max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
interventions/plot_intervention.py
priyald17/emissions-assumptions
1
12779751
import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as mpatches import pandas as pd import os dam_cols_ap2 = ['co2_dam', 'so2_dam_ap2', 'nox_dam_ap2', 'pm25_dam_ap2'] dam_cols_eas = ['co2_dam', 'so2_dam_eas', 'nox_dam_eas', 'pm25_dam_eas'] # Plotting total damage stacked plot def plot_total_damages(dam_type, intervention_effects_df, example_case, title=False): fontsize=18 plt.rcParams['hatch.linewidth'] = 0.5 sns.set(style="whitegrid", color_codes=True) dam_cols = dam_cols_eas if dam_type == 'EASIUR' else dam_cols_ap2 se_col = 'dam_{}-se'.format('eas' if dam_type == 'EASIUR' else 'ap2') df = get_onelabel_formatted(dam_cols, intervention_effects_df, example_case) if example_case == 'building_lighting': df = (df.set_index(['spat', 'kind', 'time'])).reset_index() elif example_case == 'demand_response': df = (df.set_index(['spat', 'kind', 'time'])/1e6).reset_index() # millions of dollars elif example_case == 'summer_load': df = (df.set_index(['spat', 'kind', 'time'])/1e9).reset_index() # billions of dollars df_cum = df.set_index(['spat', 'kind', 'time']).cumsum(axis=1).reset_index() # Stacked bar plot g = sns.FacetGrid(data=df_cum, col='spat', size=3, aspect=1) hatches = ['||', '///', '', '\\\\\\'] hue_orders = dict([('building_lighting', ['Annual', 'Monthly', 'Monthly TOD']), ('demand_response', ['Annual', 'Monthly']), ('summer_load', ['Annual', 'Monthly', 'Monthly TOD', 'Hourly'])]) colors = dict([('building_lighting', [0,2,3]), ('demand_response', [0,2]), ('summer_load', [0,2,3,4])]) g.map(sns.barplot, 'kind', dam_cols[-1], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[0]) g.map(sns.barplot, 'kind', dam_cols[-2], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[1]) g.map(sns.barplot, 'kind', dam_cols[-3], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[2]) g.map(sns.barplot, 'kind', dam_cols[-4], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[3]).set_titles('{col_name}') g.despine(left='true') # Legend, fontsize, and other formatting xoffset=0.035 for i, ax in enumerate(g.axes.flatten()): ax.set_xlabel('') # No x-label if i == 0: # y label on left plot dollar_units = dict([('building_lighting', ''), ('demand_response', ' millions'), ('summer_load', ' billions')]) ax.set_ylabel('Total damages\n{}(\${})'.format( '' if example_case == 'summer_load' else 'avoided ', dollar_units[example_case])) # pollutants legend leg_dict = dict(zip(dam_cols, ['CO$_2$', 'SO$_2$', 'NO$_x$', 'PM$_{{2.5}}$'])) dam_patches = [] for dam, hatch in zip(dam_cols, hatches[::-1]): patch = mpatches.Patch(facecolor='white', label=leg_dict[dam], edgecolor='black', hatch=hatch) dam_patches.append(patch) offsets = dict([('building_lighting', (0.16, -0.175)), ('demand_response', (0.18, -0.17)), ('summer_load', (0.16, -0.175))]) lgd = ax.legend(handles=dam_patches, loc='center left', bbox_to_anchor=(0.3+xoffset, -0.15), ncol=4, frameon=True, fontsize=fontsize, bbox_transform=plt.gcf().transFigure) plt.text(offsets[example_case][0]+xoffset, offsets[example_case][1], 'Pollutants:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') lgd.get_frame().set_edgecolor('white') if i == 1: # temporal scope legend (same length as pollutants legend for alignment) if example_case == 'building_lighting': blank_patch = mpatches.Patch(color='white', label='') ann_patch = mpatches.Patch(color=sns.color_palette('muted')[0], label='Annual', edgecolor='black') month_patch = mpatches.Patch(color=sns.color_palette('muted')[2], label='Monthly', edgecolor='black') tod_patch = mpatches.Patch(color=sns.color_palette('muted')[3], label='Monthly TOD', edgecolor='black') time_patches = [blank_patch, ann_patch, month_patch, tod_patch, blank_patch] lgd2 = ax.legend(handles=time_patches, loc='center left', bbox_to_anchor=(0.19+xoffset, -0.025), ncol=5, frameon=True, fontsize=fontsize, bbox_transform=plt.gcf().transFigure) plt.text(0.09+xoffset, -0.045, 'Temporal scopes:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') elif example_case == 'demand_response': blank_patch = mpatches.Patch(color='white', label='') ann_patch = mpatches.Patch(color=sns.color_palette('muted')[0], label='Annual', edgecolor='black') tod_patch = mpatches.Patch(color=sns.color_palette('muted')[2], label='Monthly', edgecolor='black') time_patches = [blank_patch, ann_patch, tod_patch, blank_patch] lgd2 = ax.legend(handles=time_patches, loc='center left', bbox_to_anchor=(0.3+xoffset, -0.0115), ncol=4, frameon=True, fontsize=fontsize, bbox_transform=plt.gcf().transFigure) plt.text(0.11+xoffset, -0.0425, 'Temporal scopes:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') elif example_case == 'summer_load': blank_patch = mpatches.Patch(color='white', label='') ann_patch = mpatches.Patch(color=sns.color_palette('muted')[0], label='Annual', edgecolor='black') month_patch = mpatches.Patch(color=sns.color_palette('muted')[2], label='Monthly', edgecolor='black') tod_patch = mpatches.Patch(color=sns.color_palette('muted')[3], label='Monthly TOD', edgecolor='black') hr_patch = mpatches.Patch(color=sns.color_palette('muted')[4], label='Hourly', edgecolor='black') time_patches = [ann_patch, month_patch, tod_patch, hr_patch] lgd2 = ax.legend(handles=time_patches, loc='center left', bbox_to_anchor=(0.27+xoffset, -0.025), ncol=4, frameon=True, fontsize=fontsize-1, bbox_transform=plt.gcf().transFigure) plt.text(0.09+xoffset, -0.045, 'Temporal scopes:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') lgd2.get_frame().set_edgecolor('white') # Annotate baseline # For building lighting: PJM fossil-plus marginal monthly TOD # For demand response: PJM fossil-plus marginal monthly # For summer load: PJM fossil-plus average monthly TOD baseline_locs = dict([('building_lighting', (2, 0.27)), ('demand_response', (2, 0.2)), ('summer_load', (2, 1.3))]) if i == baseline_locs[example_case][0]: baseline_x = baseline_locs[example_case][1] patch_width = [p.get_width() for p in ax.patches][0] baseline_y = max([p.get_height() \ for p in ax.patches if abs(p.get_xy()[0]+patch_width/2-baseline_x)<=patch_width/4]) ax.text(s='*', x=baseline_x, y=1.05 * baseline_y, horizontalalignment='center', verticalalignment='center', fontsize=fontsize*2, fontweight='bold') # Set font size for item in ([ # ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) ax.title.set_fontsize(fontsize-2) # Hacky errorbars df_tot = get_onelabel_formatted(se_col[:-3], intervention_effects_df, example_case) df_tot_se = get_onelabel_formatted(se_col, intervention_effects_df, example_case) errbar_locs = dict([('building_lighting', [-0.27, 0, 0.27]), ('demand_response', [-0.2, 0.2]), ('summer_load', [-0.3,-0.1, 0.1])]) for i, ax in enumerate(g.axes[0]): spat = df_tot['spat'].dtype.categories[i] df_tot_slice = df_tot.query('spat == @spat').query('kind == "Marginal"') df_tot_se_slice = df_tot_se.query('spat == @spat').query('kind == "Marginal"') if example_case == 'building_lighting': val, errval = df_tot_slice[se_col[:-3]].values, df_tot_se_slice[se_col].values elif example_case == 'demand_response': val, errval = df_tot_slice[se_col[:-3]].values/1e6, df_tot_se_slice[se_col].values/1e6 elif example_case == 'summer_load': val, errval = df_tot_slice[se_col[:-3]].values/1e9, df_tot_se_slice[se_col].values/1e9 ax.errorbar(errbar_locs[example_case], val, yerr=errval, ms=20, color='black', linewidth=0, elinewidth=2, capsize=2, capthick=2) # Line around legend fig = plt.gcf() if example_case == 'building_lighting': leg_line = \ mpatches.Rectangle( (0.073+xoffset, -0.2), 0.8, 0.24, facecolor='none', edgecolor='lightgray', transform=fig.transFigure, figure=fig) elif example_case == 'demand_response': leg_line = \ mpatches.Rectangle( (0.1+xoffset, -0.195), 0.77, 0.24, facecolor='none', edgecolor='lightgray', transform=fig.transFigure, figure=fig) elif example_case == 'summer_load': leg_line = \ mpatches.Rectangle( (0.073+xoffset, -0.2), 0.875, 0.24, facecolor='none', edgecolor='lightgray', transform=fig.transFigure, figure=fig) fig.patches.extend([leg_line]) extra_artists = (lgd, lgd2) if title: sup=fig.text(0.5, 0.9, 'Total damages ({})\n'.format(dam_type), fontsize=fontsize, fontweight='bold', fontstyle='italic', transform=fig.transFigure, ha='center') extra_artists = extra_artists + (sup,) plt.tight_layout() dirname = os.path.join('plots', example_case) if not os.path.exists(dirname): os.makedirs(dirname) g.fig.savefig(os.path.join(dirname, '{}-stacked-with-error{}.pdf'.format(dam_type, '-titled' if title else '')), bbox_extra_artists=extra_artists, bbox_inches='tight') # Plotting one graph per damage factor def get_stacked_plot(label, intervention_effects_df, example_case): df = get_onelabel_formatted(label, intervention_effects_df, example_case) df_se = get_onelabel_formatted('{}-se'.format(label), intervention_effects_df, example_case) # Get bar plot sns.set(style="whitegrid") colors = dict([('building_lighting', [0,2,3]), ('demand_response', [0,2]), ('summer_load', [0,2,3,4])]) g = sns.catplot(x='kind', y=label, hue='time', col='spat', data=df, kind='bar', palette=[sns.color_palette('muted')[x] for x in colors[example_case]], legend=False, ci=None, height=3, aspect=1).set_titles('{col_name}') g.despine(left=True); # Adjust font size and add legend fontsize=18 for i, ax in enumerate(g.axes.flatten()): ax.set_xlabel('') for item in ([#ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) ax.title.set_fontsize(fontsize-2) if i == 0: ncols = dict([('building_lighting', 3), ('demand_response', 2), ('summer_load', 4)]) lgd = ax.legend(loc='center left', bbox_to_anchor=(0.75, -0.3), ncol=ncols[example_case], frameon=True, fontsize=fontsize) ax.set_ylabel(format_axis(label, example_case)) # Annotate baseline # For building lighting: PJM fossil-plus marginal monthly TOD # For demand response: PJM fossil-plus marginal monthly # For summer load: PJM fossil-plus average monthly TOD baseline_locs = dict([('building_lighting', (2, 0.27)), ('demand_response', (2, 0.2)), ('summer_load', (2, 1.3))]) if i == baseline_locs[example_case][0]: baseline_x = baseline_locs[example_case][1] patch_width = [p.get_width() for p in ax.patches][0] baseline_y = max([p.get_height() \ for p in ax.patches if abs(p.get_xy()[0]+patch_width/2-baseline_x)<=patch_width/4]) ax.text(s='*', x=baseline_x, y=1.05 * baseline_y, horizontalalignment='center', verticalalignment='center', fontsize=fontsize*2, fontweight='bold') # Hacky errorbars errbar_locs = dict([('building_lighting', [-0.27, 0, 0.27]), ('demand_response', [-0.2, 0.2]), ('summer_load', [-0.3,-0.1, 0.1])]) for i, ax in enumerate(g.axes[0]): spat = df['spat'].dtype.categories[i] df_slice = df.query('spat == @spat').query('kind == "Marginal"') df_se_slice = df_se.query('spat == @spat').query('kind == "Marginal"') ax.errorbar(errbar_locs[example_case], df_slice[label].values, yerr=df_se_slice['{}-se'.format(label)].values, ms=20, color='black', linewidth=0, elinewidth=2, capsize=2, capthick=2) # Plot title fig = plt.gcf() # sup=fig.text(0.5, 1, format_title(label), # fontsize=fontsize, fontweight='bold', fontstyle='italic', # transform=fig.transFigure, ha='center') plt.tight_layout() dirname = os.path.join('plots', example_case) if not os.path.exists(dirname): os.makedirs(dirname) g.fig.savefig(os.path.join(dirname, 'si-{}.pdf'.format(label)), bbox_extra_artists=(lgd,), #(lgd,sup), bbox_inches='tight') ## Formatting helpers def get_dam_name(dam_abbr): return 'AP2' if dam_abbr == 'ap2' else 'EASIUR' FULL_DAMS = ['dam_ap2', 'dam_eas'] def format_title(label): l = label.split('_') if label in FULL_DAMS: t = 'Total damages ({})'.format('AP2' if l[1] == 'ap2' else 'EASIUR') else: t = '{0}$_{{{1}}}$ {2}'.format(l[0][:2].upper(), l[0][2:], 'emissions' if l[1] == 'kg' else 'damages') if len(l) > 2: t += ' ({})'.format('AP2' if l[2] == 'ap2' else 'EASIUR') return t def format_axis(label, example_case): l = label.split('_') if example_case == 'summer_load': if label in FULL_DAMS: t = 'Total damages ($)' elif len(l) > 2 or l[1] == 'dam': t = 'Damages ($)' else: t = 'Emissions (kg)' else: if label in FULL_DAMS: t = 'Total damages\navoided ($)' elif len(l) > 2 or l[1] == 'dam': t = 'Damages\navoided ($)' else: t = 'Emissions\navoided (kg)' return t # Get formatted df with intervention effects for given label def get_onelabel_formatted(label, intervention_effects_df, example_case): kind_map = dict([('MEF', 'Marginal'), ('AEF', 'Average')]) time_map = dict([('YearOnly', 'Annual'), ('MonthTOD', 'Monthly TOD'), ('Month', 'Monthly'), ('Hour', 'Hourly')]) df = intervention_effects_df[label].reset_index() df['spat'] = df.apply( lambda x: '{} ({}-{}{})'.format( x['region'], x['fuel_type'][:-4].lower(), x['fuel_type'][-4:].lower(), ' 2016' if x['year'] == 2016 else ''), axis=1) df['spat'] = df['spat'].str.replace('fossil-plus', 'fossil+non-emit') df = df.drop(['region', 'fuel_type', 'year'], axis=1) df['kind'] = df['kind'].map(lambda x: kind_map[x]).astype( pd.CategoricalDtype(categories=['Marginal', 'Average'], ordered=True)) times = dict([('building_lighting', ['Annual', 'Monthly', 'Monthly TOD']), ('demand_response', ['Annual', 'Monthly']), ('summer_load', ['Annual', 'Monthly', 'Monthly TOD', 'Hourly'])]) df['time'] = df['time'].map(lambda x: time_map[x]).astype( pd.CategoricalDtype(categories=times[example_case], ordered=True)) df['spat'] = df['spat'].astype(pd.CategoricalDtype( categories=['PJM (fossil-only)', 'PJM (fossil+non-emit 2016)', 'PJM (fossil+non-emit)', 'RFC (fossil-only)'], ordered=True)) df = df.sort_values(['spat', 'kind', 'time']) return df
2.515625
3
release/stubs.min/System/ComponentModel/__init___parts/RefreshEventArgs.py
YKato521/ironpython-stubs
0
12779752
class RefreshEventArgs(EventArgs): """ Provides data for the System.ComponentModel.TypeDescriptor.Refreshed event. RefreshEventArgs(componentChanged: object) RefreshEventArgs(typeChanged: Type) """ @staticmethod def __new__(self, *__args): """ __new__(cls: type,componentChanged: object) __new__(cls: type,typeChanged: Type) """ pass ComponentChanged = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets the component that changed its properties,events,or extenders. Get: ComponentChanged(self: RefreshEventArgs) -> object """ TypeChanged = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Gets the System.Type that changed its properties or events. Get: TypeChanged(self: RefreshEventArgs) -> Type """
2
2
authorship_unmasking/unmasking/interfaces.py
torond/unmasking
5
12779753
<filename>authorship_unmasking/unmasking/interfaces.py # Copyright (C) 2017-2019 <NAME>, Webis Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from authorship_unmasking.features.interfaces import FeatureSet from authorship_unmasking.event.dispatch import EventBroadcaster, MultiProcessEventContext from authorship_unmasking.event.events import UnmaskingTrainCurveEvent from authorship_unmasking.job.interfaces import Strategy from sklearn.model_selection import cross_validate from sklearn.svm import LinearSVC import numpy from abc import ABCMeta, abstractmethod import sys from typing import List import warnings class UnmaskingStrategy(Strategy, metaclass=ABCMeta): """ Base class for unmasking execution strategies. Events published by this class: * `onUnmaskingRoundFinished`: [type: UnmaskingTrainCurveEvent] fired whenever a single round of unmasking has finished to update accuracy curves * `onUnmaskingFinished`: [type: UnmaskingTrainCurveEvent] fired when unmasking curve generation for a text has finished """ def __init__(self): """ Initialize unmasking strategy. LinearSVC() is used as default estimator. """ self._buffer_curves = True self._values = [] self._iterations = 10 self._vector_size = 250 self._relative = False self._folds = 10 self._monotonize = False self._use_mean_coefs = True @property def iterations(self) -> int: """Number of unmasking iterations.""" return self._iterations @iterations.setter def iterations(self, iterations: int): """Set number of unmasking iterations.""" self._iterations = iterations @property def vector_size(self) -> int: """Feature vector size.""" return self._vector_size @vector_size.setter def vector_size(self, vector_size: int): """Set feature vector size.""" self._vector_size = vector_size @property def relative(self) -> bool: """Whether to use relative or absolute feature weights.""" return self._relative @relative.setter def relative(self, relative: bool): """Set whether to use relative or absolute feature weights.""" self._relative = relative @property def folds(self) -> int: """Number of cross-validation folds to use for discriminating feature vectors.""" return self._folds @folds.setter def folds(self, folds: int): """Set number of cross-validation folds to use for discriminating feature vectors.""" self._folds = folds @property def use_mean_coefs(self) -> bool: """Whether to use mean feature coefficients for vector transformation.""" return self._use_mean_coefs @use_mean_coefs.setter def use_mean_coefs(self, use_mean_coefs: bool): """Set whether to use mean coefficients""" self._use_mean_coefs = use_mean_coefs @property def monotonize(self) -> bool: """Whether to monotonize curves.""" return self._monotonize @monotonize.setter def monotonize(self, monotonize: bool): """Set whether to monotonize curves.""" self._monotonize = monotonize @property def buffer_curves(self) -> bool: """Whether to buffer curves.""" return self._buffer_curves @buffer_curves.setter def buffer_curves(self, buffer: bool): """Set whether to buffer curves. Set to False to send update events after each round.""" if not buffer: print('WARNING: Curve buffering is turned off.', file=sys.stderr), print(' Set "buffer_curves" to true in your job config for better performance.\n', file=sys.stderr) self._buffer_curves = buffer # noinspection PyPep8Naming async def run(self, fs: FeatureSet): """ Run ``m`` rounds of unmasking on given parametrized feature set. :param fs: parametrized feature set to run unmasking on """ clf = LinearSVC() X = [] y = [] if self._relative: it = fs.get_features_relative(self._vector_size) else: it = fs.get_features_absolute(self._vector_size) for row in it: l = len(row) X.append(row[0:l // 2]) X.append(row[l // 2:l]) # cls either "text 0" or "text 1" of a pair y.append(0) y.append(1) X = numpy.array(X) y = numpy.array(y) group_id = UnmaskingTrainCurveEvent.generate_group_id([self.__class__.__name__ + ":" + fs.pair.pair_id]) event = UnmaskingTrainCurveEvent(group_id, 0, self._iterations, fs.pair, fs.__class__) values = [] for i in range(self._iterations): if MultiProcessEventContext().terminate_event.is_set(): return try: cv = cross_validate(clf, X, y, cv=self._folds, return_estimator=True, return_train_score=False) score = max(0.0, (cv['test_score'].mean() - .5) * 2) cv_models = cv["estimator"] if self._monotonize: values.append(score) else: values.append(score) event.values = values if len(cv_models[0].coef_.shape) > 1: coef = numpy.array([c.coef_[0] for c in cv_models]) else: coef = numpy.array([c.coef_ for c in cv_models]) if self._use_mean_coefs: coef = numpy.mean(coef, axis=0) if not self._monotonize and not self._buffer_curves: await EventBroadcaster().publish("onUnmaskingRoundFinished", event, self.__class__) event = UnmaskingTrainCurveEvent.new_event(event) if i < self._iterations - 1: X = await self.transform(X, coef) if X.size == 0: # Nothing to do anymore break except ValueError: continue if self._monotonize: event.values = self._do_monotonize(values) if self._monotonize or self._buffer_curves: await EventBroadcaster().publish("onUnmaskingRoundFinished", event, self.__class__) event = UnmaskingTrainCurveEvent.new_event(event) await EventBroadcaster().publish("onUnmaskingFinished", event, self.__class__) def _do_monotonize(self, values: List[float]): # monotonize from the left values_l = numpy.zeros(len(values)) prev_value = 1.0 for i, v in enumerate(values): values_l[i] = min(prev_value, v) prev_value = values_l[i] # monotonize from the right values_r = numpy.zeros(len(values)) prev_value = 0.0 for i in range(len(values) - 1, -1, -1): values_r[i] = max(prev_value, values[i]) prev_value = values_r[i] # calculate squared differences to find the better of both approximations values_arr = numpy.array(values) delta_l = numpy.sum(numpy.square(values_arr - values_l)) delta_r = numpy.sum(numpy.square(values_arr - values_r)) if delta_l <= delta_r: return list(values_l) return list(values_r) @abstractmethod async def transform(self, data: numpy.ndarray, coefs: numpy.ndarray) -> numpy.ndarray: """ Transform the input tensor according to the chosen unmasking strategy. :param data: input feature matrix of shape (m_samples, n_features) :param coefs: trained feature coefficients for each CV fold (of shape (k_folds, n_features) or (1, n_features) if use_mean_coefs is True) :return: output feature tensor (may have contain different number of features, but the number of samples must be the same) """ pass
1.984375
2
hwtLib/avalon/sim/mmAgent_test.py
optical-o/hwtLib
0
12779754
<reponame>optical-o/hwtLib<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import unittest from hwt.hdl.constants import READ, WRITE from hwt.interfaces.utils import addClkRstn from hwt.simulator.simTestCase import SingleUnitSimTestCase from hwt.synthesizer.unit import Unit from hwtLib.avalon.mm import AvalonMM, RESP_OKAY from hwtLib.avalon.sim.ram import AvalonMMSimRam from hwtSimApi.constants import CLK_PERIOD from pyMathBitPrecise.bit_utils import mask class AvalonMmWire(Unit): def _declr(self): addClkRstn(self) self.s = AvalonMM() self.m = AvalonMM()._m() def _impl(self): self.m(self.s) class AvalonMmAgentTC(SingleUnitSimTestCase): @classmethod def getUnit(cls): cls.u = AvalonMmWire() return cls.u def test_nop(self): u = self.u self.runSim(10 * CLK_PERIOD) self.assertEmpty(u.m._ag.req) self.assertEmpty(u.m._ag.wData) self.assertEmpty(u.s._ag.rData) self.assertEmpty(u.s._ag.wResp) def test_pass_data(self, N=8): assert N % 2 == 0, N u = self.u m = mask(u.s.DATA_WIDTH // 8) STEP = u.s.DATA_WIDTH // 8 # rw, address, burstCount inAddr = [ (READ if (i % 2) == 0 else WRITE, i * STEP, 1) for i in range(N) ] u.s._ag.req.extend(inAddr) # d, be inW = [ (i + 1, m) for i in range(N // 2) ] u.s._ag.wData.extend(inW) # readData, response inR = [ (i + 1, RESP_OKAY) for i in range(N // 2) ] u.m._ag.rData.extend(inR) inWResp = [RESP_OKAY for _ in range(N // 2)] u.m._ag.wResp.extend(inWResp) t = N + 5 self.runSim(t * CLK_PERIOD) ae = self.assertValSequenceEqual ae(u.m._ag.req, inAddr) ae(u.m._ag.wData, inW) ae(u.s._ag.rData, inR) ae(u.s._ag.wResp, inWResp) def test_sim_ram(self, N=8): u = self.u m = mask(u.s.DATA_WIDTH // 8) STEP = u.s.DATA_WIDTH // 8 mem = AvalonMMSimRam(u.m) inAddr = [ (READ if (i % 2) == 0 else WRITE, i * STEP, 1) for i in range(N) ] for i in range(N): if i % 2 != 0: continue mem.data[i] = i u.s._ag.req.extend(inAddr) # d, be inW = [ (i, m) for i in range(N) if (i % 2) == 1 ] u.s._ag.wData.extend(inW) t = N + 5 self.runSim(t * CLK_PERIOD) self.assertValSequenceEqual([mem.data[i] for i in range(N)], [i for i in range(N)]) if __name__ == "__main__": suite = unittest.TestSuite() # suite.addTest(AvalonMmAgentTC('test_sim_ram')) suite.addTest(unittest.makeSuite(AvalonMmAgentTC)) runner = unittest.TextTestRunner(verbosity=3) runner.run(suite)
1.953125
2
gmaltcli/tests/tools.py
gmalt/hgt2sql
5
12779755
class MockCallable(object): def __init__(self): self.called = False self.args = () self.kwargs = {} def __call__(self, *args, **kwargs): self.called = True self.args = args self.kwargs = kwargs
2.765625
3
userapp/urls.py
ZiYin-ss/pythonnetshop
0
12779756
<filename>userapp/urls.py<gh_stars>0 # coding=utf-8 from django.conf.urls import url from . import views urlpatterns = [ url(r'^register/$', views.RegisterView.as_view()), url(r'^checkUname/$', views.CheckUnameView.as_view()), url(r'^center/$', views.CenterView.as_view()), url(r'^logout/$', views.LogoutView.as_view()), url(r'^login/$', views.LoginView.as_view()), url(r'^loadCode.jpg$', views.LoadCodeView.as_view()), url(r'^checkcode/$', views.CheckCodeView.as_view()), url(r'^address/$', views.AddressView.as_view()), url(r'^loadArea/$', views.LoadAreaView.as_view()), ]
1.609375
2
main.py
PratikshaJain37/Pixels-Fighting-pygame
0
12779757
# Main.py - Pixels Fighting # # Author: <NAME> # # ---------------------# # Imports # import pygame from pygame.locals import * from helpers import * import random import numpy as np import time # ---------------------# # Initialize number of rows/columns INT = 100 INT_SQ = INT*INT # Initialize size of arrays SIZE = 5 # Initialize Pygame pygame.init() # Initialize screen, status and clock screen = pygame.display.set_mode((80+INT*SIZE,160+INT*SIZE)) running = True clock = pygame.time.Clock() # Defining Colors COLOR_ALIVE = (random.randint(1,256),random.randint(0,256),random.randint(0,256)) COLOR_DEAD = (random.randint(1,256),random.randint(0,256),random.randint(0,256)) # Initialize Status Array - Making an array with half dead and half alive zero = np.zeros((INT,INT//2), dtype=int) one = np.ones((INT,INT//2), dtype=int) current_status_array = np.concatenate((zero,one), axis=1) # ---------------------# # For Title Text to be displayed # Defining font style and size font = pygame.font.Font('freesansbold.ttf', 32) text_title = font.render('Pixels Fighting', True, (255,255,255), (0,0,0)) textRectTitle = text_title.get_rect() textRectTitle.center = (40+INT*SIZE/2, 40) # ---------------------# # Defining Box Class class Box(): # Status can be dead (0) or alive(1); def __init__(self, x, y, alive): self.x = x self.y = y self.alive = alive self.surf = pygame.Surface((SIZE,SIZE)) self.rect = (40 + SIZE*self.y, 100 + SIZE*self.x) # Function to fill surface with color def assign_color(self): if self.alive == 0: self.surf.fill(COLOR_DEAD) else: self.surf.fill(COLOR_ALIVE) screen.blit(self.surf,self.rect) # Function to update surface; as per current_status_array def update(self): self.alive = current_status_array[self.x][self.y] self.assign_color() # ---------------------# # Creating 'INT_SQ' instances of box class, and appending them to a list for accessibility boxes = [] for i in range(INT_SQ): # x,y will be filled sequentially x = i//INT y = i%INT # Alive status depening on current array boxes.append(Box(x,y,current_status_array[x][y])) # ---------------------# # For Ratio Text to be displayed and updated continuously # Defining font style and size font = pygame.font.Font('freesansbold.ttf', 25) def UpdateRatioText(): # For the alive ones text_alive = font.render('Alive: {:.4f}'.format(IsAliveWinning(current_status_array, INT_SQ)), True, COLOR_ALIVE, (0,0,0)) textRectAlive = text_alive.get_rect() textRectAlive.x = 80 + INT*SIZE - 210 textRectAlive.y = 115 + INT*SIZE # For the dead ones text_dead = font.render('Dead: {:.4f}'.format(1-IsAliveWinning(current_status_array, INT_SQ)), True, COLOR_DEAD, (0,0,0)) textRectDead = text_dead.get_rect() textRectDead.x = 60 textRectDead.y = 115 + INT*SIZE # Updating the font on the rect screen.blit(text_alive, textRectAlive) screen.blit(text_dead, textRectDead) # ---------------------# # Main python loop while running: # Main python quit function for event in pygame.event.get(): if event.type == pygame.QUIT: running = False # For updating array and boxes status current_status_array = UpdateArray(current_status_array, INT) for box in boxes: box.update() # Update Ratio text UpdateRatioText() # Display Title screen.blit(text_title, textRectTitle) # Refresh screen pygame.display.update() # A more optimal version of the clock.tick() function, determines fps of display basically time.sleep(0.1) # ---------------------#
3.171875
3
TPS_dice_roller_bot/core/constants.py
PumaConcolor/TPS-dice-roller-bot
4
12779758
<filename>TPS_dice_roller_bot/core/constants.py DICE_ROLL_REGEX = '[\\w|\\s|!-/|:-@]*?[\\s]' \ '([0-9]*[\\s]*)d[\\s]*([0-9]+)' \ '[\\s]*([\\+|\\-][\\s]*[0-9]*)*[\\s]*(.*)[\\s]*$' SPONGEBOB_CLEANER_REGEX = '\\/spongebob|\\/spongerep|\\/spr|\\/sp' ZALGO_CLEANER_REGEX = '\\/zalgo|\\/z' HELP_MESSAGE = ('I can roll dice and do funny stuff!\n\n' 'You can control me by sending these commands:\n\n' '/help - sends this help message\n' '/start - sends this help message\n\n' 'To roll dice and other things (each command has a long and short version):\n\n' '/roll - roll dice as indicated using dice notation\n' '/r - short version\n\n' '/ability_scores - rolls six ability scores for use in D&D style game systems\n' '/as - short version\n\n' '/alive - returns the emotional state of the bot\n\n' '/spongebob - takes your sentence and returns a saltier one\n' '/sp - short version\n\n' '/spongerep - reply to a message writing this, it will mock the first message\n' '/spr - short version\n\n' '/zalgo - takes your message to glitch it\n' '/z - short version\n\n' '/edgelord - give your character a reason to brood\n' 'this command is the only one to just have a long version, for added edginess\n\n' '/character - creates a fully fledged character\n' '/char - short version\n\n' '/fabula - create your identity for a Fabula Ultima character\n' '/f - short version') ALIVE_SERVICE = [ 'Alive and kicking', 'Lock \'n loaded', 'My life for DnD', 'Stop poking me', 'I like when you try to reach me', 'I\'m alive, not by my choice', 'What does "alive" even means?', 'I\'m alive, be grateful to Pelor', 'Who\'s summoning me?', '(/^▽^)/', '(つ ͡° ͜ʖ ͡°)つ', '(╯°□°)╯︵ ┻━┻', 'ಠ_ಠ', 'Pelor sucks' ] SALTY_ANSWER = [ 'eh?', 'Yeah, sure', 'try writing something that makes sense, next time', 'I\'m sure you can do better', 'Wait. Are you sure about that?', 'You may wanna think this over', 'Did you really drink that much?', 'Why do you people keep not reading the instructions?', 'Well, fuck you too', 'ಠ_ಠ', '...', 'boooring' ] EDGELORD_PARTS = [ # Edgy antagonist [ 'An evil wizard', 'A dragon', 'The drow', 'Goblins', 'Kobolds', 'A mind flayer', 'Evil cultists', 'Orcs', 'Trolls', 'A banshee', 'A demon lord', 'An archdevil', 'Giants', 'Vampires', 'Gnolls', 'A werefolf', 'A Djinni', 'A mimic', 'A tarrasque', 'A beholder', 'A hag coven', 'A lich', 'Barbarians', 'An aboleth', 'A succubus', 'A criminal organizations', 'A gelatinous cube', 'A necromancer', 'Corrupt nobles', 'A death knight', 'The BBEG', 'The bard', 'Natural selection', 'The DM', ], # Edgy action [ 'killed', 'murdered', 'slaughtered', 'massacred', 'assassinated', 'brainwashed', 'captured', 'banished', 'enslaved', 'betrayed', 'sacrificed', 'mauled', 'stole', 'blackmailed', 'conned', 'framed', 'humiliated', 'pillaged', 'ruined', 'ate', 'cursed', 'befriended', 'seduced' ], # Edgy victim [ 'my family', 'my hometown', 'my parents', 'my clan', 'my sibling', 'my mentors', 'my significant other', 'my master', 'my side squeeze', 'my apprentice', 'my friends', 'my previous adventuring party', 'everyone I knew', 'my crew of sailors', 'my crew of pirates', 'my crew of noble outlaws', 'my crew of thieves', 'the tavern I basically lived in', 'my military unit', 'my social status', 'my treasure', 'my aspirations', 'my honour', 'my confidence', 'my imaginary friends' ], # Edgy outcome [ 'and it will have no effect on how i roleplay my character', 'and now I\'m a murder hobo', 'and now I\'m a lawful good stick in the mud', 'and now I seek vengeance', 'and now I trust no one', 'and now I have a bleak outlook of the world', 'and now I strive to live by their ideals', 'and now I must become stronger', 'and now I seek to bring back what I have lost', 'and now I vow to prevent that from happening to anyone else', 'and now I am haunted by their memory', 'and now I seek to uncover the truth about what happened', 'and now I fear it will happen again', 'and now I am stronger because of it', 'and now I\'m and alcoholic', 'and now I have multiclassed into warlock', 'and now I\'m Batman' ] ] PG_CREATION_PARTS = { 'Sex': [ 'Male', 'Female', 'You choose' ], 'Sexual orientation': [ 'Heterosexual', 'Homosexual', 'Bisexual', 'Pansexual', 'Asexual', 'you choose' ], 'Race': [ 'Aarakocra', 'Aasimar (Fallen)', 'Aasimar (Protector)', 'Aasimar (Scourge)', 'Bugbear', 'Centaur', 'Changeling', 'Dragonborn (Base)', 'Dragonborn (Draconblood)', 'Dragonborn (Ravenite)', 'Dwarf', 'Dwarf (Duergar)', 'Dwarf (Hill)', 'Dwarf (Mark of Warding)', 'Dwarf (Mountain)', 'Elf (Drow)', 'Elf (Eladrin)', 'Elf (High)', 'Elf (Mark of Shadow)', 'Elf (Pallid)', 'Elf (Sea)', 'Elf (Shadar-kai)', 'Elf (Wood)', 'Firbolg', 'Genasi (Air)', 'Genasi (Earth)', 'Genasi (Fire)', 'Genasi (Water)', 'Gith (Githyanki)', 'Gith (Githzerai)', 'Gnome (Deep)', 'Gnome (Deep/Svirfneblin)', 'Gnome (Forest)', 'Gnome (Mark of Scribing)', 'Gnome (Rock)', 'Goblin', 'Goliath', 'Half-Elf', 'Half-Elf (Variant)', 'Half-Elf (Variant; Aquatic Elf Descent)', 'Half-Elf (Variant; Drow Descent)', 'Half-Elf (Variant; Mark of Detection)', 'Half-Elf (Variant; Mark of Storm)', 'Half-Elf (Variant; Moon Elf or Sun Elf Descent)', 'Half-Elf (Variant; Wood Elf Descent)', 'Half-Orc', 'Half-Orc (Mark of Finding)', 'Halfling (Ghostwise)', 'Halfling (Lightfoot)', 'Halfling (Lotusden)', 'Halfling (Mark of Healing)', 'Halfling (Mark of Hospitality)', 'Halfling (Stout)', 'Hobgoblin', 'Human (Base)', 'Human (Mark of Finding)', 'Human (Mark of Handling)', 'Human (Mark of Making)', 'Human (Mark of Passage)', 'Human (Mark of Sentinel)', 'Human (Variant)', 'Kalashtar', 'Kenku', 'Kobold', 'Leonin', 'Lizardfolk', 'Loxodon', 'Minotaur', 'Orc', 'Satyr', 'Shifter (Beasthide)', 'Shifter (Longtooth)', 'Shifter (Swiftstride)', 'Shifter (Wildhunt)', 'Simic Hybrid', 'Tabaxi', 'Tiefling (Asmodeus)', 'Tiefling (Baalzebul)', 'Tiefling (Base)', 'Tiefling (Dispater)', 'Tiefling (Fierna)', 'Tiefling (Glasya)', 'Tiefling (Levistus)', 'Tiefling (Mammon)', 'Tiefling (Mephistopheles)', 'Tiefling (Variant; Devil\'s Tongue)', 'Tiefling (Variant; Hellfire)', 'Tiefling (Variant; Infernal Legacy)', 'Tiefling (Variant; Winged)', 'Tiefling (Zariel)', 'Triton', 'Vedalken', 'Verdan', 'Warforged', 'Yuan-ti Pureblood', 'You choose' ], 'Class': [ 'Artificer', 'Barbarian', 'Bard', 'Cleric', 'Druid', 'Fighter', 'Monk', 'Paladin', 'Ranger', 'Rogue', 'Sorcerer', 'Warlock', 'Wizard', 'You choose' ], 'Background': [ 'Acolyte', 'Anthropologist', 'Archaeologist', 'Athlete', 'Augen Trust (Spy)', 'Azorius Functionary', 'Boros Legionnaire', 'Celebrity Adventurer\'s Scion', 'Charlatan', 'City Watch', 'Variant City Watch (Investigator)', 'Clan Crafter', 'Cloistered Scholar', 'Cobalt Scholar (Sage)', 'Courtier', 'Criminal', 'Variant Criminal (Spy)', 'Dimir Operative', 'Entertainer', 'Variant Entertainer (Gladiator)', 'Faceless', 'Faction Agent', 'Failed Merchant', 'Far Traveler', 'Fisher', 'Folk Hero', 'Gambler', 'Golgari Agent', 'Grinner', 'Gruul Anarch', 'Guild Artisan', 'Variant Guild Artisan (Guild Merchant)', 'Haunted One', 'Hermit', 'House Agent', 'Inheritor', 'Izzet Engineer', 'Knight of the Order', 'Luxonborn (Acolyte)', 'Marine', 'Mercenary Veteran', 'Myriad Operative (Criminal)', 'Noble', 'Variant Noble (Knight)', 'Orzhov Representative', 'Outlander', 'Plaintiff', 'Rakdos Cultist', 'Revelry Pirate (Sailor)', 'Rival Intern', 'Sage', 'Sailor', 'Variant Sailor (Pirate)', 'Selesnya Initiate', 'Shipwright', 'Simic Scientist', 'Smuggler', 'Soldier', 'Urban Bounty Hunter', 'Urchin', 'Uthgardt Tribe Member', 'Volstrucker Agent', 'Waterdhavian Noble', 'You choose' ] } HEIGHT_TABLE = { 'Aarakocra': [140, 160], 'Aasimar (Fallen)': [150, 190], 'Aasimar (Protector)': [150, 190], 'Aasimar (Scourge)': [150, 190], 'Bugbear': [180, 245], 'Centaur': [180, 210], 'Changeling': [150, 185], 'Dragonborn (Base)': [185], 'Dragonborn (Draconblood)': [185], 'Dragonborn (Ravenite)': [185], 'Dwarf': [120, 150], 'Dwarf (Duergar)': [120, 150], 'Dwarf (Hill)': [120, 150], 'Dwarf (Mark of Warding)': [120, 150], 'Dwarf (Mountain)': [120, 150], 'Elf (Drow)': [140, 185], 'Elf (Eladrin)': [140, 185], 'Elf (High)': [140, 185], 'Elf (Mark of Shadow)': [140, 185], 'Elf (Pallid)': [140, 185], 'Elf (Sea)': [140, 185], 'Elf (Shadar-kai)': [140, 185], 'Elf (Wood)': [140, 185], 'Firbolg': [210, 245], 'Genasi (Air)': [150, 190], 'Genasi (Earth)': [150, 190], 'Genasi (Fire)': [150, 190], 'Genasi (Water)': [150, 190], 'Gith (Githyanki)': [160], 'Gith (Githzerai)': [160], 'Gnome (Deep)': [90, 120], 'Gnome (Deep/Svirfneblin)': [90, 120], 'Gnome (Forest)': [90, 120], 'Gnome (Mark of Scribing)': [90, 120], 'Gnome (Rock)': [90, 120], 'Goblin': [90, 120], 'Goliath': [210, 245], 'Half-Elf': [150, 185], 'Half-Elf (Variant)': [150, 185], 'Half-Elf (Variant; Aquatic Elf Descent)': [150, 185], 'Half-Elf (Variant; Drow Descent)': [150, 185], 'Half-Elf (Variant; Mark of Detection)': [150, 185], 'Half-Elf (Variant; Mark of Storm)': [150, 185], 'Half-Elf (Variant; Moon Elf or Sun Elf Descent)': [150, 185], 'Half-Elf (Variant; Wood Elf Descent)': [150, 185], 'Half-Orc': [155, 195], 'Half-Orc (Mark of Finding)': [155, 195], 'Halfling (Ghostwise)': [75, 105], 'Halfling (Lightfoot)': [75, 