max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
models.py
unt-libraries/serial-set-inventory
0
12779851
<gh_stars>0 # This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. # # Also note: You'll have to insert the output of 'django-admin sqlcustom [app_label]' # into your database. from __future__ import unicode_literals from django.db import models class Auth(models.Model): username = models.CharField(primary_key=True, max_length=50) password = models.CharField(max_length=32) class_field = models.IntegerField(db_column='class') # Field renamed because it was a Python reserved word. email = models.CharField(max_length=64) instno = models.IntegerField() class Meta: managed = False db_table = 'auth' class AuthGroup(models.Model): name = models.CharField(unique=True, max_length=80) class Meta: managed = False db_table = 'auth_group' class AuthGroupPermissions(models.Model): group = models.ForeignKey(AuthGroup) permission = models.ForeignKey('AuthPermission') class Meta: managed = False db_table = 'auth_group_permissions' unique_together = (('group', 'permission'),) class AuthPermission(models.Model): name = models.CharField(max_length=255) content_type = models.ForeignKey('DjangoContentType') codename = models.CharField(max_length=100) class Meta: managed = False db_table = 'auth_permission' unique_together = (('content_type', 'codename'),) class AuthUser(models.Model): password = models.CharField(max_length=128) last_login = models.DateTimeField(blank=True, null=True) is_superuser = models.IntegerField() username = models.CharField(unique=True, max_length=30) first_name = models.CharField(max_length=30) last_name = models.CharField(max_length=30) email = models.CharField(max_length=254) is_staff = models.IntegerField() is_active = models.IntegerField() date_joined = models.DateTimeField() class Meta: managed = False db_table = 'auth_user' class AuthUserGroups(models.Model): user = models.ForeignKey(AuthUser) group = models.ForeignKey(AuthGroup) class Meta: managed = False db_table = 'auth_user_groups' unique_together = (('user', 'group'),) class AuthUserUserPermissions(models.Model): user = models.ForeignKey(AuthUser) permission = models.ForeignKey(AuthPermission) class Meta: managed = False db_table = 'auth_user_user_permissions' unique_together = (('user', 'permission'),) class DjangoAdminLog(models.Model): action_time = models.DateTimeField() object_id = models.TextField(blank=True, null=True) object_repr = models.CharField(max_length=200) action_flag = models.SmallIntegerField() change_message = models.TextField() content_type = models.ForeignKey('DjangoContentType', blank=True, null=True) user = models.ForeignKey(AuthUser) class Meta: managed = False db_table = 'django_admin_log' class DjangoContentType(models.Model): app_label = models.CharField(max_length=100) model = models.CharField(max_length=100) class Meta: managed = False db_table = 'django_content_type' unique_together = (('app_label', 'model'),) class DjangoMigrations(models.Model): app = models.CharField(max_length=255) name = models.CharField(max_length=255) applied = models.DateTimeField() class Meta: managed = False db_table = 'django_migrations' class DjangoSession(models.Model): session_key = models.CharField(primary_key=True, max_length=40) session_data = models.TextField() expire_date = models.DateTimeField() class Meta: managed = False db_table = 'django_session' class Institutions(models.Model): instno = models.AutoField(primary_key=True) institution = models.CharField(max_length=255) library = models.CharField(max_length=255) address1 = models.CharField(max_length=255) address2 = models.CharField(max_length=255) city = models.CharField(max_length=255) st = models.CharField(max_length=255) zip = models.CharField(max_length=255) depno = models.CharField(max_length=255) genphone = models.CharField(db_column='genPhone', max_length=255) # Field name made lowercase. genemail = models.CharField(db_column='genEmail', max_length=255) # Field name made lowercase. dateinventory = models.CharField(db_column='dateInventory', max_length=255) # Field name made lowercase. class Meta: managed = False db_table = 'institutions' class Inventory(models.Model): newid = models.AutoField(primary_key=True) instno = models.IntegerField() servolno = models.CharField(max_length=255) held = models.CharField(max_length=4) deptl = models.CharField(max_length=4) note = models.CharField(max_length=255) class Meta: managed = False db_table = 'inventory' class Servols(models.Model): newid = models.IntegerField(primary_key=True) ppno = models.CharField(max_length=255) servolno = models.CharField(max_length=255) orderno = models.CharField(max_length=255) congsess = models.CharField(max_length=255) title = models.TextField() docrptnos = models.CharField(max_length=255) annot = models.CharField(max_length=255) notissued = models.CharField(max_length=255) congress = models.CharField(max_length=255) siteroot = models.CharField(db_column='siteRoot', max_length=255) # Field name made lowercase. class Meta: managed = False db_table = 'servols' class SsiCongress(models.Model): congress_number = models.IntegerField() begin_date = models.DateField(blank=True, null=True) end_date = models.DateField(blank=True, null=True) class Meta: managed = False db_table = 'ssi_congress' class SsiDocumenttype(models.Model): house = models.CharField(max_length=2) document_type = models.CharField(max_length=100) document_name = models.CharField(unique=True, max_length=106) class Meta: managed = False db_table = 'ssi_documenttype' class SsiInstitution(models.Model): institution_name = models.CharField(max_length=255) library_name = models.CharField(max_length=255) address_2 = models.CharField(max_length=255) city = models.CharField(max_length=255) state = models.CharField(max_length=2) zip_code = models.CharField(max_length=10) latitude = models.DecimalField(max_digits=9, decimal_places=6) longitude = models.DecimalField(max_digits=9, decimal_places=6) depository_number = models.CharField(max_length=255) phone_number = models.CharField(max_length=20) email_address = models.CharField(max_length=254) date_inventoried = models.DateField() hidden = models.IntegerField() address_1 = models.CharField(max_length=255) class Meta: managed = False db_table = 'ssi_institution' class SsiInventory(models.Model): departmental_edition = models.IntegerField() note = models.CharField(max_length=255) institution = models.ForeignKey(SsiInstitution) volume = models.ForeignKey('SsiVolume') class Meta: managed = False db_table = 'ssi_inventory' class SsiSession(models.Model): session_number = models.CharField(max_length=2) begin_date = models.DateField(blank=True, null=True) end_date = models.DateField(blank=True, null=True) congress = models.ForeignKey(SsiCongress) class Meta: managed = False db_table = 'ssi_session' class SsiVolume(models.Model): serial_number = models.CharField(max_length=255) title = models.CharField(max_length=255) publication_numbers = models.CharField(max_length=255) annotation = models.CharField(max_length=255) not_issued = models.IntegerField() document_type = models.ForeignKey(SsiDocumenttype) session = models.ForeignKey(SsiSession) class Meta: managed = False db_table = 'ssi_volume'
2.046875
2
VectorMessenger/MessengerCore/MessengerBase.py
VectorMessenger/VectorMessenger_Zero
0
12779852
import socket class VMUDPBase: def __init__(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.settimeout(2.0)
2.25
2
inventory/locations/migrations/0002_auto_20170610_1325.py
cnobile2012/inventory
10
12779853
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-06-10 17:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('locations', '0001_initial'), ] operations = [ migrations.AlterField( model_name='locationformat', name='char_definition', field=models.CharField(help_text="Determine the character position definition where alpha='\\a', numeric='\\d', punctuation='\\p', or any hard coded character. ex. \\a\\d\\d\\d could be B001 or \\a@\\d\\d could be D@99.", max_length=250, verbose_name='Format'), ), ]
1.882813
2
library/pimoroni_physical_feather_pins/nRF52840.py
dglaude/physical_feather_pins
2
12779854
<reponame>dglaude/physical_feather_pins<filename>library/pimoroni_physical_feather_pins/nRF52840.py from . import pin_error import microcontroller def pin3(): return microcontroller.pin.P0_31 def pin5(): return microcontroller.pin.P0_04 def pin6(): return microcontroller.pin.P0_05 def pin7(): return microcontroller.pin.P0_30 def pin8(): return microcontroller.pin.P0_28 def pin9(): return microcontroller.pin.P0_02 def pin10(): return microcontroller.pin.P0_03 def pin11(): return microcontroller.pin.P0_14 def pin12(): return microcontroller.pin.P0_13 def pin13(): return microcontroller.pin.P0_15 def pin14(): return microcontroller.pin.P0_24 def pin15(): return microcontroller.pin.P0_25 def pin16(): return microcontroller.pin.P0_10 def pin17(): return microcontroller.pin.P0_12 def pin18(): return microcontroller.pin.P0_11 def pin19(): return microcontroller.pin.P1_08 def pin20(): return microcontroller.pin.P0_07 def pin21(): return microcontroller.pin.P0_26 def pin22(): return microcontroller.pin.P0_27 def pin23(): return microcontroller.pin.P0_06 def pin24(): return microcontroller.pin.P0_08 def pin25(): return microcontroller.pin.P1_09 def init(scope): """Pull the pin definitions into the main module namespace""" for key in globals().keys(): if key.startswith('pin'): scope[key] = globals()[key]
2.21875
2
src/visualizations/images.py
MatanDanos/AttnGAN-v1.1
2
12779855
# This file will implement images import os from skimage.io import imsave def visualize_image(image, image_name): """Given an image, will save the image to the figures directory Parameters: image: a [N,M,3] tensor filename (str): name of the image """ image_path = os.path.join("../figures", image_name + ".jpg") print(image_path) imsave(image_path, image)
3.234375
3
point/make_npz_for_chainercv_upload.py
yuyu2172/coco-evaluation
1
12779856
import pickle import numpy as np with open('data/fake.pkl', 'rb') as f: points, labels, scores, keys = pickle.load(f) with open('data/fake_gt.pkl', 'rb') as f: gt_points, gt_bboxes, gt_labels, gt_areas, gt_crowdeds = pickle.load(f) gt_points_yx = [] gt_point_is_valids = [] for gt_point in gt_points: gt_point_yx = [] gt_point_is_valid = [] for pnt in gt_point: gt_point_yx.append(pnt[:, :2]) gt_point_is_valid.append(pnt[:, 2]) gt_points_yx.append(gt_point_yx) gt_point_is_valids.append(gt_point_is_valid) points_yx = [] for point in points: point_yx = [] for pnt in point: point_yx.append(pnt[:, :2]) points_yx.append(point_yx) np.savez('eval_point_coco_dataset_2019_02_18.npz', points=gt_points_yx, is_valids=gt_point_is_valids, bboxes=gt_bboxes, labels=gt_labels, areas=gt_areas, crowdeds=gt_crowdeds) np.savez('eval_point_coco_result_2019_02_18.npz', points=points_yx, scores=scores, labels=labels,)
2.328125
2
live-coding/L03/line_intersection.py
patricklam/stqam-2017
30
12779857
<gh_stars>10-100 class LineSegment: def __init__(self, x1, x2): self.x1 = x1; self.x2 = x2; # this code was found by <NAME> on stackoverflow: # http://stackoverflow.com/questions/306316/determine-if-two-rectangles-overlap-each-other?rq=1 def intersect(a, b): return (a.x1 < b.x2) & (a.x2 > b.x1);
2.8125
3
guillotina_client/tests/conftest.py
guillotinaweb/guillotina_client
0
12779858
# -*- coding: utf-8 -*- pytest_plugins = [ 'guillotina_client.tests.fixtures', 'guillotina.tests.fixtures', ]
0.992188
1
docs/examples/container/joyent/instantiate_driver.py
rgharris/libcloud
0
12779859
<gh_stars>0 from libcloud.container.types import Provider from libcloud.container.providers import get_driver cls = get_driver(Provider.JOYENT) conn = cls( host="us-east-1.docker.joyent.com", port=2376, key_file="key.pem", cert_file="~/.sdc/docker/admin/ca.pem", ) conn.list_images()
1.640625
2
modules/ravestate/testfixtures.py
Roboy/diact
28
12779860
import pytest from reggol import strip_prefix from testfixtures import LogCapture from ravestate import * DEFAULT_MODULE_NAME = 'module' DEFAULT_PROPERTY_NAME = 'property' DEFAULT_PROPERTY_ID = f"{DEFAULT_MODULE_NAME}:{DEFAULT_PROPERTY_NAME}" DEFAULT_PROPERTY_VALUE = 'Kruder' DEFAULT_PROPERTY_CHANGED = f"{DEFAULT_PROPERTY_ID}:changed" NEW_PROPERTY_VALUE = 'Dorfmeister' DEFAULT_PROPERTY = Property(name=DEFAULT_PROPERTY_NAME, default_value=DEFAULT_PROPERTY_VALUE) DEFAULT_PROPERTY.set_parent_path(DEFAULT_MODULE_NAME) SIGNAL_A = SignalRef(f"{DEFAULT_MODULE_NAME}:a") SIGNAL_B = SignalRef(f"{DEFAULT_MODULE_NAME}:b") SIGNAL_C = SignalRef(f"{DEFAULT_MODULE_NAME}:c") SIGNAL_D = SignalRef(f"{DEFAULT_MODULE_NAME}:d") @pytest.fixture def state_fixture(mocker): @state(write=(DEFAULT_PROPERTY,), read=(DEFAULT_PROPERTY,)) def state_mock_fn(ctx): ctx[DEFAULT_PROPERTY] = "test" state_mock_fn.module_name = DEFAULT_MODULE_NAME return state_mock_fn @pytest.fixture def state_signal_a_fixture(mocker): @state(read=(DEFAULT_PROPERTY,), signal=SIGNAL_A) def state_mock_a_fn(ctx): pass state_mock_a_fn.module_name = DEFAULT_MODULE_NAME return state_mock_a_fn @pytest.fixture def state_signal_b_fixture(mocker): @state(signal=SIGNAL_B, cond=SIGNAL_A) def state_mock_b_fn(ctx): pass state_mock_b_fn.module_name = DEFAULT_MODULE_NAME return state_mock_b_fn @pytest.fixture def state_signal_c_fixture(mocker): @state(signal=SIGNAL_C, cond=SIGNAL_A) def state_mock_c_fn(ctx): pass state_mock_c_fn.module_name = DEFAULT_MODULE_NAME return state_mock_c_fn @pytest.fixture def state_signal_d_fixture(mocker): @state(signal=SIGNAL_D, cond=SIGNAL_B | SIGNAL_C) def state_mock_c_fn(ctx): pass state_mock_c_fn.module_name = DEFAULT_MODULE_NAME return state_mock_c_fn @pytest.fixture def context_fixture(mocker): return Context() @pytest.fixture def context_with_property_fixture(mocker, context_fixture) -> Context: context_fixture.add_prop(prop=DEFAULT_PROPERTY) mocker.patch.object(context_fixture, 'add_prop') return context_fixture @pytest.fixture def context_with_property_and_state_fixture(mocker, context_with_property_fixture, state_fixture): context_with_property_fixture.add_state(st=state_fixture) mocker.patch.object(context_with_property_fixture, 'add_state') return context_with_property_fixture @pytest.fixture def context_wrapper_fixture(context_with_property_fixture, state_fixture): return ContextWrapper(ctx=context_with_property_fixture, state=state_fixture) @pytest.fixture def activation_fixture(state_fixture: State, context_with_property_and_state_fixture: Context): return Activation(state_fixture, context_with_property_and_state_fixture) @pytest.fixture def activation_fixture_fallback(activation_fixture: Activation): activation_fixture.state_to_activate.write_props = None return activation_fixture @pytest.fixture def spike_fixture(): return Spike(sig=DEFAULT_PROPERTY_CHANGED) @pytest.fixture def triple_fixture(mocker): token_mock = mocker.Mock() token_mock.children = () from ravestate_nlp import Triple return Triple(token_mock, token_mock, token_mock)
2.015625
2
py_local_maxima/cpu.py
benhollar/py-local-maxima
0
12779861
from scipy.ndimage.filters import maximum_filter as _max_filter from scipy.ndimage.morphology import binary_erosion as _binary_erosion from skimage.feature import peak_local_max def detect_skimage(image, neighborhood, threshold=1e-12): """Detect peaks using a local maximum filter (via skimage) Parameters ---------- image : numpy.ndarray (2D) The imagery to find the local maxima of neighborhood : numpy.ndarray (2D) A boolean matrix specifying a scanning window for maxima detection. The neigborhood size is implicitly defined by the matrix dimensions. threshold : float The minimum acceptable value of a peak Returns ------- numpy.ndarray (2D) A boolean matrix specifying maxima locations (True) and background locations (False) """ return peak_local_max(image, footprint=neighborhood, threshold_abs=threshold, indices=False) def detect_maximum_filter(image, neighborhood, threshold=1e-12): """Detect peaks using a local maximum filter Code courtesy https://stackoverflow.com/a/3689710 (adapted slightly). Parameters ---------- image : numpy.ndarray (2D) The imagery to find the local maxima of neighborhood : numpy.ndarray (2D) A boolean matrix specifying a scanning window for maxima detection. The neigborhood size is implicitly defined by the matrix dimensions. threshold : float The minimum acceptable value of a peak Returns ------- numpy.ndarray (2D) A boolean matrix specifying maxima locations (True) and background locations (False) """ # Apply the local maximum filter, then remove any background (below # threshold) values from our result. detected_peaks = _max_filter(image, footprint=neighborhood) == image detected_peaks[image < threshold] = False return detected_peaks
3.359375
3
eval_synthesis_quality.py
CJWBW/image2video-synthesis-using-cINNs
85
12779862
<gh_stars>10-100 import argparse, os, torch, random from tqdm import tqdm import lpips, numpy as np from data.get_dataloder import get_eval_loader from get_model import Model from metrics.FVD.evaluate_FVD import compute_fvd from metrics.FID.FID_Score import calculate_FID from metrics.FID.inception import InceptionV3 from metrics.DTFVD import DTFVD_Score from utils.auxiliaries import set_seed parser = argparse.ArgumentParser() parser.add_argument('-gpu', type=str, required=True, help="Define GPU on which to run") parser.add_argument('-dataset', type=str) parser.add_argument('-texture', type=str, required=False, help='Specify texture when using DTDB') parser.add_argument('-ckpt_path', type=str, required=False, help="Specify path if outside of repo for chkpt") parser.add_argument('-data_path', type=str, required=False, help="Path to dataset arranged as described in readme") parser.add_argument('-seq_length', type=int, default=16) parser.add_argument('-bs', type=int, default=6, help='Batchsize') parser.add_argument('-FID', type=bool) parser.add_argument('-FVD', type=bool) parser.add_argument('-DTFVD', type=bool) parser.add_argument('-LPIPS', type=bool) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu set_seed(249) ## Load model from config path_ds = f'{args.dataset}/{args.texture}/' if args.dataset == 'DTDB' else f'{args.dataset}' ckpt_path = f'./models/{path_ds}/stage2/' if not args.ckpt_path else args.ckpt_path model = Model(ckpt_path, args.seq_length) # set up dataloader dataset = get_eval_loader(args.dataset, args.seq_length + 1, args.data_path, model.config) dataloader = torch.utils.data.DataLoader(dataset, num_workers=10, batch_size=args.bs, shuffle=False) ## Generate samples seq_real, seq_fake = [], [] with torch.no_grad(): for batch_idx, file_dict in enumerate(tqdm(dataloader)): seq = file_dict["seq"].type(torch.FloatTensor).cuda() seq_gen = model(seq[:, 0]) if args.dataset == 'bair': ## Following https://arxiv.org/abs/1812.01717 the evaluation sequence length is of length 16 after ## concatenating the conditioning (in our case a single frame) seq_gen = torch.cat((seq[:, :1], seq_gen[:, :-1]), dim=1) seq_real.append(seq[:, :-1].detach().cpu()) elif args.dataset == 'iPER': ## For fair comparison with other methods which condition on multiple frames we concatenated only the last ## conditioning frame to the sequence and used all generated frames for computing FVD on iPER seq_gen = torch.cat((seq[:, :1], seq_gen), dim=1) seq_real.append(seq.detach().cpu()) else: ## On dynamic textures we evaluated FVD without concatenating GT frames to the generated one seq_real.append(seq[:, :-1].detach().cpu()) seq_fake.append(seq_gen.detach().cpu()) seq2 = torch.cat(seq_real, 0) seq1 = torch.cat(seq_fake, 0) del model torch.cuda.empty_cache() assert seq2.shape == seq1.shape if args.FID or args.LPIPS: pd_imgs = seq1.reshape(-1, *seq1.shape[2:]) gt_imgs = seq2.reshape(-1, *seq2.shape[2:]) if args.FID: print('Evaluate FID') inception = InceptionV3() batch_size = 50 FID, _ = calculate_FID(inception, pd_imgs, gt_imgs, batch_size, 2048) del inception torch.cuda.empty_cache() print(f'FID score of {FID}') if args.LPIPS: print('Evaluate LPIPS') LPIPS = 0 lpips_vgg = lpips.LPIPS(net='vgg').cuda() with torch.no_grad(): for i in range(pd_imgs.size(0)//10): pd_batch, gt_batch = pd_imgs[i*10:(i+1)*10], gt_imgs[i*10:(i+1)*10] LPIPS += lpips_vgg(pd_batch.cuda(), gt_batch.cuda()).mean().cpu().item() _ = lpips_vgg.cpu() LPIPS /= pd_imgs.size(0)//10 del lpips_vgg torch.cuda.empty_cache() print(f'LPIPS score of {LPIPS}') ## Evaluate Dynamic Texture FVD score if args.DTFVD: print('Evaluate DTFVD') batch_size = 40 if args.seq_length > 16: I3D = DTFVD_Score.load_model(length=32).cuda() DTFVD = DTFVD_Score.calculate_FVD32(I3D, seq1, seq2, batch_size, True) else: I3D = DTFVD_Score.load_model(length=16).cuda() DTFVD = DTFVD_Score.calculate_FVD(I3D, seq1, seq2, batch_size, True) del I3D torch.cuda.empty_cache() print(f'DTFVD score of {DTFVD}') if args.FVD: print('Evaluate FVD') seq1 = seq1[:seq1.size(0) // 16 * 16].reshape(-1, 16, seq1.size(1), 3, seq1.size(-1), seq1.size(-1)) seq2 = seq2[:seq2.size(0) // 16 * 16].reshape(-1, 16, seq2.size(1), 3, seq2.size(-1), seq2.size(-1)) fvd = compute_fvd(seq1, seq2) print(f'FVD score of {fvd}')
1.9375
2
uptick/markets.py
chainsquad/uptick
35
12779863
<gh_stars>10-100 import click from click_datetime import Datetime from datetime import datetime, timedelta from bitshares.market import Market from bitshares.amount import Amount from bitshares.account import Account from bitshares.price import Price, Order from .decorators import onlineChain, unlockWallet, online, unlock from .ui import print_tx, print_table, format_table from .main import main, config @main.command() @click.pass_context @onlineChain @click.argument("market", nargs=1) @click.option( "--limit", type=int, help="Limit number of elements", default=10 ) # fixme add start and stop time @click.option( "--start", help="Start datetime '%Y-%m-%d %H:%M:%S'", type=Datetime(format="%Y-%m-%d %H:%M:%S"), ) @click.option( "--stop", type=Datetime(format="%Y-%m-%d %H:%M:%S"), help="Stop datetime '%Y-%m-%d %H:%M:%S'", default=datetime.utcnow(), ) def trades(ctx, market, limit, start, stop): """ List trades in a market """ market = Market(market, bitshares_instance=ctx.bitshares) t = [["time", "quote", "base", "price"]] for trade in market.trades(limit, start=start, stop=stop): t.append( [ str(trade["time"]), str(trade["quote"]), str(trade["base"]), "{:f} {}/{}".format( trade["price"], trade["base"]["asset"]["symbol"], trade["quote"]["asset"]["symbol"], ), ] ) print_table(t) @main.command() @click.pass_context @onlineChain @click.argument("market", nargs=1) def ticker(ctx, market): """ Show ticker of a market """ market = Market(market, bitshares_instance=ctx.bitshares) ticker = market.ticker() t = [["key", "value"]] for key in ticker: t.append([key, str(ticker[key])]) print_table(t) @main.command() @click.pass_context @onlineChain @click.argument("orders", type=str, nargs=-1) @click.option( "--account", default=config["default_account"], type=str, help="Account to use for this action", ) @unlockWallet def cancel(ctx, orders, account): """ Cancel one or multiple orders """ print_tx(ctx.bitshares.cancel(orders, account=account)) @main.command() @click.pass_context @onlineChain @click.argument("market", nargs=1) def orderbook(ctx, market): """ Show the orderbook of a particular market """ market = Market(market, bitshares_instance=ctx.bitshares) orderbook = market.orderbook() ta = {} ta["bids"] = [["quote", "sum quote", "base", "sum base", "price"]] cumsumquote = Amount(0, market["quote"]) cumsumbase = Amount(0, market["base"]) for order in orderbook["bids"]: cumsumbase += order["base"] cumsumquote += order["quote"] ta["bids"].append( [ str(order["quote"]), str(cumsumquote), str(order["base"]), str(cumsumbase), "{:f} {}/{}".format( order["price"], order["base"]["asset"]["symbol"], order["quote"]["asset"]["symbol"], ), ] ) ta["asks"] = [["price", "base", "sum base", "quote", "sum quote"]] cumsumquote = Amount(0, market["quote"]) cumsumbase = Amount(0, market["base"]) for order in orderbook["asks"]: cumsumbase += order["base"] cumsumquote += order["quote"] ta["asks"].append( [ "{:f} {}/{}".format( order["price"], order["base"]["asset"]["symbol"], order["quote"]["asset"]["symbol"], ), str(order["base"]), str(cumsumbase), str(order["quote"]), str(cumsumquote), ] ) t = [["bids", "asks"]] t.append([format_table(ta["bids"]), format_table(ta["asks"])]) print_table(t) @main.command() @click.pass_context @onlineChain @click.argument("buy_amount", type=float) @click.argument("buy_asset", type=str) @click.argument("price", type=float) @click.argument("sell_asset", type=str) @click.option("--order-expiration", default=None) @click.option( "--account", default=config["default_account"], type=str, help="Account to use for this action", ) @unlockWallet def buy(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account): """ Buy a specific asset at a certain rate against a base asset """ amount = Amount(buy_amount, buy_asset) price = Price( price, base=sell_asset, quote=buy_asset, bitshares_instance=ctx.bitshares ) print_tx( price.market.buy(price, amount, account=account, expiration=order_expiration) ) @main.command() @click.pass_context @onlineChain @click.argument("sell_amount", type=float) @click.argument("sell_asset", type=str) @click.argument("price", type=float) @click.argument("buy_asset", type=str) @click.option("--order-expiration", default=None) @click.option( "--account", default=config["default_account"], help="Account to use for this action", type=str, ) @unlockWallet def sell(ctx, sell_amount, sell_asset, price, buy_asset, order_expiration, account): """ Sell a specific asset at a certain rate against a base asset """ amount = Amount(sell_amount, sell_asset) price = Price( price, quote=sell_asset, base=buy_asset, bitshares_instance=ctx.bitshares ) print_tx( price.market.sell(price, amount, account=account, expiration=order_expiration) ) @main.command() @click.pass_context @onlineChain @click.argument("account", type=str) def openorders(ctx, account): """ List open orders of an account """ account = Account( account or config["default_account"], bitshares_instance=ctx.bitshares ) t = [["Price", "Quote", "Base", "ID"]] for o in account.openorders: t.append( [ "{:f} {}/{}".format( o["price"], o["base"]["asset"]["symbol"], o["quote"]["asset"]["symbol"], ), str(o["quote"]), str(o["base"]), o["id"], ] ) print_table(t) @main.command() @click.option("--account", default=None) @click.argument("market") @click.pass_context @online @unlock def cancelall(ctx, market, account): """ Cancel all orders of an account in a market """ market = Market(market) ctx.bitshares.bundle = True market.cancel([x["id"] for x in market.accountopenorders(account)], account=account) print_tx(ctx.bitshares.txbuffer.broadcast()) @main.command() @click.option("--account", default=None) @click.argument("market") @click.argument("side", type=click.Choice(["buy", "sell"])) @click.argument("min", type=float) @click.argument("max", type=float) @click.argument("num", type=float) @click.argument("total", type=float) @click.option("--order-expiration", default=None) @click.pass_context @online @unlock def spread(ctx, market, side, min, max, num, total, order_expiration, account): """ Place multiple orders \b :param str market: Market pair quote:base (e.g. USD:BTS) :param str side: ``buy`` or ``sell`` quote :param float min: minimum price to place order at :param float max: maximum price to place order at :param int num: Number of orders to place :param float total: Total amount of quote to use for all orders :param int order_expiration: Number of seconds until the order expires from the books """ from tqdm import tqdm from numpy import linspace market = Market(market) ctx.bitshares.bundle = True if min < max: space = linspace(min, max, num) else: space = linspace(max, min, num) func = getattr(market, side) for p in tqdm(space): func(p, total / float(num), account=account, expiration=order_expiration) print_tx(ctx.bitshares.txbuffer.broadcast()) @main.command() @click.pass_context @onlineChain @click.argument("amount", type=float) @click.argument("symbol", type=str) @click.option("--ratio", default=None, help="Collateral Ratio", type=float) @click.option( "--account", default=config["default_account"], help="Account to use for this action", type=str, ) @unlockWallet def borrow(ctx, amount, symbol, ratio, account): """ Borrow a bitasset/market-pegged asset """ from bitshares.dex import Dex dex = Dex(bitshares_instance=ctx.bitshares) print_tx( dex.borrow(Amount(amount, symbol), collateral_ratio=ratio, account=account) ) @main.command() @click.pass_context @onlineChain @click.argument("symbol", type=str) @click.option("--ratio", default=2, help="Collateral Ratio", type=float) @click.option( "--account", default=config["default_account"], help="Account to use for this action", type=str, ) @unlockWallet def updateratio(ctx, symbol, ratio, account): """ Update the collateral ratio of a call positions """ from bitshares.dex import Dex dex = Dex(bitshares_instance=ctx.bitshares) print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account)) @main.command() @click.pass_context @onlineChain @click.argument("symbol", type=str) @click.argument("amount", type=float) @click.option( "--account", default=config["default_account"], type=str, help="Account to use for this action", ) @unlockWallet def fundfeepool(ctx, symbol, amount, account): """ Fund the fee pool of an asset """ print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account)) @main.command() @click.pass_context @onlineChain @click.argument("collateral_amount", type=float) @click.argument("collateral_symbol", type=str) @click.argument("debt_amount", type=float) @click.argument("debt_symbol", type=str) @click.option( "--account", default=config["default_account"], type=str, help="Account to use for this action", ) @unlockWallet def bidcollateral( ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount, account ): """ Bid for collateral in the settlement fund """ print_tx( ctx.bitshares.bid_collateral( Amount(collateral_amount, collateral_symbol), Amount(debt_amount, debt_symbol), account=account, ) ) @main.command() @click.pass_context @onlineChain @click.argument("amount", type=float) @click.argument("symbol", type=str) @click.option( "--account", default=config["default_account"], type=str, help="Account to use for this action", ) @unlockWallet def settle(ctx, symbol, amount, account): """ Fund the fee pool of an asset """ print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account=account))
2.46875
2
python/merge_files.py
caleberi/LeetCode
1
12779864
<reponame>caleberi/LeetCode # Objective # Merge a set of sorted files of different length into a single sorted file. # We need to find an optimal solution, where the resultant file will be generated in minimum time. # Approach # If the number of sorted files are given, there are many ways to merge them into a single sorted file. # This merge can be performed pair wise.To merge a m-record file and a n-record file requires possibly m+n record moves, # the optimal choice being, merge the two smallest files together at each step (greedy approach). from os import stat,path,getcwd import os from sys import getfilesystemencoding from collections import deque def resolve_os_encoding(path): return os.fsdecode(path) if getfilesystemencoding() != "utf-8" else path def get_file_info(filename): file_path = path.join(getcwd(),filename) file_stat = stat(file_path) word_count = 0 file_size = file_stat.st_size file = open(file_path) for line in file.readlines(): word_count+=len(line.split()) file.close() return (word_count,file_size,file_path) def get_file_stats(file_list): stats = [] for file in file_list: stats.append(get_file_info(file)) return stats def merge_files(file_list,dest_file): file_stats = get_file_stats(file_list) file_stats = sorted(file_stats,key=lambda s: s[1],reverse=True) queue = deque(file_stats) while len(queue) > 1: largest = queue.popleft() smallest = queue.pop() with open(largest[2],"a") as fs: small_file = open(smallest[2]) fs.write("\n") fs.writelines(small_file.readlines()) small_file.close() os.unlink(smallest[2]) queue.appendleft(get_file_info(largest[2])) if __name__ == "__main__": merge_files([ "merge_files/a.txt", "merge_files/b.txt", "merge_files/c.txt"] ,"merge_files/result.txt" )
3.921875
4
test/automation/automate.py
agupta54/ulca
3
12779865
<filename>test/automation/automate.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 4 17:35:27 2021. @author: dhiru579 @ Tarento """ import os from argparse import ArgumentParser import config import driver_script from core import core_all as core from test import test_all as test from dataset import dataset_all as dataset from model import model_all as model if __name__ == "__main__": parser = ArgumentParser() # flag-arguments parser.add_argument("-u", "--update-schema", help="updating schema", action="store_true") parser.add_argument("-c", "--chart", help="gets chart data", action="store_true") parser.add_argument("-ta","--test-all", help="performs website testing", action="store_true") parser.add_argument("-tp","--test-part", help="performs website testing", action="store_true") parser.add_argument("-l", "--login", help="checking credentials", action="store_true") parser.add_argument("-d", "--dataset", help="flag for dataset functions", action="store_true") parser.add_argument("-m", "--model", help="flag for model functions", action="store_true") parser.add_argument("--publish", help="publish the model", action="store_true") parser.add_argument("--unpublish", help="unpublish the model", action="store_true") parser.add_argument("--dont-skip", action="store_true", help="stops skipping status check",) # value-argumenst parser.add_argument("-n", "--name", help="Dataset/Model Name", type=str, default="") parser.add_argument("-url", "--url", help="Dataset/Model URL", type=str, default="") parser.add_argument("-t", "--type", help="Dataset/Model Type", type=str, default="") parser.add_argument("-i", "--input", help="input csv/jsonfile,urls,seentence", type=str, default="",) parser.add_argument("-g","--group",help="group chart by ['domain', 'collection', 'submitter']",type=str,default="",) parser.add_argument("-src", "--source", help="source language", type=str, default="") parser.add_argument("-tgt", "--target", help="target languages", type=str, default="") parser.add_argument("--domain", help="domain for searched dataset", type=str, default="") parser.add_argument("-b", "--benchmark", help="Benchamrk Name", type=str, default="") parser.add_argument("--metric", help="Metric Name", type=str, default="") parser.add_argument("--list", help="listing models,benchmark,metrics", type=str, default="") args = parser.parse_args() update_schema_flag = args.update_schema test_a_flag = args.test_all test_p_flag = args.test_part chart_flag = args.chart groupby = args.group login_flag = args.login dataset_flag = args.dataset model_flag = args.model publish_flag = args.publish unpublish_flag = args.unpublish dont_skip_flag = args.dont_skip inp = args.input.strip() name = args.name.strip() url = args.url.strip() typex = args.type.lower().replace(" ", "-").strip() domain = args.domain.lower().replace(" ", "-").strip() benchmark = args.benchmark.strip() metric = args.metric.strip() src = args.source.lower() tgt = args.target.lower().split(",") # spliting str into list tgt = list(filter(None, tgt)) # filtering list listby = args.list.lower() # enabling-terminal-color-in-windows-only if os.name.lower() == "nt": os.system("color") # updating schema if update_schema_flag: core.update_schema(config.ULCA_SCHEMAFILE_URL, config.SCHEMA_FILENAME) core.exit_program() # loading the driver driver = driver_script.load_driver(config.AUTOMATION_BROWSER) # getting chart data if chart_flag: if typex.find("-corpus") < 0: typex += "-corpus" driver = core.get_chart_data(typex, groupby, src, tgt, driver) driver_script.close_driver(driver) core.exit_program() # running public-web-test script if test_a_flag: driver = test.perform_testing_all(core.perform_login,driver) driver_script.close_driver(driver) core.exit_program() if test_p_flag: driver = test.perform_testing_partly(core.perform_login,driver) driver_script.close_driver(driver) core.exit_program() login_status = False # if just login then quit if login_flag: login_status, driver = core.perform_login(driver) driver_script.close_driver(driver) core.exit_program() # dataset related processes elif dataset_flag: login_status, driver = core.perform_login(driver) # adding -corpus to the dataset-type if typex.find("-corpus") < 0: typex += "-corpus" if name != "": # submit-dataset driver = dataset.perform_submit_get_status(name, url, driver) elif inp != "": # submit-dataset-using-csv driver = dataset.perform_upload_with_csv(inp, driver, d_skip=dont_skip_flag) else: # search-and-download-dataset driver = dataset.perform_search_and_download(typex, tgt, src, domain, driver) # model related processes elif model_flag: if typex != "": driver = model.perform_translate(name, typex, inp, driver) else: login_status, driver = core.perform_login(driver) if inp != "": status, driver = model.perform_model_submit(name, inp, driver) elif listby != "": driver = model.list_public_model_data(True,driver) elif (unpublish_flag or publish_flag): #status and driver = model.run_publish_task(name, publish_flag, unpublish_flag, driver) else: driver = model.run_benchmark(name, benchmark, metric, driver) else: core.print_no_flag_found() driver_script.close_driver(driver)
