max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
client/paddleflow/pipeline/dsl/io_types/parameter.py
HaozhengAN/PaddleFlow
0
12778751
<reponame>HaozhengAN/PaddleFlow #!/usr/bin/env python3 """ Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); param = Parameter()you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Parameter: Parameters are inputs to pipelines that are known before your pipeline is executed from typing import Dict from typing import Any from paddleflow.pipeline.dsl.utils.util import validate_string_by_regex from paddleflow.pipeline.dsl.utils.consts import VARIBLE_NAME_REGEX from paddleflow.pipeline.dsl.utils.consts import PipelineDSLError from paddleflow.common.exception.paddleflow_sdk_exception import PaddleFlowSDKException TYPE_TO_STRING = {str: "string", int: "int", float: "float"} STRING_TO_TYPE = {value: key for key, value in TYPE_TO_STRING.items()} SUPPORT_TYPE = STRING_TO_TYPE.keys() class Parameter(object): """ Parameters are inputs to pipelines that are known before your pipeline is executed, Parameters let you change the behavior of a step, through configuration instead of code. """ def __init__( self, default: Any=None, type: str=None, ): """ create a new instance of Paramter Args: type (str): the type of Parameter, type check before execution default (Any): the default value of Parameter Raises: PaddleFlowSDKException: if all of "type" and "default" are None or "type" is not supported or "type" and "default" are not match """ if type and not isinstance(type, str): self._type = self._trans_type_to_str(type) else: self._type = type self._default = default if all([self._type, self._default]): self._default = self._validate_type(self._type, self._default) # if __ref param = Parameter()is not None, means other parameters are referenced self.__ref = None self.__step = None self.__name = None def _trans_type_to_str(self, t): """ trans type to str Args: t (type): the type need to trans to str Raises: PaddleFlowSDKException: if t is not supported """ if t not in TYPE_TO_STRING: raise PaddleFlowSDKException(PipelineDSLError, f"the type of Parameter only support {SUPPORT_TYPE}") return TYPE_TO_STRING[t] def _validate_type(self, t: str, value: Any=None): """ validate the type of it and the value """ if not isinstance(value, STRING_TO_TYPE[t]): try: return STRING_TO_TYPE[t](value) except Exception as e: raise PaddleFlowSDKException(PipelineDSLError, "the type of Parameter is not match the default value of it") return value def set_base_info(self, name: str, step, ref: Any=None): """ set the step that this paramter instances was belong to and set the name of it Args: step (Step): the step that this paramter instances was belong to name (str): the name of it ref (Any): the refrence parameter Raises: PaddleFlowSDKException: if the name is illegal """ self.__step = step if not validate_string_by_regex(name, VARIBLE_NAME_REGEX): raise PaddleFlowSDKException(PipelineDSLError, f"the name of parameter[{name}] for step[{step.name}]is illegal, " + \ f"the regex used for validation is {VARIBLE_NAME_REGEX}") self.__name = name self.__ref = ref def compile(self): """ trans to dict while be invoked at compile stage Returns: a dict/string which can describe it Raises: PaddleFlowSDKException: if the ref attribute and the [default, type] attribute exist at the same time """ if self.__ref and any([self.default, self.type]): raise PaddleFlowSDKException(PipelineDSLError, f"the parameter[{self._name}] for step[{step.name}]" + \ "have both [ref] attribute and [default | type] attribute, please contact manager") if isinstance(self.__ref, Parameter): return self.__ref.to_template() elif self.__ref: return self.__ref dicts = {} if self._default: dicts.update({"default": self._default}) if self._type: dicts.update({"type": self._type}) if dicts: return dicts return "" def to_template(self): """ trans to template when downstream step ref this Parameter Returns: A string indicate the template of it """ return "{{" + self.__step.name + "." + self.__name + '}}' @property def step(self): """ get the step step that this paramter instances was belong to Returns: a Step that it was belong to """ return self.__step @property def name(self): """ get the name of it Returns: a string indicate the name of it """ return self.__name @property def type(self): """ get the type of it Returns: a string indicate the type of it """ return self._type @property def default(self): """ get the default value of it Returns: the default value of it """ return self._default @default.setter def default(self, value: Any): """ set the default value of it Args: value (Any): the value to set the default of it Raises: PaddleFlowSDKException: if the value is not match the type of it """ if self._type: self._default = self._validate_type(self._type, value) else: self._default = value self.__ref = None @property def ref(self): """ get refrence Returns: the refrence of this instance """ return self.__ref def __deepcopy__(self, memo): """ support copy.deepcopy """ param = Parameter(type=self.type, default=self.default) if self.name: param.set_base_info(step=self.step, name=self.name, ref=self.ref) return param def __eq__(self, other): """ support == and != """ return self.name == other.name and self.type == other.type and self.default == other.default and \ self.ref == other.ref and self.step == other.step
2.859375
3
backend/api/models.py
jzrlza/plant-soil-buddy
0
12778752
from django.db import models from rest_framework import serializers from django.contrib import auth from django.core.validators import MaxValueValidator, MinValueValidator from datetime import datetime class Message(models.Model): subject = models.CharField(max_length=200) body = models.TextField() class MessageSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Message fields = ('url', 'subject', 'body', 'pk') class User(auth.models.User): user_ptr = None class PlantMoistLvl(models.Model): VERY_LOW = 0 LOW = 1 MID = 2 HIGH = 3 VERY_HIGH = 4 LEVEL_CHOICES = ( (VERY_LOW, 'Very Low'), (LOW, 'Low'), (MID, 'Medium'), (HIGH, 'High'), (VERY_HIGH, 'Very High'), ) plant_name = models.CharField(max_length=100, default='') min_moist_lvl = models.IntegerField( choices= LEVEL_CHOICES, default= VERY_LOW ) max_moist_lvl = models.IntegerField( choices= LEVEL_CHOICES, default= VERY_HIGH ) def __str__(self): lvl_choice_arr = ['Very Low', 'Low', 'Medium', 'High', 'Very High'] return self.plant_name +', Min: '+ lvl_choice_arr[self.min_moist_lvl]+', Max: '+ lvl_choice_arr[self.max_moist_lvl] class PlantPh(models.Model): plant_name = models.CharField(max_length=100, default='') min_ph = models.DecimalField(max_digits=10, decimal_places=2, default=0,validators=[MaxValueValidator(14), MinValueValidator(0)]) max_ph = models.DecimalField(max_digits=10, decimal_places=2, default=14,validators=[MaxValueValidator(14), MinValueValidator(0)]) def __str__(self): return self.plant_name +', Min: '+ str(self.min_ph)+', Max: '+ str(self.max_ph) class PlantLifeCycle(models.Model): ANNUAL = 0 BIENNIAL = 1 PERENNIAL = 2 CYCLE_CHOICES = ( (ANNUAL, 'Annual - life shorter than a year'), (BIENNIAL, 'Biennial - life around a year to two years'), (PERENNIAL, 'Perennial - life about more than many years') ) plant_name = models.CharField(max_length=100, default='') life_cycle = models.IntegerField( choices= CYCLE_CHOICES, default= ANNUAL ) def __str__(self): choice_arr = ['Annual', 'Biennial', 'Perennial'] return self.plant_name +', '+ choice_arr[self.life_cycle]+' Plant' class Plant(models.Model): moist_data = models.ForeignKey(PlantMoistLvl, on_delete=models.CASCADE, default=0) ph_data = models.ForeignKey(PlantPh, on_delete=models.CASCADE, default=0) lifecycle_data = models.ForeignKey(PlantLifeCycle, on_delete=models.CASCADE, default=0) plant_name = models.CharField(max_length=100, default='') def __str__(self): return self.plant_name class NpkPerPh(models.Model): LOW = 1 MID = 2 HIGH = 3 LEVEL_CHOICES = ( (LOW, 'Low'), (MID, 'Medium'), (HIGH, 'High'), ) min_ph = models.DecimalField(max_digits=10, decimal_places=2,validators=[MaxValueValidator(14), MinValueValidator(0)], default=0) max_ph = models.DecimalField(max_digits=10, decimal_places=2,validators=[MaxValueValidator(14), MinValueValidator(0)], default=0) n_lvl = models.IntegerField( choices= LEVEL_CHOICES ) p_lvl = models.IntegerField( choices= LEVEL_CHOICES ) k_lvl = models.IntegerField( choices= LEVEL_CHOICES ) def __str__(self): return str(self.min_ph) +' - '+str(self.max_ph) class SoilType(models.Model): VERY_LOW = 0 LOW = 1 MID = 2 HIGH = 3 VERY_HIGH = 4 LEVEL_CHOICES = ( (VERY_LOW, 'Very Low'), (LOW, 'Low'), (MID, 'Medium'), (HIGH, 'High'), (VERY_HIGH, 'Very High'), ) name = models.CharField(max_length=100) good_for_min_moist_lvl = models.IntegerField( choices= LEVEL_CHOICES ) good_for_max_moist_lvl = models.IntegerField( choices= LEVEL_CHOICES ) def __str__(self): return self.name class SoilProfile(models.Model): owner = models.ForeignKey(auth.models.User, on_delete=models.CASCADE) name = models.CharField(max_length=100) location =models.CharField(max_length=256) def __str__(self): user = auth.models.User.objects.get(pk=self.owner.pk) return user.username + " - " + self.name class SensorRecord(models.Model): soil_id = models.ForeignKey(SoilProfile, on_delete=models.CASCADE) moist = models.DecimalField(max_digits=10, decimal_places=2, default=0) ph = models.DecimalField(max_digits=10, decimal_places=2, default=7) record_date = models.DateTimeField(default=datetime.now, null=True) record_frequency_min = models.DecimalField(max_digits=10, decimal_places=2, validators=[MaxValueValidator(10080), MinValueValidator(0.1)], default=0.1) def __str__(self): soil = SoilProfile.objects.get(pk=self.soil_id.pk) return soil.name + " - " + str(self.record_date) class Recommendation(models.Model): LOW = 1 MID = 2 HIGH = 3 LEVEL_CHOICES = ( (LOW, 'Low'), (MID, 'Medium'), (HIGH, 'High'), ) soil_id = models.ForeignKey(SoilProfile, on_delete=models.CASCADE) recco_time = models.DateTimeField(default=datetime.now, blank=True) recco_n_lvl = models.IntegerField( choices= LEVEL_CHOICES ) recco_p_lvl = models.IntegerField( choices= LEVEL_CHOICES ) recco_k_lvl = models.IntegerField( choices= LEVEL_CHOICES ) def __str__(self): soil = SoilProfile.objects.get(pk=self.soil_id.pk) return soil.name class RecommendedPlant(models.Model): recco_id = models.ForeignKey(Recommendation, on_delete=models.CASCADE) plant_name = models.CharField(max_length=100, default='') soil_type_name = models.CharField(max_length=100, default='') def __str__(self): return self.plant_name + ", " + self.soil_type_name
2.0625
2
recipe/run_test.py
jschueller/suitesparse-feedstock
1
12778753
import os import re import sys from subprocess import check_output def check_install_name(name): """Verify that the install_name is correct on mac""" libname = "lib" + name + ".dylib" path = os.path.join(sys.prefix, "lib", libname) otool = check_output(["otool", "-L", path]).decode("utf8") self_line = otool.splitlines()[1] install_name = self_line.strip().split()[0] pat = "@rpath/lib{}\.\d+\.dylib".format(name) assert re.match(pat, install_name), "{} != {}".format(install_name, pat) if sys.platform == "darwin": for lib in ( "amd", "btf", "camd", "ccolamd", "cholmod", "colamd", "cxsparse", "klu", "ldl", "rbio", "spqr", "suitesparseconfig", "umfpack", ): check_install_name(lib)
2.375
2
neuralnetwork.py
entrepreneur07/seassignment
0
12778754
from keras.models import Sequential from keras.layers import Dense, Activation from keras.optimizers import SGD def createModel(totalPlayers): cp =[] for i in range(totalPlayers): model = Sequential() model.add(Dense(input_dim=3,units=7)) model.add(Activation("sigmoid")) model.add(Dense(units=1)) model.add(Activation("sigmoid")) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mse',optimizer=sgd, metrics=['accuracy']) cp.append(model) return cp
2.65625
3
backend/histocat/api/analysis/controller.py
BodenmillerGroup/histocat-web
4
12778755
<reponame>BodenmillerGroup/histocat-web<gh_stars>1-10 import logging import os from typing import Sequence import cv2 import numpy as np import scanpy as sc from fastapi import APIRouter, Depends, HTTPException from fastapi.responses import ORJSONResponse from imctools.io.ometiff.ometiffparser import OmeTiffParser from skimage.measure import regionprops from sklearn.ensemble import RandomForestClassifier from sqlalchemy.orm import Session from starlette import status from starlette.requests import Request from histocat.api.db import get_db from histocat.api.security import get_active_member from histocat.core.acquisition import service as acquisition_service from histocat.core.analysis.dto import ( ClassifyCellsDto, ClassifyCellsSubmissionDto, RegionChannelStatsDto, RegionStatsSubmissionDto, ) from histocat.core.constants import ANNDATA_FILE_EXTENSION from histocat.core.dataset import service as dataset_service from histocat.core.member.models import MemberModel from histocat.core.result import service as result_service logger = logging.getLogger(__name__) router = APIRouter() @router.post("/groups/{group_id}/analysis/region", response_model=Sequence[RegionChannelStatsDto]) async def calculate_region_stats( params: RegionStatsSubmissionDto, request: Request, member: MemberModel = Depends(get_active_member), db: Session = Depends(get_db), ): """ Calculate region's statistics """ acquisition = acquisition_service.get_by_id(db, params.acquisition_id) parser = OmeTiffParser(acquisition.location) acq = parser.get_acquisition_data() mask = None contour = np.array(params.region_polygon).astype(int) content = [] for metal in acq.channel_names: channel_img = acq.get_image_by_name(metal) if mask is None: mask = np.zeros(channel_img.shape, np.uint8) mask = cv2.drawContours(mask, [contour], 0, 255, -1) props = regionprops(mask, intensity_image=channel_img, cache=True, coordinates=None) props = props[0] content.append( { "metal": metal, "min": float("{0:.3f}".format(props.min_intensity)), "max": float("{0:.3f}".format(props.max_intensity)), "mean": float("{0:.3f}".format(props.mean_intensity)), } ) return ORJSONResponse(content) @router.post("/groups/{group_id}/analysis/classify", response_model=ClassifyCellsDto) async def classify_cells( group_id: int, params: ClassifyCellsSubmissionDto, member: MemberModel = Depends(get_active_member), db: Session = Depends(get_db), ): """Classify cells.""" if params.result_id: result = result_service.get(db, id=params.result_id) location = os.path.join(result.location, f"output{ANNDATA_FILE_EXTENSION}") adata = sc.read_h5ad(location) else: dataset = dataset_service.get(db, id=params.dataset_id) adata = sc.read_h5ad(dataset.cell_file_location()) cell_ids = [] cell_classes = [] for annotation in params.annotations: ann_cell_ids = annotation["cellIds"] cell_ids.extend(ann_cell_ids) ann_cell_classes = [annotation["cellClass"]] * len(ann_cell_ids) cell_classes.extend(ann_cell_classes) # Convert cell ids to strings cell_ids = list(map(str, cell_ids)) # Map cell ids to cell classes cells = dict(zip(cell_ids, cell_classes)) df = adata.to_df() df_train = df[df.index.isin(cell_ids)].copy() if df_train.empty: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail="Train dataset is empty", ) df_test = df[~df.index.isin(cell_ids)].copy() if df_test.empty: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail="Test dataset is empty", ) df_train["cellClass"] = df_train.index df_train["cellClass"].replace(cells, inplace=True) # Create a Gaussian Classifier clf = RandomForestClassifier(n_estimators=params.n_estimators) # Train the model using the training sets y_pred=clf.predict(X_test) clf.fit(df_train[params.channels], df_train["cellClass"]) y_pred = clf.predict(df_test[params.channels]) y_pred_proba = clf.predict_proba(df_test[params.channels]) df_test["cellClass"] = y_pred # Assign max class probability to a column df_test["Prob"] = [max(prob) for prob in y_pred_proba] df_test["Threshold"] = [params.thresholds[pred] for pred in y_pred] # Filter cells by probability thresholds df_test = df_test[df_test["Prob"] >= df_test["Threshold"]] # Combine train and test dataframes together result_df = df_test.append(df_train) annotations = [] for cell_class in result_df["cellClass"].unique(): cellIds = result_df[result_df["cellClass"] == cell_class].index.to_list() annotation = {"cellClass": cell_class, "visible": True, "cellIds": cellIds} annotations.append(annotation) content = { "cellClasses": params.cell_classes, "annotations": annotations, } return ORJSONResponse(content)
2.171875
2
fabfile.py
stianjensen/wikipendium.no
19
12778756
<filename>fabfile.py import time import getpass from fabric.api import * from fabric.contrib.console import confirm import subprocess class Site(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) def run(self, cmd): with cd(self.dir): sudo(cmd, user=self.user_id) def backup(self): self.run('venv/bin/python manage.py backup-to-s3') def deploy(self): self.git_pull() self.update_packages() self.run('venv/bin/python manage.py migrate') self.run('venv/bin/python manage.py collectstatic --noinput') self.restart() def git_pull(self): # .pyc files can create ghost behavior when .py files are deleted... self.run("find . -name '*.pyc' -delete") self.run("git fetch origin && git reset --hard origin/master") def git_tag(self): self.run("git tag | sort -g | tail -n 1 | sed s/$/+1/ | bc | xargs git tag") self.run("git push --tags && git push") def rebuild_index(self): self.run("venv/bin/python manage.py rebuild_index") def update_packages(self): self.run("./venv/bin/pip install -r requirements.txt") def restart(self): #header("Running: Restart server script: %s" % self.gunicorn) #run("sudo /etc/init.d/%s restart" % self.gunicorn) self.run("touch reload") PROD = Site( dir='/home/wikipendium-web/wikipendium.no/', user_id='wikipendium-web' ) env.hosts = ['wikipendium.no'] @task def clone_prod_data(): """ Download production data (database and uploaded files) and insert locally """ env.user = prompt("Username on prod server:", default=getpass.getuser()) dump_file = str(time.time()) + ".json" # Ignore errors on these next steps, so that we are sure we clean up no matter what with settings(warn_only=True): # Dump the database to a file... PROD.run('source venv/bin/activate ' + '&& nice python manage.py dumpdb > ' + dump_file) # clean password hashes PROD.run('sed -i \'s/"password": "[^"]*"/"password": ""/\' ' + dump_file) # Then download that file get(PROD.dir + dump_file, dump_file) # Replace this db with the contents of the dump local('python manage.py restoredb < ' + dump_file) # ... then cleanup the dump files PROD.run('rm ' + dump_file) local('rm ' + dump_file) @task def deploy(): """ """ # mac-only command, just for fun try: subprocess.call(['say', '"Ship! Ship! Ship!"']) except: pass print "ship! ship! ship!" env.user = prompt("Username on prod server:", default=getpass.getuser()) should_tag = tag() PROD.backup() PROD.deploy() if should_tag: PROD.git_tag() def header(text): print ("#" * 45) + "\n# %s\n" % text + ("#" * 45) @task def restart(): PROD.restart() @task def rebuild_index(): PROD.rebuild_index() @task def backup(): """ Dump a full backup to S3. """ env.user = prompt("Username on prod server:", default=getpass.getuser()) PROD.backup() def tag(): if not confirm("Give new tag for this deployment?"): if confirm("Are you sure?", default=False): return False else: tag() else: return True
2.234375
2
remote_image/example_forms.py
LucasCTN/django-remote-image
1
12778757
from django import forms from django.forms import ModelForm from .fields import RemoteImageField class ExampleForm(forms.Form): remote_image = RemoteImageField(required=True) class ExampleWhitelistedPNGForm(forms.Form): remote_image = RemoteImageField(required=True, ext_whitelist=['png']) class ExampleBlacklistedPNGForm(forms.Form): remote_image = RemoteImageField(required=True, ext_blacklist=['png'])
2.234375
2
test_db.py
timothyhalim/Render-Manager
0
12778758
import os from db import Controller db_path = os.path.join( __file__, "..", "RenderManager.db" ) Controller.init(db_path) # Create Job job = Controller.create_job( r"J:\UCG\Episodes\Scenes\EP100\SH002.00A\UCG_EP100_SH002.00A_CMP.nk", "WRITE_IMG", r"J:\UCG\UCG_Nuke10.bat", "renderNuke.py", frames=[i for i in range(100)] ) # Query Job JobList = Controller.Job.select() for job in JobList: print("Job", job.code) print("Status", job.status().name) print("Left", len([frame.number for frame in job.frame_left()])) print("Avg", job.avg_time()) print("Eta", job.eta()) print("Clients", job.clients()) print() # for frame in job.frames(): # print("Frame", frame.number)
2.328125
2
bus/solution.py
thegilm/bcn-feb-2019-prework
0
12778759
<gh_stars>0 numberOfStops = 0 stops = [(10,0), (2,4), (5,2)] for stop in stops: numberOfStops += 1 print("There are "+str(numberOfStops)+" stops") pagsPerStop = [] currentPassengers = 0 for stop in stops: currentPassengers = currentPassengers + stop[0] - stop[1] pagsPerStop.append(currentPassengers) #print("Passenger count per stop "+pagsPerStop) print(pagsPerStop) currentMax = 0 for stop in pagsPerStop: if stop > currentMax: currentMax = stop print("Max occupation was "+str(currentMax)) average = 0 for stop in pagsPerStop: average += stop print("Average accupation is "+str(average/len(pagsPerStop)))
3.421875
3
create_index_export_js.py
lyf-coder/nodejs-tool
0
12778760
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 根据传入的文件夹地址遍历下面的js文件,生成统一导出的index.js,需要注意的是重名的模块 # 获取目录下文件 import os file_name_list = [] file_rel_path_dict = {} def handle_dir(path): if os.path.isdir(path): dir_files = os.listdir(path) for dir_file in dir_files: handle_dir(os.path.join(path, dir_file)) else: # 获取对应的相对路径 记录到列表中 file_name = os.path.basename(path).rstrip('.js') file_rel_path_dict[file_name] = os.path.relpath(path, os.getcwd()) # 获取基本文件名 记录到列表中 file_name_list.append(file_name) write_lines = [] def create_index_js_file(): # 引入 for file_name in file_name_list: write_lines.append('const {} = require(\'./{}\');\n'.format(file_name,file_rel_path_dict[file_name])) write_lines.append('\n') write_lines.append('module.exports = {\n') # 导出 write_lines.append(','.join(file_name_list)) write_lines.append('\n}') fo = open(os.path.join(os.getcwd(), "index_new.js"), "w") fo.writelines(write_lines) # 关闭文件 fo.close() dir_path = input('please input dir path: ') # dir_path = './lib' dir_path = os.path.abspath(dir_path) if os.path.isdir(dir_path): handle_dir(dir_path) create_index_js_file() else: print('please input dir!')