105], 'Halfling (Lotusden)': [75, 105], 'Halfling (Mark of Healing)': [75, 105], 'Halfling (Mark of Hospitality)': [75, 105], 'Halfling (Stout)': [75, 105], 'Hobgoblin': [150, 190], 'Human (Base)': [150, 190], 'Human (Mark of Finding)': [150, 190], 'Human (Mark of Handling)': [150, 190], 'Human (Mark of Making)': [150, 190], 'Human (Mark of Passage)': [150, 190], 'Human (Mark of Sentinel)': [150, 190], 'Human (Variant)': [150, 190], 'Kalashtar': [150, 190], 'Kenku': [135, 165], 'Kobold': [60, 90], 'Leonin': [175, 210], 'Lizardfolk': [150, 190], 'Loxodon': [210, 240], 'Minotaur': [175, 195], 'Orc': [175, 215], 'Satyr': [145, 185], 'Shifter (Beasthide)': [150, 190], 'Shifter (Longtooth)': [150, 190], 'Shifter (Swiftstride)': [150, 190], 'Shifter (Wildhunt)': [150, 190], 'Simic Hybrid': ['You choose'], 'Tabaxi': [160, 200], 'Tiefling (Asmodeus)': [150, 190], 'Tiefling (Baalzebul)': [150, 190], 'Tiefling (Base)': [150, 190], 'Tiefling (Dispater)': [150, 190], 'Tiefling (Fierna)': [150, 190], 'Tiefling (Glasya)': [150, 190], 'Tiefling (Levistus)': [150, 190], 'Tiefling (Mammon)': [150, 190], 'Tiefling (Mephistopheles)': [150, 190], 'Tiefling (Variant; Devil\'s Tongue)': [150, 190], 'Tiefling (Variant; Hellfire)': [150, 190], 'Tiefling (Variant; Infernal Legacy)': [150, 190], 'Tiefling (Variant; Winged)': [150, 190], 'Tiefling (Zariel)': [150, 190], 'Triton': [140, 180], 'Vedalken': [175, 195], 'Verdan': [90, 120], 'Warforged': ['You choose'], 'Yuan-ti Pureblood': [150, 190], 'You choose': ['You choose'] } WEIGHT_TABLE = { 'Aarakocra': [80, 100], 'Aasimar (Fallen)': [110, 200], 'Aasimar (Protector)': [110, 200], 'Aasimar (Scourge)': [110, 200], 'Bugbear': [250, 350], 'Centaur': [600, 700], 'Changeling': [110, 190], 'Dragonborn (Base)': [200, 300], 'Dragonborn (Draconblood)': [200, 300], 'Dragonborn (Ravenite)': [200, 300], 'Dwarf': [130, 170], 'Dwarf (Duergar)': [130, 170], 'Dwarf (Hill)': [125, 165], 'Dwarf (Mark of Warding)': [130, 170], 'Dwarf (Mountain)': [130, 170], 'Elf (Drow)': [80, 160], 'Elf (Eladrin)': [80, 160], 'Elf (High)': [80, 160], 'Elf (Mark of Shadow)': [80, 160], 'Elf (Pallid)': [80, 160], 'Elf (Sea)': [80, 160], 'Elf (Shadar-kai)': [80, 160], 'Elf (Wood)': [80, 160], 'Firbolg': [240, 300], 'Genasi (Air)': [110, 200], 'Genasi (Earth)': [110, 200], 'Genasi (Fire)': [110, 200], 'Genasi (Water)': [110, 200], 'Gith (Githyanki)': [100, 180], 'Gith (Githzerai)': [90, 140], 'Gnome (Deep)': [80, 120], 'Gnome (Deep/Svirfneblin)': [80, 120], 'Gnome (Forest)': [30, 50], 'Gnome (Mark of Scribing)': [30, 50], 'Gnome (Rock)': [30, 50], 'Goblin': [35, 50], 'Goliath': [280, 340], 'Half-Elf': [110, 190], 'Half-Elf (Variant)': [110, 190], 'Half-Elf (Variant; Aquatic Elf Descent)': [110, 190], 'Half-Elf (Variant; Drow Descent)': [110, 190], 'Half-Elf (Variant; Mark of Detection)': [110, 190], 'Half-Elf (Variant; Mark of Storm)': [110, 190], 'Half-Elf (Variant; Moon Elf or Sun Elf Descent)': [110, 190], 'Half-Elf (Variant; Wood Elf Descent)': [110, 190], 'Half-Orc': [140, 240], 'Half-Orc (Mark of Finding)': [140, 240], 'Halfling (Ghostwise)': [140, 240], 'Halfling (Lightfoot)': [30, 50], 'Halfling (Lotusden)': [30, 50], 'Halfling (Mark of Healing)': [30, 50], 'Halfling (Mark of Hospitality)': [30, 50], 'Halfling (Stout)': [30, 50], 'Hobgoblin': [110, 200], 'Human (Base)': [110, 200], 'Human (Mark of Finding)': [110, 200], 'Human (Mark of Handling)': [110, 200], 'Human (Mark of Making)': [110, 200], 'Human (Mark of Passage)': [110, 200], 'Human (Mark of Sentinel)': [110, 200], 'Human (Variant)': [110, 200], 'Kalashtar': [110, 180], 'Kenku': [90, 120], 'Kobold': [25, 35], 'Leonin': [180, 240], 'Lizardfolk': [120, 220], 'Loxodon': [300, 400], 'Minotaur': [180, 240], 'Orc': [230, 280], 'Satyr': [100, 180], 'Shifter (Beasthide)': [90, 160], 'Shifter (Longtooth)': [90, 160], 'Shifter (Swiftstride)': [90, 160], 'Shifter (Wildhunt)': [90, 160], 'Simic Hybrid': ['You choose'], 'Tabaxi': [90, 160], 'Tiefling (Asmodeus)': [110, 200], 'Tiefling (Baalzebul)': [110, 200], 'Tiefling (Base)': [110, 200], 'Tiefling (Dispater)': [110, 200], 'Tiefling (Fierna)': [110, 200], 'Tiefling (Glasya)': [110, 200], 'Tiefling (Levistus)': [110, 200], 'Tiefling (Mammon)': [110, 200], 'Tiefling (Mephistopheles)': [110, 200], 'Tiefling (Variant; Devil\'s Tongue)': [110, 200], 'Tiefling (Variant; Hellfire)': [110, 200], 'Tiefling (Variant; Infernal Legacy)': [110, 200], 'Tiefling (Variant; Winged)': [110, 200], 'Tiefling (Zariel)': [110, 200], 'Triton': [90, 160], 'Vedalken': [140, 200], 'Verdan': [35, 50], 'Warforged': ['You choose'], 'Yuan-ti Pureblood': [110, 200], 'You choose': ['You choose'] } FABULA_CONCEPT = [ 'knight', 'bodyguard', 'animated puppet', 'bounty hunter', 'bandit', 'scavenger', 'martial artist', 'factory worker', 'rebel agent', 'treasure hunter', 'student', 'warrior mage', 'alien', 'painter', 'noble', 'priest/ess', 'magitech engineer', 'duelist', 'professor', 'archer', 'monster hunter', 'samurai', 'occultist', 'medic', 'bard', 'paladin', 'shapeshifter', 'soldier', 'monk', 'pirate', 'inventor', 'gunslinger', 'gambler', 'smuggler', 'black knight', 'rōnin', 'automaton', 'alchemist', 'mercenary', 'ninja', 'airship pilot', 'cook', 'diplomat', 'spy', 'commander', 'thief', 'templar', 'sniper', 'king/queen', 'mechanic', 'athlete', 'mage', 'dancer', 'healer', 'gladiator', 'cannoneer', 'demon hunter', 'prince/ss', 'merchant', 'abomination' ] FABULA_ADJECTIVES = [ 'charming', 'devout', 'oathbreaker', 'last', 'chosen', 'distant', 'former imperial', 'proud', 'troubled', 'wanted', 'brave', 'fearful', 'animal-loving', 'kind', 'respectable', 'amnesiac', 'dashing', 'tainted', 'imperial', 'young', 'free-spirited', 'eccentric', 'loyal', 'well-connected', 'elderly', 'naive', 'chivalrous', 'spoiled', 'smiling', 'gifted', 'no-nonsense', 'royal', 'apprentice', 'reckless', 'influent', 'furtive', 'ill-tempered', 'famous', 'tough', 'non-human' ] FABULA_DETAIL = [ 'from an Ancient Bloodline', 'on the run', 'of the Old Faith', 'seeking justice', 'in disgrace', 'of the Crimson Wings', 'from the High Academy', 'from the Moon', 'of the seven seas', 'from the future', 'looking for answers', 'without a homeland', 'of the Royal Army', 'from another dimension', 'of the Desert Clans', 'of the Storm Knights', 'with a heart of gold', 'from the ancient forest', 'from the past', 'of the Sacred Flame' ] FABULA_THEME = [ 'ambition', 'anger', 'doubt', 'duty', 'guilt', 'hope', 'justice', 'belonging', 'mercy', 'vengeance' ]
2.421875
2
o3d/documentation/build_docs.py
rwatson/chromium-capsicum
11
12779759
<filename>o3d/documentation/build_docs.py #!/usr/bin/python2.4 # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Docbuilder for O3D and o3djs.""" import os import os.path import sys import imp import types import glob import subprocess import shutil import re _java_exe = '' _output_dir = '' _third_party_dir = '' _o3d_third_party_dir = '' _script_path = os.path.dirname(os.path.realpath(__file__)) _js_copyright = """ /* * Copyright 2009, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ GlobalsDict = { } def MakePath(*file_paths): """Makes a path absolute given a path relative to this script.""" return os.path.join(_script_path, *file_paths) def MakeCommandName(name): """adds '.exe' if on Windows""" if os.name == 'nt': return name + '.exe' return name def Execute(args): """Executes an external program.""" # Comment the next line in for debugging. # print "Execute: ", ' '.join(args) if subprocess.call(args) > 0: raise RuntimeError('FAILED: ' + ' '.join(args)) def AppendBasePath(folder, filenames): """Appends a base path to a ist of files""" return [os.path.join(folder, filename) for filename in filenames] def RunNixysa(idl_files, generate, output_dir, nixysa_options): """Executes Nixysa.""" Execute([ sys.executable, MakePath(_o3d_third_party_dir, 'nixysa', 'codegen.py'), '--binding-module=o3d:%s' % MakePath('..', 'plugin', 'o3d_binding.py'), '--generate=' + generate, '--force', '--output-dir=' + output_dir] + nixysa_options + idl_files) def RunJSDocToolkit(js_files, ezt_output_dir, html_output_dir, prefix, mode, baseURL, topURL, exports_file): """Executes the JSDocToolkit.""" list_filename = MakePath(_output_dir, 'doclist.conf') f = open(list_filename, 'w') f.write('{\nD:{\n') f.write('prefix: "%s",\n' % prefix) f.write('baseURL: "%s",\n' % baseURL) f.write('topURL: "%s",\n' % topURL) f.write('mode: "%s",\n' % mode) f.write('htmlOutDir: "%s",\n' % html_output_dir.replace('\\', '/')) f.write('exportsFile: "%s",\n' % exports_file.replace('\\', '/')) f.write('endMarker: ""\n') f.write('},\n') f.write('_: [\n') for filename in js_files: f.write('"%s",\n' % filename.replace('\\', '/')) f.write(']\n}\n') f.close() files_dir = MakePath(_third_party_dir, 'jsdoctoolkit', 'files') Execute([ _java_exe, '-Djsdoc.dir=%s' % files_dir, '-jar', MakePath(files_dir, 'jsrun.jar'), MakePath(files_dir, 'app', 'run.js'), '-v', '-t=%s' % MakePath('jsdoc-toolkit-templates'), '-d=' + ezt_output_dir, '-c=' + list_filename]) def DeleteOldDocs(docs_js_outpath): try: shutil.rmtree(docs_js_outpath); except: pass def BuildJavaScriptForDocsFromIDLs(idl_files, output_dir): RunNixysa(idl_files, 'jsheader', output_dir, ['--properties-equal-undefined', '--overloaded-function-docs']) def BuildJavaScriptForExternsFromIDLs(idl_files, output_dir): if (os.path.exists(output_dir)): for filename in glob.glob(os.path.join(output_dir, '*.js')): os.unlink(filename) RunNixysa(idl_files, 'jsheader', output_dir, ['--no-return-docs']) def BuildO3DDocsFromJavaScript(js_files, ezt_output_dir, html_output_dir): RunJSDocToolkit(js_files, ezt_output_dir, html_output_dir, 'classo3d_1_1_', 'o3d', '', '', '') def BuildO3DClassHierarchy(html_output_dir): # TODO(gman): We need to make mutliple graphs. One for Params, one for # ParamMatrix4, one for RenderNode, one for everythng else. dot_path = MakePath(_third_party_dir, 'graphviz', 'files', 'bin', MakeCommandName('dot')) if os.path.exists(dot_path): Execute([ dot_path, '-Tcmapx', '-o' + MakePath(html_output_dir, 'class_hierarchy.map'), '-Tpng', '-o' + MakePath(html_output_dir, 'class_hierarchy.png'), MakePath(html_output_dir, 'class_hierarchy.dot')]) def BuildO3DJSDocs(js_files, ezt_output_dir, html_output_dir, exports_file): # The backslashes below on 'jsdocs/' and '../' must stay. RunJSDocToolkit(js_files, ezt_output_dir, html_output_dir, 'js_1_0_', 'o3djs', 'jsdocs/', '../', exports_file) def BuildO3DExternsFile(js_files_dir, extra_externs_file, externs_file): outfile = open(externs_file, 'w') filenames = (glob.glob(os.path.join(js_files_dir, '*.js')) + [extra_externs_file]) for filename in filenames: print "-----", filename infile = open(filename, 'r') lines = infile.readlines() infile.close() filtered = [] skipping = False # strip out @o3dparameter stuff for line in lines: if skipping: if line.startswith(' * @') or line.startswith(' */'): skipping = False if not skipping: if line.startswith(' * @o3dparameter'): skipping = True if not skipping: filtered.append(line) outfile.write(''.join(filtered)) outfile.close() def BuildCompiledO3DJS(o3djs_files, externs_path, o3d_externs_js_path, compiled_o3djs_outpath): Execute([ _java_exe, '-jar', MakePath('..', '..', 'o3d-internal', 'jscomp', 'JSCompiler_deploy.jar'), '--property_renaming', 'OFF', '--variable_renaming', 'LOCAL', '--jscomp_error=visibility', '--jscomp_error=accessControls', '--strict', '--externs=%s' % externs_path, ('--externs=%s' % o3d_externs_js_path), ('--js_output_file=%s' % compiled_o3djs_outpath)] + ['-js=%s' % (x, ) for x in o3djs_files]); # strip out goog.exportSymbol and move o3djs.require to end file = open(compiled_o3djs_outpath, 'r') contents = file.read() file.close() contents = re.sub(r'goog.exportSymbol\([^\)]*\);', '', contents) requires = set(re.findall(r'o3djs.require\([^\)]*\);', contents)) contents = re.sub(r'o3djs.require\([^\)]*\);', '', contents) file = open(compiled_o3djs_outpath, 'w') file.write(_js_copyright) file.write(contents) file.write('\n') file.write('\n'.join(requires)) file.close() def CopyStaticFiles(o3d_docs_ezt_outpath, o3d_docs_html_outpath): files = ['stylesheet.css', 'prettify.css', 'prettify.js', 'tabs.css', 'tab_l.gif', 'tab_r.gif', 'tab_b.gif'] for file in files: shutil.copyfile(MakePath('jsdoc-toolkit-templates', 'static', file), MakePath(os.path.join(o3d_docs_ezt_outpath, file))) shutil.copyfile(MakePath('jsdoc-toolkit-templates', 'static', file), MakePath(os.path.join(o3d_docs_html_outpath, file))) def main(argv): """Builds the O3D API docs and externs and the o3djs docs.""" global _java_exe _java_exe = argv[0] global _third_party_dir _third_party_dir = argv[1] global _o3d_third_party_dir _o3d_third_party_dir = os.path.normpath( os.path.join(os.path.dirname(__file__), '..', 'third_party')) # Fix up the python path of subprocesses by setting PYTHONPATH. pythonpath = os.pathsep.join([MakePath(_o3d_third_party_dir, 'gflags', 'python'), MakePath(_o3d_third_party_dir, 'ply')]) orig_pythonpath = os.environ.get('PYTHONPATH') if orig_pythonpath: pythonpath = os.pathsep.join([pythonpath, orig_pythonpath]) os.environ['PYTHONPATH'] = pythonpath js_list_filename = MakePath('..', 'samples', 'o3djs', 'js_list.manifest') idl_list_filename = MakePath('..', 'plugin', 'idl_list.manifest') js_list_basepath = os.path.dirname(js_list_filename) idl_list_basepath = os.path.dirname(idl_list_filename) global _output_dir _output_dir = argv[2] docs_outpath = os.path.join(_output_dir, 'documentation') docs_js_outpath = MakePath(docs_outpath, 'apijs') externs_js_outpath = MakePath(_output_dir, 'externs') o3d_docs_ezt_outpath = MakePath(docs_outpath, 'reference') o3d_docs_html_outpath = MakePath(docs_outpath, 'local_html') o3djs_docs_ezt_outpath = MakePath(docs_outpath, 'reference', 'jsdocs') o3djs_docs_html_outpath = MakePath(docs_outpath, 'local_html', 'jsdocs') o3d_externs_path = MakePath(_output_dir, 'o3d-externs.js') o3djs_exports_path = MakePath(_output_dir, 'o3d-exports.js') compiled_o3djs_outpath = MakePath(docs_outpath, 'base.js') externs_path = MakePath('externs', 'externs.js') o3d_extra_externs_path = MakePath('externs', 'o3d-extra-externs.js') js_list = eval(open(js_list_filename, "r").read()) idl_list = eval(open(idl_list_filename, "r").read()) idl_files = AppendBasePath(idl_list_basepath, idl_list) o3djs_files = AppendBasePath(js_list_basepath, js_list) # we need to put base.js first? o3djs_files = ( filter(lambda x: x.endswith('base.js'), o3djs_files) + filter(lambda x: not x.endswith('base.js'), o3djs_files)) docs_js_files = [os.path.join( docs_js_outpath, os.path.splitext(os.path.basename(f))[0] + '.js') for f in idl_list] try: DeleteOldDocs(MakePath(docs_outpath)) BuildJavaScriptForDocsFromIDLs(idl_files, docs_js_outpath) BuildO3DDocsFromJavaScript([o3d_extra_externs_path] + docs_js_files, o3d_docs_ezt_outpath, o3d_docs_html_outpath) BuildO3DClassHierarchy(o3d_docs_html_outpath) BuildJavaScriptForExternsFromIDLs(idl_files, externs_js_outpath) BuildO3DExternsFile(externs_js_outpath, o3d_extra_externs_path, o3d_externs_path) BuildO3DJSDocs(o3djs_files + [o3d_externs_path], o3djs_docs_ezt_outpath, o3djs_docs_html_outpath, o3djs_exports_path) CopyStaticFiles(o3d_docs_ezt_outpath, o3d_docs_html_outpath) BuildCompiledO3DJS(o3djs_files + [o3djs_exports_path], externs_path, o3d_externs_path, compiled_o3djs_outpath) except Exception: if os.path.exists(compiled_o3djs_outpath): os.unlink(compiled_o3djs_outpath) raise if __name__ == '__main__': main(sys.argv[1:])
1.476563
1
setup.py
scikit-hep/mplhep_data
0
12779760
<gh_stars>0 #!/usr/bin/env python # Copyright (c) 2021, <NAME> # # Distributed under the 3-clause BSD license, see accompanying file LICENSE # or https://github.com/Scikit-HEP/mplhep_data for details. from setuptools import setup setup()
0.886719
1
LeetCode/Trie/Design Search Autocomplete System.py
UtkarshPathrabe/Competitive-Coding
13
12779761
class TrieNode: def __init__(self, string = '', times = 0): self.string = string self.times = times self.children = defaultdict(TrieNode) class AutocompleteSystem: def __init__(self, sentences: List[str], times: List[int]): self.root = TrieNode() self.currentString = '' for sentence, frequency in zip(sentences, times): self.__insert(self.root, sentence, frequency) def __insert(self, currentNode, sentence, frequency): for char in sentence: currentNode = currentNode.children.setdefault(char, TrieNode(char)) currentNode.times += frequency def __lookup(self, currentNode, string): for char in string: if char not in currentNode.children: return [] currentNode = currentNode.children[char] matchingStrings = [] self.__traverse(currentNode, string, matchingStrings) return matchingStrings def __traverse(self, currentNode, string, matchingStrings): if currentNode.times > 0: matchingStrings.append((string, currentNode.times)) for key in currentNode.children: self.__traverse(currentNode.children[key], string + key, matchingStrings) def input(self, c: str) -> List[str]: if c == '#': self.__insert(self.root, self.currentString, 1) self.currentString = '' else: self.currentString += c listOfTuple = self.__lookup(self.root, self.currentString) listOfTuple.sort(key = lambda x : (-1 * x[1], x[0])) result = [] numberOfResults = 0 for Tuple in listOfTuple: result.append(Tuple[0]) numberOfResults += 1 if numberOfResults >= 3: break return result # Your AutocompleteSystem object will be instantiated and called as such: # obj = AutocompleteSystem(sentences, times) # param_1 = obj.input(c)
3.34375
3
adv/d_malora.py
smashwidget/dl-1
0
12779762
import adv.adv_test from adv import * from slot.a import * def module(): return D_Malora class D_Malora(Adv): a1 = ('od',0.13) conf = {} conf['slot.a'] = KFM()+FitF() conf['acl'] = """ `s1 `s2, seq=4 """ def prerun(this): if this.condition('buff all team'): this.s1debuff = Debuff('s1',0.15,15) else: this.s1debuff = False def s1_proc(this, e): if this.s1debuff: this.s1debuff.on() this.dmg_make('s1',4.67,'s') this.hits += 1 def s2_proc(this, e): if this.mod('def')!= 1: this.dmg_make('o_s2_boost',4.32*3*0.8) if __name__ == '__main__': conf = {} adv.adv_test.test(module(), conf, verbose=-2)
1.945313
2
app/search/ui/views.py
ExiledNarwal28/glo-2005-project
0
12779763
<filename>app/search/ui/views.py<gh_stars>0 from flask import render_template, redirect, url_for, request, Blueprint from app.search.forms import GeneralSearchForm search_blueprint = Blueprint('search', __name__) @search_blueprint.route('/', methods=('GET', 'POST')) def search(): form = GeneralSearchForm(request.form) if request.method == 'POST' and form.validate_on_submit(): search_route = request.form.get('search_route') return redirect(url_for(search_route), 307) return render_template('index.html', form=form), 200
2.203125
2
python/test/arrays/read_l2.py
mdvx/TimeBase
0
12779764
<gh_stars>0 import dxapi import time import sys from datetime import datetime def readstream(): # Create timebase connection db = dxapi.TickDb.createFromUrl("dxtick://localhost:8023") try: # Open in read-write mode db.open(True) # Get the data stream stream = db.getStream("l2") # Create cursor using defined "ALL" subscription cursor = stream.select(0, dxapi.SelectionOptions(), None, None) # Iterate first 100 messages in available in cursor for num in range(0,100): if cursor.next(): message = cursor.getMessage() print(toTimeString(message.timestamp) + ": " + str(message)) if message.typeName == 'deltix.timebase.api.messages.L2Message': for action in message.actions: print('Action: ' + str(action)) # cursor should be closed after use cursor.close() finally: # database connection should be closed db.close() def toTimeString(timestamp): # Message timestamp is Epoch time in nanoseconds seconds = int(timestamp/1000000000) nanoseconds = int(timestamp % 1000000000) time = "" while nanoseconds > 0: r = nanoseconds % 1000 if r > 0: time = str(r) + time nanoseconds = int(nanoseconds/1000) return str(datetime.utcfromtimestamp(seconds)) + ("." if len(time) > 0 else "") + time readstream()
2.453125
2
solutions/130/130-yongjoonseo.py
iknoom/LeetCode-Solutions
4
12779765
<filename>solutions/130/130-yongjoonseo.py from collections import deque class Solution: def BFS(self, board, sy, sx, visited, n, m): q = deque([(sy, sx)]) visited[sy][sx] = 1 candis = [(sy, sx)] dy = [0, 1, 0, -1] dx = [1, 0, -1, 0] out = False while q: y, x = q.popleft() for i in range(4): ny, nx = y + dy[i], x + dx[i] if 0 <= ny < n and 0 <= nx < m: if not visited[ny][nx] and board[ny][nx] == 'O': visited[ny][nx] = 1 candis.append((ny, nx)) q.append((ny, nx)) else: if not out: out = True if out: return for cy, cx in candis: board[cy][cx] = 'X' def solve(self, board: List[List[str]]) -> None: """ Do not return anything, modify board in-place instead. """ if not board: return n, m = len(board), len(board[0]) visited = [[0] * m for i in range(n)] for i in range(n): for j in range(m): if board[i][j] == 'O' and not visited[i][j]: self.BFS(board, i, j, visited, n, m)
3.21875
3
modules/flow0d/cardiovascular0D_coronary.py
marchirschvogel/amb
0
12779766
#!/usr/bin/env python3 # Copyright (c) 2019-2021, Dr.-Ing. <NAME> # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import sys import sympy as sp # coronary model with a 3-element Windkessel (ZCR, proximal part) in series with a 2-element Windkessel (CR, distal part) # according to Vieira et al. (2018) "Patient-specific modeling of right coronary circulation vulnerability post-liver transplant in Alagille’s syndrome", PLoS ONE 13(11), e0205829 # here their R_e is Z_corp_sys, C_e is C_corp_sys, R_p is R_corp_sys, C_i is C_cord_sys, and R_d is R_cord_sys # the distal compliance is fed by the left ventricular pressure in order to have a phase-dependent tone of the coronary # (coronaries almost entirely fill in diastole, not during systole) #\begin{align} #&C_{\mathrm{cor,p}}^{\mathrm{sys}} \left(\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{sys}}}{\mathrm{d}t}-Z_{\mathrm{cor,p}}^{\mathrm{sys}}\frac{\mathrm{d}q_{\mathrm{cor,p,in}}^{\mathrm{sys}}}{\mathrm{d}t}\right) = q_{\mathrm{cor,p,in}}^{\mathrm{sys}} - q_{\mathrm{cor,p}}^{\mathrm{sys}}\\ #&R_{\mathrm{cor,p}}^{\mathrm{sys}}\,q_{\mathrm{cor,p}}^{\mathrm{sys}}=p_{\mathrm{ar}}^{\mathrm{sys}}-p_{\mathrm{cor,d}}^{\mathrm{sys}} - Z_{\mathrm{cor,p}}^{\mathrm{sys}}\,q_{\mathrm{cor,p,in}}^{\mathrm{sys}}\\ #&C_{\mathrm{cor,d}}^{\mathrm{sys}} \frac{\mathrm{d}(p_{\mathrm{cor,d}}^{\mathrm{sys}}-p_{\mathrm{v}}^{\ell})}{\mathrm{d}t} = q_{\mathrm{cor,p}}^{\mathrm{sys}} - q_{\mathrm{cor,d}}^{\mathrm{sys}}\\ #&R_{\mathrm{cor,d}}^{\mathrm{sys}}\,q_{\mathrm{cor,d}}^{\mathrm{sys}}=p_{\mathrm{cor,d}}^{\mathrm{sys}}-p_{\mathrm{at}}^{r} #\end{align} class coronary_circ_ZCRp_CRd(): def __init__(self, params, varmap, auxmap, vs): self.Z_corp_sys = params['Z_corp_sys'] self.C_corp_sys = params['C_corp_sys'] self.R_corp_sys = params['R_corp_sys'] self.C_cord_sys = params['C_cord_sys'] self.R_cord_sys = params['R_cord_sys'] try: self.V_corp_sys_u = params['V_corp_sys_u'] except: self.V_corp_sys_u = 0 try: self.V_cord_sys_u = params['V_cord_sys_u'] except: self.V_cord_sys_u = 0 self.ndcor = 4 self.varmap = varmap self.auxmap = auxmap self.vs = vs def equation_map(self, vindex, aindex, x_, a_, df_, f_, p_ar_, p_v_, p_at_): self.varmap['q_corp_sys_in'] = vindex self.varmap['q_corp_sys'] = vindex+1 self.varmap['p_cord_sys'] = vindex+2 self.varmap['q_ven'+str(self.vs+1)+'_sys'] = vindex+3 q_corp_sys_in_ = sp.Symbol('q_corp_sys_in_') q_corp_sys_ = sp.Symbol('q_corp_sys_') p_cord_sys_ = sp.Symbol('p_cord_sys_') q_cord_sys_ = sp.Symbol('q_ven'+str(self.vs+1)+'_sys_') x_[self.varmap['q_corp_sys_in']] = q_corp_sys_in_ x_[self.varmap['q_corp_sys']] = q_corp_sys_ x_[self.varmap['p_cord_sys']] = p_cord_sys_ x_[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = q_cord_sys_ # populate df_ and f_ arrays df_[vindex] = self.C_corp_sys * (p_ar_[0] - self.Z_corp_sys * q_corp_sys_in_) # coronary proximal volume rate df_[vindex+1] = 0. df_[vindex+2] = self.C_cord_sys * (p_cord_sys_ - p_v_) # coronary distal volume rate df_[vindex+3] = 0. f_[vindex] = q_corp_sys_ - q_corp_sys_in_ # coronary proximal flow balance f_[vindex+1] = (p_cord_sys_ - p_ar_[0] + self.Z_corp_sys * q_corp_sys_in_)/self.R_corp_sys + q_corp_sys_ # coronary proximal momentum f_[vindex+2] = q_cord_sys_ - q_corp_sys_ # coronary distal flow balance f_[vindex+3] = (p_at_ - p_cord_sys_)/self.R_cord_sys + q_cord_sys_ # coronary distal momentum # auxiliary map and variables self.auxmap['V_corp_sys'] = aindex self.auxmap['V_cord_sys'] = aindex+1 a_[self.auxmap['V_corp_sys']] = self.C_corp_sys * (p_ar_[0] - self.Z_corp_sys * q_corp_sys_in_) + self.V_corp_sys_u a_[self.auxmap['V_cord_sys']] = self.C_cord_sys * (p_cord_sys_ - p_v_) + self.V_cord_sys_u # safety check that we don't hand in a zero symbol for p_v if p_v_ is sp.S.Zero: raise ValueError("Zero symbol for left ventricular pressure!") return [q_corp_sys_in_], q_cord_sys_ def initialize(self, var, iniparam): try: var[self.varmap['q_corp_sys_in']] = iniparam['q_corp_sys_in_0'] except: var[self.varmap['q_corp_sys_in']] = iniparam['q_corp_sys_0'] var[self.varmap['q_corp_sys']] = iniparam['q_corp_sys_0'] var[self.varmap['p_cord_sys']] = iniparam['p_cord_sys_0'] try: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven'+str(self.vs+1)+'_sys_0'] except: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven_sys_0'] def print_to_screen(self, var_sq, aux): print("Output of 0D coronary model (ZCRp_CRd):") print('{:<10s}{:<3s}{:<7.3f}'.format('p_cord_sys',' = ',var_sq[self.varmap['p_cord_sys']])) sys.stdout.flush() # equivalent model to ZCRp_CRd, but individually for left and right coronary arteries #\begin{align} #&C_{\mathrm{cor,p}}^{\mathrm{sys},\ell} \left(\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{sys},\ell}}{\mathrm{d}t}-Z_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\frac{\mathrm{d}q_{\mathrm{cor,p,in}}^{\mathrm{sys},\ell}}{\mathrm{d}t}\right) = q_{\mathrm{cor,p,in}}^{\mathrm{sys},\ell} - q_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\\ #&R_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\,q_{\mathrm{cor,p}}^{\mathrm{sys},\ell}=p_{\mathrm{ar}}^{\mathrm{sys}}-p_{\mathrm{cor,d}}^{\mathrm{sys},\ell} - Z_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\,q_{\mathrm{cor,p,in}}^{\mathrm{sys},\ell}\\ #&C_{\mathrm{cor,d}}^{\mathrm{sys},\ell} \frac{\mathrm{d}(p_{\mathrm{cor,d}}^{\mathrm{sys},\ell}-p_{\mathrm{v}}^{\ell})}{\mathrm{d}t} = q_{\mathrm{cor,p}}^{\mathrm{sys},\ell} - q_{\mathrm{cor,d}}^{\mathrm{sys},\ell}\\ #&R_{\mathrm{cor,d}}^{\mathrm{sys},\ell}\,q_{\mathrm{cor,d}}^{\mathrm{sys},\ell}=p_{\mathrm{cor,d}}^{\mathrm{sys},\ell}-p_{\mathrm{at}}^{r}\\ #&C_{\mathrm{cor,p}}^{\mathrm{sys},r} \left(\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{sys},r}}{\mathrm{d}t}-Z_{\mathrm{cor,p}}^{\mathrm{sys},r}\frac{\mathrm{d}q_{\mathrm{cor,p,in}}^{\mathrm{sys},r}}{\mathrm{d}t}\right) = q_{\mathrm{cor,p,in}}^{\mathrm{sys},r} - q_{\mathrm{cor,p}}^{\mathrm{sys},r}\\ #&R_{\mathrm{cor,p}}^{\mathrm{sys},r}\,q_{\mathrm{cor,p}}^{\mathrm{sys},r}=p_{\mathrm{ar}}^{\mathrm{sys}}-p_{\mathrm{cor,d}}^{\mathrm{sys},r} - Z_{\mathrm{cor,p}}^{\mathrm{sys},r}\,q_{\mathrm{cor,p,in}}^{\mathrm{sys},r}\\ #&C_{\mathrm{cor,d}}^{\mathrm{sys},r} \frac{\mathrm{d}(p_{\mathrm{cor,d}}^{\mathrm{sys},r}-p_{\mathrm{v}}^{\ell})}{\mathrm{d}t} = q_{\mathrm{cor,p}}^{\mathrm{sys},r} - q_{\mathrm{cor,d}}^{\mathrm{sys},r}\\ #&R_{\mathrm{cor,d}}^{\mathrm{sys},r}\,q_{\mathrm{cor,d}}^{\mathrm{sys},r}=p_{\mathrm{cor,d}}^{\mathrm{sys},r}-p_{\mathrm{at}}^{r}\\ #&0=q_{\mathrm{cor,d}}^{\mathrm{sys},\ell}+q_{\mathrm{cor,d}}^{\mathrm{sys},r}-q_{\mathrm{cor,d,out}}^{\mathrm{sys}} #\end{align} class coronary_circ_ZCRp_CRd_lr(): def __init__(self, params, varmap, auxmap, vs): self.Z_corp_sys_l = params['Z_corp_sys_l'] self.C_corp_sys_l = params['C_corp_sys_l'] self.R_corp_sys_l = params['R_corp_sys_l'] self.C_cord_sys_l = params['C_cord_sys_l'] self.R_cord_sys_l = params['R_cord_sys_l'] self.Z_corp_sys_r = params['Z_corp_sys_r'] self.C_corp_sys_r = params['C_corp_sys_r'] self.R_corp_sys_r = params['R_corp_sys_r'] self.C_cord_sys_r = params['C_cord_sys_r'] self.R_cord_sys_r = params['R_cord_sys_r'] try: self.V_corp_sys_l_u = params['V_corp_sys_l_u'] except: self.V_corp_sys_l_u = 0 try: self.V_cord_sys_l_u = params['V_cord_sys_l_u'] except: self.V_cord_sys_l_u = 0 try: self.V_corp_sys_r_u = params['V_corp_sys_r_u'] except: self.V_corp_sys_r_u = 0 try: self.V_cord_sys_r_u = params['V_cord_sys_r_u'] except: self.V_cord_sys_r_u = 0 self.ndcor = 9 self.varmap = varmap self.auxmap = auxmap self.vs = vs def equation_map(self, vindex, aindex, x_, a_, df_, f_, p_ar_, p_v_, p_at_): self.varmap['q_corp_sys_l_in'] = vindex self.varmap['q_corp_sys_l'] = vindex+1 self.varmap['p_cord_sys_l'] = vindex+2 self.varmap['q_cord_sys_l'] = vindex+3 self.varmap['q_corp_sys_r_in'] = vindex+4 self.varmap['q_corp_sys_r'] = vindex+5 self.varmap['p_cord_sys_r'] = vindex+6 self.varmap['q_cord_sys_r'] = vindex+7 self.varmap['q_ven'+str(self.vs+1)+'_sys'] = vindex+8 q_corp_sys_l_in_ = sp.Symbol('q_corp_sys_l_in_') q_corp_sys_l_ = sp.Symbol('q_corp_sys_l_') p_cord_sys_l_ = sp.Symbol('p_cord_sys_l_') q_cord_sys_l_ = sp.Symbol('q_cord_sys_l_') q_corp_sys_r_in_ = sp.Symbol('q_corp_sys_r_in_') q_corp_sys_r_ = sp.Symbol('q_corp_sys_r_') p_cord_sys_r_ = sp.Symbol('p_cord_sys_r_') q_cord_sys_r_ = sp.Symbol('q_cord_sys_r_') q_cord_sys_out_ = sp.Symbol('q_ven'+str(self.vs+1)+'_sys_') x_[self.varmap['q_corp_sys_l_in']] = q_corp_sys_l_in_ x_[self.varmap['q_corp_sys_l']] = q_corp_sys_l_ x_[self.varmap['p_cord_sys_l']] = p_cord_sys_l_ x_[self.varmap['q_cord_sys_l']] = q_cord_sys_l_ x_[self.varmap['q_corp_sys_r_in']] = q_corp_sys_r_in_ x_[self.varmap['q_corp_sys_r']] = q_corp_sys_r_ x_[self.varmap['p_cord_sys_r']] = p_cord_sys_r_ x_[self.varmap['q_cord_sys_r']] = q_cord_sys_r_ x_[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = q_cord_sys_out_ # populate df_ and f_ arrays df_[vindex] = self.C_corp_sys_l * (p_ar_[0] - self.Z_corp_sys_l * q_corp_sys_l_in_) # left coronary proximal volume rate df_[vindex+1] = 0. df_[vindex+2] = self.C_cord_sys_l * (p_cord_sys_l_ - p_v_) # left coronary distal volume rate df_[vindex+3] = 0. df_[vindex+4] = self.C_corp_sys_r * (p_ar_[1] - self.Z_corp_sys_r * q_corp_sys_r_in_) # right coronary proximal volume rate df_[vindex+5] = 0. df_[vindex+6] = self.C_cord_sys_r * (p_cord_sys_r_ - p_v_) # right coronary distal volume rate df_[vindex+7] = 0. df_[vindex+8] = 0. f_[vindex] = q_corp_sys_l_ - q_corp_sys_l_in_ # left coronary proximal flow balance f_[vindex+1] = (p_cord_sys_l_ - p_ar_[0] + self.Z_corp_sys_l * q_corp_sys_l_in_)/self.R_corp_sys_l + q_corp_sys_l_ # left coronary proximal momentum f_[vindex+2] = q_cord_sys_l_ - q_corp_sys_l_ # left coronary distal flow balance f_[vindex+3] = (p_at_ - p_cord_sys_l_)/self.R_cord_sys_l + q_cord_sys_l_ # left coronary distal momentum f_[vindex+4] = q_corp_sys_r_ - q_corp_sys_r_in_ # right coronary proximal flow balance f_[vindex+5] = (p_cord_sys_r_ - p_ar_[1] + self.Z_corp_sys_r * q_corp_sys_r_in_)/self.R_corp_sys_r + q_corp_sys_r_ # right coronary proximal momentum f_[vindex+6] = q_cord_sys_r_ - q_corp_sys_r_ # right coronary distal flow balance f_[vindex+7] = (p_at_ - p_cord_sys_r_)/self.R_cord_sys_r + q_cord_sys_r_ # right coronary distal momentum f_[vindex+8] = q_cord_sys_out_ - q_cord_sys_l_ - q_cord_sys_r_ # coronary sinus flow balance # auxiliary map and variables self.auxmap['V_corp_sys_l'] = aindex self.auxmap['V_cord_sys_l'] = aindex+1 self.auxmap['V_corp_sys_r'] = aindex+2 self.auxmap['V_cord_sys_r'] = aindex+3 a_[self.auxmap['V_corp_sys_l']] = self.C_corp_sys_l * (p_ar_[0] - self.Z_corp_sys_l * q_corp_sys_l_in_) + self.V_corp_sys_l_u a_[self.auxmap['V_cord_sys_l']] = self.C_cord_sys_l * (p_cord_sys_l_ - p_v_) + self.V_cord_sys_l_u a_[self.auxmap['V_corp_sys_r']] = self.C_corp_sys_r * (p_ar_[1] - self.Z_corp_sys_r * q_corp_sys_r_in_) + self.V_corp_sys_r_u a_[self.auxmap['V_cord_sys_r']] = self.C_cord_sys_r * (p_cord_sys_r_ - p_v_) + self.V_cord_sys_r_u # safety check that we don't hand in a zero symbol for p_v if p_v_ is sp.S.Zero: raise ValueError("Zero symbol for left ventricular pressure!") return [q_corp_sys_l_in_,q_corp_sys_r_in_], q_cord_sys_out_ def initialize(self, var, iniparam): try: var[self.varmap['q_corp_sys_l_in']] = iniparam['q_corp_sys_l_in_0'] except: var[self.varmap['q_corp_sys_l_in']] = iniparam['q_corp_sys_l_0'] var[self.varmap['q_corp_sys_l']] = iniparam['q_corp_sys_l_0'] var[self.varmap['p_cord_sys_l']] = iniparam['p_cord_sys_l_0'] var[self.varmap['q_cord_sys_l']] = iniparam['q_cord_sys_l_0'] try: var[self.varmap['q_corp_sys_r_in']] = iniparam['q_corp_sys_r_in_0'] except: var[self.varmap['q_corp_sys_r_in']] = iniparam['q_corp_sys_r_0'] var[self.varmap['q_corp_sys_r']] = iniparam['q_corp_sys_r_0'] var[self.varmap['p_cord_sys_r']] = iniparam['p_cord_sys_r_0'] var[self.varmap['q_cord_sys_r']] = iniparam['q_cord_sys_r_0'] try: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven'+str(self.vs+1)+'_sys_0'] except: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven_sys_0'] def print_to_screen(self, var_sq, aux): print("Output of 0D coronary model (ZCRp_CRd_lr):") print('{:<12s}{:<3s}{:<7.3f}{:<3s}{:<12s}{:<3s}{:<7.3f}'.format('p_cord_sys_l',' = ',var_sq[self.varmap['p_cord_sys_l']],' ','p_cord_sys_r',' = ',var_sq[self.varmap['p_cord_sys_r']])) sys.stdout.flush()
2.21875
2
APPRoot/loveword/migrations/0022_auto_20210217_1455.py
1633743096/-
9
12779767
<reponame>1633743096/- # Generated by Django 2.2.1 on 2021-02-17 06:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('loveword', '0021_quotation'), ] operations = [ migrations.AlterField( model_name='quotation', name='content', field=models.CharField(blank=True, max_length=255, null=True, verbose_name='语录内容'), ), ]
1.460938
1
sentenceEmbedder.py
varghesepaul-cp/NLP_Sentence_Similarity
0
12779768
import genism from genism.models.doc2vec import Doc2Vec , TaggedDocument from sklearn.metrics.pairwise import cosine_similarity f= open('dataset.txt','r') print(f.read) corpus = [ "This is first Sentence", "This is second Sentence", "This is third Sentence", "This is fourth Sentence", "This is fifth Sentence", ] documents = [TaggedDocument(doc,[i]) for i, doc in enumerate(corpus)] model = Doc2Vec(documents , vector_size = 10 , window = 2 , min_count = 1 , workers =4) model.save('sentenceEmbedderModel.pkl') print('Model Creation Successful.' + repr(model)) vector = model.infer_vector(['this is not a sentence']) vector_2 = model.infer_vector(['this is not a first sentence']) vector_3 = model.infer_vector(['this is not a sentence']) print("vector is " + repr(vector)) print("1 vs 2 " + repr(cosine_similarity([vector],[vector_2]))) print("1 vs 3 " + repr(cosine_similarity([vector],[vector_3])))
2.59375
3
Pillow-4.3.0/Tests/test_file_bmp.py
leorzz/simplemooc
0
12779769
from helper import unittest, PillowTestCase, hopper from PIL import Image, BmpImagePlugin import io class TestFileBmp(PillowTestCase): def roundtrip(self, im): outfile = self.tempfile("temp.bmp") im.save(outfile, 'BMP') reloaded = Image.open(outfile) reloaded.load() self.assertEqual(im.mode, reloaded.mode) self.assertEqual(im.size, reloaded.size) self.assertEqual(reloaded.format, "BMP") def test_sanity(self): self.roundtrip(hopper()) self.roundtrip(hopper("1")) self.roundtrip(hopper("L")) self.roundtrip(hopper("P")) self.roundtrip(hopper("RGB")) def test_invalid_file(self): with open("Tests/images/flower.jpg", "rb") as fp: self.assertRaises(SyntaxError, BmpImagePlugin.BmpImageFile, fp) def test_save_to_bytes(self): output = io.BytesIO() im = hopper() im.save(output, "BMP") output.seek(0) reloaded = Image.open(output) self.assertEqual(im.mode, reloaded.mode) self.assertEqual(im.size, reloaded.size) self.assertEqual(reloaded.format, "BMP") def test_dpi(self): dpi = (72, 72) output = io.BytesIO() im = hopper() im.save(output, "BMP", dpi=dpi) output.seek(0) reloaded = Image.open(output) self.assertEqual(reloaded.info["dpi"], dpi) def test_save_bmp_with_dpi(self): # Test for #1301 # Arrange outfile = self.tempfile("temp.jpg") im = Image.open("Tests/images/hopper.bmp") # Act im.save(outfile, 'JPEG', dpi=im.info['dpi']) # Assert reloaded = Image.open(outfile) reloaded.load() self.assertEqual(im.info['dpi'], reloaded.info['dpi']) self.assertEqual(im.size, reloaded.size) self.assertEqual(reloaded.format, "JPEG") def test_load_dib(self): # test for #1293, Imagegrab returning Unsupported Bitfields Format im = BmpImagePlugin.DibImageFile('Tests/images/clipboard.dib') target = Image.open('Tests/images/clipboard_target.png') self.assert_image_equal(im, target) if __name__ == '__main__': unittest.main()
2.3125
2
exp2/layers.py
raghakot/deep-learning-experiments
7
12779770