2.125
2
model.py
RSMagneto/MSIT
1
12779866
<filename>model.py import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from CT import CT class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, padding=0, dilation=1, isrelu=True): super(BasicConv2d, self).__init__() if kernel_size == 1: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False) else: self.conv = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False) ) self.relu = nn.LeakyReLU(0.2, inplace=True) self.isrelu = isrelu def forward(self, x): x = self.conv(x) if self.isrelu: x = self.relu(x) return x class FoldAttention(nn.Module): def __init__(self, indim=64, patch_size=8, image_size=64, num_heads=32,qkv_bias=False): super(FoldAttention, self).__init__() self.dim = patch_size ** 2 * indim self.norm_q, self.norm_k_pan, self.norm_v_pan = nn.LayerNorm(self.dim*2), nn.LayerNorm(self.dim), nn.LayerNorm(self.dim) self.norm_k_ms, self.norm_v_ms = nn.LayerNorm(self.dim), nn.LayerNorm(self.dim) self.to_q = nn.Linear(self.dim*2, self.dim//4, bias=qkv_bias) self.to_k_pan = nn.Linear(self.dim, self.dim//4, bias=qkv_bias) self.to_v_pan = nn.Linear(self.dim, self.dim, bias=qkv_bias) self.to_k_ms = nn.Linear(self.dim, self.dim//4, bias=qkv_bias) self.to_v_ms = nn.Linear(self.dim, self.dim, bias=qkv_bias) self.feat2patch = torch.nn.Unfold(kernel_size=patch_size, padding=0, stride=patch_size) self.patch2feat = torch.nn.Fold(output_size=(image_size, image_size), kernel_size=patch_size, padding=0, stride=patch_size) self.scale = (self.dim / num_heads) ** (-0.5) self.image_size = image_size self.heads = num_heads self.proj1 = nn.Linear(self.dim, self.dim) self.proj2 = nn.Linear(self.dim, self.dim) def get_qkv(self, pan, ms): q = torch.cat([pan,ms],1) unfold_q = self.feat2patch(q) unfold_q = rearrange(unfold_q, "b c n -> b n c") unfold_q = self.to_q(self.norm_q(unfold_q)) q = rearrange(unfold_q, "b n (g c) -> b g n c", g=self.heads) unfold_k_pan = self.feat2patch(pan) unfold_k_pan = rearrange(unfold_k_pan, "b c n -> b n c") unfold_k_pan = self.to_k_pan(self.norm_k_pan(unfold_k_pan)) k_pan = rearrange(unfold_k_pan, "b n (g c) -> b g n c", g=self.heads) unfold_v_pan = self.feat2patch(pan) unfold_v_pan = rearrange(unfold_v_pan, "b c n -> b n c") unfold_v_pan = self.to_v_pan(self.norm_v_pan(unfold_v_pan)) v_pan = rearrange(unfold_v_pan, "b n (g c) -> b g n c", g=self.heads) unfold_k_ms = self.feat2patch(ms) unfold_k_ms = rearrange(unfold_k_ms, "b c n -> b n c") unfold_k_ms = self.to_k_ms(self.norm_k_ms(unfold_k_ms)) k_ms = rearrange(unfold_k_ms, "b n (g c) -> b g n c", g=self.heads) unfold_v_ms = self.feat2patch(ms) unfold_v_ms = rearrange(unfold_v_ms, "b c n -> b n c") unfold_v_ms = self.to_v_ms(self.norm_v_ms(unfold_v_ms)) v_ms = rearrange(unfold_v_ms, "b n (g c) -> b g n c", g=self.heads) return q, k_pan, v_pan, k_ms, v_ms def forward(self, pan, ms): q, k_pan, v_pan, k_ms, v_ms = self.get_qkv(pan, ms) attn_pan = (q @ k_pan.transpose(-2, -1)) * self.scale attn_ms = (q @ k_ms.transpose(-2, -1)) * self.scale attn_pan = F.softmax(attn_pan, dim=-1) attn_ms = F.softmax(attn_ms, dim=-1) out_pan = (attn_pan @ v_pan).transpose(1, 2) out_ms = (attn_ms @ v_ms).transpose(1, 2) out_pan = rearrange(out_pan, "b q g c -> b (g c) q") out_ms = rearrange(out_ms, "b q g c -> b (g c) q") out_pan = self.patch2feat(out_pan) out_ms = self.patch2feat(out_ms) out = torch.cat([out_pan+pan, out_ms+ms], 1) return out def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class FusionBlock(torch.nn.Module): def __init__(self, channels, patch_size, image_size): super(FusionBlock, self).__init__() self.fold_attn = FoldAttention(channels, patch_size, image_size) self.conv = BasicConv2d(2 * channels, channels, 1, 1, isrelu=False) def forward(self, x_pan, x_ms): a_cat = self.fold_attn(x_pan, x_ms) out = self.conv(a_cat) return out class Fusion_network(nn.Module): def __init__(self, nC): super(Fusion_network, self).__init__() img_size = [64, 32, 16] patch_size = [4, 4, 1] self.fusion_block1 = FusionBlock(nC[0], patch_size[0], img_size[0]) self.fusion_block2 = FusionBlock(nC[1], patch_size[1], img_size[1]) self.fusion_block3 = FusionBlock(nC[2], patch_size[2], img_size[2]) def forward(self, en_ir, en_vi): f1_0 = self.fusion_block1(en_ir[0], en_vi[0]) f2_0 = self.fusion_block2(en_ir[1], en_vi[1]) f3_0 = self.fusion_block3(en_ir[2], en_vi[2]) return [f1_0, f2_0, f3_0] class tail(nn.Module): def __init__(self, nb_filter, output_nc=4, deepsupervision=True): super(tail, self).__init__() self.deepsupervision = deepsupervision self.nb_filter = nb_filter block = DenseBlock_light self.DB1_1 = block(nb_filter[0], 32) self.DB2_1 = block(nb_filter[0] + nb_filter[1], nb_filter[0]) self.DB3_1 = block(nb_filter[1] + nb_filter[2], nb_filter[1]) self.DB2_2 = block(nb_filter[0] + nb_filter[1], nb_filter[0]) self.conv_out = BasicConv2d(32, output_nc, 1, isrelu=False) self.up4_1 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(self.nb_filter[2], self.nb_filter[2]*4, 3, 1, 0), nn.PixelShuffle(2) ) self.up3_1 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(self.nb_filter[1], self.nb_filter[1]*4, 3, 1, 0), nn.PixelShuffle(2) ) self.up3_2 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(self.nb_filter[1], self.nb_filter[1]*4, 3, 1, 0), nn.PixelShuffle(2) ) self.up2_1 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(self.nb_filter[0], self.nb_filter[0] * 4, 3, 1, 0), nn.PixelShuffle(4) ) self.up2_2 = nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(self.nb_filter[0], self.nb_filter[0] * 4, 3, 1, 0), nn.PixelShuffle(4) ) def forward(self, x4_t, x3_t, x2_t): x2_1 = self.DB2_1(torch.cat([x2_t, self.up3_1(x3_t)], 1)) x3_1 = self.DB3_1(torch.cat([x3_t, self.up4_1(x4_t)], 1)) x2_2 = self.DB2_2(torch.cat([x2_1, self.up3_2(x3_1)], 1)) out = self.conv_out(torch.cat([self.up2_1(x2_1), self.up2_2(x2_2)], 1)) return out class DenseBlock_light(torch.nn.Module): def __init__(self, in_channels, out_channels): super(DenseBlock_light, self).__init__() out_channels_def = int(in_channels / 2) denseblock = [] denseblock += [BasicConv2d(in_channels, out_channels_def), BasicConv2d(out_channels_def, out_channels, 1)] self.denseblock = nn.Sequential(*denseblock) def forward(self, x): out = self.denseblock(x) return out class model(nn.Module): def __init__(self, nb_filter=[64, 128, 256, 512]): super(model, self).__init__() self.msbackbone = CT(in_chans=4) self.panbackbone = CT(in_chans=1) self.fusion_model = Fusion_network(nb_filter) self.decoder = tail(nb_filter) def forward(self, ms, pan): ms_pvt = self.msbackbone(ms) pan_pvt = self.panbackbone(pan) f = self.fusion_model(ms_pvt, pan_pvt) x4_t = f[2] x3_t = f[1] x2_t = f[0] out = self.decoder(x4_t, x3_t, x2_t) return out if __name__ == '__main__': model = model() ms = torch.randn(1, 4, 256, 256) pan = torch.randn(1, 1, 256, 256) prediction = model(ms, pan) print(prediction.size())
2.5625
3
tasks/snli/third_party/datasets/__init__.py
etri-edgeai/nn-comp-discblock
10
12779867
<filename>tasks/snli/third_party/datasets/__init__.py from .snli import * from .multinli import *
1.039063
1
source/campo/op_fieldagents/__init__.py
computationalgeography/campo
2
12779868
<reponame>computationalgeography/campo<gh_stars>1-10 from .operators import * from .operations import *
1.0625
1
make_encode_sets.py
akiss77/rust-url
0
12779869
# Copyright 2013-2014 <NAME>. # # Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or # http://www.apache.org/licenses/LICENSE-2.0> or the MIT license # <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your # option. This file may not be copied, modified, or distributed # except according to those terms. # Run as: python make_encode_sets.py > src/encode_sets.rs print('''\ // Copyright 2013-2014 <NAME>. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Generated by make_encode_sets.py ''') for name, encoded in [ ('SIMPLE', ''), ('QUERY', r''' "#<>`'''), ('DEFAULT', r''' "#<>`?'''), ('USERINFO', r''' "#<>`?@'''), ('PASSWORD', r''' "#<>`?@\/'''), ('USERNAME', r''' "#<>`?@\/:'''), ('FORM_URLENCODED', r''' !"#$%&\'()+,/:;<=>?@[\]^`{|}'''), ]: print( "pub static %s: [&'static str, ..256] = [\n%s\n];\n\n" % (name, '\n'.join( ' ' + ' '.join( '"%s%s",' % ("\\" if chr(b) in '\\"' else "", chr(b)) if 0x20 <= b <= 0x7E and chr(b) not in encoded else '"%%%02X",' % b for b in range(s, s + 8) ) for s in range(0, 256, 8))))
1.992188
2
src/test/latency/hosts/broker.py
acatalfano/distributed-systems-assignment-1
0
12779870
<reponame>acatalfano/distributed-systems-assignment-1<filename>src/test/latency/hosts/broker.py from app import BrokerFactory def __main__() -> None: factory = BrokerFactory() factory.build_broker() if __name__ == '__main__': __main__()
1.578125
2
binary_insertion_sort.py
Vassago55/normal_sort
0
12779871
# -*- coding: utf-8 -*- import random """ 折半插入排序 O(n) = n^2 """ class BinaryInsertion(object): def __init__(self, original_list): self.original_list = original_list def sort(self): length = len(self.original_list) for i in range(1, length): self.binary(start=0, end=i-1, current=i) def binary(self, start, end, current): cursor = int((end + start) / 2) if end != start else end if (end == start) or (cursor == 0) or (self.original_list[current] == self.original_list[cursor]): if self.original_list[current] >= self.original_list[cursor]: self.original_list.insert(cursor+1, self.original_list[current]) else: self.original_list.insert(cursor, self.original_list[current]) del self.original_list[current+1] elif self.original_list[current] > self.original_list[cursor]: self.binary(cursor+1, end, current) elif self.original_list[current] < self.original_list[cursor]: self.binary(start, cursor-1, current) if __name__ == '__main__': my_list = [random.randint(0, 100) for _ in range(0, 10)] print("before sort: {}".format(my_list)) BinaryInsertion(my_list).sort() print("after sort: {}".format(my_list))
3.921875
4
statsmodels/datasets/sunspots/data.py
yarikoptic/statsmodels
34
12779872
<reponame>yarikoptic/statsmodels<filename>statsmodels/datasets/sunspots/data.py """Yearly sunspots data 1700-2008""" __docformat__ = 'restructuredtext' COPYRIGHT = """This data is public domain.""" TITLE = __doc__ SOURCE = """ http://www.ngdc.noaa.gov/stp/solar/solarda3.html The original dataset contains monthly data on sunspot activity in the file ./src/sunspots_yearly.dat. There is also sunspots_monthly.dat. """ DESCRSHORT = """Yearly (1700-2008) data on sunspots from the National Geophysical Data Center.""" DESCRLONG = DESCRSHORT NOTE = """:: Number of Observations - 309 (Annual 1700 - 2008) Number of Variables - 1 Variable name definitions:: SUNACTIVITY - Number of sunspots for each year The data file contains a 'YEAR' variable that is not returned by load. """ from numpy import recfromtxt, array from pandas import Series, DataFrame from statsmodels.datasets.utils import Dataset from os.path import dirname, abspath def load(): """ Load the yearly sunspot data and returns a data class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. Notes ----- This dataset only contains data for one variable, so the attributes data, raw_data, and endog are all the same variable. There is no exog attribute defined. """ data = _get_data() endog_name = 'SUNACTIVITY' endog = array(data[endog_name], dtype=float) dataset = Dataset(data=data, names=[endog_name], endog=endog, endog_name=endog_name) return dataset def load_pandas(): data = DataFrame(_get_data()) # TODO: time series endog = Series(data['SUNACTIVITY'], index=data['YEAR'].astype(int)) dataset = Dataset(data=data, names=list(data.columns), endog=endog, endog_name='volume') return dataset def _get_data(): filepath = dirname(abspath(__file__)) with open(filepath + '/sunspots.csv', 'rb') as f: data = recfromtxt(f, delimiter=",", names=True, dtype=float) return data
2.78125
3
loggerBot/common/utils.py
mcpiroman/jarchiwum-server
0
12779873
<reponame>mcpiroman/jarchiwum-server<filename>loggerBot/common/utils.py import base64 import datetime import re import os def print_with_time(*args): print('[' + datetime.datetime.now().strftime("%H:%M:%S") + ']', *args) def str_2_base64(data, encoding="utf-8"): return str(base64.b64encode(data.encode(encoding)), encoding) def base64_2_str(data, encoding="utf-8"): return str(base64.b64decode(data), encoding) def get_file_paths_in_dir(dir): return [p for p in [os.path.join(dir, p) for p in os.listdir(dir)] if os.path.isfile(p)] def parse_irc_msg(s): """Breaks a message from an IRC server into its tags, prefix, command, and arguments. """ if not s: raise IRCBadMessage("Empty IRC line.") tags = {} if s.startswith("@"): s = s[1:] tags_str, s = s.split(" ", 1) tags = deconstruct_irc_tags(tags_str) prefix = '' trailing = [] if s[0] == ':': prefix, s = s[1:].split(' ', 1) if s.find(' :') != -1: s, trailing = s.split(' :', 1) args = s.split() args.append(trailing) else: args = s.split() command = args.pop(0) return tags, prefix, command, args def deconstruct_irc_tags(tags_str): return {key_value_pair.split("=",1)[0]: unescape_irc_tag_value(key_value_pair.split("=",1)[1]) for key_value_pair in tags_str.split(";")} def construct_irc_tags(items): s = "" is_first_item = True for key, value in items.items(): if not is_first_item: s += ";" s += key + "=" + escape_irc_tag_value(value) is_first_item = False return s def get_irc_user_from_prefix(irc_prefix): return irc_prefix.split("!", 1)[0] IRC_TAG_VALUE_ESCAPE_TRANSLATION = {";": "\\:", " ": "\\s", "\r": "\\r", "\n": "\\n", "\\": "\\\\"} def escape_irc_tag_value(tag_value): mapping = IRC_TAG_VALUE_ESCAPE_TRANSLATION return escape(tag_value, mapping) def unescape_irc_tag_value(tag_value): mapping = {value: key for key, value in IRC_TAG_VALUE_ESCAPE_TRANSLATION.items()} return escape(tag_value, mapping) def escape(s, mapping): return re.sub('({})'.format('|'.join(map(re.escape, mapping.keys()))), lambda m: mapping[m.group()], s)
2.5625
3
snippets/myfft_plot.py
rhishi/python-snippets
0
12779874
<reponame>rhishi/python-snippets import myfft import matplotlib.pyplot as plt import matplotlib.pylab as pl N = 1024 nseries = range(0, 1024) x = range(0, 1024) X = myfft.fft(x) absX = [ abs(v) for v in X ] #plt.plot(nseries, x, nseries, absX) #plt.savefig('myfftplot01.png', format='png') x = [ 1 if i == 100 else 0 for i in range(0, 1024) ] X = myfft.fft(x) absX = [ abs(v) for v in X ] plt.plot(nseries, x, nseries, absX) plt.savefig('myfftplot02.png', format='png')
2.71875
3
ikdisplay/test/__init__.py
ralphm/ikdisplay
2
12779875
""" Tests for L{ikdisplay}. """
0.933594
1
models.py
AbigailMathews/concentration
0
12779876
"""models.py - Contains class definitions for Datastore entities used by the Concentration Game API. Definitions for User, Game, and Score classes, with associated methods. Additionally, contains definitions for Forms used in transmitting messages to users.""" ### Imports import random import pickle from datetime import date import httplib import endpoints from protorpc import messages from google.appengine.ext import ndb ### Import game logic import game as gm ### User Related Classes and Methods class User(ndb.Model): """User profile""" name = ndb.StringProperty(required=True) email = ndb.StringProperty() total_games = ndb.IntegerProperty(default = 0) total_score = ndb.IntegerProperty(default = 0) avg_score = ndb.FloatProperty(default = 0) def to_form(self): """Returns a UserForm representation of a User""" form = UserForm() form.name = self.name form.urlsafe_key = self.key.urlsafe() form.total_games = self.total_games form.total_score = self.total_score form.avg_score = round(self.avg_score) return form def calc_score(self): """Calculate the player's average score -- to be called whenever a new game is won""" avg_score = self.total_score / self.total_games return avg_score ### Game Related Class and Methods class Game(ndb.Model): """Game object""" board = ndb.StringProperty(repeated=True) boardState = ndb.StringProperty(repeated=True) guesses = ndb.IntegerProperty(required=True, default=0) cards = ndb.IntegerProperty(required=True, default=52) status = ndb.StringProperty(required=True, default='In Progress') user = ndb.KeyProperty(required=True, kind='User') history = ndb.PickleProperty(repeated=True) score = ndb.FloatProperty() @classmethod def new_game(self, user, cards=52): """Creates and returns a new game""" if cards < 8 or cards > 52 or cards % 2 != 0: raise ValueError('Cards dealt must be an even number between 8 and 52') newGame = Game(board=gm.constructBoard(cards), boardState=gm.initialBoardState(cards), guesses=0, cards=cards, status='In Progress', user=user) newGame.put() return newGame def to_form(self, message): """Returns a GameForm representation of the Game""" form = GameForm() form.urlsafe_key = self.key.urlsafe() form.user_name = self.user.get().name form.guesses = self.guesses form.cards = self.cards form.status = self.status form.message = message form.boardState = self.boardState return form def to_mini_form(self): """Return a MiniGameForm representation of a Game""" form = MiniGameForm() form.urlsafe_key = self.key.urlsafe() form.guesses = self.guesses form.cards = self.cards form.status = self.status return form def to_history_form(self): """Returns a game history form after a game has been won""" form = HistoryForm() form.urlsafe_key = self.key.urlsafe() form.cards = self.cards form.guesses = self.guesses form.board = self.board form.score = self.score form.history = [h for h in self.history] return form def win_game(self): """Updates score and user information once game is won""" # Add the game to the score 'board' total_score = int(round((self.cards ** 4) / self.guesses)) self.score = total_score self.put() score = Score(user=self.user, date=date.today(), cards=self.cards, guesses=self.guesses, score=total_score) score.put() user = self.user.get() # Add the current score to the user's total score, but handle error # if user's current score is 0 try: user.total_score += total_score except TypeError: user.total_score = total_score user.put() user.avg_score = user.calc_score() user.put() ### Score Class and Methods class Score(ndb.Model): """Score object""" user = ndb.KeyProperty(required=True, kind='User') date = ndb.DateProperty(required=True) cards = ndb.IntegerProperty(required=True) guesses = ndb.IntegerProperty(required=True) score = ndb.FloatProperty(required=True) def to_form(self): return ScoreForm(user_name=self.user.get().name, cards=self.cards, date=str(self.date), guesses=self.guesses, score=self.score) ### Game Forms -- Display class GameForm(messages.Message): """GameForm for outbound game state information""" urlsafe_key = messages.StringField(1) guesses = messages.IntegerField(2) status = messages.StringField(3) message = messages.StringField(4) boardState = messages.StringField(5, repeated=True) user_name = messages.StringField(6) cards = messages.IntegerField(7) class MiniGameForm(messages.Message): """Abbreviated Game Form for reporting, rather than play purposes""" urlsafe_key = messages.StringField(1) guesses = messages.IntegerField(2) cards = messages.IntegerField(3) status = messages.StringField(4) class HistoryForm(messages.Message): """Form to display a game history, as well as score information""" urlsafe_key = messages.StringField(1) cards = messages.IntegerField(2) guesses = messages.IntegerField(3) board = messages.StringField(4, repeated=True) score = messages.FloatField(5) history = messages.StringField(6, repeated=True) class MiniGameForms(messages.Message): """Hold a list of abbreviated Game Forms""" games = messages.MessageField(MiniGameForm, 1, repeated=True) class NewGameForm(messages.Message): """Used to create a new game""" user_name = messages.StringField(1, required=True) cards = messages.IntegerField(2, default=52) ### Gameplay Forms class FlipCardForm(messages.Message): """Form to allow players to guess a card by supplying its index""" queryCard = messages.IntegerField(1, required=True) class CardForm(messages.Message): """Form to respond to player guess by revealing a card value""" cardValue = messages.StringField(1) class MakeGuessForm(messages.Message): """Used to make a move in an existing game""" card1 = messages.IntegerField(1, required=True) card2 = messages.IntegerField(2, required=True) class HintForm(messages.Message): """Send the index of a matching card (hint) back to a user""" hint = messages.IntegerField(1, required=True) ### Score Forms class ScoreForm(messages.Message): """ScoreForm for outbound Score information""" user_name = messages.StringField(1, required=True) date = messages.StringField(2, required=True) cards = messages.IntegerField(3, required=True) guesses = messages.IntegerField(4, required=True) score = messages.FloatField(5, required=True) class ScoreForms(messages.Message): """Return multiple ScoreForms""" items = messages.MessageField(ScoreForm, 1, repeated=True) ## User and Rankings Message Classes class UserForm(messages.Message): """User detail form""" name = messages.StringField(1) urlsafe_key = messages.StringField(2) total_games = messages.IntegerField(3) total_score = messages.IntegerField(4) avg_score = messages.FloatField(5) class UserForms(messages.Message): """Return information mulitiple users for ranking""" users = messages.MessageField(UserForm, 1, repeated=True) ### Assorted Message Classes class StringMessage(messages.Message): """StringMessage-- outbound (single) string message""" message = messages.StringField(1, required=True)
3.171875
3
examples/apps/kinesis-analytics-process-kpl-record/aws_kinesis_agg/__init__.py
eugeniosu/serverless-application-model
326
12779877
#Kinesis Aggregation/Deaggregation Libraries for Python # #Copyright 2014, Amazon.com, Inc. or its affiliates. All Rights Reserved. # #Licensed under the Amazon Software License (the "License"). #You may not use this file except in compliance with the License. #A copy of the License is located at # # http://aws.amazon.com/asl/ # #or in the "license" file accompanying this file. This file is distributed #on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either #express or implied. See the License for the specific language governing #permissions and limitations under the License. import md5 #Message aggregation protocol-specific constants #(https://github.com/awslabs/amazon-kinesis-producer/blob/master/aggregation-format.md) MAGIC = '\xf3\x89\x9a\xc2' DIGEST_SIZE = md5.digest_size #Kinesis Limits #(https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html) MAX_BYTES_PER_RECORD = 1024*1024 # 1 MB
1.359375
1
py_neo4j_migrations/main.py
matt-l-w/py_neo4j_migrations
0
12779878
<gh_stars>0 import typer app = typer.Typer() from . import database as db @app.command() def migrate(): def get_migrations(tx): return tx.run(""" MATCH (m:MIGRATION) RETURN m ORDER BY m.created_at ASC; """) results = db.read(get_migrations) typer.echo(f"{[result for result in results]}") if __name__ == "__main__": app()
2.390625
2
Scripts/codewars8.py
mateusvarelo/Codewars
0
12779879
def to_weird_case(string='This is a test'): nova_string = [let.upper() if i % 2 == 0 else let.lower() for i,let in enumerate(string) ] print(nova_string) return ''.join(nova_string) print(to_weird_case())
3.890625
4
up.py
Chupachu/LocMaker
0
12779880
import os import sys import shutil from io import BytesIO from functools import wraps from textwrap import dedent from random import choice, shuffle from collections import defaultdict import urllib.request required = ["locmaker.py","locmaker_README.txt","Run.cmd"] for item in required: print('Downloading '+item+'...') url = 'https://raw.github.com/Chupachu/LocMaker/master/'+item urllib.request.urlretrieve(url, item) optionals = ["countries.txt","ideologies.txt","out.yml"] for item in optionals: if not os.path.isfile(item): print('Downloading '+item+'...') url = 'https://raw.github.com/Chupachu/LocMaker/master/'+item urllib.request.urlretrieve(url, item)
2.703125
3
voxel/VoxelLogic.py
vincentlooi/alpha_zero
0
12779881
<gh_stars>0 import numpy as np import random class BoxListGenerator(object): def __init__(self, min_x=1, max_x=1, min_y=1, max_y=1, min_z=1, max_z=1): assert max_x >= min_x > 0 and max_y >= min_y > 0 and max_z >= min_z > 0 self.min_x = min_x self.min_y = min_y self.min_z = min_z self.max_x = max_x self.max_y = max_y self.max_z = max_z def generate(self, n, max_cells=None, sort=True): boxes = [] acc_cells = 0 while len(boxes) < n: if max_cells is not None and acc_cells >= max_cells: break w = random.randint(self.min_x, self.max_x) h = random.randint(self.min_y, self.max_y) d = random.randint(self.min_z, self.max_z) # depth (z) acc_cells += w * h * d boxes.append((w,h,d)) if sort: boxes = self.sort_box_list(boxes) return boxes def sort_box_list(self, box_list): str_boxes = sorted(["%d_%d_%d"%(i[0],i[1],i[2]) for i in box_list]) sorted_boxes = [np.array(b.split("_")).astype(np.int32) for b in str_boxes] return sorted_boxes class Board(object): def __init__(self, x, y, z, n, box_list_gen=None): "Set up initial board configuration." self.x = x self.y = y self.z = z self.n = n n_cells = n * 3 # x,y,z for each assert n > 0 and x % 3 == 0 y_rows = ((n_cells / x) + int(n_cells % x > 0)) self.cache_rows = y_rows / y + int(y_rows % y > 0) self.len_x = x self.len_y = y self.len_z = z + self.cache_rows self.total_cells = self.len_x * self.len_y * self.len_z self.total_actions = self.x * self.y * self.z * self.n self.box_list_generator = BoxListGenerator(min_x=1, max_x=int(self.len_x/2) + 1, min_y=1, max_y=int(self.y/2)+1, min_z=1, max_z=2) if box_list_gen is not None: assert type(box_list_gen) == BoxListGenerator self.box_list_generator = box_list_gen self.pieces = None self.reset() def reset(self): self.pieces = np.zeros((self.len_z,self.len_y,self.len_x), dtype=np.int8) box_list = self.generate_boxes() self._fill_pieces_with_box_list(box_list) self.box_list_area = self.calculate_box_list_area() def setBoard(self, board_pieces): self.pieces = board_pieces self.box_list_area = self.calculate_box_list_area() def _fill_pieces_with_box_list(self, box_list): data_flat = np.zeros(self.cache_rows * self.y * self.x) data_flat[:len(box_list) * 3] = np.array(box_list).flatten() data = data_flat.reshape((self.cache_rows, self.y, self.x)) # print(data_flat.shape) self.pieces[self.z:] = data # print(data) def calculate_box_list_area(self): cache = self.pieces[self.z:,:].copy() if self.x % 3 != 0: cache = cache[:,:,:-(self.x % 3)] cache = cache.flatten() box_list_area = sum([cache[i] * cache[i+1] * cache[i+2] for i in xrange(0,len(cache),3)]) return int(box_list_area) def generate_boxes(self): sorted_boxes = self.box_list_generator.generate(n=self.n, max_cells=self.x * self.y * self.z, sort=True) # print(sorted_boxes) # print(len(sorted_boxes)) return sorted_boxes def is_full(self): return np.all(self.pieces[:self.z]==1) def get_occupied_count(self): return int(np.sum(self.pieces[:self.z])) # since occupied are 1, non-occ are 0 def get_score(self): occ_cnt = self.get_occupied_count() half_cnt = min(self.box_list_area, self.z * self.y * self.x) / 2. occ_score = (float(occ_cnt - half_cnt) / half_cnt)# ** 2 # occ_score = -occ_score if occ_cnt < half_cnt else occ_score return occ_score def is_valid_placement(self, square, box_size): x,y,z = square w,h,d = box_size assert w!=0 and h!=0 and d!=0 assert x < self.x and y < self.y and z < self.z if self.pieces[z,y,x]==0: # not occupied if (x+w-1) < self.x and (y+h-1) < self.y and (z+d-1) < self.z: if np.sum(self.pieces[z:z+d,y:y+h,x:x+w]) == 0: # none of the placement cells are occupied if (z+d) < self.z: # if not on ground # CHECK IF placement is on top of a sufficient number of occupied cells is_stable = np.sum(self.pieces[z+d,y:y+h,x:x+w]) >= w*h if not is_stable: return False if y > 0: # if not next to grid wall is_at_wall = np.sum(self.pieces[z:z+d,y-1,x:x+w]) >= (w*d / 2 + 1) # at least bigger than half next to it return is_at_wall return True return False def get_legal_squares(self, box_size): """Returns all the legal moves for the box size """ # assert len(box_size) == 2 # box_size: w,h moves = set() # stores the legal moves. w,h,d = box_size for z in xrange(self.z): for y in xrange(self.y): for x in xrange(self.x): square = (x,y,z) if self.is_valid_placement(square, box_size): moves.add(square) return list(moves) def get_legal_moves(self, box_idx): """Returns all the legal moves for the box size """ # assert len(box_size) == 2 # box_size: w,h box_size = self.get_box_size_from_idx(box_idx) if box_size[0] == 0: return [] legal_squares = self.get_legal_squares(box_size) # print(sorted(legal_squares)) return [self.get_action_from_square_and_box_idx(sq, box_idx) for sq in legal_squares] def get_legal_moves_all(self): legal_moves = [] for box_idx in xrange(self.n): legal_moves += self.get_legal_moves(box_idx) return legal_moves def has_legal_moves(self, box_size): assert len(box_size) == 3 # box_size: w,h,d legal_moves = self.get_legal_squares(box_size) return len(legal_moves) != 0 def has_legal_moves_all(self): for box_idx in xrange(self.n): w,h,d = self.get_box_size_from_idx(box_idx) if w > 0 and self.has_legal_moves((w,h,d)): return True return False def get_box_size_from_idx(self, box_idx): assert box_idx < self.n x = box_idx * 3 % self.x y = box_idx * 3 / self.x z = y / self.y y = y - z * self.y box_cells = self.pieces[self.z + z, y, x:x+3] w, h, d = box_cells return (w,h,d) def get_action_from_square_and_box_idx(self, square, box_idx): x, y, z = square return box_idx * self.x * self.y * self.z + z * self.x * self.y + y * self.x + x def get_square_and_box_size_from_action(self, action): box_idx = action / (self.x * self.y * self.z) square_idx = action % (self.x * self.y * self.z) w,h,d = self.get_box_size_from_idx(box_idx) if w == 0: return None, None, box_idx x,y,z = self.boardIndexToSquare(square_idx) return (x,y,z), (w,h,d), box_idx def is_action_valid(self, action): sq, box_size, box_idx = self.get_square_and_box_size_from_action(action) if sq is None: return False return self.is_valid_placement(sq, box_size) def boardIndexToSquare(self, idx): z = idx / (self.x * self.y) rem = idx % (self.x * self.y) y = rem / self.x x = rem % self.x return x,y,z def move_box(self, square, box_size): x,y,z = square assert x < self.x and y < self.y and z < self.z w,h,d = box_size self.pieces[z:z+d,y:y+h,x:x+w] = 1 def execute_move(self, action): sq, box_size, box_idx = self.get_square_and_box_size_from_action(action) if sq is None: return self.move_box(sq, box_size) # remove box idx cache_flat = self.pieces[self.z:].flatten() cache_flat = np.delete(cache_flat, [box_idx*3, box_idx*3+1,box_idx*3+2]) cache_flat = np.hstack((cache_flat,[0,0,0])) self.pieces[self.z:] = np.reshape(cache_flat, (len(cache_flat) / (self.y * self.x), self.y, self.x)) if __name__ == '__main__': # from VoxelRender import BoardRenderer x = 6 y = 7 z = 3 n = 10 b = Board(x,y,z,n) random_box_idx = n / 3 valid_actions = sorted(b.get_legal_moves(random_box_idx)) cnt = 0 for action in valid_actions: sq, box_sz, box_idx = b.get_square_and_box_size_from_action(action) print(sq, box_sz) cnt += 1 # if cnt >= 5: # break random_action = random.choice(valid_actions) print("Picking action:", random_action) # execute action b.execute_move(random_action) print("Score %.3f"%(b.get_score()))
3.140625
3
RcTorch/old_backprop_code.py
blindedjoy/RcTorch
3
12779882