2.828125
3
shawty/shawtier/admin.py
SimeonAleksov/shawty
0
12778761
from django.contrib import admin from .models import URL admin.site.register(URL)
1.304688
1
pyradur/__init__.py
JPEWdev/pyradur
0
12778762
<reponame>JPEWdev/pyradur<gh_stars>0 # MIT License # # Copyright (c) 2018-2019 Garmin International or its subsidiaries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .client import Client import logging import os import weakref logger = logging.getLogger('pyradur') class Dict(object): _shared_clients = [] @classmethod def _cleanup_client(cls, ref): cls._shared_clients.remove(ref) def __init__(self, sock_path, var, *, use_cache=True, share_connection=True): if share_connection: for client_ref in self._shared_clients: client = client_ref() try: if client is not None and os.path.samefile(sock_path, client.sock_path): logger.debug('Sharing existing client %s', id(client)) break except FileNotFoundError: pass else: client = Client(sock_path, use_cache) self._shared_clients.append(weakref.ref(client, self._cleanup_client)) logger.debug('New shared client %s', id(client)) else: client = Client(sock_path, use_cache) logger.debug('New non-shared client %s', id(client)) self.client = client self.var = var self.client.validate_var(var) def close(self): self.client = None def invalidate(self, key): return self.client.invalidate(self.var, key) def invalidate_all(self): return self.client.invalidate_all() def is_cached(self, key): return self.client.is_cached(self.var, key) def __getitem__(self, key): return self.client.get(self.var, key) def __setitem__(self, key, value): self.client.set(self.var, key, value) def __delitem__(self, key): self.client.delete(self.var, key) def __contains__(self, key): return self.client.contains(self.var, key) def get(self, key, default=None): return self.client.getdefault(self.var, key, default) def set(self, key, value): return self.client.set(self.var, key, value) def setdefault(self, key, default=None): return self.client.setdefault(self.var, key, default) def sync(self): self.client.sync()
1.851563
2
store/models.py
mahinm20/techcastle
1
12778763
from django.db import models from django.contrib.auth.models import User class Customer(models.Model): user = models.OneToOneField(User,null=True,blank=True,on_delete=models.CASCADE) name= models.CharField(max_length=200,null=True) email = models.CharField(max_length=200) def __str__(self): return self.name class Mobile(models.Model): name = models.CharField(max_length=200) price = models.FloatField() digital = models.BooleanField(default=False,null=True,blank=True) image = models.ImageField(null=True, blank=True) def __str__(self): return self.name @property def imageURL(self): try: url = self.image.url except: url = '' return url # class Laptop(models.Model): # name = models.CharField(max_length=200) # price = models.FloatField() # digital = models.BooleanField(default=False,null=True,blank=True) # image = models.ImageField(null=True, blank=True) # def __str__(self): # return self.name # @property # def imageURL(self): # try: # url = self.image.url # except: # url = '' # return url # class Accessories(models.Model): # name = models.CharField(max_length=200) # price = models.FloatField() # digital = models.BooleanField(default=False,null=True,blank=True) # image = models.ImageField(null=True, blank=True) # def __str__(self): # return self.name # @property # def imageURL(self): # try: # url = self.image.url # except: # url = '' # return url class Order(models.Model): customer = models.ForeignKey(Customer,on_delete=models.CASCADE,blank=True,null=True) date_ordered = models.DateTimeField(auto_now_add=True) completed = models.BooleanField(default=False,null=True,blank=False) transaction_id = models.CharField(max_length=200) def __str__(self): return str(self.id) @property def get_cart_total(self): orderitems = OrderItem.objects.all() # total = sum([item.get_laptop_total for item in orderitems]) + sum([item.get_acc_total for item in orderitems]) total = sum([item.get_mobile_total for item in orderitems]) return total @property def get_cart_item(self): orderitems = OrderItem.objects.all() total = sum([i.quantity for i in orderitems]) return total @property def shipping(self): shipping = False orderitems = self.orderitem_set.all() for i in orderitems: if i.product_m.digital == False: shipping = True return shipping class OrderItem(models.Model): product_m = models.ForeignKey(Mobile,on_delete=models.SET_NULL,null=True) # product_l = models.ForeignKey(Laptop,on_delete=models.SET_NULL,null=True) # product_a = models.ForeignKey(Accessories,on_delete=models.SET_NULL,null=True) order = models.ForeignKey(Order,on_delete=models.SET_NULL,null=True,blank=True) quantity = models.IntegerField(default=0,null=True,blank=True) date_added = models.DateTimeField(auto_now_add=True) # def __str__(self): # if (self.product_l__name is not None): # return str(self.product_l__name) # elif (self.product_a__name is not None): # return str(self.product_a__name) # elif (self.product_m__name is not None): # return str(self.product_m__name) # @property # def get_laptop_total(self): # if self.product_l: # total_l = self.product_l.price * self.quantity # return total_l # else: # return 0 # @property # def get_acc_total(self): # if self.product_a: # total_a = self.product_a.price * self.quantity # return total_a # else: # return 0 @property def get_mobile_total(self): if self.product_m: total_m = self.product_m.price * self.quantity return total_m else: return 0 class ShippingAddress(models.Model): customer = models.ForeignKey(Customer,on_delete=models.SET_NULL,null=True) order = models.ForeignKey(Order,on_delete=models.SET_NULL,null=True) address = models.CharField(max_length=200,null=False) city = models.CharField(max_length=200,null=False) zipcode = models.CharField(max_length=200,null=False) state = models.CharField(max_length=200,null=False) date_added = models.DateTimeField(auto_now_add=True) def __str__(self): return self.address
2.34375
2
MakeAutoContainTrials/TopoModels/model.py
kasmith/cbmm-project-christmas
0
12778764
<gh_stars>0 from constants import * from config import * from parse_walls import trial_segmentation from scene_graph import SceneGraph from physicsTable import * from physicsTable.constants import * import geometry import numpy as np # Helpers for drawing if this is allowed if USE_PG: import pygame as pg from pygame.constants import KEYDOWN def wait_4_kp(draw_fn, hz=20): clk = pg.time.Clock() while True: draw_fn() pg.display.flip() for e in pg.event.get(): if e.type == KEYDOWN: return clk.tick(hz) class TopologyModel(object): # Initializes all of the decompositions and graphs # Note: requires the goal in the container to be red! def __init__(self, trial, use_all_triangulations=True, acd_convexity_by_ball_rad = [1., 2., 4.]): # Load in the trial and break down the walls self._trial = trial self._brad = self._trial.ball[2] self._bpos = self._trial.ball[0] self._goal_ul = None self._goal_lr = None for g in self._trial.goals: if g[2] == REDGOAL: self._goal_ul = g[0] self._goal_lr = g[1] if self._goal_ul is None: raise Exception("No appropriate goal found in the trial") self._acd_convexities = acd_convexity_by_ball_rad self._ohull, self._islands = trial_segmentation(self._trial) # Ear clipping triangulation self._tris, self._wound_hull = geometry.ear_clip_with_holes(self._ohull, self._islands) self._has_all_tris = False if use_all_triangulations: self.make_all_triangulations() else: self._all_tris = [self._tris] self._tri_graphs = [SceneGraph(tri) for tri in self._all_tris] self._tri_geosizes = [self._get_max_geodesic(g) for g in self._tri_graphs] self._tri_goaldists = [self._get_min_goaldist(g) for g in self._tri_graphs] # Approximate convex decomposition self._acd = [geometry.approximate_convex_decomposition([self._ohull] + self._islands, cvx*self._brad) \ for cvx in self._acd_convexities] self._acd_graph = [SceneGraph(acd) for acd in self._acd] self._acd_geosize = [self._get_max_geodesic(g) for g in self._acd_graph] self._acd_goaldist = [self._get_min_goaldist(g) for g in self._acd_graph] def make_all_triangulations(self): self._all_tris = [] if not self._has_all_tris: for i in range(len(self._wound_hull)): newtri = geometry.ear_clip(self._wound_hull[i:] + self._wound_hull[:i]) self._all_tris.append(newtri) self._has_all_tris = True def _get_max_geodesic(self, graph): return graph.maximum_geodesic_distance(self._bpos) def _get_min_goaldist(self, graph): # Find where the goal is in relation to graph parts goal_pts = [self._goal_ul] goal_ur = [self._goal_lr[0], self._goal_ul[1]] goal_ll = [self._goal_ul[0], self._goal_lr[1]] if not all([graph.same_segment(g, goal_ur) for g in goal_pts]): goal_pts.append(goal_ur) if not all([graph.same_segment(g, goal_ll) for g in goal_pts]): goal_pts.append(goal_ll) if not all([graph.same_segment(g, self._goal_lr) for g in goal_pts]): goal_pts.append(self._goal_lr) dists = [graph.point_2_point_distance(g, self._bpos) for g in goal_pts] return min(dists) def get_acd_stats(self): rdict = {} for cvx, gs, gd, dtg in zip(self._acd_convexities, self._acd_graph, self._acd_geosize, self._acd_goaldist): sz = gs.size rdict[cvx] = {'size': sz, 'max_geodesic_dist': gd, 'min_dist_to_goal': dtg} return rdict acd = property(get_acd_stats) def get_tri_stats(self): return {'size': np.mean([g.size for g in self._tri_graphs]), 'max_geodesic_dist': np.mean(self._tri_geosizes), 'min_dist_to_goal': np.mean(self._tri_goaldists)} triangulation = property(get_tri_stats) def _draw_edge_and_point(self, polylist, edge_col, pt_col): assert USE_PG, "PyGame not loaded!" tb = self._trial.makeTable() s = tb.draw() for poly in polylist: pg.draw.polygon(s, edge_col, poly, 2) for pt in poly: pg.draw.circle(s, pt_col, pt, 4) return s def draw_acd(self, acd_idx = 0, edge_col = (0,255,0), pt_col = (255,0,0)): wait_4_kp(lambda: self._draw_edge_and_point(self._acd[acd_idx], edge_col, pt_col)) def draw_triangles(self, tri_idx = 0, edge_col = (0,255,0), pt_col = (255,0,0)): wait_4_kp(lambda: self._draw_edge_and_point(self._all_tris[tri_idx], edge_col, pt_col)) def draw_all_triangles(self, edge_col = (0,255,0), pt_col = (255,0,0)): for i in range(len(self._all_tris)): self.draw_triangles(i, edge_col, pt_col)
2.203125
2
torch_geometric/transforms/spherical.py
cysmnl/geometric_cognition
62
12778765
from math import pi as PI import torch class Spherical(object): r"""Saves the globally normalized three-dimensional spatial relation of linked nodes as spherical coordinates (mapped to the fixed interval :math:`[0, 1]`) in its edge attributes. Args: cat (bool, optional): Concat pseudo-coordinates to edge attributes instead of replacing them. (default: :obj:`True`) .. testsetup:: import torch from torch_geometric.data import Data .. testcode:: from torch_geometric.transforms import Spherical pos = torch.tensor([[0, 0, 0], [0, 1, 1]], dtype=torch.float) edge_index = torch.tensor([[0, 1], [1, 0]]) data = Data(edge_index=edge_index, pos=pos) data = Spherical()(data) print(data.edge_attr) .. testoutput:: tensor([[1.0000, 0.2500, 0.0000], [1.0000, 0.7500, 1.0000]]) """ def __init__(self, cat=True): self.cat = cat def __call__(self, data): (row, col), pos, pseudo = data.edge_index, data.pos, data.edge_attr assert pos.dim() == 2 and pos.size(1) == 3 cart = pos[col] - pos[row] rho = torch.norm(cart, p=2, dim=-1) rho = rho / rho.max() theta = torch.atan2(cart[..., 1], cart[..., 0]) / (2 * PI) theta += (theta < 0).type_as(theta) phi = torch.acos(cart[..., 2] / rho) / PI spher = torch.stack([rho, theta, phi], dim=1) if pseudo is not None and self.cat: pseudo = pseudo.view(-1, 1) if pseudo.dim() == 1 else pseudo data.edge_attr = torch.cat([pseudo, spher.type_as(pos)], dim=-1) else: data.edge_attr = spher return data def __repr__(self): return '{}(cat={})'.format(self.__class__.__name__, self.cat)
2.734375
3
Cartwheel/cartwheel-3d/Python/tests/test_ArmaProcess.py
MontyThibault/centre-of-mass-awareness
0
12778766
import unittest from ArmaProcess import ArmaProcess import time class ArmaProcessTestCase(unittest.TestCase): def testGenSamples(self): params = [3.75162180e-04, 1.70361201e+00, -7.30441228e-01, -6.22795336e-01, 3.05330848e-01] fps = 100 ap = ArmaProcess(params[0], params[1:3], params[3:5], fps) print(ap.generate_n(20)) for _ in range(3): time.sleep(0.04) print(ap.generate_frame())
2.53125
3
tests/test_skiprows.py
timcera/tstoolbox
5
12778767
# -*- coding: utf-8 -*- from unittest import TestCase import pandas from pandas.testing import assert_frame_equal from tstoolbox import tstoolbox, tsutils class TestRead(TestCase): def setUp(self): dr = pandas.date_range("2000-01-01", periods=2, freq="D") ts = pandas.Series([4.5, 4.6], index=dr) self.read_direct = pandas.DataFrame(ts, columns=["Value"]) self.read_direct.index.name = "Datetime" self.read_direct = tsutils.memory_optimize(self.read_direct) self.read_cli = b"""Datetime,Value 2000-01-01,4.5 2000-01-02,4.6 """ dr = pandas.date_range("2000-01-01", periods=5, freq="D") ts = pandas.Series([4.5, 4.6, 4.7, 4.8, 4.9], index=dr) self.read_direct_sparse = pandas.DataFrame(ts, columns=["Value"]) self.read_direct_sparse.index.name = "Datetime" self.read_direct_sparse = tsutils.memory_optimize(self.read_direct_sparse) self.read_cli_sparse = b"""Datetime,Value 2000-01-01,4.5 2000-01-02,4.6 2000-01-03,4.7 2000-01-04,4.8 2000-01-05,4.9 """ def test_read_direct(self): """Test read API for single column - daily.""" out = tstoolbox.read("tests/data_simple_extra_rows.csv", skiprows=2) assert_frame_equal(out, self.read_direct) def test_read_direct_sparse(self): """Test read API for single column - daily.""" out = tstoolbox.read("tests/data_simple_extra_rows_sparse.csv", skiprows=[4, 6]) assert_frame_equal(out, self.read_direct_sparse)
2.484375
2
TestBenchGenerator/tbgen.py
anuragnatoo/ELE301P
1
12778768
<reponame>anuragnatoo/ELE301P import os import re import sys def decimalToBinary(x, bits, binary): for i in range(bits-1,-1,-1): k=x>>i if k&1: binary.append("1") else: binary.append("0") vinput=sys.argv[1] vfilename = vinput tbfilename=vfilename[:-2] + "_tb.v" vcdfilename=vfilename[:-2] + ".vcd" print(tbfilename) vfile = open(vfilename, "r") tbfile = open(tbfilename, "w+") tbfile.write("`include \""+vfilename+"\"\n") tbfile.write("module top;\n") variableName = [] variableSize = [] for x in vfile: if re.findall('^\s*input',x): line=x if not x[len(x)-2]==';': while 1: l=vfile.readline() line=line+l if line[len(line)-2]==';': break tbfile.write(line.replace("input", "reg")) #print(re.findall('^\s*input \[(.*)\]',line)) print(line) print(1) invar=[] line=line.replace('\n','') print(line) print(2) line=line.replace(' ','') print(line) print(3) line=line.replace(' ','') print(line) print(4) if re.findall('^\s*input \[(.*)\]',line): yin= re.findall('^\s*input \[(.*)\]',line) zin= re.findall('^\s*input \[.*\] (.*);',line) print(yin) print(zin) inbit = yin[0].split(':') #print(inbit) size = int(inbit[0])-int(inbit[1]) +1 invar = zin[0].split(',') #print("Input variables-",invar) for l in range(len(invar)): variableName.append(invar[l]) variableSize.append(size) if re.findall('^\s*input ([^\[])',line): pin= re.findall('^\s*input (.*);*',line) print(pin) print(1) pin=pin[0].replace(';','') pin=pin.replace(' ','') pin=pin.split(",") print(pin) print(2) invar=pin print(invar) for i in range(len(pin)): variableName.append(pin[i]) variableSize.append(1) if re.findall('^\s*output',x): line=x print(line) if not x[len(x)-2]==';': while 1: l=vfile.readline() line=line+l if line[len(line)-2]==';': break tbfile.write(line.replace("output","wire")) if re.findall('^\s*module',x): line=x if not x[len(x)-2]==';': while 1: l=vfile.readline() line=line+l if line[len(line)-2]==';': break line=line.replace('\n','') modname = line.replace("module ", "") monitorvar = line.replace("module ","") #----------> if re.findall('^.*\((.*)\);',monitorvar): montestvar = re.findall('^.*\((.*)\);',monitorvar) m=montestvar[0].split(',') modname=modname.replace("(", " m0(") tbfile.write(modname.replace(' ','')) tbfile.write("\ninitial begin\n") totalSize=0 for i in range(len(variableSize)): totalSize=totalSize+variableSize[i] # print(totalSize) maxi = input("Enter maximum number of test cases") if pow(2,totalSize) < int(maxi): maxr= pow(2,totalSize) else: maxr= int(maxi) for i in range(maxr): index=0 if i==0: tbfile.write("\t") else: tbfile.write("\t#5 ") binaryArray=[] binaryArray.clear() decimalToBinary(i, totalSize, binaryArray) #print(binaryArray) for j in range(len(variableName)): check=variableSize[j] tbfile.write(variableName[j]+"="+str(variableSize[j])+"'b") while check>0: tbfile.write(binaryArray[index]) index=index+1 check=check-1 tbfile.write(" ; ") tbfile.write("\n") tbfile.write("end\n") tbfile.write("\ninitial begin\n") tbfile.write("$monitor ($time, \": ") for i in range(len(m)): tbfile.write(m[i]+"=%b ") tbfile.write("\"") for i in range(len(m)): tbfile.write(","+m[i]) tbfile.write(");\n") tbfile.write("$dumpfile(\""+vcdfilename+"\");\n$dumpvars;\n") tbfile.write("end\n") tbfile.write("\nendmodule") vfile.close() tbfile.close()
2.609375
3
src/user.py
osuuster/Ward
0
12778769
class User: """User info""" def __init__(self, email, first, last, device): self.email = email self.first = first.lower() self.last = last.lower() self.device = device.lower() def fullname(self): return ('{} {}'.format(self.first, self.last).title())
3.40625
3
app.py
janZub-AI/flask-video-streaming
0
12778770
<gh_stars>0 #!/usr/bin/env python from importlib import import_module import os from flask import Flask, render_template, Response import imagiz import cv2 from EmotionDetection.face_detection import FaceClass app = Flask(__name__) server=imagiz.TCP_Server(8095) server.start() face_class = FaceClass() @app.route('/') def index(): """Video streaming home page.""" return render_template('index.html') def gen(): # import camera driver # Raspberry Pi camera module (requires picamera package) # from camera_pi import Camera if os.environ.get('CAMERA'): Camera = import_module('camera_' + os.environ['CAMERA']).Camera else: from camera import Camera camera = Camera() """Video streaming generator function.""" while True: frame = camera.get_frame() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') def gen_streamed(): while True: try: message=server.receive() if not message.image is None: frame = cv2.imdecode(message.image,cv2.IMREAD_UNCHANGED) with_faces = face_class.find_faces(frame) img_str = cv2.imencode('.jpg', with_faces)[1].tostring() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + img_str + b'\r\n') except: pass @app.route('/video_feed') def video_feed(): """Video streaming route. Put this in the src attribute of an img tag.""" return Response(gen_streamed(), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': app.run(host='0.0.0.0', threaded=True)
2.640625
3
openbb_terminal/dashboards/widget_helpers.py
tehcoderer/GamestonkTerminal
255
12778771
"""Widgets Helper Library. A library of `ipywidgets` wrappers for notebook based reports and voila dashboards. The library includes both python code and html/css/js elements that can be found in the `./widgets` folder. """ import os from jinja2 import Template def stylesheet(): """Load a default CSS stylesheet from file.""" with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "style.css") ) as f: style = f.read() return style def price_card(ticker: str, price: str, price_color: str = "neutral_color") -> str: """Prepare a styled HTML element of a 128 by 128 price card. Parameters ---------- ticker : str Instrument ticker for the price card price : str Instrument price as a string price_color : str, optional The color of the price. Accepts "up_color", "down_color" and default "neutral_color" Returns ------- str HTML code as string """ with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "card.j2") ) as f: template = Template(f.read()) card = template.render(ticker=ticker, price=price, price_color=price_color) return card
2.875
3
Schedule/Stats.py
mprego/NBA
0
12778772