from keras.layers.convolutional import Convolution2D from keras import backend as K import tensorflow as tf permutation = [[1, 0], [0, 0], [0, 1], [2, 0], [1, 1], [0, 2], [2, 1], [2, 2], [1, 2]] def shift_rotate(w, shift=1): shape = w.get_shape() for i in range(shift): w = tf.reshape(tf.gather_nd(w, permutation), shape) return w class Convolution2D_4(Convolution2D): def call(self, x, mask=None): w = self.W w_rot = [w] for i in range(3): w = shift_rotate(w, shift=2) w_rot.append(w) outputs = tf.stack([K.conv2d(x, w_i, strides=self.subsample, border_mode=self.border_mode, dim_ordering=self.dim_ordering, filter_shape=self.W_shape) for w_i in w_rot]) output = K.max(outputs, 0) if self.bias: if self.dim_ordering == 'th': output += K.reshape(self.b, (1, self.nb_filter, 1, 1)) elif self.dim_ordering == 'tf': output += K.reshape(self.b, (1, 1, 1, self.nb_filter)) else: raise ValueError('Invalid dim_ordering:', self.dim_ordering) output = self.activation(output) return output class Convolution2D_8(Convolution2D): def call(self, x, mask=None): w = self.W w_rot = [w] for i in range(7): w = shift_rotate(w) w_rot.append(w) outputs = tf.stack([K.conv2d(x, w_i, strides=self.subsample, border_mode=self.border_mode, dim_ordering=self.dim_ordering, filter_shape=self.W_shape) for w_i in w_rot]) output = K.max(outputs, 0) if self.bias: if self.dim_ordering == 'th': output += K.reshape(self.b, (1, self.nb_filter, 1, 1)) elif self.dim_ordering == 'tf': output += K.reshape(self.b, (1, 1, 1, self.nb_filter)) else: raise ValueError('Invalid dim_ordering:', self.dim_ordering) output = self.activation(output) return output
2.71875
3
model-service/model_manager.py
leifan89/model-service
0
12779771
<filename>model-service/model_manager.py<gh_stars>0 from typing import Any from typing import Dict from .model.classifier import Classifier class ModelManager: def __init__(self, models: Dict[str, Classifier]): self.models = models def add_model(self, name: str, model: Classifier) -> None: if name in self.models: raise RuntimeError(f"Failed to add model with name {name}, already exists") self.models[name] = model def train_model(self, name: str, X, y) -> None: if name in self.models: self.models[name].train(X, y) else: raise RuntimeError(f"Model {name} is not found") def classify_with_model(self, name: str, X) -> Any: if name in self.models: return self.models[name].classify(X) else: raise RuntimeError(f"Model {name} is not found") def refresh_model(self, name: str) -> None: if name in self.models: self.models[name].refresh() else: raise RuntimeError(f"Model {name} is not found") def shutdown(self) -> None: for model in self.models.values(): model.shutdown()
2.828125
3
utils/flooder.py
bentettmar/kahoot-flooder
1
12779772
import kahoot import threading import utils class Flooder: def __init__(self, gamepin, botname, amount, delay, window): self.gamepin = gamepin self.botname = botname self.amount = amount self.delay = delay self.window = window self.suffix = 0 self.bot = kahoot.client() def loop(self): if self.suffix < int(self.amount): self.suffix += 1 self.bot.join(int(self.gamepin), f"{self.botname} [{self.suffix}]") self.bot.on("joined") self.window.after(int(self.delay), self.loop()) def start(self): notifier = utils.Notifier() notifier.send("Kahoot Flooder", f"Starting flood with {self.amount} bots, GUI may hang.") self.window.after(int(self.delay), self.loop())
2.953125
3
utils/json.py
visinf/mnvi
0
12779773
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json as jsn import os import sys import unicodedata from utils import six def read_json(filename): def _convert_from_unicode(data): new_data = dict() for name, value in six.iteritems(data): if isinstance(name, six.string_types): name = unicodedata.normalize('NFKD', name).encode( 'ascii', 'ignore') if isinstance(value, six.string_types): value = unicodedata.normalize('NFKD', value).encode( 'ascii', 'ignore') if isinstance(value, dict): value = _convert_from_unicode(value) new_data[name] = value return new_data output_dict = None with open(filename, "r") as f: lines = f.readlines() try: output_dict = jsn.loads(''.join(lines), encoding='utf-8') except: raise ValueError('Could not read %s. %s' % (filename, sys.exc_info()[1])) output_dict = _convert_from_unicode(output_dict) return output_dict def _replace_quotes(x): return x.replace("\'", "\"") def _parse_value(value): if isinstance(value, tuple): value = list(value) if value is None: return "null" if isinstance(value, str): if value.lower() == "none": return "null" if value.lower() == "false": return "false" if value.lower() == "true": return "true" value = value.replace("\'", "\"") return "\"%s\"" % _replace_quotes(value) if isinstance(value, bool): return str(value).lower() if isinstance(value, list): result = "[" for i, item in enumerate(value): result += _parse_value(item) if i < len(value) - 1: result += ", " result += "]" return result if isinstance(value, dict): result = "{" item_iterator = six.itersorteditems(value) for i, (dict_key, dict_value) in enumerate(item_iterator): result += "\"%s\": %s" % (dict_key, _parse_value(dict_value)) if i < len(value) - 1: result += ", " result += "}" return result return "%s" % _replace_quotes(str(value)) # ---------------------------------------------------------------------------- # Writes all pairs to a filename for book keeping # Either .txt or .json # ---------------------------------------------------------------------------- def write_dictionary_to_file(input_dict, filename, sortkeys=False): # ensure dir d = os.path.dirname(filename) if not os.path.exists(d): os.makedirs(d) item_iterator = six.itersorteditems(input_dict) if sortkeys else six.iteritems(input_dict) # check for json extension ext = os.path.splitext(filename)[1] if ext == ".json": with open(filename, 'w') as file: file.write("{\n") for i, (key, value) in enumerate(item_iterator): file.write(" \"%s\": %s" % (key, _parse_value(value))) if i < len(input_dict) - 1: file.write(',\n') else: file.write('\n') file.write("}\n") else: with open(filename, 'w') as file: for key, value in item_iterator: file.write('%s: %s\n' % (key, value))
2.65625
3
mkt/reviewers/tasks.py
oremj/zamboni
0
12779774
<reponame>oremj/zamboni<filename>mkt/reviewers/tasks.py import datetime import logging from django.conf import settings from celeryutils import task from tower import ugettext as _ import amo from amo.utils import send_mail_jinja import mkt.constants.reviewers as rvw log = logging.getLogger('z.task') @task def send_mail(cleaned_data, theme_lock): """ Send emails out for respective review actions taken on themes. """ theme = cleaned_data['theme'] action = cleaned_data['action'] reject_reason = cleaned_data['reject_reason'] reason = None if reject_reason: reason = rvw.THEME_REJECT_REASONS[reject_reason] comment = cleaned_data['comment'] emails = set(theme.addon.authors.values_list('email', flat=True)) context = { 'theme': theme, 'base_url': settings.SITE_URL, 'reason': reason, 'comment': comment } subject = None if action == rvw.ACTION_APPROVE: subject = _('Thanks for submitting your Theme') template = 'reviewers/themes/emails/approve.html' theme.addon.update(status=amo.STATUS_PUBLIC) elif action == rvw.ACTION_REJECT: subject = _('A problem with your Theme submission') template = 'reviewers/themes/emails/reject.html' theme.addon.update(status=amo.STATUS_REJECTED) reason = (rvw.THEME_REJECT_REASONS[reject_reason]) elif action == rvw.ACTION_DUPLICATE: subject = _('A problem with your Theme submission') template = 'reviewers/themes/emails/reject.html' theme.addon.update(status=amo.STATUS_REJECTED) reason = 'Duplicate' elif action == rvw.ACTION_FLAG: subject = _('Theme submission flagged for review') template = 'reviewers/themes/emails/flag_reviewer.html' emails = [settings.SENIOR_EDITORS_EMAIL] theme.addon.update(status=amo.STATUS_REVIEW_PENDING) # Send another email to the user notifying them that their Theme has # been flagged. send_mail_jinja(_('A problem with your Theme submission'), 'reviewers/themes/emails/flag_user.html', context, recipient_list=emails, headers={'Reply-To': theme_lock.reviewer.email}) elif action == rvw.ACTION_MOREINFO: subject = _('A question about your Theme submission') template = 'reviewers/themes/emails/moreinfo.html' context['reviewer_email'] = theme_lock.reviewer.email theme.addon.update(status=amo.STATUS_REVIEW_PENDING) amo.log(amo.LOG.THEME_REVIEW, theme.addon, details={ 'action': action, 'reject_reason': reject_reason, 'comment': comment}, user=theme_lock.reviewer) log.info('Theme %s (%s) - %s' % (theme.addon.name, theme.id, action)) theme.approve = datetime.datetime.now() theme.save() send_mail_jinja(subject, template, context, recipient_list=emails, headers={'Reply-To': theme_lock.reviewer.email})
1.84375
2
47/test_password.py
alehpineda/bitesofpy
0
12779775
<gh_stars>0 from password import validate_password, used_passwords def test_password_len(): assert not validate_password("<PASSWORD>") assert not validate_password("<PASSWORD>") def test_password_missing_chars(): assert not validate_password("UPPERCASE") assert not validate_password("lowercase") assert not validate_password("<PASSWORD>") assert not validate_password("<PASSWORD>") assert not validate_password("_password_") assert not validate_password("@#$$)==1") def test_password_only_one_letter(): assert not validate_password("@#$$)==1a") def test_validate_password_good_pws(): assert validate_password("<PASSWORD>") assert validate_password("<PASSWORD>") assert validate_password("<PASSWORD>") assert validate_password("<PASSWORD>") def test_password_not_used_before(): assert not validate_password("<PASSWORD>") assert not validate_password("<PASSWORD>") def test_password_cache_cannot_reuse(): num_passwords_use = len(used_passwords) assert validate_password("<PASSWORD>") assert len(used_passwords) == num_passwords_use + 1 assert not validate_password("<PASSWORD>")
2.921875
3
tests/record/test_enums.py
Ellipsanime/openpype-shotgun
6
12779776
<reponame>Ellipsanime/openpype-shotgun<filename>tests/record/test_enums.py<gh_stars>1-10 import uuid from assertpy import assert_that from shotgrid_leecher.record.enums import QueryStringType def test_query_string_type_from_unknown_type(): # Arrange guid = uuid.uuid4() # Act actual = QueryStringType.from_param(str(type(guid))) # Assert assert_that(actual.value).is_equal_to(str) def test_query_string_type_from_string(): # Arrange # Act actual = QueryStringType.from_param("StR") # Assert assert_that(actual.value).is_equal_to(str) def test_query_string_type_from_float(): # Arrange # Act actual = QueryStringType.from_param("flOaT ") # Assert assert_that(actual.value).is_equal_to(float) def test_query_string_type_from_int(): # Arrange # Act actual = QueryStringType.from_param(" InT") # Assert assert_that(actual.value).is_equal_to(int)
2.609375
3
day1/part1.py
cheddar-cheeze/advent-of-code-2018
0
12779777
<filename>day1/part1.py #! /bin/python3 import requests text = """ +6 -17 +16 +7 +12 +2 -7 -5 -4 -16 +2 +12 -16 -1 -12 -3 +8 -12 +8 -3 +18 -9 +1 -20 +15 -11 -18 -8 +18 -4 +10 +1 -2 +13 +12 +16 -6 +12 +2 +11 +5 +1 -14 +16 -20 -5 +20 +6 +13 +11 +3 -9 -15 +1 +19 +8 +19 -16 +19 -17 -17 +19 +2 +5 +16 +2 -4 +19 +6 -16 +15 +7 +5 -18 +19 -8 +9 +15 -3 -3 -15 +13 -1 +10 +13 +16 -4 +10 -12 +10 +17 -2 -17 +10 +17 +8 +7 +5 +17 +10 +14 -17 -13 +19 +6 -11 +10 +8 +1 -18 -5 -8 -19 +12 +12 -4 +8 -10 -9 +2 +11 -6 +23 +17 -10 +5 +9 +19 +4 -1 +6 +12 -16 +9 +6 -9 +4 -2 -14 -5 -9 +13 +10 -2 +17 +10 +13 -5 -12 +19 +10 +16 +13 -19 -17 +4 +12 +18 -14 +5 +17 -5 -4 +18 -5 -1 -18 +11 +12 +15 -9 +3 -7 +8 -16 +9 -13 -10 -11 +3 +2 +19 +21 +6 +6 +2 -5 -6 +13 -18 -15 -16 +8 -13 -14 +9 -3 -8 -11 +9 -15 -16 +4 +13 -18 +10 -3 +15 +8 -18 +13 -5 +18 +15 -20 +19 +26 +7 -4 +25 -8 -19 +13 -2 -8 +11 +22 -16 +9 -1 +20 +12 -9 +10 -8 +9 +19 +17 +10 +4 -11 +15 +5 +4 -11 +19 -7 -6 -9 -18 +2 -9 +16 -17 +21 +16 +7 +1 +11 -4 -20 +31 -1 +2 +17 -12 -12 +18 -16 +18 -6 +19 -5 +1 +11 -8 -1 -16 +15 +17 +4 +1 -8 +15 -3 +18 -9 -15 -16 -18 +7 -22 +21 -13 -19 +3 -25 +5 -8 -19 -18 -6 +12 -11 +19 +6 +19 +70 -12 -15 +3 +25 +1 +18 -12 +21 +14 +2 +6 -13 -12 +6 +3 +13 +2 +11 -9 +1 -13 +15 +15 +1 +10 -9 +5 +13 -17 +10 +3 +12 -7 -4 +6 +3 -16 +15 +13 -9 +12 +20 +10 +3 +14 +16 -1 -13 -9 +8 +2 +17 -13 +10 +1 +11 +20 +16 -14 +11 -17 -2 +20 +7 -24 -7 +14 -1 +5 +10 +26 -13 +30 +9 -6 +13 +31 +14 -1 +4 -24 -59 -10 +8 -20 -11 -14 -10 -6 -15 -3 -14 +10 +16 +2 -5 +4 -18 -13 -7 -11 -5 -7 -16 -15 -1 -10 +16 +8 -17 +12 -18 -5 -25 +17 -12 -10 -3 -10 +11 +4 -7 +19 +51 +4 +6 -5 -11 -2 +15 -6 -5 -29 -20 +6 +6 -4 -28 -13 -2 -15 -16 -64 +23 -36 -25 -21 -52 -118 -18 -28 +25 -6 +29 +26 +46 -69 -37 -75 -100 -463 -63213 +11 +13 -21 -4 +17 +29 -10 -16 +2 -16 +7 +11 -16 -9 -21 +6 -1 -8 -3 +7 -5 -18 +14 -10 +1 +7 +9 -19 +7 -18 -7 +8 -7 +10 +4 +7 +9 +18 +55 +21 +16 -13 -61 +11 -45 -35 -14 -8 -10 -12 +6 -7 +17 -2 -13 -20 +11 -13 +12 +13 -2 -8 +13 -23 -8 -9 +4 +2 +4 -12 -11 -11 -9 +11 +14 -18 -16 +19 -13 -14 +7 -6 -9 -16 -5 +15 +1 -8 +15 +15 +12 +10 +16 -18 +3 -17 -10 -16 -15 -16 +1 +4 +14 -10 -6 +12 -9 -8 -20 -7 +4 +6 -22 +10 -15 -13 +15 -12 +3 -14 -17 +18 -20 -19 +14 +2 -9 -16 +11 -19 -1 -19 -3 -12 -16 -4 -2 +7 -12 +14 +4 +14 +13 +1 +4 +10 +14 -16 -2 -19 -8 -8 -22 -23 +10 +1 -14 -17 -17 -6 +9 -16 +4 +11 -14 +11 -17 -9 -8 -17 -13 +17 -15 -8 -16 -3 -5 -8 -17 +2 +5 +2 -19 -1 -12 +1 +16 -8 -19 -18 -2 -15 +7 -11 -6 +12 -14 -18 +15 -18 -12 +10 +12 -17 -13 -18 +13 -11 +15 -9 +8 +11 -20 +17 +9 +18 -29 +3 -14 -14 +2 -12 -5 -19 -19 -16 -15 +13 -8 -3 -17 -4 -9 +17 -12 +17 -10 +22 +6 -9 +6 -5 +17 +17 -5 -16 -16 -13 -13 +5 +6 -24 -3 -16 -12 +7 +18 -4 +13 -8 +13 +8 +13 -18 -5 -14 +17 -11 +1 -21 -13 -10 -16 +4 +16 -18 +13 -19 -10 -2 +7 -23 +8 -3 -2 -36 -5 -6 +10 -19 +11 -19 +7 +17 +13 -6 +12 -3 +14 +11 +18 +7 +13 +4 +19 -1 +12 +1 -5 -6 -6 +1 +2 +7 -14 -3 -2 +33 +14 +25 +28 +8 +8 +11 +19 -6 +12 -16 -13 -9 +7 -2 +9 -19 -19 +12 -8 +26 -16 -16 +19 +18 +19 -18 +15 -10 -2 +8 -5 +1 -9 -25 +7 +16 +17 +12 +7 +3 +2 -16 +30 +4 +5 -13 -14 -16 +7 -12 +18 +6 +25 +24 +1 +9 +6 -3 -11 +20 -2 +18 +12 +18 -11 -2 +15 +8 -11 -16 -6 +20 +11 +11 +16 +2 +18 +12 -17 +12 +11 -9 +16 +8 -10 -7 +19 +2 +13 +12 -20 -25 +2 +9 -13 +19 -4 -10 -17 +7 -9 +10 +15 -13 -25 -1 -10 +13 -12 +7 -18 -7 -17 +9 -4 -17 -11 -7 -5 -1 -16 +14 +20 -13 +42 -25 -27 -39 +12 -41 +3 +19 -2 -23 -12 -48 -35 +6 -116 +16 +18 -2 +7 -11 -40 +41 -155 +5 +125 -238 -1 -63346 -9 -18 -3 -11 +13 -4 -3 -4 -3 +23 +11 +14 +12 +3 +7 +1 -18 +15 -7 -15 -1 -9 +14 -10 -22 -1 -24 -13 +6 -14 -7 -8 -7 -1 -5 +9 +6 +19 +13 +3 -19 -13 -15 -2 +15 +3 +24 +26 +72 -16 +14 +16 +17 +14 -4 -3 +10 +3 +11 +12 +15 +9 +12 +5 +11 -35 -23 +11 -10 -5 +3 -15 -15 +128514 """ a = 0 for num in text.splitlines(): if '-' in num: a = a - int(num.replace('-', '')) if '+' in num: a = a + int(num.replace('+', '')) else: pass print("the value is {}".format(a,))
2.484375
2
mvc/__init__.py
PyXRD/pyxrd
27
12779778
<reponame>PyXRD/pyxrd # coding=UTF-8 # ex:ts=4:sw=4:et=on # ------------------------------------------------------------------------- # Copyright (C) 2014 by <NAME> <mathijs dot dumon at gmail dot com> # Copyright (C) 2005 by <NAME> <<EMAIL>> # # mvc is a framework derived from the original pygtkmvc framework # hosted at: <http://sourceforge.net/projects/pygtkmvc/> # # mvc is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # mvc is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, # Boston, MA 02110, USA. # ------------------------------------------------------------------------- # FIXME clean this mess up """ Shortcuts are provided to the following classes defined in submodules: .. class:: Model :noindex: .. class:: TreeStoreModel :noindex: .. class:: ListStoreModel :noindex: .. class:: TextBufferModel :noindex: .. class:: ModelMT :noindex: .. class:: Controller :noindex: .. class:: View :noindex: .. class:: Observer :noindex: .. class:: Observable :noindex: """ from .support.version import LooseVersion from .__version import __version__ # Class shortcuts: from .observers import Observer from .support.observables import Signal, Observable from .models import * try: from .view import View from .controller import Controller except ImportError: import logging logging.getLogger(__name__).warning("ImportError when trying to load View and/or Controller: do you have PyGTK/GObject installed?")
1.304688
1
app/main/handlers/main.py
chrisrowles/raspi-sh
0
12779779
<filename>app/main/handlers/main.py<gh_stars>0 import io import socket import weakref import paramiko import tornado.websocket from tornado.ioloop import IOLoop from app.main.worker import Worker from app.main.handlers.base import BaseHandler DELAY = 3 workers = {} def recycle(worker): if worker.handler: return workers.pop(worker.id, None) worker.close() class HttpHandler(BaseHandler): def get_privatekey(self): try: data = self.request.files.get('privatekey')[0]['body'] except TypeError: return return data.decode('utf-8') def get_specific_pkey(self, pkeycls, privatekey, password): try: pkey = pkeycls.from_private_key(io.StringIO(privatekey), password=password) except paramiko.PasswordRequiredException: raise ValueError('Need password to decrypt the private key.') except paramiko.SSHException: pass else: return pkey def get_pkey(self, privatekey, password): password = password.encode('utf-8') if password else None pkey = self.get_specific_pkey(paramiko.RSAKey, privatekey, password)\ or self.get_specific_pkey(paramiko.DSSKey, privatekey, password)\ or self.get_specific_pkey(paramiko.ECDSAKey, privatekey, password)\ or self.get_specific_pkey(paramiko.Ed25519Key, privatekey, password) if not pkey: raise ValueError('Not a valid private key file or ' 'wrong password for decrypting the private key.') return pkey def get_port(self): value = self.get_value('port') try: port = int(value) except ValueError: port = 0 if 0 < port < 65536: return port raise ValueError('Invalid port {}'.format(value)) def get_value(self, name): value = self.get_argument(name) if not value: raise ValueError('Empty {}'.format(name)) return value def get_args(self): hostname = self.get_value('hostname') port = self.get_port() username = self.get_value('username') password = self.get_argument('password') privatekey = self.get_privatekey() pkey = self.get_pkey(privatekey, password) if privatekey else None args = (hostname, port, username, password, pkey) return args def ssh_connect(self): ssh = paramiko.SSHClient() ssh.load_system_host_keys() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) args = self.get_args() dest_addr = '{}:{}'.format(*args[:2]) try: ssh.connect(*args, timeout=6) except socket.error: raise ValueError('Unable to connect to {}'.format(dest_addr)) except paramiko.BadAuthenticationType: raise ValueError('Authentication failed.') channel = ssh.invoke_shell(term='xterm') channel.setblocking(0) worker = Worker(ssh, channel, dest_addr) IOLoop.current().call_later(DELAY, recycle, worker) return worker def post(self): worker_id = None status = None try: worker = self.ssh_connect() except Exception as e: status = str(e) else: worker_id = worker.id workers[worker_id] = worker self.write(dict(id=worker_id, status=status)) class WebsocketHandler(tornado.websocket.WebSocketHandler): def data_received(self, chunk): pass def __init__(self, *args, **kwargs): self.loop = IOLoop.current() self.worker_ref = None super().__init__(*args, **kwargs) def check_origin(self, origin): return True def get_addr(self): ip = self.request.headers.get_list('X-Real-Ip') port = self.request.headers.get_list('X-Real-Port') addr = ':'.join(ip + port) if not addr: addr = '{}:{}'.format(*self.stream.socket.getpeername()) return addr def open(self): self.src_addr = self.get_addr() worker = workers.pop(self.get_argument('id'), None) if not worker: self.close(reason='Invalid worker id') return self.set_nodelay(True) worker.set_handler(self) self.worker_ref = weakref.ref(worker) self.loop.add_handler(worker.fd, worker, IOLoop.READ) def on_message(self, message): worker = self.worker_ref() worker.data_to_dst.append(message) worker.on_write() def on_close(self): worker = self.worker_ref() if self.worker_ref else None if worker: worker.close()
2.25
2
purpledrop/electrode_board.py
uwmisl/purpledrop-driver
0
12779780
import json import numpy as np import os import pkg_resources import re from typing import Any, AnyStr, Dict, List, Optional, Tuple def load_peripheral(pdata, templates=None): """Load a peripheral from a dict This loads a peripheral with support for templates, as used in the board definition file format Args: pdata: A dict containing the peripheral definition templates: A dict mapping types to template definitions """ if not 'type' in pdata: raise ValueError("Peripheral definition requires a type field") template = None if templates is not None and pdata['type'] in templates: template = templates[pdata['type']] periph = pdata # Override electrodes with fields from template def map_electrode(e): eid = e['id'] if template is None: return e e_template = next((x for x in template['electrodes'] if x['id'] == eid), None) if e_template is None: return e # Merge dicts, with values in e taking priority in case of duplicate keys return {**e_template, **e} periph['electrodes'] = [map_electrode(e) for e in periph['electrodes']] return periph class Fiducial(object): """Represents a fiducial location """ def __init__(self, corners: List[List[int]], label: str=""): self.corners = corners self.label = label @staticmethod def from_dict(data): return Fiducial(**data) def to_dict(self): return { 'corners': self.corners, 'label': self.label } class ControlPoint(object): """Represents a control point in an image A control point is a pair of corresponding points -- one in image coordinates and the other in grid coordinates -- used to calibrate the position of the electrode grid relative to fiducials. """ def __init__(self, grid_coord: Tuple[float, float], image_coord: Tuple[float, float]): self.grid = grid_coord self.image = image_coord def from_dict(data): if not 'grid' in data: raise ValueError(f'A control point must have a `grid` and `image` attribute: {data}') if not 'image' in data: raise ValueError(f'A control point must have a `grid` and `image` attribute: {data}') return ControlPoint(data['grid'], data['image']) class Registration(object): """A registration is a collection of fiducials and control points which together define relationship between the electrode locations and fiducials """ def __init__(self, data: dict): if not 'fiducials' in data: raise ValueError(f'A Registration requires a fiducials attribute, not found in: {data}') if not 'control_points' in data: raise ValueError(f'A Registration requires a control points attribute, not found in: {data}') if not isinstance(data['fiducials'], list): raise ValueError(f'A Registration `fiducial` attribute must be a list: {data}') if not isinstance(data['control_points'], list): raise ValueError(f'a Registration `control_points` attribute must be a list: {data}') self.fiducials = [Fiducial.from_dict(f) for f in data['fiducials']] self.control_points = [ControlPoint.from_dict(cp) for cp in data['control_points']] class Layout(object): """Represents the 'layout' property of a baord definition A layout defines the placement and pin mapping for the electrodes on the board. """ def __init__(self, layout_def: Dict[str, Any]): self.peripherals = None self.grids = [] def intify_pins(grid_pins): result = [] for row in grid_pins: new_row: List[Optional[int]] = [] for pin in row: if pin == -1 or pin is None: new_row.append(None) else: new_row.append(int(pin)) result.append(new_row) return result # Old format files use 'grid' to define a single grid # New format uses an array of objects, under the key 'grids' if 'grid' in layout_def: self.grids.append({ 'origin': [0.0, 0.0], 'pitch': 1.0, 'pins': intify_pins(layout_def['grid']) }) elif 'grids' in layout_def: for g in layout_def['grids']: self.grids.append({ 'origin': g['origin'], 'pitch': g['pitch'], 'pins': intify_pins(g['pins']), }) if 'peripherals' in layout_def: self.peripherals = [load_peripheral(p, layout_def.get('peripheral_templates', None)) for p in layout_def['peripherals']] def grid_location_to_pin(self, x: int, y: int, grid_number:int =0): """Return the pin number at given grid location, or None if no pin is defined there. """ if grid_number < len(self.grids): grid = self.grids[grid_number]['pins'] else: grid = [[]] # Empty grid if y < 0 or y >= len(grid): return None row = grid[y] if x < 0 or x >= len(row): return None return grid[y][x] def pin_to_grid_location(self, pin: int) -> Optional[Tuple[Tuple[int, int], int]]: """Return the grid location of a given pin number """ for g, grid in enumerate(self.grids): for y, row in enumerate(grid['pins']): for x, p in enumerate(row): if p == pin: return ((x, y), g) return None def pin_polygon(self, pin: int) -> Optional[List[Tuple[int, int]]]: """Get the polygon defining a pin in board coordinates """ # Try to find the pin in a grid grid_info = self.pin_to_grid_location(pin) if grid_info is not None: loc, grid_idx = grid_info square = np.array([[0., 0.], [0., 1.], [1., 1.], [1., 0.]]) grid = self.grids[grid_idx] polygon = (square + loc) * grid['pitch'] + grid['origin'] return polygon.tolist() # Try to find the pin in a peripheral if self.peripherals is None: return None for periph in self.peripherals: for el in periph['electrodes']: if el['pin'] == pin: polygon = np.array(el['polygon']) rotation = np.deg2rad(periph.get('rotation', 0.0)) R = np.array([[np.cos(rotation), -np.sin(rotation)], [np.sin(rotation), np.cos(rotation)]]) polygon = np.dot(R, polygon.T).T return (polygon + periph['origin']).tolist() return None def as_dict(self) -> dict: """Return a serializable dict version of the board definition """ return { "grids": self.grids, "peripherals": self.peripherals } class Board(object): """Represents the top-level object in an electrode board definition file """ def __init__(self, board_def: Dict[str, Any]): self.registration: Optional[Registration] = None if not 'layout' in board_def: raise RuntimeError("Board definition file must contain a 'layout' object") self.layout = Layout(board_def['layout']) self.oversized_electrodes = board_def.get('oversized_electrodes', []) if 'registration' in board_def: self.registration = Registration(board_def['registration']) @staticmethod def load_from_file(filepath): """Create a Board from a board definition file """ with open(filepath, 'r') as f: data = json.loads(f.read()) return Board(data) @staticmethod def load_from_string(data: AnyStr) -> 'Board': """Create a board from a JSON string in memory """ return Board(json.loads(data)) def as_dict(self) -> dict: """Return a serializable dict representation of the board """ return { 'layout': self.layout.as_dict(), 'oversized_electrodes': self.oversized_electrodes, } def list_boards(): """Find all available board definitions. Uses same search rules as load_board; see :func:`load_board`. Returns: A list of board names, which can be passed to `load_board` """ config_dir = os.path.expanduser("~/.config/purpledrop/boards") package_files = pkg_resources.resource_listdir('purpledrop', 'boards') if os.path.isdir(config_dir): config_files = os.listdir(config_dir) else: config_files = [] board_names = [] def add_files(files): for f in files: print(f"Checking {f}") match = re.match(r'(.+).json', os.path.basename(f)) if match: board_names.append(match.group(1)) # Config files take priority, if there are any duplicates add_files(package_files) add_files(config_files) return board_names def load_board(name) -> Optional[Board]: """Load a board definition by name or path Attempt to load a board definition from the name, using the following priorities (the first to succeed is returned): 1. Load as a full path 2. Load from ~/.config/purpledrop/boards/{name}.json 3. Load from package resources (`purpledrop/boards` in repo) """ if os.path.isfile(name): return Board.load_from_file(name) home_path = os.path.expanduser(f"~/.config/purpledrop/boards/{name}.json") if os.path.isfile(home_path): return Board.load_from_file(home_path) try: resource_data = pkg_resources.resource_string('purpledrop', f"boards/{name}.json") return Board.load_from_string(resource_data) except FileNotFoundError: pass return None
3
3
example/FT600_massive_send/Python/usb_rx_check.py
Janet-ZHU/FTDI-245fifo-interface
0
12779781
<gh_stars>0 #-*- coding:utf-8 -*- # Python2.7 x86 # Function: Function: Verify the correctness of the data received by the host computer import sys, time import numpy as np from warnings import filterwarnings datatype = np.uint16 def openUSB(): import ftd3xx if sys.platform == 'win32': import ftd3xx._ftd3xx_win32 as _ft elif sys.platform == 'linux2': import ftd3xx._ftd3xx_linux as _ft usb = ftd3xx.create(0, _ft.FT_OPEN_BY_INDEX) if usb is None: print("*** ERROR: Can't find or open Device!") return False, None if (sys.platform == 'win32' and usb.getDriverVersion() < 0x01020006): print("*** ERROR: Old kernel driver version. Please update driver!") usb.close() return False, None if usb.getDeviceDescriptor().bcdUSB < 0x300: print("*** Warning: Device is NOT connected using USB3.0 cable or port!") return False, None cfg = usb.getChipConfiguration() numChannels = [4, 2, 1, 0, 0] numChannel = numChannels[cfg.ChannelConfig] if numChannel != 1: print("*** ERROR:Number of Channels invalid! (numChannel=%d)" % (numChannel,) ) return False, None return True, usb if __name__ == '__main__': ret, usb = openUSB() if not ret: sys.exit() print("\n Reading...") datas = [] tx_data = bytearray(16) rx_cnt = 0 time_start = time.time() for ii in range(4): for jj in range(4): data = bytes(65536*8) usb.writePipe(0x02+0, bytes(tx_data), len(tx_data)) # While receiving massive data, scattered transmit a few data to verify the stability of FPGA code tx_data[-1] += 1 rxc = usb.readPipe(0x82, data, len(data)) rx_cnt += rxc datas.append(data[:rxc]) print(" recieved %dB" % rx_cnt) time_cost = time.time() - time_start print("\n time:%.2fs rate:%.2fMBps" % (time_cost,rx_cnt/time_cost/1000000.0) ) usb.close() print("\n Verify...") # 将接收到的所有数据合成一个 numpy 数组,相邻两字节合并,元素类型为 uint16 for ii,data in enumerate(datas): arr_tmp = np.frombuffer(data, dtype=datatype) if ii==0: arr = arr_tmp else: arr = np.append(arr,arr_tmp) filterwarnings("ignore",category=RuntimeWarning) # 下位机发送规则为递增数组,在上位机验证数组是否为递增,以验证USB传输的正确性 corrent_cnt, uncorrect_cnt = 0, 0 for i in range(len(arr)-1): if arr[i+1]-arr[i] == datatype(1): corrent_cnt += 1 else: #print(' Error at %d: %08x %08x' % (i+1, arr[i], arr[i+1]) ) uncorrect_cnt += 1 print(' correct count %d error count %d\n' % (corrent_cnt, uncorrect_cnt))
2.84375
3
master.py
jet-black/ppo-lstm-parallel
38
12779782
from multiprocessing import Queue, Process from threading import Thread import numpy as np import utils from agent import PPOAgent from policy import get_policy from worker import Worker import environments class SimpleMaster: def __init__(self, env_producer): self.env_name = env_producer.get_env_name() self.config = environments.get_config(self.env_name) self.worker_size = self.config["worker_num"] self.env_producer = env_producer self.queues = [] self.w_in_queue = Queue() self.init_workers() self.session = None self.trainable_vars = None self.accum_vars = None self.p_opt_vars = None self.v_opt_vars = None self.assign_op = None self.agent = None self.saver = None self.summary_writer = None self.beta = 1 self.lr_multiplier = 1.0 self.iter_count = 1 self.variables_file_path = "models/%s/variables.txt" % self.env_name self.model_path = "models/%s/model" % self.env_name self.initialized = False self.cur_step = -1 self.start() def init_workers(self): for i in range(self.worker_size): q = Queue() self.queues.append(q) t = Process(target=make_worker, args=(self.env_producer, i, q, self.w_in_queue)) t.start() def start(self): import tensorflow as tf env_opts = environments.get_env_options(self.env_name, self.env_producer.get_use_gpu()) self.summary_writer = tf.summary.FileWriter("logs/%s" % self.env_name) self.session = utils.create_session(env_opts, True) with tf.variable_scope("master-0"): pol = get_policy(env_opts, self.session) self.agent = PPOAgent(pol, self.session, "master-0", env_opts) self.trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "master-0") self.accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in self.trainable_vars] p_vars = self.agent.p_opt.variables() v_vars = self.agent.v_opt.variables() self.p_opt_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in p_vars] self.v_opt_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in v_vars] p_assign_ops = [p_vars[i].assign(self.p_opt_vars[i]) for i in range(len(p_vars))] v_assign_ops = [v_vars[i].assign(self.v_opt_vars[i]) for i in range(len(v_vars))] assign_ops = [self.trainable_vars[i].assign(self.accum_vars[i]) for i in range(len(self.trainable_vars))] self.assign_op = tf.group(assign_ops + p_assign_ops + v_assign_ops) self.restore_variables() self.saver = tf.train.Saver(max_to_keep=1) self.session.run(tf.global_variables_initializer()) try: self.saver = tf.train.import_meta_graph( tf.train.latest_checkpoint("models/%s/" % env_opts["env_name"]) + ".meta") self.saver.restore(self.session, tf.train.latest_checkpoint("models/%s/" % env_opts["env_name"])) except: print("failed to restore model") while True: if self.iter_count % 10 == 0: print("Saving model...") self.save_variables() self.saver.save(self.session, self.model_path, self.iter_count) print("Model saved") self.broadcast_weights() self.merge_weights() self.iter_count += 1 def restore_variables(self): try: lines = open(self.variables_file_path).readlines() result = {} for l in lines: a, b = l.split("=") b = b.strip() result[a] = b self.iter_count = int(result["global_step"]) + 1 self.beta = float(result["beta"]) self.lr_multiplier = float(result["lr_multiplier"]) except: print("failed to restore variables") def save_variables(self): f = open(self.variables_file_path, "w") lines = [] lines.append("global_step=%s\n" % self.iter_count) lines.append("beta=%s\n" % self.beta) lines.append("lr_multiplier=%s\n" % self.lr_multiplier) f.writelines(lines) f.close() def broadcast_weights(self): weights, p_opt_weights, v_opt_weights = self.session.run([self.trainable_vars, self.agent.p_opt.variables(), self.agent.v_opt.variables()]) arr = [self.beta, self.lr_multiplier, p_opt_weights, v_opt_weights, weights] for q in self.queues: q.put(arr) def merge_weights(self): results = [] for i in range(self.worker_size): results.append(self.w_in_queue.get()) self.beta = np.mean([x[0] for x in results]) self.lr_multiplier = np.mean([x[1] for x in results]) p_opt_weights = self.make_means([x[2] for x in results]) v_opt_weights = self.make_means([x[3] for x in results]) weights = self.make_means([x[4] for x in results]) first_worker = [x for x in results if x[5]["idx"] == 0][0] self.record_stats(first_worker[5]) fd = {} for i, t in enumerate(self.accum_vars): fd[t] = weights[i] for i, t in enumerate(self.p_opt_vars): fd[t] = p_opt_weights[i] for i, t in enumerate(self.v_opt_vars): fd[t] = v_opt_weights[i] self.session.run(self.assign_op, feed_dict=fd) def make_means(self, weights): result = [] for i in range(len(weights[0])): acc = [] for j in range(len(weights)): acc.append(weights[j][i]) acc = np.mean(acc, axis=0) result.append(acc) return result def record_stats(self, stats): if self.cur_step == stats["step"]: return self.cur_step = stats["step"] self.record_losses(stats["kl"], stats["entropy"], stats["hinge"], stats["src_policy_loss"], stats["vloss"], stats["ploss"], stats["step"]) cum_rew = 0 for s in stats["stats"]: self.log_summary(s["reward"], s["step"], s["a_probs"], s["picked_a"], s["a_dim"], s["discrete"]) cum_rew += s["reward"] cum_rew /= max(1, len(stats["stats"])) print("Average reward: %s" % cum_rew) def record_losses(self, cur_kl, entropy, hinge, src_policy_loss, vloss, ploss, step): import tensorflow as tf summary = tf.Summary() summary.value.add(tag='Losses/value_loss', simple_value=vloss) summary.value.add(tag='Losses/policy_loss', simple_value=ploss) summary.value.add(tag='Losses/kl_divergence', simple_value=cur_kl) summary.value.add(tag='Losses/entropy', simple_value=entropy) summary.value.add(tag='Losses/src_policy_loss', simple_value=src_policy_loss) summary.value.add(tag='Losses/hinge', simple_value=hinge) summary.value.add(tag='Vars/beta', simple_value=self.beta) summary.value.add(tag='Vars/lr_multiplier', simple_value=self.lr_multiplier) self.summary_writer.add_summary(summary, step) self.summary_writer.flush() def log_summary(self, reward, step, a_probs, picked_a, a_dim, discrete): import tensorflow as tf summary = tf.Summary() summary.value.add(tag='Reward/per_episode', simple_value=float(reward)) if not discrete: for i in range(a_dim): prefix = "Action" + str(i) summary.value.add(tag=prefix + '/mean', simple_value=float(a_probs[i])) summary.value.add(tag=prefix + "/std", simple_value=float(a_probs[i + a_dim])) summary.value.add(tag=prefix + '/picked', simple_value=float(picked_a[i])) else: for i in range(a_dim): prefix = "Action" + str(i) summary.value.add(tag=prefix + '/prob', simple_value=float(a_probs[i])) summary.value.add(tag='Action/picked', simple_value=float(picked_a)) self.summary_writer.add_summary(summary, step) self.summary_writer.flush() def make_worker(env_producer, i, q, w_in_queue): return Worker(env_producer, i, q, w_in_queue)