else: #+++++++++++++++++++++++++++++++ backprop +++++++++++++++++++++++++++++++ trainable_parameters = [] trainable_parameters = [] for p in self.parameters(): if p.requires_grad: trainable_parameters.append(p) for i, p in enumerate(trainable_parameters): print(f'Trainable parameter {i} {p.name} {p.data.shape}') running_loss = 0 train_losses = [] if not optimizer: optimizer = optim.Adam(self.parameters(), lr=learning_rate) min_loss = float("Inf") epochs_not_improved = False bias_buffer = torch.ones((y.shape[0],1),**self.dev) if self.epochs == None: endless = True else: endless = False self.freeze_weights() assert self.LinOut.weight.requires_grad states = self.state.clone() states = states.to(self.device) ######. TRAIN STATES ################### SEPARATELY FROM THE OTHER FORWARD PASS #X_detached = self.X.detach() #X_detached.requires_grad_(True) #self.dh_dx = torch.zeros(0,**self.dev) X_detached = self.unscaled_X.clone().detach().requires_grad_(True) if scale_x: X_detached = (X_detached- self._input_means) / self._input_stds if out_weights: self.LinOut.weight.data = out_weights["weight"] self.LinOut.bias.data = out_weights["bias"] #self.LinOut.weight.requires_grad_(False) #self.LinOut.bias.requires_grad_(False) state_list = [] if self.feedback: assert False, "not implimented" """ for t in range(0, X_detached.shape[0]): input_t = X_detached[t, :].T state_t, output_t = self.train_state(t, X = input_t, state = states[t,:], y = None, output = True) state_list.append(state_t) with no_grad(): dht_dt = dfx(X_detached, state_t) dht_dy = dfx(state_t, output_t) if t > 2: dht_dh = dfx(state_list[t-1], state_t) dyt_dx = dfx(X_detached, output_t) #<-- calculating the derivative at each timestep. if t == 0: self.dh_dhs = [] self.dh_dts = [] self.dh_dys = [] self.dy_dxs = [] self.outputs = [] self.outputs = [] self.dh_dt = dht_dt #self.dy_dh = #elif t > 1: self.dh_dt = torch.cat((self.dh_dt, dht_dt)) #self.dy_dh = torch.cat((self.dh_dx, dht_dx)) self.dh_dys.append(dht_dy) self.dh_dts.append(dht_dt) self.outputs.append(output_t) self.dy_dxs.append(dyt_dx) self.dh_dhs.append(dyt_dx) states = cat([states, state_t.view(-1, self.n_nodes)], axis = 0) ##################################################### self.dy_dx = dfx(X_detached, torch.vstack(self.outputs)) #one time derivative doesn't work very well. ##################################################################### del states self.hidden_transitions = torch.hstack(self.dh_dhs).cpu().T self.dy_dx_matrix = torch.hstack(self.dy_dxs) #del self.dy_dxs #proper scaling: self.dy_dx = self.dy_dx_matrix.sum(axis = 0 )# / self._input_stds)*self._output_stds #undo the output layer: self.dh_dx = self.dy_dx / (self.LinOut.weight.view(-1,self.n_outputs) * (self.n_nodes + 1)) """ #self.dh_dx_for_backwards_pass = self.dh_dx.mean(axis = 0).view(-1,1).clone().detach() #assert False #extended_states = hstack((X_detached, states[1:])) self.loss_history, reassign = [], False base_derivative_calculated = False # The recurrence class will do the forward pass for backprop. We will give it the derivative after doing another forward pass #order: ctx, input, states, LinIn, LinOut, LinRes, bias_, n_nodes, activation_function, leaking_rate, noise, feedback, y, tensor_args, LinFeedback = None final_grad = None if 1 == 0: pass else: for e in range(self.epochs): self.states = self.state.clone() self.states = self.states.to(self.device).view(1,-1) optimizer.zero_grad() """ for t in range(0, X_detached.shape[0]): input_t = self.X[t, :].T train_states_class = Recurrence() state_t = train_states_class.apply(input_t, self.states[t,:], self.LinIn, self.LinOut, self.LinRes, self.bias, self.n_nodes, self.activation_function, self.leaking_rate, self.noise, self.feedback, y, self.tensor_args, self.dh_dts[t].detach(), self.hidden_transitions[t,:].detach(), None) """ for t in range(0, self.X.shape[0]): input_t = self.X[t, :].T state_t, output_t = self.train_state(t, X = input_t, state = self.states[t,:], y = None, output = True, retain_grad = True) state_t.retain_grad() if full_grads: dyt_dx = dfx(self.X, output_t) if not t: self.dy_dxs = [dyt_dx] else: self.dy_dxs.append(dyt_dx) self.states= cat([self.states, state_t.view(-1, self.n_nodes)], axis = 0) if not t: outputs = output_t else: outputs = torch.cat((outputs, output_t), axis = 0) if full_grads: self.dy_dx_matrix = torch.hstack(self.dy_dxs) self.dy_dx = self.dy_dx_matrix.sum(axis = 0 ) extended_states = hstack((self.X.detach(), self.states[1:])) self.yfit = self.forward(extended_states) #self.dy_dh = dfx(states, self.yfit) #with torch.no_grad(): # if self.track_in_grad or ODE: # self.dy_dx_orig = dfx(self.X, self.yfit) # self.dh_dx = self.dy_dx_orig / (self.LinOut.weight * self.LinOut.weight.shape[1]) if ODE or self.track_in_grad: #assert self.yfit.shape == self.dh_dx.shape, f'{self.yfit.shape} != {self.dh_dx.shape}' if scale_x: yfit = self.yfit / self._input_stds with torch.no_grad(): if not full_grads: self.dy_dx = dfx(self.X, self.yfit) else: self.dy_dx = self.dy_dx / self._input_stds if ODE: loss = self.criterion(self.X, self.yfit, self.dy_dx) else: #self.yfit = self.yfit * self._output_stds + self._output_means loss = self.criterion(self.yfit, y) assert loss.requires_grad #assert False, loss loss.backward(retain_graph = True) assert type(self.X.grad != None) #save best weights if e > save_after_n_epochs: if float(loss) < min(self.loss_history): best_bias, best_weight = self.LinOut.bias.clone(), self.LinOut.weight.clone() self.LinOut.bias.data, self.LinOut.weight.data = best_bias, best_weight.view(*self.LinOut.weight.shape) self.final_grad = self.dy_dx.clone() self.loss_history.append(float(loss)) optimizer.step() if e % 100 == 0: print("Epoch: {}/{}.. ".format(e+1, self.epochs), "Training Loss: {:.3f}.. ".format(torch.log(loss))) #early stopping if self.patience: if e > 10: if loss < min_loss: epochs_not_improved = 0 min_loss = loss else: epochs_not_improved += 1 if e > 10 and epochs_not_improved >= self.patience: print('Early stopping at epoch' , e, 'loss', loss) early_stop = True break else: continue e=e+1 #to avoid unstable solutions consider an additional convergence parameter #early stopping code from the following article: #https://www.kaggle.com/akhileshrai/tutorial-early-stopping-vanilla-rnn-pytorch #for the final state we want to save that in self.state self.out_weights = self.LinOut.weight self.out_weights._name_ = "out_weights" #extended_states = hstack((self.X, self.state))
2.109375
2
tests/test_run.py
SOFIE-project/Provisioning-and-Discovery
1
12779883
<reponame>SOFIE-project/Provisioning-and-Discovery """ # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed # with this work for additional information regarding copyright # ownership. The ASF licenses this file to you under the Apache # License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of the # License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. """ from sys import argv import subprocess import time import sys import json import requests sys.path.append("./src") from sofie_pd_component.gatt_application import BLE from sofie_pd_component.eddystone_url import startUrlAdvertise, stopUrlAdvertise from sofie_pd_component.eddystone_uuid import startUuidAdvertise, stopUuidAdvertise from sofie_pd_component.dns import run if sys.version_info > (3, 0): DEVNULL = subprocess.DEVNULL else: DEVNULL = open(os.devnull, "wb") URL = "//google.com" NAME = "TEST" UUID = "00000000000000000000000000000000" def restart_bluetooth(): """This method is used to reset Bluetooth interface for clearing any previous settings. """ print("Restarting Bluetooth") subprocess.call("sudo hciconfig -a hci0 down", shell=True, stdout=DEVNULL) time.sleep(2) subprocess.call("sudo hciconfig -a hci0 up", shell=True, stdout=DEVNULL) def start_uuid_advertise(): print("Test - Start UUID Advertising") restart_bluetooth() try: if len(UUID) == 32: NAMESPACE = UUID[:10] INSTANCEID = UUID[10:] subprocess.call(["sudo", "-v"]) startUuidAdvertise('hci0', bytes.fromhex('E7'), bytes.fromhex(NAMESPACE), bytes.fromhex(INSTANCEID)) except: print("Test Failed") def stop_uuid_advertise(): print("Test - Stop UUID Advertising") try: stopUuidAdvertise() except: print("Test Failed") def start_url_advertise(): print("Test - Start URL Advertising") restart_bluetooth() try: startUrlAdvertise("http:" + URL) except: print("Test Failed") def stop_url_advertise(): print("Test - Stop URL Advertising") try: stopUrlAdvertise() except: print("Test Failed") def server_startup(): print("Test - Starting DNS-SD") try: run() except: print("Test Failed") if __name__ == '__main__': print("##### Starting Tests ######") start_uuid_advertise() stop_uuid_advertise() start_url_advertise() stop_url_advertise() print("##### Ending Tests #####")
1.984375
2
Crawler/src/parser/test_parser.py
cam626/RPEye-Link-Analysis
2
12779884
''' This contains tests for the parse and get_bad_paths methods. ''' import unittest import parser class TestParser(unittest.TestCase): ''' This contains tests for the parse and get_bad_paths methods. ''' def test_empty(self): ''' Parse an empty string.''' self.assertEqual(parser.parse(''), []) def test_one_disallow(self): ''' Parse a string with one disallow.''' self.assertEqual(parser.parse("Disallow: /stuff/"), ['/stuff/']) def test_two_disallows(self): ''' Parse a string with two disallows.''' self.assertEqual(parser.parse("Disallow: /stuff/\nDisallow: /home/"), ['/stuff/', '/home/']) def test_allow(self): ''' Parse an string with an allow statemnt.''' self.assertEqual(parser.parse("Allow: /stuff/"), []) def test_applicable_useragent(self): ''' Parse a string with a user-agent and a relevant disallow.''' self.assertEqual(parser.parse("User-agent: * \nDisallow: /stuff/"), ['/stuff/']) def test_not_applicable_useragent(self): ''' Parse a string with an unknown user-agent and a disallow that is ignored.''' self.assertEqual(parser.parse("User-agent: someone else \nDisallow: /stuff/"), []) def test_basic_page(self): ''' Test a simple robots.txt page. ''' expected_result = ['/cgi-bin/', '/rcs/', '/~sibel/poetry/poems/', '/~sibel/poetry/books/', '/~musser/dagproc'] self.assertEqual(parser.get_bad_paths("http://cs.rpi.edu/robots.txt"), expected_result) def test_nonexistent_page(self): ''' Test a page that doesn't exist.''' self.assertEqual(parser.get_bad_paths("http://rpi.edu/robots.taxt"), []) def test_targeted_disallows(self): ''' Test a page that has targeted disallows.''' expected_result = ['/feed/', '/c/accounts/', '/c/crontab/', '/c/graphics/', '/c/locale/', '/c.new/', '/c.bak/', '/c_hacks', '/c/pinc/', '/c/setup/', '/c/stats/', '/c/tools/', '/c/users/', '/down/', '/dpmail/', '/d', '/out', '/jpgraph/', '/jpgraph-1.14', '/archive', '/projects', '/mailman/', '/noncvs', '/phpbb2', '/phpbb3', '/phpbb-3.2.0', '/phpmyadmin', '/sawiki', '/squirrels', '/stats/', '/tools', '/w', '/wikiheiro'] self.assertEqual(parser.get_bad_paths("https://www.pgdp.net/robots.txt"), expected_result) def test_allows(self): ''' Test a page that has allows.''' self.assertEqual(parser.get_bad_paths("https://www.choiceofgames.com/robots.txt"), []) if __name__ == "__main__": unittest.main()
3.4375
3
project/timenow.py
tarabuk1n/Debian-Miniconda-Installation
1
12779885
from datetime import datetime time_now = datetime.now() print(time_now.strftime('%B/%d/%Y:%H/%M'))
3.328125
3
PyCTBN/PyCTBN/utility/json_importer.py
pietroepis/PyCTBN
1
12779886
<reponame>pietroepis/PyCTBN # License: MIT License import json import typing import pandas as pd from .abstract_importer import AbstractImporter class JsonImporter(AbstractImporter): """Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare the data in json extension. :param file_path: the path of the file that contains tha data to be imported :type file_path: string :param samples_label: the reference key for the samples in the trajectories :type samples_label: string :param structure_label: the reference key for the structure of the network data :type structure_label: string :param variables_label: the reference key for the cardinalites of the nodes data :type variables_label: string :param time_key: the key used to identify the timestamps in each trajectory :type time_key: string :param variables_key: the key used to identify the names of the variables in the net :type variables_key: string :_array_indx: the index of the outer JsonArray to extract the data from :type _array_indx: int :_df_samples_list: a Dataframe list in which every dataframe contains a trajectory :_raw_data: The raw contents of the json file to import :type _raw_data: List """ def __init__(self, file_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str, variables_key: str, cims_label: str = None): """Constructor method .. note:: This constructor calls also the method ``read_json_file()``, so after the construction of the object the class member ``_raw_data`` will contain the raw imported json data. """ self._samples_label = samples_label self._structure_label = structure_label self._variables_label = variables_label self._cims_label = cims_label self._time_key = time_key self._variables_key = variables_key self._df_samples_list = None self._array_indx = None super(JsonImporter, self).__init__(file_path) self._raw_data = self.read_json_file() def import_data(self, indx: int = 0) -> None: """Implements the abstract method of :class:`AbstractImporter`. :param indx: the index of the outer JsonArray to extract the data from, default to 0 :type indx: int """ self._array_indx = indx self._df_samples_list = self.import_trajectories(self._raw_data) self._sorter = self.build_sorter(self._df_samples_list[0]) self.compute_row_delta_in_all_samples_frames(self._df_samples_list) self.clear_data_frame_list() self._df_structure = self.import_structure(self._raw_data) self._df_variables = self.import_variables(self._raw_data) if self._cims_label != None: self._cims = self._raw_data[indx][self._cims_label] def import_trajectories(self, raw_data: typing.List) -> typing.List: """Imports the trajectories from the list of dicts ``raw_data``. :param raw_data: List of Dicts :type raw_data: List :return: List of dataframes containing all the trajectories :rtype: List """ return self.normalize_trajectories(raw_data, self._array_indx, self._samples_label) def import_structure(self, raw_data: typing.List) -> pd.DataFrame: """Imports in a dataframe the data in the list raw_data at the key ``_structure_label`` :param raw_data: List of Dicts :type raw_data: List :return: Dataframe containg the starting node a ending node of every arc of the network :rtype: pandas.Dataframe """ return self.one_level_normalizing(raw_data, self._array_indx, self._structure_label) def import_variables(self, raw_data: typing.List) -> pd.DataFrame: """Imports the data in ``raw_data`` at the key ``_variables_label``. :param raw_data: List of Dicts :type raw_data: List :return: Datframe containg the variables simbolic labels and their cardinalities :rtype: pandas.Dataframe """ return self.one_level_normalizing(raw_data, self._array_indx, self._variables_label) def read_json_file(self) -> typing.List: """Reads the JSON file in the path self.filePath. :return: The contents of the json file :rtype: List """ with open(self._file_path) as f: data = json.load(f) if (isinstance(data,list)): return data else: return [data] def one_level_normalizing(self, raw_data: typing.List, indx: int, key: str) -> pd.DataFrame: """Extracts the one-level nested data in the list ``raw_data`` at the index ``indx`` at the key ``key``. :param raw_data: List of Dicts :type raw_data: List :param indx: The index of the array from which the data have to be extracted :type indx: int :param key: the key for the Dicts from which exctract data :type key: string :return: A normalized dataframe :rtype: pandas.Datframe """ return pd.DataFrame(raw_data[indx][key]) def normalize_trajectories(self, raw_data: typing.List, indx: int, trajectories_key: str) -> typing.List: """ Extracts the trajectories in ``raw_data`` at the index ``index`` at the key ``trajectories key``. :param raw_data: List of Dicts :type raw_data: List :param indx: The index of the array from which the data have to be extracted :type indx: int :param trajectories_key: the key of the trajectories objects :type trajectories_key: string :return: A list of daframes containg the trajectories :rtype: List """ dataframe = pd.DataFrame smps = raw_data[indx][trajectories_key] df_samples_list = [dataframe(sample) for sample in smps] return df_samples_list def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: """Implements the abstract method build_sorter of the :class:`AbstractImporter` for this dataset. """ columns_header = list(sample_frame.columns.values) columns_header.remove(self._time_key) return columns_header def clear_data_frame_list(self) -> None: """Removes all values present in the dataframes in the list ``_df_samples_list``. """ for indx in range(len(self._df_samples_list)): self._df_samples_list[indx] = self._df_samples_list[indx].iloc[0:0] def dataset_id(self) -> object: return self._array_indx def import_sampled_cims(self, raw_data: typing.List, indx: int, cims_key: str) -> typing.Dict: """Imports the synthetic CIMS in the dataset in a dictionary, using variables labels as keys for the set of CIMS of a particular node. :param raw_data: List of Dicts :type raw_data: List :param indx: The index of the array from which the data have to be extracted :type indx: int :param cims_key: the key where the json object cims are placed :type cims_key: string :return: a dictionary containing the sampled CIMS for all the variables in the net :rtype: Dictionary """ cims_for_all_vars = {} for var in raw_data[indx][cims_key]: sampled_cims_list = [] cims_for_all_vars[var] = sampled_cims_list for p_comb in raw_data[indx][cims_key][var]: cims_for_all_vars[var].append(pd.DataFrame(raw_data[indx][cims_key][var][p_comb]).to_numpy()) return cims_for_all_vars
2.921875
3
tests/test_tools.py
gothill/python-fedex
100
12779887
""" Test module for the Fedex Tools. """ import unittest import logging import sys sys.path.insert(0, '..') import fedex.config import fedex.services.ship_service as service # Any request object will do. import fedex.tools.conversion logging.getLogger('suds').setLevel(logging.ERROR) logging.getLogger('fedex').setLevel(logging.INFO) class FedexToolsTests(unittest.TestCase): """ These tests verify that the fedex tools are working properly. """ def test_conversion_tools(self): # Empty config, since we are not actually sending anything config = fedex.config.FedexConfig(key='', password='', account_number='', meter_number='', use_test_server=True) # We need a mock suds object, a request object or sub-object will do. waybill_request = service.FedexProcessShipmentRequest(config) obj = waybill_request.create_wsdl_object_of_type('ProcessShipmentRequest') # Test basic sobject to dict. dict_obj = fedex.tools.conversion.basic_sobject_to_dict(obj) assert type(dict_obj) == dict # Test with serialization and case conversion. dict_obj = fedex.tools.conversion.sobject_to_dict(obj, key_to_lower=True, json_serialize=True) assert type(dict_obj) == dict # JSON string object test dict_obj = fedex.tools.conversion.sobject_to_json(obj) assert dict_obj, "Expecting a JSON string object." if __name__ == "__main__": logging.basicConfig(stream=sys.stdout, level=logging.INFO) unittest.main()
2.828125
3
binner/algo_single.py
Zbooni/binner
29
12779888
from .algo import Algo from .algo_code import AlgoCode from .entity_slot import Slot from .entity_space import Space from . import log, show_adding_box_log from .exception import DistributionException import time class AlgoSingle(Algo): """ pack items into a single bin for single bin packing we merely need to operate on one bin. Don't accept input bins larger than size one @param item_collection: set of items @returns one bin packed with items """ def run(self): log.debug("Entering algorithm SINGLE") bin_collection = self.bins item_collection =self.items if len(bin_collection.items) == 0 or len(bin_collection.items) > 1: raise DistributionException("Single takes only one item") bin = bin_collection.next() """ checks with the bin can continue within the space for single algo """ def continue_fn(bin, space, item): if bin.occupied_space(space, item): return AlgoCode.NO_SPACE m_y = bin.get_min_y_pos(space.y) if space.x + (item.w > bin.w): """ try z now """ space.z += item.d space.x = 0 else: space.x += 1 """ if space.z fails and so does space.x """ """ go up in height make sure y """ """ is at the proper juxtaposition """ if space.z + item.d > bin.d: space.y += m_y.max_y space.x = m_y.min_x space.z = m_y.min_z if int(space.y + item.h) > bin.h: return AlgoCode.LAST_ITEM return AlgoCode.FOUND_SPACE while bin: log.info("Trying to allocate items for bin: {0}".format(bin.id)) item_collection.reset() bin.start_time = time.time() item = item_collection.next() while item: item = item_collection.current() if not bin.can_fit( item ) : item_collection.next() continue space = Space(x=0, y=0, z=0) """ if item.w > bin.w: """ """ self.binner.add_lost(item) """ can_continue = continue_fn(bin, space, item) while can_continue == AlgoCode.NO_SPACE: """ if were at the top of the box """ """ we cannot allocate any more space so we can move on """ space.compute_next_sequence() can_continue = continue_fn(bin, space, item) if can_continue == AlgoCode.LAST_ITEM: continue show_adding_box_log(space, item) slot = Slot.from_space_and_item(space, item) bin.append(slot) item = item_collection.next() bin.end_time = time.time() bin = bin_collection.next() return self.binner
2.8125
3
demos.py
tacticsiege/Banana-DQN
0
12779889
import numpy as np import time from unityagents import UnityEnvironment from agent_utils import env_initialize, env_reset, state_reward_done_unpack from dqn_agent import DQN_Agent from agent_utils import load_dqn from agent_utils import load_params, load_weights def demo_agent(env, agent, n_episodes, epsilon=0.05, seed=0, train_mode=False): print(f'\r\nRunning demo of \'{agent.name}\' with epsilon={epsilon}') scores = [] for i in range(1, n_episodes+1): score = 0 state = env_reset(env, agent.brain_name, train_mode=train_mode) while True: action = int(agent.act(state, epsilon)) env_info = env.step(action)[agent.brain_name] next_state, reward, done = state_reward_done_unpack(env_info) score += reward state = next_state if done: break scores.append(score) print(f'Episode {i}\tScore: {score:.2f}') print('\r\nDemo complete! Scores:\tMin:{:.2f}\tMax:{:.2f}\tAvg:{:.3f}'.format( np.min(scores), np.max(scores), np.mean(scores))) return scores def demo_saved_agent(env, agent_name, n_episodes=3, epsilon=0.05, seed=0, train_mode=False, verbose=False): # initialize environment and scenario info brain, brain_name, state, action_size, state_size = env_initialize(env, train_mode=train_mode) # load the agent params and create the agent params, local_weights, target_weights = load_dqn(agent_name, verbose=verbose) agent = DQN_Agent(state_size, action_size, brain_name, seed, params=params) print(agent.display_params()) # set trained agent weights agent.qnetwork_local.load_state_dict(local_weights) agent.qnetwork_target.load_state_dict(target_weights) # run demo return demo_agent(env, agent, n_episodes=n_episodes, epsilon=epsilon, seed=seed, train_mode=train_mode) def demo_random_agent_discrete(env, n_episodes=3, train_mode=False, verbose=False): """ Runs the environment using a uniform random action selection policy. """ # setup the environment and get initial info brain, brain_name, state, action_size, state_size = env_initialize(env, train_mode=train_mode, verbose=verbose) start_time = time.time() for n_episode in range(1, n_episodes+1): # reset the environment for the new episode state = env_reset(env, brain_name, train_mode=train_mode) # track scores and the number of steps in an episode score = 0 steps = 0 while True: # choose a random action action = np.random.randint(action_size) # send action to environment and get updated info env_info = env.step(action)[brain_name] next_state, reward, done = state_reward_done_unpack(env_info) score += reward steps += 1 # set the state for next iteration state = next_state if done: break # end episode if we get the done signal print (f'Episode {n_episode} score: {score} in {steps} steps.') end_time = time.time() avg_episode_time = (end_time - start_time) / n_episodes print (f'Random agent demo complete, avg episode duration: {avg_episode_time:.3f}s.')
2.21875
2
BlenderMalt/MaltPipeline.py
BlenderAddonsArchive/Malt
0
12779890
# Copyright (c) 2020 BlenderNPR and contributors. MIT license. import os, time import bpy from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures __BRIDGE = None __PIPELINE_PARAMETERS = None __INITIALIZED = False TIMESTAMP = time.time() def get_bridge(world=None): global __BRIDGE bridge = __BRIDGE if bridge is None or bridge.lost_connection: __BRIDGE = None try: if world is None: bpy.context.scene.world.malt.update_pipeline(bpy.context) else: world.malt.update_pipeline(bpy.context) except: pass return __BRIDGE def set_bridge(bridge): global __BRIDGE __BRIDGE = bridge def set_pipeline_parameters(parameters): global __PIPELINE_PARAMETERS __PIPELINE_PARAMETERS = parameters def set_initialized(initialized): global __INITIALIZED __INITIALIZED = initialized class MaltPipeline(bpy.types.PropertyGroup): def update_pipeline(self, context): global TIMESTAMP TIMESTAMP = time.time() #TODO: Sync all scenes. Only one active pipeline per Blender instance is supported atm. pipeline = self.pipeline if pipeline == '': current_dir = os.path.dirname(os.path.abspath(__file__)) default_pipeline = os.path.join(current_dir,'.MaltPath','Malt','Pipelines','NPR_Pipeline','NPR_Pipeline.py') pipeline = default_pipeline debug_mode = bool(bpy.context.preferences.addons['BlenderMalt'].preferences.debug_mode) path = bpy.path.abspath(pipeline, library=self.id_data.library) import Bridge bridge = Bridge.Client_API.Bridge(path, debug_mode) import logging as log log.info('Blender {} {} {}'.format(bpy.app.version_string, bpy.app.build_branch, bpy.app.build_hash)) params = bridge.get_parameters() set_bridge(bridge) set_pipeline_parameters(params) MaltMaterial.reset_materials() MaltMeshes.reset_meshes() MaltTextures.reset_textures() setup_all_ids() set_initialized(True) pipeline : bpy.props.StringProperty(name="Malt Pipeline", subtype='FILE_PATH', update=update_pipeline) # There's no StringVectorProperty ?!?!? overrides : bpy.props.StringProperty(name='Pipeline Overrides', default='Preview,Final Render') def draw_ui(self, layout): layout.prop(self, 'pipeline') class MALT_PT_Pipeline(bpy.types.Panel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "world" bl_label = "Pipeline Settings" COMPAT_ENGINES = {'MALT'} @classmethod def poll(cls, context): return context.scene.render.engine == 'MALT' and context.world is not None def draw(self, context): context.scene.world.malt.draw_ui(self.layout) classes = ( MaltPipeline, MALT_PT_Pipeline, ) def setup_all_ids(): setup_parameters(bpy.data.scenes) setup_parameters(bpy.data.worlds) setup_parameters(bpy.data.cameras) setup_parameters(bpy.data.objects) setup_parameters(bpy.data.materials) setup_parameters(bpy.data.meshes) setup_parameters(bpy.data.curves) setup_parameters(bpy.data.lights) MaltMaterial.track_shader_changes(force_update=True) def setup_parameters(ids): global __PIPELINE_PARAMETERS pipeline_parameters = __PIPELINE_PARAMETERS class_parameters_map = { bpy.types.Scene : pipeline_parameters.scene, bpy.types.World : pipeline_parameters.world, bpy.types.Camera : pipeline_parameters.camera, bpy.types.Object : pipeline_parameters.object, bpy.types.Material : pipeline_parameters.material, bpy.types.Mesh : pipeline_parameters.mesh, bpy.types.Curve : pipeline_parameters.mesh, bpy.types.Light : pipeline_parameters.light, } for bid in ids: for cls, parameters in class_parameters_map.items(): if isinstance(bid, cls): bid.malt_parameters.setup(parameters) @bpy.app.handlers.persistent def depsgraph_update(scene, depsgraph): global __INITIALIZED if scene.render.engine != 'MALT': # Don't do anything if Malt is not the active renderer, # but make sure we setup all IDs the next time Malt is enabled __INITIALIZED = False return if __INITIALIZED == False: scene.world.malt.update_pipeline(bpy.context) return ids = [] class_data_map = { bpy.types.Scene : bpy.data.scenes, bpy.types.World : bpy.data.worlds, bpy.types.Camera : bpy.data.cameras, bpy.types.Object : bpy.data.objects, bpy.types.Material : bpy.data.materials, bpy.types.Mesh : bpy.data.meshes, bpy.types.Curve : bpy.data.curves, bpy.types.Light : bpy.data.lights, } for update in depsgraph.updates: # Try to avoid as much re-setups as possible. # Ideally we would do it only on ID creation. if update.is_updated_geometry == True or update.is_updated_transform == False: for cls, data in class_data_map.items(): if isinstance(update.id, cls): ids.append(data[update.id.name]) setup_parameters(ids) redraw = False for update in depsgraph.updates: if update.is_updated_geometry: if 'Object' in str(update.id.__class__): MaltMeshes.unload_mesh(update.id) if update.id.__class__ == bpy.types.Image: MaltTextures.unload_texture(update.id) redraw = True elif update.id.__class__ == bpy.types.Material: MaltTextures.unload_gradients(update.id) redraw = True if redraw: for screen in bpy.data.screens: for area in screen.areas: area.tag_redraw() @bpy.app.handlers.persistent def load_scene(dummy1=None,dummy2=None): global __INITIALIZED __INITIALIZED = False def track_pipeline_changes(): if bpy.context.scene.render.engine != 'MALT': return 1 try: scene = bpy.context.scene malt = scene.world.malt path = bpy.path.abspath(malt.pipeline, library=malt.id_data.library) if os.path.exists(path): stats = os.stat(path) if stats.st_mtime > TIMESTAMP: malt.update_pipeline(bpy.context) except: import traceback print(traceback.format_exc()) return 1 def register(): for _class in classes: bpy.utils.register_class(_class) bpy.types.World.malt = bpy.props.PointerProperty(type=MaltPipeline) bpy.app.handlers.depsgraph_update_post.append(depsgraph_update) bpy.app.handlers.load_post.append(load_scene) bpy.app.timers.register(track_pipeline_changes, persistent=True) def unregister(): for _class in classes: bpy.utils.unregister_class(_class) del bpy.types.World.malt bpy.app.handlers.depsgraph_update_post.remove(depsgraph_update) bpy.app.handlers.load_post.remove(load_scene) bpy.app.timers.unregister(track_pipeline_changes)
2.140625
2
portal/migrations/0007_project_access_personnel.py
eugenechia95/Project-Document-Submission-Portal
1
12779891
<reponame>eugenechia95/Project-Document-Submission-Portal<filename>portal/migrations/0007_project_access_personnel.py # Generated by Django 2.0.7 on 2018-08-08 03:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('auth', '0009_alter_user_last_name_max_length'), ('portal', '0006_remove_project_personnel'), ] operations = [ migrations.AddField( model_name='project', name='access_personnel', field=models.ManyToManyField(blank=True, null=True, to='auth.Group'), ), ]
1.609375
2
loggen.py
rockb1017/log-generator
2
12779892
import os from time import sleep from datetime import datetime MESSAGE_COUNT = int(os.getenv("MESSAGE_COUNT", 10000)) SIZE = int(os.getenv("SIZE", 128)) FREQ = float(os.getenv("FREQ", "1")) MESSAGE_COUNT = max(MESSAGE_COUNT, 5) MY_HOST = os.getenv("MY_HOST", os.uname()[1]) def print_beginning(): print("---begin---") def print_ending(): later = datetime.now() print("generated %d messages in %d seconds" % (MESSAGE_COUNT, int((later - now).total_seconds()))) print("EPS: %d" % (MESSAGE_COUNT / (later - now).total_seconds())) print("---end---") def print_log(i): log_meta = " ".join(["num:", str(i), "|", MY_HOST, "|", datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f"), "|"]) print(log_meta, "r"*(max(1, SIZE-len(log_meta)))) sleep(FREQ) now = datetime.now() i = 1 if MESSAGE_COUNT <= 0: print_beginning() while True: print_log(i) i += 1 else: print_beginning() while i <= MESSAGE_COUNT - 4: print_log(i) i += 1 print_ending() while True: sleep(60)
2.921875
3
tests/test_discretize.py
Arzik1987/wittgenstein
64
12779893
<filename>tests/test_discretize.py import pandas as pd import pytest from wittgenstein.discretize import BinTransformer def test_bin_ranges_are_flush(): df = pd.read_csv("credit.csv") bin_transformer_ = BinTransformer() bin_transformer_.fit(df) for feat, bins in bin_transformer_.bins_.items(): prev_ceil = None for bin in bin_transformer_._strs_to_intervals(bins): floor, ceil = bin.left, bin.right assert prev_ceil is None or floor == prev_ceil prev_ceil = ceil def test_each_bin_in_order(): df = pd.read_csv("credit.csv") bin_transformer_ = BinTransformer() bin_transformer_.fit(df) for feat, bins in bin_transformer_.bins_.items(): bins = bin_transformer_._strs_to_intervals(bins) assert bins == sorted(bins) def test_boundless_min_max_bins(): df = pd.read_csv("credit.csv") bin_transformer_ = BinTransformer() bin_transformer_.fit(df) for feat, bins in bin_transformer_.bins_.items(): prev_ceil = None bins = bin_transformer_._strs_to_intervals(bins) assert bins[0].left == float('-inf') assert bins[-1].right == float('inf') def test_fewer_bins_than_n_discretize_bins(): df = pd.read_csv("credit.csv") for n in range(2, 20, 5): bin_transformer_ = BinTransformer(n_discretize_bins=n) bin_transformer_.fit(df) for feat, bin_ranges in bin_transformer_.bins_.items(): assert len(bin_ranges) <= n def test_no_bins(): old_df = pd.read_csv("credit.csv") df = old_df.copy() bin_transformer_ = BinTransformer(n_discretize_bins=0) bin_transformer_.fit(df) bin_transformer_.transform(df) assert df.equals(old_df)
2.65625
3
geocoder/geolytica.py
termim/geocoder
1,506
12779894
#!/usr/bin/python # coding: utf8 from __future__ import absolute_import import logging from geocoder.base import OneResult, MultipleResultsQuery class GeolyticaResult(OneResult): def __init__(self, json_content): # create safe shortcuts self._standard = json_content.get('standard', {}) # proceed with super.__init__ super(GeolyticaResult, self).__init__(json_content) @property def lat(self): lat = self.raw.get('latt', '').strip() if lat: return float(lat) @property def lng(self): lng = self.raw.get('longt', '').strip() if lng: return float(lng) @property def postal(self): return self.raw.get('postal', '').strip() @property def housenumber(self): return self._standard.get('stnumber', '').strip() @property def street(self): return self._standard.get('staddress', '').strip() @property def city(self): return self._standard.get('city', '').strip() @property def state(self): return self._standard.get('prov', '').strip() @property def address(self): if self.street_number: return u'{0} {1}, {2}'.format(self.street_number, self.route, self.locality) elif self.route and self.route != 'un-known': return u'{0}, {1}'.format(self.route, self.locality) else: return self.locality class GeolyticaQuery(MultipleResultsQuery): """ Geocoder.ca =========== A Canadian and US location geocoder. API Reference ------------- http://geocoder.ca/?api=1 """ provider = 'geolytica' method = 'geocode' _URL = 'http://geocoder.ca' _RESULT_CLASS = GeolyticaResult _KEY_MANDATORY = False def _build_params(self, location, provider_key, **kwargs): params = { 'json': 1, 'locate': location, 'geoit': 'xml' } if 'strictmode' in kwargs: params.update({'strictmode': kwargs.pop('strictmode')}) if 'strict' in kwargs: params.update({'strict': kwargs.pop('strict')}) if 'auth' in kwargs: params.update({'auth': kwargs.pop('auth')}) return params def _adapt_results(self, json_response): return [json_response] if __name__ == '__main__': logging.basicConfig(level=logging.INFO) g = GeolyticaQuery('1552 Payette dr., Ottawa') g.debug()
2.40625
2
src/main/python/test_support/testconfig.py
shuangshuangwang/SMV
0
12779895
<gh_stars>0 # # This file is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from pyspark import SparkContext from pyspark.sql import HiveContext from smv.smvapp import SmvApp class TestConfig(object): smvApp = None @classmethod def setSmvApp(cls, app): """Set the canonical SmvApp Spark context and sqlContext will be retrieved from this SmvApp. This SmvApp will also be restored as the singleton after tests are run. """ cls.smvApp = app cls.sqlc = app.sqlContext cls.sc = app.sc @classmethod def originalSmvApp(cls): return cls.smvApp # shared SparkContext @classmethod def sparkContext(cls): if not hasattr(cls, 'sc'): cls.sc = SparkContext(appName="SMV Python Tests") return cls.sc # shared HiveContext @classmethod def sqlContext(cls): if not hasattr(cls, 'sqlc'): cls.sqlc = HiveContext(cls.sparkContext()) return cls.sqlc # smv args specified via command line @classmethod def smv_args(cls): if not hasattr(cls, '_smv_args'): cls.parse_args() return cls._smv_args # test names specified via command line @classmethod def test_names(cls): if not hasattr(cls, '_test_names'): cls.parse_args() return cls._test_names # Parse argv to split up the the smv args and the test names @classmethod def parse_args(cls): args = sys.argv[1:] test_names = [] smv_args = [] while(len(args) > 0): next_arg = args.pop(0) if(next_arg == "-t"): test_names.append( args.pop(0) ) else: smv_args.append(next_arg) cls._test_names = test_names cls._smv_args = smv_args
1.96875
2
pydgn/data/util.py
terragord7/PyDGN
1
12779896