import pandas as pd import numpy as np class Stats(object): ''' Produces stats given a schedule ''' def __init__(self, games, agg_method, date_col, h_col, a_col, outcome_col, seg_vars = []): self.games = games self.agg_method = agg_method self.date_col = date_col self.h_col = h_col self.a_col = a_col self.outcome_col = outcome_col self.seg_vars = seg_vars # Inputs: number of past games, team id, date of current game # Output: list of most recent n games def get_last_n_games(self, n, team_id, curr_dt): #Filter to get past games games = self.games[self.games[self.date_col]<curr_dt] #Filters to get past home and away games a_games = games[games[self.a_col]==team_id] h_games = games[games[self.h_col] == team_id] all_games = a_games.append(h_games) all_games['temp_days'] = [(pd.to_datetime(curr_dt) - pd.to_datetime(x)).days for x in all_games[self.date_col]] all_games = all_games[all_games['temp_days']<=30] all_games = all_games.drop('temp_days', axis=1) all_games = all_games.sort_values(by=self.date_col, ascending=False) n_games = all_games.head(n) return n_games def get_avg(self, games, col, team_id, opp): h_games = games[games[self.h_col] == team_id] a_games = games[games[self.a_col] == team_id] if opp == 0: a_col = 'A_' + col h_col = 'H_' + col else: a_col = 'H_' + col h_col = 'A_' + col h_sum = np.sum(h_games[h_col]) a_sum = np.sum(a_games[a_col]) if len(games) == 0: return -1 avg = (h_sum + a_sum)*1.0 / (len(games)) return avg def back_to_back(self, games, curr_dt): if len(games)==0: return 0 latest_game = games.sort_values(by=self.date_col, ascending=False).head(1).reset_index(drop=True) latest_date = latest_game.ix[0,self.date_col] if (pd.to_datetime(curr_dt) - pd.to_datetime(latest_date)).days == 1: return 1 return 0 def get_lastn_stats(self, n): stats = pd.DataFrame() for index, game in self.games.iterrows(): stats.set_value(index, self.outcome_col, game[self.outcome_col]) a_team = game[self.a_col] a_games = self.get_last_n_games(n, a_team, game[self.date_col]) h_team = game[self.h_col] h_games = self.get_last_n_games(n, h_team, game[self.date_col]) poss_cols = self.games.columns.values poss_cols = self.search_for_cols('H_', poss_cols) for col in poss_cols: base_col = col[2:] stats.set_value(index, ('H_' + base_col + '_' + str(n)), self.get_avg(h_games, base_col, h_team, 0)) stats.set_value(index, ('H_O_' + base_col + '_' + str(n)), self.get_avg(h_games, base_col, h_team, 1)) stats.set_value(index, ('A_' + base_col + '_' + str(n)), self.get_avg(a_games, base_col, a_team, 0)) stats.set_value(index, ('A_O_' + base_col + '_' + str(n)), self.get_avg(a_games, base_col, a_team, 1)) stats.set_value(index, 'H_BTB', self.back_to_back(h_games, game[self.date_col])) stats.set_value(index, 'A_BTB', self.back_to_back(a_games, game[self.date_col])) stats.set_value(index, 'H_'+str(n)+'_games', len(h_games)) stats.set_value(index, 'A_'+str(n)+'_games', len(a_games)) for col in self.seg_vars: stats.set_value(index, col, game[col]) return stats def search_for_cols(self, pfx, cols): new_cols = [] pfx_len = len(pfx) for col in cols: if col[0:pfx_len] == pfx: #if col != self.outcome_col: if col != self.h_col: if col != self.a_col: new_cols.append(col) return new_cols def get_correl(self, stats): cor = pd.DataFrame() for col in stats.columns.values: if col != self.outcome_col: cor.set_value(col, 'Correlation', np.corrcoef(x=stats[col], y=stats[self.outcome_col])[0,1]) return cor
3.171875
3
dataset_builder.py
philippspohn/TTS-dataset-tools
0
12778773
import math from pydub import AudioSegment, silence from pydub.utils import mediainfo from dearpygui.core import * import os import csv import re import shutil from google.cloud import storage from google.cloud import speech_v1p1beta1 as speech import config_helper import time import silence_cut def to_millis(timestamp): timestamp = str(timestamp) hours, minutes, seconds = (["0", "0"] + timestamp.split(":"))[-3:] hours = int(hours) minutes = int(minutes) seconds = float(seconds) miliseconds = int(3600000 * hours + 60000 * minutes + 1000 * seconds) return miliseconds class Dataset_builder: def __init__(self): self.project_dir = None self.speaker_text_path = None self.wav_file_path = None self.index_start = None self.cut_length = None self.split_method = None self.contains_punc = None self.google_cloud_credentials_path = None self.transcription = None def set_values(self, dataset_dir, speaker_text_path, wav_file_path, index_start, cut_length, split_method, contains_punc, google_cloud_credentials_path, transcription=True): self.project_dir = dataset_dir self.speaker_text_path = speaker_text_path self.wav_file_path = wav_file_path self.index_start = index_start if cut_length: self.cut_length = float(cut_length) self.split_method = split_method self.contains_punc = contains_punc self.google_cloud_credentials_path = google_cloud_credentials_path self.transcription = transcription def build_dataset(self): print("running") output_wavs_path = os.path.join(self.project_dir, "wavs") if not os.path.exists(self.project_dir): os.makedirs(self.project_dir) if not os.path.exists(output_wavs_path): os.mkdir(output_wavs_path) if self.split_method == 0: set_value("label_build_status", "Detecting silences. This may take several minutes...") audio_name = self.wav_file_path w = AudioSegment.from_wav(audio_name) # s_len = 1000 # # silence_cuts = silence.split_on_silence(w, min_silence_len=s_len, silence_thresh=-45, keep_silence=True) # # cuts = [] # final_cuts = [] # # def split_wav(wav, l): # if (wav.duration_seconds * 1000) < (self.cut_length * 1000): # output = [] # output.append(wav) # return output # # too_long = False # while True: # l -= 50 # if l == 0: # print("Error, could not find small enough silence period for split, giving up") # output = [] # output.append(wav) # return output # # start = time.time_ns() # splits = silence.split_on_silence(wav, min_silence_len=l, silence_thresh=-45, keep_silence=True) # print("Splitting:", round((time.time_ns() - start) / 1000)) # # start = time.time_ns() # silence.detect_silence(wav, min_silence_len=l, silence_thresh=-45) # print("Detecting:", round((time.time_ns() - start) / 1000)) # # print(f"Trying resplit... (l={l})") # for s in splits: # if (s.duration_seconds * 1000) > (self.cut_length * 1000): # too_long = True # if too_long == True: # too_long = False # else: # return splits # # # Keep splitting until all cuts are under max len # # for i, c in enumerate(silence_cuts): # print(f"Checking phrase {i}/{len(silence_cuts)}...") # c_splits = split_wav(c, 1000) # for s in c_splits: # cuts.append(s) # # rebuild small cuts into larger, but below split len # temp_cuts = AudioSegment.empty() # # for i, c in enumerate(cuts): # prev_cuts = temp_cuts # temp_cuts = temp_cuts + c # # if i == (len(cuts) - 1): # #on final entry # if (temp_cuts.duration_seconds * 1000) > (self.cut_length * 1000): # final_cuts.append(prev_cuts) # final_cuts.append(c) # else: # final_cuts.append(temp_cuts) # else: # if ((temp_cuts.duration_seconds * 1000) + (cuts[i+1].duration_seconds * 1000)) > (self.cut_length * 1000): # # combine failed, too long, add what has already been concatenated # final_cuts.append(temp_cuts) # temp_cuts = AudioSegment.empty() segment_size = 25 min_len = int(get_value("input_min_seg_length")) / segment_size max_len = int(get_value("input_max_seg_length")) / segment_size final_cuts = silence_cut.speed_slice(w, segment_size=25, min_segments_in_slice=int(min_len), max_segments_in_slice=int(max_len), padding_start=int(get_value("input_padding_start")), padding_end=int(get_value("input_padding_end"))) for i, w in enumerate(final_cuts): output_wav_file = os.path.join(output_wavs_path, str(i + 1) + ".wav") w.export(output_wav_file, format="wav") # Process each cut into google API and add result to csv output_csv_file = os.path.join(self.project_dir, "output.csv") print("writing to: " + output_csv_file) with open(output_csv_file, 'w') as f: bucket_name = get_value("input_storage_bucket") newline = '' for i, c in enumerate(final_cuts): x = i + 1 if not self.transcription: f.write("{}wavs/{}.wav|".format(newline, x)) newline = '\n' continue print(f"Transcribing entry {x}/{len(final_cuts)}") self.upload_blob(bucket_name, os.path.join(output_wavs_path, str(x) + ".wav"), "temp_audio.wav", google_cloud_credentials_path=self.google_cloud_credentials_path) gcs_uri = "gs://{}/temp_audio.wav".format(bucket_name) client = speech.SpeechClient.from_service_account_json(filename=self.google_cloud_credentials_path) audio = speech.RecognitionAudio(uri=gcs_uri) info = mediainfo(os.path.join(output_wavs_path, str(x) + ".wav")) sample_rate = info['sample_rate'] if get_value("input_use_videomodel") == 1: print("Using enchanced google model...") config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=int(sample_rate), language_code=config_helper.cfg_get("transcription", "language_code"), enable_automatic_punctuation=True, enable_word_time_offsets=False, enable_speaker_diarization=False, # enhanced model for better performance? use_enhanced=True, model="video", # "phone_call or video" ) else: config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=int(sample_rate), language_code=config_helper.cfg_get("transcription", "language_code"), enable_automatic_punctuation=True, enable_word_time_offsets=False, enable_speaker_diarization=False, ) operation = client.long_running_recognize(config=config, audio=audio) response = operation.result(timeout=28800) for result in response.results: text = result.alternatives[0].transcript # replace some symbols and google API word choice text = text.replace("%", " percent") text = text.replace("cuz", "cause") text = text.replace("-", " ") text = text.replace("&", "and") print(text) set_value("label_build_status", text) f.write("{}wavs/{}.wav|{}".format(newline, x, text)) newline = '\n' print('\a') # system beep set_value("label_build_status", "Done!") print("Done running builder!") else: # Aeneas mode if not get_value("label_speaker_text_path") or not get_value("label_wav_file_path"): print("Error, please choose text and/or audio files.") return if not os.path.exists("aeneas_out"): os.mkdir("aeneas_out") else: shutil.rmtree("aeneas_out") os.mkdir("aeneas_out") if not os.path.exists("aeneas_prepped"): os.mkdir("aeneas_prepped") else: shutil.rmtree("aeneas_prepped") os.mkdir("aeneas_prepped") audio_name = self.wav_file_path with open(self.speaker_text_path, 'r', encoding="utf8") as f: text = f.read() text = text.replace(';', '.') text = text.replace(':', '.') text = text.replace('-', ' ') text = text.replace('”', '') text = text.replace('“', '') text = text.replace('"', '.') text = text.replace('—', ' ') text = text.replace('’', '\'') text = text.replace(' –', '.') text = text.strip('\n') if self.contains_punc: # remove any duplicate whitespace between words text = " ".join(text.split()) phrase_splits = re.split(r'(?<=[\.\!\?])\s*', text) # split on white space between sentences phrase_splits = list(filter(None, phrase_splits)) # remove empty splits else: # no punctuation from speech to text, so we must divid text by word count phrase_splits = [] temp_line = [] text_split = text.split() word_count_limit = 16 while len(text_split) > 0: while len(temp_line) < word_count_limit and len(text_split) > 0: temp_line.append(text_split.pop(0)) phrase_splits.append(" ".join(temp_line)) temp_line = [] with open('aeneas_prepped/split_text', 'w') as f: newline = '' for s in phrase_splits: if s: stripped = s.strip() # remove whitespace f.write(newline + stripped) newline = '\n' # os.system('python -m aeneas.tools.execute_task ' + audio_name + ' aeneas_prepped/split_text "task_adjust_boundary_percent_value=50|task_adjust_boundary_algorithm=percent|task_language=en|is_text_type=plain|os_task_file_format=csv" ' + 'aeneas_out/' + audio_name_no_ext + '.csv') os.system( 'python -m aeneas.tools.execute_task ' + audio_name + ' aeneas_prepped/split_text "task_adjust_boundary_percent_value=50|task_adjust_boundary_algorithm=percent|task_language=en|is_text_type=plain|os_task_file_format=csv" ' + 'aeneas_out/' + os.path.basename( self.project_dir) + '.csv') output_exists = False if os.path.exists("{}/output.csv".format(os.path.basename(self.project_dir))): # if file exists then prepare for append output_exists = True new_csv_file = open("{}/output.csv".format(os.path.basename(self.project_dir)), 'a') if output_exists: new_csv_file.write("\n") with open('aeneas_out/' + os.path.basename(self.project_dir) + '.csv', 'r') as csv_file: index_count = int(self.index_start) csv_reader = csv.reader(csv_file, delimiter=',') csv_reader = list(csv_reader) # convert to list row_count = len(csv_reader) newline = "" for row in csv_reader: beginning_cut = float(row[1]) end_cut = float(row[2]) text_out = row[3] text_out = text_out.strip() print("{} {} {} ".format(beginning_cut, end_cut, text_out)) c_length = end_cut - beginning_cut # if cut is longer than cut length then split it even more cut_length = float(self.cut_length) if c_length > cut_length: more_cuts = open("aeneas_prepped/temp.csv", 'w') # save the current cut wav file to run on aeneas again w = AudioSegment.from_wav(audio_name) wav_cut = w[(beginning_cut * 1000):(end_cut * 1000)] wav_cut.export("aeneas_prepped/tempcut.wav", format="wav") split_list = [] num_cuts = math.ceil(c_length / cut_length) text_list = text_out.split() text_list_len = len(text_list) split_len = math.ceil(text_list_len / num_cuts) print("too long, making extra {} cuts. with length {}".format(num_cuts, split_len)) for i in range(1, num_cuts + 1): words = [] for j in range(0, split_len): if not text_list: break words.append(text_list.pop(0)) split_list.append(" ".join(words)) print(split_list) print() newline_splits = '' for phrase in split_list: more_cuts.write(newline_splits + phrase) newline_splits = '\n' more_cuts.close() os.system( 'python -m aeneas.tools.execute_task ' + "aeneas_prepped/tempcut.wav" + ' aeneas_prepped/temp.csv "task_adjust_boundary_percent_value=50|task_adjust_boundary_algorithm=percent|task_language=en|is_text_type=plain|os_task_file_format=csv" ' + 'aeneas_out/temp_out.csv') csv_file_temp = open('aeneas_out/temp_out.csv', 'r') csv_reader_temp = csv.reader(csv_file_temp, delimiter=',') csv_reader_temp = list(csv_reader_temp) # convert to list row_count = len(csv_reader_temp) w = AudioSegment.from_wav("aeneas_prepped/tempcut.wav") for row in csv_reader_temp: beginning_cut = float(row[1]) end_cut = float(row[2]) text_out = row[3] text_out = text_out.strip() wav_cut = w[(beginning_cut * 1000):(end_cut * 1000)] new_wav_filename = "wavs/" + str(index_count) + ".wav" new_csv_file.write("{}{}|{}".format(newline, new_wav_filename, text_out)) wav_cut.export("{}/{}".format(os.path.basename(self.project_dir), new_wav_filename), format="wav") index_count += 1 newline = '\n' csv_file_temp.close() else: w = AudioSegment.from_wav(audio_name) wav_cut = w[(beginning_cut * 1000):(end_cut * 1000)] new_wav_filename = "wavs/" + str(index_count) + ".wav" new_csv_file.write("{}{}|{}".format(newline, new_wav_filename, text_out)) wav_cut.export("{}/{}".format(os.path.basename(self.project_dir), new_wav_filename), format="wav") index_count += 1 newline = '\n' new_csv_file.close() set_value("label_build_status", "Building dataset done!") # Remove temporary directories shutil.rmtree("aeneas_prepped") shutil.rmtree("aeneas_out") print('\a') # system beep print("Done with Aeneas!") def upload_blob(self, bucket_name, source_file_name, destination_blob_name, google_cloud_credentials_path=None): if not google_cloud_credentials_path: google_cloud_credentials_path = self.google_cloud_credentials_path storage_client = storage.Client.from_service_account_json(json_credentials_path=google_cloud_credentials_path) bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) blob.upload_from_filename(source_file_name) # print("File {} uploaded to {}.".format(source_file_name, destination_blob_name)) def diarization(self, wavfile, bucket_name, project_dir, google_cloud_credentials_path, project_name=None): if not os.path.exists(project_dir): os.makedirs(project_dir) if project_name: dianame = "diarization-" + project_name + "-" + str(round(time.time_ns() / 1000)) else: dianame = "diarization-" + os.path.basename(wavfile) + "-" + str(round(time.time_ns() / 1000)) output_dir = os.path.join(project_dir, dianame) os.mkdir(output_dir) print("Uploading {} to google cloud storage bucket".format(wavfile)) set_value("label_diarization_run_info", "Uploading file to cloud storage bucket...") self.upload_blob(bucket_name, wavfile, "temp_audio.wav", google_cloud_credentials_path) gcs_uri = "gs://{}/temp_audio.wav".format(bucket_name) set_value("label_diarization_run_info", "Finished uploading.") client = speech.SpeechClient.from_service_account_json(filename=google_cloud_credentials_path) audio = speech.RecognitionAudio(uri=gcs_uri) info = mediainfo(wavfile) sample_rate = info['sample_rate'] print("Transcribing {} with audio rate {}".format(wavfile, sample_rate)) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=int(sample_rate), language_code=config_helper.cfg_get("transcription", "language_code"), enable_automatic_punctuation=True, enable_word_time_offsets=True, enable_speaker_diarization=True, diarization_speaker_count=int(get_value("input_diarization_num")), ) operation = client.long_running_recognize(config=config, audio=audio) print("Waiting for operation to complete, this may take several minutes...") set_value("label_diarization_run_info", "Waiting for operation to complete, this may take several minutes...") response = operation.result(timeout=28800) result = response.results[-1] words = result.alternatives[0].words active_speaker = 1 transcript = [] current_cut = 0 previous_cut = 0 speaker_wavs = [] for x in range(int(get_value("input_diarization_num"))): speaker_wavs.append(AudioSegment.empty()) transcript.append("") w = AudioSegment.from_wav(wavfile) for word in words: if word.speaker_tag == active_speaker: end_time = word.end_time current_cut = end_time.total_seconds() * 1e3 # print(current_cut) transcript[active_speaker - 1] += word.word + ' ' else: # speaker has changed transcript[active_speaker - 1] += word.word + ' ' w_cut = w[(previous_cut):current_cut] previous_cut = current_cut speaker_wavs[active_speaker - 1] = speaker_wavs[active_speaker - 1] + w_cut active_speaker = word.speaker_tag # finish last wav cut w_cut = w[previous_cut:current_cut] speaker_wavs[active_speaker - 1] = speaker_wavs[active_speaker - 1] + w_cut for i, wave in enumerate(speaker_wavs): speaker_output = os.path.join(output_dir, "speaker_{}.wav".format(i + 1)) speaker_wavs[i].export(speaker_output, format="wav") for i, text in enumerate(transcript): speaker_output = os.path.join(output_dir, "speaker_{}.txt".format(i + 1)) f = open(speaker_output, 'w') f.write(transcript[i]) f.close() set_value("label_diarization_run_info", "Done!") print("Done with diarization!") print('\a') # system beep
2.515625
3
examples/explain_helper.py
pinjutien/DeepExplain
0
12778774