2.390625
2
trex/management/commands/secretkey.py
bjoernricks/trex
0
12779783
<filename>trex/management/commands/secretkey.py # -*- coding: utf-8 -*- # # (c) 2014 <NAME> <<EMAIL>> # # See LICENSE comming with the source of 'trex' for details. # from optparse import make_option from django.core.management.base import BaseCommand from django.utils.crypto import get_random_string class Command(BaseCommand): help = "Create a SECRET_KEY for settings.py" option_list = BaseCommand.option_list + ( make_option("-o", "--out", dest="file", help="File to write the generated key"), ) def handle(self, *args, **options): # see django/core/management/commands/startproject.py chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)' secret_key = get_random_string(50, chars) filename = options.get("file") if filename: with open(filename, "w") as f: f.write(secret_key) f.write("\n") else: print secret_key
2.3125
2
app/resources/api.py
PopuriAO29/mp3-reverser
0
12779784
import os from flask import abort from flask import request from flask import send_from_directory from app import app from app.main.RequestParameters import RequestParameters from app.main.Session import Session from app.main.Session import Status from app.main.exceptions.exceptions import InvalidSessionIdError API_PATH_PREFIX = '/api' def _get_session(session_id): try: return Session(session_id) except InvalidSessionIdError: abort(404) def _get_status_url(session_id): return API_PATH_PREFIX + '/status/' + session_id def _get_result_file_url(session_id): return API_PATH_PREFIX + '/results/' + session_id @app.route(API_PATH_PREFIX + '/process', methods=['POST']) def new_request(): try: file = request.files['file'] if not file: abort(400) # TODO Validate file session = Session() session.store_input_file(file) request_parameters = RequestParameters.parse(request.form) session.start_processing(request_parameters) return { 'status_url': _get_status_url(session.session_id), } except ValueError: abort(400) @app.route(API_PATH_PREFIX + '/health') def health(): return 'health' @app.route(API_PATH_PREFIX + '/status/<path:session_id>') def check_status(session_id): session = _get_session(session_id) status_result = { 'status': 'in_progress', } status = session.get_status() if status == Status.SUCCESS: status_result['status'] = 'done' elif status == Status.FAILURE: status_result['status'] = 'error' is_done = session.get_status() == Status.SUCCESS if is_done: status_result['result_url'] = _get_result_file_url(session_id) return status_result @app.route(API_PATH_PREFIX + '/results/<path:session_id>') def results(session_id): session = _get_session(session_id) return send_from_directory( os.path.join('..', session.get_session_directory()), session.get_result_file_name(), )
2.484375
2
tests/extractor.py
benstobbs/winevt-kb
9
12779785
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the Windows Event Log message resource extractor class.""" import unittest from dfvfs.helpers import fake_file_system_builder from dfvfs.helpers import windows_path_resolver from dfvfs.lib import definitions as dfvfs_definitions from dfvfs.path import factory as path_spec_factory from winevtrc import extractor from winevtrc import resources from tests import test_lib as shared_test_lib class TestOutputWriter(object): """Class that defines a test output writer. Attributes: event_log_providers (list[EventLogProvider]): event log providers. message_files (list[MessageFile]): message files. """ def __init__(self): """Initializes the test output writer.""" super(TestOutputWriter, self).__init__() self.event_log_providers = [] self.message_files = [] def Close(self): """Closes the output writer.""" return def Open(self): """Opens the output writer. Returns: bool: True if successful or False if not. """ return True def WriteEventLogProvider(self, event_log_provider): """Writes the Event Log provider. Args: event_log_provider (EventLogProvider): event log provider. """ self.event_log_providers.append(event_log_provider) # pylint: disable=unused-argument def WriteMessageFile( self, event_log_provider, message_resource_file, message_filename, message_file_type): """Writes the Windows Message Resource file. Args: event_log_provider (EventLogProvider): event log provider. message_resource_file (MessageResourceFile): message resource file. message_filename (str): message filename. message_file_type (str): message file type. """ self.message_files.append(message_resource_file) class EventMessageStringRegistryFileReaderTest(shared_test_lib.BaseTestCase): """Tests for the Windows Registry file reader.""" def testOpen(self): """Tests the Open function.""" volume_scanner = extractor.EventMessageStringExtractor() file_reader = extractor.EventMessageStringRegistryFileReader( volume_scanner) test_file_path = self._GetTestFilePath(['SOFTWARE']) # TODO: implement tests. # file_reader.Open(test_file_path) # file_reader.Open('bogus') _ = file_reader _ = test_file_path @shared_test_lib.skipUnlessHasTestFile(['SOFTWARE']) @shared_test_lib.skipUnlessHasTestFile(['SYSTEM']) class EventMessageStringExtractorTest(shared_test_lib.BaseTestCase): """Tests for the Windows Event Log message resource extractor.""" # pylint: disable=protected-access def _CreateTestEventMessageStringExtractor(self): """Creates an event message string extractor for testing. Returns: EventMessageStringExtractor: an event message string extractor. """ file_system_builder = fake_file_system_builder.FakeFileSystemBuilder() test_file_path = self._GetTestFilePath(['SOFTWARE']) file_system_builder.AddFileReadData( '/Windows/System32/config/SOFTWARE', test_file_path) test_file_path = self._GetTestFilePath(['SYSTEM']) file_system_builder.AddFileReadData( '/Windows/System32/config/SYSTEM', test_file_path) mount_point = path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_FAKE, location='/') extractor_object = extractor.EventMessageStringExtractor() extractor_object._file_system = file_system_builder.file_system extractor_object._path_resolver = ( windows_path_resolver.WindowsPathResolver( file_system_builder.file_system, mount_point)) extractor_object._windows_directory = 'C:\\Windows' extractor_object._path_resolver.SetEnvironmentVariable( 'SystemRoot', extractor_object._windows_directory) extractor_object._path_resolver.SetEnvironmentVariable( 'WinDir', extractor_object._windows_directory) return extractor_object def testWindowsVersionProperty(self): """Tests the windows_version property.""" extractor_object = self._CreateTestEventMessageStringExtractor() windows_version = extractor_object.windows_version # TODO: improve test. self.assertIsNone(windows_version) def testCollectEventLogTypes(self): """Tests the _CollectEventLogTypes function.""" extractor_object = self._CreateTestEventMessageStringExtractor() event_log_types = extractor_object._CollectEventLogTypes() self.assertEqual(len(event_log_types), 3) self.assertEqual(len(event_log_types['Application']), 65) self.assertEqual(len(event_log_types['Security']), 7) self.assertEqual(len(event_log_types['System']), 186) # TODO: hide duplication warnings. event_log_types = extractor_object._CollectEventLogTypes( all_control_sets=True) self.assertEqual(len(event_log_types), 3) self.assertEqual(len(event_log_types['Application']), 65) self.assertEqual(len(event_log_types['Security']), 7) self.assertEqual(len(event_log_types['System']), 186) def testCollectEventLogProvidersFromKey(self): """Tests the _CollectEventLogProvidersFromKey function.""" extractor_object = self._CreateTestEventMessageStringExtractor() generator = extractor_object._CollectEventLogProvidersFromKey(None) # TODO: fix generator method. self.assertIsNotNone(generator) def testExtractMessageFile(self): """Tests the _ExtractMessageFile function.""" extractor_object = self._CreateTestEventMessageStringExtractor() # TODO: improve test. output_writer = TestOutputWriter() processed_message_filenames = [] event_log_provider = resources.EventLogProvider( 'log_type', 'log_source', 'provider_guid') message_filename = '' message_file_type = '' extractor_object._ExtractMessageFile( output_writer, processed_message_filenames, event_log_provider, message_filename, message_file_type) self.assertEqual(len(output_writer.event_log_providers), 0) self.assertEqual(len(output_writer.message_files), 0) def testGetEventLogProviders(self): """Tests the _GetEventLogProviders function.""" extractor_object = self._CreateTestEventMessageStringExtractor() event_log_providers = list(extractor_object._GetEventLogProviders()) self.assertEqual(len(event_log_providers), 258) event_log_providers = list( extractor_object._GetEventLogProviders(all_control_sets=True)) self.assertEqual(len(event_log_providers), 516) def testGetSystemRoot(self): """Tests the _GetSystemRoot function.""" extractor_object = self._CreateTestEventMessageStringExtractor() system_root = extractor_object._GetSystemRoot() self.assertEqual(system_root, 'C:\\WINDOWS') def testGetWindowsVersion(self): """Tests the _GetWindowsVersion function.""" extractor_object = self._CreateTestEventMessageStringExtractor() windows_version = extractor_object._GetWindowsVersion() # TODO: improve test. self.assertIsNone(windows_version) def testOpenMessageResourceFile(self): """Tests the _OpenMessageResourceFile function.""" extractor_object = self._CreateTestEventMessageStringExtractor() # TODO: improve test. message_resource_file = extractor_object._OpenMessageResourceFile( 'C:\\Windows\\System32\\wrc_test.dll') self.assertIsNone(message_resource_file) # TODO: test _OpenMessageResourceFileByPathSpec def testExtractEventLogMessageStrings(self): """Tests the ExtractEventLogMessageStrings function.""" extractor_object = self._CreateTestEventMessageStringExtractor() output_writer = TestOutputWriter() extractor_object.ExtractEventLogMessageStrings(output_writer) self.assertEqual(len(output_writer.event_log_providers), 258) self.assertEqual(len(output_writer.message_files), 0) if __name__ == '__main__': unittest.main()
2.28125
2
apps/zblog/api_view/views.py
zhengze/zblogsite
3
12779786
<gh_stars>1-10 from apps.zblog.models import (Article, Category, Tag, Album, Photo, Music ) from rest_framework import viewsets from apps.zblog.serializers import (ArticleSerializer, CategorySerializer, TagSerializer, AlbumSerializer, PhotoSerializer, MusicSerializer ) class ArticleViewSet(viewsets.ModelViewSet): queryset = Article.objects.all() serializer_class = ArticleSerializer class CategoryViewSet(viewsets.ModelViewSet): queryset = Category.objects.all() serializer_class = CategorySerializer class TagViewSet(viewsets.ModelViewSet): queryset = Tag.objects.all() serializer_class = TagSerializer class AlbumViewSet(viewsets.ModelViewSet): queryset = Album.objects.all() serializer_class = AlbumSerializer class PhotoViewSet(viewsets.ModelViewSet): queryset = Photo.objects.all() serializer_class = PhotoSerializer class MusicViewSet(viewsets.ModelViewSet): queryset = Music.objects.all() serializer_class = MusicSerializer
2.109375
2
murano/dsl/macros.py
OndrejVojta/murano
1
12779787
<reponame>OndrejVojta/murano # Copyright (c) 2014 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import types import eventlet.greenpool as greenpool import yaql.context import murano.dsl.dsl_exception as dsl_exception import murano.dsl.exceptions as exceptions import murano.dsl.expressions as expressions import murano.dsl.helpers as helpers import murano.dsl.yaql_expression as yaql_expression class CodeBlock(expressions.DslExpression): def __init__(self, body): if not isinstance(body, types.ListType): body = [body] self.code_block = map(expressions.parse_expression, body) def execute(self, context, murano_class): for expr in self.code_block: def action(): try: expr.execute(context, murano_class) except (dsl_exception.MuranoPlException, exceptions.InternalFlowException): raise except Exception as ex: raise dsl_exception.MuranoPlException.\ from_python_exception(ex, context) if hasattr(expr, 'virtual_instruction'): instruction = expr.virtual_instruction helpers.execute_instruction(instruction, action, context) else: action() class MethodBlock(CodeBlock): def __init__(self, body, name=None): super(MethodBlock, self).__init__(body) self._name = name def execute(self, context, murano_class): new_context = yaql.context.Context(context) new_context.set_data(self._name, '?currentMethod') try: super(MethodBlock, self).execute(new_context, murano_class) except exceptions.ReturnException as e: return e.value except exceptions.BreakException: raise exceptions.DslInvalidOperationError( 'Break cannot be used on method level') except exceptions.ContinueException: raise exceptions.DslInvalidOperationError( 'Continue cannot be used on method level') else: return None class ReturnMacro(expressions.DslExpression): def __init__(self, Return): self._value = Return def execute(self, context, murano_class): raise exceptions.ReturnException( helpers.evaluate(self._value, context)) class BreakMacro(expressions.DslExpression): def __init__(self, Break): if Break: raise exceptions.DslSyntaxError('Break cannot have value') def execute(self, context, murano_class): raise exceptions.BreakException() class ContinueMacro(expressions.DslExpression): def __init__(self, Continue): if Continue: raise exceptions.DslSyntaxError('Continue cannot have value') def execute(self, context, murano_class): raise exceptions.ContinueException() class ParallelMacro(CodeBlock): def __init__(self, Parallel, Limit=None): super(ParallelMacro, self).__init__(Parallel) if Limit: self._limit = yaql_expression.YaqlExpression(str(Limit)) else: self._limit = len(self.code_block) def execute(self, context, murano_class): if not self.code_block: return limit = helpers.evaluate(self._limit, context) gpool = greenpool.GreenPool(helpers.evaluate(limit, context)) for expr in self.code_block: gpool.spawn_n(expr.execute, context, murano_class) gpool.waitall() class IfMacro(expressions.DslExpression): def __init__(self, If, Then, Else=None): if not isinstance(If, yaql_expression.YaqlExpression): raise exceptions.DslSyntaxError( 'Condition must be of expression type') self._code1 = CodeBlock(Then) self._code2 = None if Else is None else CodeBlock(Else) self._condition = If def execute(self, context, murano_class): res = self._condition.evaluate(context) if not isinstance(res, types.BooleanType): raise exceptions.DslInvalidOperationError( 'Condition must be evaluated to boolean type') if res: self._code1.execute(context, murano_class) elif self._code2 is not None: self._code2.execute(context, murano_class) class WhileDoMacro(expressions.DslExpression): def __init__(self, While, Do): if not isinstance(While, yaql_expression.YaqlExpression): raise TypeError() self._code = CodeBlock(Do) self._condition = While def execute(self, context, murano_class): while True: res = self._condition.evaluate(context) if not isinstance(res, types.BooleanType): raise exceptions.DslSyntaxError( 'Condition must be of expression type') try: if res: self._code.execute(context, murano_class) else: break except exceptions.BreakException: break except exceptions.ContinueException: continue class ForMacro(expressions.DslExpression): def __init__(self, For, In, Do): if not isinstance(For, types.StringTypes): raise exceptions.DslSyntaxError( 'For value must be of string type') self._code = CodeBlock(Do) self._var = For self._collection = In def execute(self, context, murano_class): collection = helpers.evaluate(self._collection, context) for t in collection: context.set_data(t, self._var) try: self._code.execute(context, murano_class) except exceptions.BreakException: break except exceptions.ContinueException: continue class RepeatMacro(expressions.DslExpression): def __init__(self, Repeat, Do): if not isinstance(Repeat, (int, yaql_expression.YaqlExpression)): raise exceptions.DslSyntaxError( 'Repeat value must be either int or expression') self._count = Repeat self._code = CodeBlock(Do) def execute(self, context, murano_class): count = helpers.evaluate(self._count, context) for t in range(0, count): try: self._code.execute(context, murano_class) except exceptions.BreakException: break except exceptions.ContinueException: continue class MatchMacro(expressions.DslExpression): def __init__(self, Match, Value, Default=None): if not isinstance(Match, types.DictionaryType): raise exceptions.DslSyntaxError( 'Match value must be of dictionary type') self._switch = Match self._value = Value self._default = None if Default is None else CodeBlock(Default) def execute(self, context, murano_class): match_value = helpers.evaluate(self._value, context) for key, value in self._switch.iteritems(): if key == match_value: CodeBlock(value).execute(context, murano_class) return if self._default is not None: self._default.execute(context, murano_class) class SwitchMacro(expressions.DslExpression): def __init__(self, Switch, Default=None): if not isinstance(Switch, types.DictionaryType): raise exceptions.DslSyntaxError( 'Switch value must be of dictionary type') self._switch = Switch for key, value in self._switch.iteritems(): if not isinstance(key, (yaql_expression.YaqlExpression, types.BooleanType)): raise exceptions.DslSyntaxError( 'Switch cases must be must be either ' 'boolean or expression') self._default = None if Default is None else CodeBlock(Default) def execute(self, context, murano_class): matched = False for key, value in self._switch.iteritems(): res = helpers.evaluate(key, context) if not isinstance(res, types.BooleanType): raise exceptions.DslInvalidOperationError( 'Switch case must be evaluated to boolean type') if res: matched = True CodeBlock(value).execute(context, murano_class) if self._default is not None and not matched: self._default.execute(context, murano_class) class DoMacro(expressions.DslExpression): def __init__(self, Do): self._code = CodeBlock(Do) def execute(self, context, murano_class): self._code.execute(context, murano_class) def register(): expressions.register_macro(DoMacro) expressions.register_macro(ReturnMacro) expressions.register_macro(BreakMacro) expressions.register_macro(ContinueMacro) expressions.register_macro(ParallelMacro) expressions.register_macro(IfMacro) expressions.register_macro(WhileDoMacro) expressions.register_macro(ForMacro) expressions.register_macro(RepeatMacro) expressions.register_macro(MatchMacro) expressions.register_macro(SwitchMacro)
1.8125
2
project/db.py
Melchizedek13/CS50
0
12779788
<filename>project/db.py import os import sqlite3 from typing import Dict, List, Tuple conn = sqlite3.connect(os.path.join('db', 'expenses.db')) cursor = conn.cursor() def insert(table: str, column_values: Dict): columns = ', '.join( column_values.keys() ) values = [tuple(column_values.values())] placeholders = ", ".join("?" * len(column_values.keys())) cursor.executemany( f"INSERT INTO {table} " f"({columns}) " f"VALUES ({placeholders})", values) conn.commit() def fetchall(table: str, columns: List[str]) -> List[Tuple]: columns_joined = ", ".join(columns) cursor.execute(f"SELECT {columns_joined} FROM {table}") rows = cursor.fetchall() result = [] for row in rows: dict_row = {} for index, column in enumerate(columns): dict_row[column] = row[index] result.append(dict_row) return result def delete(table: str, row_id: int) -> None: row_id = int(row_id) cursor.execute(f"delete from {table} where id={row_id}") conn.commit() def get_cursor(): return cursor def _init_expenses_tabs(): with open('dbaccountingddl.sql', 'r', encoding='utf8') as f: sql_stmt = f.read() cursor.executescript(sql_stmt) conn.commit() def check_expenses_tabs_exists(): cursor.execute("select name from sqlite_master where type='table' and name='expense'") table_exists = cursor.fetchall() if table_exists: return _init_expenses_tabs()
3.484375
3
log.py
SwaksharDeb/classification-with-costly-features
0
12779789
<gh_stars>0 import numpy as np import time, sys, utils from consts import * #============================== class PerfAgent(): def __init__(self, env, brain): self.env = env self.brain = brain self.agents = self.env.agents self.done = np.zeros(self.agents, dtype=np.bool) self.total_r = np.zeros(self.agents) self.total_len = np.zeros(self.agents, dtype=np.int32) self.total_corr = np.zeros(self.agents, dtype=np.int32) self.s = self.env.reset() def act(self, s): m = np.zeros((self.agents, ACTION_DIM)) # create max_mask m[:, CLASSES:] = s[:, FEATURE_DIM:] p = self.brain.predict_np(s) - MAX_MASK_CONST * m # select an action not considering those already performed a = np.argmax(p, axis=1) return a def step(self): a = self.act(self.s) s_, r, done = self.env.step(a) self.s = s_ newly_finished = ~self.done & done self.done = self.done | done self.total_r = self.total_r + r * (newly_finished | ~done) self.total_len = self.total_len + ~done self.total_corr = self.total_corr + (r == REWARD_CORRECT) * newly_finished def run(self): while not np.all(self.done): # utils.print_progress(np.sum(self.done), self.agents, step=1) self.step() avg_r = np.mean(self.total_r) avg_len = np.mean(self.total_len) avg_corr = np.mean(self.total_corr) return avg_r, avg_len, avg_corr #============================== class PerfEnv: def __init__(self, data, costs, ff): data_val_idx = np.random.choice(len(data), LOG_PERF_VAL_SIZE) self.x = data.iloc[data_val_idx, 0:-1].astype('float32').values self.y = data.iloc[data_val_idx, -1].astype('int32').values self.costs = costs.values self.agents = LOG_PERF_VAL_SIZE self.lin_array = np.arange(self.agents) self.ff = ff def reset(self): self.mask = np.zeros( (self.agents, FEATURE_DIM) ) self.done = np.zeros( self.agents, dtype=np.bool ) return self._get_state() def step(self, action): self.mask[self.lin_array, action - CLASSES] = 1 r = -self.costs[action - CLASSES] * self.ff for i in np.where(action < CLASSES)[0]: r[i] = REWARD_CORRECT if action[i] == self.y[i] else REWARD_INCORRECT self.done[i] = 1 s_ = self._get_state() return (s_, r, self.done) def _get_state(self): x_ = self.x * self.mask x_ = np.concatenate( (x_, self.mask), axis=1 ).astype(np.float32) return x_ #============================== class Log: def __init__(self, data_val, costs, ff, brain): self.env = PerfEnv(data_val, costs, ff) self.brain = brain self.LOG_TRACKED_STATES = np.vstack(LOG_TRACKED_STATES).astype(np.float32) self.LEN = len(self.LOG_TRACKED_STATES) if BLANK_INIT: mode = "w" else: mode = "a" self.files = [] for i in range(self.LEN): self.files.append( open("run_%d.dat" % i, mode) ) self.perf_file = open("run_perf.dat", mode) self.time = 0 def log(self): val = self.brain.predict_np(self.LOG_TRACKED_STATES) for i in range(self.LEN): w = val[i].data for k in w: self.files[i].write('%.4f ' % k) self.files[i].write('\n') self.files[i].flush() def print_speed(self): if self.time == 0: self.time = time.perf_counter() return now = time.perf_counter() elapsed = now - self.time self.time = now samples_processed = LOG_EPOCHS * EPOCH_STEPS * AGENTS updates_processed = LOG_EPOCHS updates_total = LOG_EPOCHS * BATCH_SIZE fps_smpl = samples_processed / elapsed fps_updt = updates_processed / elapsed fps_updt_t = updates_total / elapsed print("Perf.: {:.0f} smp/s, {:.1f} upd/s, {:.1f} upd_smp/s".format(fps_smpl, fps_updt, fps_updt_t)) def log_perf(self): agent = PerfAgent(self.env, self.brain) avg_r, avg_len, avg_corr = agent.run() print("{:.3f} {:.3f} {:.3f}".format(avg_r, avg_len, avg_corr), file=self.perf_file, flush=True)
2.359375
2
src/pyrobot/kinect2/camera.py
wangcongrobot/pyrobot
0
12779790
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import rospkg import threading import yaml from copy import deepcopy import message_filters import numpy as np import pyrobot.utils.util as prutil import rospy from pyrobot.core import Camera from sensor_msgs.msg import CameraInfo from sensor_msgs.msg import Image from std_msgs.msg import Float64 import sys ros_path = '/opt/ros/kinetic/lib/python2.7/dist-packages' if ros_path in sys.path: sys.path.remove(ros_path) import cv2 sys.path.append(ros_path) from cv_bridge import CvBridge, CvBridgeError class Kinect2Camera(Camera): """ This is camera class that interfaces with the KinectV2 camera """ def __init__(self, configs): """ Constructor of the KinectV2Camera class. :param configs: Camera specific configuration object :type configs: YACS CfgNode """ super(Kinect2Camera, self).__init__(configs=configs) self.cv_bridge = CvBridge() self.camera_info_lock = threading.RLock() self.camera_img_lock = threading.RLock() self.rgb_img = None self.depth_img = None self.camera_info = None self.camera_P = None rospy.Subscriber(self.configs.CAMERA.ROSTOPIC_CAMERA_INFO_STREAM, CameraInfo, self._camera_info_callback) rgb_topic = self.configs.CAMERA.ROSTOPIC_CAMERA_RGB_STREAM self.rgb_sub = message_filters.Subscriber(rgb_topic, Image) depth_topic = self.configs.CAMERA.ROSTOPIC_CAMERA_DEPTH_STREAM self.depth_sub = message_filters.Subscriber(depth_topic, Image) img_subs = [self.rgb_sub, self.depth_sub] self.sync = message_filters.ApproximateTimeSynchronizer(img_subs, queue_size=10, slop=0.2) self.sync.registerCallback(self._sync_callback) self.DepthMapFactor = float(self.configs.CAMERA.DEPTH_MAP_FACTOR) self.intrinsic_mat = None def _sync_callback(self, rgb, depth): self.camera_img_lock.acquire() try: self.rgb_img = self.cv_bridge.imgmsg_to_cv2(rgb, "bgr8") self.rgb_img = self.rgb_img[:, :, ::-1] self.depth_img = self.cv_bridge.imgmsg_to_cv2(depth, "passthrough") except CvBridgeError as e: rospy.logerr(e) self.camera_img_lock.release() def _camera_info_callback(self, msg): self.camera_info_lock.acquire() self.camera_info = msg self.camera_P = np.array(msg.P).reshape((3, 4)) self.camera_info_lock.release() def get_rgb(self): ''' This function returns the RGB image perceived by the camera. :rtype: np.ndarray or None ''' self.camera_img_lock.acquire() rgb = deepcopy(self.rgb_img) self.camera_img_lock.release() return rgb def get_depth(self): ''' This function returns the depth image perceived by the camera. :rtype: np.ndarray or None ''' self.camera_img_lock.acquire() depth = deepcopy(self.depth_img) self.camera_img_lock.release() return depth def get_rgb_depth(self): ''' This function returns both the RGB and depth images perceived by the camera. :rtype: np.ndarray or None ''' self.camera_img_lock.acquire() rgb = deepcopy(self.rgb_img) depth = deepcopy(self.depth_img) self.camera_img_lock.release() return rgb, depth def get_intrinsics(self): """ This function returns the camera intrinsics. :rtype: np.ndarray """ if self.camera_P is None: return self.camera_P self.camera_info_lock.acquire() P = deepcopy(self.camera_P) self.camera_info_lock.release() return P[:3, :3] def get_current_pcd(self): """ Return the point cloud at current time step (one frame only) :returns: tuple (pts, colors) pts: point coordinates in camera frame (shape: :math:`[N, 3]`) colors: rgb values for pts_in_cam (shape: :math:`[N, 3]`) :rtype: tuple(np.ndarray, np.ndarray) """ rgb_im, depth_im = self.get_rgb_depth() depth = depth_im.reshape(-1) / self.DepthMapFactor rgb = rgb_im.reshape(-1, 3) if self.intrinsic_mat is None: self.intrinsic_mat = self.get_intrinsics() self.intrinsic_mat_inv = np.linalg.inv(self.intrinsic_mat) #TODO: image height --> rgb_im.shape[0] and width--> rgb_im.shape[1] img_pixs = np.mgrid[0: rgb_im.shape[0]: 1, 0: rgb_im.shape[1]: 1] img_pixs = img_pixs.reshape(2, -1) img_pixs[[0, 1], :] = img_pixs[[1, 0], :] self.uv_one = np.concatenate((img_pixs, np.ones((1, img_pixs.shape[1])))) self.uv_one_in_cam = np.dot(self.intrinsic_mat_inv, self.uv_one) pts_in_cam = np.multiply(self.uv_one_in_cam, depth) pts_in_cam = np.concatenate((pts_in_cam, np.ones((1, pts_in_cam.shape[1]))), axis=0) pts = pts_in_cam[:3, :].T return pts, rgb def pix_to_3dpt(self, rs, cs, reduce = 'none', k=5): """ Get the 3D points of the pixels in RGB images. :param rs: rows of interest in the RGB image. It can be a list or 1D numpy array which contains the row indices. The default value is None, which means all rows. :param cs: columns of interest in the RGB image. It can be a list or 1D numpy array which contains the column indices. The default value is None, which means all columns. :param reduce: whether to consider the depth at nearby pixels 'none': no neighbour consideration 'mean': depth based on the mean of kernel sized k centered at [rs,cs] 'max': depth based on the max of kernel sized k centered at [rs,cs] 'min': depth based on the min of kernel sized k centered at [rs,cs] :param k: kernel size for reduce type['mean', 'max', 'min'] :type rs: list or np.ndarray :type cs: list or np.ndarray :type reduce: str :tyep k: int :returns: tuple (pts, colors) pts: point coordinates in world frame (shape: :math:`[N, 3]`) colors: rgb values for pts_in_cam (shape: :math:`[N, 3]`) :rtype: tuple(np.ndarray, np.ndarray) """ assert isinstance(rs, int) or isinstance(rs, list) or isinstance(rs, np.ndarray) assert isinstance(cs, int) or isinstance(cs, list) or isinstance(cs, np.ndarray) if isinstance(rs, int): rs = [rs] if isinstance(cs, int): cs = [cs] if isinstance(rs, np.ndarray): rs = rs.flatten() if isinstance(cs, np.ndarray): cs = cs.flatten() rgb_im, depth_im = self.get_rgb_depth() R,C,_ = rgb_im.shape if reduce == 'none': depth_im = depth_im[rs, cs] elif reduce == 'mean': depth_im = np.array([np.mean(depth_im[max(i-k,0):min(i+k,R), max(j-k,0):min(j+k,C)]) for i,j in zip(rs,cs)]) elif reduce == 'max': depth_im = np.array([np.max(depth_im[max(i-k,0):min(i+k,R), max(j-k,0):min(j+k,C)]) for i,j in zip(rs,cs)]) elif reduce == 'min': depth_im = np.array([np.min(depth_im[max(i-k,0):min(i+k,R), max(j-k,0):min(j+k,C)]) for i,j in zip(rs,cs)]) else: raise ValueError('Invalid reduce name provided, only the following' ' are currently available: [{}, {}, {}, {}]'.format('none','mean', 'max', 'min')) #depth_im = depth_im[rs, cs] depth = depth_im.reshape(-1) / self.DepthMapFactor img_pixs = np.stack((rs, cs)).reshape(2, -1) img_pixs[[0, 1], :] = img_pixs[[1, 0], :] uv_one = np.concatenate((img_pixs, np.ones((1, img_pixs.shape[1])))) if self.intrinsic_mat is None: self.intrinsic_mat = self.get_intrinsics() self.intrinsic_mat_inv = np.linalg.inv(self.intrinsic_mat) uv_one_in_cam = np.dot(self.intrinsic_mat_inv, uv_one) pts_in_cam = np.multiply(uv_one_in_cam, depth) pts_in_cam = np.concatenate((pts_in_cam, np.ones((1, pts_in_cam.shape[1]))), axis=0) pts = pts_in_cam[:3, :].T colors = rgb_im[rs, cs].reshape(-1, 3) return pts, colors
2.1875
2
models/pose/loss/pose_modules.py
raviv/torchcv
308
12779791
<reponame>raviv/torchcv #!/usr/bin/env python # -*- coding:utf-8 -*- # Author: <NAME>(<EMAIL>) # Loss function for Pose Estimation. import torch import torch.nn as nn from torch.autograd import Variable class OPMseLoss(nn.Module): def __init__(self, configer): super(OPMseLoss, self).__init__() self.configer = configer reduction = 'elementwise_mean' if self.configer.exists('loss', 'params') and 'mse_reduction' in self.configer.get('loss', 'params'): reduction = self.configer.get('loss', 'params')['mse_reduction'] self.mse_loss = nn.MSELoss(reduction=reduction) def forward(self, inputs, *targets, mask=None, weights=None): loss = 0.0 if isinstance(inputs, list): if weights is not None: for i in range(len(inputs)): if mask is not None: loss += weights[i] * self.mse_loss(inputs[i]*mask, targets) else: loss += weights[i] * self.mse_loss(inputs[i], targets) else: for i in range(len(inputs)): if mask is not None: loss += self.mse_loss(inputs[i]*mask, targets) else: loss += self.mse_loss(inputs[i], targets) else: if mask is not None: loss = self.mse_loss(inputs*mask, targets) else: loss = self.mse_loss(inputs, targets) if self.configer.get('mse_loss', 'reduction') == 'sum': loss = loss / targets.size(0) return loss class PartLoss(nn.Module): def __init__(self, configer): super(PartLoss, self).__init__() self.configer = configer self.mse_loss = nn.MSELoss(size_average=False) def forward(self, inputs, targets, mask=None): inputs = inputs.view(inputs.size(0), -1, 6, inputs.size(2), inputs.size(3)) targets = targets.view(targets.size(0), -1, 6, targets.size(2), targets.size(3)) paf_loss = self.mse_loss(inputs[:, :, 0:2, :, :], targets[:, :, 0:2, :, :]) part_loss = self.mse_loss(inputs[:, :, 2:6, :, :], targets[:, :, 2:6, :, :]) loss = paf_loss + part_loss * 6.0 loss = loss / targets.size(0) return loss class CapsuleLoss(nn.Module): def __init__(self, configer): super(CapsuleLoss, self).__init__() self.configer = configer self.mse_loss = nn.MSELoss(reduction=self.configer.get('capsule_loss', 'reduction')) def forward(self, inputs, targets, masks=None, is_focal=False): preds = torch.sqrt((inputs**2).sum(dim=1, keepdim=False)) if masks is not None: preds = preds * masks if is_focal: loss = self.mse_loss(preds, targets) else: diff = preds - targets diff = diff ** 2 alpha = 2.0 weights = targets * alpha weights = torch.exp(weights) diff = weights * diff loss = diff.mean() return loss class EmbeddingLoss(nn.Module): def __init__(self, configer): super(EmbeddingLoss, self).__init__() self.configer = configer self.num_keypoints = self.configer.get('data', 'num_keypoints') self.l_vec = self.configer.get('capsule', 'l_vec') self.mse_loss = nn.MSELoss(size_average=False) def forward(self, inputs, tags, numH, sigma=0.1): batch_size = inputs.size(0) h_tag_means = [[Variable(torch.zeros(self.l_vec,), requires_grad=True).cuda() for h in range(numH[b].numpy()[0])] for b in range(inputs.size()[0])] for b in range(batch_size): for n in range(numH[b].numpy()[0]): valik = 0 for k in range(self.num_keypoints): tag = inputs[b].masked_select(tags[b][k].eq(n+1).unsqueeze(0)) if tag.size() != torch.Size([]): h_tag_means[b][n] += tag valik = valik + 1 h_tag_means[b][n] = h_tag_means[b][n] / max(valik, 1) loss_list = list() for b in range(batch_size): for n in range(numH[b].numpy()[0]): for k in range(self.num_keypoints): tag = inputs[b].masked_select(tags[b][k].eq(n+1).unsqueeze(0)) if tag.size() != torch.Size([]): loss_list.append(self.mse_loss(tag, h_tag_means[b][n])) for b in range(batch_size): for n1 in range(numH[b].numpy()[0]): for n2 in range(numH[b].numpy()[0]): if n1 != n2: loss_same = torch.exp(-self.mse_loss(h_tag_means[b][n1], h_tag_means[b][n2]) / sigma / sigma) loss_list.append(loss_same) if len(loss_list) == 0: loss = 0.0 else: loss = loss_list[0] for i in range(len(loss_list)-1): loss += loss_list[i+1] return loss
2.546875
3
Scripts/SeqGui/SeqGui.py
eoc21/biopython
3
12779792