<reponame>terragord7/PyDGN<gh_stars>1-10 import inspect import os import os.path as osp import warnings from typing import Optional, Callable import torch from torch_geometric.transforms import Compose from pydgn.data.dataset import DatasetInterface from pydgn.experiment.util import s2c def get_or_create_dir(path: str) -> str: r""" Creates directories associated to the specified path if they are missing, and it returns the path string. Args: path (str): the path Returns: the same path as the given argument """ if not os.path.exists(path): os.makedirs(path) return path def check_argument(cls: object, arg_name: str) -> bool: r""" Checks whether ``arg_name`` is in the signature of a method or class. Args: cls (object): the class to inspect arg_name (str): the name to look for Returns: ``True`` if the name was found, ``False`` otherwise """ sign = inspect.signature(cls) return arg_name in sign.parameters.keys() def filter_adj(edge_index: torch.Tensor, edge_attr: torch.Tensor, mask: torch.Tensor) -> (torch.Tensor, Optional[torch.Tensor]): r""" Adapted from https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/utils/dropout.html. Does the same thing but with a different signature Args: edge_index (torch.Tensor): the usual PyG matrix of edge indices edge_attr (torch.Tensor): the usual PyG matrix of edge attributes mask (torch.Tensor): boolean tensor with edges to filter Returns: a tuple (filtered edge index, filtered edge attr or ``None`` if ``edge_attr`` is ``None``) """ row, col = edge_index filtered_edge_index = row[mask], col[mask] return filtered_edge_index, None if edge_attr is None else edge_attr[mask] def preprocess_data(options: dict): r""" One of the main functions of the PyDGN library. Used to create the dataset and its associated files that ensure the correct functioning of the data loading steps. Args: options (dict): a dictionary of dataset/splitter arguments as defined in the data configuration file used. """ data_info = options.pop("dataset") if "class_name" not in data_info: raise ValueError("You must specify 'class_name' in your dataset.") dataset_class = s2c(data_info.pop("class_name")) dataset_args = data_info.pop("args") data_root = data_info.pop("root") ################################ # more experimental stuff here dataset_kwargs = data_info.pop('other_args', {}) pre_transforms = None pre_transforms_opt = data_info.pop("pre_transform", None) if pre_transforms_opt is not None: pre_transforms = [] for pre_transform in pre_transforms_opt: pre_transform_class = s2c(pre_transform["class_name"]) args = pre_transform.pop("args", {}) pre_transforms.append(pre_transform_class(**args)) dataset_kwargs.update(pre_transform=Compose(pre_transforms)) pre_filters = None pre_filters_opt = data_info.pop("pre_filter", None) if pre_filters_opt is not None and check_argument(dataset_class, "pre_filter"): pre_filters = [] for pre_filter in pre_filters_opt: pre_filter_class = s2c(pre_filter["class_name"]) args = pre_filter.pop("args", {}) pre_filters.append(pre_filter_class(**args)) dataset_kwargs.update(pre_filter=Compose(pre_filters)) transforms_opt = data_info.pop("transform", None) if transforms_opt is not None: transforms = [] for transform in transforms_opt: transform_class = s2c(transform["class_name"]) args = transform.pop("args", {}) transforms.append(transform_class(**args)) dataset_kwargs.update(transform=Compose(transforms)) dataset_args.update(dataset_kwargs) ################################ dataset = dataset_class(**dataset_args) assert hasattr(dataset, 'name'), "Dataset instance should have a name attribute!" # Store dataset additional arguments in a separate file kwargs_folder = osp.join(data_root, dataset.name, 'processed') kwargs_path = osp.join(kwargs_folder, 'dataset_kwargs.pt') get_or_create_dir(kwargs_folder) torch.save(dataset_args, kwargs_path) # Process data splits splits_info = options.pop("splitter") splits_root = splits_info.pop("root") if "class_name" not in splits_info: raise ValueError("You must specify 'class_name' in your splitter.") splitter_class = s2c(splits_info.pop("class_name")) splitter_args = splits_info.pop("args") splitter = splitter_class(**splitter_args) splits_dir = get_or_create_dir(osp.join(splits_root, dataset.name)) splits_path = osp.join(splits_dir, f"{dataset.name}_outer{splitter.n_outer_folds}_inner{splitter.n_inner_folds}.splits") if not os.path.exists(splits_path): has_targets, targets = splitter.get_graph_targets(dataset) # The splitter is in charge of eventual stratifications splitter.split(dataset, targets=targets if has_targets else None) splitter.save(splits_path) else: print("Data splits are already present, I will not overwrite them.") def load_dataset(data_root: str, dataset_name:str, dataset_class: Callable[...,DatasetInterface]) -> DatasetInterface: r""" Loads the dataset using the ``dataset_kwargs.pt`` file created when parsing the data config file. Args: data_root (str): path of the folder that contains the dataset folder dataset_name (str): name of the dataset (same as the name of the dataset folder that has been already created) dataset_class (Callable[..., :class:`~pydgn.data.dataset.DatasetInterface`]): the class of the dataset to instantiate with the parameters stored in the ``dataset_kwargs.pt`` file. Returns: a :class:`~pydgn.data.dataset.DatasetInterface` object """ # Load arguments kwargs_path = osp.join(data_root, dataset_name, 'processed', 'dataset_kwargs.pt') dataset_args = torch.load(kwargs_path) # Overwrite original data_root field, which may have changed dataset_args['root'] = data_root with warnings.catch_warnings(): # suppress PyG warnings warnings.simplefilter("ignore") dataset = dataset_class(**dataset_args) return dataset
2.515625
3
scripts/create_model_structure.py
christophstach/htw-icw1-implementation
0
12779897
<reponame>christophstach/htw-icw1-implementation from discrimnator import Discriminator from generator import Generator latent_dimension = 128 image_size = 64 image_channels = 3 generator = Generator(1, image_channels, latent_dimension) discriminator = Discriminator(1, image_channels) print(generator) print(discriminator)
2.15625
2
src/QTableWidget/tablewidget.py
Subdue0/pyqt5-demo
0
12779898
<filename>src/QTableWidget/tablewidget.py import sys from PyQt5 import QtCore, QtGui from PyQt5.QtWidgets import * from FormPageBar.form_page_bar import FormPageBar from FormPageBar.ui_form_page_bar import Ui_FormPageBar class TableWidget(QTableWidget): def __init__(self, parent=None): super(TableWidget, self).__init__(parent) self.createContextMenu() # 必须将ContextMenuPolicy设置为Qt.CustomContextMenu,否则无法使用customContextMenuRequested信号 self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.showContextMenu) # 设置选择行为,以行为单位 self.setSelectionBehavior(QAbstractItemView.SelectRows) self.history_record = {'add': [], 'del': []} # 创建上下文菜单 def createContextMenu(self): self.contextMenu = QMenu(self) # 第一个参数加图标addAction(const QIcon &icon, const QString &text) self.add = self.contextMenu.addAction('添加') self.delete = self.contextMenu.addAction('删除') self.undo = self.contextMenu.addAction('撤销') self.redo = self.contextMenu.addAction('重做') self.refresh = self.contextMenu.addAction('刷新') self.add.triggered.connect(self.addRow) self.delete.triggered.connect(self.delRow) self.refresh.triggered.connect(self.updateRowHeader) self.redo.triggered.connect(self.clearForm) self.undo.triggered.connect(self.undoDelOpt) # 菜单显示前,初始化菜单,并且将它移动到鼠标点击的位置 def showContextMenu(self): # 查看历史记录,没有记录则禁用,否则可以使用 opt_times = len(self.history_record['del']) if opt_times: self.undo.setEnabled(True) else: self.undo.setEnabled(False) if len(self.selectedRanges()): self.add.setEnabled(True) self.delete.setEnabled(True) else: self.add.setEnabled(False) self.delete.setEnabled(False) self.contextMenu.move(QtGui.QCursor.pos()) self.contextMenu.show() def recordData(self, opt, data=None): if opt == 'add': print('添加') elif opt == 'del': print('test') else: print('tablewidget.TableWidget.recordDate(self, opt),参数opt为"add"/"del"') sys.exit(-1) def recordLineData(self, row_num, selected_row_opt_data): row_num = str(row_num) sum_col = self.getRowColumm()[1] # 存储行数据 single_row_opt_data = [] for j in range(sum_col): item_data = self.item(int(row_num), j).text() single_row_opt_data.append(item_data) selected_row_opt_data[row_num] = single_row_opt_data # 撤销删除操作,也就是插入操作,和删除操作相反,插入顺序必须按从小到大插入,否则非常难处理,因为索引之间相互影响。 def undoDelOpt(self): recent_opt_data = self.history_record['del'].pop() del_row_num = list(recent_opt_data.keys()) for i in range(len(del_row_num)): min_row_num = int(min(del_row_num)) # 插入最小行 self.insertRow(min_row_num) # 指定行头的item header_item = QTableWidgetItem() self.setVerticalHeaderItem(min_row_num, header_item) # 还原最小行的表格数据 for col_num in range(len(recent_opt_data[str(min_row_num)])): each_item_data = recent_opt_data[str(min_row_num)][col_num] # 指定最小行号的item,并设置文本 item = QTableWidgetItem() item.setText(each_item_data) self.setItem(min_row_num, col_num, item) # 删除列表中的最小行 del_row_num.remove(str(min_row_num)) # 每一次撤销操作都会影响到所有表格的排版,故更新表格 self.updateRowHeader() self.updateItemColorAlignment() # 删除选中行,所有选中行的删除顺序,必须按行号从大到小删除,否则处理会非常麻烦,因为索引之间相互影响。 def delRow(self): # 存储选中的行号 del_row_num = [] # 存储选中行的行号以及数据 selected_row_opt_data = {} # clicks表示Ctrl非连续多选的单击次数 clicks = len(self.selectedRanges()) for i in range(clicks): top = self.selectedRanges()[i].topRow() bottom = self.selectedRanges()[i].bottomRow() # 记录将要被删除的一个单行的元素对象的数据 if top == bottom: del_row_num.append(top) else: # cycles表示使用Shift或单击鼠标拖拉连续选择的总数量 cycles = bottom - top + 1 # 记录将要被删除的一个多行的元素对象的数据 for j in range(cycles): del_row_num.append(top+j) selected_row_opt_data = {} for i in range(len(del_row_num)): max_row_num = max(del_row_num) self.recordLineData(max_row_num, selected_row_opt_data) self.removeRow(max_row_num) del_row_num.remove(max_row_num) self.history_record['del'].append(selected_row_opt_data) # 每一次删除操作都会影响到所有表格的排版,故更新表格 self.updateRowHeader() self.updateItemColorAlignment() # 在当前行后添加新行 def addRow(self): sum_row = self.getRowColumm()[0] sum_col = self.getRowColumm()[1] self.insertRow(sum_row) # 指定行头的item header_item = QTableWidgetItem() self.setVerticalHeaderItem(sum_row, header_item) # 还原最小行的表格数据 for col_num in range(sum_col): # 指定插入的新行的item item = QTableWidgetItem() self.setItem(sum_row, col_num, item) # 每一次添加操作都会影响到所有表格的排版,故更新表格 self.updateRowHeader() self.updateItemColorAlignment() self.editItem(self.item(sum_row, 0)) # 每次添加必须把之前的选择状态给清除了,否则无法编辑下一个 self.setCurrentItem(self.item(sum_row, 0), QtCore.QItemSelectionModel.Clear) FormPageBar.setPageNum(2, 5) print(FormPageBar.getPageNum()) self.form_page_num.setText('[1/4]页') # self.pageBlockDisplay(5) def getPageTotal(self): sum_row = self.getRowColumm()[0] form_page_total = int(sum_row/10) + 1 return form_page_total def pageBlockDisplay(self, form_cur_page_num): # 每次换页必须把之前的编辑状态给关闭了,否则导致乱七八糟的选择 self.closePersistentEditor(self.currentItem()) sum_row = self.getRowColumm()[0] form_page_total = int(sum_row/10) + 1 # 全部隐藏 for i in range(sum_row): self.setRowHidden(i, True) # 部分显示 start = 10*form_cur_page_num - 10 # 最后一页的end就是总行数 if form_cur_page_num == form_page_total: end = sum_row else: end = 10*form_cur_page_num for i in range(start, end): self.setRowHidden(i, False) # 更新行头显示 def updateRowHeader(self): sum_row = self.getRowColumm()[0] for each_row in range(sum_row): self.verticalHeaderItem(each_row).setTextAlignment(QtCore.Qt.AlignCenter) self.verticalHeaderItem(each_row).setText('%s' %(each_row + 1)) # 清空表格文本 def clearForm(self): row_sum, col_sum = self.getRowColumm() for i in range(row_sum): for j in range(col_sum): item = self.item(i, j) item.setText('') # 获得行列数量 def getRowColumm(self): return self.rowCount(), self.columnCount() # 更新所有单元格的背景颜色 def updateItemColorAlignment(self): row_sum, col_sum = self.getRowColumm() for i in range(row_sum): if not i%2: for j in range(col_sum): item = self.item(i, j) item.setBackground(QtGui.QColor(250, 250, 250)) item.setTextAlignment(QtCore.Qt.AlignCenter) else: for j in range(col_sum): item = self.item(i, j) item.setBackground(QtGui.QColor(255, 255, 255)) item.setTextAlignment(QtCore.Qt.AlignCenter) # 设置所有单元格的背景颜色和文本对齐,务必在设置好行列以后调用 def setItemColorAlignment(self): row_sum = self.getRowColumm()[0] col_sum = self.getRowColumm()[1] for i in range(row_sum): if not i%2: for j in range(col_sum): item = QTableWidgetItem() item.setBackground(QtGui.QColor(250, 250, 250)) item.setTextAlignment(QtCore.Qt.AlignCenter) self.setItem(i, j, item) else: for j in range(col_sum): item = QTableWidgetItem() item.setTextAlignment(QtCore.Qt.AlignCenter) self.setItem(i, j, item)
2.109375
2
streamlit_app.py
CMU-IDS-2022/assignment-2-the-entertainers
0
12779899
<filename>streamlit_app.py # important libraries import streamlit as st import pandas as pd import altair as alt import matplotlib.pyplot as plt import seaborn as sns import numpy as np import matplotlib # Use the full page instead of a narrow central column st.set_page_config(layout="wide") # title of application st.title("Recognizing Patterns in Songs") # add caching so we load the data only once @st.cache def load_data(): # Load song dataset csv_file = "features_30_sec.csv" return pd.read_csv(csv_file) @st.cache def playAudio(genre, playlist): # open and play the audio file audio_file = open('genres_original/' + genre_selection + '/' + song_selection, 'rb') audio_bytes = audio_file.read() return audio_bytes # load dataset df = load_data() # introduction and instructions on application st.info( "This application allows users to explore the question, “How can we categorize different songs based on their audio features? What patterns emerge?” Using the visualization, the user will be able to discover relationships and patterns among a song’s audio features, and how that is correlated to the song’s genre. ") # default features for scatterplot # multiselect to change features on X and Y axis for scatterplot (first choice is X and second choice is Y) features = st.multiselect('Choose X and Y features to see how they correlate:', ("harmony_mean", "rms_mean", "chroma_stft_mean", "rolloff_mean", "tempo"), default=["tempo", "chroma_stft_mean"]) if len(features) < 2: feature_X = "tempo" feature_Y = "chroma_stft_mean" else: feature_X = str(features[0]) feature_Y = str(features[1]) # dividing the application into columns col1, col2 = st.columns((2, 1)) # brush (click and drag) for selecting specific values on chart brush = alt.selection_interval(encodings=["x"]) # selection to allow highlight of genre when click on legend selection = alt.selection_multi(fields=['label'], bind='legend') # scatterplot showing the correlation between two features for all genres scatterplot = alt.Chart(df).mark_circle(size=100).encode( alt.X(feature_X, scale=alt.Scale(zero=False)), alt.Y(feature_Y, scale=alt.Scale(zero=False)), alt.Color('label:N', legend=alt.Legend(title="Genres")), opacity=alt.condition(selection, alt.value(1), alt.value(0)) , tooltip=['filename', 'label', 'tempo', 'chroma_stft_mean'] ).properties( width=650, height=350 ).transform_filter( brush ).interactive().add_selection( selection ) features_pie = df.label.unique() #list(set(feature_X + feature_Y)) nBlues = df[df.label == 'blues'].shape[0] nClassical = df[df.label == 'classical'].shape[0] nCountry = df[df.label == 'country'].shape[0] nDisco = df[df.label == 'disco'].shape[0] nHiphop = df[df.label == 'hiphop'].shape[0] nJazz = df[df.label == 'jazz'].shape[0] nMetal = df[df.label == 'metal'].shape[0] nPop = df[df.label == 'pop'].shape[0] nReggae = df[df.label == 'reggae'].shape[0] nRock = df[df.label == 'rock'].shape[0] value_list = [nBlues, nClassical,nCountry,nDisco,nHiphop,nJazz,nMetal,nPop,nReggae,nRock] # facet charts that show grid of scatterplots for each genre facet = alt.Chart(df).mark_point().encode( alt.X('tempo:Q'), alt.Y('chroma_stft_mean:Q'), alt.Color('label:N', legend=alt.Legend(title="Genres")), facet=alt.Facet('label:N', columns=5), tooltip=['filename', 'label', 'chroma_stft_mean', 'tempo'] ).properties( width=110, height=110 ).transform_filter(brush).interactive() # set overview intiall to the scatterplot visualization overview = scatterplot # creating strip plot visualizations # strip plot visualization for chroma_stft_mean chart = alt.Chart(df).mark_tick().encode( x='chroma_stft_mean', color=alt.condition(brush, "label", alt.value("white"), legend=None), tooltip=['filename', 'label', 'chroma_stft_mean'] ).properties( width=650, height=45 ).add_selection(brush) # strip plot visualization for rms_mean chart2 = alt.Chart(df).mark_tick().encode( x='rms_mean', color=alt.condition(brush, "label", alt.value("white")), tooltip=['filename', 'label', 'rms_mean'], ).properties( width=650, height=45 ).add_selection(brush) # strip plot visualization for rolloff_mean chart3 = alt.Chart(df).mark_tick().encode( x='rolloff_mean', color=alt.condition(brush, "label", alt.value("white")), tooltip=['filename', 'label', 'rolloff_mean'] ).properties( width=650, height=45 ).add_selection(brush) # strip plot visualization for harmony_mean chart4 = alt.Chart(df).mark_tick().encode( x='harmony_mean', color=alt.condition(brush, "label", alt.value("white")), tooltip=['filename', 'label', 'harmony_mean'] ).properties( width=650, height=45 ).add_selection(brush) # strip plot visualization for tempo chart5 = alt.Chart(df).mark_tick().encode( x='tempo', color=alt.condition(brush, "label", alt.value("white")), tooltip=['filename', 'label', 'tempo'] ).properties( width=650, height=45 ).add_selection(brush) # elements that go into column 1 (scatterplot and strip plots) with col1: st.subheader("Analyze the correlation among genres: ") # checkbox that changes the scatterplot to grid of scatterplots for eac genre if st.checkbox("Click for Genre Breakdown"): overview = facet # create the scatterplot and strip plot visualizations in a vertical orientation st.write(overview & chart & chart2 & chart3 & chart4 & chart5) # elements that go into column 2 (songs selection, audio file, ) with col2: st.subheader("Explore the songs: ") # get list of genres from dataset genres = df.label.unique() genre_selection = st.selectbox("Pick a Genre", genres, 0) # get all the songs in the selected genre playlist = df[df['label'] == genre_selection].filename song_selection = st.selectbox("Pick a Song", playlist, 0) song = playAudio(genre_selection, song_selection) st.audio(song, format='audio/wav') # expander - when clicked, shows the written descriptions of the features with st.expander("See description of features", expanded=True): st.write("chroma_stft: represents information about the classification of pitch and signal structure, units = intensity") st.write("rms: a metering tool that measures the average loudness of an audio track within a window of roughly 300 milliseconds, units=intensity") st.write( "rolloff: denotes the approximate low bass and high treble limits in a frequency response curve, with all frequencies between being those a speaker will play accurately") st.write( "harmony: the process by which the composition of individual sounds, or superpositions of sounds, is analysed by hearing.") st.write("tempo: how fast or slow a piece of music is performed (units = beats per minute (BPM)") with st.expander("Genre breakdown pie chart"): st.subheader("Proportion of genres in the dataset:") st.subheader("#") st.subheader("#") # create pie chart fff, middlex = plt.subplots(nrows=1, ncols=1, figsize = (2,2)) colors = ('b', 'darkorange','r', 'c', 'g', 'gold', 'm', 'hotpink', 'sienna', 'silver') middlex.pie(value_list, labels=features_pie, colors = colors, textprops={'fontsize': 6}) st.pyplot(fff) st.markdown("---") st.markdown("#") # dividing the application into columns col3, col4 = st.columns((2, 1)) #intercorrelation heatmap with col3: if True: #st.button('Intercorrelation Heatmap'): with col4: st.subheader("Intercorrelation heatmap:") sorted_unique_features = sorted({'chroma_stft_mean', 'rms_mean', 'tempo', 'rolloff_mean', 'harmony_mean'}) selected_features = st.multiselect('Features to be included in heatmap:', sorted_unique_features, sorted_unique_features) # Sidebar - Position selection unique_genres = sorted(df.label.unique()) selected_genres = st.multiselect('Features to be included in correlation calculation:', unique_genres, unique_genres) # Filtering data df_selected = df[df.label.isin(selected_genres)] df_selected = df_selected[selected_features] # Heatmap corr = df_selected.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask, k=1)] = True if st.checkbox("Scale from minimum value ro maximum value"): vmin = corr.min().min() vmax = corr.max().max() else: vmin = int(-1) vmax = int(1) with col3: with sns.axes_style("white"): f, (leftAx, rightAx ) = plt.subplots(nrows = 1, ncols=2) ax = sns.heatmap(corr, mask = mask, vmax= vmax, vmin = vmin, square=True, cmap = "rocket_r", ax = leftAx, cbar_kws={"shrink": 0.5}, annot=True,annot_kws = {"size": 8}, fmt = '.2f' ) rightAx.axis('off') ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize=8) ax.set_yticklabels(ax.get_ymajorticklabels(), fontsize=8) cbar = ax.collections[0].colorbar cbar.ax.tick_params(labelsize=8) st.pyplot(f) st.set_option('deprecation.showPyplotGlobalUse', False) # expander - when clicked, show the raw dataset with st.expander("See the raw dataset"): st.write(df) st.markdown( "This project was created by <NAME> and <NAME> for the [Interactive Data Science](https://dig.cmu.edu/ids2022) course at [Carnegie Mellon University](https://www.cmu.edu).")
4.03125
4
instructors/course-2015/errors_and_introspection/examples/exception0.py
mgadagin/PythonClass
46
12779900
<filename>instructors/course-2015/errors_and_introspection/examples/exception0.py """ Course: Exceptions Topic: View an exception Summary: What happens if there is an exception? What do we see? Takeaways: raising an exception -> happens automatically if not handled. """ if __name__ == '__main__': """ Catch an IOerror, which includes any time the file doesn't exist. """ # This file doesn't exist, oops! filename = "does_not_exist.txt" try: f = open(filename, 'r') f.read() except IOError as e: print("Error!", e) # we will look at this next example, ignore it for now # Demonstrate that the application continues print("...") print("Continue on with the application...")
4.09375
4
libs/qncloud.py
sh-Joshua-python/swiper
0
12779901
from urllib.parse import urljoin from qiniu import Auth,put_file from swiper import config def qn_upload(filename,filepath): '''将文件上传至七牛云''' #构建鉴权对象 qn = Auth(config.QN_ACCESS_KEY,config.QN_SECRET_KEY) #生产上传 Token,有效期为1小时 token = qn.upload_token(config.QN_BUCKET,filename,3600) #上传文件 ret,info = put_file(token,filename,filepath) if info.ok(): url = urljoin(config.QN_BASEURL,filename) return True,url else: return False,''
2.328125
2
src/ks33requests/schemas/s3_sub.py
tanbro/ks33requests
1
12779902
#!/usr/bin/env python # # Generated Mon Jun 10 11:49:52 2019 by generateDS.py version 2.32.0. # Python 3.6.7 (default, Oct 22 2018, 11:32:17) [GCC 8.2.0] # # Command line options: # ('-f', '') # ('-o', 's3_api.py') # ('-s', 's3_sub.py') # ('--super', 's3_api') # # Command line arguments: # schemas/AmazonS3.xsd # # Command line: # generateDS.py -f -o "s3_api.py" -s "s3_sub.py" --super="s3_api" schemas/AmazonS3.xsd # # Current working directory (os.getcwd()): # ks33requests # import os import sys from lxml import etree as etree_ from . import s3_api as supermod def parsexml_(infile, parser=None, **kwargs): if parser is None: # Use the lxml ElementTree compatible parser so that, e.g., # we ignore comments. parser = etree_.ETCompatXMLParser() try: if isinstance(infile, os.PathLike): infile = os.path.join(infile) except AttributeError: pass doc = etree_.parse(infile, parser=parser, **kwargs) return doc # # Globals # ExternalEncoding = '' # # Data representation classes # class CreateBucketSub(supermod.CreateBucket): def __init__(self, Bucket=None, AccessControlList=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, **kwargs_): super(CreateBucketSub, self).__init__(Bucket, AccessControlList, AWSAccessKeyId, Timestamp, Signature, **kwargs_) supermod.CreateBucket.subclass = CreateBucketSub # end class CreateBucketSub class MetadataEntrySub(supermod.MetadataEntry): def __init__(self, Name=None, Value=None, **kwargs_): super(MetadataEntrySub, self).__init__(Name, Value, **kwargs_) supermod.MetadataEntry.subclass = MetadataEntrySub # end class MetadataEntrySub class CreateBucketResponseSub(supermod.CreateBucketResponse): def __init__(self, CreateBucketReturn=None, **kwargs_): super(CreateBucketResponseSub, self).__init__(CreateBucketReturn, **kwargs_) supermod.CreateBucketResponse.subclass = CreateBucketResponseSub # end class CreateBucketResponseSub class StatusSub(supermod.Status): def __init__(self, Code=None, Description=None, **kwargs_): super(StatusSub, self).__init__(Code, Description, **kwargs_) supermod.Status.subclass = StatusSub # end class StatusSub class ResultSub(supermod.Result): def __init__(self, Status=None, extensiontype_=None, **kwargs_): super(ResultSub, self).__init__(Status, extensiontype_, **kwargs_) supermod.Result.subclass = ResultSub # end class ResultSub class CreateBucketResultSub(supermod.CreateBucketResult): def __init__(self, BucketName=None, **kwargs_): super(CreateBucketResultSub, self).__init__(BucketName, **kwargs_) supermod.CreateBucketResult.subclass = CreateBucketResultSub # end class CreateBucketResultSub class DeleteBucketSub(supermod.DeleteBucket): def __init__(self, Bucket=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(DeleteBucketSub, self).__init__(Bucket, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.DeleteBucket.subclass = DeleteBucketSub # end class DeleteBucketSub class DeleteBucketResponseSub(supermod.DeleteBucketResponse): def __init__(self, DeleteBucketResponse_member=None, **kwargs_): super(DeleteBucketResponseSub, self).__init__(DeleteBucketResponse_member, **kwargs_) supermod.DeleteBucketResponse.subclass = DeleteBucketResponseSub # end class DeleteBucketResponseSub class BucketLoggingStatusSub(supermod.BucketLoggingStatus): def __init__(self, LoggingEnabled=None, **kwargs_): super(BucketLoggingStatusSub, self).__init__(LoggingEnabled, **kwargs_) supermod.BucketLoggingStatus.subclass = BucketLoggingStatusSub # end class BucketLoggingStatusSub class LoggingSettingsSub(supermod.LoggingSettings): def __init__(self, TargetBucket=None, TargetPrefix=None, TargetGrants=None, **kwargs_): super(LoggingSettingsSub, self).__init__(TargetBucket, TargetPrefix, TargetGrants, **kwargs_) supermod.LoggingSettings.subclass = LoggingSettingsSub # end class LoggingSettingsSub class GetBucketLoggingStatusSub(supermod.GetBucketLoggingStatus): def __init__(self, Bucket=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(GetBucketLoggingStatusSub, self).__init__(Bucket, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.GetBucketLoggingStatus.subclass = GetBucketLoggingStatusSub # end class GetBucketLoggingStatusSub class GetBucketLoggingStatusResponseSub(supermod.GetBucketLoggingStatusResponse): def __init__(self, GetBucketLoggingStatusResponse_member=None, **kwargs_): super(GetBucketLoggingStatusResponseSub, self).__init__(GetBucketLoggingStatusResponse_member, **kwargs_) supermod.GetBucketLoggingStatusResponse.subclass = GetBucketLoggingStatusResponseSub # end class GetBucketLoggingStatusResponseSub class SetBucketLoggingStatusSub(supermod.SetBucketLoggingStatus): def __init__(self, Bucket=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, BucketLoggingStatus=None, **kwargs_): super(SetBucketLoggingStatusSub, self).__init__(Bucket, AWSAccessKeyId, Timestamp, Signature, Credential, BucketLoggingStatus, **kwargs_) supermod.SetBucketLoggingStatus.subclass = SetBucketLoggingStatusSub # end class SetBucketLoggingStatusSub class SetBucketLoggingStatusResponseSub(supermod.SetBucketLoggingStatusResponse): def __init__(self, **kwargs_): super(SetBucketLoggingStatusResponseSub, self).__init__(**kwargs_) supermod.SetBucketLoggingStatusResponse.subclass = SetBucketLoggingStatusResponseSub # end class SetBucketLoggingStatusResponseSub class GetObjectAccessControlPolicySub(supermod.GetObjectAccessControlPolicy): def __init__(self, Bucket=None, Key=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(GetObjectAccessControlPolicySub, self).__init__(Bucket, Key, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.GetObjectAccessControlPolicy.subclass = GetObjectAccessControlPolicySub # end class GetObjectAccessControlPolicySub class GetObjectAccessControlPolicyResponseSub(supermod.GetObjectAccessControlPolicyResponse): def __init__(self, GetObjectAccessControlPolicyResponse_member=None, **kwargs_): super(GetObjectAccessControlPolicyResponseSub, self).__init__(GetObjectAccessControlPolicyResponse_member, **kwargs_) supermod.GetObjectAccessControlPolicyResponse.subclass = GetObjectAccessControlPolicyResponseSub # end class GetObjectAccessControlPolicyResponseSub class GetBucketAccessControlPolicySub(supermod.GetBucketAccessControlPolicy): def __init__(self, Bucket=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(GetBucketAccessControlPolicySub, self).__init__(Bucket, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.GetBucketAccessControlPolicy.subclass = GetBucketAccessControlPolicySub # end class GetBucketAccessControlPolicySub class GetBucketAccessControlPolicyResponseSub(supermod.GetBucketAccessControlPolicyResponse): def __init__(self, GetBucketAccessControlPolicyResponse_member=None, **kwargs_): super(GetBucketAccessControlPolicyResponseSub, self).__init__(GetBucketAccessControlPolicyResponse_member, **kwargs_) supermod.GetBucketAccessControlPolicyResponse.subclass = GetBucketAccessControlPolicyResponseSub # end class GetBucketAccessControlPolicyResponseSub class GranteeSub(supermod.Grantee): def __init__(self, extensiontype_=None, **kwargs_): super(GranteeSub, self).__init__(extensiontype_, **kwargs_) supermod.Grantee.subclass = GranteeSub # end class GranteeSub class UserSub(supermod.User): def __init__(self, extensiontype_=None, **kwargs_): super(UserSub, self).__init__(extensiontype_, **kwargs_) supermod.User.subclass = UserSub # end class UserSub class AmazonCustomerByEmailSub(supermod.AmazonCustomerByEmail): def __init__(self, EmailAddress=None, **kwargs_): super(AmazonCustomerByEmailSub, self).__init__(EmailAddress, **kwargs_) supermod.AmazonCustomerByEmail.subclass = AmazonCustomerByEmailSub # end class AmazonCustomerByEmailSub class CanonicalUserSub(supermod.CanonicalUser): def __init__(self, ID=None, DisplayName=None, **kwargs_): super(CanonicalUserSub, self).__init__(ID, DisplayName, **kwargs_) supermod.CanonicalUser.subclass = CanonicalUserSub # end class CanonicalUserSub class GroupSub(supermod.Group): def __init__(self, URI=None, **kwargs_): super(GroupSub, self).__init__(URI, **kwargs_) supermod.Group.subclass = GroupSub # end class GroupSub class GrantSub(supermod.Grant): def __init__(self, Grantee=None, Permission=None, **kwargs_): super(GrantSub, self).__init__(Grantee, Permission, **kwargs_) supermod.Grant.subclass = GrantSub # end class GrantSub class AccessControlListSub(supermod.AccessControlList): def __init__(self, Grant=None, **kwargs_): super(AccessControlListSub, self).__init__(Grant, **kwargs_) supermod.AccessControlList.subclass = AccessControlListSub # end class AccessControlListSub class CreateBucketConfigurationSub(supermod.CreateBucketConfiguration): def __init__(self, LocationConstraint=None, **kwargs_): super(CreateBucketConfigurationSub, self).__init__(LocationConstraint, **kwargs_) supermod.CreateBucketConfiguration.subclass = CreateBucketConfigurationSub # end class CreateBucketConfigurationSub class LocationConstraintSub(supermod.LocationConstraint): def __init__(self, valueOf_=None, **kwargs_): super(LocationConstraintSub, self).__init__(valueOf_, **kwargs_) supermod.LocationConstraint.subclass = LocationConstraintSub # end class LocationConstraintSub class AccessControlPolicySub(supermod.AccessControlPolicy): def __init__(self, Owner=None, AccessControlList=None, **kwargs_): super(AccessControlPolicySub, self).__init__(Owner, AccessControlList, **kwargs_) supermod.AccessControlPolicy.subclass = AccessControlPolicySub # end class AccessControlPolicySub class SetObjectAccessControlPolicySub(supermod.SetObjectAccessControlPolicy): def __init__(self, Bucket=None, Key=None, AccessControlList=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(SetObjectAccessControlPolicySub, self).__init__(Bucket, Key, AccessControlList, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.SetObjectAccessControlPolicy.subclass = SetObjectAccessControlPolicySub # end class SetObjectAccessControlPolicySub class SetObjectAccessControlPolicyResponseSub(supermod.SetObjectAccessControlPolicyResponse): def __init__(self, **kwargs_): super(SetObjectAccessControlPolicyResponseSub, self).__init__(**kwargs_) supermod.SetObjectAccessControlPolicyResponse.subclass = SetObjectAccessControlPolicyResponseSub # end class SetObjectAccessControlPolicyResponseSub class SetBucketAccessControlPolicySub(supermod.SetBucketAccessControlPolicy): def __init__(self, Bucket=None, AccessControlList=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(SetBucketAccessControlPolicySub, self).__init__(Bucket, AccessControlList, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.SetBucketAccessControlPolicy.subclass = SetBucketAccessControlPolicySub # end class SetBucketAccessControlPolicySub class SetBucketAccessControlPolicyResponseSub(supermod.SetBucketAccessControlPolicyResponse): def __init__(self, **kwargs_): super(SetBucketAccessControlPolicyResponseSub, self).__init__(**kwargs_) supermod.SetBucketAccessControlPolicyResponse.subclass = SetBucketAccessControlPolicyResponseSub # end class SetBucketAccessControlPolicyResponseSub class GetObjectSub(supermod.GetObject): def __init__(self, Bucket=None, Key=None, GetMetadata=None, GetData=None, InlineData=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(GetObjectSub, self).__init__(Bucket, Key, GetMetadata, GetData, InlineData, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.GetObject.subclass = GetObjectSub # end class GetObjectSub class GetObjectResponseSub(supermod.GetObjectResponse): def __init__(self, GetObjectResponse_member=None, **kwargs_): super(GetObjectResponseSub, self).__init__(GetObjectResponse_member, **kwargs_) supermod.GetObjectResponse.subclass = GetObjectResponseSub # end class GetObjectResponseSub class GetObjectResultSub(supermod.GetObjectResult): def __init__(self, Status=None, Metadata=None, Data=None, LastModified=None, ETag=None, **kwargs_): super(GetObjectResultSub, self).__init__(Status, Metadata, Data, LastModified, ETag, **kwargs_) supermod.GetObjectResult.subclass = GetObjectResultSub # end class GetObjectResultSub class GetObjectExtendedSub(supermod.GetObjectExtended): def __init__(self, Bucket=None, Key=None, GetMetadata=None, GetData=None, InlineData=None, ByteRangeStart=None, ByteRangeEnd=None, IfModifiedSince=None, IfUnmodifiedSince=None, IfMatch=None, IfNoneMatch=None, ReturnCompleteObjectOnConditionFailure=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(GetObjectExtendedSub, self).__init__(Bucket, Key, GetMetadata, GetData, InlineData, ByteRangeStart, ByteRangeEnd, IfModifiedSince, IfUnmodifiedSince, IfMatch, IfNoneMatch, ReturnCompleteObjectOnConditionFailure, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.GetObjectExtended.subclass = GetObjectExtendedSub # end class GetObjectExtendedSub class GetObjectExtendedResponseSub(supermod.GetObjectExtendedResponse): def __init__(self, GetObjectResponse=None, **kwargs_): super(GetObjectExtendedResponseSub, self).__init__(GetObjectResponse, **kwargs_) supermod.GetObjectExtendedResponse.subclass = GetObjectExtendedResponseSub # end class GetObjectExtendedResponseSub class PutObjectSub(supermod.PutObject): def __init__(self, Bucket=None, Key=None, Metadata=None, ContentLength=None, AccessControlList=None, StorageClass=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(PutObjectSub, self).__init__(Bucket, Key, Metadata, ContentLength, AccessControlList, StorageClass, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.PutObject.subclass = PutObjectSub # end class PutObjectSub class PutObjectResponseSub(supermod.PutObjectResponse): def __init__(self, PutObjectResponse_member=None, **kwargs_): super(PutObjectResponseSub, self).__init__(PutObjectResponse_member, **kwargs_) supermod.PutObjectResponse.subclass = PutObjectResponseSub # end class PutObjectResponseSub class PutObjectResultSub(supermod.PutObjectResult): def __init__(self, ETag=None, LastModified=None, **kwargs_): super(PutObjectResultSub, self).__init__(ETag, LastModified, **kwargs_) supermod.PutObjectResult.subclass = PutObjectResultSub # end class PutObjectResultSub class PutObjectInlineSub(supermod.PutObjectInline): def __init__(self, Bucket=None, Key=None, Metadata=None, Data=None, ContentLength=None, AccessControlList=None, StorageClass=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(PutObjectInlineSub, self).__init__(Bucket, Key, Metadata, Data, ContentLength, AccessControlList, StorageClass, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.PutObjectInline.subclass = PutObjectInlineSub # end class PutObjectInlineSub class PutObjectInlineResponseSub(supermod.PutObjectInlineResponse): def __init__(self, PutObjectInlineResponse_member=None, **kwargs_): super(PutObjectInlineResponseSub, self).__init__(PutObjectInlineResponse_member, **kwargs_) supermod.PutObjectInlineResponse.subclass = PutObjectInlineResponseSub # end class PutObjectInlineResponseSub class DeleteObjectSub(supermod.DeleteObject): def __init__(self, Bucket=None, Key=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(DeleteObjectSub, self).