<gh_stars>0 import pandas as pd import PIL import tensorflow as tf import numpy as np from sklearn.neighbors import KernelDensity from scipy.signal import argrelextrema from scipy.stats import iqr from utils import plot, plt import glob import sys, os sys.path.insert(0, os.path.abspath('..')) from deepexplain.tensorflow import DeepExplain from get_labels_data import get_baseline_data, get_baseline_map import time def load_image(image_path, base_image_path, file_name, labels, num_class, target_size=(256, 256, 3), normalized_factor=255.0): assert len(labels) == len(file_name), "length of labels and file_name should be the same." image_array = [] base_image_array = [] for f in file_name: # imag_path = "/Users/ptien/tfds-download/apple2orange/testA/" + f # base_path = "/Users/ptien/tfds-download/apple2orange/experiment2-500000/generated_y/generated_from_" + f imag_path = image_path + f base_path = base_image_path + "generated_from_" + f imag_temp = tf.keras.preprocessing.image.load_img(imag_path, target_size=target_size) base_imag_temp = tf.keras.preprocessing.image.load_img(base_path, target_size=target_size) input_np= tf.keras.preprocessing.image.img_to_array(imag_temp)/normalized_factor base_input_np = tf.keras.preprocessing.image.img_to_array(base_imag_temp)/normalized_factor image_array += [input_np] base_image_array += [base_input_np] imag = np.array(image_array, dtype=np.float) base_imag = np.array(base_image_array, dtype=np.float) y_label = labels # apple return imag, y_label, base_imag def explain_model(model_path, imag, y_label, num_class, base_imag, explain_types, steps=100, stochastic_mask_flag=False, data_type=None, y_target=None): tf.keras.backend.clear_session() # tf.reset_default_graph() model = tf.keras.models.load_model(model_path) with DeepExplain(session=tf.keras.backend.get_session()) as de: # <-- init DeepExplain context # Need to reconstruct the graph in DeepExplain context, using the same weights. # With Keras this is very easy: # 1. Get the input tensor to the original model input_tensor = model.layers[0].input # 2. We now target the output of the last dense layer (pre-softmax) # To do so, create a new model sharing the same layers untill the last dense (index -2) # fModel = Model(inputs=input_tensor, outputs = model.layers[-2].output) fModel = tf.keras.models.Model(inputs=model.input, outputs = model.output) target_tensor = fModel(input_tensor) # fModel(input_tensor) # xs = x_test[0:10] # ys = y_test[0:10] xs = imag # ys = np.array([tf.keras.utils.to_categorical(y_label, 2)]) output = {} for type_ in explain_types: print("process {x}".format(x=type_)) t1 = time.time() if type_ == "expected_intgrad": baseline_map = get_baseline_map(data_type, y_label if y_target is None else y_label + y_target, subsample=steps) y_label_categorical = tf.keras.utils.to_categorical(y_label, num_class) y_target_categorical = tf.keras.utils.to_categorical(y_target, num_class) if y_target is not None else None output[type_] = de.explain("expected_intgrad", target_tensor, input_tensor, xs, ys=y_label_categorical, baseline_map=baseline_map, steps=steps, y_target=y_target_categorical) else: def get_attribution(y_): ys = tf.keras.utils.to_categorical(y_, num_class) if "_base" in type_: assert base_imag is not None, "Please provide non-trivial baseline.{x}".format(x=type_) return de.explain(type_.split("_base")[0], target_tensor, input_tensor, xs, ys=ys, baseline=base_imag, steps=steps, stochastic_mask_flag=stochastic_mask_flag) elif type_ == "occlusion": return de.explain(type_, target_tensor, input_tensor, xs, ys=ys) else: return de.explain(type_, target_tensor, input_tensor, xs, ys=ys, baseline=None, steps=steps, stochastic_mask_flag=False) if y_target is not None: output[type_] = get_attribution(y_label) - get_attribution(y_target) else: output[type_] = get_attribution(y_label) t2 = time.time() print('run time:', t2 - t1) # if "grad*input" in explain_types: # attributions_gradin = de.explain('grad*input', target_tensor, input_tensor, xs, ys=ys) # output["grad*input"] = attributions_gradin # if "saliency" in explain_types: # attributions_sal = de.explain('saliency', target_tensor, input_tensor, xs, ys=ys) # output["saliency"] = attributions_sal # if "intgrad" in explain_types: # attributions_ig = de.explain('intgrad', target_tensor, input_tensor, xs, ys=ys) # output["intgrad"] = attributions_ig # if "intgrad_base" in explain_types: # assert base_imag != None, "Please provide non-trivial baseline." # attributions_ig_base_line = de.explain('intgrad', target_tensor, input_tensor, xs, ys=ys,baseline=base_imag) # output["intgrad_base"] = attributions_ig_base_line # if "deeplift" in explain_types: # attributions_dl = de.explain('deeplift', target_tensor, input_tensor, xs, ys=ys) # output["deeplift"] = attributions_dl # if "deeplift_base" in explain_types: # attributions_dl_base_line = de.explain('deeplift', target_tensor, input_tensor, xs, ys=ys,baseline=base_imag) # output["deeplift_base"] = attributions_dl_base_line # if "elrp" in explain_types: # attributions_elrp = de.explain('elrp', target_tensor, input_tensor, xs, ys=ys) # output["elrp"] = attributions_elrp # attributions_gradin = de.explain('grad*input', target_tensor, input_tensor, xs, ys=ys) #attributions_sal = de.explain('saliency', target_tensor, input_tensor, xs, ys=ys) # attributions_ig = de.explain('intgrad', target_tensor, input_tensor, xs, ys=ys) # attributions_ig_base_line = de.explain('intgrad', target_tensor, input_tensor, xs, ys=ys,baseline=base_imag) # attributions_dl = de.explain('deeplift', target_tensor, input_tensor, xs, ys=ys) # attributions_dl_base_line = de.explain('deeplift', target_tensor, input_tensor, xs, ys=ys,baseline=base_imag) #attributions_elrp = de.explain('elrp', target_tensor, input_tensor, xs, ys=ys) #attributions_occ = de.explain('occlusion', target_tensor, input_tensor, xs, ys=ys) # Compare Gradient * Input with approximate Shapley Values # Note1: Shapley Value sampling with 100 samples per feature (78400 runs) takes a couple of minutes on a GPU. # Note2: 100 samples are not enough for convergence, the result might be affected by sampling variance # attributions_sv = de.explain('shapley_sampling', target_tensor, input_tensor, xs, ys=ys, samples=100) # return attributions_ig, attributions_ig_base_line, attributions_dl, attributions_dl_base_line return output def kernel_density(original_image, gan_image, file_name, bandwidth = 0.02, op="min", filter_=True, custom_std=False, iqr_choice=False): num_fig = original_image.shape[0] assert num_fig == len(file_name), "Number of figure is not the same." diff_image_base = original_image - gan_image X_plot = np.linspace(-1, 1, 1000)[:, np.newaxis] bins = np.linspace(-1, 1, 1000) local_min_max = {} comparison_op = { "min": np.less, "max": np.greater } print("compare operator: {x}".format(x=op)) kernel_arr = [] for i in range(num_fig): X = diff_image_base[i].reshape(-1,1) n = len(X) if custom_std: bandwidth = custom_std*X.std() if iqr_choice: # import pdb; pdb.set_trace() iqr_num = iqr(X) bandwidth = 0.9* min(X.std(), iqr_num/1.34)*pow(n, -0.2) if filter_: X = [ xx for xx in X if abs(xx) >= bandwidth] # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(X) log_dens = kde.score_samples(X_plot) kernel_arr += [log_dens] compare_op = comparison_op[op] kernel_y = np.exp(log_dens) local_indexs = argrelextrema(kernel_y, compare_op)[0] local_min_max[file_name[i]] = X_plot[local_indexs] del X return kernel_arr, local_min_max, X_plot def load_batch_images(image_paths, file_name): res = [] for p in image_paths: res_p = [] for f in file_name: path_ = p + f imag_temp = tf.keras.preprocessing.image.load_img(path_, target_size=(256, 256, 3)) input_np= tf.keras.preprocessing.image.img_to_array(imag_temp)/255. res_p += [input_np] res += [res_p] res = np.array(res) return res def show_kd_plot(image_paths, file_name, filter_=False, output=None, custom_std=False, iqr_choice=False): images_collection = load_batch_images(image_paths, file_name) original_imag = images_collection[0] gan_imag = images_collection[1] kernel_arr, local_min_max, X_plot = kernel_density(original_imag, gan_imag, file_name, bandwidth = 0.02, op="min", filter_=filter_, custom_std=custom_std, iqr_choice=iqr_choice) gan_imag2 = images_collection[2] kernel_arr2, local_min_max2, X_plot2 = kernel_density(original_imag, gan_imag2, file_name, bandwidth = 0.02, op="min", filter_=filter_, custom_std=custom_std, iqr_choice=iqr_choice) gan_imag3 = images_collection[3] kernel_arr3, local_min_max3, X_plot3 = kernel_density(original_imag, gan_imag3, file_name, bandwidth = 0.02, op="min", filter_=filter_, custom_std=custom_std, iqr_choice=iqr_choice) nrows = len(file_name) ncols = 5 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(3*ncols, 3*nrows)) axes = axes.reshape(nrows, ncols) y_min,y_max = 0, 10 for i in range(nrows): # a4 = attributions_dl_base_line[i] axes[i, 0].imshow(original_imag[i])# .set_title('Original') axes[i, 1].imshow(gan_imag[i])# .set_title('gan-1') axes[i, 2].imshow(gan_imag2[i])# .set_title('gan-2') axes[i, 3].imshow(gan_imag3[i])# .set_title('gan-3') log_dens = kernel_arr[i] log_dens2 = kernel_arr2[i] log_dens3 = kernel_arr3[i] axes[i, 4].fill(X_plot[:, 0], np.exp(log_dens), fc='green', alpha=0.5, label="gan-1") axes[i, 4].fill(X_plot2[:, 0], np.exp(log_dens2), fc='blue', alpha=0.3, label="gan-2") axes[i, 4].fill(X_plot3[:, 0], np.exp(log_dens3), fc='red', alpha=0.5, label="gan-3") axes[i, 4].axvline(0, y_min, y_max, c="gray", alpha=0.1) # axes[i, 0].text(0, 5, str(i)) axes[i, 4].set_ylim([y_min,y_max]) if output: fig.savefig(output) if __name__ == '__main__': # image_path = "/Users/ptien/tfds-download/apple2orange/testA/" # gan_image_path_1 = "/Users/ptien/tfds-download/apple2orange/experiment2-500000/generated_y/generated_from_" # gan_image_path_2 = "/Users/ptien/tfds-download/apple2orange/experiment-1000/generated_y/generated_from_" # gan_image_path_3 = "/Users/ptien/tfds-download/apple2orange/experiment-0/generated_y/generated_from_" image_path = "/Users/ptien/tfds-download/horse2zebra/testA/" gan_image_path_1 = "/Users/ptien/tfds-download/horse2zebra/experiment-500000/generated_y/generated_from_" gan_image_path_2 = "/Users/ptien/tfds-download/horse2zebra/experiment-1000/generated_y/generated_from_" gan_image_path_3 = "/Users/ptien/tfds-download/horse2zebra/experiment-0/generated_y/generated_from_" image_paths = [image_path, gan_image_path_1, gan_image_path_2, gan_image_path_3] all_images = glob.glob(image_path + "*.jpg") batch_size = 10 # file_name = ["n07740461_240.jpg", "n07740461_411.jpg", "n07740461_14960.jpg", # "n07740461_40.jpg", "n07740461_1690.jpg", "n07740461_12921.jpg"] # show_kd_plot(image_paths, file_name, filter_=False, output="gan_performance_a2o.jpg", # custom_std=False, iqr_choice=True) c = 0 total_images = len(all_images) while len(all_images) > 0: print(c, total_images, len(all_images)) batch_images = all_images[:batch_size] batch_images = [ f.split("/")[-1] for f in batch_images] show_kd_plot(image_paths, batch_images, filter_=False, output="gan_performance_h2z_batch_{c}.jpg".format(c=c), custom_std=False, iqr_choice=True) all_images = all_images[batch_size:] c += 1
2.140625
2
tests/tagopsdb/database/test_connection.py
ifwe/tagopsdb
0
12778775
# Copyright 2016 Ifwe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest2 class TestConnections(unittest2.TestCase): def setUp(self): self.protocol = 'mysql+mysqldb' self.db_user = 'testuser' self.db_password = '<PASSWORD>' self.hostname = 'opsdb.tagged.com' self.db_name = 'TagOpsDB' @unittest2.skip('not currently valid') def test_create_dbconn_string(self): from tagopsdb.database import create_dbconn_string params = dict(hostname=self.hostname, db_name=self.db_name) dbconn_string = create_dbconn_string(self.db_user, self.db_password, **params) expect_str = ( self.protocol + '://' + self.db_user + ':' + self.db_password + '@' + self.hostname + '/' + self.db_name ) self.assertEquals(dbconn_string, expect_str)
2.546875
3
rocket_casadi_solution.py
bvermeulen/Rocket-and-gravity-turn
1
12778776
''' Based on: Gravity Turn Maneuver with direct multiple shooting using CVodes (c) <NAME> https://mintoc.de/index.php/Gravity_Turn_Maneuver_(Casadi) https://github.com/zegkljan/kos-stuff/tree/master/non-kos-tools/gturn ---------------------------------------------------------------- ''' import sys from pathlib import Path import casadi as cs import numpy as np import pandas as pd from rocket_input import read_rocket_config # noinspection PyPep8Naming def compute_gravity_turn(m0, m1, g0, r0, Isp0, Isp1, Fmax, cd, A, H, rho, h_obj, v_obj, q_obj, N=300, vel_eps=1e-3): ''' Computes gravity turn profile :params: m0: wet (launch) mass (kg or ton) m1: dry mass (kg or ton) g0: gravitational acceleration at zero altitude (m * s^-2 or km * s^-2) r0: "orbit" radius at zero altitude (body radius) (m or km) Isp0: specific impulse of the engine(s) at zero altitude (s) Isp1: specific impulse of the engine(s) in vacuum (s) Fmax: maximum thrust of the engine(s) (N or MN) cd: drag coefficient A: reference area of the vehicle (m^2) H: scale height of the atmosphere (m or km) rho: density of the atmosphere at zero altitude (kg * m^-3) h_obj: target altitude (m or km) v_obj: target velocity (m * s^-1 of km * s^-1) q_obj: target angle to vertical (rad) N: number of shooting interval vel_eps: initial velocity (must be nonzero, e.g. a very small number) (m * s^-1 or km * s^-1) :returns: a dictionary with results ''' # Create symbolic variables x = cs.SX.sym('[m, v, q, h, d]') # Vehicle state u = cs.SX.sym('u') # Vehicle controls T = cs.SX.sym('T') # Time horizon (s) # Introduce symbolic expressions for important composite terms Fthrust = Fmax * u Fdrag = 0.5 * A * cd * rho * cs.exp(-x[3] / H) * x[1] ** 2 r = x[3] + r0 g = g0 * (r0 / r) ** 2 vhor = x[1] * cs.sin(x[2]) vver = x[1] * cs.cos(x[2]) Isp = Isp1 + (Isp0 - Isp1) * cs.exp(-x[3] / H) # Build symbolic expressions for ODE right hand side mdot = -(Fthrust / (Isp * g0)) vdot = (Fthrust - Fdrag) / x[0] - g * cs.cos(x[2]) hdot = vver ddot = vhor / r qdot = g * cs.sin(x[2]) / x[1] - ddot # Build the DAE function ode = [mdot, vdot, qdot, hdot, ddot] quad = u dae = {'x': x, 'p': cs.vertcat(u, T), 'ode': T * cs.vertcat(*ode), 'quad': T * quad} I = cs.integrator( 'I', 'cvodes', dae, {'t0': 0.0, 'tf': 1.0 / N, 'nonlinear_solver_iteration': 'functional'} ) # Specify upper and lower bounds as well as initial values for DAE # parameters, states and controls p_min = [0.0] p_max = [600.0] p_init = [300.0] u_min = [0.0] u_max = [1.0] u_init = [0.5] x0_min = [m0, vel_eps, 0.0, 0.0, 0.0] x0_max = [m0, vel_eps, 0.5 * cs.pi, 0.0, 0.0] x0_init = [m0, vel_eps, 0.05 * cs.pi, 0.0, 0.0] xf_min = [m1, v_obj, q_obj, h_obj, 0.0] xf_max = [m0, v_obj, q_obj, h_obj, cs.inf] xf_init = [m1, v_obj, q_obj, h_obj, 0.0] x_min = [m1, vel_eps, 0.0, 0.0, 0.0] x_max = [m0, cs.inf, cs.pi, cs.inf, cs.inf] x_init = [0.5 * (m0 + m1), 0.5 * v_obj, 0.5 * q_obj, 0.5 * h_obj, 0.0] # Useful variable block sizes npars = 1 # Number of parameters nx = x.size1() # Number of states nu = u.size1() # Number of controls ns = nx + nu # Number of variables per shooting interval # Introduce symbolic variables and disassemble them into blocks V = cs.MX.sym('X', N * ns + nx + npars) P = V[0] X = [V[(npars + i * ns):(npars + i * ns + nx)] for i in range(0, N + 1)] U = [V[(npars + i * ns + nx):(npars + (i + 1) * ns)] for i in range(0, N)] # Nonlinear constraints and Lagrange objective G = [] F = 0.0 # Build DMS structure x0 = p_init + x0_init for i in range(0, N): Y = I(x0=X[i], p=cs.vertcat(U[i], P)) G += [Y['xf'] - X[i + 1]] F = F + Y['qf'] frac = float(i + 1) / N x0 = x0 + u_init + [x0_init[i] + frac * (xf_init[i] - x0_init[i]) for i in range(0, nx)] # Lower and upper bounds for solver lbg = 0.0 ubg = 0.0 lbx = p_min + x0_min + u_min + (N - 1) * (x_min + u_min) + xf_min ubx = p_max + x0_max + u_max + (N - 1) * (x_max + u_max) + xf_max # Solve the problem using IPOPT nlp = {'x': V, 'f': (m0 - X[-1][0]) / (m0 - m1), 'g': cs.vertcat(*G)} S = cs.nlpsol( 'S', 'ipopt', nlp, {'ipopt': {'tol': 1e-4, 'print_level': 5, 'max_iter': 500}} ) r = S(x0=x0, lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg) print('RESULT: {}'.format(S.stats()['return_status'])) if S.stats()['return_status'] in {'Invalid_Number_Detected'}: return None # Extract state sequences and parameters from result x = r['x'] f = r['f'] T = float(x[0]) t = np.linspace(0, T, N + 1) m = np.array(x[npars::ns]).squeeze() v = np.array(x[npars + 1::ns]).squeeze() q = np.array(x[npars + 2::ns]).squeeze() h = np.array(x[npars + 3::ns]).squeeze() d = np.array(x[npars + 4::ns]).squeeze() u = np.concatenate((np.array(x[npars + nx::ns]).squeeze(), [0.0])) return { 'time': t, 'mass': m, 'vel': v, 'alt': h, 'control': u, 'hor_angle': d, 'ver_angle': q } def main(config_file): ( rocket_params, environment_params, model_params, io_params ) = read_rocket_config(config_file) # Vehicle parameters m0 = (rocket_params.fuel_mass + rocket_params.dry_mass) # Launch mass (kg or ton) m1 = rocket_params.dry_mass # Dry mass (kg or ton) Isp0 = rocket_params.motor_isp0 # Specific impulse at zero altude (s) Isp1 = rocket_params.motor_isp1 # Specific impulse at vacuum (s) A = rocket_params.rocket_area # Reference area (m^2) Fmax = rocket_params.max_thrust # Maximum thrust (N or MN) vel_eps = rocket_params.vel # Initial velocity (m/s or km/s) # Environmental parameters g0 = environment_params.gravity # Gravitational acceleration at altitude zero (m/s^2 or km/s^2) r0 = environment_params.radius # Radius at altitude zero (m or km) cd = environment_params.drag_coefficient # Drag coefficients H = environment_params.scale_height # Scale height (m or km) rho = environment_params.density # Density at altitude zero (x 1000) # Model and target orbit parameters N = model_params.N # Number of shooting intervals h_obj = model_params.h_obj # Target altitude (m or km) v_obj = model_params.v_obj # Target velocity (m/s or km/s) q_obj = model_params.q_obj / 180 * cs.pi # Target angle to vertical (rad) # output file model_file = model_params.model_file result = compute_gravity_turn( m0, m1, g0, r0, Isp0, Isp1, Fmax, cd, A, H, rho, h_obj, v_obj, q_obj, N=N, vel_eps=vel_eps ) result_df = pd.DataFrame(result) result_df.to_excel(model_file, index=False) print(result_df.head()) if __name__ == '__main__': config_file_name = 'None' if len(sys.argv) == 2: config_file_name = sys.argv[1] config_file_name = Path(config_file_name) if not config_file_name.is_file(): print(f'incorrect config file: {config_file_name}') exit() main(config_file_name)
2.859375
3
src/GenomeBaser/genomebaser.py
mscook/GenomeBaser
3
12778777
<filename>src/GenomeBaser/genomebaser.py #!/usr/bin/env python """ Genomebaser is a tool to manage complete genomes from the NCBI """ __title__ = 'GenomeBaser' __version__ = '0.1.2' __description__ = "GenomeBaser manages complete (bacterial) genomes from NCBI" __author__ = '<NAME>' __author_email__ = '<EMAIL>' __url__ = 'http://github.com/mscook/GenomeBaser' __license__ = 'ECL 2.0' import os import re import glob import sys import subprocess from Bio import SeqIO import click def check_for_deps(): """ Check if 3rd party dependencies (non-python) exist Requires: * rsysnc * prokka-genbank_to_fasta_db * cd-hit * makeblastdb """ reqs = ["rsync", "prokka-genbank_to_fasta_db", "cd-hit", "makeblastdb"] for e in reqs: output = subprocess.Popen(["which", e], stdout=subprocess.PIPE).communicate()[0] if output.split("/")[-1].strip() != e: print "Misisng %s. Please install. Exiting." % (e) sys.exit() def fetch_genomes(target_genus_species, db_base=None): """ Use rsync to manage periodic updates Examples: >>> fetch_genomes("Escherichia coli") >>> >>> fetch_genomes("Klebsiella pneumoniae", "/home/me/dbs/") :param target_genus_species: the genus species as a string (space delimited) :returns: the database location """ working_dir = os.getcwd() if db_base is not None: os.chdir(db_base) target_genus_species = target_genus_species.replace(" ", "_") if not os.path.exists(target_genus_species): os.mkdir(target_genus_species) os.chdir(target_genus_species) cmd = ("rsync -av ftp.ncbi.nlm.nih.gov::genomes/Bacteria/" "%s_*/*.gbk .") % (target_genus_species) db_loc = os.getcwd() os.system(cmd) os.chdir(working_dir) return db_loc def genbank_to_fasta(db_loc): """ Converts GenBank to fasta while naming using the given in the DEFINITION Examples: >>> genbank_to_fasta("/home/mscook/dbs/Klebsiella_pneumoniae" :param db_loc: the fullpath as a sting to the database location (genus species inclusive) :returns: a list of the output fasta files """ fasta_files = [] tmp_file = "tmp.gbk" working_dir = os.getcwd() os.chdir(db_loc) infs = glob.glob("*.gbk") for inf in infs: cmd = "grep -v 'CONTIG join' "+inf+" > "+tmp_file os.system(cmd) os.rename(tmp_file, inf) for seq_record in SeqIO.parse(inf, "genbank"): out_fa = re.sub(r'\W+', ' ', seq_record.description ).replace(' ', '-') if out_fa.endswith('-'): out_fa = out_fa[:-1]+".fa" else: out_fa = out_fa+".fa" SeqIO.write(seq_record, out_fa, "fasta") fasta_files.append(out_fa) dest = out_fa.replace(".fa", ".gbk") if not os.path.lexists(dest): os.symlink(inf, dest) if os.path.exists(tmp_file): os.remove(tmp_file) os.chdir(working_dir) return fasta_files def partition_genomes(db_loc, fasta_files): """ Separate complete genomes from plasmids ..warning:: this partitions on the complete_sequence (plasmid) vs complete_genome (genome) in filename assumption (in DEFINITION) line :param db_loc: the fullpath as a sting to the database location (genus species inclusive) :param fasta_files: a list of fasta files :returns: a list of DEFINITION format named GenBank files """ plasmid, genome = [], [] working_dir = os.getcwd() os.chdir(db_loc) for e in fasta_files: if e.find("complete-sequence") != -1: plasmid.append(e) elif e.find("complete-genome") != -1: genome.append(e) elif e.find("-genome") != -1: genome.append(e) else: print "Could not classify %s" % (e) print "Continuing..." if not os.path.exists("plasmid"): os.mkdir("plasmid") os.chdir("plasmid") for e in plasmid: if not os.path.lexists(e): os.symlink("../"+e, e) os.chdir("../") if not os.path.exists("genome"): os.mkdir("genome") os.chdir("genome") for e in genome: if not os.path.lexists(e): os.symlink("../"+e, e) os.chdir("../") os.chdir(working_dir) return genome def make_prokka(db_loc, genbank_files, target_genus_species): """ Make a prokka database of the complete genomes :param db_loc: the fullpath as a sting to the database location (genus species inclusive) :param genbank_files: a list of GenBank files :param target_genus_species: the genus species as a string (space delimited) """ working_dir = os.getcwd() os.chdir(db_loc) target = target_genus_species.split(" ")[0] if not os.path.exists("prokka"): os.mkdir("prokka") prokka_cmd = ("prokka-genbank_to_fasta_db %s --idtag=locus_tag " "> prokka/%s.faa") % (' '.join(genbank_files), target) os.system(prokka_cmd.replace(".fa", ".gbk")) os.chdir("prokka") cd_hit_cmd = ("cd-hit -i %s.faa -o %s -T 0 " "-M 0 -g 1 -s 0.8 -c 0.9") % (target, target) os.system(cd_hit_cmd) blast_cmd = "makeblastdb -dbtype prot -in %s" % (target) os.system(blast_cmd) os.chdir("../") os.chdir(working_dir) @click.command() @click.option('--check_deps/--no-check_deps', default=True, help='Check that non-python dependencies exist') @click.option('--all/--no-all', default=False, help='Get complete, draft and assemblies') @click.option('--mlst/--no-mlst', default=False, help='Run MLST typing') @click.argument("genus") @click.argument("species") @click.argument('out_database_location', type=click.Path(exists=True)) def main(check_deps, genus, species, out_database_location): """ GenomeBaser is tool to manage complete (bacterial) genomes from the NCBI. Example usage: $ GenomeBaser.py Klebsiella pneumoniae ~/dbs $ # (wait a few months)... $ GenomeBaser Klebsiella pneumoniae ~/dbs By <NAME> (<EMAIL>) **More info at:** https://github.com/mscook/GenomeBaser """ if check_deps: print "Checking for 3rd party dependencies" check_for_deps() genus = genus[0].upper()+genus[1:] gs = genus+" "+species loc = fetch_genomes(gs, out_database_location) fas = genbank_to_fasta(loc) genbanks = partition_genomes(loc, fas) make_prokka(loc, genbanks, gs) if __name__ == '__main__': main()