<reponame>eoc21/biopython import string from Bio import Seq from Bio import Alphabet from Bio.Alphabet import IUPAC from wxPython.wx import * from Bio import Translate from Bio import Transcribe ID_APPLY = 101 ID_CLEAR = 102 ID_EXIT = 103 ID_CLOSE = 104 ID_ABOUT = 105 ID_CODON = 106 ID_TRANSFORM = 107 class ParamsPanel( wxPanel ): def __init__(self, parent, log): wxPanel.__init__(self, parent, -1) codon_table_static = wxStaticText( self, -1, 'Codon Tables', \ style = wxALIGN_CENTRE ) lc = wxLayoutConstraints() lc.top.SameAs( self, wxTop, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.AsIs() lc.right.SameAs( self, wxRight, 5 ) codon_table_static.SetConstraints( lc ) codon_table_lb = wxListBox( self, ID_CODON ) lc = wxLayoutConstraints() lc.top.Below( codon_table_static, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.PercentOf( self, wxHeight, 30 ) lc.right.SameAs( self, wxRight, 5 ) codon_table_lb.SetConstraints( lc ) self.codon_table_lb = codon_table_lb codon_table_lb.Append( 'Standard' ) codon_table_lb.Append( 'Vertebrate Mitochondrial' ) codon_table_lb.Append( 'Yeast Mitochondrial' ) codon_table_lb.Append( 'Mold Mitochondrial' ) codon_table_lb.Append( 'Invertebrate Mitochondrial' ) codon_table_lb.Append( 'Echinoderm Mitochondrial' ) codon_table_lb.Append( 'Euplotid Nuclear' ) codon_table_lb.Append( 'Bacterial' ) codon_table_lb.Append( 'Alternative Yeast Nuclear' ) codon_table_lb.Append( 'Ascidian Mitochondrial' ) codon_table_lb.Append( 'Flatworm Mitochondrial' ) codon_table_lb.Append( 'Blepharisma Macronuclear' ) codon_table_lb.SetSelection( 0 ) transform_static = wxStaticText( self, -1, 'Transformation', \ style = wxALIGN_CENTRE ) lc = wxLayoutConstraints() lc.top.Below( codon_table_lb, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.AsIs() lc.right.SameAs( self, wxRight, 5 ) transform_static.SetConstraints( lc ) transform_lb = wxListBox( self, ID_TRANSFORM ) lc = wxLayoutConstraints() lc.top.Below( transform_static, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.PercentOf( self, wxHeight, 30 ) lc.right.SameAs( self, wxRight, 5 ) transform_lb.SetConstraints( lc ) transform_lb.Append( 'Transcribe' ) transform_lb.Append( 'Translate' ) transform_lb.Append( 'Back translate' ) transform_lb.Append( 'Back transcribe' ) transform_lb.SetSelection( 1 ) self.transform_lb = transform_lb class SeqPanel( wxPanel ): def __init__(self, parent, log): self.parent = parent wxPanel.__init__(self, parent, -1) apply_button = wxButton( self, ID_APPLY, "Apply" ) clear_button = wxButton( self, ID_CLEAR, "Clear" ) close_button = wxButton( self, ID_CLOSE, "Close" ) EVT_BUTTON( self, ID_CLOSE, self.OnClose ) EVT_BUTTON( self, ID_APPLY, self.OnApply ) EVT_BUTTON( self, ID_CLEAR, self.OnClear ) lc = wxLayoutConstraints() lc.bottom.SameAs( self, wxBottom, 10 ) lc.left.SameAs( self, wxLeft, 10 ) lc.height.AsIs( ) lc.width.PercentOf( self, wxWidth, 25 ) apply_button.SetConstraints( lc ) lc = wxLayoutConstraints() lc.bottom.SameAs( self, wxBottom, 10 ) lc.left.RightOf( apply_button, 5 ) lc.height.AsIs() lc.width.PercentOf( self, wxWidth, 25 ) clear_button.SetConstraints( lc ) lc = wxLayoutConstraints() lc.bottom.SameAs( self, wxBottom, 10 ) lc.left.RightOf( clear_button, 5 ) lc.height.AsIs() lc.width.PercentOf( self, wxWidth, 25 ) close_button.SetConstraints( lc ) src_static = wxStaticText( self, -1, 'Original Sequence', \ style = wxALIGN_CENTRE ) lc = wxLayoutConstraints() lc.top.SameAs( self, wxTop, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.AsIs() lc.right.SameAs( self, wxRight, 5 ) src_static.SetConstraints( lc ) src_text = wxTextCtrl( self, -1, '', style = wxTE_MULTILINE ) lc = wxLayoutConstraints() lc.top.Below( src_static, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.PercentOf( self, wxHeight, 30 ) lc.right.SameAs( self, wxRight, 5 ) src_text.SetConstraints( lc ) self.src_text = src_text dest_static = wxStaticText( self, -1, 'Transformed Sequence', \ style = wxALIGN_CENTRE ) lc = wxLayoutConstraints() lc.top.Below( src_text, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.AsIs() lc.right.SameAs( self, wxRight, 5 ) dest_static.SetConstraints( lc ) dest_text = wxTextCtrl( self, -1, '', style = wxTE_MULTILINE ) lc = wxLayoutConstraints() lc.top.Below( dest_static, 5 ) lc.left.SameAs( self, wxLeft, 5 ) lc.height.PercentOf( self, wxHeight, 30 ) lc.right.SameAs( self, wxRight, 5 ) dest_text.SetConstraints( lc ) self.dest_text = dest_text def OnClose( self, event ): parent = self.GetParent() parent.Destroy() def OnApply( self, event ): codon_table_lb = self.parent.params_panel.codon_table_lb selection = codon_table_lb.GetStringSelection() print selection codon_table = selection[:] transform_lb = self.parent.params_panel.transform_lb selection = transform_lb.GetStringSelection() transform = selection[:] print transform if( transform == 'Translate' ): self.translate( codon_table ) elif( transform == 'Back translate' ): self.back_translate( codon_table ) elif( transform == 'Transcribe' ): self.transcribe() elif( transform == 'Back transcribe' ): self.back_transcribe() def OnClear( self, event ): self.src_text.Clear() self.dest_text.Clear() def translate( self, codon_table ): trans = Translate.unambiguous_dna_by_name[ codon_table ] text = self.src_text.GetValue() seq = text[:] seq = string.join( string.split( seq ) ) dna = Seq.Seq( seq, IUPAC.unambiguous_dna ) print dna protein = trans.translate_to_stop( dna ) self.dest_text.Clear() self.dest_text.SetValue( protein.tostring() ) def back_translate( self, codon_table ): trans = Translate.unambiguous_dna_by_name[ codon_table ] text = self.src_text.GetValue() seq = text[:] seq = string.join( string.split( seq ) ) protein = Seq.Seq( seq, IUPAC.unambiguous_dna ) print protein dna = trans.back_translate( protein ) self.dest_text.Clear() self.dest_text.SetValue( dna.tostring() ) def transcribe( self ): trans = Transcribe.unambiguous_transcriber text = self.src_text.GetValue() seq = text[:] seq = string.join( string.split( seq ) ) dna = Seq.Seq( seq, IUPAC.unambiguous_dna ) print dna rna = trans.transcribe( dna ) self.dest_text.Clear() self.dest_text.SetValue( rna.tostring() ) def back_transcribe( self ): trans = Transcribe.unambiguous_transcriber text = self.src_text.GetValue() seq = text[:] seq = string.join( string.split( seq ) ) rna = Seq.Seq( seq, IUPAC.unambiguous_rna ) print rna dna = trans.back_transcribe( rna ) self.dest_text.Clear() self.dest_text.SetValue( dna.tostring() ) class SeqFrame(wxFrame): def __init__(self, parent, ID, title): wxFrame.__init__(self, parent, ID, title, wxDefaultPosition, wxSize(500, 400)) self.SetAutoLayout( true ) self.CreateStatusBar() self.SetStatusText("This is the statusbar") menu = wxMenu() menu.Append(ID_ABOUT, "&About", "More information about this program") menu.AppendSeparator() menu.Append(ID_EXIT, "E&xit", "Terminate the program") menuBar = wxMenuBar() menuBar.Append(menu, "&File"); self.SetMenuBar(menuBar) params_panel = ParamsPanel(self, -1) lc = wxLayoutConstraints() lc.top.SameAs( self, wxTop, 10 ) lc.left.SameAs( self, wxLeft, 5 ) lc.bottom.SameAs( self, wxBottom, 5 ) lc.width.PercentOf( self, wxWidth, 40 ) params_panel.SetConstraints( lc ) seq_panel = SeqPanel(self, -1) lc = wxLayoutConstraints() lc.top.SameAs( self, wxTop, 10 ) lc.left.RightOf( params_panel, 5 ) lc.bottom.SameAs( self, wxBottom, 5 ) lc.right.SameAs( self, wxRight ) seq_panel.SetConstraints( lc ) self.seq_panel = seq_panel self.params_panel = params_panel EVT_MENU( self, ID_EXIT, self.exit ) def exit( self, event ): self.Close( true ) class MyApp(wxApp): def OnInit(self): frame = SeqFrame(NULL, -1, "Greetings from biopython") frame.Show(true) self.SetTopWindow(frame) return true app = MyApp(0) app.MainLoop()
2.21875
2
stackvm/devices/stdio.py
Dentosal/StackVM
1
12779793
from ..device import Device from ..byteutil import * class StdioDevice(Device): VERSION = "1.0.0" def write(self, pop_fn): count = pop_fn() data = bytes(pop_fn() for _ in range(count)).decode("utf-8") print(data, end="") def read(self, push_fn): data = input().encode("utf-8") cells = str_to_u32unicode(data.decode("utf-8")) for v in reversed(cells): push_fn(int_from_bytes(v)) push_fn(len(cells))
2.78125
3
renconstruct/tasks/clean.py
devorbitus/renconstruct
0
12779794
<reponame>devorbitus/renconstruct ### System ### import os from glob import glob from subprocess import run ### Logging ### from renconstruct import logger class CleanTask: # The higher priority, the earlier the task runs # This is relative to all other enabled tasks PRIORITY = -1000 def __init__(self, name, config): self.name = name self.config = config def post_build(self): run( "renutil clean {}".format(self.config["renutil"]["version"]), capture_output=True, shell=True, ) unused_apks = [ item for item in glob(os.path.join(self.config["output"], "*.apk")) if not item.endswith("-universal-release.apk") ] for file in unused_apks: logger.debug("Removing file '{}'".format(os.path.basename(file))) os.remove(file)
2.28125
2
pyabc/visualization/sample.py
Pat-Laub/pyABC
0
12779795
import matplotlib.pyplot as plt import numpy as np from typing import List, Union from ..storage import History from .util import to_lists_or_default def plot_sample_numbers( histories: Union[List, History], labels: Union[List, str] = None, rotation: int = 0, title: str = "Total required samples", size: tuple = None): """ Plot required numbers of samples over all iterations. Parameters ---------- histories: Union[List, History] The histories to plot from. History ids must be set correctly. labels: Union[List ,str], optional Labels corresponding to the histories. If None are provided, indices are used as labels. rotation: int, optional (default = 0) Rotation to apply to the plot's x tick labels. For longer labels, a tilting of 45 or even 90 can be preferable. title: str, optional (default = "Total required samples") Title for the plot. size: tuple of float, optional The size of the plot in inches. Returns ------- ax: Axis of the generated plot. """ # preprocess input histories, labels = to_lists_or_default(histories, labels) # create figure fig, ax = plt.subplots() n_run = len(histories) # extract sample numbers samples = [] for history in histories: # note: the first entry corresponds to the calibration and should # be included here to be fair against methods not requiring # calibration samples.append(np.array(history.get_all_populations()['samples'])) # create matrix n_pop = max(len(sample) for sample in samples) matrix = np.zeros((n_pop, n_run)) for i_sample, sample in enumerate(samples): matrix[:len(sample), i_sample] = sample # plot bars for i_pop in range(n_pop): ax.bar(x=np.arange(n_run), height=matrix[i_pop, :], bottom=np.sum(matrix[:i_pop, :], axis=0)) # add labels ax.set_xticks(np.arange(n_run)) ax.set_xticklabels(labels, rotation=rotation) ax.set_title(title) ax.set_ylabel("Samples") ax.set_xlabel("Run") # set size if size is not None: fig.set_size_inches(size) fig.tight_layout() return ax
3.140625
3
adclassifier/feature_selection.py
BoudhayanBanerjee/political-ad-classifier
2
12779796
<reponame>BoudhayanBanerjee/political-ad-classifier from sklearn.feature_selection import VarianceThreshold from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import RFE from sklearn.feature_selection import SelectFromModel # TODO
1.851563
2
mojo/devtools/common/android_gdb/session.py
zbowling/mojo
1
12779797
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Manages a debugging session with GDB. This module is meant to be imported from inside GDB. Once loaded, the |DebugSession| attaches GDB to a running Mojo Shell process on an Android device using a remote gdbserver. At startup and each time the execution stops, |DebugSession| associates debugging symbols for every frame. For more information, see |DebugSession| documentation. """ import gdb import glob import itertools import logging import os import os.path import shutil import subprocess import sys import tempfile import traceback import urllib2 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import android_gdb.config as config from android_gdb.remote_file_connection import RemoteFileConnection from android_gdb.signatures import get_signature logging.getLogger().setLevel(logging.INFO) def _gdb_execute(command): """Executes a GDB command.""" return gdb.execute(command, to_string=True) class Mapping(object): """Represents a mapped memory region.""" def __init__(self, line): self.start = int(line[0], 16) self.end = int(line[1], 16) self.size = int(line[2], 16) self.offset = int(line[3], 16) self.filename = line[4] def _get_mapped_files(): """Retrieves all the files mapped into the debugged process memory. Returns: List of mapped memory regions grouped by files. """ # info proc map returns a space-separated table with the following fields: # start address, end address, size, offset, file path. mappings = [Mapping(x) for x in [x.split() for x in _gdb_execute("info proc map").split('\n')] if len(x) == 5 and x[4][0] == '/'] res = {} for m in mappings: libname = m.filename[m.filename.rfind('/') + 1:] res[libname] = res.get(libname, []) + [m] return res.values() class DebugSession(object): def __init__(self, build_directory_list, package_name, pyelftools_dir, adb): build_directories = build_directory_list.split(',') if len(build_directories) == 0 or not all(map(os.path.exists, build_directories)): logging.fatal("Please pass a list of valid build directories") sys.exit(1) self._package_name = package_name self._adb = adb self._remote_file_cache = os.path.join(os.getenv('HOME'), '.mojosymbols') if pyelftools_dir != None: sys.path.append(pyelftools_dir) try: import elftools.elf.elffile as elffile except ImportError: logging.fatal("Unable to find elftools module; please install pyelftools " "and specify its path on the command line using " "--pyelftools-dir.") sys.exit(1) self._elffile_module = elffile self._libraries = self._find_libraries(build_directories) self._rfc = RemoteFileConnection('localhost', 10000) self._remote_file_reader_process = None if not os.path.exists(self._remote_file_cache): os.makedirs(self._remote_file_cache) self._done_mapping = set() self._downloaded_files = [] def __del__(self): # Note that, per python interpreter documentation, __del__ is not # guaranteed to be called when the interpreter (GDB, in our case) quits. # Also, most (all?) globals are no longer available at this time (launching # a subprocess does not work). self.stop() def stop(self, _unused_return_value=None): if self._remote_file_reader_process != None: self._remote_file_reader_process.kill() def _find_libraries(self, lib_dirs): """Finds all libraries in |lib_dirs| and key them by their signatures. """ res = {} for lib_dir in lib_dirs: for fn in glob.glob('%s/*.so' % lib_dir): with open(fn, 'r') as f: s = get_signature(f, self._elffile_module) if s is not None: res[s] = fn return res def _associate_symbols(self, mapping, local_file): with open(local_file, "r") as f: elf = self._elffile_module.ELFFile(f) s = elf.get_section_by_name(".text") text_address = mapping[0].start + s['sh_offset'] _gdb_execute("add-symbol-file %s 0x%x" % (local_file, text_address)) def _download_file(self, signature, remote): """Downloads a remote file either from the cloud or through GDB connection. Returns: The filename of the downloaded file """ temp_file = tempfile.NamedTemporaryFile() logging.info("Trying to download symbols from the cloud.") symbols_url = "http://storage.googleapis.com/mojo/symbols/%s" % signature try: symbol_file = urllib2.urlopen(symbols_url) try: with open(temp_file.name, "w") as dst: shutil.copyfileobj(symbol_file, dst) logging.info("Getting symbols for %s at %s." % (remote, symbols_url)) # This allows the deletion of temporary files on disk when the # debugging session terminates. self._downloaded_files.append(temp_file) return temp_file.name finally: symbol_file.close() except urllib2.HTTPError: pass logging.info("Downloading file %s" % remote) _gdb_execute("remote get %s %s" % (remote, temp_file.name)) # This allows the deletion of temporary files on disk when the debugging # session terminates. self._downloaded_files.append(temp_file) return temp_file.name def _find_mapping_for_address(self, mappings, address): """Returns the list of all mappings of the file occupying the |address| memory address. """ for file_mappings in mappings: for mapping in file_mappings: if address >= mapping.start and address <= mapping.end: return file_mappings return None def _try_to_map(self, mapping): remote_file = mapping[0].filename if remote_file in self._done_mapping: return False self._done_mapping.add(remote_file) self._rfc.open(remote_file) signature = get_signature(self._rfc, self._elffile_module) if signature is not None: if signature in self._libraries: self._associate_symbols(mapping, self._libraries[signature]) else: # This library file is not known locally. Download it from the device or # the cloud and put it in cache so, if it got symbols, we can see them. local_file = os.path.join(self._remote_file_cache, signature) if not os.path.exists(local_file): tmp_output = self._download_file(signature, remote_file) shutil.move(tmp_output, local_file) self._associate_symbols(mapping, local_file) return True return False def _map_symbols_on_current_thread(self, mapped_files): """Updates the symbols for the current thread using files from mapped_files. """ frame = gdb.newest_frame() while frame and frame.is_valid(): if frame.name() is None: m = self._find_mapping_for_address(mapped_files, frame.pc()) if m is not None and self._try_to_map(m): # Force gdb to recompute its frames. _gdb_execute("info threads") frame = gdb.newest_frame() assert frame.is_valid() if (frame.older() is not None and frame.older().is_valid() and frame.older().pc() != frame.pc()): frame = frame.older() else: frame = None def update_symbols(self, current_thread_only): """Updates the mapping between symbols as seen from GDB and local library files. If current_thread_only is True, only update symbols for the current thread. """ logging.info("Updating symbols") mapped_files = _get_mapped_files() # Map all symbols from native libraries packages with the APK. for file_mappings in mapped_files: filename = file_mappings[0].filename if ((filename.startswith('/data/data/') or filename.startswith('/data/app')) and not filename.endswith('.apk') and not filename.endswith('.dex')): logging.info('Pre-mapping: %s' % file_mappings[0].filename) self._try_to_map(file_mappings) if current_thread_only: self._map_symbols_on_current_thread(mapped_files) else: logging.info('Updating all threads\' symbols') current_thread = gdb.selected_thread() nb_threads = len(_gdb_execute("info threads").split("\n")) - 2 for i in xrange(nb_threads): try: _gdb_execute("thread %d" % (i + 1)) self._map_symbols_on_current_thread(mapped_files) except gdb.error: traceback.print_exc() current_thread.switch() def _get_device_application_pid(self, application): """Gets the PID of an application running on a device.""" output = subprocess.check_output([self._adb, 'shell', 'ps']) for line in output.split('\n'): elements = line.split() if len(elements) > 0 and elements[-1] == application: return elements[1] return None def start(self): """Starts a debugging session.""" gdbserver_pid = self._get_device_application_pid('gdbserver') if gdbserver_pid is not None: subprocess.check_call([self._adb, 'shell', 'kill', gdbserver_pid]) shell_pid = self._get_device_application_pid(self._package_name) if shell_pid is None: raise Exception('Unable to find a running mojo shell.') subprocess.check_call([self._adb, 'forward', 'tcp:9999', 'tcp:9999']) subprocess.Popen( [self._adb, 'shell', 'gdbserver', '--attach', ':9999', shell_pid], # os.setpgrp ensures signals passed to this file (such as SIGINT) are # not propagated to child processes. preexec_fn = os.setpgrp) # Kill stray remote reader processes. See __del__ comment for more info. remote_file_reader_pid = self._get_device_application_pid( config.REMOTE_FILE_READER_DEVICE_PATH) if remote_file_reader_pid is not None: subprocess.check_call([self._adb, 'shell', 'kill', remote_file_reader_pid]) self._remote_file_reader_process = subprocess.Popen( [self._adb, 'shell', config.REMOTE_FILE_READER_DEVICE_PATH], stdout=subprocess.PIPE, preexec_fn = os.setpgrp) port = int(self._remote_file_reader_process.stdout.readline()) subprocess.check_call([self._adb, 'forward', 'tcp:10000', 'tcp:%d' % port]) self._rfc.connect() _gdb_execute('target remote localhost:9999') self.update_symbols(current_thread_only=False) def on_stop(_): self.update_symbols(current_thread_only=True) gdb.events.stop.connect(on_stop) gdb.events.exited.connect(self.stop) # Register the update-symbols command. UpdateSymbols(self) class UpdateSymbols(gdb.Command): """Command to update symbols loaded into GDB. GDB usage: update-symbols [all|current] """ _UPDATE_COMMAND = "update-symbols" def __init__(self, session): super(UpdateSymbols, self).__init__(self._UPDATE_COMMAND, gdb.COMMAND_STACK) self._session = session def invoke(self, arg, _unused_from_tty): if arg == 'current': self._session.update_symbols(current_thread_only=True) else: self._session.update_symbols(current_thread_only=False) def complete(self, text, _unused_word): if text == self._UPDATE_COMMAND: return ('all', 'current') elif text in self._UPDATE_COMMAND + ' all': return ['all'] elif text in self._UPDATE_COMMAND + ' current': return ['current'] else: return []
2.015625
2
python/clock.py
h-nari/NetLCD
0
12779798
<filename>python/clock.py import time import netLcd from sys import argv from PIL import Image from datetime import datetime usage = '%s ip_addr' if len(argv) < 2: print(usage % argv[0]) exit(1) nd = netLcd.NetLcd(argv[1]) nd.clear(obscure=1) day0 = sec0 = -1 while(1): now = datetime.now(); if day0 != now.day: s = now.strftime("%Y/%m/%d(%a)") nd.text(s, color='#8080ff',tx=20,ty=80,text_size=3) day0 = now.day if sec0 != now.second: s = now.strftime("%H:%M:%S") nd.text(s, color='green', tx=10, ty=120, text_size=6) sec0 = now.second time.sleep(0.1)
3.09375
3
lab2_part2.py
mariac-molina/KR
0
12779799
from agents import * class Dirt(Thing): pass vac = VacuumEnvironment() d1 = Dirt() d2 = Dirt() d3 = Dirt() vac.add_thing(d1, [0,0]) vac.add_thing(d2, [0,1]) vac.add_thing(d3, [0,2])
2.046875
2
bot.py
0ceanlight/mcbeDiscordBot
5
12779800
<filename>bot.py<gh_stars>1-10 import datetime import json import logging import aiohttp import discord from discord.ext import commands extensions = [ "cogs.utils", "cogs.admin", "cogs.src", # "cogs.trans", "cogs.player", "cogs.general", # "cogs.webserver", # "cogs.twitter", "cogs.logs", "cogs.errorhandler", ] def get_prefix(bot, message): """A callable Prefix for our bot. This could be edited to allow per server prefixes.""" prefixes = ["steve ", "STEVE ", "/", "!", "@", "Steve "] # Check to see if we are outside of a guild. e.g DM's etc. # if not message.guild: # Only allow ? to be used in DMs # return '?' # If we are in a guild, we allow for the user to mention us or use any of the prefixes in our list. return commands.when_mentioned_or(*prefixes)(bot, message) class BedrockBot(commands.Bot): def __init__(self): super().__init__( command_prefix=get_prefix, case_insensitive=True, allowed_mentions=discord.AllowedMentions( everyone=False, users=True, roles=False ), intents=discord.Intents.all(), ) self.logger = logging.getLogger("discord") self.messageBlacklist = [] self.session = aiohttp.ClientSession() with open("custom_commands.json", "r") as f: self.custom_commands = json.load(f) with open("config.json", "r") as f: self.config = json.load(f) config = self.config async def on_ready(self): self.uptime = datetime.datetime.utcnow() game = discord.Game("Mining away") await self.change_presence(activity=game) with open("blacklist.json", "r") as f: try: self.blacklist = json.load(f) except json.decoder.JSONDecodeError: self.blacklist = [] with open("runs_blacklist.json", "r") as f: try: self.runs_blacklist = json.load(f) except json.decoder.JSONDecodeError: self.runs_blacklist = {"videos": [], "players": []} for extension in extensions: self.load_extension(extension) self.logger.warning( f"Online: {self.user} (ID: {self.user.id}) (Discord.py: {discord.__version__})" ) async def on_message(self, message): if message.author.bot or message.author.id in self.blacklist: return await self.process_commands(message) try: command = message.content.split()[0] except IndexError: pass try: if command in self.custom_commands: await message.channel.send(self.custom_commands[command]) return except: return def run(self): super().run(self.config["token"], reconnect=True)
2.734375
3
krcg/config.py
smeea/krcg
6
12779801
"""Configuration""" #: static KRCG server KRCG_STATIC_SERVER = "https://static.krcg.org" SUPPORTED_LANGUAGES = ["fr", "es"] VEKN_TWDA_URL = "http://www.vekn.fr/decks/twd.htm" #: aliases to match players abbreviations and typos in the TWDA ALIASES = { # parsing will consider the legacy double dash "--" as a comment mark "bang nakh": "Bang Nakh — Tiger's Claws", # common HTML decoding failures "alia, god=92s messenger": "Alia, God's Messenger", "pentex=99 subversion": "Pentex™ Subversion", # traditions "the first tradition": "First Tradition: The Masquerade", "first tradition": "First Tradition: The Masquerade", "1st tradition": "First Tradition: The Masquerade", "the second tradition": "Second Tradition: Domain", "second tradition": "Second Tradition: Domain", "2nd trad": "Second Tradition: Domain", "2nd tradition": "Second Tradition: Domain", "2nd tradition: domain": "Second Tradition: Domain", "the third tradition": "Third Tradition: Progeny", "third tradition": "Third Tradition: Progeny", "3rd tradition": "Third Tradition: Progeny", "the fourth tradition": "Fourth Tradition: The Accounting", "fourth tradition": "Fourth Tradition: The Accounting", "4th tradition": "Fourth Tradition: The Accounting", "4th tradition: accounting": "Fourth Tradition: The Accounting", "the fifth tradition": "Fifth Tradition: Hospitality", "fifth tradition": "Fifth Tradition: Hospitality", "5th tradition": "Fifth Tradition: Hospitality", "the sixth tradition": "Sixth Tradition: Destruction", "sixth tradition": "Sixth Tradition: Destruction", "6th tradition": "Sixth Tradition: Destruction", # hunting grounds "academic hg": "Academic Hunting Ground", "amusement park hg": "Amusement Park Hunting Ground", "asylum hg": "Asylum Hunting Ground", "base hg": "Base Hunting Ground", "campground hg": "Campground Hunting Ground", "corporate hg": "Corporate Hunting Ground", "fetish club hg": "Fetish Club Hunting Ground", "fetish hg": "Fetish Club Hunting Ground", "institution hg": "Institution Hunting Ground", "jungle hg": "Jungle Hunting Ground", "library hg": "Library Hunting Ground", "morgue hg": "Morgue Hunting Ground", "palace hg": "Palace Hunting Ground", "park hg": "Park Hunting Ground", "poacher's hg": "Poacher's Hunting Ground", "political hg": "Political Hunting Ground", "port hg": "Port Hunting Ground", "shanty Town hg": "Shanty Town Hunting Ground", "slum hg": "Slum Hunting Ground", "society hg": "Society Hunting Ground", "temple hg": "Temple Hunting Ground", "underworld hg": "Underworld Hunting Ground", "university hg": "University Hunting Ground", "uptown hg": "Uptown Hunting Ground", "warzone hg": "Warzone Hunting Ground", "zoo hg": "Zoo Hunting Ground", "academic h.g.": "Academic Hunting Ground", "amusement park h.g.": "Amusement Park Hunting Ground", "asylum h.g.": "Asylum Hunting Ground", "base h.g.": "Base Hunting Ground", "campground h.g.": "Campground Hunting Ground", "corporate h.g.": "Corporate Hunting Ground", "fetish club h.g.": "Fetish Club Hunting Ground", "institution h.g.": "Institution Hunting Ground", "jungle h.g.": "Jungle Hunting Ground", "library h.g.": "Library Hunting Ground", "morgue h.g.": "Morgue Hunting Ground", "palace h.g.": "Palace Hunting Ground", "park h.g.": "Park Hunting Ground", "poacher's h.g.": "Poacher's Hunting Ground", "political h.g.": "Political Hunting Ground", "port h.g.": "Port Hunting Ground", "shanty Town h.g.": "Shanty Town Hunting Ground", "slum h.g.": "Slum Hunting Ground", "society h.g.": "Society Hunting Ground", "temple h.g.": "Temple Hunting Ground", "underworld h.g.": "Underworld Hunting Ground", "university h.g.": "University Hunting Ground", "uptown h.g.": "Uptown Hunting Ground", "warzone h.g.": "Warzone Hunting Ground", "zoo h.g.": "Zoo Hunting Ground", "acad. hg": "Academic Hunting Ground", "univ. hg": "University Hunting Ground", "univ hg": "University Hunting Ground", # powerbases "pb: barranquilla": "Powerbase: Barranquilla", "pb: berlin": "Powerbase: Berlin", "pb: cape verde": "Powerbase: Cape Verde", "pb: chicago": "Powerbase: Chicago", "pb: los angeles": "Powerbase: Los Angeles", "pb: luanda": "Powerbase: Luanda", "pb: madrid": "Powerbase: Madrid", "pb:madrid": "Powerbase: Madrid", "pb: mexico city": "Powerbase: Mexico City", "pb: montreal": "Powerbase: Montreal", "pb:montreal": "Powerbase: Montreal", "pb: new york": "Powerbase: New York", "pb: rome": "Powerbase: Rome", "pb: savannah": "Powerbase: Savannah", "pb: tshwane": "Powerbase: Tshwane", "pb: washington, d.c.": "Powerbase: Washington, D.C.", "pb: zurich": "Powerbase: Zürich", "pb barranquilla": "Powerbase: Barranquilla", "pb berlin": "Powerbase: Berlin", "pb cape verde": "Powerbase: Cape Verde", "pb chicago": "Powerbase: Chicago", "pb los angeles": "Powerbase: Los Angeles", "pb luanda": "Powerbase: Luanda", "pb madrid": "Powerbase: Madrid", "pb mexico city": "Powerbase: Mexico City", "pb montreal": "Powerbase: Montreal", "pb new york": "Powerbase: New York", "pb rome": "Powerbase: Rome", "pb savannah": "Powerbase: Savannah", "pb tshwane": "Powerbase: Tshwane", "pb washington, d.c.": "Powerbase: Washington, D.C.", "pb zurich": "Powerbase: Zürich", "powerbase zurich": "Powerbase: Zürich", # punctuation "behind you": "Behind You!", "psyche": "Psyche!", # too short to be registered as alternate name automatically "call": "Call, The", "coven": "Coven, The", "rack": "Rack, The", "talaq": "Talaq, The Immortal", # known abbreviations "antediluvian a.": "Antediluvian Awakening", "anthelios, the": "Anthelios, The Red Star", "archon inv.": "Archon Investigation", "carlton": "<NAME>", "carver's meat packing": "Carver's Meat Packing and Storage", "con ag": "Conservative Agitation", "direct": "Direct Intervention", "delaying": "Delaying Tactics", "dreams": "Dreams of the Sphinx", "dreams of the s.": "Dreams of the Sphinx", "effective": "Effective Management", "elysium": "Elysium: The Arboretum", "elysium: versailles": "Elysium: The Palace of Versailles", "entice": "Enticement", "felix fix": 'Felix "Fix" Hessian (Wraith)', "forced": "Forced Awakening", "forced aw": "Forced Awakening", "foreshadowing": "Foreshadowing Destruction", "golconda": "Golconda: Inner Peace", "govern": "Govern the Unaligned", "gtu": "Govern the Unaligned", "heidelberg": "Heidelberg Castle, Germany", "heidelburg": "Heidelberg Castle, Germany", "info highway": "Information Highway", "infohighway": "Information Highway", "info hwy": "Information Highway", "js simmons": "J. S. Simmons, Esq.", "js simmons esq": "J. S. Simmons, Esq.", "krc": "Kine Resources Contested", "krcg": "KRCG News Radio", "krcg news": "KRCG News Radio", "laptop": "Laptop Computer", "laptops": "Laptop Computer", "laptop comp": "Laptop Computer", "laptop comp.": "Laptop Computer", "legal manip": "Legal Manipulations", "london eve star": "London Evening Star, Tabloid Newspaper", "london evening star, tabloid": "London Evening Star, Tabloid Newspaper", "malk. dementia": "Malkavian Dementia", "masquer": "Masquer (Wraith)", "mister winthrop": "Mr. Winthrop", "molotov": "Molotov Cocktail", "ohoyo hopoksia": "Ohoyo Hopoksia (Bastet)", "owl": "Owl Companion", "patagia: flaps": "Patagia: Flaps Allowing Limited Flight", "pentex": "Pentex(TM) Subversion", "pto": "Protect Thine Own", "pulse": "Pulse of the Canaille", "storage": "Storage Annex", "sudden": "Sudden Reversal", "telepathic misdir.": "Telepathic Misdirection", "true love's kiss": "True Love's Face", "temptation of g.p.": "Temptation of Greater Power", "ventrue hq": "Ventrue Headquarters", "voter cap": "Voter Captivation", "wake with ef": "Wake with Evening's Freshness", "wake with e.f": "Wake with Evening's Freshness", "wake wef": "Wake with Evening's Freshness", "wwef": "Wake with Evening's Freshness", "wake...": "Wake with Evening's Freshness", "wake w/eve. freshness": "Wake with Evening's Freshness", "wake w/evening...": "Wake with Evening's Freshness", "wake": "Wake with Evening's Freshness", "wakes": "Wake with Evening's Freshness", "wakeys": "Wake with Evening's Freshness", "waste man op": "Waste Management Operation", "wmrh": "WMRH Talk Radio", "wwstick": "Weighted Walking Stick", # misspellings not fixed by difflib "2th tradition": "Second Tradition: Domain", "ancient influnse": "Ancient Influence", "blodd doll": "Blood Doll", "carver's meat packing plant": "Carver's Meat Packing and Storage", "deflekion": "deflection", "denys": "Deny", "divine intervention": "Direct Intervention", "dogde": "Dodge", "dominat skill": "Dominate", "dominate: skillcard": "Dominate", "eagle sight": "Eagle's Sight", "sprit touch": "Spirit's Touch", "guard dog": "Guard Dogs", "golgonda": "Golconda: Inner Peace", "info superhighway": "Information Highway", "j.<NAME>": "<NAME>, Esq.", "judgement": "Judgment: Camarilla Segregation", "krcg newspaper": "KRCG News Radio", "krcg radio station": "KRCG News Radio", "lost in the crowd": "Lost in Crowds", "lost n the crowds": "Lost in Crowds", "milicent smith: vampire hunter": "Millic<NAME>, Puritan Vampire Hunter", "obfuscate skill": "Obfuscate", "ps: istanbul": "Praxis Seizure: Istanbul", "rejuvenation": "Rejuvenate", "rumour mill tabloid": "The Rumor Mill, Tabloid Newspaper", "rumor mill, the": "The Rumor Mill, Tabloid Newspaper", "soul gems": "Soul Gem of Etrius", "tomb of rameses the cheesemonger": "Tomb of Rameses III", "truth of a 1000 lies": "Truth of a Thousand Lies", "veil of legions": "Veil the Legions", # 🥚 "enkil cock": "enkil cog", "parity shit": "Parity Shift", "heart of cheating": "Heart of Nizchetus", } #: type order for deck display TYPE_ORDER = [ "Master", "Conviction", "Action", "Action/Combat", "Action/Reaction", "Ally", "Equipment", "Political Action", "Retainer", "Power", "Action Modifier", "Action Modifier/Combat", "Action Modifier/Reaction", "Reaction", "Combat", "Combat/Reaction", "Event", ] #: some decks in the TWDA do not respect the rules when it comes to deck size TWDA_CHECK_DECK_FAILS = { "2k9avangarda", # 59 cards listed "2k8glqmich", # 91 cards listed "2k8sanfranqual", # 59 cards listed "2k8pwbsla2", # 91 cards listed "2k6faceaface", # 91 cards listed "2k4virolaxboston", # 91 cards listed "2k4edith", # 91 cards listed "2k4pariscup", # 11 crypt cards listed "2k3nycanarch", # 91 cards listed "ckgc2k", # 91 cards listed "saveface2k1", # 91 cards listed "genconuk2k1-treasure", # 91 cards listed "jd32000", # 91 cards listed "dog", # 100 cards listed "matt-alamut", # 91 cards listed "stevewampler", # 59 cards listed }
1.71875
2
setup.py
sergief/norma43parser
0
12779802
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="norma43parser", version="1.1.2", license="MIT", author="<NAME>", author_email="<EMAIL>", description="Parser for Bank Account information files formatted in Norma 43", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/sergief/norma43parser", packages=setuptools.find_packages(), keywords=["norma43", "parser", "bank", "account", "n43", "csb"], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Software Development :: Libraries :: Python Modules", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], python_requires=">=3.6", )
1.515625
2
tests/integration/call_run_within_script_with_autokeras_test.py
bhack/cloud
0
12779803
""" Search for a good model for the [MNIST](https://keras.io/datasets/#mnist-database-of-handwritten-digits) dataset. """ import argparse import os import autokeras as ak import tensorflow_cloud as tfc from tensorflow.keras.datasets import mnist parser = argparse.ArgumentParser(description="Model save path arguments.") parser.add_argument("--path", required=True, type=str, help="Keras model save path") args = parser.parse_args() tfc.run( chief_config=tfc.COMMON_MACHINE_CONFIGS["V100_1X"], docker_base_image="haifengjin/autokeras:1.0.3", ) # Prepare the dataset. (x_train, y_train), (x_test, y_test) = mnist.load_data() print(x_train.shape) # (60000, 28, 28) print(y_train.shape) # (60000,) print(y_train[:3]) # array([7, 2, 1], dtype=uint8) # Initialize the ImageClassifier. clf = ak.ImageClassifier(max_trials=2) # Search for the best model. clf.fit(x_train, y_train, epochs=10) # Evaluate on the testing data. print("Accuracy: {accuracy}".format(accuracy=clf.evaluate(x_test, y_test)[1])) clf.export_model().save(os.path.join(args.path, "model.h5"))
2.8125
3
resourses/courses_resource.py
maxazure/papers
0
12779804
from flask_restful import Resource, reqparse, request from flask_restful import fields, marshal_with, marshal from sqlalchemy.exc import IntegrityError from sqlalchemy import or_, and_, text from flask_jwt_extended import jwt_required from models.course import Course from app import db from utils.util import max_res from helpers.courses_resource_helper import * class CoursesResource(Resource): @jwt_required def get(self, course_id=None): if course_id: course = Course.find_by_id(course_id) return max_res(marshal(course, course_fields)) else: conditions = [] args = course_query_parser.parse_args() page = args['page'] per_page = args['pagesize'] if args['orderby'] not in sortable_fields: return max_res('', code=500, errmsg='排序非法字段') sort = args['orderby'] if args['desc']>0: sort = args['orderby'] + ' desc' conditions = make_conditions(conditions,args) # 在这里添加更多的 条件查询 例如 # if args['name'] is not None: # conditions.append(Course.name.like('%'+args['name']+'%')) if conditions is []: pagination = Course.query.order_by(text(sort)).paginate(page, per_page, error_out=False) else: pagination = Course.query.filter(*conditions).order_by(text(sort)).paginate(page, per_page, error_out=False) paginate = { 'total':pagination.total, 'pageSize': pagination.per_page, 'current': pagination.page } print(pagination.items) return max_res(marshal({ 'pagination': paginate, 'list': [marshal(u, course_fields) for u in pagination.items] }, course_list_fields)) @jwt_required def post(self): args = course_post_parser.parse_args() course = Course(**args) try: course.add() except IntegrityError: return max_res('', code=401, errmsg='名称重复') return max_res(marshal(course, course_fields)) def put(self, course_id=None): course = Course.find_by_id(course_id) args = course_update_parser.parse_args() course = update_all_fields(args, course) #可以在这里继续添加 需要更新的字段 如 # if args['name']: # o.name = args['name'] # db.session.commit() try: course.update() except Exception as e: return max_res('',500, 'Failed to modify.') return max_res(marshal(course, course_fields)) def delete(self, course_id=None): course = Course.find_by_id(course_id) try: course.delete() except Exception as e: return max_res('',500, 'The record has already deleted.') return max_res('The course has been deleted.')