__init__(Bucket, Key, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.DeleteObject.subclass = DeleteObjectSub # end class DeleteObjectSub class DeleteObjectResponseSub(supermod.DeleteObjectResponse): def __init__(self, DeleteObjectResponse_member=None, **kwargs_): super(DeleteObjectResponseSub, self).__init__(DeleteObjectResponse_member, **kwargs_) supermod.DeleteObjectResponse.subclass = DeleteObjectResponseSub # end class DeleteObjectResponseSub class ListBucketSub(supermod.ListBucket): def __init__(self, Bucket=None, Prefix=None, Marker=None, MaxKeys=None, Delimiter=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(ListBucketSub, self).__init__(Bucket, Prefix, Marker, MaxKeys, Delimiter, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.ListBucket.subclass = ListBucketSub # end class ListBucketSub class ListBucketResponseSub(supermod.ListBucketResponse): def __init__(self, ListBucketResponse_member=None, **kwargs_): super(ListBucketResponseSub, self).__init__(ListBucketResponse_member, **kwargs_) supermod.ListBucketResponse.subclass = ListBucketResponseSub # end class ListBucketResponseSub class ListVersionsResponseSub(supermod.ListVersionsResponse): def __init__(self, ListVersionsResponse_member=None, **kwargs_): super(ListVersionsResponseSub, self).__init__(ListVersionsResponse_member, **kwargs_) supermod.ListVersionsResponse.subclass = ListVersionsResponseSub # end class ListVersionsResponseSub class ListEntrySub(supermod.ListEntry): def __init__(self, Key=None, LastModified=None, ETag=None, Size=None, Owner=None, StorageClass=None, **kwargs_): super(ListEntrySub, self).__init__(Key, LastModified, ETag, Size, Owner, StorageClass, **kwargs_) supermod.ListEntry.subclass = ListEntrySub # end class ListEntrySub class VersionEntrySub(supermod.VersionEntry): def __init__(self, Key=None, VersionId=None, IsLatest=None, LastModified=None, ETag=None, Size=None, Owner=None, StorageClass=None, **kwargs_): super(VersionEntrySub, self).__init__(Key, VersionId, IsLatest, LastModified, ETag, Size, Owner, StorageClass, **kwargs_) supermod.VersionEntry.subclass = VersionEntrySub # end class VersionEntrySub class DeleteMarkerEntrySub(supermod.DeleteMarkerEntry): def __init__(self, Key=None, VersionId=None, IsLatest=None, LastModified=None, Owner=None, **kwargs_): super(DeleteMarkerEntrySub, self).__init__(Key, VersionId, IsLatest, LastModified, Owner, **kwargs_) supermod.DeleteMarkerEntry.subclass = DeleteMarkerEntrySub # end class DeleteMarkerEntrySub class PrefixEntrySub(supermod.PrefixEntry): def __init__(self, Prefix=None, **kwargs_): super(PrefixEntrySub, self).__init__(Prefix, **kwargs_) supermod.PrefixEntry.subclass = PrefixEntrySub # end class PrefixEntrySub class ListBucketResultSub(supermod.ListBucketResult): def __init__(self, Metadata=None, Name=None, Prefix=None, Marker=None, NextMarker=None, MaxKeys=None, Delimiter=None, IsTruncated=None, Contents=None, CommonPrefixes=None, **kwargs_): super(ListBucketResultSub, self).__init__(Metadata, Name, Prefix, Marker, NextMarker, MaxKeys, Delimiter, IsTruncated, Contents, CommonPrefixes, **kwargs_) supermod.ListBucketResult.subclass = ListBucketResultSub # end class ListBucketResultSub class ListVersionsResultSub(supermod.ListVersionsResult): def __init__(self, Metadata=None, Name=None, Prefix=None, KeyMarker=None, VersionIdMarker=None, NextKeyMarker=None, NextVersionIdMarker=None, MaxKeys=None, Delimiter=None, IsTruncated=None, Version=None, DeleteMarker=None, CommonPrefixes=None, **kwargs_): super(ListVersionsResultSub, self).__init__(Metadata, Name, Prefix, KeyMarker, VersionIdMarker, NextKeyMarker, NextVersionIdMarker, MaxKeys, Delimiter, IsTruncated, Version, DeleteMarker, CommonPrefixes, **kwargs_) supermod.ListVersionsResult.subclass = ListVersionsResultSub # end class ListVersionsResultSub class ListAllMyBucketsSub(supermod.ListAllMyBuckets): def __init__(self, AWSAccessKeyId=None, Timestamp=None, Signature=None, **kwargs_): super(ListAllMyBucketsSub, self).__init__(AWSAccessKeyId, Timestamp, Signature, **kwargs_) supermod.ListAllMyBuckets.subclass = ListAllMyBucketsSub # end class ListAllMyBucketsSub class ListAllMyBucketsResponseSub(supermod.ListAllMyBucketsResponse): def __init__(self, ListAllMyBucketsResponse_member=None, **kwargs_): super(ListAllMyBucketsResponseSub, self).__init__(ListAllMyBucketsResponse_member, **kwargs_) supermod.ListAllMyBucketsResponse.subclass = ListAllMyBucketsResponseSub # end class ListAllMyBucketsResponseSub class ListAllMyBucketsEntrySub(supermod.ListAllMyBucketsEntry): def __init__(self, Name=None, CreationDate=None, **kwargs_): super(ListAllMyBucketsEntrySub, self).__init__(Name, CreationDate, **kwargs_) supermod.ListAllMyBucketsEntry.subclass = ListAllMyBucketsEntrySub # end class ListAllMyBucketsEntrySub class ListAllMyBucketsResultSub(supermod.ListAllMyBucketsResult): def __init__(self, Owner=None, Buckets=None, **kwargs_): super(ListAllMyBucketsResultSub, self).__init__(Owner, Buckets, **kwargs_) supermod.ListAllMyBucketsResult.subclass = ListAllMyBucketsResultSub # end class ListAllMyBucketsResultSub class ListAllMyBucketsListSub(supermod.ListAllMyBucketsList): def __init__(self, Bucket=None, **kwargs_): super(ListAllMyBucketsListSub, self).__init__(Bucket, **kwargs_) supermod.ListAllMyBucketsList.subclass = ListAllMyBucketsListSub # end class ListAllMyBucketsListSub class PostResponseSub(supermod.PostResponse): def __init__(self, Location=None, Bucket=None, Key=None, ETag=None, **kwargs_): super(PostResponseSub, self).__init__(Location, Bucket, Key, ETag, **kwargs_) supermod.PostResponse.subclass = PostResponseSub # end class PostResponseSub class CopyObjectSub(supermod.CopyObject): def __init__(self, SourceBucket=None, SourceKey=None, DestinationBucket=None, DestinationKey=None, MetadataDirective=None, Metadata=None, AccessControlList=None, CopySourceIfModifiedSince=None, CopySourceIfUnmodifiedSince=None, CopySourceIfMatch=None, CopySourceIfNoneMatch=None, StorageClass=None, AWSAccessKeyId=None, Timestamp=None, Signature=None, Credential=None, **kwargs_): super(CopyObjectSub, self).__init__(SourceBucket, SourceKey, DestinationBucket, DestinationKey, MetadataDirective, Metadata, AccessControlList, CopySourceIfModifiedSince, CopySourceIfUnmodifiedSince, CopySourceIfMatch, CopySourceIfNoneMatch, StorageClass, AWSAccessKeyId, Timestamp, Signature, Credential, **kwargs_) supermod.CopyObject.subclass = CopyObjectSub # end class CopyObjectSub class CopyObjectResponseSub(supermod.CopyObjectResponse): def __init__(self, CopyObjectResult=None, **kwargs_): super(CopyObjectResponseSub, self).__init__(CopyObjectResult, **kwargs_) supermod.CopyObjectResponse.subclass = CopyObjectResponseSub # end class CopyObjectResponseSub class CopyObjectResultSub(supermod.CopyObjectResult): def __init__(self, LastModified=None, ETag=None, **kwargs_): super(CopyObjectResultSub, self).__init__(LastModified, ETag, **kwargs_) supermod.CopyObjectResult.subclass = CopyObjectResultSub # end class CopyObjectResultSub class RequestPaymentConfigurationSub(supermod.RequestPaymentConfiguration): def __init__(self, Payer=None, **kwargs_): super(RequestPaymentConfigurationSub, self).__init__(Payer, **kwargs_) supermod.RequestPaymentConfiguration.subclass = RequestPaymentConfigurationSub # end class RequestPaymentConfigurationSub class VersioningConfigurationSub(supermod.VersioningConfiguration): def __init__(self, Status=None, MfaDelete=None, **kwargs_): super(VersioningConfigurationSub, self).__init__(Status, MfaDelete, **kwargs_) supermod.VersioningConfiguration.subclass = VersioningConfigurationSub # end class VersioningConfigurationSub class NotificationConfigurationSub(supermod.NotificationConfiguration): def __init__(self, TopicConfiguration=None, **kwargs_): super(NotificationConfigurationSub, self).__init__(TopicConfiguration, **kwargs_) supermod.NotificationConfiguration.subclass = NotificationConfigurationSub # end class NotificationConfigurationSub class TopicConfigurationSub(supermod.TopicConfiguration): def __init__(self, Topic=None, Event=None, **kwargs_): super(TopicConfigurationSub, self).__init__(Topic, Event, **kwargs_) supermod.TopicConfiguration.subclass = TopicConfigurationSub # end class TopicConfigurationSub def get_root_tag(node): tag = supermod.Tag_pattern_.match(node.tag).groups()[-1] rootClass = None rootClass = supermod.GDSClassesMapping.get(tag) if rootClass is None and hasattr(supermod, tag): rootClass = getattr(supermod, tag) return tag, rootClass def parse(inFilename, silence=False): parser = None doc = parsexml_(inFilename, parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'CreateBucket' rootClass = supermod.CreateBucket rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None if not silence: sys.stdout.write('<?xml version="1.0" ?>\n') rootObj.export( sys.stdout, 0, name_=rootTag, namespacedef_='xmlns:tns="http://s3.amazonaws.com/doc/2006-03-01/"', pretty_print=True) return rootObj def parseEtree(inFilename, silence=False): parser = None doc = parsexml_(inFilename, parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'CreateBucket' rootClass = supermod.CreateBucket rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None mapping = {} rootElement = rootObj.to_etree(None, name_=rootTag, mapping_=mapping) reverse_mapping = rootObj.gds_reverse_node_mapping(mapping) if not silence: content = etree_.tostring( rootElement, pretty_print=True, xml_declaration=True, encoding="utf-8") sys.stdout.write(content) sys.stdout.write('\n') return rootObj, rootElement, mapping, reverse_mapping def parseString(inString, silence=False): if sys.version_info.major == 2: from StringIO import StringIO else: from io import BytesIO as StringIO parser = None doc = parsexml_(StringIO(inString), parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'CreateBucket' rootClass = supermod.CreateBucket rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None if not silence: sys.stdout.write('<?xml version="1.0" ?>\n') rootObj.export( sys.stdout, 0, name_=rootTag, namespacedef_='xmlns:tns="http://s3.amazonaws.com/doc/2006-03-01/"') return rootObj def parseLiteral(inFilename, silence=False): parser = None doc = parsexml_(inFilename, parser) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'CreateBucket' rootClass = supermod.CreateBucket rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None if not silence: sys.stdout.write('#from s3_api import *\n\n') sys.stdout.write('import s3_api as model_\n\n') sys.stdout.write('rootObj = model_.rootClass(\n') rootObj.exportLiteral(sys.stdout, 0, name_=rootTag) sys.stdout.write(')\n') return rootObj USAGE_TEXT = """ Usage: python ???.py <infilename> """ def usage(): print(USAGE_TEXT) sys.exit(1) def main(): args = sys.argv[1:] if len(args) != 1: usage() infilename = args[0] parse(infilename) if __name__ == '__main__': # import pdb; pdb.set_trace() main()
2.09375
2
aiakos/__main__.py
aiakos/aiakos
4
12779903
<reponame>aiakos/aiakos #!/usr/bin/env python import os import sys os.environ.setdefault("DJANGO_SETTINGS_MODULE", "aiakos.settings") from django.core.management import execute_from_command_line # isort:skip execute_from_command_line(sys.argv)
1.289063
1
lib/googlecloudsdk/core/cli.py
IsaacHuang/google-cloud-sdk
0
12779904
# Copyright 2013 Google Inc. All Rights Reserved. """A module to make it easy to set up and run CLIs in the Cloud SDK.""" import os.path import subprocess import sys import httplib2 from oauth2client import client from googlecloudsdk.calliope import cli as calliope from googlecloudsdk.core import config from googlecloudsdk.core import exceptions from googlecloudsdk.core import log from googlecloudsdk.core.credentials import store as c_store __all__ = ['CLILoader', 'GoogleCloudSDKPackageRoot', 'Credentials', 'Http'] class Error(exceptions.Error): """Exceptions for the cli module.""" class CannotRefreshAuthTokenError(Error): """An exception raised when the auth tokens fail to refresh.""" def __init__(self, msg): auth_command = '$ gcloud auth login' message = ('There was a problem refreshing your current auth tokens: ' '{0}. Please run\n {1}.'.format(msg, auth_command)) super(CannotRefreshAuthTokenError, self).__init__(message) class NoHelpFoundError(Error): """Raised when a help file cannot be located.""" def GetHelp(help_dir): """Returns a function that can display long help. Long help is displayed using the man utility if it's available on the user's platform. If man is not available, a plain-text version of help is written to standard out. Args: help_dir: str, The path to the directory containing help documents. Returns: func([str]), A function that can display help if help_dir exists, otherwise None. """ def Help(path, default=None): """Displays help for the given subcommand. This function first attempts to display help using the man utility. If man is unavailable, a plain-text version of the help is printed to standard out. Args: path: A path representing the subcommand for which help is being requested (e.g., ['my-prog', 'my-subcommand'] if help is being requested for "my-prog my-subcommand"). default: str, Text to print out if no help files can be found. Raises: HelpNotFound: If man is not available and no help exists for the given subcommand. Note that if man is available and no help exists, error reporting is deferred to man. """ base = '_'.join(path) try: exit_code = subprocess.call( ['man', '-M', os.path.join(help_dir, 'man'), # Sets the man search path. base, ]) if exit_code == 0: return else: log.debug('man process returned with exit code %s', exit_code) except OSError as e: log.debug('There was a problem launching man: %s', e) log.debug('Falling back to plain-text help.') text_help_file_path = os.path.join(help_dir, 'text.long', base) try: with open(text_help_file_path) as f: sys.stdout.write(f.read()) except IOError: if default: print default else: raise NoHelpFoundError( 'No manual entry for command: {0}'.format(' '.join(path))) if help_dir and os.path.exists(help_dir): return Help else: return None def CLILoader(name, command_root_directory, allow_non_existing_modules=False, version_func=None, help_dir=None): """Get a ready-to-go CLI for Cloud SDK tools. Args: name: str, The name of your CLI. Should probably be the same as the executable name. command_root_directory: str, The absolute path to the tools root. allow_non_existing_modules: bool, If true, module directories that don't exist will be ignored rather than cause errors. version_func: func, Function to call with -v, --version. help_dir: str, The path to the directory containing help documents or None if the CLI does not support man pages. Returns: calliope.CLILoader, An object that will run the tools from the command line. """ paths = config.Paths() return calliope.CLILoader( name=name, command_root_directory=command_root_directory, load_context=None, logs_dir=paths.logs_dir, allow_non_existing_modules=allow_non_existing_modules, version_func=version_func, help_func=GetHelp(help_dir), ) def GoogleCloudSDKPackageRoot(): return config.GoogleCloudSDKPackageRoot() def Credentials(): """Get the currently active credentials. This function loads account credentials via core.account property of core.properties module. These credentials will be refreshed before being returned, so it makes sense to cache the value returned for short-lived programs. Returns: An active, valid credentials object. Raises: c_store.Error: If an error loading the credentials occurs. """ return c_store.Load() def Http(auth=True, creds=None, timeout=None): """Get an httplib2.Http object for working with the Google API. Args: auth: bool, True if the http object returned should be authorized. creds: oauth2client.client.Credentials, If auth is True and creds is not None, use those credentials to authorize the httplib2.Http object. timeout: double, The timeout in seconds to pass to httplib2. This is the socket level timeout. If timeout is None, timeout is infinite. Returns: An authorized httplib2.Http object, or a regular httplib2.Http object if no credentials are available. """ # TODO(user): Have retry-once-if-denied logic, to allow client tools to not # worry about refreshing credentials. http = httplib2.Http(timeout=timeout) if auth: if not creds: creds = Credentials() http = creds.authorize(http) # Take this out for now because it interferes with apitools ability to # refresh the token for batch requests. b/18192994 # http = _WrapRequest(http) return http def _WrapRequest(http): """Wraps the original http.request method with one that wraps an exception. We need to do this because oauth2client does similar wrapping when you authorize the http object. Because of this, a credential refresh error can get raised wherever someone makes an http request. With no common place to handle this exception, we do more wrapping here so we can convert it to one of our typed exceptions. Args: http: The original http object. Returns: http, The same http object but with the request method wrapped. """ orig_request = http.request def NewRequest(*args, **kwargs): try: return orig_request(*args, **kwargs) except client.AccessTokenRefreshError as e: log.debug('Exception caught during HTTP request: %s', e.message, exc_info=True) raise CannotRefreshAuthTokenError(e.message) http.request = NewRequest return http
2.46875
2
aicsimage/processing/flip.py
HelmholtzAI-Consultants-Munich/pytorch_fnet
16
12779905
<filename>aicsimage/processing/flip.py # Author: <NAME> <<EMAIL>> import numpy as np from scipy.ndimage.measurements import center_of_mass def get_flips(img, sec, axes=(-3, -2, -1)): """ Calculates which axes to flip in order to have the center of mass of the image be located in the desired sector. Meant to be passed to flip() :param img: image as an n-dimensional numpy array to perform the calculations on. The image will not be modified by this function :param sec: String containing '+' and '-', same length as 'axes'. Tells the function which side of each axis the center of mass should be on, '+' meaning the upper half and '-' meaning the lower half >>> get_flips(img, "++-", axes=(-3, -2, -1)) This, for example, would mean to have the center of mass be on the upper half of the z axis (index -3 for a CZYX image), the upper half of the y axis, and the lower half of the x axis :param axes: List or tuple of integers, specifies which axes to calculate the needed flips for. Default is the last three axes, meant to be the 3 spatial dimensions for a ZYX, CZYX, or TCZYX image. Must be the same length as 'sec' parameter :return: A list of integers, representing the indices of the axes to flip the image along Should be passed to flip() """ if not isinstance(img, np.ndarray): raise ValueError("img must be a numpy array") com = center_of_mass(img) if len(sec) != len(axes): raise ValueError("sec and axes must be the same length") # return object, list of axis indices to flip on flips = [] for side, axis in zip(sec, axes): try: # if we want the center of mass on the upper half if side == '+': if com[axis] < (img.shape[axis] // 2): flips.append(axis) # if we want it on the lower half elif side == '-': if com[axis] > (img.shape[axis] // 2): flips.append(axis) else: raise ValueError("Invalid sector char '{}', must be '+' or '-'".format(side)) except IndexError: raise ValueError("Out of range axis value " + str(axis)) except TypeError: raise ValueError("Invalid axis value " + str(axis) + ", must be an integer") return flips def flip(images, flips): """ Flips images based on the calculations from get_flips() :param images: Either a single n-dimensional image as a numpy array or a list of them. The images to flip :param flips: The output from get_flips(), tells the function which axes to flip the images along All images will be flipped the same way :return: Either a single flipped copy of the input image, or a list of them in the same order that they were passed in, depending on whether the 'images' parameter was a single picture or a list """ if isinstance(images, (list, tuple)): return_list = True image_list = images else: return_list = False image_list = [images] out = [] for img in image_list: # probably the most I've type 'flip' in my life flipped = img for flip_axis in flips: flipped = np.flip(flipped, flip_axis) out.append(flipped.copy()) if return_list: return out else: return out[0]
3.65625
4
tests/test_global_torque_driven_with_contact_ocp.py
Steakkk/bioptim-1
0
12779906
<reponame>Steakkk/bioptim-1 """ Test for file IO. It tests the results of an optimal control problem with torque_driven_with_contact problem type regarding the proper functioning of : - the maximize/minimize_predicted_height_CoM objective - the contact_forces_inequality constraint - the non_slipping constraint """ import importlib.util from pathlib import Path import pytest import numpy as np from bioptim import Data, OdeSolver from .utils import TestUtils @pytest.mark.parametrize("ode_solver", [OdeSolver.RK, OdeSolver.IRK]) def test_maximize_predicted_height_CoM(ode_solver): PROJECT_FOLDER = Path(__file__).parent / ".." spec = importlib.util.spec_from_file_location( "maximize_predicted_height_CoM", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/maximize_predicted_height_CoM.py", ) maximize_predicted_height_CoM = importlib.util.module_from_spec(spec) spec.loader.exec_module(maximize_predicted_height_CoM) ocp = maximize_predicted_height_CoM.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.5, number_shooting_points=20, use_actuators=False, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.7592028279017864) # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (160, 1)) np.testing.assert_almost_equal(g, np.zeros((160, 1))) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.5, 0.5))) np.testing.assert_almost_equal(q[:, -1], np.array((0.1189651, -0.0904378, -0.7999996, 0.7999996))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((1.2636414, -1.3010929, -3.6274687, 3.6274687))) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-22.1218282))) np.testing.assert_almost_equal(tau[:, -1], np.array(0.2653957)) # save and load TestUtils.save_and_load(sol, ocp, False) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK, OdeSolver.IRK]) def test_maximize_predicted_height_CoM_with_actuators(ode_solver): PROJECT_FOLDER = Path(__file__).parent / ".." spec = importlib.util.spec_from_file_location( "maximize_predicted_height_CoM", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/maximize_predicted_height_CoM.py", ) maximize_predicted_height_CoM = importlib.util.module_from_spec(spec) spec.loader.exec_module(maximize_predicted_height_CoM) ocp = maximize_predicted_height_CoM.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.5, number_shooting_points=20, use_actuators=True, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.21850679397314332) # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (160, 1)) np.testing.assert_almost_equal(g, np.zeros((160, 1)), decimal=6) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] if ode_solver == OdeSolver.IRK: # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.5, 0.5))) np.testing.assert_almost_equal(q[:, -1], np.array((-0.2393758, 0.0612086, -0.0006739, 0.0006739))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal( qdot[:, -1], np.array((-4.87675667e-01, 3.28672149e-04, 9.75351556e-01, -9.75351556e-01)) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-0.5509092))) np.testing.assert_almost_equal(tau[:, -1], np.array(-0.00506117)) else: # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.5, 0.5))) np.testing.assert_almost_equal(q[:, -1], np.array((-0.2393758, 0.0612086, -0.0006739, 0.0006739))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal( qdot[:, -1], np.array((-4.8768219e-01, 3.2867302e-04, 9.7536459e-01, -9.7536459e-01)) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-0.550905))) np.testing.assert_almost_equal(tau[:, -1], np.array(-0.0050623)) # save and load TestUtils.save_and_load(sol, ocp, False) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK, OdeSolver.IRK]) def test_contact_forces_inequality_GREATER_THAN_constraint(ode_solver): PROJECT_FOLDER = Path(__file__).parent / ".." spec = importlib.util.spec_from_file_location( "contact_forces_inequality_constraint", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/contact_forces_inequality_constraint.py", ) contact_forces_inequality_GREATER_THAN_constraint = importlib.util.module_from_spec(spec) spec.loader.exec_module(contact_forces_inequality_GREATER_THAN_constraint) min_bound = 50 ocp = contact_forces_inequality_GREATER_THAN_constraint.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.3, number_shooting_points=10, min_bound=min_bound, max_bound=np.inf, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14525621569048172) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] if ode_solver == OdeSolver.IRK: # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (100, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(-g[80:], -min_bound) expected_pos_g = np.array( [ [50.76334043], [51.42154006], [57.79496471], [64.29700748], [67.01987853], [68.32305222], [67.91820667], [65.26711376], [59.57312581], [50.1847888], [160.1560585], [141.16683648], [85.1060599], [56.33412288], [53.32765464], [52.21769321], [51.63001946], [51.2579451], [50.98768816], [50.21989568], ] ) np.testing.assert_almost_equal(g[80:], expected_pos_g) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.75, 0.75))) np.testing.assert_almost_equal(q[:, -1], np.array((-0.34054772, 0.1341555, -0.00054332, 0.00054332))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal( qdot[:, -1], np.array((-2.01096899e00, 1.09261741e-03, 4.02193851e00, -4.02193851e00)) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-54.17110048))) np.testing.assert_almost_equal(tau[:, -1], np.array((-15.69344349))) else: # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (100, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(-g[80:], -min_bound) expected_pos_g = np.array( [ [50.76491919], [51.42493119], [57.79007374], [64.29551934], [67.01905769], [68.3225625], [67.91793917], [65.26700138], [59.57311867], [50.18463134], [160.14834799], [141.15361769], [85.13345729], [56.33535022], [53.32684286], [52.21679255], [51.62923106], [51.25728666], [50.9871531], [50.21972377], ] ) np.testing.assert_almost_equal(g[80:], expected_pos_g) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.75, 0.75))) np.testing.assert_almost_equal(q[:, -1], np.array((-0.34054748, 0.1341555, -0.0005438, 0.0005438))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-2.01097559, 1.09352001e-03, 4.02195175, -4.02195175))) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-54.1684018))) np.testing.assert_almost_equal(tau[:, -1], np.array((-15.69338332))) # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol, ocp) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK, OdeSolver.IRK]) def test_contact_forces_inequality_LESSER_THAN_constraint(ode_solver): PROJECT_FOLDER = Path(__file__).parent / ".." spec = importlib.util.spec_from_file_location( "contact_forces_inequality_constraint", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/contact_forces_inequality_constraint.py", ) contact_forces_inequality_LESSER_THAN_constraint = importlib.util.module_from_spec(spec) spec.loader.exec_module(contact_forces_inequality_LESSER_THAN_constraint) max_bound = 100 ocp = contact_forces_inequality_LESSER_THAN_constraint.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.3, number_shooting_points=10, min_bound=-np.inf, max_bound=max_bound, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14525619649247054) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.75, 0.75))) np.testing.assert_almost_equal( q[:, -1], np.array((-3.40655617e-01, 1.34155544e-01, -3.27530886e-04, 3.27530886e-04)) ) if ode_solver == OdeSolver.IRK: # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (100, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(g[80:], max_bound) expected_non_zero_g = np.array( [ [63.27209168], [63.02302254], [62.13840892], [60.38286495], [57.31035211], [52.1969189], [43.95984323], [31.14447074], [12.4527049], [-6.20139005], [99.0646825], [98.87878575], [98.64638238], [98.3478478], [97.94940411], [97.3880652], [96.53094583], [95.03988984], [91.72272481], [77.29740256], ] ) np.testing.assert_almost_equal(g[80:], expected_non_zero_g) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal( qdot[:, -1], np.array((-2.86544932e00, 9.38791617e-04, 5.73089895e00, -5.73089895e00)) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-32.78911887))) np.testing.assert_almost_equal(tau[:, -1], np.array((-25.1705709))) else: # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14525619649247054) # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (100, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(g[80:], max_bound) expected_non_zero_g = np.array( [ [63.27237842], [63.02339946], [62.13898369], [60.38380769], [57.31193141], [52.19952395], [43.9638679], [31.14938032], [12.45022537], [-6.35179034], [99.06328211], [98.87711942], [98.64440005], [98.34550037], [97.94667107], [97.38505013], [96.52820867], [95.03979128], [91.73734926], [77.48803304], ] ) np.testing.assert_almost_equal(g[80:], expected_non_zero_g) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-2.86650427, 9.38827988e-04, 5.73300901, -5.73300901))) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-32.78862874))) np.testing.assert_almost_equal(tau[:, -1], np.array((-25.23729156))) # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol, ocp) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK, OdeSolver.IRK]) def test_non_slipping_constraint(ode_solver): PROJECT_FOLDER = Path(__file__).parent / ".." spec = importlib.util.spec_from_file_location( "non_slipping_constraint", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/non_slipping_constraint.py", ) non_slipping_constraint = importlib.util.module_from_spec(spec) spec.loader.exec_module(non_slipping_constraint) ocp = non_slipping_constraint.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.6, number_shooting_points=10, mu=0.005, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.23984490846250128) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.5, 0.5))) np.testing.assert_almost_equal(q[:, -1], np.array((-0.02364845, 0.01211471, -0.44685185, 0.44685185))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-0.08703131, 0.04170362, 0.1930144, -0.1930144))) if ode_solver == OdeSolver.IRK: # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (120, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(-g[80:], 0) expected_pos_g = np.array( [ [8.74337995e01], [8.74671258e01], [8.75687834e01], [8.77422815e01], [8.79913159e01], [8.83197846e01], [8.87318042e01], [8.92317303e01], [8.98241984e01], [9.05145023e01], [4.63475930e01], [4.63130361e01], [4.62075073e01], [4.60271955e01], [4.57680917e01], [4.54259739e01], [4.49963905e01], [4.44746352e01], [4.38556794e01], [4.31334131e01], [1.33775343e00], [6.04899683e-05], [1.33773204e00], [6.95785710e-05], [1.33768173e00], [8.11784388e-05], [1.33759829e00], [9.64764544e-05], [1.33747653e00], [1.17543268e-04], [1.33730923e00], [1.48352207e-04], [1.33708435e00], [1.97600315e-04], [1.33677502e00], [2.88636405e-04], [1.33628619e00], [5.12590351e-04], [1.33466928e00], [1.80987563e-03], ] ) np.testing.assert_almost_equal(g[80:], expected_pos_g) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-14.33813755)), decimal=6) np.testing.assert_almost_equal(tau[:, -1], np.array((-13.21317493)), decimal=6) else: # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (120, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(-g[80:], 0) expected_pos_g = np.array( [ [8.74337995e01], [8.74671258e01], [8.75687834e01], [8.77422814e01], [8.79913157e01], [8.83197844e01], [8.87318039e01], [8.92317298e01], [8.98241976e01], [9.05145013e01], [4.63475930e01], [4.63130361e01], [4.62075073e01], [4.60271956e01], [4.57680919e01], [4.54259742e01], [4.49963909e01], [4.44746357e01], [4.38556802e01], [4.31334141e01], [1.33775343e00], [6.04899894e-05], [1.33773204e00], [6.95785950e-05], [1.33768173e00], [8.11784641e-05], [1.33759829e00], [9.64764869e-05], [1.33747653e00], [1.17543301e-04], [1.33730923e00], [1.48352248e-04], [1.33708435e00], [1.97600363e-04], [1.33677502e00], [2.88636453e-04], [1.33628619e00], [5.12590377e-04], [1.33466928e00], [1.80987419e-03], ] ) np.testing.assert_almost_equal(g[80:], expected_pos_g) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-14.33813755))) np.testing.assert_almost_equal(tau[:, -1], np.array((-13.21317493))) # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol, ocp)
2.453125
2
rostran/core/outputs.py
aliyun/alibabacloud-ros-tool-transformer
9
12779907
from .exceptions import InvalidTemplateOutput class Output: TYPES = (STRING, NUMBER, LIST, MAP, BOOLEAN) = ( "String", "Number", "CommaDelimitedList", "Json", "Boolean", ) def __init__(self, name, value, description=None, condition=None): self.name = name self.value = value self.description = description self.condition = condition class Outputs(dict): def add(self, output: Output): if output.name is None: raise InvalidTemplateOutput( name=output.name, reason="Parameter name should not be None" ) self[output.name] = output def as_dict(self) -> dict: data = {} for key, output in self.items(): value = {"Value": output.value} if output.description is not None: value.update({"Description": output.description}) if output.condition is not None: value.update({"Condition": output.condition}) data[key] = value return data
2.890625
3
gccaps/config/prediction.py
turab95/gccaps
15
12779908
prediction_epochs = 'val_f1_score' """Specification for which models (epochs) to select for prediction. Either a list of epoch numbers or a string specifying how to select the epochs. The valid string values are ``'val_acc'`` and ``'val_eer'``. """ at_threshold = 0.35 """number: Number for thresholding audio tagging predictions. A value of -1 indicates that thresholds should be loaded from disk. See Also: :func:`evaluation.compute_thresholds` """ sed_threshold = 0.6 """number: Number for thresholding sound event detection predictions. A value of -1 indicates that thresholds should be loaded from disk. See Also: :func:`evaluation.compute_thresholds` """ sed_dilation = 10 """int: Dilation parameter for binarizing predictions. See Also: :func:`inference.binarize_predictions_3d` """ sed_erosion = 5 """int: Erosion parameter for binarizing predictions. See Also: :func:`inference.binarize_predictions_3d` """
1.71875
2
Day 55 - Higher Lower Flask Game/server.py
atulmkamble/100DaysOfCode
2
12779909
<reponame>atulmkamble/100DaysOfCode<gh_stars>1-10 from flask import Flask from random import randint app = Flask(__name__) guess = randint(0, 9) @app.route('/') def guess_number(): return '<h1>Guess a number between 0 and 9</h1>' \ '<img src="https://media.giphy.com/media/3o7aCSPqXE5C6T8tBC/giphy.gif">' @app.route('/guess/<int:number>') def user_guess(number): # print(f'The guess is: {guess}') if number < guess: return '<h1 style="color: purple">Too low, try again!</h1>' \ '<img src="https://media.giphy.com/media/jD4DwBtqPXRXa/giphy.gif">' elif number > guess: return '<h1 style="color: red">Too high, try again!</h1>' \ '<img src="https://media.giphy.com/media/3o6ZtaO9BZHcOjmErm/giphy.gif">' else: return '<h1 style="color: green">You found me!</h1>' \ '<img src="https://media.giphy.com/media/4T7e4DmcrP9du/giphy.gif">' if __name__ == '__main__': app.run(debug=True)
3.21875
3
mlutils/pt/modules.py
linshaoxin-maker/taas
4
12779910