2.46875
2
python_tc_api/setup.py
imec-ilabt/terms-cond-demo-site
0
12778778
<reponame>imec-ilabt/terms-cond-demo-site<gh_stars>0 from setuptools import setup, find_packages import tcapi setup( name="T&C API", version=tcapi.__version__, description="Terms & Conditions Web API", long_description="Terms & Conditions Web API", url="https://github.com/imec-ilabt/terms-cond-demo-site", packages=find_packages(exclude=["doc"]), entry_points={ "console_scripts": [ "tcapi=tcapi.tc_api_app:main" ] }, author="<NAME>", author_email="<EMAIL>", license="MIT", python_requires='>=3.6', install_requires=["flask>=1.0.2", "python-dateutil>=2.7.3", "flask-cors", "pytz", "cryptography"], dependency_links=[], setup_requires=[], tests_require=[] )
1.039063
1
Common/DataModel/Testing/Python/SelectionLoop.py
jasper-yeh/VtkDotNet
3
12778779
<reponame>jasper-yeh/VtkDotNet<filename>Common/DataModel/Testing/Python/SelectionLoop.py #!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() def GetRGBColor(colorName): ''' Return the red, green and blue components for a color as doubles. ''' rgb = [0.0, 0.0, 0.0] # black vtk.vtkNamedColors().GetColorRGB(colorName, rgb) return rgb # # Demonstrate the use of implicit selection loop as well as closest point # connectivity # # create pipeline # sphere = vtk.vtkSphereSource() sphere.SetRadius(1) sphere.SetPhiResolution(100) sphere.SetThetaResolution(100) selectionPoints = vtk.vtkPoints() selectionPoints.InsertPoint(0, 0.07325, 0.8417, 0.5612) selectionPoints.InsertPoint(1, 0.07244, 0.6568, 0.7450) selectionPoints.InsertPoint(2, 0.1727, 0.4597, 0.8850) selectionPoints.InsertPoint(3, 0.3265, 0.6054, 0.7309) selectionPoints.InsertPoint(4, 0.5722, 0.5848, 0.5927) selectionPoints.InsertPoint(5, 0.4305, 0.8138, 0.4189) loop = vtk.vtkImplicitSelectionLoop() loop.SetLoop(selectionPoints) extract = vtk.vtkExtractGeometry() extract.SetInputConnection(sphere.GetOutputPort()) extract.SetImplicitFunction(loop) connect = vtk.vtkConnectivityFilter() connect.SetInputConnection(extract.GetOutputPort()) connect.SetExtractionModeToClosestPointRegion() connect.SetClosestPoint(selectionPoints.GetPoint(0)) clipMapper = vtk.vtkDataSetMapper() clipMapper.SetInputConnection(connect.GetOutputPort()) backProp = vtk.vtkProperty() backProp.SetDiffuseColor(GetRGBColor('tomato')) clipActor = vtk.vtkActor() clipActor.SetMapper(clipMapper) clipActor.GetProperty().SetColor(GetRGBColor('peacock')) clipActor.SetBackfaceProperty(backProp) # Create graphics stuff # ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Add the actors to the renderer, set the background and size # ren1.AddActor(clipActor) ren1.SetBackground(1, 1, 1) ren1.ResetCamera() ren1.GetActiveCamera().Azimuth(30) ren1.GetActiveCamera().Elevation(30) ren1.GetActiveCamera().Dolly(1.2) ren1.ResetCameraClippingRange() renWin.SetSize(400, 400) renWin.Render() # render the image # #iren.Start()
2.03125
2
pythonCore/ch02/E15.py
Furzoom/learnpython
0
12778780
#!/usr/bin/env python # -*- coding: utf-8 -*- n1 = int(raw_input('No.1: ')) n2 = int(raw_input('No.2: ')) n3 = int(raw_input('No.3: ')) if n1 < n2: if n1 < n3: pass else: n1, n3 = n3, n1 elif n2 < n3: n2, n1 = n1, n2 else: n1, n3 = n3, n1 if n2 > n3: n2, n3 = n3, n2 print n1, n2, n3
3.828125
4
Module 3/Chapter 4/ch4_21.py
PacktPublishing/Natural-Language-Processing-Python-and-NLTK
50
12778781
<filename>Module 3/Chapter 4/ch4_21.py import nltk from nltk.tag import BigramTagger, TrigramTagger from nltk.corpus import treebank testing = treebank.tagged_sents()[2000:] training= treebank.tagged_sents()[:7000] bigramtag = BigramTagger(training) print(bigramtag.evaluate(testing)) trigramtag = TrigramTagger(training) print(trigramtag.evaluate(testing))
2.640625
3
src/infi/recipe/console_scripts/__init__.py
Infinidat/infi.recipe.console_scripts
1
12778782
__import__("pkg_resources").declare_namespace(__name__) from contextlib import contextmanager from .minimal_packages import MinimalPackagesWorkaround, MinimalPackagesMixin from .windows import WindowsWorkaround, is_windows from .virtualenv import VirtualenvWorkaround from .egg import Scripts class AbsoluteExecutablePathMixin(object): def is_relative_paths_option_set(self): relative_paths = self.options.get('relative-paths', self.buildout.get('buildout').get('relative-paths', 'false')) return relative_paths in [True, 'true'] def set_executable_path(self): if is_windows and not self.is_relative_paths_option_set(): python_executable = self.buildout.get('buildout').get('executable') self.options['executable'] = python_executable class Scripts(Scripts, AbsoluteExecutablePathMixin, MinimalPackagesMixin): def install(self): self.set_executable_path() installed_files = super(Scripts, self).install() WindowsWorkaround.apply(self, False, installed_files) MinimalPackagesWorkaround.apply(self, installed_files) VirtualenvWorkaround.apply(self, installed_files) return installed_files update = install @contextmanager def patch(parent, name, value): previous = getattr(parent, name, None) setattr(parent, name, value) try: yield finally: setattr(parent, name, previous) @contextmanager def patch_get_entry_map_for_gui_scripts(): import pkg_resources _get_entry_map = pkg_resources.get_entry_map def get_entry_map(dist, group=None): return _get_entry_map(dist, "gui_scripts") with patch(pkg_resources, "get_entry_map", get_entry_map): yield @contextmanager def patch_get_entry_info_for_gui_scripts(): import pkg_resources def get_entry_info(self, group, name): return self.get_entry_map("gui_scripts" if group == "console_scripts" else group).get(name) with patch(pkg_resources.Distribution, "get_entry_info", get_entry_info): yield class GuiScripts(Scripts, AbsoluteExecutablePathMixin, MinimalPackagesMixin): def install(self): with patch_get_entry_map_for_gui_scripts(): with patch_get_entry_info_for_gui_scripts(): self.set_executable_path() installed_files = super(GuiScripts, self).install() WindowsWorkaround.apply(self, True, installed_files) MinimalPackagesWorkaround.apply(self, installed_files) return installed_files update = install # used as entry point to gui-script-test def nothing(): pass def patch_buildout_wheel(): import buildout.wheel import glob WheelInstaller = buildout.wheel.WheelInstaller def wrapper(func): def wrapper(basename): return WheelInstaller((glob.glob('{}*'.format(basename)) + [basename])[0]) return wrapper buildout.wheel.WheelInstaller = wrapper(buildout.wheel.WheelInstaller) def _get_matching_dist_in_location(dist, location): """ Check if `locations` contain only the one intended dist. Return the dist with metadata in the new location. """ # Getting the dist from the environment causes the # distribution meta data to be read. Cloning isn't # good enough. import pkg_resources env = pkg_resources.Environment([location]) dists = [ d for project_name in env for d in env[project_name] ] dist_infos = [ (d.project_name, d.version) for d in dists ] if dist_infos == [(dist.project_name, dist.version)]: return dists.pop() if dist_infos == [(dist.project_name.lower(), dist.version)]: return dists.pop() def patch_zc_buildout_easy_install(): import zc.buildout.easy_install zc.buildout.easy_install._get_matching_dist_in_location = _get_matching_dist_in_location # buildout.wheel on Windows is having problems installing non-lower-case wheels try: patch_buildout_wheel() except ImportError: pass patch_zc_buildout_easy_install()
2.125
2
pib-crawler-type3/run_pdf_downloader.py
PromodhPinto/anuvaad-corpus-tools
6
12778783
<reponame>PromodhPinto/anuvaad-corpus-tools ############################################################################### # AUTHOR : <NAME> # AIM : Code to download contents of PIB website in PDF format, # whose textual content is previously available in same directory # USAGE : python3 ./run_pdf_downloader.py ############################################################################### import glob import pdfkit # Code Block below could be ignored if code is executed in a machine with GUI from pyvirtualdisplay import Display display = Display() display.start() # check for existing text files txtfiles = [f for f in glob.glob("*.txt")] pdffiles = [] for txtfilename in txtfiles: pdffiles.append(txtfilename.replace(".txt", ".pdf")) downpdffiles = [f for f in glob.glob("*.pdf")] # identify and download PDF while for the Documents which are available in TXT format alone for filename in pdffiles: if filename not in downpdffiles: try: url="https://www.pib.gov.in/PressReleasePage.aspx?PRID="+str(filename).replace(".pdf", "") pdfkit.from_url(url, filename) print(filename, " : downloaded successfully as PDF") # In case of failure in between processing, those ID's will be saved to another file for re-looking except Exception as e: print(e) print(filename, " : failed ") file2 = open("PDF_Failedfiles_log.txt", "a") file2.write("\n") file2.write(str(filename).replace(".pdf", "")) file2.close()
2.734375
3
edm_web1/script/stat_log.py
zhouli121018/nodejsgm
0
12778784
#!/usr/local/pyenv/versions/edm_web/bin/python # -*- coding: utf-8 -*- # """ 每隔一小时执行 1. 腾讯企业邮箱:获取发送失败和不存在的地址。 2. 真实成功率统计 3. 统计客户10个任务的平均发送成功率 """ from gevent import monkey monkey.patch_all() import gevent import gevent.pool import os import re import sys import time import datetime import redis import traceback import logging import logging.handlers from collections import defaultdict from email.parser import Parser from newlib import common, filetools, pidfile, db_utils, parse_email, html2text, search_mail_status from imapclient import IMAPClient # 全局变量 log = None signal_stop = False glb_count_task = None glb_count_send = None glb_p_date=None glb_p_hour=None glb_time_b=None glb_time_e=None glb_process_log_list=None SCRIPT = os.path.realpath(os.path.join(os.path.split(__file__)[0])) GLB_PG_LOG_DBNAME = 'pgsql_log' GLB_MY_MS_DBNAME = 'mysql_ms' COMMON_VAR_COUNT_HASH = 'common_var_count_hash' # 收件人域名设置 GLB_QQ_DOMAIN = 'qq.com' GLB_163_DOMAIN = ['163.com', '126.com'] # 待统计的域名列表 GLB_DOMAINS = ['qq.com', '163.com', '*'] GLB_RE_PATTERN_1 = re.compile(ur'无法发送到\s+((\w|[-+=.])+@\w+([-.]\w+)*\.(\w+))') GLB_RE_PATTERN_2 = re.compile(ur'不存在') GLB_RE_PATTERN_3 = re.compile(ur'邮箱空间不足') GLB_RE_PATTERN_4 = re.compile(ur'said:\s+(.*?\))') GLB_IMAP_HOSTNAME = 'imap.exmail.qq.com' #gmail的smtp服务器网址 redis_pool = redis.ConnectionPool(host="localhost", port=6379, db=0) redis = redis.StrictRedis(connection_pool=redis_pool) _loop_dict = lambda : defaultdict(_loop_dict) ############################################################ # 日志设置 def set_logger(log_file, is_screen=True): global log log = logging.getLogger('stat_log') log.setLevel(logging.INFO) format = logging.Formatter('%(asctime)-15s %(levelname)s %(message)s') log_handler = logging.handlers.RotatingFileHandler(log_file, 'a', 5000000, 4) log_handler.setFormatter(format) log.addHandler(log_handler) f = open(log_file, 'a') sys.stdout = f # sys.stderr = f if is_screen: log_handler = logging.StreamHandler() log_handler.setFormatter(format) log.addHandler(log_handler) # 信号量处理 def signal_handle(mode): log.info(u"Catch signal: %s" % mode) global signal_stop signal_stop = True ############################################################ # 开始结束处理 # 初始化 def init(): global glb_p_date, glb_p_hour, glb_time_b, glb_time_e, glb_process_log_list, glb_count_task, glb_count_send task_count = 10 send_count = 100 sql = "SELECT task_count, send_count, domain FROM stat_task_setting LIMIT 1;" res = common.time_call(db_utils.query, GLB_MY_MS_DBNAME, sql) if res: task_count = res[0][0] send_count = res[0][1] stat_domain_T = res[0][2] # 统计任务个数 glb_count_task = task_count # 统计发送数量大于等于 glb_count_send = send_count t = time.localtime(time.time() - 60 * 60 * 1) glb_p_date = time.strftime("%Y-%m-%d", t) glb_p_hour = int(time.strftime("%H", t)) # 根据指定的小时生成要处理的时间区间 glb_time_b = "%02d:00:00" % glb_p_hour glb_time_e = "%02d:00:00" % (glb_p_hour + 1) log.info('StatLog, date: %s, hour: %s, time range: %s - %s' % (glb_p_date, glb_p_hour, glb_time_b, glb_time_e)) glb_process_log_list = [] datfile = os.path.join(SCRIPT, 'data', 'logstat.dat') if os.path.exists(datfile): for line in file(datfile).read().strip().split("\n"): glb_process_log_list.append(line) # 结束 # 添加已处理记录 def finishProcess(): datfile = os.path.join(SCRIPT, 'data', 'logstat.dat') # 添加日期、时间片数值加至处理队列 glb_process_log_list.insert(0, glb_p_date + ',' + str(glb_p_hour)) # 判断是否 c_pop = len(glb_process_log_list) - 80 if c_pop > 0: for i in range(0, c_pop): glb_process_log_list.pop() # 保存数据至文件 try: logdata = "\n".join(glb_process_log_list) file(datfile, 'w').write(logdata) except Exception, e: log.error(traceback.format_exc()) return # 异常处理 def exitProcess(): # 判断是否和当前时间段相同,如相同则忽略 if glb_p_date == time.strftime("%Y-%m-%d") and glb_p_hour == int(time.strftime("%H")): log.info('StatLog ignore ({},{}), it current time'.format(glb_p_date, glb_p_hour)) return 2 # 检测当前时间段是否已处理过 if '{},{}'.format(glb_p_date, glb_p_hour) in glb_process_log_list: log.info('StatLog ignore ({},{}), it has been processed'.format(glb_p_date, glb_p_hour)) return 2 if not checkTableExist: log.info('StatLog not found data table, ignored') return 2 return 1 # 检测 日志表格是否存在 def checkTableExist(): tb_name = "maillog_%s" % (glb_p_date.replace('-', '')) sql = "SELECT tablename FROM pg_tables WHERE tablename='%s';" % tb_name res = db_utils.query(GLB_PG_LOG_DBNAME, sql) if not res: return False return True ############################################################ # 有些测试用户故意测试加一些不存在的地址来测试,这些地址走SMTP账号通道发送后,没有错误回执, # 可以对中继平台的SMTP账号发出的邮件的日志做一个回传处理,,客户界面和管理员界面都能查询到发送失败和不存在的地址。 def getSmtpData(): tb_name = "maillog_%s" % (glb_p_date.replace('-', '')) if glb_time_e == '24:00:00': sql = """ SELECT log_id, smtp_account_id, mail_from, mail_to FROM %s WHERE send_time>='%s' AND is_ok='t' AND return_code='250' AND customer_id<>'0' AND smtp_account_id is not null; """ % (tb_name, glb_time_b) else: sql = """ SELECT log_id, smtp_account_id, mail_from, mail_to FROM %s WHERE send_time>='%s' AND send_time<'%s' AND is_ok='t' AND return_code='250' AND customer_id<>'0' AND smtp_account_id is not null; """ % (tb_name, glb_time_b, glb_time_e) res = common.time_call(db_utils.query, GLB_PG_LOG_DBNAME, sql) smtp_dict = {} for log_id, smtp_account_id, mail_from, mail_to in res: log_id = int(log_id) smtp_account_id = int(smtp_account_id) if smtp_account_id not in smtp_dict: smtp_dict[smtp_account_id] = [] smtp_dict[smtp_account_id].append( (log_id, mail_from, mail_to) ) return smtp_dict def do_email_text(text, mail_to): if mail_to not in text: return None, None m = GLB_RE_PATTERN_1.search(text) if m: email = m.group(1) if email != mail_to: return None, None m2 = GLB_RE_PATTERN_2.search(text) if m2: error_type = 1 return_said = 'said: 550 [%s]: Recipient address rejected: Access denied' % mail_to else: m3 = GLB_RE_PATTERN_3.search(text) if m3: error_type = 2 return_said = 'said: 552 Quota exceeded or service disabled.' else: error_type = 3 return_said = 'said: 550 Message was blocked by server' m4 = GLB_RE_PATTERN_4.search(text) if m4: return_said = m4.group() return error_type, return_said return None, None def do_email(msg_content, mail_to): # 稍后解析出邮件: msg = Parser().parsestr(msg_content) email_str = msg.as_string() p = parse_email.ParseEmail(email_str) m = p.parseMailTemplate() try: text = html2text.beautifulsoup_html2text( m.get('html_text', '').decode( m.get('html_charset', 'utf-8'), errors='ignore' ).encode('utf-8') ) return do_email_text(text, mail_to) except: return None, None def do_worker_imap_update(log_id, mail_to, return_said, error_type, mode='qq'): return_code = 450 if error_type==1 else 550 tb_name = "maillog_%s" % (glb_p_date.replace('-', '')) sql = u"UPDATE {} SET return_code=%s, return_said=%s, error_type=%s, is_ok='f' WHERE log_id=%s;".format(tb_name) args = (return_code, return_said, error_type, log_id) res = common.time_call(db_utils.do, GLB_PG_LOG_DBNAME, sql, args) log.info(u'woker_imap {} log_id={}, mail_to={}, error_type={}, return_code={}, return_said={}'.format(mode, log_id, mail_to, error_type, return_code, return_said)) # less stat_log.log | grep 'woker_imap log_id' return def do_worker_qq(smtp_account, smtp_password, smtp_list): # 通过一下方式连接smtp服务器,没有考虑异常情况,详细请参考官方文档 server = IMAPClient(GLB_IMAP_HOSTNAME, ssl= True) try: server.login(smtp_account, smtp_password) server.select_folder('INBOX') year, mouth, day = glb_p_date.split('-') date = datetime.date(int(year), int(mouth), int(day)) date2 = date - datetime.timedelta(days=1) result = server.search(['UNSEEN', 'SINCE', date2]) msgdict = server.fetch(result, ['BODY.PEEK[]'] ) msgtuple=sorted(msgdict.items(), key=lambda e:e[0], reverse=True) log_ids = [] for message_id, message in msgtuple: msg_content = message['BODY[]'] for log_id, mail_from, mail_to in smtp_list: if log_id in log_ids: continue error_type, return_said = do_email(msg_content, mail_to) if error_type is not None: log_ids.append(log_id) do_worker_imap_update(log_id, mail_to, return_said, error_type) server.add_flags(message_id, '\\seen') finally: server.logout() return # ------------------------------------ def do_email_mailrelay(mail_to, mail_from, response_code, response_text): if response_code==200: for res in response_text['return_list']: if ( res['state'] == 'fail_finished' or res['state'] == 'reject' ) and res['mail_from'] == mail_from and res['mail_to'] == mail_to: if res['error_type'] == 2: error_type = 1 elif res['error_type'] == 4: error_type = 2 else: error_type = 3 deliver_ip = res['deliver_ip'] if res['deliver_ip'] else '' return_said = u'[{}]:{} {}'.format(deliver_ip, res['deliver_time'], res['return_message']) return error_type, return_said return None, None def connect_mailrelay(url): retry = 10 while retry: try: response_code, response_text = search_mail_status.Client(url).get_asset() return response_code, response_text except BaseException as e: log.error('connect_mailrelay url={}, retry={}'.format(url, retry)) log.error(traceback.format_exc()) retry -= 1 gevent.sleep(3) return None def do_worker_mailrelay(smtp_list): if smtp_list: mail_to_list = ','.join([res[2] for res in smtp_list]) url = 'http://admin.mailrelay.cn/api_search/mail_status/?mail_to_list={}&search_date={}&search_hour={}&state={}'.format( mail_to_list, glb_p_date, glb_p_hour, 'fail_finished,reject' ) res = connect_mailrelay(url) if res is None: log.error(u'do_worker_mailrelay smtp_list={}'.format(smtp_list)) return response_code, response_text = res for log_id, mail_from, mail_to in smtp_list: error_type, return_said = do_email_mailrelay(mail_to, mail_from, response_code, response_text) if error_type is not None: do_worker_imap_update(log_id, mail_to, return_said, error_type, mode='mailrelay') return def do_woker_imap(smtp_account_id, smtp_list): sql = """ SELECT aa.account, aa.password, bb.smtp_server FROM core_mss_account aa INNER JOIN core_mss_server bb ON bb.type_id=aa.type_id WHERE aa.id=%d AND bb.smtp_server IN ('smtp.exmail.qq.com', 'smtp.mailrelay.cn') LIMIT 1; """ % (smtp_account_id, ) res = common.time_call(db_utils.query, GLB_MY_MS_DBNAME, sql) if not res: return smtp_account, smtp_password, smtp_server = res[0] if smtp_server == 'smtp.mailrelay.cn': do_worker_mailrelay(smtp_list) elif smtp_server == 'smtp.exmail.qq.com': do_worker_qq(smtp_account, smtp_password, smtp_list) return def woker_imap(): smtp_dict = getSmtpData() pool = gevent.pool.Pool(10) for smtp_account_id in smtp_dict: smtp_list = smtp_dict[smtp_account_id] pool.spawn(do_woker_imap, smtp_account_id, smtp_list) pool.join() return ############################################################ # 处理函数 # 统计指定日期的投递失败数据 def statErrorCountByDate(): # 从数据库取得统计数据 tb_name = "maillog_%s" % (glb_p_date.replace('-', '')) if glb_time_e == '24:00:00': sql = """ WITH stat_domain_tmp AS( SELECT customer_id, task_ident, recv_domain, error_type, is_ok, COUNT(*) as stat_count FROM %s WHERE send_time>='%s' AND customer_id<>'0' AND COALESCE(recv_domain, '') != '' GROUP BY customer_id, task_ident, recv_domain, error_type, is_ok ), stat_domain AS ( SELECT customer_id, task_ident, error_type, is_ok, stat_count, CASE WHEN recv_domain ='%s' THEN 'qq.com' WHEN recv_domain IN %s THEN '163.com' ELSE '*' END AS recv_domain FROM stat_domain_tmp ) SELECT customer_id, task_ident, error_type, is_ok, SUM(stat_count) AS stat_count, recv_domain FROM stat_domain GROUP BY customer_id, task_ident, error_type, is_ok, recv_domain ORDER BY customer_id, task_ident """ % (tb_name, glb_time_b, GLB_QQ_DOMAIN, str(tuple(GLB_163_DOMAIN))) else: sql = """ WITH stat_domain_tmp AS( SELECT customer_id, task_ident, recv_domain, error_type, is_ok, COUNT(*) as