L53
edelooff/sqlalchemy-json
sqlalchemy_json/track.py
TrackedObject.convert
def convert(cls, obj, parent): """Converts objects to registered tracked types This checks the type of the given object against the registered tracked types. When a match is found, the given object will be converted to the tracked type, its parent set to the provided parent, and returned. If its type does not occur in the registered types mapping, the object is returned unchanged. """ replacement_type = cls._type_mapping.get(type(obj)) if replacement_type is not None: new = replacement_type(obj) new.parent = parent return new return obj
python
def convert(cls, obj, parent): """Converts objects to registered tracked types This checks the type of the given object against the registered tracked types. When a match is found, the given object will be converted to the tracked type, its parent set to the provided parent, and returned. If its type does not occur in the registered types mapping, the object is returned unchanged. """ replacement_type = cls._type_mapping.get(type(obj)) if replacement_type is not None: new = replacement_type(obj) new.parent = parent return new return obj
[ "def", "convert", "(", "cls", ",", "obj", ",", "parent", ")", ":", "replacement_type", "=", "cls", ".", "_type_mapping", ".", "get", "(", "type", "(", "obj", ")", ")", "if", "replacement_type", "is", "not", "None", ":", "new", "=", "replacement_type", "(", "obj", ")", "new", ".", "parent", "=", "parent", "return", "new", "return", "obj" ]
Converts objects to registered tracked types This checks the type of the given object against the registered tracked types. When a match is found, the given object will be converted to the tracked type, its parent set to the provided parent, and returned. If its type does not occur in the registered types mapping, the object is returned unchanged.
[ "Converts", "objects", "to", "registered", "tracked", "types" ]
train
https://github.com/edelooff/sqlalchemy-json/blob/4e5df0d61dc09ed9a52e24ab291a1f1e14aa95cc/sqlalchemy_json/track.py#L56-L71