from os import path import numpy as np from torch import nn import torch def get_embedding(embedding_path=None, embedding_np=None, num_embeddings=0, embedding_dim=0, freeze=True, **kargs): """Create embedding from: 1. saved numpy vocab array, embedding_path, freeze 2. numpy embedding array, embedding_np, freeze 3. raw embedding n_vocab, embedding_dim """ if isinstance(embedding_path, str) and path.exists(embedding_path): embedding_np = np.load(embedding_path) if embedding_np is not None: return nn.Embedding.from_pretrained(torch.Tensor(embedding_np), freeze=freeze) return nn.Embedding(num_embeddings, embedding_dim, **kargs) # extract last output in last time step def extract_last_timestep(output, lengths, batch_first): """Get the output of last time step. output: seq_len x batch_size x dim if not batch_first. Else batch_size x seq_len x dim length: one dimensional torch.LongTensor of lengths in a batch. """ idx = (lengths - 1).view(-1, 1).expand(len(lengths), output.size(2)) time_dimension = 1 if batch_first else 0 idx = idx.unsqueeze(time_dimension) if output.is_cuda: idx = idx.cuda(output.data.get_device()) return output.gather(time_dimension, idx).squeeze(time_dimension)
2.5
2
usaspending_api/search/v2/urls_search.py
animatecitizen/usaspending-api
0
12779911
<reponame>animatecitizen/usaspending-api<filename>usaspending_api/search/v2/urls_search.py from django.conf.urls import url from usaspending_api.search.v2.views import search from usaspending_api.search.v2.views.spending_by_category import SpendingByCategoryVisualizationViewSet urlpatterns = [ url(r'^spending_over_time', search.SpendingOverTimeVisualizationViewSet.as_view()), url(r'^spending_by_category', SpendingByCategoryVisualizationViewSet.as_view()), url(r'^spending_by_geography', search.SpendingByGeographyVisualizationViewSet.as_view()), url(r'^spending_by_award_count', search.SpendingByAwardCountVisualizationViewSet.as_view()), url(r'^spending_by_award', search.SpendingByAwardVisualizationViewSet.as_view()), url(r'^spending_by_transaction_count', search.SpendingByTransactionCountVisualizaitonViewSet.as_view()), url(r'^spending_by_transaction', search.SpendingByTransactionVisualizationViewSet.as_view()), url(r'^transaction_spending_summary', search.TransactionSummaryVisualizationViewSet.as_view()) ]
1.648438
2
Amiga/loadseg.py
thanasisk/binja-amiga
5
12779912
# coding=utf-8 """ Copyright (c) 2021 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import binaryninja from .amigahunk import AmigaHunk from .constants import HUNKTYPES class AmigaLoadSeg(AmigaHunk): name :str = 'AmigaLoadSeg' long_name :str = 'Amiga 500 LoadSeg format' loadseg_magic :bytes = b"\x00\x00\x03\xf3" def __init__(self, data)->None: super().__init__(data) if self.is_valid_for_data(self.data): self.create_segments() def create_segments(self)->None: hunktypes :list = [] numhunks :int = 0 self.br.seek(0x08) numhunks = self.br.read32be() first_hunk :int = self.br.read32be() last_hunk :int = self.br.read32be() self.br.seek_relative(0x04) binaryninja.log_debug("%d %d %d %d" % (len(self.data),numhunks, first_hunk, last_hunk)) for i in range(0, numhunks): hunktypes.append(self.br.read32be()) self.parse_hunktype(hunktypes[i]) @classmethod def is_valid_for_data(self, data)->bool: header :bytes = data.read(0,8) strings :bytes = header[4:8] self.is_loadseg :bool = header[0:4] == b"\x00\x00\x03\xf3" if strings != b"\x00\x00\x00\x00" and self.is_loadseg == True: binaryninja.log_error("λ - Unsupported LOADSEG file") return False return self.is_loadseg
2.234375
2
pddm/envs/fetch/__init__.py
Ray006/PDDM_FetchEnv
0
12779913
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gym.envs.registration import register register( id='MB_FetchSlide-v1', entry_point='pddm.envs.fetch.slide:FetchSlideEnv', max_episode_steps=50, ) register( id='MB_FetchPush-v1', entry_point='pddm.envs.fetch.push:FetchPushEnv', max_episode_steps=50, ) register( id='MB_FetchPickAndPlace-v1', entry_point='pddm.envs.fetch.pick_and_place:FetchPickAndPlaceEnv', max_episode_steps=50, ) register( id='MB_FetchReach-v1', entry_point='pddm.envs.fetch.reach:FetchReachEnv', max_episode_steps=50, )
1.71875
2
inconsistent_system_solver.py
AntonBazdyrev/SystemAnalysis_Lab2
0
12779914
<reponame>AntonBazdyrev/SystemAnalysis_Lab2 from numpy import linalg import numpy as np class InconsistentSystemSolver: def __init__(self, method='conjugate'): self.method = method if method in ['lstsq', 'conjugate'] else 'conjugate' def conjugate_grad(self, A, b, x=None, eps=1e-5): """ Description ----------- Solve a linear equation Ax = b with conjugate gradient method. Parameters ---------- A: 2d numpy.array of positive semi-definite (symmetric) matrix b: 1d numpy.array x: 1d numpy.array of initial point Returns ------- 1d numpy.array x such that Ax = b """ n = A.shape[1] if not x: x = np.ones(n) r = A @ x - b p = - r r_k_norm = np.dot(r, r) for i in range(2 * n): Ap = np.dot(A, p) alpha = r_k_norm / np.dot(p, Ap) x += alpha * p r += alpha * Ap r_kplus1_norm = np.dot(r, r) beta = r_kplus1_norm / r_k_norm r_k_norm = r_kplus1_norm if r_kplus1_norm < eps: # print ('Itr:', i) break p = beta * p - r return x def nonlinear_conjugate_grad(self, A, b, eps=1e-5): return self.conjugate_grad(A.T @ A, A.T @ b, eps=eps) def lstsq(self, A, b): return linalg.lstsq(A, b)[0] def solve(self, A, b): return self.lstsq(A, b) if self.method == 'lstsq' else self.nonlinear_conjugate_grad(A, b)
3.078125
3
JSONtemplate.py
JacobParrott/OccultationProfiler
4
12779915
#FORM A TEMPLATE JSON FILE # Profile begining JSONstart = ''' { "version": "1.0", "name": "Occultation Profile", "items": [ ''' # empty string required to grow from JSONiterated = '' # this one has the comma on it. lenght of profile adjust the iteration count of this JSONiterable = ''' { "name": "Profile Iterate", "center": "Mars", "trajectory": { "type": "FixedPoint", "position": [ 0.0, 0.0, 0.0 ] }, "bodyFrame": { "type": "BodyFixed", "body": "Mars" }, "geometry": { "type": "ParticleSystem", "emitters": [ { "texture": "gaussian.jpg", "generator": { "type": "Strip", "states": [] }, "velocityVariation": 8, "trace": 2, "spawnRate": 20, "lifetime": 30, "startSize": 5, "endSize": 10, "colors": [ "#00ff00", 0.000, "#ff0000", 0.00, "#0000ff", 0.005, "#fffff", 0.005 ], "startTime":"2020-01-01 12:00:00", "endTime": "2020-01-01 14:30:00" } ] } }, ''' # must be placed at the end of the json stack[ doesnt have a comma for the last item] JSONend = ''' { "name": "Final Profile [high in the ionosphere]", "center": "Mars", "trajectory": { "type": "FixedPoint", "position": [ 0.0, 0.0, 0.0 ] }, "bodyFrame": { "type": "BodyFixed", "body": "Mars" }, "geometry": { "type": "ParticleSystem", "emitters": [ { "texture": "gaussian.jpg", "generator": { "type": "Strip", "states": [] }, "velocityVariation": 2, "trace": 2, "spawnRate": 100, "lifetime": 30, "startSize": 5, "endSize": 100, "colors": [ "#111111", 0.0, "#ffffff", 0.00, "#111111", 0.045, "#0000ff", 0.0 ], "startTime":"2020-01-01 12:00:00", "endTime": "2020-01-01 14:30:00" } ] } } ] } '''
2.28125
2
modules/lastline.py
nidsche/viper
0
12779916
lastlineKEY = "" lastlineTOKEN = "" lastlinePORTALACCOUNT = "" import json try: import requests HAVE_REQUESTS = True except ImportError: HAVE_REQUESTS = False from viper.common.abstracts import Module from viper.core.session import __sessions__ BASE_URL = 'https://analysis.lastline.com' SUBMIT_URL = '/analysis/submit/file' class LastLine(Module): cmd = 'lastline' description = 'Submit files and retrieve reports from LastLine (default will print short summary) ' authors = ['gelos'] def __init__(self): super(LastLine, self).__init__() self.parser.add_argument('-s', '--submit', action='store_true', help='Submit file to LastLine') self.parser.add_argument('-r','--report', action='store_true', help='Get report from LastLine') def run(self): super(LastLine, self).run() if self.args is None: return if not HAVE_REQUESTS: self.log('error', "Missing dependency, install requests (`pip install requests`)") return if not __sessions__.is_set(): self.log('error', "No session opened") return if self.args.submit: try: file = {'file' : open(__sessions__.current.file.path, 'rb').read()} data = {'key':lastlineKEY, 'api_token':lastlineTOKEN,'push_to_portal_account':lastlinePORTALACCOUNT} response = requests.post(BASE_URL+SUBMIT_URL,data=data,files=file) response = response.json() if response['success'] == 0: self.log('error',response['error']) return if response['success'] == 1: self.log('info','Successfully submitted file to LastLine, task UUID: '+response['data']['task_uuid']) return except Exception as e: self.log('error', "Failed performing request: {0}".format(e)) return try: data = {'key':lastlineKEY, 'api_token':lastlineTOKEN,'md5':__sessions__.current.file.md5,'push_to_portal_account':lastlinePORTALACCOUNT} response = requests.post(BASE_URL+SUBMIT_URL,data=data) response = response.json() if response['success'] == 0: self.log('error',response['error']) return if response['success'] == 1: self.log('info', "LastLine Report:") if self.args.report: self.log('',json.dumps(response,indent=4,sort_keys=False)) return #file malicious scoring if 'score' in response['data']: self.log('info','Malicious score: '+str(response['data']['score'])) if 'submission' in response['data']: self.log('info','Submission date: '+str(response['data']['submission'])) #generating malicous activity list if 'malicious_activity' in response['data']: malicous_activity = [] i = 0 while(i < len(response['data']['malicious_activity'])): malicous_activity.append([i,response['data']['malicious_activity'][i]]) i += 1 self.log('table', dict(header=['id', 'Malicious Activity'], rows=malicous_activity)) #generating url_summary list if 'url_summary' in response['data']['report']: url_summary = [] i = 0 while (i < len(response['data']['report']['url_summary'])): url_summary.append([i,response['data']['report']['url_summary'][i]]) i += 1 self.log('table', dict(header=['id', 'URL Found'], rows=url_summary)) return except Exception as e: self.log('error', "Failed performing request: {0}".format(e))
2.4375
2
modality/sysml14/modelelements/__init__.py
bmjjr/modality
1
12779917
# -*- coding: utf-8 -*- from .modelelements import getEClassifier, eClassifiers from .modelelements import name, nsURI, nsPrefix, eClass from .modelelements import ( Conform, ElementGroup, Expose, Problem, Rationale, Stakeholder, View, Viewpoint, ) from modality.pyuml2.uml import ( Generalization, Class, Comment, Behavior, Dependency, Classifier, Element, ) from . import modelelements from .. import sysml14 __all__ = [ "Conform", "ElementGroup", "Expose", "Problem", "Rationale", "Stakeholder", "View", "Viewpoint", ] eSubpackages = [] eSuperPackage = sysml14 modelelements.eSubpackages = eSubpackages modelelements.eSuperPackage = eSuperPackage otherClassifiers = [] for classif in otherClassifiers: eClassifiers[classif.name] = classif classif.ePackage = eClass for classif in eClassifiers.values(): eClass.eClassifiers.append(classif.eClass) for subpack in eSubpackages: eClass.eSubpackages.append(subpack.eClass)
2.09375
2
primes.py
chapman-phys220-2018f/cw04-ben-jessica
0
12779918
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import primes # <NAME> # <EMAIL> # 2300326 # Phys 220 # Cw04 ### # Name: <NAME> # Student ID: 2262810 # Email: <EMAIL> # Course: PHYS220/MATH220/CPSC220 Fall 2018 # Assignment: CW03 ### """primes.py Test Module Verifies that the implementations for prime number generators are correct. Here are the primes less than n=200 for completeness: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 """ def eratosthenes_last(): """Verify the largest prime number under 200. Note: The equality test for the assert here only works because the integers inside the list support exact equality. Question: What data structures work with this sort of test? """ assert primes.eratosthenes(200)[-1] == 199 def eratosthenes(n): """Verify the number of primes less than 200. """ primes = [] for primes in range(1,n): primes.append(i) for i in primes: for n in primes: if prime(n)// i= 0: primes.pop(n) assert len(primes.eratosthenes(200)) == 46 print primes return primes def gen_eratosthenes_last(): """Verify the largest prime number under 200. """ g = primes.gen_eratosthenes() p = next(g) p2 = next(g) while p2 < 200: p, p2 = p2, next(g) assert p == 199 def gen_eratosthenes(n): """Verify the number of primes less than 200. """ g = primes.gen_eratosthenes() ps = [next(g)] while ps[-1] < 200: ps.append(next(g)) assert len(ps[:-1]) == 46
4.34375
4
src/spoofbot/util/__init__.py
raember/spoofbot
0
12779919
"""Utility module for handy features to be used in conjunction with the core modules""" from .archive import load_flows from .common import TimelessRequestsCookieJar from .common import dict_to_dict_list, url_to_query_dict_list from .common import dict_to_tuple_list, dict_list_to_dict, dict_list_to_tuple_list, \ dict_to_str, cookie_header_to_dict from .common import encode_form_data, header_to_snake_case, coerce_content from .file import load_response, to_filepath, to_url, get_symlink_path from .har import HarFile, Har, Log, Entry, Creator, Browser, PageTimings, Page, Cache, \ CacheStats, Timings, JsonObject from .http import ReferrerPolicy from .http import are_same_origin, are_same_origin_domain, are_schemelessly_same_site, \ are_same_site from .http import is_ip, is_domain from .http import opaque_origin, origin_tuple, OriginTuple from .http import sort_dict from .versions import get_latest, get_firefox_versions, get_chrome_versions, get_versions_since, random_version
1.757813
2
online_judge/helpers/session.py
ashimaathri/online-judge
0
12779920
from functools import wraps from flask import session, url_for, request, redirect def is_authenticated(): return 'username' in session def login_required(f): @wraps(f) def wrapper(*args, **kwargs): if is_authenticated(): return f(*args, **kwargs) else: return redirect(url_for('auth.display_login_form') + '?next={}'.format(request.path)) return wrapper def redirect_if_authenticated(f): @wraps(f) def wrapper(*args, **kwargs): if is_authenticated(): try: return redirect(request.args['next']) except KeyError: return redirect(url_for('home_page.display_problem_list')) else: return f(*args, **kwargs) return wrapper
2.828125
3
src/rotary_table_api/rotary_table_messages.py
CebulowyNinja/rotary-table-antenna-measurement
1
12779921
<filename>src/rotary_table_api/rotary_table_messages.py<gh_stars>1-10 from abc import ABC, abstractmethod from typing import Type import crc8 def round_to(val: float, precision: float): if val % precision < precision/2: val -= val % precision else: val += precision - val % precision return val ADDRESS_LENGTH = 4 PREAMBLE = b"\x5D" class Request(ABC): def __init__(self, address: int): self.address = address @property def address(self) -> int: return self.__address @address.setter def address(self, address: int): if address > 2**ADDRESS_LENGTH-1: raise ValueError("Rotary table message address must be lower than 16.") else: self.__address = address @abstractmethod def get_command(self) -> int: raise NotImplementedError("Method get_command() must be overrided.") def get_body(self) -> bytes: return bytes(3) def get_content(self) -> bytes: header = self.address << (8-ADDRESS_LENGTH) | self.get_command() return PREAMBLE + header.to_bytes(1, byteorder="big") + self.get_body() def get_CRC(self) -> bytes: hash = crc8.crc8() hash.update(self.get_content()) return hash.digest() def to_bytes(self) -> bytes: return self.get_content() + self.get_CRC() def __eq__(self, other): if isinstance(other, Request): return self.get_content() == other.get_content() return False class RequestGetStatus(Request): def get_command(self) -> int: return 0 class RequestSetHome(Request): def get_command(self) -> int: return 1 class RequestHalt(Request): def get_command(self) -> int: return 2 class RequestDisable(Request): def get_command(self) -> int: return 3 class RequestGetConverterStatus(Request): def get_command(self) -> int: return 5 RPM_PRECISION = 0.25 SPEED_MAX = 2**7 RPM_MAX = SPEED_MAX*RPM_PRECISION ANGLE_FRACTION_LENGTH = 7 ANGLE_PRECISION = 2**-3 def rpm_to_bytes(rpm: float) -> bytes: return int(rpm/RPM_PRECISION).to_bytes(1, byteorder="big", signed=True) def rpm_from_bytes(data: bytes) -> float: if len(data) != 1: raise ValueError("rpm_from_bytes() argument must has length = 1") return int.from_bytes(data, byteorder="big", signed=True)*RPM_PRECISION def angle_to_bytes(angle: float) -> bytes: angle_fp = int(angle * 2**ANGLE_FRACTION_LENGTH) return angle_fp.to_bytes(2, byteorder="big") def angle_from_bytes(data: bytes) -> float: if len(data) != 2: raise ValueError("angle_from_bytes() argument must has length = 2") return int.from_bytes(data, byteorder="big") * 2**-ANGLE_FRACTION_LENGTH class RequestRotate(Request): def __init__(self, address: int, angle: float, rpm: float): self.address = address self.rpm = rpm self.angle = angle @property def rpm(self) -> float: return self.__rpm @rpm.setter def rpm(self, rpm: float): if abs(rpm) > RPM_MAX: raise ValueError(f"Rotary table message rpm must be between {-RPM_MAX} and {RPM_MAX} .") self.__rpm = round_to(rpm, RPM_PRECISION) @property def angle(self) -> float: return self.__angle @angle.setter def angle(self, angle: float): angle = angle % 360 self.__angle = round_to(angle, ANGLE_PRECISION) def get_command(self) -> int: return 4 def get_body(self) -> bytes: return angle_to_bytes(self.angle) + rpm_to_bytes(self.rpm) REPONSE_LENGTH = 9 class Response(): def __init__(self, data: bytes): if len(data) != REPONSE_LENGTH: raise ValueError(f"Response data must be {REPONSE_LENGTH} bits length.") self.__preamble = data[0:1] self.__payload = data[1:-1] self.__crc = data[-1:] @property def payload(self) -> bytes: return self.__payload @property def preamble(self) -> bytes: return self.__preamble @property def crc(self) -> bytes: return self.__crc @property def address(self) -> int: if len(self.payload) < 1: return None return self.payload[0] >> ADDRESS_LENGTH @property def response_header(self) -> int: if len(self.payload) < 1: return None return self.payload[0] & (2**ADDRESS_LENGTH-1) def calc_CRC(self) -> bytes: hash = crc8.crc8() hash.update(self.preamble) hash.update(self.payload) return hash.digest() @property def is_valid(self) -> bool: return self.preamble == PREAMBLE and self.calc_CRC() == self.crc def __eq__(self, other): if isinstance(other, Response): return self.payload == other.payload return False IS_VOLTAGE_OK_MASK = 0b1 IS_MOTOR_OK_MASK = 0b1 IS_ROTATING_MASK = 0b1<<1 IS_ENABLED_MASK = 0b1<<2 IS_CRC_VALID_MASK = 0b1<<3 VOLTAGE_FRACTION_LENGTH = 4 class ResponseMotorStatus(Response): @property def status(self) -> int: return self.payload[1] @property def is_motor_OK(self) -> bool: return (self.status & IS_MOTOR_OK_MASK) > 0 @property def is_rotating(self) -> bool: return (self.status & IS_ROTATING_MASK) > 0 @property def is_enabled(self) -> bool: return (self.status & IS_ENABLED_MASK) > 0 @property def is_crc_valid(self) -> bool: return (self.status & IS_CRC_VALID_MASK) > 0 @property def current_angle(self) -> float: return angle_from_bytes(self.payload[2:4]) @property def target_angle(self) -> float: return angle_from_bytes(self.payload[4:6]) @property def rpm(self) -> float: return rpm_from_bytes(self.payload[6:7]) class ResponseConverterStatus(Response): @property def status(self) -> int: return self.payload[1] @property def is_voltage_OK(self) -> bool: return (self.status & IS_VOLTAGE_OK_MASK) > 0 @property def voltage(self) -> float: return self.payload[2] * 2**-VOLTAGE_FRACTION_LENGTH @property def reserved_data(self) -> bytes: return self.payload[3:] def parse_response(data: bytes) -> Type[Response]: resp = Response(data) if resp.response_header == 0xE: return ResponseConverterStatus(data) elif resp.response_header == 0xF: return ResponseMotorStatus(data) return resp
2.9375
3
data/data_split/label_split_utils.py
z1021190674/GMAUResNeXt_RS
1
12779922
<filename>data/data_split/label_split_utils.py import numpy as np import cv2 import os # from osgeo import gdal_array def color2label(img, color2label_dict): """ Description: transform an colored label image to label image Params: img -- image of shape (height, width, channel) color2label_dict -- a dict of the following type color2label_dict = { "255,255,255": 0, "0,0,255": 1, "0,255,255": 2, "0,255,0": 3, "255,255,0": 4, "255,0,0": 5, } Return: label -- label of the image according to the color2label_dict, a nparray of shape(height, width) """ label = np.zeros((img.shape[0],img.shape[1])) # iterate over the image for i in range(img.shape[0]): for j in range(img.shape[1]): # turn one pixel into label pixel_str = str(img[i,j][0]) + ',' + str(img[i,j][1]) + ',' + str(img[i,j][2]) label[i,j] = color2label_dict[pixel_str] print(i) return label def save_color2label(data_list, root_path, target_dir, color2label_dict): """ Description: transform the image to label according to the dict, and save it to the target directory Params: data_list -- data list of the split data root_path -- root of the data_list target_dir -- the directory to save the label image color2label_dict -- the dict of the colored segmentation map to the label Notice: the data in the data list """ if not os.path.exists(target_dir): # os.system('mkdir -p ' + root_path) os.makedirs(target_dir) for i in range(len(data_list)): # get the path path = os.path.join(root_path, data_list[i]) target_path = os.path.join(target_dir, data_list[i]) # transform color to label img = cv2.imread(path)[:,:,[2,1,0]] # img = gdal_array.LoadFile(path).transpose(1,2,0) label = color2label(img, color2label_dict) # for test # img =label2color(label.astype(np.uint8)) # cv2.imshow("img",img) # cv2.waitKey() cv2.imwrite(target_path, label) def label2color(label, label2color_dict={}): """ Description: transform a label image to a colored label rgb image Params: label -- label of shape (height, width) label2color_dict -- a dict of the following type { "0": [255,255,255], "1": [0,0,255], "2": [0,255,255], "3": [0,255,0], "4": [255,255,0], "5": [255,0,0], } Return: image -- image of the label according to the label2color_dict, a nparray of shape(height, width, 3) """ if len(label2color_dict) == 0: # Potsdam label2color_dict = { "0": [255,255,255], "1": [0,0,255], "2": [0,255,255], "3": [0,255,0], "4": [255,255,0], "5": [255,0,0], } img = np.zeros((label.shape[0],label.shape[1], 3), dtype=np.uint8) # iterate over the image for i in range(label.shape[0]): for j in range(label.shape[1]): # turn one pixel into rgb image pixel_str = str(label[i,j]) img[i,j] = np.array(label2color_dict[pixel_str]) return img if __name__ == '__main__': # the default color2label_dict is from Vaihingen and Potsdam datasets # 1. Impervious surfaces (RGB: 255, 255, 255) # 2. Building (RGB: 0, 0, 255) # 3. Low vegetation (RGB: 0, 255, 255) # 4. Tree (RGB: 0, 255, 0) # 5. Car (RGB: 255, 255, 0) # 6. Clutter/background (RGB: 255, 0, 0) color2label_dict = { "255,255,255": 0, "0,0,255": 1, "0,255,255": 2, "0,255,0": 3, "255,255,0": 4, "255,0,0": 5, } x =color2label_dict["255,255,255"] # from osgeo import gdal_array # img = gdal_array.LoadFile(r'D:\ISPRS\ISPRS 2D Semantic Labeling Contest\potsdam\5_Labels_all\top_potsdam_2_10_label.tif').transpose(1,2,0) # label = color2label(img, color2label_dict) # y = []
3.359375
3
PyPoll/Script_election.py
Egallego77/python-challenge
0
12779923
# #This will allow us to create file paths accross operating systems import pathlib # #Path to collect data from Recources folder election_csvpath =pathlib.Path('PyPoll/Resources/election_data.csv') #Module for reading CSV files import csv with open(election_csvpath, mode='r') as csvfile: #CSV reader specifies delimiter and variable that holds content reader = csv.reader(csvfile, delimiter= ',') header = next(csvfile) votes = {} for row in reader: #complete list of canditates who received votes #candidates vote count candidate_name = row[2] if candidate_name in votes: votes[candidate_name] += 1 else: votes[candidate_name] = 1 print (votes) vote_counts = (list(votes.values())) # Total number of votes cast total_count = sum(vote_counts) print(total_count) winner = list(votes.keys())[0] votes_summary = {} for candidate in votes.keys(): if votes[candidate] >votes[winner]: winner = candidate votes_summary[candidate] = {'votes': votes[candidate], 'vote_pct': round((votes[candidate]/total_count)*100,2)} if candidate== winner: votes_summary[candidate]["is_winner"] = True else: votes_summary[candidate]["is_winner"] = False print(votes_summary) election_result = pathlib.Path('PyPoll/Analysis/election_results.txt') with open(election_result,'w') as outputfile: csvwriter = csv.writer(outputfile) election_result = ( f"\n\nElection Results\n" f"-------------------------\n" f"Total Votes: {total_count}\n" f"-------------------------\n" ) print(election_result, end="") outputfile.write(election_result) for candidate in votes_summary.keys(): voter_output = f"{candidate}: {votes_summary[candidate]['vote_pct']}% ({votes_summary[candidate]['votes']})\n" print(voter_output, end="") outputfile.write(voter_output) winning_candidate_summary = ( f"-------------------------\n" f"Winner: {winner}\n" f"-------------------------\n" ) outputfile.write(winning_candidate_summary) print(winning_candidate_summary)
3.421875
3
bingo_board/tastypie/__init__.py
colinsullivan/bingo-board
2
12779924
__author__ = '<NAME>, <NAME>, <NAME>' __version__ = (0, 9, 5)
1.148438
1
packages/SwingSet/misc-tools/count-mint-exports.py
danwt/agoric-sdk
4
12779925
#!/usr/bin/env python3 # goal: of the 6230 objects exported by v5 (vat-mints), how many are Purses vs Payments vs other? import sys, json, time, hashlib, base64 from collections import defaultdict exports = {} # kref -> type double_spent = set() unspent = set() # kref died_unspent = {} def find_interfaces(body): if isinstance(body, list): for item in body: yield from find_interfaces(item) elif isinstance(body, dict): if "@qclass" in body: if body["@qclass"] == "slot": iface = body.get("iface", None) index = body["index"] yield (index, iface) else: for item in body.values(): yield from find_interfaces(item) for line in sys.stdin: data = json.loads(line) if data.get("vatID", None) != "v5": continue if data["type"] == "syscall": if data["ksc"][0] == "send": raise Error("vat-mints never exports anything") if data["ksc"][0] == "resolve": resolutions = data["ksc"][2] for (kref, rejection, capdata) in resolutions: slots = capdata["slots"] for (index, iface) in find_interfaces(json.loads(capdata["body"])): kref = slots[index] #print("export", kref, iface) exports[kref] = iface unspent.add(kref) if data["type"] == "deliver": if data["kd"][0] == "message" and data["kd"][2]["method"] in ["deposit", "burn"]: kref = data["kd"][2]["args"]["slots"][0] if kref not in unspent: double_spent.add(kref) unspent.discard(kref) if data["kd"][0] == "dropExports": for kref in data["kd"][1]: #print("delete", kref) if kref in unspent: print("died unspent:", kref) died_unspent[kref] = exports[kref] unspent.remove(kref) del exports[kref] counts = defaultdict(int) for kref in sorted(exports): iface = exports[kref].removeprefix("Alleged: ") counts[iface] += 1 #print(kref, exports[kref]) for iface in sorted(counts): print("%20s : %4d" % (iface, counts[iface])) print("total:", sum(counts.values())) print("live unspent:", len(unspent)) counts = defaultdict(int) for kref in unspent: iface = exports[kref].removeprefix("Alleged: ") counts[iface] += 1 for iface in sorted(counts): print(" %20s : %4d" % (iface, counts[iface])) print("died unspent:", len(died_unspent)) counts = defaultdict(int) for kref,iface in died_unspent.items(): iface = iface.removeprefix("Alleged: ") counts[iface] += 1 for iface in sorted(counts): print(" %20s : %4d" % (iface, counts[iface])) print("double spent:", len(double_spent))
2.234375
2
deeppavlov/tasks/coreference_scorer_model/agents.py
deepmipt/kpi2017
3
12779926
# Copyright 2017 Neural Networks and Deep Learning lab, MIPT # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import numpy as np import tensorflow as tf from parlai.core.agents import Teacher from . import utils from .build import build from ...utils import coreference_utils class CoreferenceTeacher(Teacher): """Teacher for coreference resolution task""" @staticmethod def add_cmdline_args(argparser): """Parameters of agent and default values""" group = argparser.add_argument_group('Coreference Teacher') group.add_argument('--language', type=str, default='ru') group.add_argument('--predictions_folder', type=str, default='predicts', help='folder where to dump conll predictions, scorer will use this folder') group.add_argument('--scorer_path', type=str, default='scorer/reference-coreference-scorers/v8.01/scorer.pl', help='path to CoNLL scorer perl script') group.add_argument('--valid_ratio', type=float, default=0.2, help='valid_set ratio') group.add_argument('--test_ratio', type=float, default=0.2, help='test_set ratio') group.add_argument('--teacher_seed', type=int, default=42, help='seed') group.add_argument('--raw-dataset-path', type=str, default=None, help='Path to folder with two subfolders: dataset and scorer. ' 'These two folders are extracted rucoref_29.10.2015.zip and ' 'reference-coreference-scorers.v8.01.tar.gz') def __init__(self, opt, shared=None): """Initialize the parameters for CoreferenceTeacher""" super().__init__(opt, shared) self.last_observation = None self.id = 'two-step-coref' self.seed = opt['teacher_seed'] np.random.seed(seed=self.seed) random.seed(a=self.seed) tf.set_random_seed(seed=self.seed) if shared: raise RuntimeError('Additional batching is not supported') build(opt) self.dt = opt['datatype'].split(':')[0] self.datapath = os.path.join(opt['datapath'], 'coreference_scorer_model', opt['language']) self.valid_path = None self.train_path = None self.predictions_folder = os.path.join(self.datapath, opt['predictions_folder'], self.dt) self.scorer_path = os.path.join(self.datapath, opt['scorer_path']) # in train mode we use train dataset to train model # and valid dataset to adjust threshold # in valid and test mode we use test dataset if self.dt == 'train': self.valid_path = os.path.join(self.datapath, 'valid') self.train_path = os.path.join(self.datapath, 'train') elif self.dt in ['test', 'valid']: self.valid_path = os.path.join(self.datapath, 'test') else: raise ValueError('Unknown mode: {}. Available modes: train, test, valid.'.format(self.dt)) self.train_documents = [] if self.train_path is None else list(sorted(os.listdir(self.train_path))) self.valid_documents = [] if self.valid_path is None else list(sorted(os.listdir(self.valid_path))) self.len = 1 self.epoch = 0 self._epoch_done = False def act(self): """reads all documents and returns them""" self._epoch_done = True train_conll = [open(os.path.join(self.train_path, file), 'r').readlines() for file in self.train_documents] valid_conll = [open(os.path.join(self.valid_path, file), 'r').readlines() for file in self.valid_documents] return {'id': self.id, 'conll': train_conll, 'valid_conll': valid_conll} def observe(self, observation): """saves observation""" self.last_observation = observation self.epoch += 1 def report(self): """calls scorer on last observation and reports result""" utils.save_observations(self.last_observation['valid_conll'], self.predictions_folder) res = coreference_utils.score(self.scorer_path, self.valid_path, self.predictions_folder) return {'f1': res['conll-F-1']} def reset(self): self._epoch_done = False def epoch_done(self): return self._epoch_done def __len__(self): return self.len
2.03125
2
5_distance_analysis/nbconverted/0_process_park.py
jjc2718/mutation-fn
0
12779927
#!/usr/bin/env python # coding: utf-8 # ## Load and process Park et al. data # # For each sample, we want to compute: # # * (non-silent) binary mutation status in the gene of interest # * binary copy gain/loss status in the gene of interest # * what "class" the gene of interest is in (more detail on what this means below) # # We'll save this to a file since the preprocessing takes a few minutes, so we can load it quickly in downstream analysis scripts. # In[1]: from pathlib import Path import pickle as pkl import pandas as pd import sys; sys.path.append('..') import config as cfg get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[2]: # park et al. geneset info park_loss_data = cfg.data_dir / 'park_loss_df.tsv' park_gain_data = cfg.data_dir / 'park_gain_df.tsv' # park et al. significant gene info park_loss_sig_data = cfg.data_dir / 'park_loss_df_sig_only.tsv' park_gain_sig_data = cfg.data_dir / 'park_gain_df_sig_only.tsv' # mutation and copy number data pancancer_pickle = Path('/home/jake/research/mpmp/data/pancancer_data.pkl') # ### Load data from Park et al. supp. info # In[3]: park_loss_df = pd.read_csv(park_loss_data, sep='\t', index_col=0) park_loss_df.head() # In[4]: park_gain_df = pd.read_csv(park_gain_data, sep='\t', index_col=0) park_gain_df.head() # ### Load mutation and CNV info # In[5]: with open(pancancer_pickle, 'rb') as f: pancancer_data = pkl.load(f) # In[6]: # get (binary) mutation data # 1 = observed non-silent mutation in this gene for this sample, 0 otherwise mutation_df = pancancer_data[1] print(mutation_df.shape) mutation_df.iloc[:5, :5] # In[7]: # we use the data source and preprocessing code from the pancancer repo, here: # https://github.com/greenelab/pancancer/blob/d1b3de7fa387d0a44d0a4468b0ac30918ed66886/scripts/initialize/process_copynumber.py#L21 copy_thresh_df = ( pd.read_csv(cfg.data_dir / 'pancan_GISTIC_threshold.tsv', sep='\t', index_col=0) .drop(columns=['Locus ID', 'Cytoband']) ) copy_thresh_df.columns = copy_thresh_df.columns.str[0:15] # thresholded copy number includes 5 values [-2, -1, 0, 1, 2], which # correspond to "deep loss", "moderate loss", "no change", # "moderate gain", and "deep gain", respectively. print(copy_thresh_df.shape) copy_thresh_df.iloc[:5, :5] # In[8]: sample_freeze_df = pancancer_data[0] copy_samples = list( set(sample_freeze_df.SAMPLE_BARCODE) .intersection(set(copy_thresh_df.columns)) ) print(len(copy_samples)) # In[9]: # make sure we're not losing too many samples, a few is fine print(sorted(set(sample_freeze_df.SAMPLE_BARCODE) - set(copy_thresh_df.columns))) # In[10]: copy_thresh_df = (copy_thresh_df .T .loc[sorted(copy_samples)] .fillna(0) .astype(int) ) print(copy_thresh_df.shape) copy_thresh_df.iloc[:5, :5] # In[11]: # here, we want to use "moderate" and "deep" loss/gain to define CNV # loss/gain (to match Park et al.) # # note that this is different to the more conservative approach of using # "deep loss/gain" only as in our classifiers copy_loss_df = (copy_thresh_df .replace(to_replace=[1, 2], value=0) .replace(to_replace=[-1, -2], value=1) ) print(copy_loss_df.shape) copy_loss_df.iloc[:5, :5] # In[12]: copy_gain_df = (copy_thresh_df .replace(to_replace=[-1, -2], value=0) .replace(to_replace=[1, 2], value=1) ) print(copy_gain_df.shape) copy_gain_df.iloc[:5, :5] # ### Classify genes/cancer types into "classes" # # In [the Park et al. paper](https://www.nature.com/articles/s41467-021-27242-3#Sec4), they describe 4 "classes" of driver genes: # # 1. Genes that function exclusively as one-hit drivers, no significant co-occurrence with CNAs # 2. Genes that interact with CNA loss in at least one cancer type - "two-hit loss" drivers (i.e. classical tumor suppressors) # 3. Genes that interact with CNA gain in at least one cancer type - "two-hit gain" drivers (for some examples/explanation of "two-hit" oncogenes, see [this paper](https://www.nature.com/articles/s41586-020-2175-2)) # 4. Genes that interact with both CNA loss and CNA gain across multiple cancer types - "two-hit loss and gain" drivers # # Here, we label each of the genes from the Park et al. data with their "class", since we want to segment our analyses in this way too. # In[13]: park_loss_sig_df = pd.read_csv(park_loss_sig_data, sep='\t', index_col=0) park_gain_sig_df = pd.read_csv(park_gain_sig_data, sep='\t', index_col=0) class_4_ids = ( set(park_loss_sig_df.index.unique()).intersection( set(park_gain_sig_df.index.unique()) )) class_2_ids = set(park_loss_sig_df.index.unique()) - class_4_ids class_3_ids = set(park_gain_sig_df.index.unique()) - class_4_ids class_1_ids = ( set(park_loss_df.index.unique()) - ( class_4_ids.union(class_2_ids, class_3_ids) ) ) print(len(park_loss_df.index.unique())) print('class 1:', len(class_1_ids)) print('class 2:', len(class_2_ids)) print('class 3:', len(class_3_ids)) print('class 4:', len(class_4_ids)) print(sorted(class_4_ids)) # In[14]: def id_to_class(i): if i in class_2_ids: return 'class 2' elif i in class_3_ids: return 'class 3' elif i in class_4_ids: return 'class 4' else: return 'class 1' loss_class = {i: id_to_class(i) for i in park_loss_df.index.unique()} park_loss_df['class'] = park_loss_df.index.map(loss_class) print(park_loss_df['class'].unique()) park_loss_df.head() # In[15]: gain_class = {i: id_to_class(i) for i in park_gain_df.index.unique()} park_gain_df['class'] = park_gain_df.index.map(gain_class) print(park_gain_df['class'].unique()) park_gain_df.head() # In[16]: sample_freeze_df.head() # ### Retrieve and format per-sample information # # We want to generate a dataframe with the following information: # # * Sample ID, gene/tissue # * Mutation status (binary) for sample in gene # * CNV status (binary) for sample in gene, gain/loss for oncogene/TSG respectively # * Park et al. gene "class" (class 1/2/3/4 as defined above) # * Sample "number of hits" (none/one/both) # In[17]: def get_info_for_gene_and_tissue(identifier, all_info_df, copy_change): """Given a gene and tissue, load the relevant mutation information. 'status' is what we will segment our plots by: 'none' == neither a point mutation or CNV observed for the given sample, 'one' == either a point mutation or CNV but not both, 'both' == both point mutation and CNV """ info_df = {} gene, tissue = identifier.split('_') if tissue == 'COADREAD': tissue_samples = ( sample_freeze_df[sample_freeze_df.DISEASE.isin(['COAD', 'READ'])] .SAMPLE_BARCODE ) else: tissue_samples = ( sample_freeze_df[sample_freeze_df.DISEASE == tissue] .SAMPLE_BARCODE ) # TODO: not sure why these don't match tissue_samples = ( mutation_df.index.intersection(tissue_samples) .intersection(copy_loss_df.index) .intersection(copy_gain_df.index) ) class_name = (all_info_df .loc[all_info_df.index == identifier, ['class']] ).values[0] info_df['class_name'] = class_name # get mutation status for samples info_df['mutation_status'] = mutation_df.loc[tissue_samples, gene].values # get copy status for samples if copy_change == 'gain': info_df['cnv_status'] = copy_loss_df.loc[tissue_samples, gene].values elif copy_change == 'loss': info_df['cnv_status'] = copy_gain_df.loc[tissue_samples, gene].values info_df = pd.DataFrame(info_df, index=tissue_samples) def hits_from_mut_info(row): if row['mutation_status'] == 1 and row['cnv_status'] == 1: return 'both' elif row['mutation_status'] == 1 or row['cnv_status'] == 1: return 'one' else: return 'none' info_df['num_hits'] = info_df.apply(hits_from_mut_info, axis=1) return info_df get_info_for_gene_and_tissue('TP53_BRCA', park_loss_df, 'loss') # ### Format and pickle all per-sample info # # We'll end up pickling a dict that maps each identifier (gene/cancer type combination) to a dataframe, assigning a "num_hits" class to each sample for that gene. # # We'll create two of these, one for copy gains and one for copy losses, to be used downstream in our distance/similarity analyses. # In[18]: cfg.distance_data_dir.mkdir(exist_ok=True) park_gain_num_hits = {} for identifier in park_gain_df.index: park_gain_num_hits[identifier] = get_info_for_gene_and_tissue(identifier, park_gain_df, 'gain') park_gain_num_hits['TP53_BRCA'].head() # In[19]: with open(cfg.distance_gain_info, 'wb') as f: pkl.dump(park_gain_num_hits, f) # In[20]: park_loss_num_hits = {} for identifier in park_loss_df.index: park_loss_num_hits[identifier] = get_info_for_gene_and_tissue(identifier, park_loss_df, 'loss') park_loss_num_hits['TP53_BRCA'].head() # In[21]: with open(cfg.distance_loss_info, 'wb') as f: pkl.dump(park_loss_num_hits, f)