2.296875
2
aasaan/ashramvisit/models.py
deepakkt/aasaan
0
12779805
<filename>aasaan/ashramvisit/models.py<gh_stars>0 from django.db import models from contacts.models import Center, Contact, IndividualContactRoleZone, Zone from smart_selects.db_fields import GroupedForeignKey class AshramVisit(models.Model): Center = GroupedForeignKey(Center, 'zone') arrival_date = models.DateTimeField("Arrival Date & Time") departure_time = models.TimeField("Departure Time") participant_count = models.IntegerField() lunch = models.BooleanField() dinner = models.BooleanField() contact_person = models.CharField(max_length=100) mobile_no = models.CharField("Mobile Number", max_length=15) def __str__(self): return "%s - %s" %(self.Center, self.participant_count)
2.15625
2
others/montecarlo.py
1lch2/PythonExercise
1
12779806
import random import math import numpy as np import matplotlib.pyplot as plt # Calculating Pi using Monte Carlo algorithm. def montecarlo_pi(times:int): inside = 0 total = times for i in range(times): x_i = random.random() y_i = random.random() delta = x_i ** 2 + y_i **2 - 1 if delta <= 0: inside += 1 approx_pi = 4 * inside / total print('\nRandom test: ' + str(times)) print('Approximation of pi is:{:.8f}'.format(approx_pi)) return approx_pi if __name__ == '__main__': numlist = [100, 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000, 10000000, 30000000, 50000000, 75000000, 100000000] x_list = list(np.log10(numlist)) pi_ = [] for times in numlist: pi_.append(montecarlo_pi(times)) plt.figure() plt.plot([min(x_list), max(x_list)], [math.pi, math.pi], color='red', label='true value') plt.plot(x_list, pi_, 'b.-', label='approximation') plt.legend() plt.xlabel('log10(n)') plt.ylabel('pi') my_y_ticks = np.arange(3, 3.4, 0.02) plt.yticks(my_y_ticks) plt.ylim((min(pi_)-0.1, max(pi_)+0.1)) plt.show()
3.59375
4
Week5/ps6/experiments.py
AustinKladke/6.00.1x-MIT-CS-Python
0
12779807
<reponame>AustinKladke/6.00.1x-MIT-CS-Python<filename>Week5/ps6/experiments.py # -*- coding: utf-8 -*- """ Created on Wed Mar 10 19:37:20 2021 @author: akladke """ import string # letter_lst = [] # num_lst = [] # count_lower = 1 # for i in string.ascii_lowercase: # print(ord(i)) # letter_lst.append(i) # num_lst.append(count_lower) # count_lower += 1 # print(letter_lst) # print(num_lst) original_dict = {} count_lower = 1 for i in string.ascii_lowercase: original_dict[i] = count_lower original_dict[i] = ord(i) count_lower += 1 print(original_dict) original_dict_2 = {} count_upper = 1 for i in string.ascii_uppercase: original_dict_2[i] = count_upper original_dict_2[i] = ord(i) count_upper += 1 print(original_dict_2) # Practice shifting dictionary key values by certain amounts # Need to shift each letter by certain amount, making sure that # it circles back to 0 (or 97) if goes beyond end of alphabet. Can # then use chr to convert the number back into the right letter so # can end up with example: {A:C, B:D}, etc. # ord range for lowercase letters => 97 - 122 shift = 3 for i in original_dict: if original_dict[i] + shift > 122: x = (122 - original_dict[i]) x2 = abs(shift - x) original_dict[i] = chr(97 + x2 - 1) else: original_dict[i] += shift original_dict[i] = chr(original_dict[i]) print(original_dict) #for i in original_dict: #original_dict[i] = chr(original_dict[i]) #print(original_dict) # for i in original_dict: # original_dict[i] = original_dict[i].upper() # original_dict[i] = original_dict.pop(i.upper()) # print(original_dict) # ord range for uppercase letters => 65 - 90 shift = 3 for i in original_dict_2: if original_dict_2[i] + shift > 90: x = (90 - original_dict_2[i]) x2 = abs(shift - x) original_dict_2[i] = chr(65 + x2 - 1) else: original_dict_2[i] += shift original_dict_2[i] = chr(original_dict_2[i]) print(original_dict_2) final_combined_dict = {} final_combined_dict.update(original_dict) final_combined_dict.update(original_dict_2) print(final_combined_dict) # Use cipher to translate word word = 'abc jkl. Ok 123!' new_dict = final_combined_dict new_word = "" for i in word: try: new_word += new_dict[i] except: new_word += i print(new_word)
3.609375
4
service/settings/production.py
Mystopia/fantastic-doodle
3
12779808
<gh_stars>1-10 from service.settings.base import * SECRET_KEY = os.getenv('SECRET_KEY') DEBUG = False ALLOWED_HOSTS = [h.strip() for h in os.getenv('ALLOWED_HOSTS', '').split(',') if h] STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # Security: SSL/HTTPS # https://docs.djangoproject.com/en/dev/topics/security/#ssl-https ## Set SECURE_SSL_REDIRECT to True, so that requests over HTTP are redirected to HTTPS. SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') SECURE_SSL_REDIRECT = True ## Use ‘secure’ cookies. SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True ## Use HTTP Strict Transport Security (HSTS) SECURE_HSTS_SECONDS = 3600 SECURE_HSTS_INCLUDE_SUBDOMAINS = True
1.671875
2
CRI_WeeklyMaps/__init__.py
adambreznicky/smudge_python
1
12779809
__file__ = '__init__.py' __date__ = '6/18/2015' __author__ = 'ABREZNIC'
1.125
1
notebooks/old/lupton_rgb.py
train-your-deblender/cutout-evaluation
0
12779810
# Licensed under a 3-clause BSD style license - see LICENSE.rst # # TODO: Remove this when https://github.com/parejkoj/astropy/tree/luptonRGB # is in Astropy. """ Combine 3 images to produce a properly-scaled RGB image following Lupton et al. (2004). For details, see : http://adsabs.harvard.edu/abs/2004PASP..116..133L The three images must be aligned and have the same pixel scale and size. Example usage: imageR = np.random.random((100,100)) imageG = np.random.random((100,100)) imageB = np.random.random((100,100)) image = lupton_rgb.makeRGB(imageR, imageG, imageB, fileName='randoms.png') lupton_rgb.displayRGB(image) """ import numpy as np try: import scipy.misc HAVE_SCIPY_MISC = True except ImportError: HAVE_SCIPY_MISC = False # from lsst.afw.display.displayLib import replaceSaturatedPixels, getZScale def compute_intensity(imageR, imageG=None, imageB=None): """ Return a naive total intensity from the red, blue, and green intensities. Parameters ---------- imageR : `~numpy.ndarray` Intensity of image to be mapped to red; or total intensity if imageG and imageB are None. imageG : `~numpy.ndarray` Intensity of image to be mapped to green; or None. imageB : `~numpy.ndarray` Intensity of image to be mapped to blue; or None. """ if imageG is None or imageB is None: assert imageG is None and imageB is None, \ "Please specify either a single image or red, green, and blue images" return imageR intensity = (imageR + imageG + imageB)/3.0 # Repack into whatever type was passed to us return np.array(intensity, dtype=imageR.dtype) def zscale(image, nSamples=1000, contrast=0.25): """ TBD: replace with newly added astropy.zscale function. This emulates ds9's zscale feature. Returns the suggested minimum and maximum values to display. Parameters ---------- image : `~numpy.ndarray` The image to compute the scaling on. nSamples : int How many samples to take when building the histogram. contrast : float ??? """ stride = image.size/nSamples samples = image.flatten()[::stride] samples.sort() chop_size = int(0.10*len(samples)) subset = samples[chop_size:-chop_size] i_midpoint = int(len(subset)/2) I_mid = subset[i_midpoint] fit = np.polyfit(np.arange(len(subset)) - i_midpoint, subset, 1) # fit = [ slope, intercept] z1 = I_mid + fit[0]/contrast * (1-i_midpoint)/1.0 z2 = I_mid + fit[0]/contrast * (len(subset)-i_midpoint)/1.0 return z1, z2 class Mapping(object): """Baseclass to map red, blue, green intensities into uint8 values""" def __init__(self, minimum=None, image=None): """ Create a mapping Parameters ---------- minimum : float or sequence(3) Intensity that should be mapped to black (a scalar or array for R, G, B). image : `~numpy.ndarray` The image to be used to calculate the mapping. If provided, it is also used as the default for makeRgbImage(). """ self._uint8Max = float(np.iinfo(np.uint8).max) try: len(minimum) except: minimum = 3*[minimum] assert len(minimum) == 3, "Please provide 1 or 3 values for minimum" self.minimum = minimum self._image = image def makeRgbImage(self, imageR=None, imageG=None, imageB=None, xSize=None, ySize=None, rescaleFactor=None): """ Convert 3 arrays, imageR, imageG, and imageB into a numpy RGB image. Parameters ---------- imageR : `~numpy.ndarray` Image to map to red (if None, use the image passed to the constructor). imageG : `~numpy.ndarray` Image to map to green (if None, use imageR). imageB : `~numpy.ndarray` Image to map to blue (if None, use imageR). xSize : int Desired width of RGB image (or None). If ySize is None, preserve aspect ratio. ySize : int Desired height of RGB image (or None). rescaleFactor : float Make size of output image rescaleFactor*size of the input image. Cannot be specified if xSize or ySize are given. """ if imageR is None: if self._image is None: raise RuntimeError("You must provide an image or pass one to the constructor") imageR = self._image if imageG is None: imageG = imageR if imageB is None: imageB = imageR if xSize is not None or ySize is not None: assert rescaleFactor is None, "You may not specify a size and rescaleFactor" h, w = imageR.shape if ySize is None: ySize = int(xSize*h/float(w) + 0.5) elif xSize is None: xSize = int(ySize*w/float(h) + 0.5) # need to cast to int when passing tuple to imresize. size = (int(ySize), int(xSize)) # n.b. y, x order for scipy elif rescaleFactor is not None: size = float(rescaleFactor) # a float is intepreted as a percentage else: size = None if size is not None: if not HAVE_SCIPY_MISC: raise RuntimeError("Unable to rescale as scipy.misc is unavailable.") imageR = scipy.misc.imresize(imageR, size, interp='bilinear', mode='F') imageG = scipy.misc.imresize(imageG, size, interp='bilinear', mode='F') imageB = scipy.misc.imresize(imageB, size, interp='bilinear', mode='F') return np.dstack(self._convertImagesToUint8(imageR, imageG, imageB)).astype(np.uint8) def intensity(self, imageR, imageG, imageB): """ Return the total intensity from the red, blue, and green intensities. This is a naive computation, and may be overridden by subclasses. """ return compute_intensity(imageR, imageG, imageB) def mapIntensityToUint8(self, I): """ Return an array which, when multiplied by an image, returns that image mapped to the range of a uint8, [0, 255] (but not converted to uint8). The intensity is assumed to have had minimum subtracted (as that can be done per-band). """ with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.where(I < self._uint8Max, I, self._uint8Max)) def _convertImagesToUint8(self, imageR, imageG, imageB): """Use the mapping to convert images imageR, imageG, and imageB to a triplet of uint8 images""" imageR = imageR - self.minimum[0] # n.b. makes copy imageG = imageG - self.minimum[1] imageB = imageB - self.minimum[2] fac = self.mapIntensityToUint8(self.intensity(imageR, imageG, imageB)) imageRGB = [imageR, imageG, imageB] for c in imageRGB: c *= fac c[c < 0] = 0 # individual bands can still be < 0, even if fac isn't pixmax = self._uint8Max r0, g0, b0 = imageRGB # copies -- could work row by row to minimise memory usage with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit for i, c in enumerate(imageRGB): c = np.where(r0 > g0, np.where(r0 > b0, np.where(r0 >= pixmax, c*pixmax/r0, c), np.where(b0 >= pixmax, c*pixmax/b0, c)), np.where(g0 > b0, np.where(g0 >= pixmax, c*pixmax/g0, c), np.where(b0 >= pixmax, c*pixmax/b0, c))).astype(np.uint8) c[c > pixmax] = pixmax imageRGB[i] = c return imageRGB class LinearMapping(Mapping): """A linear map map of red, blue, green intensities into uint8 values""" def __init__(self, minimum=None, maximum=None, image=None): """ A linear stretch from [minimum, maximum]. If one or both are omitted use image min and/or max to set them. Parameters ---------- minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). maximum : float Intensity that should be mapped to white (a scalar). """ if minimum is None or maximum is None: assert image is not None, "You must provide an image if you don't set both minimum and maximum" if minimum is None: minimum = image.min() if maximum is None: maximum = image.max() Mapping.__init__(self, minimum=minimum, image=image) self.maximum = maximum if maximum is None: self._range = None else: assert maximum - minimum != 0, "minimum and maximum values must not be equal" self._range = float(maximum - minimum) def mapIntensityToUint8(self, I): with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.where(I >= self._range, self._uint8Max/I, self._uint8Max/self._range)) class ZScaleMapping(LinearMapping): """ A mapping for a linear stretch chosen by the zscale algorithm. (preserving colours independent of brightness) x = (I - minimum)/range """ def __init__(self, image, nSamples=1000, contrast=0.25): """ A linear stretch from [z1, z2] chosen by the zscale algorithm. Parameters ---------- nSamples : int The number of samples to use to estimate the zscale parameters. contrast : float The number of samples to use to estimate the zscale parameters. """ z1, z2 = zscale(image, nSamples, contrast) LinearMapping.__init__(self, z1, z2, image) class AsinhMapping(Mapping): """ A mapping for an asinh stretch (preserving colours independent of brightness) x = asinh(Q (I - minimum)/range)/Q This reduces to a linear stretch if Q == 0 See http://adsabs.harvard.edu/abs/2004PASP..116..133L """ def __init__(self, minimum, dataRange, Q=8): """ asinh stretch from minimum to minimum + dataRange, scaled by Q, via: x = asinh(Q (I - minimum)/dataRange)/Q Parameters ---------- minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). dataRange : float minimum+dataRange defines the white level of the image. Q : float The asinh softening parameter. """ Mapping.__init__(self, minimum) epsilon = 1.0/2**23 # 32bit floating point machine epsilon; sys.float_info.epsilon is 64bit if abs(Q) < epsilon: Q = 0.1 else: Qmax = 1e10 if Q > Qmax: Q = Qmax if False: self._slope = self._uint8Max/Q # gradient at origin is self._slope else: frac = 0.1 # gradient estimated using frac*range is _slope self._slope = frac*self._uint8Max/np.arcsinh(frac*Q) self._soften = Q/float(dataRange) def mapIntensityToUint8(self, I): with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.arcsinh(I*self._soften)*self._slope/I) class AsinhZScaleMapping(AsinhMapping): """ A mapping for an asinh stretch, estimating the linear stretch by zscale. x = asinh(Q (I - z1)/(z2 - z1))/Q See AsinhMapping """ def __init__(self, image1, image2=None, image3=None, Q=8, pedestal=None): """ Create an asinh mapping from an image, setting the linear part of the stretch using zscale. Parameters ---------- image1 : `~numpy.ndarray` The image to analyse, # or a list of 3 images to be converted to an intensity image. image2 : `~numpy.ndarray` the second image to analyse (must be specified with image3). image3 : `~numpy.ndarray` the third image to analyse (must be specified with image2). Q : float The asinh softening parameter. pedestal : float or sequence(3) The value, or array of 3 values, to subtract from the images; or None. pedestal, if not None, is removed from the images when calculating the zscale stretch, and added back into Mapping.minimum. """ if image2 is None or image3 is None: assert image2 is None and image3 is None, "Please specify either a single image or three images." image = [image1] else: image = [image1, image2, image3] if pedestal is not None: try: assert len(pedestal) in (1, 3,), "Please provide 1 or 3 pedestals." except TypeError: pedestal = 3*[pedestal] image = list(image) # needs to be mutable for i, im in enumerate(image): if pedestal[i] != 0.0: image[i] = im - pedestal[i] # n.b. a copy else: pedestal = len(image)*[0.0] image = compute_intensity(*image) zscale = ZScaleMapping(image) dataRange = zscale.maximum - zscale.minimum[0] # zscale.minimum is always a triple minimum = zscale.minimum for i, level in enumerate(pedestal): minimum[i] += level AsinhMapping.__init__(self, minimum, dataRange, Q) self._image = image def makeRGB(imageR, imageG=None, imageB=None, minimum=0, dataRange=5, Q=8, saturatedBorderWidth=0, saturatedPixelValue=None, xSize=None, ySize=None, rescaleFactor=None, fileName=None): """ Make an RGB color image from 3 images using an asinh stretch. Parameters ---------- imageR : `~numpy.ndarray` Image to map to red (if None, use the image passed to the constructor). imageG : `~numpy.ndarray` Image to map to green (if None, use imageR). imageB : `~numpy.ndarray` Image to map to blue (if None, use imageR). minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). dataRange : float minimum+dataRange defines the white level of the image. Q : float The asinh softening parameter. saturatedBorderWidth : int If saturatedBorderWidth is non-zero, replace saturated pixels with saturatedPixelValue. Note that replacing saturated pixels requires that the input images be MaskedImages. saturatedPixelValue : float Value to replace saturated pixels with. xSize : int Desired width of RGB image (or None). If ySize is None, preserve aspect ratio. ySize : int Desired height of RGB image (or None). rescaleFactor : float Make size of output image rescaleFactor*size of the input image. Cannot be specified if xSize or ySize are given. """ if imageG is None: imageG = imageR if imageB is None: imageB = imageR if saturatedBorderWidth: if saturatedPixelValue is None: raise ValueError("saturatedPixelValue must be set if saturatedBorderWidth is set") msg = "Cannot do this until we extract replaceSaturatedPixels out of afw/display/saturated.cc" raise NotImplementedError(msg) # replaceSaturatedPixels(imageR, imageG, imageB, saturatedBorderWidth, saturatedPixelValue) asinhMap = AsinhMapping(minimum, dataRange, Q) rgb = asinhMap.makeRgbImage(imageR, imageG, imageB, xSize=xSize, ySize=ySize, rescaleFactor=rescaleFactor) if fileName: writeRGB(fileName, rgb) return rgb def displayRGB(rgb, show=True, title=None): """ Display an rgb image using matplotlib. Parameters ---------- rgb : `~numpy.ndarray` The RGB image to display show : bool If true, call plt.show() title : str Title to use for the displayed image. """ import matplotlib.pyplot as plt plt.imshow(rgb, interpolation='nearest', origin="lower") if title: plt.title(title) if show: plt.show() return plt def writeRGB(fileName, rgbImage): """ Write an RGB image to disk. Most versions of matplotlib support png and pdf (although the eps/pdf/svg writers may be buggy, possibly due an interaction with useTeX=True in the matplotlib settings). If your matplotlib bundles pil/pillow you should also be able to write jpeg and tiff files. Parameters ---------- fileName : str The output file. The extension defines the format, and must be supported by matplotlib.imsave(). rgbImage : `~numpy.ndarray` The RGB image to save. """ import matplotlib.image matplotlib.image.imsave(fileName, rgbImage)
2.3125
2
mendeley/models/files.py
providedh/mendeley-python-sdk
0
12779811
import os import re from mendeley.response import SessionResponseObject class File(SessionResponseObject): """ A file attached to a document. .. attribute:: id .. attribute:: size .. attribute:: file_name .. attribute:: mime_type .. attribute:: filehash .. attribute:: download_url """ content_type = 'application/vnd.mendeley-file.1+json' filename_regex = re.compile('filename="(\S+)"') @property def download_url(self): """ the URL at which the file can be downloaded. This is only valid for a short time, so should not be cached. """ file_url = '/files/%s' % self.id rsp = self.session.get(file_url, allow_redirects=False) return rsp.headers['location'] def document(self, view=None): """ :param view: document view to return. :return: a :class:`UserDocument <mendeley.models.documents.UserDocument>` or :class:`CatalogDocument <mendeley.models.catalog.CatalogDocument>`, depending on which the document is attached to. """ if 'document_id' in self.json: return self.session.documents.get_lazy(self.json['document_id'], view=view) elif 'catalog_id' in self.json: return self.session.catalog.get_lazy(self.json['catalog_id'], view=view) else: return None def download(self, directory): """ Downloads the file. :param directory: the directory to download the file to. This must exist. :return: the path to the downloaded file. """ rsp = self.session.get('/files/%s' % self.id, stream=True) filename = self.filename_regex.search(rsp.headers['content-disposition']).group(1) path = os.path.join(directory, filename) with open(path, 'wb') as f: for block in rsp.iter_content(1024): if not block: break f.write(block) return path def delete(self): """ Deletes the file. """ self.session.delete('/files/%s' % self.id) @classmethod def fields(cls): return ['id', 'size', 'file_name', 'mime_type', 'filehash']
2.734375
3
python/snpx/snpx_tf/arch/resnet.py
ahmedezzat85/SNPX_ML
0
12779812
import tensorflow as tf from . tf_net import TFNet class Resnet(TFNet): """ """ def __init__(self, data, data_format, num_classes, is_train=True): dtype = data.dtype.base_dtype super(Resnet, self).__init__(dtype, data_format, train=is_train) self.net_out = tf.identity(data, name='data') self.num_classes = num_classes def _resnet_block(self, filters, kernel, stride=(1,1), act_fn='relu', conv_1x1=0, name=None): """ """ data = self.net_out shortcut = data bn_out = self.batch_norm(data, act_fn, name=name+'_bn') if conv_1x1: shortcut = self.convolution(bn_out, filters, (1,1), stride, pad='same', act_fn='', no_bias=True, name=name+'_1x1_conv') net_out = self.convolution(bn_out, filters, kernel, stride, act_fn=act_fn, add_bn=True, name=name+'_conv1') net_out = self.convolution(net_out, filters, kernel, (1,1), act_fn='', no_bias=True, name=name+'_conv2') self.net_out = net_out + shortcut def _resnet_unit(self, num_blocks, filters, kernel, stride=1, act_fn='relu', name=None): """ """ strides = (stride, stride) self._resnet_block(filters, kernel, strides, act_fn, conv_1x1=1, name=name+'_block0') for i in range(1, num_blocks): self._resnet_block(filters, kernel, (1,1), act_fn, name=name+'_block'+str(i)) def __call__(self, num_stages=3, num_blocks=3, filters=[16, 32, 64], strides=[1,2,2]): """ """ self.net_out = self.convolution(self.net_out, filters[0], (3,3), (1,1), act_fn='', no_bias=True, name='Conv0') for k in range(num_stages): self._resnet_unit(num_blocks, filters[k], (3,3), strides[k], name='stage'+str(k)) net_out = self.pooling(self.net_out, 'avg', (8,8), name="global_pool") net_out = self.dropout(net_out, 0.5) net_out = self.flatten(net_out) net_out = self.Softmax(net_out, self.num_classes) return net_out def snpx_net_create(num_classes, input_data, data_format="NHWC", is_training=True): """ """ net = Resnet(input_data, data_format, num_classes, is_training) net_out = net(num_stages=3, num_blocks=3, filters=[16, 32, 64], strides=[1,2,2]) return net_out
2.78125
3
multilingual_t5/r_bn_en/__init__.py
sumanthd17/mt5
0
12779813
"""r_bn_en dataset.""" from .r_bn_en import RBnEn
0.980469
1
host/workers.py
mjsamuel/Homebridge-MagicHome-Sync
2
12779814
<filename>host/workers.py import logging, threading, time from PIL import ImageGrab class StoppableThread(threading.Thread): def __init__(self, *args, **kwargs): super(StoppableThread, self).__init__(*args, **kwargs) self._stop_event = threading.Event() def stop(self): self._stop_event.set() def stopped(self): return self._stop_event.is_set() def sync_screen(light, polling_interval): # Resolution of scaled down image rx = 64 ry = 36 total_pixels = rx * ry prev_colour = None while threading.current_thread().stopped() is False: img = ImageGrab.grab() img = img.resize((rx, ry)) red = green = blue = 0 for y in range(0, img.size[1]): for x in range(0, img.size[0]): pixel = img.getpixel((x,y)) red = red + pixel[0] green = green + pixel[1] blue = blue + pixel[2] red = int(red / total_pixels) green = int(green / total_pixels) blue = int(blue / total_pixels) colour = (red, green, blue) if colour != prev_colour: light.setRgb(colour) prev_colour = colour logging.info("RGB %3d %3d %3d Sent" % colour) else: logging.info("Same colour not sent") time.sleep(polling_interval) light.turnOff()
2.765625
3
ex093.py
Gustavo-Dev-Web/python
0
12779815
<reponame>Gustavo-Dev-Web/python dados = {} gols = [] dados['Nome'] = str(input('Nome do Atleta:')) partidas = int(input('Quantas partidas o jogador jogou:')) for c in range(0,partidas): gols.append(int(input(f'Quantos gols o jogador {dados["Nome"]} fez na partida {c}: '))) dados['Gols'] = gols[:] dados['Total'] = sum(gols) print('--'*30) print(dados) print('--'*30) for k,v in dados.items(): print(f'{k}: {v}') print('--'*30) print(f'O jogador {dados["Nome"]} jogou {partidas} partidas') for c in range(0, partidas): print(f' => Na partida {c}, fez {dados["Gols"][c]} gols') print(f'Foi um total de {dados["Total"]} gols')
3.59375
4
src/yolo_preparing.py
vikasg603/Vehicle-Front-Rear-Detection-for-License-Plate-Detection-Enhancement
29
12779816
''' This file is used to delete the images without labels (Delete the images without corresponding txt file) AND THEN Generate the train.txt and test.txt for YOLO ''' from os.path import splitext, isfile, join, basename from os import remove from glob import glob, iglob # root path dir = '/home/shaoheng/Documents/cars_label_FRNet/cars/foryolo' ''' First part ''' def clean_data(dir): # define the dir path which includes all the images and labels img_lst = glob(dir+'/*.jpg') # modify to png if needed for img in img_lst: split_former = splitext(img)[0] if isfile(split_former + '.txt') is False: remove(img) print 'remove', img ''' second part, source:https://github.com/ManivannanMurugavel/YOLO-Annotation-Tool/blob/master/process.py ''' def training_data_sumup(dir): # Percentage of images to be used for the test set percentage_test = 0 # Create and/or truncate train.txt and test.txt file_train = open('train.txt', 'w') file_test = open('test.txt', 'w') # Populate train.txt and test.txt counter = 1 if percentage_test: index_test = round(100 / percentage_test) for pathAndFilename in iglob(join(dir, "*.jpg")): title, ext = splitext(basename(pathAndFilename)) if percentage_test and counter == index_test: counter = 1 file_test.write(dir + "/" + title + '.jpg' + "\n") else: file_train.write(dir + "/" + title + '.jpg' + "\n") counter = counter + 1 # clean_data(dir) training_data_sumup(dir)
3.15625
3
splendor_sim/src/action/reserve_card_action.py
markbrockettrobson/SplendorBots
1
12779817
import copy import typing import splendor_sim.interfaces.action.i_action as i_action import splendor_sim.interfaces.card.i_card as i_card import splendor_sim.interfaces.coin.i_coin_type as i_coin_type import splendor_sim.interfaces.game_state.i_game_state as i_game_state import splendor_sim.interfaces.player.i_player as i_player class ReserveCardAction(i_action.IAction): def __init__( self, valid_coin_type_set: typing.Set[i_coin_type.ICoinType], current_player: i_player.IPlayer, coins: typing.Dict[i_coin_type.ICoinType, int], card: i_card.ICard, ): self._validate_input(valid_coin_type_set, coins) self._card = card self._coin_dictionary = copy.copy(coins) self._current_player = current_player def validate(self, game_state: i_game_state.IGameState) -> bool: number_of_reserved_cards = ( self._current_player.get_card_inventory().get_number_of_reserved_cards() ) max_number_of_reserved_cards = ( self._current_player.get_card_inventory().get_max_number_of_reserved_cards() ) if number_of_reserved_cards < max_number_of_reserved_cards: if self._card in game_state.get_card_reserve().get_cards_for_sale(): if game_state.get_coin_reserve().has_minimum(self._coin_dictionary): return True return False def execute(self, game_state: i_game_state.IGameState) -> None: if not self.validate(game_state): raise ValueError("invalid action") game_state.get_coin_reserve().remove_coins(self._coin_dictionary) game_state.get_card_reserve().remove_card(self._card) self._current_player.get_coin_inventory().add_coins(self._coin_dictionary) self._current_player.get_card_inventory().add_card_to_reserved(self._card) @staticmethod def _validate_input( valid_coin_type_set: typing.Set[i_coin_type.ICoinType], coins: typing.Dict[i_coin_type.ICoinType, int], ): if len(coins.keys()) != 1: raise ValueError("can only take 1 type of coin") for coin_type, number_of_coins in coins.items(): if number_of_coins != 1: raise ValueError("can only take one coin") if coin_type not in valid_coin_type_set: raise ValueError("invalid coin type")
2.390625
2
RecoVertex/BeamSpotProducer/scripts/copyFiles.py
nistefan/cmssw
0
12779818
#!/usr/bin/env python import sys,os,commands from CommonMethods import * def main(): if len(sys.argv) < 3: error = "Usage: copyFiles.py fromDir destDir (optional filter)" exit(error) fromDir = sys.argv[1] print fromDir if (fromDir[len(fromDir)-1] != '/'): fromDir += '/' destDir = sys.argv[2] + "/" filter = "" if len(sys.argv) > 3: filter = sys.argv[3] fileList = ls(fromDir,filter) copiedFiles = cp(fromDir,destDir,fileList) if len(copiedFiles) != len(fileList): error = "ERROR: I couldn't copy all files from " + fromDir exit(error) if __name__ == "__main__": main()
3.28125
3
spawn_npc.py
Matrix-King-Studio/HydraDeepQNet
0
12779819
<gh_stars>0 import logging import random import carla def spawn_npc(client, world, blueprint_library, safe=True, number_of_vehicles=30, number_of_walkers=0): actor_list = [] try: blueprints = blueprint_library.filter('vehicle.*') if safe: blueprints = [x for x in blueprints if int(x.get_attribute('number_of_wheels')) == 4] blueprints = [x for x in blueprints if not x.id.endswith('isetta')] blueprints = [x for x in blueprints if not x.id.endswith('carlacola')] spawn_points = world.get_map().get_spawn_points() number_of_spawn_points = len(spawn_points) if number_of_vehicles < number_of_spawn_points: random.shuffle(spawn_points) elif number_of_vehicles > number_of_spawn_points: msg = 'requested %d vehicles, but could only find %d spawn points' logging.warning(msg, number_of_vehicles, number_of_spawn_points) number_of_vehicles = number_of_spawn_points # @todo cannot import these directly. SpawnActor = carla.command.SpawnActor SetAutopilot = carla.command.SetAutopilot FutureActor = carla.command.FutureActor batch = [] for n, transform in enumerate(spawn_points): if n >= number_of_vehicles: break blueprint = random.choice(blueprints) if blueprint.has_attribute('color'): color = random.choice(blueprint.get_attribute('color').recommended_values) blueprint.set_attribute('color', color) blueprint.set_attribute('role_name', 'autopilot') batch.append(SpawnActor(blueprint, transform).then(SetAutopilot(FutureActor, True))) for response in client.apply_batch_sync(batch): if response.error: logging.error(response.error) else: actor_list.append(response.actor_id) print('spawned %d vehicles, press Ctrl+C to exit.' % len(actor_list)) except Exception as e: print(f"spawn_npc Error: {e}") print('\ndestroying %d actors' % len(actor_list)) client.apply_batch([carla.command.DestroyActor(x) for x in actor_list])
2.46875
2
tools/tensorflow/cnn/alexnet/unpickle.py
feifeibear/dlbench
181
12779820
<gh_stars>100-1000 import cPickle import numpy as np import tensorflow as tf PATH = './cifar-10-batches-py' TARGETPATH = '/home/comp/csshshi/tensorflow/cifar-10-batches-py' TEST_FILES = ['test_batch'] FILES = ['data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5'] TRAIN_COUNT = 50000 EVAL_COUNT = 10000 IMAGE_SIZE = 32 NUM_CLASSES = 10 unpickled = {} def unpickle(file): dict = unpickled.get(file) if dict: return dict fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() unpickled[file] = dict return dict def get_next_batch(batch_size, step, is_test=False): files = FILES if is_test: files = TEST_FILES file_index = step % len(FILES) filename = files[file_index] filename = '%s/%s'%(PATH, filename) dict = unpickle(filename) data_index = step/len(files) * batch_size images = dict['data'][data_index:data_index+batch_size] labels = dict['labels'][data_index:data_index+batch_size] reshaped_images = [np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, 3)) for image in images] return reshaped_images, labels
2.25
2
src/commands/huificator.py
slimsevernake/osbb-bot
9
12779821
import re HUEVELS = { 'у': 'хую', 'У': 'хую', 'е': 'хуе', 'Е': 'хуе', 'ё': 'хуё', 'Ё': 'хуё', 'а': 'хуя', 'А': 'хуя', 'о': 'хуё', 'О': 'хуё', 'э': 'хуе', 'Э': 'хуе', 'я': 'хуя', 'Я': 'хуя', 'и': 'хуи', 'И': 'хуи', 'ы': 'хуы', 'Ы': 'хуы', 'ю': 'хую', 'Ю': 'хую' } PUNCT_MARKS = [',', '.', ';', ':'] def count_syllabiles(word): count = 0 for letter in word: if letter in HUEVELS: count += 1 return count def get_last_letter(word): if word == '': return word last_letter = word[-1] if last_letter in PUNCT_MARKS: return get_last_letter(word[:-1]) return last_letter def first_vowel(word): res = re.search("[уеёыаоэяию]", word, re.IGNORECASE) if res: return res.start(), res.group() return -1, '' def huificator(word): num_syl = count_syllabiles(word) last_letter = get_last_letter(word) if num_syl == 0: return word if num_syl == 1: if last_letter in HUEVELS: return word pos, vow = first_vowel(word) if pos == -1: return word repl = HUEVELS[vow].upper() if len(word) >= 2 and word[:2].isupper() else HUEVELS[vow] result = repl + word[pos+1:] if word.isupper(): result = result.upper() elif word[:1].isupper(): result = result[:1].upper() + result[1:] return result
3.484375
3
workshop_sections/extras/lstm_text_classification/trainer/task.py
CharleyGuo/tensorflow-workshop
691
12779822
import model import tensorflow as tf import utils def train(target, num_param_servers, is_chief, lstm_size=64, input_filenames=None, sentence_length=128, vocab_size=2**15, learning_rate=0.01, output_dir=None, batch_size=1024, embedding_size=128, num_epochs=2): graph = tf.Graph() with graph.as_default(): sentences, scores = model.get_inputs( input_filenames, batch_size, num_epochs, sentence_length) with tf.device(tf.train.replica_device_setter()): lstm = model.BasicRegressionLSTM( sentences, scores, num_param_servers, vocab_size, learning_rate, embedding_size, lstm_size ) tf.contrib.learn.train( graph, output_dir, lstm.train_op, lstm.loss, global_step_tensor=lstm.global_step, supervisor_is_chief=is_chief, supervisor_master=target ) if __name__ == "__main__": parser = utils.base_parser() parser.add_argument( '--learning-rate', type=float, default=0.01 ) utils.dispatch( train, **parser.parse_args().__dict__ )
2.515625
3
commhelp.py
Myselfminer/N
2
12779823
<gh_stars>1-10 ##def get(what): ## if what=="q": ## what=what.strip("?help ") ## site=what ## else: ## a=open("commreg.temp","r") ## a.readlines() ## result=[] ## for i in a: ## result.append(a[i+site*5]+":"+a[i+site*5]) ## return result def get(): a=open("commreg.temp","r") b=a.readlines() new=[] for i in b: result=i.strip("\n") new.append(result) newer="" for i in new: newer=newer+i+"\n" return result
2.9375
3
orig/dos2unix.py
benhoyt/pas2go
33
12779824
<filename>orig/dos2unix.py import os for path in os.listdir('.'): if not path.endswith('.PAS'): continue with open(path, 'rb') as f: dos_text = f.read() unix_text = dos_text.replace(b'\r\n', b'\n').replace(b'\t', b' ') with open(path, 'wb') as f: f.write(unix_text) print(f'{path:12} {len(dos_text):5} -> {len(unix_text):5}')
2.421875
2
klaxer/api.py
klaxer/klaxer
2
12779825
"""The main Klaxer server""" import logging import json import hug from falcon import HTTP_400, HTTP_500 from klaxer.rules import Rules from klaxer.errors import AuthorizationError, NoRouteFoundError, ServiceNotDefinedError from klaxer.lib import classify, enrich, filtered, route, send, validate from klaxer.models import Alert from klaxer.users import create_user, add_message, bootstrap, api_key_authentication, is_existing_user CURRENT_FILTERS = [] RULES = Rules() @hug.post('/alert/{service_name}/{token}') def incoming(service_name: hug.types.text, token: hug.types.text, response, debug=False, body=None): """An incoming alert. The core API method""" try: validate(service_name, token) alert = Alert.from_service(service_name, body) alert = classify(alert, RULES.get_classification_rules(service_name)) # Filter based on rules (e.g. junk an alert if a string is in the body or if it came from a CI bot). if filtered(alert, RULES.get_exclusion_rules(service_name)): return #Filtered based on user interactions (e.g. bail if we've snoozed the notification type snoozed). if filtered(alert, CURRENT_FILTERS): return #Enriched based on custom rules (e.g. all alerts with 'keepalive' have '@deborah' appended to them so Deborah gets an extra level of notification priority. alert = enrich(alert, RULES.get_enrichment_rules(service_name)) # Determine where the message goes alert = route(alert, RULES.get_routing_rules(service_name)) # Present relevant debug info without actually sending the Alert if debug: return alert.to_dict() #The target channel gets queried for the most recent message. If it's identical, perform rollup. Otherwise, post the alert. send(alert) return {"status": "ok"} except (AuthorizationError, NoRouteFoundError, ServiceNotDefinedError) as error: logging.exception('Failed to serve an alert response') response.status = HTTP_500 return {"status": error.message} @hug.post('/user/register') def register(response, body=None): """Register for Klaxer and get a key in return.""" if not body: response.status = HTTP_400 return {"status": "No request body provided"} email = body.get('email') name = body.get('name') if not email or not name: response.status = HTTP_400 return {"status": "Please provide a valid name and email."} if is_existing_user(email): response.status = HTTP_400 return {"status": f"Email {email} is already registered"} user = create_user(name=name, email=email) return { 'id': user.id, 'api_key': user.api_key } @hug.get('/user/me', requires=api_key_authentication) def profile(user: hug.directives.user, response, body=None): """If authenticated, give the user back their profile information.""" return user.to_dict() @hug.startup() def startup(api): """Bootstrap the database when the API starts.""" bootstrap()
2.109375
2
test_djangocms_blog/settings.py
marshalc/djangocms-blog
0
12779826