stat_count FROM %s WHERE send_time>='%s' AND send_time<'%s' AND customer_id<>'0' AND COALESCE(recv_domain, '') != '' GROUP BY customer_id, task_ident, recv_domain, error_type, is_ok ), stat_domain AS ( SELECT customer_id, task_ident, error_type, is_ok, stat_count, CASE WHEN recv_domain ='%s' THEN 'qq.com' WHEN recv_domain IN %s THEN '163.com' ELSE '*' END AS recv_domain FROM stat_domain_tmp ) SELECT customer_id, task_ident, error_type, is_ok, SUM(stat_count) AS stat_count, recv_domain FROM stat_domain GROUP BY customer_id, task_ident, error_type, is_ok, recv_domain ORDER BY customer_id, task_ident """ % (tb_name, glb_time_b, glb_time_e, GLB_QQ_DOMAIN, str(tuple(GLB_163_DOMAIN))) res = common.time_call(db_utils.query, GLB_PG_LOG_DBNAME, sql) # 组合数据 # stat_data = {} user_list = [] stat_data = _loop_dict() for row in res: customer_id = int(row[0]) # 初始化各域名统计数据 t_ident = row[1] if not t_ident: continue recv_domain= row[5] # 统计计数 count_err_1, count_err_2, count_err_3, count_err_5, count_success = 0, 0, 0, 0, 0 if row[2] == 1: count_err_1 = row[4] if row[2] == 2: count_err_2 = row[4] if row[2] in [0, 3, 4, 6]: count_err_3 = row[4] if row[2] == 5: count_err_5 = row[4] if row[3]: count_success = row[4] _D = stat_data[customer_id][t_ident][recv_domain] _D['count_err_1'] = _D.get('count_err_1', 0) + count_err_1 _D['count_err_2'] = _D.get('count_err_2', 0) + count_err_2 _D['count_err_3'] = _D.get('count_err_3', 0) + count_err_3 _D['count_err_5'] = _D.get('count_err_5', 0) + count_err_5 _D['count_success'] = _D.get('count_success', 0) + count_success # 取得客户列表 if customer_id not in user_list: user_list.append(customer_id) return stat_data, user_list ############################################################ # 真实发送数据统计 # 为 MySQL 数据库添加投递失败统计数据 def do_worker_stat(user_id, task_ident, recv_domain, detail_data): count_success = detail_data['count_success'] count_error = detail_data['count_err_1'] + detail_data['count_err_2'] + detail_data['count_err_3'] + detail_data['count_err_5'] log.info(u'worker_stat user_id={}, task_ident={}, domain={}, sned={}, success={}, err_5={}'.format( user_id, task_ident, recv_domain, count_success + count_error, count_success, detail_data['count_err_5'] )) t = time.localtime(time.time()) now = time.strftime("%Y-%m-%d %H:%M:%S", t) sql = """ INSERT INTO stat_task_real (customer_id, task_ident, domain, count_send, count_error, count_err_1, count_err_2, count_err_3, count_err_5, created, updated) VALUES (%d, '%s', '%s', %d, %d, %d, %d, %d, %d, '%s', '%s') ON DUPLICATE KEY UPDATE count_send=count_send + VALUES(count_send), count_error=count_error + VALUES(count_error), count_err_1=count_err_1 + VALUES(count_err_1), count_err_2=count_err_2 + VALUES(count_err_2), count_err_3=count_err_3 + VALUES(count_err_3), count_err_5=count_err_5 + VALUES(count_err_5), updated=VALUES(updated); """ % ( user_id, task_ident, recv_domain, count_success + count_error, count_error, detail_data['count_err_1'], detail_data['count_err_2'], detail_data['count_err_3'], detail_data['count_err_5'], now, now ) common.time_call(db_utils.do, GLB_MY_MS_DBNAME, sql) return def worker_stat(stat_data): pool = gevent.pool.Pool(20) for user_id in stat_data: for task_ident in stat_data[user_id]: for recv_domain in stat_data[user_id][task_ident]: pool.spawn(do_worker_stat, user_id, task_ident, recv_domain, stat_data[user_id][task_ident][recv_domain]) gevent.sleep(0.01) pool.join() return ############################################################ # 统计客户10个任务的平均发送成功率 def do_worker_task_update(user_id, domain, count_succ, count_succ_rej, count_sned, now): avg_score = round( count_succ*100.00 / count_sned, 2) if count_sned else 0 avg_score_s = round( count_succ*100.00 / count_succ_rej, 2) if count_succ_rej else 0 sql = """ INSERT INTO core_customer_score (customer_id, domain, score, score_s, created, updated) VALUES (%d, '%s', %.2f, %.2f, '%s', '%s') ON DUPLICATE KEY UPDATE score=VALUES(score), score_s=VALUES(score_s), updated=VALUES(updated); """ % ( user_id, domain, avg_score, avg_score_s, now, now ) common.time_call(db_utils.do, GLB_MY_MS_DBNAME, sql) log.info(u'worker_task user_id={}, domain={}, avg_score={}, avg_score_s={}'.format(user_id, domain, avg_score, avg_score_s)) return def do_worker_task(user_id): log.info(u'worker_task user_id={}'.format(user_id)) t = time.localtime(time.time()) now = time.strftime("%Y-%m-%d %H:%M:%S", t) sql = """ SELECT count_send, count_error, count_err_5, domain FROM stat_task_real WHERE customer_id=%d AND count_send > %d ORDER BY updated DESC LIMIT %d """ % (user_id, glb_count_send, glb_count_task) res = common.time_call(db_utils.query, GLB_MY_MS_DBNAME, sql) domin_score = defaultdict(list) for count_send, count_error, count_err_5, domain in res: # 成功 count_succ = count_send - count_error # 除去拒发 count_succ_rej = count_send - count_err_5 domin_score[domain].append( (count_succ, count_succ_rej, count_send) ) count_send_all = 0 count_succ_all = 0 count_succ_rej_all = 0 for domain, score_T in domin_score.iteritems(): count_succ_sum = float(sum( [i[0] for i in score_T] )) count_succ_rej_sum = float(sum( [i[1] for i in score_T] )) count_send_sum = float(sum( [i[2] for i in score_T] )) count_succ_all += count_succ_sum count_succ_rej_all += count_succ_rej_sum count_send_all += count_send_sum if domain == '*': continue do_worker_task_update(user_id, domain, count_succ_sum, count_succ_rej_sum, count_send_sum, now) if domin_score: domain = '*' do_worker_task_update(user_id, domain, count_succ_all, count_succ_rej_all, count_send_all, now) return def worker_task(user_list): pool = gevent.pool.Pool(5) for user_id in user_list: pool.spawn(do_worker_task, user_id) gevent.sleep(0.01) pool.join() return ############################################################ # redis服务 统计各个区间分数的客户数 def do_redis_count_s(start, end, domain): sql = "SELECT COUNT(*) FROM core_customer_score WHERE score_s>=%d AND score_s<%d AND domain='%s';" % ( start, end, domain ) res = common.time_call(db_utils.query, GLB_MY_MS_DBNAME, sql) return res[0][0] def do_redis_count(start, end, domain): sql = "SELECT COUNT(*) FROM core_customer_score WHERE score>=%d AND score<%d AND domain='%s';" % ( start, end, domain ) res = common.time_call(db_utils.query, GLB_MY_MS_DBNAME, sql) return res[0][0] def do_worker_redis_count(domain, start, end): score_key = 'score_{}_{}'.format(domain.replace('.', '_'), start) score_s_key = 'score_s_{}_{}'.format(domain.replace('.', '_'), start) count = do_redis_count(start, end, domain) redis.hset( 'edm_web_core_customer_score', key=score_key, value='{}'.format(count) ) count_s = do_redis_count_s(start, end, domain) redis.hset( 'edm_web_core_customer_score', key=score_s_key, value='{}'.format(count_s) ) log.info('worker_redis range: {}-{}, domain: {}, count: {}, count_s: {}'.format( start, end, domain, count, count_s)) return def do_worker_redis_special(domain, start, end): for start_T in range(start, end, 2): end_T = start_T + 2 do_worker_redis_count(domain, start_T, end_T) return def do_worker_redis(domain, start, end): if start == 90: do_worker_redis_special(domain, start, end) return do_worker_redis_count(domain, start, end) return def worker_redis(): pool = gevent.pool.Pool(10) for start in range(0, 100, 10): for domain in GLB_DOMAINS: end = start + 10 pool.spawn(do_worker_redis, domain, start, end) pool.join() return ############################################################ # 主函数 def main(): init() status = exitProcess() if status == 2: return log.info('start woker_imap.....') woker_imap() log.info('finish woker_imap.....') gevent.sleep(0.01) stat_data, user_list = statErrorCountByDate() log.info('start worker_stat.....') worker_stat(stat_data) log.info('finish worker_stat.....') gevent.sleep(0.01) log.info('start worker_task.....') worker_task(user_list) log.info('finish worker_task.....') gevent.sleep(0.01) log.info('start worker_redis.....') worker_redis() log.info('finish worker_redis.....') finishProcess() return if __name__ == "__main__": log_dir = os.path.join(SCRIPT, 'log') pid_dir = os.path.join(SCRIPT, 'pid') data_dir = os.path.join(SCRIPT, 'data') filetools.make_dir([log_dir, pid_dir, data_dir]) log_file = os.path.join(log_dir, 'stat_log.log') set_logger(log_file) pid_file = os.path.join(pid_dir, 'stat_log.pid') pidfile.register_pidfile(pid_file) log.info(u'program start...') t1 = time.time() EXIT_CODE = 0 try: main() except KeyboardInterrupt: signal_handle('sigint') except: log.error(traceback.format_exc()) EXIT_CODE = 1 log.info(u"program spend total time: {}".format(time.time()-t1)) log.info(u"program quit...") sys.exit(EXIT_CODE)
1.742188
2
chatbot_2/inference.py
gustasvs/AI
1
12778785
# https://github.com/tensorflow/examples/blob/master/community/en/transformer_chatbot.ipynb import tensorflow as tf # assert tf.__version__.startswith('2') tf.random.set_seed(1234) import tensorflow_datasets as tfds import os import re import numpy as np import matplotlib.pyplot as plt import pickle from functions import * from hparams import * with open('tokenizer/tokenizer.pickle', 'rb') as handle: tokenizer = pickle.load(handle) with open("tokenizer/START_TOKEN", "r") as f: START_TOKEN = [int(f.read())] with open("tokenizer/END_TOKEN", "r") as f: END_TOKEN = [int(f.read())] with open("tokenizer/VOCAB_SIZE", "r") as f: VOCAB_SIZE = int(f.read()) def evaluate(sentence): sentence = preprocess_sentence(sentence) sentence = tf.expand_dims( START_TOKEN + tokenizer.encode(sentence) + END_TOKEN, axis=0) output = tf.expand_dims(START_TOKEN, 0) for i in range(MAX_LENGTH): predictions = model(inputs=[sentence, output], training=False) # select the last word from the seq_len dimension predictions = predictions[:, -1:, :] predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) # return the result if the predicted_id is equal to the end token if tf.equal(predicted_id, END_TOKEN[0]): break # concatenated the predicted_id to the output which is given to the decoder # as its input. output = tf.concat([output, predicted_id], axis=-1) return tf.squeeze(output, axis=0) def predict(sentence): prediction = evaluate(sentence) predicted_sentence = tokenizer.decode( [i for i in prediction if i < tokenizer.vocab_size]) return predicted_sentence def create_model(): model = transformer( vocab_size=VOCAB_SIZE, num_layers=NUM_LAYERS, units=UNITS, d_model=D_MODEL, num_heads=NUM_HEADS, dropout=DROPOUT) learning_rate = CustomSchedule(D_MODEL) optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9) model.compile(optimizer=optimizer, loss=loss_function, metrics=[accuracy]) return model model = create_model() checkpoint_path = "model/cp.ckpt" model.load_weights(checkpoint_path) while True: question = input("\n--> ") if question == "" or question == None: continue output = predict(question) print(output)
2.9375
3
tests/test_cli_bulk.py
eyeseast/sqlite-utils
0
12778786
<filename>tests/test_cli_bulk.py from click.testing import CliRunner from sqlite_utils import cli, Database import pathlib import pytest import subprocess import sys import time @pytest.fixture def test_db_and_path(tmpdir): db_path = str(pathlib.Path(tmpdir) / "data.db") db = Database(db_path) db["example"].insert_all( [ {"id": 1, "name": "One"}, {"id": 2, "name": "Two"}, ], pk="id", ) return db, db_path def test_cli_bulk(test_db_and_path): db, db_path = test_db_and_path result = CliRunner().invoke( cli.cli, [ "bulk", db_path, "insert into example (id, name) values (:id, :name)", "-", "--nl", ], input='{"id": 3, "name": "Three"}\n{"id": 4, "name": "Four"}\n', ) assert result.exit_code == 0, result.output assert [ {"id": 1, "name": "One"}, {"id": 2, "name": "Two"}, {"id": 3, "name": "Three"}, {"id": 4, "name": "Four"}, ] == list(db["example"].rows) def test_cli_bulk_batch_size(test_db_and_path): db, db_path = test_db_and_path proc = subprocess.Popen( [ sys.executable, "-m", "sqlite_utils", "bulk", db_path, "insert into example (id, name) values (:id, :name)", "-", "--nl", "--batch-size", "2", ], stdin=subprocess.PIPE, stdout=sys.stdout, ) # Writing one record should not commit proc.stdin.write(b'{"id": 3, "name": "Three"}\n\n') proc.stdin.flush() time.sleep(1) assert db["example"].count == 2 # Writing another should trigger a commit: proc.stdin.write(b'{"id": 4, "name": "Four"}\n\n') proc.stdin.flush() time.sleep(1) assert db["example"].count == 4 proc.stdin.close() proc.wait() assert proc.returncode == 0 def test_cli_bulk_error(test_db_and_path): _, db_path = test_db_and_path result = CliRunner().invoke( cli.cli, [ "bulk", db_path, "insert into example (id, name) value (:id, :name)", "-", "--nl", ], input='{"id": 3, "name": "Three"}', ) assert result.exit_code == 1 assert result.output == 'Error: near "value": syntax error\n'
2.28125
2
output/models/nist_data/atomic/positive_integer/schema_instance/nistschema_sv_iv_atomic_positive_integer_white_space_1_xsd/__init__.py
tefra/xsdata-w3c-tests
1
12778787
<gh_stars>1-10 from output.models.nist_data.atomic.positive_integer.schema_instance.nistschema_sv_iv_atomic_positive_integer_white_space_1_xsd.nistschema_sv_iv_atomic_positive_integer_white_space_1 import NistschemaSvIvAtomicPositiveIntegerWhiteSpace1 __all__ = [ "NistschemaSvIvAtomicPositiveIntegerWhiteSpace1", ]
1.148438
1
Part1_Classification_VectorSpaces/C1_W2_lecture_nb_01_visualizing_naive_bayes.py
picsag/NLP
0
12778788
#!/usr/bin/env python # coding: utf-8 # # Visualizing Naive Bayes # # In this lab, we will cover an essential part of data analysis that has not been included in the lecture videos. As we stated in the previous module, data visualization gives insight into the expected performance of any model. # # In the following exercise, you are going to make a visual inspection of the tweets dataset using the Naïve Bayes features. We will see how we can understand the log-likelihood ratio explained in the videos as a pair of numerical features that can be fed in a machine learning algorithm. # # At the end of this lab, we will introduce the concept of __confidence ellipse__ as a tool for representing the Naïve Bayes model visually. # In[1]: import numpy as np # Library for linear algebra and math utils import pandas as pd # Dataframe library import matplotlib.pyplot as plt # Library for plots from utils import confidence_ellipse # Function to add confidence ellipses to charts # ## Calculate the likelihoods for each tweet # # For each tweet, we have calculated the likelihood of the tweet to be positive and the likelihood to be negative. We have calculated in different columns the numerator and denominator of the likelihood ratio introduced previously. # # $$log \frac{P(tweet|pos)}{P(tweet|neg)} = log(P(tweet|pos)) - log(P(tweet|neg)) $$ # $$positive = log(P(tweet|pos)) = \sum_{i=0}^{n}{log P(W_i|pos)}$$ # $$negative = log(P(tweet|neg)) = \sum_{i=0}^{n}{log P(W_i|neg)}$$ # # We did not include the code because this is part of this week's assignment. The __'bayes_features.csv'__ file contains the final result of this process. # # The cell below loads the table in a dataframe. Dataframes are data structures that simplify the manipulation of data, allowing filtering, slicing, joining, and summarization. # In[2]: data = pd.read_csv('data/bayes_features.csv') # Load the data from the csv file data.head(5) # Print the first 5 tweets features. Each row represents a tweet # In[3]: # Plot the samples using columns 1 and 2 of the matrix fig, ax = plt.subplots(figsize = (8, 8)) #Create a new figure with a custom size colors = ['red', 'green'] # Define a color palete sentiments = ['negative', 'positive'] index = data.index # Color base on sentiment for sentiment in data.sentiment.unique(): ix = index[data.sentiment == sentiment] ax.scatter(data.iloc[ix].positive, data.iloc[ix].negative, c=colors[int(sentiment)], s=0.1, marker='*', label=sentiments[int(sentiment)]) ax.legend(loc='best') # Custom limits for this chart plt.xlim(-250,0) plt.ylim(-250,0) plt.xlabel("Positive") # x-axis label plt.ylabel("Negative") # y-axis label plt.show() # # Using Confidence Ellipses to interpret Naïve Bayes # # In this section, we will use the [confidence ellipse]( https://matplotlib.org/3.1.1/gallery/statistics/confidence_ellipse.html#sphx-glr-gallery-statistics-confidence-ellipse-py) to give us an idea of what the Naïve Bayes model see. # # A confidence ellipse is a way to visualize a 2D random variable. It is a better way than plotting the points over a cartesian plane because, with big datasets, the points can overlap badly and hide the real distribution of the data. Confidence ellipses summarize the information of the dataset with only four parameters: # # * Center: It is the numerical mean of the attributes # * Height and width: Related with the variance of each attribute. The user must specify the desired amount of standard deviations used to plot the ellipse. # * Angle: Related with the covariance among attributes. # # The parameter __n_std__ stands for the number of standard deviations bounded by the ellipse. Remember that for normal random distributions: # # * About 68% of the area under the curve falls within 1 standard deviation around the mean. # * About 95% of the area under the curve falls within 2 standard deviations around the mean. # * About 99.7% of the area under the curve falls within 3 standard deviations around the mean. # # <img src=./images/std.jpg width="400" > # # # In the next chart, we will plot the data and its corresponding confidence ellipses using 2 std and 3 std. # In[ ]: # Plot the samples using columns 1 and 2 of the matrix fig, ax = plt.subplots(figsize = (8, 8)) colors = ['red', 'green'] # Define a color palete sentiments = ['negative', 'positive'] index = data.index # Color base on sentiment for sentiment in data.sentiment.unique(): ix = index[data.sentiment == sentiment] ax.scatter(data.iloc[ix].positive, data.iloc[ix].negative, c=colors[int(sentiment)], s=0.1, marker='*', label=sentiments[int(sentiment)]) # Custom limits for this chart plt.xlim(-200, 40) plt.ylim(-200, 40) plt.xlabel("Positive") # x-axis label plt.ylabel("Negative") # y-axis label data_pos = data[data.sentiment == 1] # Filter only the positive samples data_neg = data[data.sentiment == 0] # Filter only the negative samples # Print confidence ellipses of 2 std confidence_ellipse(data_pos.positive, data_pos.negative, ax, n_std=2, edgecolor='black', label=r'$2\sigma$' ) confidence_ellipse(data_neg.positive, data_neg.negative, ax, n_std=2, edgecolor='orange') # Print confidence ellipses of 3 std confidence_ellipse(data_pos.positive, data_pos.negative, ax, n_std=3, edgecolor='black', linestyle=':', label=r'$3\sigma$') confidence_ellipse(data_neg.positive, data_neg.negative, ax, n_std=3, edgecolor='orange', linestyle=':') ax.legend(loc='lower right') plt.show() # In the next cell, we will modify the features of the samples with positive sentiment (1), in a way that the two distributions overlap. In this case, the Naïve Bayes method will produce a lower accuracy than with the original data. # In[ ]: data2 = data.copy() # Copy the whole data frame # The following 2 lines only modify the entries in the data frame where sentiment == 1 data2.negative[data.sentiment == 1] = data2.negative * 1.5 + 50 # Modify the negative attribute data2.positive[data.sentiment == 1] = data2.positive / 1.5 - 50 # Modify the positive attribute # Now let us plot the two distributions and the confidence ellipses # In[ ]: # Plot the samples using columns 1 and 2 of the matrix fig, ax = plt.subplots(figsize = (8, 8)) colors = ['red', 'green'] # Define a color palete sentiments = ['negative', 'positive'] index = data2.index # Color base on sentiment for sentiment in data2.sentiment.unique(): ix = index[data2.sentiment == sentiment] ax.scatter(data2.iloc[ix].positive, data2.iloc[ix].negative, c=colors[int(sentiment)], s=0.1, marker='*', label=sentiments[int(sentiment)]) #ax.scatter(data2.positive, data2.negative, c=[colors[int(k)] for k in data2.sentiment], s = 0.1, marker='*') # Plot a dot for tweet # Custom limits for this chart plt.xlim(-200,40) plt.ylim(-200,40) plt.xlabel("Positive") # x-axis label plt.ylabel("Negative") # y-axis label data_pos = data2[data2.sentiment == 1] # Filter only the positive samples data_neg = data[data2.sentiment == 0] # Filter only the negative samples # Print confidence ellipses of 2 std confidence_ellipse(data_pos.positive, data_pos.negative, ax, n_std=2, edgecolor='black', label=r'$2\sigma$' ) confidence_ellipse(data_neg.positive, data_neg.negative, ax, n_std=2, edgecolor='orange') # Print confidence ellipses of 3 std confidence_ellipse(data_pos.positive, data_pos.negative, ax, n_std=3, edgecolor='black', linestyle=':', label=r'$3\sigma$') confidence_ellipse(data_neg.positive, data_neg.negative, ax, n_std=3, edgecolor='orange', linestyle=':') ax.legend(loc='lower right') plt.show() # To give away: Understanding the data allows us to predict if the method will perform well or not. Alternatively, it will allow us to understand why it worked well or bad.