2.390625
2
pystyx/parser.py
styx-dev/pystyx
0
12779928
""" Parse, don't validate. - <NAME> """ from munch import Munch from .functions import TomlFunction from .shared import OnThrowValue def parse_on_throw(from_obj, to_obj): """ Expects "or_else" to already have been processed on "to_obj" """ throw_action = { "or_else": OnThrowValue.OrElse, "throw": OnThrowValue.Throw, "skip": OnThrowValue.Skip, }.get(from_obj.on_throw, None) if not throw_action: raise TypeError(f"Unknown 'on_throw' action given: {from_obj.on_throw}") if throw_action == OnThrowValue.OrElse and not hasattr(to_obj, "or_else"): raise TypeError( "If 'on_throw' action is 'or_else', then 'or_else' must be defined." ) return throw_action class ProcessParser: def process(self, process): process_obj = Munch() for action_name, action in process.items(): process_obj[action_name] = self.process_action(action) return process_obj def process_action(self, action): action_obj = Munch() if isinstance(action.input_paths, list) and all( isinstance(element, str) for element in action.input_paths ): action_obj.input_paths = action.input_paths else: raise TypeError("input_paths must be a list of strings.") if isinstance(action.output_path, str): action_obj.output_path = action.output_path else: raise TypeError("output_path must be a string.") if action.function in TomlFunction._functions: action_obj.function = TomlFunction._functions[action.function] else: raise TypeError(f"unknown function: {action.function}") many = action.pop("many", False) is True action_obj.many = many if action.get("or_else"): action_obj.or_else = action.or_else if action.get("on_throw"): throw_action = parse_on_throw(action, action_obj) action_obj.on_throw = throw_action return action_obj class PreprocessParser(ProcessParser): def parse(self, preprocess): return self.process(preprocess) class PostprocessParser(ProcessParser): def parse(self, postprocess): return self.process(postprocess) class FieldsParser: reserved_words = { "input_paths", "possible_paths", "path_condition", "from_type", "to_type", "function", "or_else", "on_throw", "mapping", } def parse(self, fields): field_objs = Munch() many = fields.pop("many", False) is True field_objs.many = many if not fields: raise TypeError("'fields' cannot be empty (what are we mapping?)") for field_name, field in fields.items(): field_obj = self.parse_field(field) field_objs[field_name] = self.parse_extra_fields( field_name, field, field_obj ) return field_objs def parse_field(self, field): field_obj = Munch() field_obj = self.parse_paths(field, field_obj) if hasattr(field, "or_else"): field_obj.or_else = field.or_else if field.get("on_throw"): throw_action = parse_on_throw(field, field_obj) field_obj.on_throw = throw_action if field.get("from_type"): # TODO: Is it possible to check valid definitions during parse? field_obj.from_type = field.from_type if field.get("mapping"): # TODO: 'mapping' and 'from_type' should not both be possible field_obj.mapping = field.mapping if field.get("function"): if field.function in TomlFunction._functions: field_obj.function = TomlFunction._functions[field.function] else: raise TypeError(f"unknown function: {field.function}") return field_obj def parse_paths(self, field, field_obj): if not hasattr(field, "input_paths") and not hasattr(field, "possible_paths"): raise TypeError( "Either 'input_paths' or 'possible_paths' must be declared. Aborting." ) if hasattr(field, "input_paths") and hasattr(field, "possible_paths"): raise TypeError( "Either 'input_paths' or 'possible_paths' must be declared, but not both." ) if hasattr(field, "input_paths"): field_obj.input_paths = self.parse_input_paths(field) else: field_obj.possible_paths = self.parse_possible_paths(field) field_obj.path_condition = field.path_condition return field_obj def parse_input_paths(self, field): if isinstance(field.input_paths, list) and all( isinstance(element, str) for element in field.input_paths ): if len(field.input_paths) > 1 and not field.get("function"): raise TypeError( "'input_paths' must be of length 1 if 'function' is not defined" ) return field.input_paths else: raise TypeError("input_paths must be a list of strings.") def parse_possible_paths(self, field): if isinstance(field.possible_paths, list) and all( isinstance(element, str) for element in field.possible_paths ): if not field.get("path_condition"): raise TypeError( "'path_condition' must be set if 'possible_paths' is set." ) return field.possible_paths else: raise TypeError("possible_paths must be a list of strings.") def parse_extra_fields(self, field_name, field, field_obj): """ Handle non-reserved keywords on the Field object For now, the only allowed non-reserved keyword is the parent's field_name """ from_type = field.get("from_type") field_obj["_copy_fields"] = [] for key, value in field.items(): if key in self.reserved_words: continue if key != field_name: raise TypeError(f"Unknown key found on field definition: {field_name}") if not from_type: raise TypeError( "Custom values cannot be set on a definition without declaring a nested object from_type" ) field_obj[key] = value for nested_key in value: field_obj["_copy_fields"].append(nested_key) return field_obj class Parser: def parse(self, toml_obj: Munch): if not hasattr(toml_obj, "from_type"): raise TypeError("'from_type' must be declared at the top-level.") from_type = toml_obj.from_type if not hasattr(toml_obj, "to_type"): raise TypeError("'to_type' must be declared at the top-level.") to_type = toml_obj.to_type type_ = toml_obj.pop("__type__", "object") include_type = toml_obj.pop("include_type", True) is True if type_ not in ("object", "list"): raise TypeError( f"Only declared types available for __type__ are: object, list. Found: {type_}" ) parsed_obj = Munch() parsed_obj.to_type = to_type parsed_obj.__type__ = type_ parsed_obj.include_type = include_type if toml_obj.get("preprocess"): parser = PreprocessParser() parsed_obj["preprocess"] = parser.parse(toml_obj.preprocess) if not hasattr(toml_obj, "fields"): raise TypeError( "'fields' is a required field for a Styx definition mapping." ) fields_parser = FieldsParser() parsed_obj["fields"] = fields_parser.parse(toml_obj.fields) if toml_obj.get("postprocess"): parser = PostprocessParser() parsed_obj["postprocess"] = parser.parse(toml_obj.postprocess) return from_type, to_type, parsed_obj
2.734375
3
scrapy_news/scrapy_news/spiders/news_spider.py
DreamCloudWalker/MySimpleServers
0
12779929
<filename>scrapy_news/scrapy_news/spiders/news_spider.py<gh_stars>0 import scrapy import re from scrapy_news.items import ScrapyNewsItem class NewsSpiderSpider(scrapy.Spider): name = 'news_spider' start_urls = ['https://www.douban.com/gallery/', # 豆瓣 'https://s.weibo.com/top/summary', # 微博 'http://tieba.baidu.com/hottopic/browse/topicList?res_type=1&red_tag=h1923737578', # 百度贴吧 'https://bbs.hupu.com/all-gambia', # 虎扑 'http://top.baidu.com/buzz?b=341&c=513&fr=topbuzz_b1_c513', # 百度今日热点 ] def parse(self, response): if response.url == self.start_urls[0]: # 豆瓣 yield from self.crawl_douban(response) if response.url == self.start_urls[1]: # 微博 yield from self.crawl_weibo(response) if response.url == self.start_urls[2]: # 百度贴吧 yield from self.crawl_tieba(response) if response.url == self.start_urls[3]: # 虎扑 yield from self.crawl_hupu(response) if response.url == self.start_urls[4]: # 百度今日热点 yield from self.crawl_topbaidu(response) def crawl_douban(self, response): trends = response.css('ul.trend > li > a') for trend in trends: item = ScrapyNewsItem() item['source'] = 'douban_spider' item['title'] = trend.css('a::text').extract_first() item['url'] = trend.css('a').attrib['href'] item['remark'] = '' yield item def crawl_weibo(self, response): trends = response.css('td.td-02 > a') for trend in trends: item = ScrapyNewsItem() item['source'] = 'weibo_spider' item['title'] = trend.css('a::text').extract_first() href = self.get_weibo_href(trend) item['url'] = "https://s.weibo.com" + href item['remark'] = '' yield item def crawl_tieba(self, response): trends = response.css('div.main > ul > li a') for trend in trends: item = ScrapyNewsItem() item['source'] = 'tieba_spider' item['title'] = trend.css('a::text').extract_first() item['url'] = trend.css('a').attrib['href'] item['remark'] = '' yield item def crawl_hupu(self, response): trends = response.css('div.list> ul > li >span:nth-child(1) >a') for trend in trends: item = ScrapyNewsItem() item['source'] = 'hupu_spider' item['title'] = trend.css('a').attrib['title'] item['url'] = "https://bbs.hupu.com" + trend.css('a').attrib['href'] item['remark'] = '' yield item def crawl_github(self, response): trends = response.css('div> article.Box-row ') for trend in trends: item = ScrapyNewsItem() item['source'] = 'github_spider' title = "".join(trend.css('p::text').extract()) re.sub(r'[\\*|“<>:/()()0123456789]', '', title) title.replace('\n', '').replace(' ', '') item['title'] = title item['url'] = "https://github.com" + trend.css('h1>a').attrib['href'] item['remark'] = '' yield item def crawl_topbaidu(self, response): trends = response.css('td.keyword >a:nth-child(1) ') for trend in trends: item = ScrapyNewsItem() item['source'] = 'topbaidu_spider' item['title'] = trend.css('a::text').extract_first() item['url'] = trend.css('a').attrib['href'] item['remark'] = '' yield item def get_weibo_href(self, trend): href = trend.css('a').attrib['href'] if href.startswith('javascript'): ##javascript:void(0) href = trend.css('a').attrib['href_to'] return href
2.84375
3
plugins/clench.py
wffirilat/Neurohacking
2
12779930
# -*- coding: utf-8 -*- """ Project: neurohacking File: clench.py.py Author: wffirilat """ import numpy as np import time import sys import plugin_interface as plugintypes from open_bci_v3 import OpenBCISample class PluginClench(plugintypes.IPluginExtended): def __init__(self): self.release = True self.packetnum = -1 self.threshold = None self.uthreshold = None self.ticknum = None self.storelength = 1024 self.starttime = None self.state = 'unstarted' self.channel = 3 self.restingmax, self.restingmin = 0, 0 self.clenchmax, self.clenchmin = 0, 0 self.unclenchmax, self.unclenchmin = 0, 0 self.rawdata = np.zeros((8, self.storelength)) self.data = np.zeros((8, self.storelength)) def activate(self): print("clench activated") # called with each new sample def __call__(self, sample: OpenBCISample): if sample.id == 0: if self.packetnum == -1: self.starttime = time.time() self.packetnum += 1 self.ticknum = self.packetnum * 256 + sample.id self.rawdata[:, (sample.id + 256 * self.packetnum) % self.storelength] = sample.channel_data self.data[:, (sample.id + 256 * self.packetnum) % self.storelength] = [v - avg for avg, v in zip( [sum(self.rawdata[i, :]) / self.storelength for i in range(8)], sample.channel_data )] #print(np.median(self.rawdata[3,:])) #The reason this is here is because it might help our basis be better if self.state != 'calibrated': self.calibratetick() else: self.tick() def calibratetick(self): # print(self.data) dt = time.time() - self.starttime if self.state == "unstarted": print("Prepare to calibrate") self.state = "positioning" elif self.state == "positioning": if dt > 4: print('Calibrating') self.state = 'resting' elif self.state == 'resting': if dt > 6: print("Resting data gathered; Prepare to clench") self.state = 'clench' return if self.current >= self.restingmax: self.restingmax = self.current if self.current <= self.restingmin: self.restingmin = self.current elif self.state == 'clench': if dt > 7: print("Clench NOW!") self.state = 'clenching' return elif self.state == 'clenching': if dt > 9: print('Unclench!!') self.state = 'postclench' return if self.current > self.clenchmax: self.clenchmax = self.current if self.current < self.clenchmin: self.clenchmin = self.current elif self.state == 'postclench': if dt > 10: self.threshold = self.restingmax + ((self.clenchmax - self.restingmax) / 2) if self.release: self.uthreshold = self.restingmin + ((self.clenchmin - self.restingmin) / 2) self.state = 'calibrated' print ("Resting Max", self.restingmax, "Resting Min", self.restingmin, "\n") print ("Clench Max,", self.clenchmax, "Clench Min",self.clenchmin, "\n") if self.release: print ("Unclench Max,", self.unclenchmax, "Unclench Min",self.unclenchmin, "\n") return if self.release: if self.current > self.unclenchmax: self.unclenchmax = self.current if self.current < self.unclenchmin: self.unclenchmin = self.current @property def current(self): return self.data[self.channel, self.ticknum % self.storelength] def tick(self): if self.current > self.unclenchmax-((self.current-self.unclenchmax)/5):#watch this work! print(f" {self.current}: Clenched!!") ... #if self.release: # if self.current < self.uthreshold: # print(f" {self.ticknum}: Unclenched!!")
2.234375
2
Discord Bots/Meme6-BOT/cogs/money.py
LUNA761/Code-Archive
1
12779931
import discord, time, os, praw, random, json from discord.ext import commands, tasks from discord.ext.commands import has_permissions, MissingPermissions from discord.utils import get from itertools import cycle import datetime as dt from datetime import datetime done3 = [] beg_lim_users = [] timers = {} done = [] steal_lim_users = [] timers2 = {} done2 = [] embeddata = {} embeddata["icon"] = "http://luna-development.orgfree.com/data/discord/meme6/logo.jpg" embeddata["name"] = "Meme6" embeddata["version"] = "2.0" class App(commands.Cog): def __init__(self, client): self.client = client print("Loading Cog: MONEY") @commands.command(aliases=["resetmoney", "moneyreset"]) @has_permissions(administrator=True) async def moneysetup(self, ctx): os.chdir("money/") folder = str(str(ctx.guild.id)+"/") try: os.chdir(folder) except: os.mkdir(folder) os.chdir(folder) usr_num = 0 bot_num = 0 for user in ctx.guild.members: if user.bot == True: bot_num += 1 elif user.id in done3: pass else: done3.append(user.id) f = open(f"__{user.id}__.json", "w+") f.write("500") f.close() usr_num += 1 embed=discord.Embed(title="SETUP", description="Running Setup", color=0x00eeff) embed.set_author(name=embeddata["name"], icon_url=embeddata["icon"]) embed.add_field(name="Guild id:", value=str(ctx.guild.id), inline=False) embed.add_field(name="Users", value=str(usr_num), inline=False) embed.add_field(name="Bots", value=str(bot_num), inline=True) embed.set_footer(text=embeddata["name"]+" ["+embeddata["version"]+"]") await ctx.send(embed=embed) os.chdir("..") os.chdir("..") @commands.command(aliases=["bal", "bank"]) async def balance(self, ctx, who=None): os.chdir("money/") folder = str(str(ctx.guild.id)+"/") try: os.chdir(folder) except: os.mkdir(folder) os.chdir(folder) if who == None: who = int(ctx.message.author.id) else: who = who.replace("@", "").replace("!", "").replace(">", "").replace("<", "") who = int(who) f = open(f"__{who}__.json", "r") bal = f.read() f.close() embed=discord.Embed(title="Balance", color=0x00eeff) embed.set_author(name=embeddata["name"], icon_url=embeddata["icon"]) embed.add_field(name="Total", value="£"+str(bal), inline=False) embed.set_footer(text=embeddata["name"]+" ["+embeddata["version"]+"]") await ctx.send(embed=embed) os.chdir("..") os.chdir("..") @tasks.loop(seconds = 1) async def begtimer(): for user_id in beg_lim_users: if user_id in done: pass old = timers[user_id] new = old - 1 timers[user_id] = new if timers[user_id] == 0: beg_lim_users.remove(user_id) timers.pop(user_id) done.remove(user_id) else: done.append(user_id) timers[user_id] = 50 @tasks.loop(seconds = 1) async def stealtimer(): for user_id in steal_lim_users: if user_id in done2: pass old = timers2[user_id] new = old - 1 timers2[user_id] = new if timers2[user_id] == 0: steal_lim_users.remove(user_id) timers2.pop(user_id) done2.remove(user_id) else: done2.append(user_id) timers2[user_id] = 50 @commands.command() async def beg(self, ctx): os.chdir("money/") folder = str(str(ctx.guild.id)+"/") try: os.chdir(folder) except: os.mkdir(folder) os.chdir(folder) if ctx.message.author.id in beg_lim_users: left = timers[ctx.message.author.id] await ctx.send(f"You need to wait {left} seconds before you can use this again!") os.chdir("..") os.chdir("..") return else: beg_lim_users.append(ctx.message.author.id) x = random.randint(0, 100) if x > 25: c = True else: c = False await ctx.send("No Coins for you!") if c == True: amm = random.randint(50, 300) if amm > 295: amm = random.randint(400, 500) await ctx.send(f"Here have {amm} coins!") f = open(f"__{ctx.message.author.id}__.json") c_b = f.read() f.close() c_b =int(c_b)+int(amm) f = open(f"__{ctx.message.author.id}__.json", "w+") f.write(str(c_b)) f.close() os.chdir("..") os.chdir("..") @commands.command() async def passive(self, ctx, choice): if choice == "on": with open("passive.json") as f: passive_list = json.load(f) passive_list[ctx.message.author.id] = True with open("passive.json", "w+") as f: json.dump(passive_list, f) await ctx.send(f"Passive mode now {choice}") elif choice == "off": with open("passive.json") as f: passive_list = json.load(f) passive_list[ctx.message.author.id] = False with open("passive.json", "w+") as f: json.dump(passive_list, f) await ctx.send(f"Passive mode now {choice}") else: await ctx.send(f"{choice} is not a valid option, please choose from on or off") @commands.command() async def steal(self, ctx, who=None): with open("passive.json") as f: passive_list = json.load(f) p = passive_list[str(ctx.message.author.id)] if p == True: await ctx.send("You can't steal, your in passive mode you can change that using the passive command") return if ctx.message.author.id in steal_lim_users: left = timers2[ctx.message.author.id] await ctx.send(f"You need to wait {left} seconds before you can use this again!") os.chdir("..") os.chdir("..") return else: steal_lim_users.append(ctx.message.author.id) os.chdir("money/") folder = str(str(ctx.guild.id)+"/") try: os.chdir(folder) except: os.mkdir(folder) os.chdir(folder) w = who if who == None: await ctx.send("You need to tell me who to steal from!") else: who = who.replace("@", "").replace("!", "").replace(">", "").replace("<", "") who = int(who) f = open(f"__{who}__.json") ee = f.read() if int(ee) < 400: await ctx.send("This person does not have more than 400 in there bank its not worth it!") f.close() return f.close() chance = random.randint(0, 100) if chance > 30: x = True else: await ctx.send("Oh no, you have been caught!") x = False if x == True: amm = random.randint(1, 400) await ctx.send(f"You stole {amm} from {w}") f = open(f"__{ctx.message.author.id}__.json") c = f.read() f.close() c = int(c)+amm f = open(f"__{ctx.message.author.id}__.json", "w+") f.write(str(c)) f.close() f = open(f"__{who}__.json") c = f.read() f.close() c = int(c)-amm f = open(f"__{who}__.json", "w+") f.write(str(c)) f.close() os.chdir("..") os.chdir("..") begtimer.start() stealtimer.start() def setup(client): client.add_cog(App(client))
2.328125
2
forager_server/scripts/load_val.py
jeremyephron/forager
1
12779932
<reponame>jeremyephron/forager from google.cloud import storage from forager_server_api.models import Dataset, DatasetItem import os DATASET_NAME = "waymo" VAL_IMAGE_DIR = "gs://foragerml/waymo/val" if not VAL_IMAGE_DIR.startswith("gs://"): raise RuntimeError( "Directory only supports Google Storage bucket paths. " 'Please specify as "gs://bucket-name/path/to/data".' ) # Similar to /create_dataset endpoint split_dir = VAL_IMAGE_DIR[len("gs://") :].split("/") bucket_name = split_dir[0] bucket_path = "/".join(split_dir[1:]) client = storage.Client() bucket = client.get_bucket(bucket_name) all_blobs = client.list_blobs(bucket, prefix=bucket_path) dataset = Dataset.objects.get(name=DATASET_NAME) dataset.val_directory = VAL_IMAGE_DIR dataset.save() # Create all the DatasetItems for this dataset paths = [blob.name for blob in all_blobs] paths = [ path for path in paths if (path.endswith(".jpg") or path.endswith(".jpeg") or path.endswith(".png")) ] items = [ DatasetItem( dataset=dataset, identifier=os.path.basename(path).split(".")[0], path=path, is_val=True, ) for path in paths ] print(f"Creating {len(items)} new entries") DatasetItem.objects.bulk_create(items)
2.9375
3
tests/test_cli.py
mossblaser/bulk_photo_print
0
12779933
<filename>tests/test_cli.py import pytest import os import sys from typing import Set, Any from bulk_photo_print.cli import ( parse_dimension, ARGUMENTS, parse_arguments, ArgumentParserError, main, ) TEST_DIR = os.path.dirname(__file__) TEST_JPEG_PORTRAIT = os.path.join(TEST_DIR, "portrait.jpg") TEST_JPEG_LANDSCAPE = os.path.join(TEST_DIR, "landscape.jpg") TEST_JPEG_SQUARE = os.path.join(TEST_DIR, "square.jpg") class TestParseDimension: @pytest.mark.parametrize( "example, exp", [ # Different number formats ("1", 1.0), ("1.", 1.0), ("123", 123.0), ("1.25", 1.25), (".25", 0.25), # Units ("1mm", 1.0), ("1cm", 10.0), ("1 m", 1000.0), ], ) def test_valid_cases(self, example: str, exp: float) -> None: assert parse_dimension(example) == exp @pytest.mark.parametrize( "example", [ # Empty string "", # No digits ".", # Just unit "mm", # Unknown unit "100 foo", ], ) def test_invalid_cases(self, example: str) -> None: with pytest.raises(ValueError): parse_dimension(example) def test_no_duplicate_arguments() -> None: names: Set[str] = set() for argument in ARGUMENTS.values(): assert len(argument.argument_names) >= 1 for name in argument.argument_names: assert name not in names names.add(name) class TestParseArguments: def test_empty(self) -> None: args = parse_arguments([""]) assert args.page_width == 210 assert args.page_height == 297 assert args.margin == 5 assert args.pictures == [] assert args.output_filename == "out.pdf" def test_page_dimensions(self) -> None: args = parse_arguments(["", "--page-dimensions", "100", "200"]) assert args.page_width == 100 assert args.page_height == 200 def test_page_dimensions_bad_args(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "--page-dimensions"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--page-dimensions", "100"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--page-dimensions", "100", "nope"]) def test_page_dimensions_after_picture(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", TEST_JPEG_SQUARE, "--page-dimensions", "100", "200"]) def test_margin(self) -> None: args = parse_arguments(["", "--margin", "12"]) assert args.margin == 12 def test_margin_bad_args(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "--margin"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--margin", "nope"]) def test_margin_after_picture(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", TEST_JPEG_SQUARE, "--margin", "100"]) def test_output(self) -> None: args = parse_arguments(["", "--output", "foo.pdf"]) assert args.output_filename == "foo.pdf" def test_output_missing(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "--output"]) def test_picture_dimensions(self) -> None: args = parse_arguments( [ "", "--picture-dimensions", "10", "20", TEST_JPEG_SQUARE, "--picture-dimensions", "30", "40", TEST_JPEG_SQUARE, ] ) assert len(args.pictures) == 2 assert args.pictures[0].width == 10 assert args.pictures[0].height == 20 assert args.pictures[1].width == 30 assert args.pictures[1].height == 40 def test_picture_dimensions_bad_dimensions(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "--picture-dimensions"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--picture-dimensions", "100"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--picture-dimensions", "100", "nope"]) def test_scale_or_crop(self) -> None: args = parse_arguments( [ "", "--picture-dimensions", "10", "20", TEST_JPEG_SQUARE, "--scale", TEST_JPEG_SQUARE, "--crop", TEST_JPEG_SQUARE, ] ) assert len(args.pictures) == 3 assert args.pictures[0].width == 10 assert args.pictures[0].height == 20 assert args.pictures[1].width == 10 assert args.pictures[1].height == 10 assert args.pictures[2].width == 10 assert args.pictures[2].height == 20 def test_alignment(self) -> None: args = parse_arguments( [ "", "--picture-dimensions", "1", "2", TEST_JPEG_PORTRAIT, "--alignment", "0.5", "0.5", TEST_JPEG_PORTRAIT, "--alignment", "0.0", "0.0", TEST_JPEG_PORTRAIT, ] ) assert len(args.pictures) == 3 assert args.pictures[0].x_offset or args.pictures[0].y_offset assert args.pictures[0].x_offset == args.pictures[1].x_offset assert args.pictures[0].y_offset == args.pictures[1].y_offset assert args.pictures[2].x_offset == 0 assert args.pictures[2].y_offset == 0 def test_alignment_bad(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "--alignment"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--alignment", "1"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--alignment", "1", "nope"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--alignment", "1", "2"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--alignment", "1", "-1"]) def test_rotate_for_best_fit(self) -> None: args = parse_arguments( [ "", "--scale", "--picture-dimensions", "60", "90", TEST_JPEG_LANDSCAPE, "--rotate-for-best-fit", TEST_JPEG_LANDSCAPE, "--no-rotate-for-best-fit", TEST_JPEG_LANDSCAPE, ] ) assert len(args.pictures) == 3 assert args.pictures[0].rotate_image assert args.pictures[1].rotate_image assert not args.pictures[2].rotate_image def test_dpi(self) -> None: args = parse_arguments( [ "", "--picture-dimensions", "100", "100", "--max-dpi", "25.4", # 1 dot per mm TEST_JPEG_SQUARE, "--max-dpi", "0", # unlimited dpi TEST_JPEG_SQUARE, ] ) assert len(args.pictures) == 2 assert args.pictures[0].image_width == 100 assert args.pictures[0].image_height == 100 assert args.pictures[1].image_width == 256 assert args.pictures[1].image_height == 256 def test_dpi_bad(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "--max-dpi"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--max-dpi", "nope"]) def test_unknown_argument(self) -> None: with pytest.raises(ArgumentParserError): parse_arguments(["", "-?"]) with pytest.raises(ArgumentParserError): parse_arguments(["", "--foo"]) class TestMain: def test_empty(self, tmpdir: Any, monkeypatch: Any) -> None: output_filename = str(tmpdir.join("out.pdf")) monkeypatch.setattr(sys, "argv", ["", "-o", output_filename]) main() # Shouldn't crash assert os.path.isfile(output_filename) def test_pictures(self, tmpdir: Any, monkeypatch: Any) -> None: output_filename = str(tmpdir.join("out.pdf")) monkeypatch.setattr( sys, "argv", [ "", "-o", output_filename, TEST_JPEG_PORTRAIT, TEST_JPEG_SQUARE, TEST_JPEG_LANDSCAPE, ], ) main() # Shouldn't crash assert os.path.isfile(output_filename) def test_argument_error(self, monkeypatch: Any) -> None: monkeypatch.setattr(sys, "argv", ["", "--foo"]) with pytest.raises(SystemExit): main() def test_non_fitting_error(self, monkeypatch: Any) -> None: monkeypatch.setattr( sys, "argv", [ "", "--picture-dimensions", "1000", "1000", TEST_JPEG_PORTRAIT, ], ) with pytest.raises(SystemExit): main()
2.375
2
get_mismatch.py
TuanjieNew/SeqDesignTool
0
12779934
#!/usr/bin/env python #fn; get_mismatch.py #ACTGCAGCGTCATAGTTTTTGAG import os import copy def getMismatch(start,seq,name,end): #name = seq quality = 'IIIIIIIIIIIIIIIIIIIIII' OUTFILE = open('./mis_test.fastq','a') ls = list(seq) ls_1 = copy.deepcopy(ls) ii = start+1 for i in ls_1[ii:end]: if i == 'A': ls_1[ii] = 'T' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'G' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'C' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) if i == 'T': ls_1[ii] = 'A' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'G' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'C' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) if i == 'G': ls_1[ii] = 'T' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'A' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'C' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) if i == 'C': ls_1[ii] = 'T' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'G' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ls_1[ii] = 'A' ls_1[21] = 'G' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') ls_1[22] = 'A' OUTFILE.write('@'+name+'\n'+''.join(ls_1)+'\n'+'+'+name+'\n'+quality+'\n') getMismatch(ii,ls_1,name,end - 1) ii+=1 seq = 'GCTGCGTCGTCGTAGTTTTTTGG' getMismatch(-1, seq, seq, 21)
2.65625
3
cride/circles/migrations/0004_auto_20200525_1916.py
mariogonzcardona/platzi-cride
0
12779935
# Generated by Django 2.0.10 on 2020-05-25 19:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('circles', '0003_auto_20200525_1531'), ] operations = [ migrations.RemoveField( model_name='membership', name='is_Active', ), migrations.AddField( model_name='membership', name='is_active', field=models.BooleanField(default=True, help_text='Only active users are allowed to interact in the circle.', verbose_name='active status'), ), migrations.AlterField( model_name='membership', name='is_admin', field=models.BooleanField(default=False, help_text="Circle admins can update the circle's data and manage its members.", verbose_name='circle admin'), ), migrations.AlterField( model_name='membership', name='remaining_invitations', field=models.PositiveSmallIntegerField(default=0), ), migrations.AlterField( model_name='membership', name='used_invitations', field=models.PositiveSmallIntegerField(default=0), ), ]
1.75
2
saveauth.py
jimfenton/notif-notifier
0
12779936
<filename>saveauth.py<gh_stars>0 #!/usr/bin/python # saveauth.py - Save notif address for use by clockwatcherd # # Copyright (c) 2015 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # __version__="0.1.0" import cgi print """Content-Type: text/html <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> <html> <head> <title>Clockwatcher</title> </head> <body> """ form = cgi.FieldStorage() if "addr" not in form: print "<h1>Error</h1>" print "Authorization ID not present" exit() if "maxpri" not in form: print "<h1>Error</h1>" print "Max priority not present" exit() with open("/etc/clockwatcher/newwatchers.cfg", "a") as config: config.write(form["addr"].value) print "<h1>N&#x014d;tif authorized</h1>" print "<p>" print "Have a good time!" print "</p>" print "</body></html>"
2.046875
2
Module2/Day15/module2_day_15_dictionaries.py
sydneybeal/100DaysPython
2
12779937
<gh_stars>1-10 """ Author: <REPLACE> Project: 100DaysPython File: module1_day15_dictionaries.py Creation Date: <REPLACE> Description: <REPLACE> """ conversion = {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5} print(conversion) print(conversion["a"]) menu = {"item1": ["egg", "spam", "bacon"], "item2": ["egg", "sausage", "spam"], "item3": ["egg", "spam"], "item4": ["egg", "bacon", "spam"], "item5": ["egg", "bacon", "sausage", "spam"], "item6": ["spam", "bacon", "sausage", "spam"], "item7": ["spam", "egg", "spam", "spam", "bacon", "spam"], "item8": ["spam", "egg", "sausage", "spam"]} print(menu["item1"]) print(type(menu["item7"])) menu["item2"][2] = "spam" print(menu["item2"]) # List Comparison l_ministry1 = ["silly", "walks"] l_ministry2 = ["walks", "silly"] print(l_ministry1 == l_ministry2) # Dictionary Comparison d_ministry1 = {"a": "silly", "b": "walks"} d_ministry2 = {"b": "walks", "a": "silly"} print(d_ministry1 == d_ministry2) print(menu.keys()) print(menu.values()) ordered_keys = list(menu.keys()) print(ordered_keys) ordered_keys.sort(reverse=True) print(ordered_keys) menu_tuple = tuple(menu.items()) print(menu_tuple) print(type(menu_tuple)) print(menu_tuple[0]) print(type(menu_tuple[0])) # Slicing the key/value tuple to obtain the key. print(menu_tuple[0][0]) print(type(menu_tuple[0][0])) # Slicing the key/value tuple to obtain the value. print(menu_tuple[0][1]) print(type(menu_tuple[0][1])) # Slicing the second item in the value list. print(menu_tuple[0][1][1]) print(type(menu_tuple[0][1][1])) print(menu["item1"][1]) print(menu_tuple[0][1][1] == menu["item1"][1]) order = "item9" if menu.get(order, 0) == 0: print("{} is not a valid dish. Please try again.".format(order)) else: print("{} contains {}".format(order, menu.get(order))) transportation = {"name": "coconut", "color": "brown"} print(transportation.items()) transportation.setdefault("received_by", "swallow") print(transportation.items()) transportation.setdefault("received_by", "found_on_ground") print(transportation.items())