""" Django settings for test_djangocms_blog project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os from tempfile import mkdtemp # From blog tests, but why? def gettext(s): return s # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = <KEY>' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition PRE_DJANGO_APPS = [ 'test_djangocms_blog', 'djangocms_admin_style', ] DJANGO_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] DJANGOCMS_APPS = [ 'django.contrib.sites', 'cms', 'menus', 'treebeard', ] DJANGOCMS_BLOG_APPS = [ 'djangocms_blog', # Local repo version, not a pip install! 'filer', 'parler', 'meta', 'easy_thumbnails', 'django.contrib.sitemaps', 'djangocms_text_ckeditor', 'taggit', 'taggit_autosuggest', # 'aldryn_apphooks_config', # 'aldryn_search', 'djangocms_video', 'sortedm2m', ] INTERNAL_TEST_APPS = [ 'test_djangocms_blog.media_app', ] INSTALLED_APPS = PRE_DJANGO_APPS + DJANGO_APPS + DJANGOCMS_APPS + DJANGOCMS_BLOG_APPS + INTERNAL_TEST_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'test_djangocms_blog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } MIGRATION_MODULES = {} # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTH_USER_MODEL = 'test_djangocms_blog.CustomUser' # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ # LANGUAGE_CODE = 'en-us' LANGUAGE_CODE = 'en' LANGUAGES = ( ('en', gettext('English')), ('fr', gettext('French')), ('it', gettext('Italiano')), ) TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True CMS_LANGUAGES = { 1: [ { 'code': 'en', 'name': gettext('English'), 'public': True, }, { 'code': 'it', 'name': gettext('Italiano'), 'public': True, }, { 'code': 'fr', 'name': gettext('French'), 'public': True, }, ], 2: [ { 'code': 'en', 'name': gettext('English'), 'public': True, }, ], 'default': { 'hide_untranslated': False, }, } PARLER_LANGUAGES = { 1: ( {'code': 'en'}, {'code': 'it'}, {'code': 'fr'}, ), 2: ( {'code': 'en'}, ), 'default': { 'fallbacks': ['en'], 'hide_untranslated': False, } } # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' # App specific config CMS_TEMPLATES = ( ('blog.html', 'Blog template'), ) META_SITE_PROTOCOL = 'http' META_USE_SITES = True META_SITE_DOMAIN = 'example.com' META_USE_OG_PROPERTIES = True META_USE_TWITTER_PROPERTIES = True META_USE_GOOGLEPLUS_PROPERTIES = True THUMBNAIL_PROCESSORS = ( 'easy_thumbnails.processors.colorspace', 'easy_thumbnails.processors.autocrop', 'filer.thumbnail_processors.scale_and_crop_with_subject_location', 'easy_thumbnails.processors.filters', ) FILE_UPLOAD_TEMP_DIR = mkdtemp() SITE_ID = 1 HAYSTACK_CONNECTIONS = { 'default': {} } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', } } BLOG_AUTO_SETUP = False try: import cmsplugin_filer_image.migrations_django # pragma: no cover # NOQA MIGRATION_MODULES['cmsplugin_filer_image'] = 'cmsplugin_filer_image.migrations_django' except ImportError: pass try: import knocker # pragma: no cover # NOQA INSTALLED_APPS.append('knocker') INSTALLED_APPS.append('channels') INSTALLED_APPS.append('djangocms_blog.liveblog', ) CHANNEL_LAYERS = { 'default': { 'BACKEND': 'asgiref.inmemory.ChannelLayer', 'ROUTING': 'test_djangocms_blog.routing.channel_routing', }, } except ImportError: pass
1.914063
2
test/http2_test/http2_test_server.py
farcaller/grpc
0
12779827
# Copyright 2016, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """HTTP2 Test Server""" import argparse import logging import twisted import twisted.internet import twisted.internet.endpoints import twisted.internet.reactor import http2_base_server import test_goaway import test_max_streams import test_ping import test_rst_after_data import test_rst_after_header import test_rst_during_data _TEST_CASE_MAPPING = { 'rst_after_header': test_rst_after_header.TestcaseRstStreamAfterHeader, 'rst_after_data': test_rst_after_data.TestcaseRstStreamAfterData, 'rst_during_data': test_rst_during_data.TestcaseRstStreamDuringData, 'goaway': test_goaway.TestcaseGoaway, 'ping': test_ping.TestcasePing, 'max_streams': test_max_streams.TestcaseSettingsMaxStreams, } class H2Factory(twisted.internet.protocol.Factory): def __init__(self, testcase): logging.info('Creating H2Factory for new connection.') self._num_streams = 0 self._testcase = testcase def buildProtocol(self, addr): self._num_streams += 1 logging.info('New Connection: %d' % self._num_streams) if not _TEST_CASE_MAPPING.has_key(self._testcase): logging.error('Unknown test case: %s' % self._testcase) assert(0) else: t = _TEST_CASE_MAPPING[self._testcase] if self._testcase == 'goaway': return t(self._num_streams).get_base_server() else: return t().get_base_server() if __name__ == '__main__': logging.basicConfig( format='%(levelname) -10s %(asctime)s %(module)s:%(lineno)s | %(message)s', level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--test_case', choices=sorted(_TEST_CASE_MAPPING.keys()), help='test case to run', required=True) parser.add_argument('--port', type=int, default=8080, help='port to run the server (default: 8080)') args = parser.parse_args() logging.info('Running test case %s on port %d' % (args.test_case, args.port)) endpoint = twisted.internet.endpoints.TCP4ServerEndpoint( twisted.internet.reactor, args.port, backlog=128) endpoint.listen(H2Factory(args.test_case)) twisted.internet.reactor.run()
1.34375
1
bqskit/ir/opt/instantiaters/qfactor.py
jkalloor3/bqskit
0
12779828
"""This module implements the QFactor class.""" from __future__ import annotations import logging from typing import Any from typing import TYPE_CHECKING import numpy as np import numpy.typing as npt from bqskitrs import QFactorInstantiatorNative from bqskit.ir.opt.instantiater import Instantiater from bqskit.qis.state.state import StateVector from bqskit.qis.unitary import LocallyOptimizableUnitary from bqskit.qis.unitary.unitarymatrix import UnitaryMatrix if TYPE_CHECKING: from bqskit.ir.circuit import Circuit _logger = logging.getLogger(__name__) class QFactor(QFactorInstantiatorNative, Instantiater): """The QFactor circuit instantiater.""" def __new__(cls, **kwargs: dict[str, Any]) -> Any: if 'cost_fn_gen' in kwargs: del kwargs['cost_fn_gen'] return super().__new__(cls, **kwargs) def instantiate( self, circuit: Circuit, target: UnitaryMatrix | StateVector, x0: npt.NDArray[np.float64], ) -> npt.NDArray[np.float64]: """Instantiate `circuit`, see Instantiater for more info.""" return super().instantiate(circuit, target, x0) @staticmethod def is_capable(circuit: Circuit) -> bool: """Return true if the circuit can be instantiated.""" return all( isinstance(gate, LocallyOptimizableUnitary) for gate in circuit.gate_set ) @staticmethod def get_violation_report(circuit: Circuit) -> str: """ Return a message explaining why `circuit` cannot be instantiated. Args: circuit (Circuit): Generate a report for this circuit. Raises: ValueError: If `circuit` can be instantiated with this instantiater. """ invalid_gates = { gate for gate in circuit.gate_set if not isinstance(gate, LocallyOptimizableUnitary) } if len(invalid_gates) == 0: raise ValueError('Circuit can be instantiated.') return ( 'Cannot instantiate circuit with qfactor' ' because the following gates are not locally optimizable: %s.' % ', '.join(str(g) for g in invalid_gates) ) @staticmethod def get_method_name() -> str: """Return the name of this method.""" return 'qfactor'
2.453125
2
backtest/indicators.py
tacchang001/Store_OANDA_data_locally
0
12779829
<reponame>tacchang001/Store_OANDA_data_locally # https://note.mu/addwis/n/n2c2dc09af892 import numpy as np import pandas as pd from scipy.signal import lfilter, lfilter_zi from numba import jit _OPEN = 'o' _HIGH = 'h' _LOW = 'l' _CLOSE = 'c' # dfのデータからtfで指定するタイムフレームの4本足データを作成する関数 def TF_ohlc(df, tf): x = df.resample(tf).ohlc() O = x[_OPEN][_OPEN] H = x[_HIGH][_HIGH] L = x[_LOW][_LOW] C = x[_CLOSE][_CLOSE] ret = pd.DataFrame({_OPEN: O, _HIGH: H, _LOW: L, _CLOSE: C}, columns=[_OPEN, _HIGH, _LOW, _CLOSE]) return ret.dropna() # dfのデータに Median, Typical, Weighted price を追加する関数 def ext_ohlc(df): O = df[_OPEN] H = df[_HIGH] L = df[_LOW] C = df[_CLOSE] ext = pd.DataFrame({'Median': (H + L) / 2, 'Typical': (H + L + C) / 3, 'Weighted': (H + L + C * 2) / 4}, columns=['Median', 'Typical', 'Weighted']) return pd.concat([df, ext], axis=1) # シフト関数 def shift(x, n=1): return np.concatenate((np.zeros(n), x[:-n])) # SMA on Array @jit def SMAonArray(x, ma_period): x[np.isnan(x)] = 0 y = np.empty_like(x) y[:ma_period - 1] = np.nan y[ma_period - 1] = np.sum(x[:ma_period]) for i in range(ma_period, len(x)): y[i] = y[i - 1] + x[i] - x[i - ma_period] return y / ma_period # EMA on Array @jit def EMAonArray(x, alpha): x[np.isnan(x)] = 0 y = np.empty_like(x) y[0] = x[0] for i in range(1, len(x)): y[i] = alpha * x[i] + (1 - alpha) * y[i - 1] return y # Adaptive EMA on Array @jit def AEMAonArray(x, alpha): x[np.isnan(x)] = 0 alpha[np.isnan(alpha)] = 0 y = np.empty_like(x) y[0] = x[0] for i in range(1, len(x)): y[i] = alpha[i] * x[i] + (1 - alpha[i]) * y[i - 1] return y # 共通移動平均 on Array def MAonArray(a, ma_period, ma_method): if ma_method == 'SMA': y = SMAonArray(a, ma_period) elif ma_method == 'EMA': y = EMAonArray(a, 2 / (ma_period + 1)) elif ma_method == 'SMMA': y = EMAonArray(a, 1 / ma_period) elif ma_method == 'LWMA': h = np.arange(ma_period, 0, -1) * 2 / ma_period / (ma_period + 1) y = lfilter(h, 1, a) y[:ma_period - 1] = np.nan return y # 共通移動平均 on Series def MAonSeries(s, ma_period, ma_method): return pd.Series(MAonArray(s.values, ma_period, ma_method), index=s.index) # iMA()関数 def iMA(df, ma_period, ma_shift=0, ma_method='SMA', applied_price=_CLOSE): return MAonSeries(df[applied_price], ma_period, ma_method).shift(ma_shift) # iATR()関数 def iATR(df, ma_period, ma_method='SMA'): TR = np.max(np.vstack((df[_HIGH].values, shift(df[_CLOSE].values))).T, axis=1) \ - np.min(np.vstack((df[_LOW].values, shift(df[_CLOSE].values))).T, axis=1) return pd.Series(MAonArray(TR, ma_period, ma_method), index=df.index) # iDEMA()関数 @jit def iDEMA(df, ma_period, ma_shift=0, applied_price=_CLOSE): alpha = 2 / (ma_period + 1) a1 = 2 * (alpha - 1) a2 = (1 - alpha) ** 2 b0 = alpha * (2 - alpha) b1 = 2 * alpha * (alpha - 1) x = df[applied_price].values y = np.empty_like(x) y[0] = x[0] y[1] = b0 * x[1] + b1 * x[0] - a1 * y[0] - a2 * y[0] for i in range(2, len(x)): y[i] = b0 * x[i] + b1 * x[i - 1] - a1 * y[i - 1] - a2 * y[i - 2] return pd.Series(y, index=df.index).shift(ma_shift) # iTEMA()関数 @jit def iTEMA(df, ma_period, ma_shift=0, applied_price=_CLOSE): alpha = 2 / (ma_period + 1) a1 = 3 * (alpha - 1) a2 = 3 * (1 - alpha) ** 2 a3 = (alpha - 1) ** 3 b0 = 3 * alpha * (1 - alpha) + alpha ** 3 b1 = 3 * alpha * (alpha - 2) * (1 - alpha) b2 = 3 * alpha * (1 - alpha) ** 2 x = df[applied_price].values y = np.empty_like(x) y[0] = x[0] y[1] = b0 * x[1] + b1 * x[0] + b2 * x[0] - a1 * y[0] - a2 * y[0] - a3 * y[0] y[2] = b0 * x[2] + b1 * x[1] + b2 * x[0] - a1 * y[1] - a2 * y[0] - a3 * y[0] for i in range(3, len(x)): y[i] = b0 * x[i] + b1 * x[i - 1] + b2 * x[i - 2] - a1 * y[i - 1] - a2 * y[i - 2] - a3 * y[i - 3] return pd.Series(y, index=df.index).shift(ma_shift) # iMomentum()関数 @jit def iMomentum(df, mom_period, applied_price=_CLOSE): x = df[applied_price].values y = np.empty_like(x) y[:mom_period] = np.nan for i in range(mom_period, len(x)): y[i] = x[i] / x[i - mom_period] * 100 return pd.Series(y, index=df.index) # iRSI()関数 def iRSI(df, ma_period, applied_price=_CLOSE): diff = df[applied_price].diff() positive = MAonSeries(diff.clip_lower(0), ma_period, 'SMMA') negative = MAonSeries(diff.clip_upper(0), ma_period, 'SMMA') return 100 - 100 / (1 - positive / negative) # iStdDev()関数 def iStdDev(df, ma_period, ma_shift=0, applied_price=_CLOSE): return df[applied_price].rolling(ma_period).std(ddof=0).shift(ma_shift) # iAO()関数 def iAO(df): return MAonSeries(df['Median'], 5, 'SMA') - MAonSeries(df['Median'], 34, 'SMA') # iAC()関数 def iAC(df): AO = iAO(df).values return pd.Series(AO - SMAonArray(AO, 5), index=df.index) # iBearsPower()関数 def iBearsPower(df, ma_period): return df[_LOW] - MAonSeries(df[_CLOSE], ma_period, 'EMA') # iBullsPower()関数 def iBullsPower(df, ma_period): return df[_HIGH] - MAonSeries(df[_CLOSE], ma_period, 'EMA') # iCCI()関数 @jit def iCCI(df, ma_period, applied_price='Typical'): price = df[applied_price].values SP = SMAonArray(price, ma_period) M = price - SP D = np.zeros(len(M)) for i in range(len(D)): for j in range(ma_period): D[i] += abs(price[i - j] - SP[i]) D *= 0.015 / ma_period return pd.Series(M / D, index=df.index) # iDeMarker()関数 def iDeMarker(df, ma_period): DeMax = df[_HIGH].diff().clip_lower(0).values DeMin = -df[_LOW].diff().clip_upper(0).values SDeMax = SMAonArray(DeMax, ma_period) SDeMin = SMAonArray(DeMin, ma_period) return pd.Series(SDeMax / (SDeMax + SDeMin), index=df.index) # iEnvelopes()関数 def iEnvelopes(df, ma_period, deviation, ma_shift=0, ma_method='SMA', applied_price=_CLOSE): price = df[applied_price] MA = MAonSeries(price, ma_period, ma_method).shift(ma_shift) Upper = MA * (1 + deviation / 100) Lower = MA * (1 - deviation / 100) return pd.DataFrame({'Upper': Upper, 'Lower': Lower}, columns=['Upper', 'Lower']) # iMACD()関数 def iMACD(df, fast_period, slow_period, signal_period, applied_price=_CLOSE): price = df[applied_price].values Main = MAonArray(price, fast_period, 'EMA') - MAonArray(price, slow_period, 'EMA') Signal = SMAonArray(Main, signal_period) return pd.DataFrame({'Main': Main, 'Signal': Signal}, columns=['Main', 'Signal'], index=df.index) # iOsMA()関数 def iOsMA(df, fast_period, slow_period, signal_period, applied_price=_CLOSE): MACD = iMACD(df, fast_period, slow_period, signal_period, applied_price) return MACD['Main'] - MACD['Signal'] # iTriX()関数 def iTriX(df, ma_period, applied_price=_CLOSE): EMA1 = MAonSeries(df[applied_price], ma_period, 'EMA') EMA2 = MAonSeries(EMA1, ma_period, 'EMA') EMA3 = MAonSeries(EMA2, ma_period, 'EMA') return EMA3.diff() / EMA3.shift() # iAMA()関数 def iAMA(df, ma_period, fast_period, slow_period, ma_shift=0, applied_price=_CLOSE): price = df[applied_price] Signal = price.diff(ma_period).abs() Noise = price.diff().abs().rolling(ma_period).sum() ER = Signal.values / Noise.values FastSC = 2 / (fast_period + 1) SlowSC = 2 / (slow_period + 1) SSC = ER * (FastSC - SlowSC) + SlowSC AMA = AEMAonArray(price.values, SSC * SSC) return pd.Series(AMA, index=df.index).shift(ma_shift) # iFrAMA()関数 def iFrAMA(df, ma_period, ma_shift=0, applied_price=_CLOSE): price = df[applied_price] H = df[_HIGH] L = df[_LOW] N1 = (H.rolling(ma_period).max() - L.rolling(ma_period).min()) / ma_period N2 = (H.shift(ma_period).rolling(ma_period).max() - L.shift(ma_period).rolling(ma_period).min()) / ma_period N3 = (H.rolling(2 * ma_period).max() - L.rolling(2 * ma_period).min()) / (2 * ma_period) D = (np.log(N1.values + N2.values) - np.log(N3.values)) / np.log(2) A = np.exp(-4.6 * (D - 1)) FRAMA = AEMAonArray(price.values, A) return pd.Series(FRAMA, index=df.index).shift(ma_shift) # aiRVI()関数 def iRVI(df, m_period): CO = df[_CLOSE].values - df[_OPEN].values HL = df[_HIGH].values - df[_LOW].values MA = lfilter([1 / 6, 1 / 3, 1 / 3, 1 / 6], 1, CO) RA = lfilter([1 / 6, 1 / 3, 1 / 3, 1 / 6], 1, HL) Main = SMAonArray(MA, ma_period) / SMAonArray(RA, ma_period) Signal = lfilter([1 / 6, 1 / 3, 1 / 3, 1 / 6], 1, Main) return pd.DataFrame({'Main': Main, 'Signal': Signal}, columns=['Main', 'Signal'], index=df.index) # iWPR()関数 def iWPR(df, period): Max = df[_HIGH].rolling(period).max() Min = df[_LOW].rolling(period).min() return (df[_CLOSE] - Max) / (Max - Min) * 100 # iVIDyA()関数 def iVIDyA(df, cmo_period, ma_period, ma_shift=0, applied_price=_CLOSE): price = df[applied_price] UpSum = price.diff().clip_lower(0).rolling(cmo_period).sum() DnSum = -price.diff().clip_upper(0).rolling(cmo_period).sum() CMO = np.abs((UpSum - DnSum) / (UpSum + DnSum)).values VIDYA = AEMAonArray(price.values, 2 / (ma_period + 1) * CMO) return pd.Series(VIDYA, index=df.index).shift(ma_shift) # iBands()関数 def iBands(df, bands_period, deviation, bands_shift=0, applied_price=_CLOSE): price = df[applied_price].shift(bands_shift) Base = price.rolling(bands_period).mean() sigma = price.rolling(bands_period).std(ddof=0) Upper = Base + sigma * deviation Lower = Base - sigma * deviation return pd.DataFrame({'Base': Base, 'Upper': Upper, 'Lower': Lower}, columns=['Base', 'Upper', 'Lower']) # iStochastic()関数 def iStochastic(df, Kperiod, Dperiod, slowing, ma_method='SMA', price_field='LOWHIGH'): if price_field == 'LOWHIGH': high = df[_HIGH] low = df[_LOW] elif price_field == 'CLOSECLOSE': high = low = df[_CLOSE] Hline = high.rolling(Kperiod).max().values Lline = low.rolling(Kperiod).min().values close = df[_CLOSE].values sumlow = SMAonArray(close - Lline, slowing) sumhigh = SMAonArray(Hline - Lline, slowing) Main = sumlow / sumhigh * 100 Signal = MAonArray(Main, Dperiod, ma_method) return pd.DataFrame({'Main': Main, 'Signal': Signal}, columns=['Main', 'Signal'], index=df.index) # iHLBand()関数 def iHLBand(df, band_period, band_shift=0, price_field='LOWHIGH'): if price_field == 'LOWHIGH': high = df[_HIGH] low = df[_LOW] elif price_field == 'CLOSECLOSE': high = low = df[_CLOSE] Upper = high.rolling(band_period).max().shift(band_shift) Lower = low.rolling(band_period).min().shift(band_shift) return pd.DataFrame({'Upper': Upper, 'Lower': Lower}, columns=['Upper', 'Lower']) # iAlligator()関数 def iAlligator(df, jaw_period, jaw_shift, teeth_period, teeth_shift, lips_period, lips_shift, ma_method='SMMA', applied_price='Median'): price = df[applied_price] Jaw = MAonSeries(price, jaw_period, ma_method).shift(jaw_shift) Teeth = MAonSeries(price, teeth_period, ma_method).shift(teeth_shift) Lips = MAonSeries(price, lips_period, ma_method).shift(lips_shift) return pd.DataFrame({'Jaw': Jaw, 'Teeth': Teeth, 'Lips': Lips}, columns=['Jaw', 'Teeth', 'Lips']) # iGator()関数 def iGator(df, jaw_period, jaw_shift, teeth_period, teeth_shift, lips_period, lips_shift, ma_method='SMMA', applied_price='Median'): AG = iAlligator(df, jaw_period, jaw_shift, teeth_period, teeth_shift, lips_period, lips_shift, ma_method, applied_price) Upper = (AG['Jaw'] - AG['Teeth']).abs() Lower = -(AG['Teeth'] - AG['Lips']).abs() return pd.DataFrame({'Upper': Upper, 'Lower': Lower}, columns=['Upper', 'Lower']) # iADX()関数 def iADX(df, adx_period): dP = df[_HIGH].diff().clip_lower(0).values dM = -df[_LOW].diff().clip_upper(0).values dM[dP > dM] = 0 dP[dP < dM] = 0 dP[0] = dP[1] dM[0] = dM[1] TR = np.max(np.vstack((df[_HIGH].values, shift(df[_CLOSE].values))).T, axis=1) \ - np.min(np.vstack((df[_LOW].values, shift(df[_CLOSE].values))).T, axis=1) PlusDI = 100 * MAonArray(dP / TR, adx_period, 'EMA') MinusDI = 100 * MAonArray(dM / TR, adx_period, 'EMA') Main = MAonArray(100 * np.abs(PlusDI - MinusDI) / (PlusDI + MinusDI), adx_period, 'EMA') return pd.DataFrame({'Main': Main, 'PlusDI': PlusDI, 'MinusDI': MinusDI}, columns=['Main', 'PlusDI', 'MinusDI'], index=df.index) # iADXWilder()関数 def iADXWilder(df, adx_period): dP = df[_HIGH].diff().clip_lower(0).values dM = -df[_LOW].diff().clip_upper(0).values dM[dP > dM] = 0 dP[dP < dM] = 0 dP[0] = dP[1] dM[0] = dM[1] ATR = iATR(df, adx_period, 'SMMA').values PlusDI = 100 * MAonArray(dP, adx_period, 'SMMA') / ATR MinusDI = 100 * MAonArray(dM, adx_period, 'SMMA') / ATR Main = MAonArray(100 * np.abs(PlusDI - MinusDI) / (PlusDI + MinusDI), adx_period, 'SMMA') return pd.DataFrame({'Main': Main, 'PlusDI': PlusDI, 'MinusDI': MinusDI}, columns=['Main', 'PlusDI', 'MinusDI'], index=df.index) # iSAR()関数 @jit def iSAR(df, step, maximum): dir_long = True ACC = step SAR = df[_CLOSE].values.copy() High = df[_HIGH].values Low = df[_LOW].values Ep1 = High[0] for i in range(1, len(SAR)): if dir_long == True: Ep1 = max(Ep1, High[i - 1]) SAR[i] = SAR[i - 1] + ACC * (Ep1 - SAR[i - 1]) if High[i] > Ep1: ACC = min(ACC + step, maximum) if SAR[i] > Low[i]: dir_long = False SAR[i] = Ep1 ACC = step Ep1 = Low[i] else: Ep1 = min(Ep1, Low[i - 1]) SAR[i] = SAR[i - 1] + ACC * (Ep1 - SAR[i - 1]) if Low[i] < Ep1: ACC = min(ACC + step, maximum) if SAR[i] < High[i]: dir_long = True SAR[i] = Ep1 ACC = step Ep1 = High[i] return pd.Series(SAR, index=df.index) # iIchimoku()関数 def iIchimoku(df, tenkan_period, kijun_period, senkoub_period): high = df[_HIGH] low = df[_LOW] Tenkan = (high.rolling(tenkan_period).max() + low.rolling(tenkan_period).min()) / 2 Kijun = (high.rolling(kijun_period).max() + low.rolling(kijun_period).min()) / 2 SenkouA = (Tenkan + Kijun).shift(kijun_period) / 2 SenkouB = (high.rolling(senkoub_period).max() + low.rolling(senkoub_period).min()).shift(kijun_period) / 2 Chikou = df[_CLOSE].shift(-kijun_period) return pd.DataFrame({'Tenkan': Tenkan, 'Kijun': Kijun, 'SenkouA': SenkouA, 'SenkouB': SenkouB, 'Chikou': Chikou}, columns=['Tenkan', 'Kijun', 'SenkouA', 'SenkouB', 'Chikou'], index=df.index) # 各関数のテスト if __name__ == '__main__': file = 'USDJPY16385.txt' ohlc = pd.read_csv(file, index_col='Time', parse_dates=True) ohlc_ext = ext_ohlc(ohlc) # x = iMA(ohlc_ext, 14, ma_method='SMA') # x = iMA(ohlc_ext, 14, ma_method='EMA') # x = iMA(ohlc_ext, 14, ma_method='SMMA', applied_price='Median') # x = iMA(ohlc_ext, 14, ma_method='LWMA', applied_price='Typical') # x = iATR(ohlc_ext, 14) # x = iDEMA(ohlc_ext, 14, applied_price=_CLOSE) # x = iTEMA(ohlc_ext, 14, applied_price=_CLOSE) # x = iMomentum(ohlc_ext, 14) # x = iRSI(ohlc_ext, 14) # x = iStdDev(ohlc_ext, 14, ma_shift=3, applied_price='Weighted') # x = iAO(ohlc_ext) # x = iAC(ohlc_ext) # x = iBearsPower(ohlc_ext, 13) # x = iBullsPower(ohlc_ext, 13) # x = iCCI(ohlc_ext, 14) # x = iDeMarker(ohlc_ext, 14) # x = iEnvelopes(ohlc_ext, 10, 1) # x = iMACD(ohlc_ext, 12, 26, 9) # x = iOsMA(ohlc_ext, 12, 26, 9) # x = iTriX(ohlc_ext, 14) # x = iAMA(ohlc_ext, 15, 2, 30) # x = iFrAMA(ohlc_ext, 14) # x = iRVI(ohlc_ext, 10) # x = iWPR(ohlc_ext, 14) # x = iVIDyA(ohlc_ext, 15, 12) # x = iBands(ohlc_ext, 20, 2, bands_shift=5) # x = iStochastic(ohlc_ext, 10, 3, 5, ma_method='SMA', price_field='LOWHIGH') # x = iHLBand(ohlc, 20) # x = iAlligator(ohlc_ext, 13, 8, 8, 5, 5, 3) # x = iGator(ohlc_ext, 13, 8, 8, 5, 5, 3) # x = iADX(ohlc_ext, 14) # x = iADXWilder(ohlc_ext, 14) # x = iSAR(ohlc_ext, 0.02, 0.2) x = iIchimoku(ohlc_ext, 9, 26, 52) # dif = ohlc['Ind0'] - x # dif0 = ohlc['Ind0'] - x['Main'] # dif1 = ohlc['Ind1'] - x['Signal'] # dif1 = ohlc['Ind1'] - x['PlusDI'] # dif2 = ohlc['Ind2'] - x['MinusDI'] dif0 = ohlc['Ind0'] - x['Tenkan'] dif1 = ohlc['Ind1'] - x['Kijun'] dif2 = ohlc['Ind2'] - x['SenkouA'] dif3 = ohlc['Ind3'] - x['SenkouB'] dif4 = ohlc['Ind4'] - x['Chikou']
2.296875
2
model_loader.py
donikv/IlluminationBase
0
12779830
import tensorflow as tf def create_pb_model(pb_path, sz, bs): def load_graph(frozen_graph_filename): # We load the protobuf file from the disk and parse it to retrieve the # unserialized graph_def with tf.compat.v1.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) # Then, we can use again a convenient built-in function to import a graph_def into the # current default Graph with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def,input_map=None,return_elements=None,name="prefix",op_dict=None,producer_op_list=None) return graph, graph_def def wrap_frozen_graph(graph_def, inputs, outputs): def _imports_graph_def(): tf.compat.v1.import_graph_def(graph_def, name="") wrapped_import = tf.compat.v1.wrap_function(_imports_graph_def, []) import_graph = wrapped_import.graph return wrapped_import.prune( tf.nest.map_structure(import_graph.as_graph_element, inputs), tf.nest.map_structure(import_graph.as_graph_element, outputs)) graph, graph_def = load_graph(pb_path) model_fn = wrap_frozen_graph(graph_def, 'data:0', 'prob:0') lam = tf.keras.layers.Lambda(model_fn) inpt = tf.keras.layers.Input(sz, batch_size=bs) out = lam(inpt) model = tf.keras.models.Model(inpt, out) return model
2.453125
2
yc102/201.py
c-yan/yukicoder
0
12779831
SA, PA, XA = input().split() SB, PB, XB = input().split() PA = int(PA) PB = int(PB) if PA > PB: print(SA) elif PA < PB: print(SB) elif PA == PB: print(-1)
3.3125
3
Aula 12/ex040P.py
alaanlimaa/Python_CVM1-2-3
0
12779832
'''Crie um programa que leia duas notas de um aluno e calcule sua média, mostrando uma mensagem no final, de acordo com a média atingida:''' p1 = float(input('Nota da P1: ')) p2 = float(input('Nota da P2: ')) media = (p1 + p2) / 2 if media < 5.0: print('Sua média foi {:.1f}, REPROVADO!'.format(media)) elif media >= 5.0 and media <= 6.9: print('Sua média foi {:.1f}, RECUPERAÇÃO'.format(media)) elif media >= 7.0: print('Sua média fou {:.1f}, APROVADO'.format(media))
4
4
trade.py
pjwarner/m-oney-an
0
12779833
import dbConnection as data import calcCost as cost from decimal import * import getMtGoxRequest as req class trade: def __init__(self): print 'Initialized...' self.info = req.get_res('0/info.php', {}) self.priceInfo = req.get_res('1/BTCUSD/public/ticker', {}) def buy(self): """ Current implementation of this method buys ALL the bitcoins you can at market price TODO: Add a way to tell it how many you want to buy for hedging purposes """ print 'Initiating a buy...' cashpool = int(self.info['Wallets']['USD']['Balance']['value_int']) sellPrice = int(self.priceInfo['return']['sell']['value_int']) btcpool = Decimal(cashpool / sellPrice).quantize(Decimal('1.0'), rounding=ROUND_DOWN) print 'Buying:', btcpool, 'btc' #Actual Trade Code # trade = {'amount': 10, 'Currency':'USD'} # tmp = req.get_res('0/buyBTC.php', trade) # print tmp print 'Removing MtGoxCost...' tmp = cost.calcCost(int(btcpool)) actual = tmp.removeCost() print 'ActualInPool:', actual return actual def sell(self): """ Current implementation of this method sells ALL your bitcoins at the market price. """ print 'Initiating a sell...' btcpool = int(self.info['Wallets']['BTC']['Balance']['value_int']) sellPrice = int(self.priceInfo['return']['buy']['value_int']) print 'Selling:', btcpool, 'btc' print 'Removing MtGoxCost...' tmp = cost.calcCost(btcpool * sellPrice) actual = tmp.removeCost() * Decimal('.00001') print 'ActualInPool:', actual return actual
2.875
3
pointnet/dataset.py
shnhrtkyk/semantic3dnet
0
12779834
<filename>pointnet/dataset.py import numpy as np import laspy import os from scipy.spatial import KDTree from sklearn.preprocessing import normalize import logging from p2v import voxelize from p2v_pyntcloud import voxelization import torch class Dataset(): ATTR_EXLUSION_LIST = ['X', 'Y', 'Z', 'raw_classification', 'Classification', 'flag_byte', 'scan_angle_rank', 'user_data', 'pt_src_id', 'gps_time'] ATTR_EXTRA_LIST = ['num_returns', 'return_num'] def __init__(self, file, load=True, undersampling=False, normalize=False, shuffle=False): self.file = file self._features = self._xyz = self._classes = self._names = None self.xmax = self.xmin = self.ymax = self.ymin = None self._header = None self.undersampling = undersampling self.normalize = normalize self.shuffle = shuffle if load: self.load_data() def load_data(self): print(self.file) file_h = laspy.file.File(self.file, mode='r') self._xyz = np.vstack([file_h.x, file_h.y, file_h.z]).transpose() self._classes = file_h.classification self.index_for_train = np.array(range(len(self._classes))) self.length = len(self.index_for_train) self._classes = self._classes - 1 # self._classes = np.where(self._classes == 1, 0, self._classes) # self._classes = np.where(self._classes == 6, 0, self._classes) # self._classes = np.where(self._classes > 1, 1, self._classes) lbl = np.unique(self._classes[self._classes >= 0]) print(lbl) points = file_h.points['point'] attr_names = [a for a in points.dtype.names] + Dataset.ATTR_EXTRA_LIST self._features = np.array([getattr(file_h, name) for name in attr_names if name not in Dataset.ATTR_EXLUSION_LIST]).transpose() self._names = [name for name in attr_names if name not in Dataset.ATTR_EXLUSION_LIST] # 地面クラスに合わせたアンダーサンプル if (self.undersampling == True): ind_of_ground = np.where(self._classes == 0)[0] # class_g = self._classes[ind_of_ground] # points_g = self._xyz[ind_of_ground] ind_of_build = np.where(self._classes == 1)[0] print(ind_of_ground) ind_of_build = ind_of_build[:len(ind_of_ground)] # print(ind_of_build) self.index_for_train = ind_of_ground np.insert(self.index_for_train , 0, ind_of_build) # print(self.index_for_train.shape) self.length = len(self.index_for_train) if (self.shuffle == True): np.random.shuffle(self.index_for_train) print(self.index_for_train) # class_b = self._classes[ind_of_build] self.xmin = file_h.header.min[0] self.ymin = file_h.header.min[1] self.xmax = file_h.header.max[0] self.ymax = file_h.header.max[1] self._header = file_h.header file_h.close() def statistics(self): stats = {'absolute': {}, 'relative': {}} for i in range(np.max(self.labels)): count = np.count_nonzero(self.labels == i) stats['absolute'][i] = count stats['relative'][i] = count / len(self) return stats @property def labels(self): if self._xyz is None: self.load_data() ret_val = self._classes return ret_val @property def names(self): return self._names @property def points_and_features(self): if self._xyz is None: self.load_data() ret_val = np.hstack((self._xyz, self._features)) if self.normalize: normalize(ret_val) return ret_val @property def filename(self): return os.path.basename(self.file) def points_and_features_f(self): return self.points_and_features def labels_f(self): return self.labels def unload(self): self._features = self._xyz = self._classes = self._names = None self.xmax = self.xmin = self.ymax = self.ymin = None self._header = None def get_label_unique_count(self): return len(np.unique(self._classes)) def get_feature_count(self): return self._features.shape[1] def __len__(self): return self.labels.shape[0] # get voxel data def getBatch(self, start_idx, batch_size, idx_randomizer=None): if idx_randomizer is not None: idx_range = idx_randomizer[start_idx:start_idx + batch_size] else: idx_range = range(start_idx, start_idx + batch_size) data = self.points_and_features[idx_range] labels = self.labels[idx_range] def getVoxelBatch(self, start_idx, batch_size, idx_randomizer=None): if idx_randomizer is not None: idx_range = idx_randomizer[start_idx:start_idx + batch_size] else: idx_range = range(start_idx, start_idx + batch_size) data = self.points_and_features[idx_range] labels = self.labels[idx_range] def save_with_new_classes(self, outFile, new_classes): inFile = laspy.file.File(self.file) outFile = laspy.file.File(outFile, mode='w', header=inFile.header) outFile.points = inFile.points outFile.Classification = new_classes[0] outFile.close() @staticmethod def Save(path, points_and_features, names=None, labels=None, new_classes=None, probs=None): hdr = laspy.header.Header() outfile = laspy.file.File(path, mode="w", header=hdr) if new_classes is not None: outfile.define_new_dimension(name="estim_class", data_type=5, description="estimated class") if labels is not None and new_classes is not None: outfile.define_new_dimension(name="class_correct", data_type=5, description="correctness of estimated class") if probs is not None: for classid in range(probs.shape[1]): outfile.define_new_dimension(name="prob_class%02d" % classid, data_type=9, description="p of estimated class %02d" % classid) allx = points_and_features[:, 0] ally = points_and_features[:, 1] allz = points_and_features[:, 2] xmin = np.floor(np.min(allx)) ymin = np.floor(np.min(ally)) zmin = np.floor(np.min(allz)) outfile.header.offset = [xmin, ymin, zmin] outfile.header.scale = [0.001, 0.001, 0.001] outfile.x = allx outfile.y = ally outfile.z = allz for featid in range(points_and_features.shape[1] - 3): try: data = points_and_features[:, 3 + featid] if names[featid] in ['num_returns', 'return_num']: # hack to treat int-values data = data.astype('int8') setattr(outfile, names[featid], data) except Exception as e: logging.warning("Could not save attribute %s to file %s: \n%s" % (names[featid], path, e)) # raise if probs is not None: for classid in range(probs.shape[1]): setattr(outfile, "prob_class%02d" % classid, probs[:, classid]) if labels is not None: outfile.classification = labels if new_classes is not None: outfile.estim_class = new_classes if labels is not None and new_classes is not None: outfile.class_correct = np.equal(labels, new_classes) * -1 + 6 # so that equal =5 --> green (veg) # and not equal =6 --> red (building) outfile.close() class ChunkedDataset(Dataset): def __init__(self, chunk_size, overlap, *args, **kwargs): super(ChunkedDataset, self).__init__(*args, **kwargs) self.chunk_size = chunk_size self.overlap = overlap self.curr_chunk = 0 self.num_cols = (self.xmax - self.xmin) // (self.chunk_size - self.overlap) + 1 self.num_rows = (self.ymax - self.ymin) // (self.chunk_size - self.overlap) + 1 def idx_to_lims(self, idx): if idx >= self.num_cols * self.num_rows: return None row_idx = idx // self.num_cols col_idx = idx % self.num_cols return [self.xmin + (self.chunk_size - self.overlap) * col_idx, self.xmin + (self.chunk_size - self.overlap) * (col_idx + 1) + self.overlap, self.ymin + (self.chunk_size - self.overlap) * row_idx, self.ymin + (self.chunk_size - self.overlap) * (row_idx + 1) + self.overlap, ] def getNextChunk(self): lims = self.idx_to_lims(self.curr_chunk) if not lims: # no more chunks return None, None idxes = self._xyz[:, 0] >= lims[0] idxes &= self._xyz[:, 0] < lims[1] idxes &= self._xyz[:, 1] >= lims[2] idxes &= self._xyz[:, 1] < lims[3] self.curr_chunk += 1 return self.points_and_features[idxes, :], self.labels[idxes] @staticmethod def chunkStatistics(labels, max): stats = {'absolute': {}, 'relative': {}} for i in range(max): count = np.count_nonzero(labels == i) stats['absolute'][i] = count stats['relative'][i] = count / len(labels) return stats class kNNBatchDataset(Dataset): def __init__(self, *args, **kwargs): super(kNNBatchDataset, self).__init__(*args, **kwargs) self.tree = None self.buildKD() self.center_idx = 0 def buildKD(self): logging.info(" -- Building kD-Tree with %d points..." % len(self)) self.tree = KDTree(self._xyz[:, :2], leafsize=100) # build only on x/y logging.info(" --- kD-Tree built.") def getBatches(self, batch_size=1): centers = [] for i in range(batch_size): if self.currIdx >= self.num_batches: break centers.append([self.xmin + self.spacing / 2 + (self.currIdx // self.num_rows) * self.spacing, self.ymin + self.spacing / 2 + (self.currIdx % self.num_rows) * self.spacing]) self.currIdx += 1 print(centers) if centers: _, idx = self.tree.query(centers, k=self.k) return self.points_and_features[idx, :], self.labels[idx] else: return None, None def getBatches_Point(self, batch_size=1, num_point= 1024, num_grid=32): batch_points = [] batch_labels = [] batch_labels = torch.zeros([batch_size, 1], dtype=torch.float) # batch size * 1 batch_voxels = [] batch_points = torch.zeros([batch_size, 3, num_point], dtype=torch.float) for i in range(batch_size): points = [] voxels = [] tmp_index = self.center_idx if (self.shuffle == True): tmp_index = self.index_for_train[self.center_idx] _, idx = self.tree.query(self.points_and_features[tmp_index, :2], k=num_point) label = self.labels[tmp_index] # print(label) batch_labels[i] = torch.from_numpy(np.array(label).astype(np.float32)) point_knn = np.full((num_point, 3), 1) point_knn[:, :] = self.points_and_features[idx, :3] batch_points[i, :, :] = torch.from_numpy(point_knn.astype(np.float32).T) self.center_idx += 1 # for j in range(len(num_point)): # point_knn = np.full((num_point[j], 3), 1) # point_knn[:, :] = self.points_and_features[idx[:num_point[j]], :3] # # point_knn = torch.from_numpy(np.array(point_knn).astype(np.float32)) # # print(point_knn.shape) # batch_voxels[j, i, :, :, :, :] = torch.from_numpy(np.array(voxelization(point_knn, # vox_size=num_grid)).astype(np.float32)) # resolution * batchsize * ch * grid * grid * grid # points.append(point_knn) # print(point_knn) # print(point_knn.shape) # print(batch_voxels.shape) # batch_points.append(points) # batchsize * resolution * num.of points * xyz # batch_points = torch.from_numpy(np.array(batch_points).astype(np.float32)) # batchsize * resolution * num.of points * xyz # for i in range(batch_size): # batch_voxels.append(voxels) # batch_voxels =np.array(batch_voxels)# resolution * batchsize grid * grid * grid # batch_labels = torch.from_numpy(np.array(batch_labels).astype(np.float32)) # batch size * 1 return batch_points, batch_labels # append for inference KUDO def getBatchsWithIdx(self, batch_size=1): centers = [] for i in range(batch_size): if self.currIdx >= self.num_batches: break centers.append([self.xmin + self.spacing / 2 + (self.currIdx // self.num_rows) * self.spacing, self.ymin + self.spacing / 2 + (self.currIdx % self.num_rows) * self.spacing]) self.currIdx += 1 # print(centers) if centers: _, idx = self.tree.query(centers, k=self.k) return self.points_and_features[idx, :], self.labels[idx], np.array(idx) else: return None, None, None def getBatchByIdx(self, batch_idx): centers = [[self.xmin + self.spacing / 2 + (batch_idx // self.num_rows) * self.spacing, self.ymin + self.spacing / 2 + (batch_idx % self.num_rows) * self.spacing]] _, idx = self.tree.query(centers, k=self.k) return self.points_and_features[idx, :], self.labels[idx] if __name__ == '__main__': d = kNNBatchDataset(file="../data/test.las", undersampling=False, shuffle=False) for idx_range in range(d.length): voxels, labels = d.getBatches_Point(batch_size=12, num_point=1024, num_grid=32) print(str(voxels.size()) + " , " + str(labels) + " , " + str(d.center_idx)) d.center_idx += 1
2.375
2
migrations/versions/bcb167cb67ef_create_pitch_table.py
John-Kimani/Blue_Chip_Pitch_App
0
12779835
<reponame>John-Kimani/Blue_Chip_Pitch_App """Create pitch table Revision ID: bcb167cb67ef Revises: <KEY> Create Date: 2022-03-07 11:38:54.009444 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'bcb167cb67ef' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('pitch', sa.Column('body', sa.String(length=140), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('pitch', 'body') # ### end Alembic commands ###
1.609375
2
cfn_policy_validator/parsers/resource/sqs.py
awslabs/aws-cloudformation-iam-policy-validator
41
12779836
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from urllib.parse import urlparse from cfn_policy_validator.application_error import ApplicationError from cfn_policy_validator.parsers.output import Policy, Resource class SqsQueuePolicyParser: """ AWS::SQS::QueuePolicy """ def __init__(self): self.queue_policies = [] def parse(self, _, resource): evaluated_resource = resource.eval(sqs_queue_policy_schema) properties = evaluated_resource['Properties'] queue_urls = properties['Queues'] policy_document = properties['PolicyDocument'] for queue in queue_urls: parsed_url = urlparse(queue) try: queue_name = parsed_url.path.split('/')[2] except IndexError: raise ApplicationError(f'Invalid queue URL. Unable to parse name from URL. Invalid value: "{queue}"') policy = Policy('QueuePolicy', policy_document) resource = Resource(queue_name, 'AWS::SQS::Queue', policy) self.queue_policies.append(resource) def get_policies(self): return self.queue_policies sqs_queue_policy_schema = { 'type': 'object', 'properties': { 'Properties': { 'type': 'object', 'properties': { 'PolicyDocument': { 'type': 'object' }, 'Queues': { 'type': 'array', 'minItems': 1, 'items': { 'type': 'string' } } }, 'required': ['PolicyDocument', 'Queues'] } }, 'required': ['Properties'] }
2.46875
2
examples/wmc-1.py
gfrances/PySDD
34
12779837