4.34375
4
scripts/csv2json.py
C0deAi/parkfinder-backend
2
12778789
import sys import csv import json def main(data_csv, outfile='out.json'): with open(data_csv, 'r', encoding='utf-8-sig') as datafile: reader = csv.DictReader(datafile) output = { 'parks': [dict(row) for row in reader], } with open(outfile, 'w') as out: json.dump(output, out) if __name__ == '__main__': infile, outfile = sys.argv[1], sys.argv[2] print('Writing data from {} to {}'.format(infile, outfile)) main(sys.argv[1], sys.argv[2])
3.390625
3
src/301-350/P323.py
lord483/Project-Euler-Solutions
0
12778790
<reponame>lord483/Project-Euler-Solutions import numpy as np from time import time from numba import jit # @jit def solve(times): upper = 2**32 - 1 cnts = 0 m = 0 for _ in range(times): cnt = 0 r = 0 random_block = np.random.randint( low=0, high=upper, size=40, dtype="uint32") while (r != upper): r = r | random_block[cnt] cnt += 1 m = cnt if cnt > m else m cnts += cnt print("Max : ", m, " steps: ", times) return (cnts * 1.0) / times if __name__ == "__main__": t0 = time() res = solve(times=10**7) print("Final Result : {:.10f} . Time taken : {:.2f} secs.".format( res, time() - t0))
3.109375
3
setup.py
thierry-tct/muteria
1
12778791
<reponame>thierry-tct/muteria # #> python3 -m pip install --user --upgrade setuptools wheel #> python3 -m pip install --user --upgrade twine # #> python3 setup.py sdist bdist_wheel #> python3 -m twine upload dist/muteria-<version>.tar.gz #> rm -rf dist build muteria.egg-info __pycache__/ # import os from setuptools import setup, find_packages thisdir = os.path.dirname(os.path.abspath(__file__)) # get __version__, _framework_name exec(open(os.path.join(thisdir, 'muteria', '_version.py')).read()) def get_long_description(): with open(os.path.join(thisdir, "README.md"), "r") as fh: long_description = fh.read() return long_description def get_requirements_list(): """ requirements_list = [] with open(os.path.join(thisdir, "requirements.txt"), "r") as fh: for line in fh: req = line.strip().split() if len(req) > 0 and not req[0].startswith('#'): requirements_list.append(req[0]) """ requirements_list = [ "numpy", "pandas", "scipy", "matplotlib", "networkx", "gitpython", "tqdm", "joblib", "jinja2", #docker # https://docker-py.readthedocs.io/en/stable/index.html #sh # easy subprocess creation #enum #(python 2.7) # SERVER #"flask", #"flask_socketio" ] return requirements_list setup( # This is the name of your PyPI-package. name=_framework_name, python_requires='>3.3.0', # Update the version number for new releases version=__version__, description='Software Analysis and Testing Framework', long_description=get_long_description(), long_description_content_type='text/markdown', author='<NAME>', author_email='<EMAIL>', url='https://github.com/muteria/muteria', packages = ['muteria'], #packages=find_packages(), #py_modules = ['_version'], include_package_data=True, install_requires = get_requirements_list(), # The name of your scipt, and also the command you'll be using for calling it #scripts=['cli/muteria'], entry_points={ 'console_scripts': [ 'muteria=muteria.cli.cli:main', ], }, classifiers=[ 'Development Status :: 3 - Alpha', 'Natural Language :: English', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Topic :: Software Development :: Testing', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Operating System :: MacOS', 'Operating System :: POSIX :: Linux', 'Operating System :: POSIX :: BSD', 'Programming Language :: Python', 'Programming Language :: Python :: 3', ] )
1.703125
2
attendance_generator.py
innovator-creator-maker/Face-Recognition-Attendance-System
0
12778792
# Recognise Faces using some classification algorithm - like Logistic, KNN, SVM etc. # 1. load the training data (numpy arrays of all the persons) # x- values are stored in the numpy arrays # y-values we need to assign for each person # 2. Read a video stream using opencv # 3. extract faces out of it # 4. use knn to find the prediction of face (int) # 5. map the predicted id to name of the user # 6. Display the predictions on the screen - bounding box and name import cv2 import numpy as np import os from datetime import datetime import time ########## KNN CODE ############ def distance(v1, v2): # Eucledian return np.sqrt(((v1 - v2) ** 2).sum()) def markAttendence(name): with open('present.csv', 'r+') as f: total_student_in_class = f.readline() print(total_student_in_class) nameList = [] absstuds = [] for line in total_student_in_class: entry = line.split(',') nameList.append(entry[0]) if name not in nameList: now = datetime.now() dtString = now.strftime('%H:%M:%S') f.writelines(f'\nthe present students are : \n{name},{dtString}') def maarkattndnce(namees): with open('absent.csv', 'r+') as f: absstuds = [] for nam in total_student_in_class: if nam not in class_total_present: entry = nam.split(',') absstuds.append(entry[0]) if namees not in absstuds: f.writelines(f'\nabsent students are : \n{absstuds}') def knn(train, test, k=5): dist = [] for i in range(train.shape[0]): # Get the vector and label ix = train[i, :-1] iy = train[i, -1] # Compute the distance from test point d = distance(test, ix) dist.append([d, iy]) # Sort based on distance and get top k dk = sorted(dist, key=lambda x: x[0])[:k] # Retrieve only the labels labels = np.array(dk)[:, -1] # Get frequencies of each label output = np.unique(labels, return_counts=True) # Find max frequency and corresponding label index = np.argmax(output[1]) return output[0][index] ################################ # Init Camera cap = cv2.VideoCapture(0) # Face Detection face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml") skip = 0 dataset_path = "C:/Users/Samarth/Desktop/knn/data/" face_data = [] number = [] labels = [] class_id = 0 # Labels for the given file names = {} # Mapping btw id - name # Data Preparation for fx in os.listdir(dataset_path): if fx.endswith('.npy'): # Create a mapping btw class_id and name names[class_id] = fx[:-4] print("Loaded " + fx) data_item = np.load(dataset_path + fx) face_data.append(data_item) # Create Labels for the class target = class_id * np.ones((data_item.shape[0],)) class_id += 1 labels.append(target) face_dataset = np.concatenate(face_data, axis=0) face_labels = np.concatenate(labels, axis=0).reshape((-1, 1)) print(face_dataset.shape) print(face_labels.shape) trainset = np.concatenate((face_dataset, face_labels), axis=1) print(trainset.shape) # Testing attn = [] appn = [] while True: ret, frame = cap.read() if ret == False: continue faces = face_cascade.detectMultiScale(frame, 1.3, 5) if (len(faces) == 0): continue for face in faces: x, y, w, h = face # Get the face ROI offset = 10 face_section = frame[y - offset:y + h + offset, x - offset:x + w + offset] face_section = cv2.resize(face_section, (100, 100)) # Predicted Label (out) out = knn(trainset, face_section.flatten()) # Display on the screen the name and rectangle around it pred_name = names[int(out)] cv2.putText(frame, pred_name, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2) if pred_name not in attn: attn.append(pred_name) else: continue markAttendence(pred_name) cv2.imshow("Faces", frame) path = "C:/Users/Samarth/Desktop/knn/data/" images = [] # LIST CONTAINING ALL THE IMAGES className = [] # LIST CONTAINING ALL THE CORRESPONDING CLASS Names myList = os.listdir(path) for cl in myList: curImg = cv2.imread(f'{path}/{cl}') images.append(curImg) className.append(os.path.splitext(cl)[0]) total_student_in_class = list(className) ###the toatl students in this class print(total_student_in_class) class_total_present = list(attn) #print(attn) res_list = [] for i in total_student_in_class: if i not in class_total_present: res_list.append(i) print(res_list) maarkattndnce(i) # ai = tuple(total_student_in_class) #name of all the students as a tuple #print(ai) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break cap.release() cv2.destroyAllWindows()
3.625
4
structuralglass/__init__.py
normanrichardson/StructGlassCalcs
9
12778793
import pint from . import resources try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources # Load the file stream for the units file unit_file = pkg_resources.open_text(resources, "unit_def.txt") # Setup pint for the package ureg = pint.UnitRegistry() Q_ = ureg.Quantity ureg.load_definitions(unit_file)
2.4375
2
qiling/qiling/os/posix/stat.py
mrTavas/owasp-fstm-auto
2
12778794
<gh_stars>1-10 #!/usr/bin/env python3 # # Cross Platform and Multi Architecture Advanced Binary Emulation Framework # import os class StatBase: def __init__(self): self._stat_buf = None # Never iterate this object! def __getitem__(self, key): if type(key) is not str: raise TypeError if not key.startswith("__") and key in dir(self._stat_buf): return self._stat_buf.__getattribute__(key) return 0 def __getattr__(self, key): return self.__getitem__(key) class Stat(StatBase): def __init__(self, path): super(Stat, self).__init__() self._stat_buf = os.stat(path) class Fstat(StatBase): def __init__(self, fd): super(Fstat, self).__init__() self._stat_buf = os.fstat(fd) class Lstat(StatBase): def __init__(self, path): super(Lstat, self).__init__() self._stat_buf = os.lstat(path)
2.515625
3
corehq/apps/sms/tests/opt_tests.py
akashkj/commcare-hq
471
12778795
from django.test import TestCase from corehq.apps.accounting.models import SoftwarePlanEdition from corehq.apps.accounting.tests.utils import DomainSubscriptionMixin from corehq.apps.accounting.utils import clear_plan_version_cache from corehq.apps.domain.models import Domain from corehq.messaging.smsbackends.test.models import SQLTestSMSBackend from corehq.apps.sms.api import incoming, send_sms_to_verified_number from corehq.apps.sms.messages import MSG_OPTED_IN, MSG_OPTED_OUT, get_message from corehq.apps.sms.models import SMS, PhoneBlacklist, PhoneNumber, SQLMobileBackendMapping, SQLMobileBackend from corehq.apps.sms.tests.util import ( delete_domain_phone_numbers, setup_default_sms_test_backend, ) from corehq.form_processor.tests.utils import FormProcessorTestUtils class OptTestCase(DomainSubscriptionMixin, TestCase): @classmethod def setUpClass(cls): super(OptTestCase, cls).setUpClass() cls.domain = 'opt-test' cls.domain_obj = Domain(name=cls.domain) cls.domain_obj.sms_case_registration_enabled = True cls.domain_obj.save() cls.setup_subscription(cls.domain, SoftwarePlanEdition.ADVANCED) cls.backend, cls.backend_mapping = setup_default_sms_test_backend() cls.custom_backend = SQLTestSMSBackend.objects.create( name='MOBILE_BACKEND_CUSTOM_TEST', is_global=True, hq_api_id=SQLTestSMSBackend.get_api_id(), opt_in_keywords=['RESTART'], opt_out_keywords=['RESTOP'] ) cls.custom_backend_mapping = SQLMobileBackendMapping.objects.create( is_global=True, backend_type=SQLMobileBackend.SMS, prefix='1', backend=cls.custom_backend, ) @classmethod def tearDownClass(cls): cls.backend_mapping.delete() cls.backend.delete() cls.custom_backend_mapping.delete() cls.custom_backend.delete() FormProcessorTestUtils.delete_all_cases(cls.domain) cls.teardown_subscriptions() cls.domain_obj.delete() clear_plan_version_cache() super(OptTestCase, cls).tearDownClass() def tearDown(self): PhoneBlacklist.objects.all().delete() SMS.objects.filter(domain=self.domain).delete() delete_domain_phone_numbers(self.domain) def get_last_sms(self, phone_number): return SMS.objects.filter(domain=self.domain, phone_number=phone_number).order_by('-date')[0] def test_opt_out_and_opt_in(self): self.assertEqual(PhoneBlacklist.objects.count(), 0) incoming('99912345678', 'join opt-test', 'GVI') v = PhoneNumber.get_two_way_number('99912345678') self.assertIsNotNone(v) incoming('99912345678', 'stop', 'GVI') self.assertEqual(PhoneBlacklist.objects.count(), 1) phone_number = PhoneBlacklist.objects.get(phone_number='99912345678') self.assertFalse(phone_number.send_sms) self.assertEqual(phone_number.domain, self.domain) self.assertIsNotNone(phone_number.last_sms_opt_out_timestamp) self.assertIsNone(phone_number.last_sms_opt_in_timestamp) sms = self.get_last_sms('+99912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, get_message(MSG_OPTED_OUT, context=('START',))) incoming('99912345678', 'start', 'GVI') self.assertEqual(PhoneBlacklist.objects.count(), 1) phone_number = PhoneBlacklist.objects.get(phone_number='99912345678') self.assertTrue(phone_number.send_sms) self.assertEqual(phone_number.domain, self.domain) self.assertIsNotNone(phone_number.last_sms_opt_out_timestamp) self.assertIsNotNone(phone_number.last_sms_opt_in_timestamp) sms = self.get_last_sms('+99912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, get_message(MSG_OPTED_IN, context=('STOP',))) def test_sending_to_opted_out_number(self): self.assertEqual(PhoneBlacklist.objects.count(), 0) incoming('99912345678', 'join opt-test', 'GVI') v = PhoneNumber.get_two_way_number('99912345678') self.assertIsNotNone(v) send_sms_to_verified_number(v, 'hello') sms = self.get_last_sms('+99912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, 'hello') incoming('99912345678', 'stop', 'GVI') self.assertEqual(PhoneBlacklist.objects.count(), 1) phone_number = PhoneBlacklist.objects.get(phone_number='99912345678') self.assertFalse(phone_number.send_sms) send_sms_to_verified_number(v, 'hello') sms = self.get_last_sms('+99912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, 'hello') self.assertTrue(sms.error) self.assertEqual(sms.system_error_message, SMS.ERROR_PHONE_NUMBER_OPTED_OUT) incoming('99912345678', 'start', 'GVI') self.assertEqual(PhoneBlacklist.objects.count(), 1) phone_number = PhoneBlacklist.objects.get(phone_number='99912345678') self.assertTrue(phone_number.send_sms) send_sms_to_verified_number(v, 'hello') sms = self.get_last_sms('+99912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, 'hello') self.assertFalse(sms.error) self.assertIsNone(sms.system_error_message) def test_custom_opt_keywords(self): self.assertEqual(PhoneBlacklist.objects.count(), 0) incoming('19912345678', 'join opt-test', 'TEST') v = PhoneNumber.get_two_way_number('19912345678') self.assertIsNotNone(v) send_sms_to_verified_number(v, 'hello') sms = self.get_last_sms('+19912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, 'hello') incoming('19912345678', 'restop', 'TEST') self.assertEqual(PhoneBlacklist.objects.count(), 1) phone_number = PhoneBlacklist.objects.get(phone_number='19912345678') self.assertFalse(phone_number.send_sms) send_sms_to_verified_number(v, 'hello') sms = self.get_last_sms('+19912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, 'hello') self.assertTrue(sms.error) self.assertEqual(sms.system_error_message, SMS.ERROR_PHONE_NUMBER_OPTED_OUT) incoming('19912345678', 'restart', 'TEST') self.assertEqual(PhoneBlacklist.objects.count(), 1) phone_number = PhoneBlacklist.objects.get(phone_number='19912345678') self.assertTrue(phone_number.send_sms) send_sms_to_verified_number(v, 'hello') sms = self.get_last_sms('+19912345678') self.assertEqual(sms.direction, 'O') self.assertEqual(sms.text, 'hello') self.assertFalse(sms.error) self.assertIsNone(sms.system_error_message)
1.851563
2
torchir/regularization.py
BDdeVos/TorchIR
9
12778796
import torch from torch import Tensor from torchir.utils import identity_grid def bending_energy_3d( coord_grid: Tensor, vector_dim: int = -1, dvf_input: bool = False ) -> Tensor: """Calculates bending energy penalty for a 3D coordinate grid. For further details regarding this regularization please read the work by `Rueckert 1999`_. Args: coord_grid: 3D coordinate grid, i.e. a 5D Tensor with standard dimensions (n_samples, 3, z, y, x). vector_dim: Specifies the location of the vector dimension. Default: -1 dvf_input: If ``True``, coord_grid is assumed a displacement vector field and an identity_grid will be added. Default: ``False`` Returns: Bending energy per instance in the batch. .. _Rueckert 1999: https://ieeexplore.ieee.org/document/796284 """ assert coord_grid.ndim == 5, "Input tensor should be 5D, i.e. 3D images." if vector_dim != 1: coord_grid = coord_grid.movedim(vector_dim, -1) if dvf_input: coord_grid = coord_grid + identity_grid(coord_grid.shape[2:], stackdim=0) d_z = torch.diff(coord_grid, dim=1) d_y = torch.diff(coord_grid, dim=2) d_x = torch.diff(coord_grid, dim=3) d_zz = torch.diff(d_z, dim=1)[:, :, :-2, :-2] d_zy = torch.diff(d_z, dim=2)[:, :-1, :-1, :-2] d_zx = torch.diff(d_z, dim=3)[:, :-1, :-2, :-1] d_yy = torch.diff(d_y, dim=2)[:, :-2, :, :-2] d_yx = torch.diff(d_y, dim=3)[:, :-2, :-1, :-1] d_xx = torch.diff(d_x, dim=3)[:, :-2, :-2, :] return torch.mean( d_zz ** 2 + d_yy ** 2 + d_xx ** 2 + 2 * (d_zy ** 2 + d_zx ** 2 + d_yx ** 2), axis=(1, 2, 3, 4), ) def bending_energy_2d( coord_grid: Tensor, vector_dim: int = -1, dvf_input: bool = False ) -> Tensor: """Calculates bending energy penalty for a 2D coordinate grid. For further details regarding this regularization please read the work by `Rueckert 1999`_. Args: coord_grid: 2D coordinate grid, i.e. a 4D Tensor with standard dimensions (n_samples, 2, y, x). vector_dim: Specifies the location of the vector dimension. Default: -1 dvf_input: If ``True``, coord_grid is assumed a displacement vector field and an identity_grid will be added. Default: ``False`` Returns: Bending energy per instance in the batch. .. _Rueckert 1999: https://ieeexplore.ieee.org/document/796284 """ assert coord_grid.ndim == 4, "Input tensor should be 4D, i.e. 2D images." if vector_dim != 1: coord_grid = coord_grid.movedim(vector_dim, -1) if dvf_input: coord_grid = coord_grid + identity_grid(coord_grid.shape[2:], stackdim=0) d_y = torch.diff(coord_grid, dim=1) d_x = torch.diff(coord_grid, dim=2) d_yy = torch.diff(d_y, dim=1)[:, :, :-2] d_yx = torch.diff(d_y, dim=2)[:, :-1, :-1] d_xx = torch.diff(d_x, dim=2)[:, :-2, :] return torch.mean(d_yy ** 2 + d_xx ** 2 + 2 * d_yx ** 2, axis=(1, 2, 3))
2.90625
3
codeforces/600C_palindrom.py
snsokolov/contests
1
12778797
#!/usr/bin/env python3 # 600C_palindrom.py - Codeforces.com/problemset/problem/600/C by Sergey 2015 import unittest import sys ############################################################################### # Palindrom Class (Main Program) ############################################################################### class Palindrom: """ Palindrom representation """ def __init__(self, test_inputs=None): """ Default constructor """ it = iter(test_inputs.split("\n")) if test_inputs else None def uinput(): return next(it) if it else sys.stdin.readline().rstrip() # Reading single elements self.s = uinput() self.cnt = {} for c in self.s: self.cnt[c] = self.cnt.get(c, 0) + 1 self.pcnt = dict(self.cnt) for i in reversed(sorted(self.pcnt)): if self.pcnt[i] % 2: self.pcnt[i] -= 1 found = 0 for j in sorted(self.pcnt): if self.pcnt[j] % 2: self.pcnt[j] += 1 found = 1 break if not found: self.pcnt[i] += 1 def calculate(self): """ Main calcualtion function of the class """ result = [] mid = [] for c in sorted(self.pcnt): n = self.pcnt[c] if n > 0: for j in range(n // 2): result.append(c) if n % 2: mid.append(c) return "".join(result + mid + list(reversed(result))) ############################################################################### # Unit Tests ############################################################################### class unitTests(unittest.TestCase): def test_single_test(self): """ Palindrom class testing """ # Constructor test test = "aabc" d = Palindrom(test) self.assertEqual(d.cnt["c"], 1) self.assertEqual(d.pcnt["c"], 0) # Sample test self.assertEqual(Palindrom(test).calculate(), "abba") # Sample test test = "aabcd" self.assertEqual(Palindrom(test).calculate(), "abcba") # Sample test test = "aabbcccdd" self.assertEqual(Palindrom(test).calculate(), "abcdcdcba") # My tests test = "" # self.assertEqual(Palindrom(test).calculate(), "0") # Time limit test # self.time_limit_test(5000) def time_limit_test(self, nmax): """ Timelimit testing """ import random import timeit # Random inputs test = str(nmax) + " " + str(nmax) + "\n" numnums = [str(i) + " " + str(i+1) for i in range(nmax)] test += "\n".join(numnums) + "\n" nums = [random.randint(1, 10000) for i in range(nmax)] test += " ".join(map(str, nums)) + "\n" # Run the test start = timeit.default_timer() d = Palindrom(test) calc = timeit.default_timer() d.calculate() stop = timeit.default_timer() print("\nTimelimit Test: " + "{0:.3f}s (init {1:.3f}s calc {2:.3f}s)". format(stop-start, calc-start, stop-calc)) if __name__ == "__main__": # Avoiding recursion limitaions sys.setrecursionlimit(100000) if sys.argv[-1] == "-ut": unittest.main(argv=[" "]) # Print the result string sys.stdout.write(Palindrom().calculate())
3.671875
4
MnistClassifier/DataSetImageView.py
Ingener74/Nizaje
0
12778798
<reponame>Ingener74/Nizaje #!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.figure import Figure class DataSetImageView(FigureCanvas): def __init__(self, parent=None, width=5, height=5, dpi=100): self.figure = Figure((width, height), dpi) self.axis = self.figure.add_subplot(111) self.set_data(np.array([ [1, 0, 1], [0, 1, 1], [0, 1, 0] ], 'float32')) super(DataSetImageView, self).__init__(self.figure) self.setParent(parent) def set_data(self, data: np.ndarray): self.figure.clf() self.axis = self.figure.add_subplot(111) self.axis.imshow(data) self.figure.canvas.draw()
2.609375
3
py2latex/markdown_parser/__init__.py
domdfcoding/py2latex
1
12778799