2.734375
3
src/ci_systems/travis.py
nifadyev/build-status-notifier
6
12779938
<reponame>nifadyev/build-status-notifier """Module for dealing with Travis CI API.""" import time from typing import Dict, Any, List, Tuple, Optional import requests from requests import Response from ..notifiers.slack import Slack from ..custom_types import BUILD class Travis(): """Class for sending requests via Travis API and parsing their response.""" def __init__(self, config: Dict[str, Any]) -> None: """Initialize class instance. Args: config: Travis API specific credentials. Attributes: token: unique key. author: author alias. repository_id: repository ID in Travis. frequency: interval in seconds between consecutive requests to API. """ self.token = config['token'] self.author = config['author']['login'] self.repository_id = config['repositories'][0]['id'] self.frequency = config['request_frequency'] def execute_command(self, command: str, args: List = None) -> None: """Execute supported command with optional arguments. Args: command: valid keyword. args: optional arguments for some commands. """ if command == 'monitor': print(f'Executing command {command} {args or ""}') self.monitor_builds() else: print('Unsupported command') def monitor_builds(self) -> None: """Check build statuses for specified author and repository with set frequency. Check if there are any active builds of specific author. If yes, run endless loop until all active builds are finished. """ initial_builds = self.get_builds_in_progress() if not initial_builds: print('There are no builds in progress') return while True: builds_in_progress = self.get_builds_in_progress() print(f'{len(builds_in_progress)} builds are still in progress') if builds_in_progress == initial_builds: time.sleep(self.frequency) continue for build in self.get_finished_builds(initial_builds, builds_in_progress): is_build_finished = self.handle_build(build) if not is_build_finished: continue if not builds_in_progress: print('Finishing monitoring') Slack.notify(message='All builds are finished') break initial_builds = builds_in_progress time.sleep(self.frequency) def get_builds_in_progress(self) -> Tuple[BUILD]: """Return list of active builds for specified repository and author. Build is active if its status is `created` or `started`. Returns: tuple: sequence of active author's builds. """ request = self.request_factory(f'repo/{self.repository_id}/builds') builds = request.json()['builds'] return tuple( self.parse_build(build) for build in builds if self._is_build_in_progress(build)) def _is_build_in_progress(self, build: Dict[str, Any]) -> bool: """Check build status and author. Args: build: raw information about build from response. Returns: bool: indicates if build is in progress. """ return ( build['created_by']['login'] == self.author and build['state'] in ('started', 'created', 'pending', 'running') ) def handle_build(self, build: BUILD) -> bool: """Deal with build and call Slack method if build is finished. Arguments: build: necessary information about build. Returns: bool: indicates if message is sent successfully. """ build_response = self.request_factory(f'build/{build["id"]}') build = self.parse_build(build=build_response.json()) # Do not send message if build status has changed from `created` to `started` if build['status'] in ('started', 'created', 'pending', 'running'): return False if build['status'] == 'failed': jobs_response = self.request_factory(f'build/{build["id"]}/jobs') failed_job_id = self.get_failed_job_id(jobs_response.json()) log_response = self.request_factory(f'job/{failed_job_id}/log') log = log_response.json()['content'] # Last 3 strings are useless error_strings = log.splitlines()[-8:-3] status_code = Slack.notify(build, error_strings, failed_job_id) else: status_code = Slack.notify(build) return status_code == '200' @staticmethod def get_finished_builds( initial_builds: Tuple[BUILD], builds_in_progress: Tuple[BUILD]) -> Tuple[BUILD]: """Return finished builds by comparing builds in progress with initial builds. Args: initial_builds: sequence of initial builds. builds_in_progress: sequence of builds in progress. Returns: tuple: sequence of finished builds. """ return tuple(build for build in initial_builds if build not in builds_in_progress) @staticmethod def parse_build(build: Dict) -> BUILD: """Retrieve necessary information from raw build response. Arguments: build: raw response. Returns: dict: necessary information about build. """ return { 'id': build['id'], 'event': build['event_type'], 'status': build['state'], 'branch': build['branch']['name'], 'message': build['commit']['message'], 'duration': build['duration'], 'pr_url': build['commit']['compare_url'], 'commit_sha': build['commit']['sha'] } @staticmethod def get_failed_job_id(jobs: Dict) -> Optional[str]: """Return ID of failed Travis job. Args: jobs: information about all build jobs. Returns: str: job ID. """ for job in jobs['jobs']: if job['state'] == 'failed': return job['id'] def request_factory(self, path: str) -> Response: """Make request to Travis API with provided path. Args: path: path to specific resource. Returns: Response: response from API. """ return requests.get( f'https://api.travis-ci.com/{path}', headers={ 'Travis-API-Version': '3', 'User-Agent': 'API Explorer', 'Authorization': f'token {self.token}' } )
2.515625
3
quantum_compiler/drawing.py
Debskij/QuantumCompiler
2
12779939
<reponame>Debskij/QuantumCompiler<filename>quantum_compiler/drawing.py<gh_stars>1-10 import matplotlib.pyplot import typing def draw_axes() -> None: """Draw axes on the plane.""" points = [[1.2, 0], [0, 1.2], [-1.2, 0], [0, -1.2]] # dummy points for zooming out arrows = [[1.1, 0], [0, 1.1], [-1.1, 0], [0, -1.1]] # coordinates for the axes for p in points: matplotlib.pyplot.plot(p[0], p[1] + 0.1) # drawing dummy points for a in arrows: matplotlib.pyplot.arrow(0, 0, a[0], a[1], head_width=0.04, head_length=0.08) # drawing the axes def draw_unit_circle() -> None: """Draw unit circle on the plane.""" unit_circle = matplotlib.pyplot.Circle((0, 0), 1, color="black", fill=False) matplotlib.pyplot.gca().add_patch(unit_circle) def draw_quantum_state(coords: typing.List[int], name: str, color: str = "blue") -> None: """ Draw quantum state of qbit. :param coords: coordinates of quantum state on the plane. :param name: name of the quantum state to plot :param color: color of drawn arrow :return: None """ x, y = list(coords) x1 = 0.92 * x y1 = 0.92 * y matplotlib.pyplot.arrow(0, 0, x1, y1, head_width=0.04, head_length=0.08, color=color) x2 = 1.15 * x y2 = 1.15 * y matplotlib.pyplot.text(x2, y2, name) def draw_qbit() -> None: """Draw sample qbits on the plane.""" matplotlib.pyplot.figure(figsize=(6, 6), dpi=60) # draw a figure # draw the origin matplotlib.pyplot.plot(0, 0, "ro") # a point in red color draw_axes() # drawing the axes by using one of our predefined function draw_unit_circle() # drawing the unit circle by using one of our predefined function # drawing |0> matplotlib.pyplot.plot(1, 0, "o") matplotlib.pyplot.text(1.05, 0.05, "|0>") # drawing |1> matplotlib.pyplot.plot(0, 1, "o") matplotlib.pyplot.text(0.05, 1.05, "|1>") # drawing -|0> matplotlib.pyplot.plot(-1, 0, "o") matplotlib.pyplot.text(-1.2, -0.1, "-|0>") # drawing -|1> matplotlib.pyplot.plot(0, -1, "o") matplotlib.pyplot.text(-0.2, -1.1, "-|1>")
3.03125
3
tests/pyspark_testing/integration/test_driver.py
msukmanowsky/pyspark-testing
24
12779940
<reponame>msukmanowsky/pyspark-testing from ... import relative_file from . import PySparkIntegrationTest from pyspark_testing import driver from pyspark_testing.models import BroadbandCoverageInfo class TestDriver(PySparkIntegrationTest): def setUp(self): self.data = (self.sc.textFile(driver.data_path(), use_unicode=False) .map(lambda l: l.decode('latin_1')) .map(BroadbandCoverageInfo.from_csv_line)) # def test_top_unserved(self): # driver.top_unserved() def test_summary_stats(self): expected_stats = { 'broadband_available': 8714, 'broadband_unavailable': 41285, 'dsl_available': 14858, 'dsl_unavailable': 35141, 'wireless_available': 30971, 'wireless_unavailable': 19028 } self.assertDictEqual(expected_stats, driver.summary_stats(self.data))
2.546875
3
cpu_bound.py
nagibinau/Multi-Group-26
0
12779941
<gh_stars>0 import concurrent.futures import timeit from hashlib import md5 from random import choice def mining_money(worker_id): start_time = timeit.default_timer() search_time = 0 while True: s = "".join([choice("0123456789") for _ in range(50)]) h = md5(s.encode('utf8')).hexdigest() if h.endswith("00000"): print(s, h) search_time = timeit.default_timer() - start_time - search_time print(f'The coin was found for {search_time} seconds, worker id: {worker_id}\n') def main(): max_workers = int(input('Set count workers: ')) with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor: for i in range(1, max_workers + 1): executor.submit(mining_money, i) if __name__ == '__main__': main()
2.875
3
0004-Median-of-Two-Sorted-Arrays.py
Sax-Ted/Practicing-with-Leetcode
0
12779942
<reponame>Sax-Ted/Practicing-with-Leetcode import math class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: data = nums1 + nums2 data = sorted(data) if len(data) % 2 != 0: return data[math.ceil(len(data)/2) - 1] else: return (data[int(len(data) / 2 - 1)] + data[int(len(data) / 2)]) / 2
3.359375
3
test/example_3nu_vacuum_coeffs.py
mbustama/NuOscProbExact
14
12779943
# -*- coding: utf-8 -*- r"""Run the vacuum coefficients 3nu example shown in README.md. Runs the three-neutrino example of coefficients for oscillations in vacuum shown in README.md References ---------- .. [1] <NAME>, "Exact neutrino oscillation probabilities: a fast general-purpose computation method for two and three neutrino flavors", arXiv:1904.XXXXX. Created: 2019/04/29 23:48 Last modified: 2019/04/29 23:48 """ from __future__ import print_function __version__ = "1.0" __author__ = "<NAME>" __email__ = "<EMAIL>" import sys sys.path.append('../src') import numpy as np import oscprob3nu import hamiltonians3nu from globaldefs import * energy = 1.e9 # Neutrino energy [eV] baseline = 1.3e3 # Baseline [km] h_vacuum_energy_indep = \ hamiltonians3nu.hamiltonian_3nu_vacuum_energy_independent( S12_NO_BF, S23_NO_BF, S13_NO_BF, DCP_NO_BF, D21_NO_BF, D31_NO_BF) h_vacuum = np.multiply(1./energy, h_vacuum_energy_indep) h1, h2, h3, h4, h5, h6, h7, h8 = \ oscprob3nu.hamiltonian_3nu_coefficients(h_vacuum) print('h1: {:.4e}'.format(h1)) print('h2: {:.4e}'.format(h2)) print('h3: {:.4e}'.format(h3)) print('h4: {:.4e}'.format(h4)) print('h5: {:.4e}'.format(h5)) print('h6: {:.4e}'.format(h6)) print('h7: {:.4e}'.format(h7)) print('h8: {:.4e}'.format(h8)) print() u0, u1, u2, u3, u4, u5, u6, u7, u8 = \ oscprob3nu.evolution_operator_3nu_u_coefficients( \ h_vacuum, baseline*CONV_KM_TO_INV_EV) print('u0: {:.4f}'.format(u0)) print('u1: {:.4f}'.format(u1)) print('u2: {:.4f}'.format(u2)) print('u3: {:.4f}'.format(u3)) print('u4: {:.4f}'.format(u4)) print('u5: {:.4f}'.format(u5)) print('u6: {:.4f}'.format(u6)) print('u7: {:.4f}'.format(u7)) print('u8: {:.4f}'.format(u8)) print() evol_operator = \ oscprob3nu.evolution_operator_3nu(h_vacuum, baseline*CONV_KM_TO_INV_EV) print('U3 = ') with np.printoptions(precision=3, suppress=True): print(np.array(evol_operator))
2.4375
2
answers/AkshajV1309/Day14/D14Q1.py
arc03/30-DaysOfCode-March-2021
22
12779944
<reponame>arc03/30-DaysOfCode-March-2021 def remdupli(S): if len(S)==1: return S if S[0]==S[1]: return remdupli(S[1:]) return S[0]+remdupli(S[1:]) S=input('Enter string: ') print('Output:',remdupli(S))
3.609375
4
atom/nucleus/python/test/test_roundup_api.py
sumit4-ttn/SDK
0
12779945
# coding: utf-8 """ Hydrogen Atom API The Hydrogen Atom API # noqa: E501 OpenAPI spec version: 1.7.0 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import nucleus_api from nucleus_api.api.roundup_api import RoundupApi # noqa: E501 from nucleus_api.rest import ApiException class TestRoundupApi(unittest.TestCase): """RoundupApi unit test stubs""" def setUp(self): self.api = nucleus_api.api.roundup_api.RoundupApi() # noqa: E501 def tearDown(self): pass def test_create_roundup_settings_using_post(self): """Test case for create_roundup_settings_using_post Create a Roundup Settings # noqa: E501 """ pass def test_create_roundup_using_post(self): """Test case for create_roundup_using_post Create a roundup # noqa: E501 """ pass def test_delete_roundup_settings_using_delete(self): """Test case for delete_roundup_settings_using_delete Delete a roundup settings # noqa: E501 """ pass def test_get_roundup_all_using_get(self): """Test case for get_roundup_all_using_get List all roundups # noqa: E501 """ pass def test_get_roundup_settings_all_using_get(self): """Test case for get_roundup_settings_all_using_get List all roundup settings # noqa: E501 """ pass def test_get_roundup_settings_using_get(self): """Test case for get_roundup_settings_using_get Retrieve a Roundup Setting # noqa: E501 """ pass def test_get_roundup_using_get(self): """Test case for get_roundup_using_get Retrieve a Roundup # noqa: E501 """ pass def test_update_roundup_settings_using_put(self): """Test case for update_roundup_settings_using_put Update a roundup settings # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
1.703125
2
outingbox/views.py
kartikanand/outing-box
0
12779946
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, JsonResponse, HttpResponseRedirect, Http404 from django.views.decorators.csrf import csrf_protect from django.views.decorators.http import require_POST from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.db.models import Q from django.core.urlresolvers import reverse from django.utils import timezone from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from watson import search from .models import Box, Activity, Category, SubZone, UserBookmark, UserRating, FeaturedActivity, UserReview from .forms import FeedbackForm from .decorators import require_user_authenticated, require_activity import logging logger = logging.getLogger(__name__) def get_paginated_list(lst, num_objects_on_page, page): paginator = Paginator(lst, num_objects_on_page) try: paginated_list = paginator.page(page) except PageNotAnInteger: paginated_list = paginator.page(1) except EmptyPage: paginated_list = paginator.page(paginator.num_pages) return paginated_list def handler404(request): response = render(request, 'outingbox/404.html', {}) response.status_code = 404 return response def handler500(request): response = render(request, 'outingbox/500.html', {}) response.status_code = 500 return response def index_view(request): boxes = Box.objects.all() featured_set = FeaturedActivity.objects.all() featured = [] if featured_set.count() > 0: featured = featured_set[0] return render(request, 'outingbox/index.html', {'boxes': boxes, 'featured': featured}) def contact_us_view(request): if request.method == 'GET': form = FeedbackForm() else: form = FeedbackForm(request.POST) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('feedback-thanks')) return render(request, 'outingbox/contact-us.html', {'form': form}) def contact_us_thanks(request): return render(request, 'outingbox/contact-us.html', {'thanks': True}) def about_us_view(request): return render(request, 'outingbox/about-us.html') def box_view(request, id=None, title=None): box = get_object_or_404(Box, pk=id) categories = box.category_set.all() activities = Activity.objects.filter(category__in=categories).distinct() # Default to page 1 page = request.GET.get('page', 1) activities = get_paginated_list(activities, 12, page) url_prev_page_number = None if activities.has_previous(): url_prev_page_number = add_page_to_request_url(request, 'box', {'page': activities.previous_page_number()}, kwargs={'id':id, 'title':box.title}) url_next_page_number = None if activities.has_next(): url_next_page_number = add_page_to_request_url(request, 'box', {'page': activities.next_page_number()}, kwargs={'id':id, 'title':box.title}) return render(request, 'box/box.html', { 'box': box, 'activities': activities, 'url_next_page_number': url_next_page_number, 'url_prev_page_number': url_prev_page_number }) @login_required def profile_bookmarks_view(request): try: user_bookmark_inst = UserBookmark.objects.get(user=request.user) bookmarks = user_bookmark_inst.bookmarks.all() except UserBookmark.DoesNotExist: bookmarks = [] page = request.GET.get('page', 1) bookmarks = get_paginated_list(bookmarks, 12, page) url_prev_page_number = None if bookmarks.has_previous(): url_prev_page_number = add_page_to_request_url(request, 'profile_bookmarks', {'page': bookmarks.previous_page_number()}) url_next_page_number = None if bookmarks.has_next(): url_next_page_number = add_page_to_request_url(request, 'profile_bookmarks', {'page': bookmarks.next_page_number()}) return render(request, 'account/bookmarks.html', { 'bookmarks': bookmarks, 'url_next_page_number': url_next_page_number, 'url_prev_page_number': url_prev_page_number }) def activity_view(request, id=None, title=None): activity = get_object_or_404(Activity, pk=id) user_bookmarks = None user_rating = 0 user_review = None if request.user.is_authenticated(): try: user_bookmark_inst = UserBookmark.objects.get(user=request.user) user_bookmarks = user_bookmark_inst.bookmarks.all() except UserBookmark.DoesNotExist: pass try: user_rating_inst = UserRating.objects.get(user=request.user, activity=activity) user_rating = user_rating_inst.rating except UserRating.DoesNotExist: pass try: user_review = UserReview.objects.get(user=request.user, activity=activity) except UserReview.DoesNotExist: pass reviews = UserReview.objects.filter(activity=activity) context = { 'activity': activity, 'bookmarks': user_bookmarks, 'photos': activity.photos.all(), 'reviews': reviews, 'user_rating': user_rating, 'user_review': user_review } return render(request, 'activity/activity.html', context) @login_required def profile_view(request): try: user_bookmark_inst = UserBookmark.objects.get(user=request.user) bookmarks = user_bookmark_inst.bookmarks.all()[:3] except UserBookmark.DoesNotExist: bookmarks = [] return render(request, 'account/profile.html', { 'bookmarks': bookmarks }); @csrf_protect @require_POST @require_user_authenticated @require_activity def rate_activity(request, activity): delete_rating = request.POST.get('delete', None) if delete_rating: try: user_rating_inst = UserRating.objects.get(user=request.user, activity=activity) old_rating = user_rating_inst.rating if activity.votes == 1: activity.rating = 0 else: activity.rating = (activity.rating*activity.votes - old_rating)/(activity.votes-1) activity.votes = activity.votes - 1 activity.save() user_rating_inst.delete() except UserRating.DoesNotExist: pass return JsonResponse({'msg': 'ok', 'status': '0'}) rating_str = request.POST.get('new_rating', None) if not rating_str: res = JsonResponse({'msg': 'invalid rating', 'status': '1'}) res.status_code = 400 return res # query string params are always string; coerce to int try: rating = int(rating_str) except ValueError: res = JsonResponse({'msg': 'invalid rating', 'status': '1'}) res.status_code = 400 return res if (rating > 5) or (rating <= 0): res = JsonResponse({'msg': 'invalid rating', 'status': '1'}) res.status_code = 400 return res old_rating = None try: user_rating_inst = UserRating.objects.get(user=request.user, activity=activity) old_rating = user_rating_inst.rating except UserRating.DoesNotExist: user_rating_inst = UserRating(user=request.user, activity=activity) if old_rating is None: user_rating_inst.rating = rating user_rating_inst.save() activity.rating = (activity.rating*activity.votes+rating)/(activity.votes+1) activity.votes = activity.votes + 1 activity.save() elif old_rating != rating: user_rating_inst.rating = rating user_rating_inst.save() activity.rating = (activity.rating*activity.votes - old_rating + rating)/(activity.votes) activity.save() return JsonResponse({'msg': 'ok', 'status': '0'}) @csrf_protect @require_POST @require_user_authenticated @require_activity def bookmark_activity(request, activity): user_bookmark_inst, created = UserBookmark.objects.get_or_create(user=request.user) delete_bookmark = request.POST.get('delete', None) if delete_bookmark: user_bookmark_inst.bookmarks.remove(activity) else: user_bookmark_inst.bookmarks.add(activity) return JsonResponse({'msg': 'ok', 'status': '0'}) @csrf_protect @require_POST @require_user_authenticated @require_activity def comment_activity(request, activity): delete_review = request.POST.get('delete', None) if delete_review: try: user_review_inst = UserReview.objects.get(user=request.user, activity=activity) user_review_inst.delete() except UserReview.DoesNotExist: pass return JsonResponse({ 'msg': 'ok', 'status': '0' }) review = request.POST.get('review', '') if not review or len(review) > 512: res = JsonResponse({'msg': 'comment too long/short', 'status': '1'}) return res try: user_review_inst = UserReview.objects.get(user=request.user, activity=activity) except UserReview.DoesNotExist: user_review_inst = UserReview(user=request.user, activity=activity) user_review_inst.review = review user_review_inst.pub_date = timezone.now() user_review_inst.is_published = True user_review_inst.save() date_format = '%b. %d, %Y' return JsonResponse({ 'msg': 'ok', 'status': '0', 'date': user_review_inst.pub_date.strftime(date_format), 'username': request.user.username }) # Ensure _new_params to be a dictionary def add_page_to_request_url(request, view_name, _new_params, kwargs=None): _dict = request.GET.copy() # Django query dict update method appends instead of replacing the value if a key is present in both dicts # Therefore remove page from original dict try: _dict.pop('page') except KeyError: pass _dict.update(_new_params) return reverse(view_name, kwargs=kwargs)+'?'+_dict.urlencode() def get_search_filter_urls(request, order_by): _dict = request.GET.copy() _dict['page'] = 1 _dict['ob'] = order_by return reverse('search')+'?'+_dict.urlencode() def search_view(request): query = request.GET.get('query', '') page = request.GET.get('page', 1) order_by = request.GET.get('ob', '') sub_zones_selected_list = request.GET.getlist('sz', []) categories_selected_list = request.GET.getlist('c', []) sub_zone_list = SubZone.objects.all_name_value_list() category_list = Category.objects.all_name_value_list() activities = Activity.objects.all() int_sub_zones_selected_list = [] if sub_zones_selected_list: for sub_zone in sub_zones_selected_list: try: int_sub_zone = int(sub_zone) int_sub_zones_selected_list.append(int_sub_zone) except ValueError: raise Http404("No results") activities = activities.filter(address__sub_zone__in=int_sub_zones_selected_list) int_categories_selected_list = [] if categories_selected_list: for category in categories_selected_list: try: int_category = int(category) int_categories_selected_list.append(int_category) except ValueError: raise Http404("No results") activities = activities.filter(category__in=int_categories_selected_list) if query: activities = search.filter(activities, query) activities = activities.distinct() order_dict = { 'raa': 'rating', # Rating ascending 'rad': '-rating', # Rating descending 'pra': 'cost', # Price ascending 'prd': '-cost' # Price descending } if order_by: activities = activities.order_by(order_dict[order_by]) results_paginator = Paginator(activities, 10) try: results_page = results_paginator.page(page) except PageNotAnInteger: results_page = results_paginator.page(1) except EmptyPage: results_page = results_paginator.page(results_paginator.num_pages) activities = results_page order_by_relevance_url = get_search_filter_urls(request, '') order_by_rating_url = get_search_filter_urls(request, 'rad') order_by_price_url = get_search_filter_urls(request, 'pra') url_prev_page_number = None url_next_page_number = None if activities.has_previous(): url_prev_page_number = add_page_to_request_url(request, 'search', {'page': activities.previous_page_number()}) if activities.has_next(): url_next_page_number = add_page_to_request_url(request, 'search', {'page': activities.next_page_number()}) bookmarks = None if request.user.is_authenticated(): try: user_bookmark_inst = UserBookmark.objects.get(user=request.user) bookmarks = user_bookmark_inst.bookmarks.all() except UserBookmark.DoesNotExist: pass context = { 'activities': activities, 'order_by_relevance_url': order_by_relevance_url, 'order_by_rating_url': order_by_rating_url, 'order_by_price_url': order_by_price_url, 'url_next_page_number': url_next_page_number, 'url_prev_page_number': url_prev_page_number, 'sub_zone_list': sub_zone_list, 'category_list': category_list, 'sub_zones_selected_list': int_sub_zones_selected_list, 'categories_selected_list': int_categories_selected_list, 'query': query, 'page': page, 'bookmarks': bookmarks } return render(request, 'search/search.html', context)
1.953125
2
examples/example.py
jsphon/flumine
0
12779947
import time import logging import betfairlightweight from betfairlightweight.filters import streaming_market_filter from pythonjsonlogger import jsonlogger from flumine import Flumine, clients, BaseStrategy from flumine.order.trade import Trade from flumine.order.ordertype import LimitOrder from flumine.order.order import OrderStatus logger = logging.getLogger() custom_format = "%(asctime) %(levelname) %(message)" log_handler = logging.StreamHandler() formatter = jsonlogger.JsonFormatter(custom_format) formatter.converter = time.gmtime log_handler.setFormatter(formatter) logger.addHandler(log_handler) logger.setLevel(logging.INFO) class ExampleStrategy(BaseStrategy): def start(self): # subscribe to streams print("starting strategy 'ExampleStrategy'") def check_market_book(self, market, market_book): # process_market_book only executed if this returns True if market_book.status != "CLOSED": return True def process_market_book(self, market, market_book): # process marketBook object for runner in market_book.runners: if ( runner.status == "ACTIVE" and runner.last_price_traded and runner.selection_id == 11982403 ): trade = Trade( market_id=market_book.market_id, selection_id=runner.selection_id, handicap=runner.handicap, strategy=self, ) order = trade.create_order( side="LAY", order_type=LimitOrder(price=1.01, size=2.00) ) self.place_order(market, order) def process_orders(self, market, orders): for order in orders: if order.status == OrderStatus.EXECUTABLE: if order.elapsed_seconds and order.elapsed_seconds > 5: # print(order.bet_id, order.average_price_matched, order.size_matched) if order.size_remaining == 2.00: self.cancel_order(market, order, size_reduction=1.51) # self.update_order(market, order, "PERSIST") # if order.order_type.price == 1.01 and order.size_remaining == 0.49: # self.replace_order(market, order, 1.02) # if order.order_type.price == 1.02: # self.replace_order(market, order, 1.03) # if order.order_type.price == 1.03: # self.replace_order(market, order, 1.05) pass trading = betfairlightweight.APIClient("username") client = clients.BetfairClient(trading) framework = Flumine(client=client) strategy = ExampleStrategy( market_filter=streaming_market_filter(market_ids=["1.170378175"]), streaming_timeout=2, ) framework.add_strategy(strategy) framework.run()
2.140625
2
exercise/Exercism/python/largest-series-product/largest_series_product.py
orca-j35/python-notes
1
12779948
from operator import mul from functools import reduce def largest_product(series, size): if size == 0: return 1 if any((size > len(series), not series.isdecimal(), size < 0)): raise ValueError('size is wrong value') max_v = 0 for i in range(0, len(series) - size + 1): max_v = max(reduce(mul, [int(j) for j in series[i:i + size]]), max_v) return max_v
3.1875
3
tests/unit_test/chat/chat_test.py
rit1200/kairon
9
12779949
from unittest.mock import patch from urllib.parse import urlencode, quote_plus from kairon.shared.utils import Utility import pytest import os from mongoengine import connect, ValidationError from kairon.shared.chat.processor import ChatDataProcessor from re import escape import responses class TestChat: @pytest.fixture(autouse=True, scope='class') def setup(self): os.environ["system_file"] = "./tests/testing_data/system.yaml" Utility.load_environment() db_url = Utility.environment['database']["url"] pytest.db_url = db_url connect(**Utility.mongoengine_connection(Utility.environment['database']["url"])) def test_save_channel_config_invalid(self): with pytest.raises(ValidationError, match="Invalid channel type custom"): ChatDataProcessor.save_channel_config({"connector_type": "custom", "config": { "bot_user_oAuth_token": "<PASSWORD>", "slack_signing_secret": "<KEY>"}}, "test", "test") with pytest.raises(ValidationError, match=escape("Missing ['bot_user_oAuth_token', 'slack_signing_secret'] all or any in config")): ChatDataProcessor.save_channel_config({"connector_type": "slack", "config": { "slack_signing_secret": "<KEY>"}}, "test", "test") with pytest.raises(ValidationError, match=escape("Missing ['bot_user_oAuth_token', 'slack_signing_secret'] all or any in config")): ChatDataProcessor.save_channel_config({"connector_type": "slack", "config": { "bot_user_oAuth_token": "<PASSWORD>01939352912-801478018484-v3zq6MYNu62oSs8vammWOY8K", }}, "test", "test") def test_save_channel_config(self): ChatDataProcessor.save_channel_config({"connector_type": "slack", "config": { "bot_user_oAuth_token": "<PASSWORD>", "slack_signing_secret": "<KEY>"}}, "test", "test") def test_update_channel_config(self): ChatDataProcessor.save_channel_config({"connector_type": "slack", "config": { "bot_user_oAuth_token": "<KEY>", "slack_signing_secret": "<KEY>"}}, "test", "test") slack = ChatDataProcessor.get_channel_config("slack", "test", mask_characters=False) assert slack.get("connector_type") == "slack" assert str(slack["config"].get("bot_user_oAuth_token")).startswith("Test") assert not str(slack["config"].get("slack_signing_secret")).__contains__("***") def test_list_channel_config(self): channels = list(ChatDataProcessor.list_channel_config("test")) slack = channels[0] assert channels.__len__() == 1 assert slack.get("connector_type") == "slack" assert str(slack["config"].get("bot_user_oAuth_token")).__contains__("***") assert str(slack["config"].get("slack_signing_secret")).__contains__("***") channels = list(ChatDataProcessor.list_channel_config("test", mask_characters=False)) slack = channels[0] assert channels.__len__() == 1 assert slack.get("connector_type") == "slack" assert not str(slack["config"].get("bot_user_oAuth_token")).__contains__("***") assert not str(slack["config"].get("slack_signing_secret")).__contains__("***") def test_get_channel_config_slack(self): slack = ChatDataProcessor.get_channel_config("slack", "test") assert slack.get("connector_type") == "slack" assert str(slack["config"].get("bot_user_oAuth_token")).__contains__("***") assert str(slack["config"].get("slack_signing_secret")).__contains__("***") slack = ChatDataProcessor.get_channel_config("slack", "test", mask_characters=False) assert slack.get("connector_type") == "slack" assert not str(slack["config"].get("bot_user_oAuth_token")).__contains__("***") assert not str(slack["config"].get("slack_signing_secret")).__contains__("***") def test_delete_channel_config_slack(self): ChatDataProcessor.delete_channel_config("slack", "test") assert list(ChatDataProcessor.list_channel_config("test")).__len__() == 0 @responses.activate def test_save_channel_config_telegram(self): access_token = "<PASSWORD>" webhook = urlencode({'url': "https://test@test.com/api/bot/telegram/tests/test"}, quote_via=quote_plus) responses.add("GET", json={'result': True}, url=f"{Utility.system_metadata['channels']['telegram']['api']['url']}/bot{access_token}/setWebhook?{webhook}") def __mock_endpoint(*args): return f"https://test@test.com/api/bot/telegram/tests/test" with patch('kairon.shared.data.utils.DataUtility.get_channel_endpoint', __mock_endpoint): ChatDataProcessor.save_channel_config({"connector_type": "telegram", "config": { "access_token": access_token, "webhook_url": webhook, "username_for_bot": "test"}}, "test", "test") @responses.activate def test_save_channel_config_telegram_invalid(self): access_token = "<PASSWORD>" webhook = {'url': "https://test@test.com/api/bot/telegram/tests/test"} webhook = urlencode(webhook, quote_via=quote_plus) responses.add("GET", json={'result': False, 'error_code': 400, 'description': "Invalid Webhook!"}, url=f"{Utility.system_metadata['channels']['telegram']['api']['url']}/bot{access_token}/setWebhook?{webhook}") with pytest.raises(ValidationError, match="Invalid Webhook!"): def __mock_endpoint(*args): return f"https://test@test.com/api/bot/telegram/tests/test" with patch('kairon.shared.data.utils.DataUtility.get_channel_endpoint', __mock_endpoint): ChatDataProcessor.save_channel_config({"connector_type": "telegram", "config": { "access_token": access_token, "webhook_url": webhook, "username_for_bot": "test"}}, "test", "test")
1.835938
2
detector/attributes/const_functions_state.py
caomingpei/smart-contract-vulnerability-detector
2
12779950
<reponame>caomingpei/smart-contract-vulnerability-detector """ Module detecting constant functions Recursively check the called functions """ from slither.detectors.abstract_detector import AbstractDetector, DetectorClassification from slither.formatters.attributes.const_functions import custom_format class ConstantFunctionsState(AbstractDetector): """ Constant function detector """ ARGUMENT = "constant-function-state" # run the detector with slither.py --ARGUMENT HELP = "Constant functions changing the state" # help information IMPACT = DetectorClassification.MEDIUM CONFIDENCE = DetectorClassification.MEDIUM WIKI = "https://github.com/crytic/slither/wiki/Detector-Documentation#constant-functions-changing-the-state" WIKI_TITLE = "Constant functions changing the state" # region wiki_description WIKI_DESCRIPTION = """ Functions declared as `constant`/`pure`/`view` change the state. `constant`/`pure`/`view` was not enforced prior to Solidity 0.5. Starting from Solidity 0.5, a call to a `constant`/`pure`/`view` function uses the `STATICCALL` opcode, which reverts in case of state modification. As a result, a call to an [incorrectly labeled function may trap a contract compiled with Solidity 0.5](https://solidity.readthedocs.io/en/develop/050-breaking-changes.html#interoperability-with-older-contracts).""" # endregion wiki_description # region wiki_exploit_scenario WIKI_EXPLOIT_SCENARIO = """ ```solidity contract Constant{ uint counter; function get() public view returns(uint){ counter = counter +1; return counter } } ``` `Constant` was deployed with Solidity 0.4.25. Bob writes a smart contract that interacts with `Constant` in Solidity 0.5.0. All the calls to `get` revert, breaking Bob's smart contract execution.""" # endregion wiki_exploit_scenario WIKI_RECOMMENDATION = ( "Ensure that attributes of contracts compiled prior to Solidity 0.5.0 are correct." ) def _detect(self): """Detect the constant function changing the state Recursively visit the calls Returns: list: {'vuln', 'filename,'contract','func','#varsWritten'} """ results = [] if self.compilation_unit.solc_version and self.compilation_unit.solc_version >= "0.5.0": return results for c in self.contracts: for f in c.functions: if f.contract_declarer != c: continue if f.view or f.pure: variables_written = f.all_state_variables_written() if variables_written: attr = "view" if f.view else "pure" info = [ f, f" is declared {attr} but changes state variables:\n", ] for variable_written in variables_written: info += ["\t- ", variable_written, "\n"] res = self.generate_result(info, {"contains_assembly": False}) results.append(res) return results @staticmethod def _format(slither, result): custom_format(slither, result)
2.421875
2