<reponame>gfrances/PySDD #!/usr/bin/env python3 from pathlib import Path import math from pysdd.sdd import SddManager, Vtree, WmcManager here = Path(__file__).parent def main(): # Start from a given CNF and VTREE file vtree = Vtree.from_file(bytes(here / "input" / "simple.vtree")) sdd = SddManager.from_vtree(vtree) print(f"Created an SDD with {sdd.var_count()} variables") root = sdd.read_cnf_file(bytes(here / "input" / "simple.cnf")) # For DNF functions use `read_dnf_file` # If the vtree is not given, you can also use 'from_cnf_file` # Model Counting wmc = root.wmc(log_mode=True) w = wmc.propagate() print(f"Model count: {int(math.exp(w))}") # Weighted Model Counting lits = [None] + [sdd.literal(i) for i in range(1, sdd.var_count() + 1)] # Positive literal weight wmc.set_literal_weight(lits[1], math.log(0.5)) # Negative literal weight wmc.set_literal_weight(-lits[1], math.log(0.5)) w = wmc.propagate() print(f"Weighted model count: {math.exp(w)}") # Visualize SDD and VTREE print("saving sdd and vtree ... ", end="") with open(here / "output" / "sdd.dot", "w") as out: print(sdd.dot(), file=out) with open(here / "output" / "vtree.dot", "w") as out: print(vtree.dot(), file=out) print("done") if __name__ == "__main__": main()
2.265625
2
pype/ftrack/actions/action_create_folders.py
tws0002/pype
0
12779838
<reponame>tws0002/pype import os import sys import logging import argparse import re from pype.vendor import ftrack_api from pype.ftrack import BaseAction from avalon import lib as avalonlib from pype.ftrack.lib.io_nonsingleton import DbConnector from pypeapp import config, Anatomy class CreateFolders(BaseAction): '''Custom action.''' #: Action identifier. identifier = 'create.folders' #: Action label. label = 'Create Folders' #: Action Icon. icon = '{}/ftrack/action_icons/CreateFolders.svg'.format( os.environ.get('PYPE_STATICS_SERVER', '') ) db = DbConnector() def discover(self, session, entities, event): ''' Validation ''' if len(entities) != 1: return False not_allowed = ['assetversion', 'project'] if entities[0].entity_type.lower() in not_allowed: return False return True def interface(self, session, entities, event): if event['data'].get('values', {}): return entity = entities[0] without_interface = True for child in entity['children']: if child['object_type']['name'].lower() != 'task': without_interface = False break self.without_interface = without_interface if without_interface: return title = 'Create folders' entity_name = entity['name'] msg = ( '<h2>Do you want create folders also' ' for all children of "{}"?</h2>' ) if entity.entity_type.lower() == 'project': entity_name = entity['full_name'] msg = msg.replace(' also', '') msg += '<h3>(Project root won\'t be created if not checked)</h3>' items = [] item_msg = { 'type': 'label', 'value': msg.format(entity_name) } item_label = { 'type': 'label', 'value': 'With all chilren entities' } item = { 'name': 'children_included', 'type': 'boolean', 'value': False } items.append(item_msg) items.append(item_label) items.append(item) if len(items) == 0: return { 'success': False, 'message': 'Didn\'t found any running jobs' } else: return { 'items': items, 'title': title } def launch(self, session, entities, event): '''Callback method for custom action.''' with_childrens = True if self.without_interface is False: if 'values' not in event['data']: return with_childrens = event['data']['values']['children_included'] entity = entities[0] if entity.entity_type.lower() == 'project': proj = entity else: proj = entity['project'] project_name = proj['full_name'] project_code = proj['name'] if entity.entity_type.lower() == 'project' and with_childrens == False: return { 'success': True, 'message': 'Nothing was created' } data = { "root": os.environ["AVALON_PROJECTS"], "project": { "name": project_name, "code": project_code } } all_entities = [] all_entities.append(entity) if with_childrens: all_entities = self.get_notask_children(entity) av_project = None try: self.db.install() self.db.Session['AVALON_PROJECT'] = project_name av_project = self.db.find_one({'type': 'project'}) template_work = av_project['config']['template']['work'] template_publish = av_project['config']['template']['publish'] self.db.uninstall() except Exception: templates = Anatomy().templates template_work = templates["avalon"]["work"] template_publish = templates["avalon"]["publish"] collected_paths = [] presets = config.get_presets()['tools']['sw_folders'] for entity in all_entities: if entity.entity_type.lower() == 'project': continue ent_data = data.copy() asset_name = entity['name'] ent_data['asset'] = asset_name parents = entity['link'] hierarchy_names = [p['name'] for p in parents[1:-1]] hierarchy = '' if hierarchy_names: hierarchy = os.path.sep.join(hierarchy_names) ent_data['hierarchy'] = hierarchy tasks_created = False if entity['children']: for child in entity['children']: if child['object_type']['name'].lower() != 'task': continue tasks_created = True task_type_name = child['type']['name'].lower() task_data = ent_data.copy() task_data['task'] = child['name'] possible_apps = presets.get(task_type_name, []) template_work_created = False template_publish_created = False apps = [] for app in possible_apps: try: app_data = avalonlib.get_application(app) app_dir = app_data['application_dir'] except ValueError: app_dir = app apps.append(app_dir) # Template wok if '{app}' in template_work: for app in apps: template_work_created = True app_data = task_data.copy() app_data['app'] = app collected_paths.append( self.compute_template( template_work, app_data ) ) if template_work_created is False: collected_paths.append( self.compute_template(template_work, task_data) ) # Template publish if '{app}' in template_publish: for app in apps: template_publish_created = True app_data = task_data.copy() app_data['app'] = app collected_paths.append( self.compute_template( template_publish, app_data, True ) ) if template_publish_created is False: collected_paths.append( self.compute_template( template_publish, task_data, True ) ) if not tasks_created: # create path for entity collected_paths.append( self.compute_template(template_work, ent_data) ) collected_paths.append( self.compute_template(template_publish, ent_data) ) if len(collected_paths) > 0: self.log.info('Creating folders:') for path in set(collected_paths): self.log.info(path) if not os.path.exists(path): os.makedirs(path) return { 'success': True, 'message': 'Created Folders Successfully!' } def get_notask_children(self, entity): output = [] if entity.get('object_type', {}).get( 'name', entity.entity_type ).lower() == 'task': return output else: output.append(entity) if entity['children']: for child in entity['children']: output.extend(self.get_notask_children(child)) return output def template_format(self, template, data): partial_data = PartialDict(data) # remove subdict items from string (like 'project[name]') subdict = PartialDict() count = 1 store_pattern = 5*'_'+'{:0>3}' regex_patern = "\{\w*\[[^\}]*\]\}" matches = re.findall(regex_patern, template) for match in matches: key = store_pattern.format(count) subdict[key] = match template = template.replace(match, '{'+key+'}') count += 1 # solve fillind keys with optional keys solved = self._solve_with_optional(template, partial_data) # try to solve subdict and replace them back to string for k, v in subdict.items(): try: v = v.format_map(data) except (KeyError, TypeError): pass subdict[k] = v return solved.format_map(subdict) def _solve_with_optional(self, template, data): # Remove optional missing keys pattern = re.compile(r"(<.*?[^{0]*>)[^0-9]*?") invalid_optionals = [] for group in pattern.findall(template): try: group.format(**data) except KeyError: invalid_optionals.append(group) for group in invalid_optionals: template = template.replace(group, "") solved = template.format_map(data) # solving after format optional in second round for catch in re.compile(r"(<.*?[^{0]*>)[^0-9]*?").findall(solved): if "{" in catch: # remove all optional solved = solved.replace(catch, "") else: # Remove optional symbols solved = solved.replace(catch, catch[1:-1]) return solved def compute_template(self, str, data, task=False): first_result = self.template_format(str, data) if first_result == first_result.split('{')[0]: return os.path.normpath(first_result) if task: return os.path.normpath(first_result.split('{')[0]) index = first_result.index('{') regex = '\{\w*[^\}]*\}' match = re.findall(regex, first_result[index:])[0] without_missing = str.split(match)[0].split('}') output_items = [] for part in without_missing: if '{' in part: output_items.append(part + '}') return os.path.normpath( self.template_format(''.join(output_items), data) ) class PartialDict(dict): def __getitem__(self, item): out = super().__getitem__(item) if isinstance(out, dict): return '{'+item+'}' return out def __missing__(self, key): return '{'+key+'}' def register(session, plugins_presets={}): '''Register plugin. Called when used as an plugin.''' CreateFolders(session, plugins_presets).register() def main(arguments=None): '''Set up logging and register action.''' if arguments is None: arguments = [] parser = argparse.ArgumentParser() # Allow setting of logging level from arguments. loggingLevels = {} for level in ( logging.NOTSET, logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL ): loggingLevels[logging.getLevelName(level).lower()] = level parser.add_argument( '-v', '--verbosity', help='Set the logging output verbosity.', choices=loggingLevels.keys(), default='info' ) namespace = parser.parse_args(arguments) # Set up basic logging logging.basicConfig(level=loggingLevels[namespace.verbosity]) session = ftrack_api.Session() register(session) # Wait for events logging.info( 'Registered actions and listening for events. Use Ctrl-C to abort.' ) session.event_hub.wait() if __name__ == '__main__': raise SystemExit(main(sys.argv[1:]))
1.96875
2
extractor/open163.py
pwh19920920/spiders
390
12779839
<filename>extractor/open163.py # pylint: disable=W0123 import re import requests def get(url: str) -> dict: """ videos """ data = {} data["videos"] = [] headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } re_url = r'mid:(.*?),.*?mp4SdUrlOrign:(.*?),.*?mp4HdUrlOrign:(.*?),.*?mp4ShdUrlOrign:(.*?),' rep = requests.get(url, headers=headers, timeout=10) items = re.findall(re_url, rep.text) for item in items: # 倒序取最高画质 for video_url in item[::-1]: # type: str # print(url) if "http" in video_url: video_url = eval(video_url).replace("\\u002F", "/") data["videos"].append(video_url) break return data if __name__ == "__main__": url = "http://open.163.com/newview/movie/free?pid=M8LI1JCE6&mid=M8LI3BQ60" print(get(url))
2.765625
3
Lab02_final_Group2_05/PenguinPiC.py
evantancy/ece4078-team2-05
0
12779840
<reponame>evantancy/ece4078-team2-05 import numpy as np import requests import cv2 class PenguinPi: def __init__(self, ip="localhost"): """ Args: ip (str, optional): IP address. Defaults to "localhost". """ self.ip = ip self.port = 40000 def set_velocity(self, lvel: int, rvel: int, time=0) -> None: """ Args: lvel (int): Target left wheel speed rvel (int): Target right wheel speed time (int, optional): Defaults to 0. """ success = False while not success: if time == 0: r = requests.get( f"http://{self.ip}:{self.port}/robot/set/velocity?value=" + str(lvel) + "," + str(rvel) ) success = r.ok else: assert time > 0, "Time must be positive." assert time < 20, "Time must be less than network timeout (20s)." r = requests.get( "http://" + self.ip + ":" + str(self.port) + "/robot/set/velocity?value=" + str(lvel) + "," + str(rvel) + "&time=" + str(time) ) success = r.ok def get_image(self) -> np.ndarray: """ Returns: np.ndarray: OpenCV image object. Check using type(img) """ success = False while not success: try: r = requests.get(f"http://{self.ip}:{self.port}/camera/get") img = cv2.imdecode(np.frombuffer(r.content, np.uint8), cv2.IMREAD_COLOR) success = r.ok except ( requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout, ): print("PenguinPiC: Image retrieval timed out.") img = np.zeros((240, 320, 3), dtype=np.uint8) return img
3.09375
3
temporal_model.py
rashidhaffadi/EGT
0
12779841
import torch import torch.nn as nn from torch.functional import F from utils import * class SequenceModel(nn.Module): """docstring for SequenceModel""" def __init__(self, input_size, hidden_size, n_layers, **kwargs): super(SequenceModel, self).__init__() self.rnn = nn.LSTM(input_size, hidden_size, n_layers, **kwargs) self.linear = nn.Sequential(linear(hidden_size, hidden_size, True, 0.5), linear(hidden_size, hidden_size, True, 0.5)) self.fc = nn.Linear(hidden_size, 128) # load def forward(self, x): x, _ = self.rnn(x) x = x.mean(1) x = self.linear(x) return self.fc(x)
2.890625
3
mollie/api/resources/payments.py
wegroupwolves/async-mollie-api-python
0
12779842
from ..error import IdentifierError from ..objects.payment import Payment from .base import Base class Payments(Base): RESOURCE_ID_PREFIX = "tr_" def get_resource_object(self, result): return Payment(result, self) async def get(self, payment_id, **params): if not payment_id or not payment_id.startswith(self.RESOURCE_ID_PREFIX): raise IdentifierError( "Invalid payment ID: '{id}'. A payment ID should start with '{prefix}'.".format( id=payment_id, prefix=self.RESOURCE_ID_PREFIX ) ) result = await super(Payments, self).get(payment_id, **params) return result async def delete(self, payment_id, data=None): """Cancel payment and return the payment object. Deleting a payment causes the payment status to change to canceled. The updated payment object is returned. """ if not payment_id or not payment_id.startswith(self.RESOURCE_ID_PREFIX): raise IdentifierError( "Invalid payment ID: '{id}'. A payment ID should start with '{prefix}'.".format( id=payment_id, prefix=self.RESOURCE_ID_PREFIX ) ) result = await super(Payments, self).delete(payment_id, data) return self.get_resource_object(result)
2.515625
3
train.py
SuriyaNitt/deepdrive
0
12779843
import networks.tflearn.deepdrivenet as ddn #threeD_conv_net import ml_utils.calc_optical_flow as cop #calc_opticalflow import ml_utils.handle_data as hd import os import numpy as np import tflearn import tensorflow as tf debug = 0 calc_flow = 0 load_model_on_start = 0 depth = 16 batchSize = 16 modelBatchSize = 2 rows = 224 cols = 224 colorSpace = 3 tflearn.init_graph(num_cores=8, gpu_memory_fraction=0.8) h5FilePath = '/home/suriya/Documents/hard_disk/DeepDrive' h5FileName = 'train_0001.h5' h5File = os.path.join(h5FilePath, h5FileName) video = hd.read_h5_key_value(h5File, 'images') video = hd.swap_axes(video, 1, 3) targets = hd.read_h5_key_value(h5File, 'targets') targetSpeed = targets[:, 2] targetSpeed = targetSpeed.reshape((targetSpeed.shape[0],1)) targetSteering = targets[:, 4] targetSteering = targetSteering.reshape((targetSteering.shape[0], 1)) myTargets = np.append(targetSpeed, targetSteering, axis=1) if debug: print video.shape print targets.shape print targets[0] print myTargets.shape if calc_flow: cop.calc_opticalflow(video, video.shape[0]) myNet = ddn.threeD_conv_net_single_stream(depth, rows, cols, modelBatchSize) model = tflearn.DNN(myNet, checkpoint_path='./model_resnet', max_checkpoints=10, tensorboard_verbose=3, tensorboard_dir='./tflearn_logs') if load_model_on_start: model.load('./model_resnet/model1') testX = np.ndarray((0, cols, rows, colorSpace), dtype='float32') if debug: print testX.shape for i in range(batchSize): testX = np.append(testX, video[i:i+depth, :cols, :rows, :], axis=0) testX = testX.reshape((batchSize, depth, cols, rows, colorSpace)) if debug: print testX.shape testY = myTargets[depth-1:depth-1+batchSize, :] testY = np.array(testY) testY = testY.reshape((testY.shape[0], 2)) train_count = 1 if debug: train_count = 1 while train_count < ((targetSpeed.shape[0]-depth+1) / batchSize): # 970 / 32 trainX = np.ndarray((0, cols, rows, colorSpace), dtype='float32') for i in range(batchSize): trainX = np.append(trainX, video[i+(train_count)*batchSize:i+(train_count)*batchSize+depth, :cols, :rows, :], axis=0) trainX = trainX.reshape(batchSize, depth, rows, cols, colorSpace) trainY = myTargets[depth-1+(train_count)*batchSize:depth-1+(train_count+1)*batchSize, :] trainY = np.array(trainY) trainY = trainY.reshape((testY.shape[0], 2)) if debug: print trainX.shape print trainY.shape print testX.shape print testY.shape # Training the neural net with tf.device('/gpu:0'): model.fit(trainX, trainY, n_epoch=10, validation_set=(testX, testY), show_metric=True, batch_size=modelBatchSize, run_id='resnet') model.save('./model_resnet/model1') train_count += 1
2.09375
2
toad/stats_test.py
Padfoot-ted/toad
1
12779844
import pytest import numpy as np import pandas as pd from .stats import IV, WOE, gini, gini_cond, entropy_cond, quality, _IV, VIF np.random.seed(1) feature = np.random.rand(500) target = np.random.randint(2, size = 500) A = np.random.randint(100, size = 500) B = np.random.randint(100, size = 500) mask = np.random.randint(8, size = 500) df = pd.DataFrame({ 'feature': feature, 'target': target, 'A': A, 'B': B, }) def test_woe(): value = WOE(0.2, 0.3) assert value == -0.4054651081081643 def test_iv_priv(): value, _ = _IV(df['feature'], df['target']) assert value == 0.010385942643745403 def test_iv(): value = IV(df['feature'], df['target'], n_bins = 10, method = 'dt') assert value == 0.2735917707743619 def test_iv_return_sub(): _, sub = IV(mask, df['target'], return_sub = True, n_bins = 10, method = 'dt') assert len(sub) == 8 assert sub[4] == 0.006449386778057019 def test_iv_frame(): res = IV(df, 'target', n_bins = 10, method = 'chi') assert res.loc[0, 'A'] == 0.226363832867123 def test_gini(): value = gini(df['target']) assert value == 0.499352 def test_gini_cond(): value = gini_cond(df['feature'], df['target']) assert value == 0.4970162601626016 def test_entropy_cond(): value = entropy_cond(df['feature'], df['target']) assert value == 0.6924990371522171 def test_quality(): result = quality(df, 'target') assert result.loc['feature', 'iv'] == 0.2735917707743619 assert result.loc['A', 'gini'] == 0.49284164671885444 assert result.loc['B', 'entropy'] == 0.6924956879070063 assert result.loc['feature', 'unique'] == 500 def test_quality_iv_only(): result = quality(df, 'target', iv_only = True) assert np.isnan(result.loc['feature', 'gini']) def test_quality_object_type_array_with_nan(): feature = np.array([np.nan, 'A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype = 'O')[mask] df = pd.DataFrame({ 'feature': feature, 'target': target, }) result = quality(df) assert result.loc['feature', 'iv'] == 0.016379338180530334 def test_vif(): vif = VIF(df) assert vif['A'] == 2.969336442640111
1.984375
2
plugins/dlab_deployment/dlab_deployment/infrastructure/command_executor.py
mediapills/dlab
0
12779845
# ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ***************************************************************************** import abc from contextlib import contextmanager import os from shutil import copyfile import subprocess from time import sleep from scp import SCPClient import paramiko import six from dlab_core.domain.helper import break_after @six.add_metaclass(abc.ABCMeta) class BaseCommandExecutor(object): @abc.abstractmethod def run(self, command): """Run cli command :type command: str :param command: cli command """ raise NotImplementedError @abc.abstractmethod def sudo(self, command): """Run cli sudo command :type command: str :param command: cli command """ raise NotImplementedError @abc.abstractmethod def cd(self, path): """Change work directory to path :type path: str :param path: directory location """ raise NotImplementedError @abc.abstractmethod def put(self, local_path, remote_path): """Copy file :type local_path: str :param local_path: path to local object :type remote_path: str :param remote_path: path to remote object """ raise NotImplementedError class LocalCommandExecutor(BaseCommandExecutor): def run(self, command): # pragma: no cover """Run cli command :type command: str :param command: cli command :rtype: str :return execution result """ lines = [] process = subprocess.Popen( command, shell=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while process.poll() is None: line = process.stdout.readline() lines.append(line) # TODO: Add logging return ' '.join(lines) def sudo(self, command): """Run cli sudo command :type command: str :param command: cli command :rtype: str :return execution result """ raise NotImplementedError @contextmanager def cd(self, path): """Change work directory to path :type path: str :param path: directory location """ current_dir = os.getcwd() try: os.chdir(path) yield finally: os.chdir(current_dir) def put(self, local_path, remote_path): """Copy file :type local_path: str :param local_path: path to local object :type remote_path: str :param remote_path: path to remote object """ copyfile(local_path, remote_path) class ParamikoCommandExecutor(BaseCommandExecutor): def __init__(self, host, name, identity_file): """ :type host: str :param host: ip address or host name :type name: str :param name: user name :type: str :param identity_file: path to file """ self.current_dir = None self._connection = None self.host = host self.name = name self.identity_file = identity_file @property def connection(self): """Return paramiko connection""" return self._connection or self.init_connection() @break_after(180) def init_connection(self): """Init connection""" connection = paramiko.SSHClient() connection.set_missing_host_key_policy( paramiko.AutoAddPolicy()) while True: try: connection.connect(self.host, username=self.name, key_filename=self.identity_file) connection.exec_command('ls') return connection except Exception: sleep(10) @property def current_dir(self): """Default directory""" return self._current_dir @current_dir.setter def current_dir(self, val): """Set default directory :type val: str :param val: new directory """ self._current_dir = val def run(self, command): """Run cli command :type command: str :param command: cli command :rtype: str :return execution result """ if self.current_dir: command = 'cd {}; {}'.format(self.current_dir, command) stdin, stdout, stderr = self.connection.exec_command(command) return stdout.read().decode('ascii').strip("\n") def sudo(self, command): """Run sudo cli command :type command: str :param command: cli command :rtype: str :return execution result """ command = 'sudo {}'.format(command) return self.run(command) @contextmanager def cd(self, path): try: self.current_dir = path yield finally: self.current_dir = None def put(self, local_path, remote_path): """Copy file :type local_path: str :param local_path: path to local object :type remote_path: str :param remote_path: path to remote object """ scp = SCPClient(self.connection.get_transport()) scp.put(local_path, recursive=True, remote_path=remote_path) scp.close()
1.84375
2
local-runner-en/replay-dump.py
leloykun/russian-ai-cup
0
12779846
<filename>local-runner-en/replay-dump.py #pylint: disable=missing-docstring, invalid-name import urllib import re import sys import contextlib import os import errno import subprocess import zipfile import json RUN_PLAYER_RE = re.compile(r'''<span\s+class\s*=\s*["']?run-player["']?\s*(.*)>''') TOKEN_RE = re.compile(r'''.*data-token\s*=\s*["']?([^'"\s]+)['"]?''') CONTENT_LENGTH_RE = re.compile(r'Content-Length:\s*(\d+)') CHUNK = 1 * 1024 * 1024 MAP_NAME_RE = re.compile(r'maps/([^.]+)\.map') def readPage(url): with contextlib.closing(urllib.urlopen(url)) as target: headers = target.info().headers for header in headers: try: size = int(CONTENT_LENGTH_RE.search(header).group(1)) except AttributeError: continue else: break else: size = None readBytes = 0 if size is not None and size >= CHUNK: print 'Downloading: 00.0%', while readBytes < size: chunk = target.read(CHUNK) readBytes += len(chunk) print '\rDownloading: %4.1f%%' % (100.0 * readBytes / size), yield chunk else: print 'Downloading: ', while True: chunk = target.read(CHUNK) if not chunk: break readBytes += len(chunk) print '\rDownloading: %0.1fM' % (readBytes / 1024.0 / 1024), yield chunk print '\rDownloading: done%s' % (' ' * 10) def getReplayAddress(gameUrl): with contextlib.closing(urllib.urlopen(gameUrl)) as gamePage: game = gamePage.read() runPlayerSpan = RUN_PLAYER_RE.search(game).group(1) token = TOKEN_RE.search(runPlayerSpan).group(1) return 'http://russianaicup.ru/boombox/data/games/%s?offset=0' % token def downloadReplay(replayUrl, targetPath): with open(targetPath, 'w') as out: for chunk in readPage(replayUrl): out.write(chunk) def ensureReplay(gameUrl): targetFile = os.path.join('games', gameUrl.split('/')[-1] + '.json') if os.path.exists(targetFile): print 'File already downloaded' return targetFile replayUrl = getReplayAddress(gameUrl) try: downloadReplay(replayUrl, targetFile) print 'Downloaded to: %s' % targetFile except KeyboardInterrupt: print 'Interrupted, removing partial file' os.remove(targetFile) return None return targetFile def ensureGameUrl(gameUrl): try: gameNumber = int(gameUrl.strip()) except ValueError: return gameUrl return 'http://russianaicup.ru/game/view/%d' % gameNumber def checkMap(replayFile): with open(replayFile) as inp: data = json.loads(inp.readline()) try: mapName = data['mapName'] except KeyError: # no maps this year, skip all the fuss return if mapName.endswith('.map'): mapName = mapName[:-4] knownMaps = set() with zipfile.ZipFile('local-runner.jar') as localRunner: for name in localRunner.namelist(): if MAP_NAME_RE.match(name): knownMaps.add(MAP_NAME_RE.match(name).group(1)) if mapName not in knownMaps: print 'unknown map' unpackMap(mapName, data) TILE_NAMES = 'EMPTY VERTICAL HORIZONTAL LEFT_TOP_CORNER RIGHT_TOP_CORNER LEFT_BOTTOM_CORNER RIGHT_BOTTOM_CORNER LEFT_HEADED_T RIGHT_HEADED_T TOP_HEADED_T BOTTOM_HEADED_T CROSSROADS'.split() TILE_CHARS = u'\u2588 \u2551 \u2550 \u2554 \u2557 \u255a \u255d \u2563 \u2560 \u2569 \u2566 \u256c'.split() def unpackMap(mapName, data): with open('%s.map' % mapName, 'w') as mapFile: mapFile.write('%s %s\n' % (data['width'], data['height'])) for y in xrange(int(data['height'])): for x in xrange(int(data['width'])): tile = data['tilesXY'][x][y] char = TILE_CHARS[TILE_NAMES.index(tile)] mapFile.write(char.encode('utf8')) mapFile.write('\n') mapFile.write('%s\n' % len(data['waypoints'])) for wx, wy in data['waypoints']: mapFile.write('%s %s\n' % (wx, wy)) mapFile.write('%s\n' % data['startingDirection']) def main(gameUrl): os.chdir(os.path.dirname(os.path.abspath(__file__))) try: os.makedirs('games') except OSError as ex: if ex.errno != errno.EEXIST: raise replayFile = ensureReplay(gameUrl) if not replayFile: sys.exit('Cannot run replay') props = [] with open('local-runner-replay.properties', 'r') as inp: for line in inp: if line.startswith('replay-file='): props.append('replay-file=%s\n' % replayFile.replace('\\', '/')) else: props.append(line) with open('local-runner-replay.properties', 'w') as out: out.write(''.join(props)) checkMap(replayFile) subprocess.check_call(['java', '-jar', "local-runner.jar", 'local-runner-replay.properties'], shell=False) if __name__ == '__main__': if len(sys.argv) != 2: sys.exit('Usage: %s game-url-or-number' % sys.argv[0]) main(ensureGameUrl(sys.argv[1]))
2.4375
2
group_admin/files/group-admin-monthly-report.py
hpfilho/FlickrTasks
1
12779847
<reponame>hpfilho/FlickrTasks #!/usr/bin/python3 # This generates a report with photos that need to be removed # or kept in a groups. It is useful for groups based in cameras, # lenses or anything exif related. # # Author: <NAME> # Date : Jan 01, 2018 #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #################################################### # !!!DO NOT MODIFY THIS FILE!!! # # Implement the procedures in file procs.py # # Include the rules in file group_data.py # #################################################### import flickrapi import api_credentials import json import time import group_data import procs #===== CONSTANTS =================================# api_key = api_credentials.api_key api_secret = api_credentials.api_secret user_id = api_credentials.user_id group_url = group_data.group_url group_alias = group_data.group_alias lens_models = group_data.lens_models focal_lengths = group_data.focal_lengths # Flickr api access flickr = flickrapi.FlickrAPI(api_key, api_secret, format='parsed-json') #===== MAIN CODE ==============================================================# # get group id and name from group url group_id = flickr.urls.lookupGroup(api_key=api_key, url=group_data.group_url)['group']['id'] group_name = flickr.groups.getInfo(group_id=group_id)['group']['name']['_content'] # get photos from group pool pool = flickr.groups.pools.getPhotos(api_key=api_key, group_id=group_id) total_of_photos = int(pool['photos']['total']) number_of_pages = int(pool['photos']['pages']) photos_per_page = int(pool['photos']['perpage']) # set output files names report_file_name = '/home/pi/flickr_tasks/group_admin/{0}/{1}.photos.admin.monthly.txt'.format(group_alias, group_name).replace(' ','_') remove_file_name = '/home/pi/flickr_tasks/group_admin/{0}/remove-photos.py'.format(group_alias) review_file_name = '/home/pi/flickr_tasks/group_admin/{0}/review-photos.txt'.format(group_alias) html_file_name = '/home/pi/github/hpfilho.github.io/reports/{0}.monthly.html'.format(group_name).replace(' ','_') # create and add header to report file procs.addReportHeader(report_file_name, html_file_name, group_name, total_of_photos) # create remove script procs.createRemoveScript(remove_file_name) # iterate over each pool page for page_number in range(1, number_of_pages+1): pool = flickr.groups.pools.getPhotos(api_key=api_key, group_id=group_id, page=page_number) photos_per_page = len(pool['photos']['photo']) # add header to photos page procs.addPageHeader(report_file_name, html_file_name, page_number, number_of_pages, photos_per_page) # iterate over each photo in page for photo_number in range(photos_per_page): # add photo to report with action to be performed # add also to remove script in case should be removed procs.addPhoto(report_file_name, html_file_name, remove_file_name, pool, page_number, photo_number) # add page footer procs.addPageFooter(report_file_name, html_file_name) procs.addLastRemoveRunProcedure(remove_file_name, group_id) ##### MEMBERS ##### # get members from group members = flickr.groups.members.getList(api_key=api_key, group_id=group_id) total_of_members = int(members['members']['total']) number_of_pages_ = int(members['members']['pages']) members_per_page = int(members['members']['perpage']) # set output files names current_members_file_name = '/home/pi/flickr_tasks/group_admin/{0}/{1}.members.current.txt'.format(group_alias, group_name).replace(' ','_') new_members_file_name = '/home/pi/flickr_tasks/group_admin/{0}/{1}.members.new.txt'.format(group_alias, group_name).replace(' ','_') # read the current members file try: last_members = open(current_members_file_name, "r") last_members_list = last_members.readlines() last_members.close() except: last_members_list = [] # create the list for current members and open the file for writing current_members_list = [] current_members_file = open(current_members_file_name, "w") # iterate over each members page for page_number in range(1, number_of_pages_+1): members = flickr.groups.members.getList(api_key=api_key, group_id=group_id, page=page_number, per_page=members_per_page) # iterate over each member in page for member_number in range(members_per_page): try: member_name = members['members']['member'][member_number]['username'] # add member to list and write to file current_members_list.append(member_name) current_members_file.write("{0}\n".format(member_name)) except: pass # close the current members file current_members_file.close() # open the new members file for writing new_members = open(new_members_file_name, "w") # strip the newline character from last members list last_members_list = [m.strip("\n") for m in last_members_list] # for each current member, # if member is not in the last members list # add it to the new members file for member in current_members_list: if member not in last_members_list: new_members.write("{0}\n".format(member)) # closer the new members file new_members.close()
2.40625
2
HackerRank/Mathematics/Fundamentals/Even_Odd_Query.py
AdityaChirravuri/CompetitiveProgramming
1
12779848
<reponame>AdityaChirravuri/CompetitiveProgramming<filename>HackerRank/Mathematics/Fundamentals/Even_Odd_Query.py #!/bin/python3 import os import sys # Complete the solve function below. def solve(arr, queries): result = [] for i,j in queries: if(i<len(arr) and arr[i]==0 and i!=j): result.append('Odd') else: if(arr[i-1]%2==0): result.append('Even') else: result.append('Odd') return result if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') arr_count = int(input()) arr = list(map(int, input().rstrip().split())) q = int(input()) queries = [] for _ in range(q): queries.append(list(map(int, input().rstrip().split()))) result = solve(arr, queries) fptr.write('\n'.join(result)) fptr.write('\n') fptr.close()
4.0625
4
acq4/modules/MultiPatch/pipetteTemplate_pyqt5.py
aleonlein/acq4
1
12779849
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'acq4/modules/MultiPatch/pipetteTemplate.ui' # # Created by: PyQt5 UI code generator 5.8.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_PipetteControl(object): def setupUi(self, PipetteControl): PipetteControl.setObjectName("PipetteControl") PipetteControl.resize(333, 75) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(PipetteControl.sizePolicy().hasHeightForWidth()) PipetteControl.setSizePolicy(sizePolicy) self.gridLayout = QtWidgets.QGridLayout(PipetteControl) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setSpacing(3) self.gridLayout.setObjectName("gridLayout") self.targetBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.targetBtn.sizePolicy().hasHeightForWidth()) self.targetBtn.setSizePolicy(sizePolicy) self.targetBtn.setMaximumSize(Qt.QSize(40, 16777215)) self.targetBtn.setObjectName("targetBtn") self.gridLayout.addWidget(self.targetBtn, 1, 4, 1, 1) self.stateCombo = QtWidgets.QComboBox(PipetteControl) self.stateCombo.setObjectName("stateCombo") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.gridLayout.addWidget(self.stateCombo, 0, 3, 1, 2) self.plotLayoutWidget = QtWidgets.QWidget(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.plotLayoutWidget.sizePolicy().hasHeightForWidth()) self.plotLayoutWidget.setSizePolicy(sizePolicy) self.plotLayoutWidget.setObjectName("plotLayoutWidget") self.plotLayout = QtWidgets.QHBoxLayout(self.plotLayoutWidget) self.plotLayout.setContentsMargins(0, 0, 0, 0) self.plotLayout.setSpacing(0) self.plotLayout.setObjectName("plotLayout") self.gridLayout.addWidget(self.plotLayoutWidget, 0, 5, 4, 1) self.selectBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.selectBtn.sizePolicy().hasHeightForWidth()) self.selectBtn.setSizePolicy(sizePolicy) self.selectBtn.setMaximumSize(Qt.QSize(30, 16777215)) font = Qt.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.selectBtn.setFont(font) self.selectBtn.setCheckable(True) self.selectBtn.setObjectName("selectBtn") self.gridLayout.addWidget(self.selectBtn, 0, 0, 4, 1) self.tipBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tipBtn.sizePolicy().hasHeightForWidth()) self.tipBtn.setSizePolicy(sizePolicy) self.tipBtn.setMaximumSize(Qt.QSize(40, 16777215)) self.tipBtn.setObjectName("tipBtn") self.gridLayout.addWidget(self.tipBtn, 2, 4, 1, 1) self.soloBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.soloBtn.sizePolicy().hasHeightForWidth()) self.soloBtn.setSizePolicy(sizePolicy) self.soloBtn.setMaximumSize(Qt.QSize(30, 16777215)) self.soloBtn.setCheckable(True) self.soloBtn.setObjectName("soloBtn") self.gridLayout.addWidget(self.soloBtn, 2, 3, 1, 1) self.lockBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lockBtn.sizePolicy().hasHeightForWidth()) self.lockBtn.setSizePolicy(sizePolicy) self.lockBtn.setMaximumSize(Qt.QSize(30, 16777215)) self.lockBtn.setCheckable(True) self.lockBtn.setObjectName("lockBtn") self.gridLayout.addWidget(self.lockBtn, 1, 3, 1, 1) self.retranslateUi(PipetteControl) Qt.QMetaObject.connectSlotsByName(PipetteControl) def retranslateUi(self, PipetteControl): _translate = Qt.QCoreApplication.translate PipetteControl.setWindowTitle(_translate("PipetteControl", "Form")) self.targetBtn.setText(_translate("PipetteControl", "target")) self.stateCombo.setItemText(0, _translate("PipetteControl", "out")) self.stateCombo.setItemText(1, _translate("PipetteControl", "bath")) self.stateCombo.setItemText(2, _translate("PipetteControl", "approach")) self.stateCombo.setItemText(3, _translate("PipetteControl", "seal")) self.stateCombo.setItemText(4, _translate("PipetteControl", "attached")) self.stateCombo.setItemText(5, _translate("PipetteControl", "break in")) self.stateCombo.setItemText(6, _translate("PipetteControl", "whole cell")) self.stateCombo.setItemText(7, _translate("PipetteControl", "outside-out")) self.selectBtn.setText(_translate("PipetteControl", "1")) self.tipBtn.setText(_translate("PipetteControl", "tip")) self.soloBtn.setText(_translate("PipetteControl", "Solo")) self.lockBtn.setText(_translate("PipetteControl", "Lock"))
1.6875
2
qihui/data_processing/decode_preprocessing.py
Nelsonvon/transformers
0
12779850
import sys import string import datetime import logging from nltk.tokenize import word_tokenize from transformers import BertTokenizer logger = logging.getLogger(__name__) def decode_preprocessing(dataset, output_file, tokenizer, max_len, mode): with open(dataset, 'r') as fin: input_lines = fin.readlines() starttime = datetime.datetime.now() if mode == 'sent_line': lines = [] for line in input_lines: tok_line = word_tokenize(line.strip()) lines += [token + ' O\n' for token in tok_line] + ['\n'] else: lines = input_lines subword_len_counter = 0 last_punc_buffer = "" output = "" for line in lines: line_copy = line line = line.rstrip() if not line: # print(line) output += line + '\n' last_punc_buffer = "" subword_len_counter = 0 continue token = line.split()[0] current_subwords_len = len(tokenizer.tokenize(token)) # Token contains strange control characters like \x96 or \x95 # Just filter out the complete line if current_subwords_len == 0: continue if all(char in string.punctuation for char in token) and line.split()[1] == 'O': last_punc_buffer = "" else: last_punc_buffer += line_copy if (subword_len_counter + current_subwords_len) > max_len: # print("") output += '\n' # print(last_punc_buffer.rstrip()) output += last_punc_buffer.rstrip() + '\n' subword_len_counter = len(last_punc_buffer.split('\n')) last_punc_buffer = "" continue subword_len_counter += current_subwords_len # print(line) output += line + '\n' endtime = datetime.datetime.now() duration = (endtime-starttime).total_seconds() logger.info(duration) with open(output_file, 'w') as fout: fout.write(output) return
2.890625
3