<gh_stars>1-10 #!/usr/bin/env python # # __init__.py # # Copyright © 2020 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. # # Parts based on https://github.com/rufuspollock/markdown2latex # BSD Licensed # Authored by <NAME>: <http://www.rufuspollock.org/> # Reworked by <NAME> (<EMAIL>) and # <NAME> (<EMAIL>) # # stdlib import os import pathlib import re from typing import Union # 3rd party import markdown import markdown.treeprocessors # type: ignore import markdown.util # type: ignore # this package from py2latex.markdown_parser.images import ImageTextPostProcessor from py2latex.markdown_parser.links import LinkTextPostProcessor from py2latex.markdown_parser.maths import MathTextPostProcessor from py2latex.markdown_parser.tables import TableTextPostProcessor from py2latex.markdown_parser.utils import escape_latex_entities, unescape_html_entities __all__ = [ "LaTeXExtension", "LaTeXTreeProcessor", "UnescapeHtmlTextPostProcessor", "gls", "load_markdown", "parse_markdown" ] def gls(name): return rf"\gls{{{name}}}" def load_markdown(filename: Union[str, pathlib.Path, os.PathLike]) -> str: if not isinstance(filename, pathlib.Path): filename = pathlib.Path(filename) return parse_markdown(filename.read_text()) def parse_markdown(string): out = md.convert(string) out = re.sub(r"</?root>", '', out) out = re.sub(r"gls{([^}]*)}", r"\\gls{\1}", out) out = re.sub(r"citep{([^}]*)}", r"~\\citep{\1}", out) out = re.sub(r"cite{([^}]*)}", r"~\\cite{\1}", out) # text_md = re.sub(r"\*\*(.+)\*\*", r"\\textbf{\1}", text_md) # text_md = re.sub(r"\*(.+)\*", r"\\textit{\1}", text_md) out = re.sub(r"<sup>(.+)</sup>", r"\\textsuperscript{\1}", out) out = re.sub(r"<sub>(.+)</sub>", r"\\textsubscript{\1}", out) out = re.sub(r"<sub>(.+)</sub>", r"\\textsubscript{\1}", out) return out class LaTeXExtension(markdown.extensions.Extension): def __init__(self, configs=None): self.reset() def extendMarkdown(self, md, md_globals): self.md = md # remove escape pattern -- \\(.*) -- as this messes up any embedded # math and we don't need to escape stuff any more for html # for key, pat in self.md.inlinePatterns.items(): # if pat.pattern == markdown.inlinepatterns.ESCAPE_RE: # self.md.inlinePatterns.pop(key) # break # footnote_extension = FootnoteExtension() # footnote_extension.extendMarkdown(md, md_globals) latex_tp = LaTeXTreeProcessor() math_pp = MathTextPostProcessor() table_pp = TableTextPostProcessor() image_pp = ImageTextPostProcessor() link_pp = LinkTextPostProcessor() unescape_html_pp = UnescapeHtmlTextPostProcessor() md.treeprocessors["latex"] = latex_tp md.postprocessors["unescape_html"] = unescape_html_pp md.postprocessors["math"] = math_pp md.postprocessors["image"] = image_pp md.postprocessors["table"] = table_pp md.postprocessors["link"] = link_pp def reset(self): pass class LaTeXTreeProcessor(markdown.treeprocessors.Treeprocessor): def run(self, doc): """Walk the dom converting relevant nodes to text nodes with relevant content.""" latex_text = self.tolatex(doc) doc.clear() latex_node = markdown.util.etree.Element("root") latex_node.text = latex_text doc.append(latex_node) def tolatex(self, ournode): buffer = '' subcontent = '' if ournode.text: subcontent += escape_latex_entities(ournode.text) if ournode.getchildren(): for child in ournode.getchildren(): subcontent += self.tolatex(child) if ournode.tag == "h1": buffer += f"\n\\chapter{{{subcontent}}}" buffer += f"'\n\\label{{chapter:{subcontent.lower().replace(' ', '_')}}}\n'" elif ournode.tag == "h2": buffer += f"\n\n\\section{{{subcontent}}}" buffer += f"'\n\\label{{section:{subcontent.lower().replace(' ', '_')}}}\n'" elif ournode.tag == "h3": buffer += f"\n\n\\subsection{{{subcontent}}}" buffer += f"'\n\\label{{subsection:{subcontent.lower().replace(' ', '_')}}}\n'" elif ournode.tag == "h4": buffer += f"\n\\subsubsection{{{subcontent}}}" buffer += f"'\n\\label{{subsubsection:{subcontent.lower().replace(' ', '_')}}}\n'" elif ournode.tag == "hr": buffer += "\\noindent\\makebox[\\linewidth]{\\rule{\\linewidth}{0.4pt}}" elif ournode.tag == "ul": # no need for leading \n as one will be provided by li buffer += f""" \\begin{{itemize}}{subcontent} \\end{{itemize}} """ elif ournode.tag == "ol": # no need for leading \n as one will be provided by li buffer += f""" \\begin{{enumerate}}{subcontent} \\end{{enumerate}} """ elif ournode.tag == "li": buffer += f""" \\item {subcontent.strip()}""" elif ournode.tag == "blockquote": # use quotation rather than quote as quotation can support multiple # paragraphs buffer += f""" \\begin{{quotation}} {subcontent.strip()} \\end{{quotation}} """ # ignore 'code' when inside pre tags # (mkdn produces <pre><code></code></pre>) elif ( ournode.tag == "pre" or (ournode.tag == "pre" and ournode.parentNode.tag != "pre") # TODO: Take a look here ): buffer += f""" \\begin{{verbatim}} {subcontent.strip()} \\end{{verbatim}} """ elif ournode.tag == 'q': buffer += f"`{subcontent.strip()}'" elif ournode.tag == 'p': buffer += f"\n{subcontent.strip()}\n" # Footnote processor inserts all of the footnote in a sup tag elif ournode.tag == "sup": buffer += f"\\footnote{{{subcontent.strip()}}}" elif ournode.tag == "strong": buffer += f"\\textbf{{{subcontent.strip()}}}" elif ournode.tag == "em": buffer += f"\\emph{{{subcontent.strip()}}}" # Keep table strcuture. TableTextPostProcessor will take care. elif ournode.tag == "table": buffer += f"\n\n<table>{subcontent}</table>\n\n" elif ournode.tag == "thead": buffer += f"<thead>{subcontent}</thead>" elif ournode.tag == "tbody": buffer += f"<tbody>{subcontent}</tbody>" elif ournode.tag == "tr": buffer += f"<tr>{subcontent}</tr>" elif ournode.tag == "th": buffer += f"<th>{subcontent}</th>" elif ournode.tag == "td": buffer += f"<td>{subcontent}</td>" elif ournode.tag == "img": buffer += f'<img src=\"{ournode.get("src")}\" alt=\"{ournode.get("alt")}\" />' elif ournode.tag == 'a': buffer += f'<a href=\"{ournode.get("href")}\">{subcontent}</a>' else: buffer = subcontent if ournode.tail: buffer += escape_latex_entities(ournode.tail) return buffer class UnescapeHtmlTextPostProcessor(markdown.postprocessors.Postprocessor): def run(self, text): return unescape_html_entities(text) md = markdown.Markdown() latex_mdx = LaTeXExtension() latex_mdx.extendMarkdown(md, markdown.__dict__)
1.507813
2
vesicashapi/__init__.py
vesicash/vesicash-python-sdk
0
12778800
import os """Script used to define constants""" PRIVATE_KEY = os.getenv( 'VESICASH_PRIVATE_KEY', '<KEY>' ) HEADERS = {'V-Private-Key': PRIVATE_KEY} api_url = '' mode = os.getenv('VESICASH_MODE') if(mode == 'sandbox'): API_URL = 'https://sandbox.api.vesicash.com/v1/' else: API_URL = 'https://api.vesicash.com/v1/'
2.203125
2
projects/avatar_cropping/main.py
IDilettant/training-mini-projects
0
12778801
<gh_stars>0 from PIL import Image def cropp_avatar(): image_monroe = Image.open('monro.jpg') red_channel, green_channel, blue_channel = image_monroe.split() cutting_width = 50 red_channel_1 = red_channel.crop((cutting_width, 0, red_channel.width, red_channel.height)) red_channel_2 = red_channel.crop((cutting_width / 2, 0, red_channel.width - cutting_width / 2, red_channel.height)) blended_red_channel = Image.blend(red_channel_1, red_channel_2, 0.5) blue_channel_1 = red_channel.crop((0, 0, blue_channel.width - cutting_width, blue_channel.height)) blue_channel_2 = blue_channel.crop((cutting_width / 2, 0, blue_channel.width - cutting_width / 2, blue_channel.height)) blended_blue_channel = Image.blend(blue_channel_1, blue_channel_2, 0.5) cropped_green_channel = green_channel.crop((cutting_width / 2, 0, green_channel.width - cutting_width / 2, green_channel.height)) blurry_image = Image.merge('RGB', (blended_red_channel, cropped_green_channel, blended_blue_channel)) blurry_image.save('blurry_image.jpg') blurry_image.thumbnail((80, 80), Image.ANTIALIAS) blurry_image.save('blurry_avatar.jpg') if __name__ == '__main__': cropp_avatar()
2.609375
3
tests/conftest.py
kostya-ten/iperon
1
12778802
<filename>tests/conftest.py import asyncio from http.cookies import SimpleCookie import httpx import pytest from fastapi import Response from httpx import AsyncClient from tortoise import Tortoise from iperon import services, store, typeof, redis from iperon.app import app as iperon_app from iperon.app import startup_event, shutdown_event from iperon.settings import settings from iperon.typeof import EmailAddress @pytest.fixture async def member(event_loop): member: services.member.Create = services.member.create( email=EmailAddress('<EMAIL>'), password='password', recaptcha='0' ) member: services.member.Member = await member.save() yield member await member.remove() @pytest.fixture async def organization(member: services.member.Member): organization_create: services.organization.Create = services.organization.create( slug=typeof.Slug(' Test_Organization '), friendly_name=typeof.FriendlyName('Test Organization'), environment=store.organization.Environment.Development, ) organization: services.organization.Organization = await organization_create.save(member=member) yield organization await organization.remove() @pytest.fixture(scope='session') def event_loop(): return asyncio.new_event_loop() @pytest.fixture() async def app(event_loop): await iperon_app.on_event('startup')(startup_event()) async with redis.RedisClient() as client: result_flushdb = await client.flushdb() assert result_flushdb await Tortoise.generate_schemas() try: yield iperon_app finally: try: connection = Tortoise.get_connection('master') except KeyError: pass else: await connection.execute_query(f'DROP SCHEMA IF EXISTS {settings.db_schema} CASCADE') await iperon_app.on_event('shutdown')(shutdown_event()) @pytest.fixture async def client(app, member: services.member.Member): response = Response() await member.auth(response=response) simple_cookie: SimpleCookie = SimpleCookie() simple_cookie.load(response.headers.get('set-cookie')) cookie = httpx.Cookies() for key, morsel in simple_cookie.items(): if key == 'session': cookie.set(name='session', value=morsel.value, domain='.localhost.local') client = AsyncClient(app=app, base_url='http://localhost.local', cookies=cookie, headers={'x-real-ip': '127.0.0.1'}) yield client await client.aclose()
1.8125
2
src/finance_stats/hedge_calculator/__init__.py
pralphv/hkportfolioanalysis-backend
0
12778803
from .api import calculate_hedge
1.085938
1
fastapi-alembic-sqlmodel-async/app/crud/crud_hero.py
jonra1993/fastapi-alembic-sqlmodel-async
15
12778804
from app.schemas.hero import IHeroCreate, IHeroUpdate from app.crud.base_sqlmodel import CRUDBase from app.models.hero import Hero class CRUDHero(CRUDBase[Hero, IHeroCreate, IHeroUpdate]): pass hero = CRUDHero(Hero)
1.945313
2
ecobee_classes_creator/constants.py
sfanous/EcobeeClassesCreator
0
12778805
<filename>ecobee_classes_creator/constants.py<gh_stars>0 import os import sys if getattr(sys, 'frozen', False): directory_containing_script = os.path.dirname(sys.executable) else: directory_containing_script = sys.path[0] DEFAULT_LOGGING_CONFIGURATION = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'MultiLine': { 'format': '%(asctime)s %(name)-50s %(funcName)-40s %(levelname)-8s %(message)s', '()': 'ecobee_classes_creator.formatters.MultiLineFormatter', }, }, 'handlers': { 'console': { 'level': 'INFO', 'formatter': 'MultiLine', 'class': 'logging.StreamHandler', }, 'rotating_file': { 'level': 'INFO', 'formatter': 'MultiLine', 'class': 'logging.handlers.RotatingFileHandler', 'filename': os.path.join( os.path.join(directory_containing_script, 'logs'), 'ecobee_classes_creator.log', ), 'maxBytes': 1024 * 1024 * 10, 'backupCount': 10, }, }, 'loggers': { 'ecobee_classes_creator': { 'handlers': ['console', 'rotating_file'], 'level': 'INFO', 'propagate': True, } }, } DEFAULT_LOG_DIRECTORY_PATH = os.path.join(directory_containing_script, 'logs') DEFAULT_LOG_FILE_PATH = os.path.join( DEFAULT_LOG_DIRECTORY_PATH, 'ecobee_classes_creator.log' ) LOGGING_CONFIGURATION_FILE_PATH = os.path.join( directory_containing_script, 'ecobee_classes_creator_logging_configuration.json' ) VERSION = '1.0.2'
1.945313
2
nbprocess/maker.py
fastai/nbprocess
15
12778806
<filename>nbprocess/maker.py # AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/01_maker.ipynb. # %% auto 0 __all__ = ['find_var', 'read_var', 'update_var', 'ModuleMaker', 'retr_exports', 'make_code_cell', 'make_code_cells', 'relative_import', 'update_import', 'basic_export_nb2'] # %% ../nbs/01_maker.ipynb 3 from .read import * from .imports import * from fastcore.script import * from fastcore.imports import * import ast,contextlib from collections import defaultdict from pprint import pformat from textwrap import TextWrapper # %% ../nbs/01_maker.ipynb 7 def find_var(lines, varname): "Find the line numbers where `varname` is defined in `lines`" start = first(i for i,o in enumerate(lines) if o.startswith(varname)) if start is None: return None,None empty = ' ','\t' if start==len(lines)-1 or lines[start+1][:1] not in empty: return start,start+1 end = first(i for i,o in enumerate(lines[start+1:]) if o[:1] not in empty) return start,len(lines) if end is None else (end+start+1) # %% ../nbs/01_maker.ipynb 9 def read_var(code, varname): "Eval and return the value of `varname` defined in `code`" lines = code.splitlines() start,end = find_var(lines, varname) if start is None: return None res = [lines[start].split('=')[-1].strip()] res += lines[start+1:end] try: return eval('\n'.join(res)) except SyntaxError: raise Exception('\n'.join(res)) from None # %% ../nbs/01_maker.ipynb 11 def update_var(varname, func, fn=None, code=None): "Update the definition of `varname` in file `fn`, by calling `func` with the current definition" if fn: fn = Path(fn) code = fn.read_text() lines = code.splitlines() v = read_var(code, varname) res = func(v) start,end = find_var(lines, varname) del(lines[start:end]) lines.insert(start, f"{varname} = {res}") code = '\n'.join(lines) if fn: fn.write_text(code) else: return code # %% ../nbs/01_maker.ipynb 14 class ModuleMaker: "Helper class to create exported library from notebook source cells" def __init__(self, dest, name, nb_path, is_new=True): dest,nb_path = Path(dest),Path(nb_path) store_attr() self.fname = dest/(name.replace('.','/') + ".py") if is_new: dest.mkdir(parents=True, exist_ok=True) else: assert self.fname.exists(), f"{self.fname} does not exist" self.dest2nb = nb_path.relpath(dest) self.hdr = f"# %% {self.dest2nb}" # %% ../nbs/01_maker.ipynb 17 _def_types = ast.FunctionDef,ast.AsyncFunctionDef,ast.ClassDef _assign_types = ast.AnnAssign, ast.Assign, ast.AugAssign def _val_or_id(it): return [getattr(o, 'value', getattr(o, 'id', None)) for o in it.value.elts] def _all_targets(a): return L(getattr(a,'elts',a)) def _filt_dec(x): return getattr(x,'id','').startswith('patch') def _wants(o): return isinstance(o,_def_types) and not any(L(o.decorator_list).filter(_filt_dec)) # %% ../nbs/01_maker.ipynb 18 def retr_exports(trees): # include anything mentioned in "_all_", even if otherwise private # NB: "_all_" can include strings (names), or symbols, so we look for "id" or "value" assigns = trees.filter(risinstance(_assign_types)) all_assigns = assigns.filter(lambda o: getattr(o.targets[0],'id',None)=='_all_') all_vals = all_assigns.map(_val_or_id).concat() syms = trees.filter(_wants).attrgot('name') # assignment targets (NB: can be multiple, e.g. "a=b=c", and/or destructuring e.g "a,b=(1,2)") assign_targs = L(L(assn.targets).map(_all_targets).concat() for assn in assigns).concat() exports = (assign_targs.attrgot('id')+syms).filter(lambda o: o and o[0]!='_') return (exports+all_vals).unique() # %% ../nbs/01_maker.ipynb 19 @patch def make_all(self:ModuleMaker, cells): "Create `__all__` with all exports in `cells`" if cells is None: return '' return retr_exports(cells.map(NbCell.parsed_).concat()) # %% ../nbs/01_maker.ipynb 20 def make_code_cell(code): return AttrDict(source=code, cell_type="code") def make_code_cells(*ss): return dict2nb({'cells':L(ss).map(make_code_cell)}).cells # %% ../nbs/01_maker.ipynb 23 def relative_import(name, fname, level=0): "Convert a module `name` to a name relative to `fname`" assert not level sname = name.replace('.','/') if not(os.path.commonpath([sname,fname])): return name rel = os.path.relpath(sname, fname) if rel==".": return "." res = rel.replace(f"..{os.path.sep}", ".") return "." + res.replace(os.path.sep, ".") # %% ../nbs/01_maker.ipynb 25 def update_import(source, tree, libname, f=relative_import): if not tree: return imps = L(tree).filter(risinstance(ast.ImportFrom)) if not imps: return src = source.splitlines(True) for imp in imps: nmod = f(imp.module, libname, imp.level) lin = imp.lineno-1 sec = src[lin][imp.col_offset:imp.end_col_offset] newsec = re.sub(f"(from +){'.'*imp.level}{imp.module}", fr"\1{nmod}", sec) src[lin] = src[lin].replace(sec,newsec) return src @patch def import2relative(cell:NbCell, libname): src = update_import(cell.source, cell.parsed_(), libname) if src: cell.set_source(src) # %% ../nbs/01_maker.ipynb 27 @patch def make(self:ModuleMaker, cells, all_cells=None, lib_name=None): "Write module containing `cells` with `__all__` generated from `all_cells`" if lib_name is None: lib_name = get_config().lib_name if all_cells is None: all_cells = cells for cell in all_cells: cell.import2relative(lib_name) if not self.is_new: return self._make_exists(cells, all_cells) self.fname.parent.mkdir(exist_ok=True, parents=True) _all = self.make_all(all_cells) trees = cells.map(NbCell.parsed_) try: last_future = max(i for i,tree in enumerate(trees) if tree and any( isinstance(t,ast.ImportFrom) and t.module=='__future__' for t in tree))+1 except ValueError: last_future=0 with self.fname.open('w') as f: f.write(f"# AUTOGENERATED! DO NOT EDIT! File to edit: {self.dest2nb}.") write_cells(cells[:last_future], self.hdr, f, 0) tw = TextWrapper(width=120, initial_indent='', subsequent_indent=' '*11, break_long_words=False) all_str = '\n'.join(tw.wrap(str(_all))) f.write(f"\n\n# %% auto 0\n__all__ = {all_str}") write_cells(cells[last_future:], self.hdr, f, 1) f.write('\n') # %% ../nbs/01_maker.ipynb 31 @patch def _update_all(self:ModuleMaker, all_cells, alls): return pformat(alls + self.make_all(all_cells), width=160) @patch def _make_exists(self:ModuleMaker, cells, all_cells=None): "`make` for `is_new=False`" if all_cells: update_var('__all__', partial(self._update_all, all_cells), fn=self.fname) with self.fname.open('a') as f: write_cells(cells, self.hdr, f) # %% ../nbs/01_maker.ipynb 37 def basic_export_nb2(fname, name, dest=None): "A basic exporter to bootstrap nbprocess using `ModuleMaker`" if dest is None: dest = get_config().path('lib_path') cells = L(c for c in read_nb(fname).cells if re.match(r'#\s*export', c.source)) ModuleMaker(dest=dest, name=name, nb_path=fname).make(cells)
2.25
2
lib/cnn.py
zhenghuazx/toxic-comment
1
12778807
<filename>lib/cnn.py ''' # Created by hua.zheng on 3/8/18. ''' import tensorflow.contrib.keras as keras from keras.engine import Layer, InputSpec, InputLayer from keras.engine import Layer, InputSpec import tensorflow as tf from keras.models import Model, Sequential from keras.utils import multi_gpu_model from keras.layers import Dropout, Embedding, concatenate from keras.layers import Conv1D, MaxPooling1D, Conv2D, MaxPooling2D, ZeroPadding1D,GlobalMaxPooling1D, GlobalAveragePooling1D, \ AveragePooling1D, SpatialDropout1D from keras.layers import Dense, Input, Flatten, BatchNormalization from keras.layers import Concatenate, Dot, Merge, Multiply, RepeatVector from keras.layers import Bidirectional, TimeDistributed from keras.layers import SimpleRNN, LSTM, GRU, Lambda, Permute from keras.layers.core import Reshape, Activation from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint,EarlyStopping,TensorBoard from keras.constraints import maxnorm from keras.regularizers import l2 class KMaxPooling(Layer): """ K-max pooling layer that extracts the k-highest activations from a sequence (2nd dimension). TensorFlow backend. """ def __init__(self, k=1, axis=1, **kwargs): super(KMaxPooling, self).__init__(**kwargs) self.input_spec = InputSpec(ndim=3) self.k = k assert axis in [1,2], 'expected dimensions (samples, filters, convolved_values),\ cannot fold along samples dimension or axis not in list [1,2]' self.axis = axis # need to switch the axis with the last elemnet # to perform transpose for tok k elements since top_k works in last axis self.transpose_perm = [0,1,2] #default self.transpose_perm[self.axis] = 2 self.transpose_perm[2] = self.axis def compute_output_shape(self, input_shape): input_shape_list = list(input_shape) input_shape_list[self.axis] = self.k return tuple(input_shape_list) def call(self, x): # swap sequence dimension to get top k elements along axis=1 transposed_for_topk = tf.transpose(x, perm=self.transpose_perm) # extract top_k, returns two tensors [values, indices] top_k = tf.nn.top_k(transposed_for_topk, k=self.k, sorted=True, name=None)[0] # return back to normal dimension but now sequence dimension has only k elements # performing another transpose will get the tensor back to its original shape # but will have k as its axis_1 size transposed_back = tf.transpose(top_k, perm=self.transpose_perm) return transposed_back class Folding(Layer): def __init__(self, **kwargs): super(Folding, self).__init__(**kwargs) self.input_spec = InputSpec(ndim=3) def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1], int(input_shape[2]/2)) def call(self, x): input_shape = x.get_shape().as_list() # split the tensor along dimension 2 into dimension_axis_size/2 # which will give us 2 tensors splits = tf.split(x, num_or_size_splits=int(input_shape[2]/2), axis=2) # reduce sums of the pair of rows we have split onto reduce_sums = [tf.reduce_sum(split, axis=2) for split in splits] # stack them up along the same axis we have reduced row_reduced = tf.stack(reduce_sums, axis=2) return row_reduced def vdnn(embedding_matrix, num_classes, max_seq_len, num_filters=2, filter_sizes=[64, 128, 256, 512], l2_weight_decay=0.0001, dropout_val=0.5, dense_dim=32, add_sigmoid=True, train_embeds=False, auxiliary=True, gpus=0, n_cnn_layers=1, pool='max', add_embeds=False): #input_ = Input(shape=(max_seq_len,)) model = Sequential([ Embedding(embedding_matrix.shape[0], embedding_matrix.shape[1], weights=[embedding_matrix], input_length=max_seq_len, trainable=train_embeds), Conv1D(embedding_matrix.shape[1], 3, padding="valid") ]) # 4 pairs of convolution blocks followed by pooling for filter_size in filter_sizes: # each iteration is a convolution block for cb_i in range(num_filters): model.add(Conv1D(filter_size, 3, padding="same")) model.add(BatchNormalization()) model.add(Activation("relu")) model.add(Conv1D(filter_size, 3, padding="same")) model.add(BatchNormalization()) model.add(Activation("relu")) model.add(MaxPooling1D(pool_size=2, strides=3)) # model.add(KMaxPooling(k=2)) model.add(Flatten()) model.add(Dense(1024, activation="relu")) model.add(Dense(256, activation="relu")) if add_sigmoid: model.add(Dense(num_classes, activation='sigmoid')) if gpus > 0: model = multi_gpu_model(model, gpus=gpus) return model def mvcnn(embedding_matrix1, embedding_matrix2, num_classes, max_seq_len, num_filters=2, filter_sizes=[3, 5], l2_weight_decay=0.0001, dropout_val=0.5, dense_dim=32, add_sigmoid=True, train_embeds=False, auxiliary=True, gpus=0): text_seq_input = Input(shape=(max_seq_len,), dtype='int32') text_embedding1 = Embedding(embedding_matrix1.shape[0], embedding_matrix1.shape[1], weights=[embedding_matrix1], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) text_embedding2 = Embedding(embedding_matrix2.shape[0], embedding_matrix2.shape[1], weights=[embedding_matrix2], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) k_top = 4 layer_1 = [] for text_embedding in [text_embedding1, text_embedding2]: conv_pools = [] for filter_size in filter_sizes: l_zero = ZeroPadding1D((filter_size - 1, filter_size - 1))(text_embedding) l_conv = Conv1D(filters=128, kernel_size=filter_size, padding='same', activation='tanh')(l_zero) l_pool = KMaxPooling(k=30, axis=1)(l_conv) conv_pools.append((filter_size, l_pool)) layer_1.append(conv_pools) last_layer = [] for layer in layer_1: # no of embeddings used for (filter_size, input_feature_maps) in layer: l_zero = ZeroPadding1D((filter_size - 1, filter_size - 1))(input_feature_maps) l_conv = Conv1D(filters=128, kernel_size=filter_size, padding='same', activation='tanh')(l_zero) l_pool = KMaxPooling(k=k_top, axis=1)(l_conv) last_layer.append(l_pool) l_merge = Concatenate(axis=1)(last_layer) l_flat = Flatten()(l_merge) l_dense = Dense(128, activation='relu')(l_flat) if auxiliary: auxiliary_input = Input(shape=(5,), name='aux_input') x = Concatenate()([l_dense, auxiliary_input]) l_out = Dense(num_classes, activation='sigmoid')(x) if auxiliary: model = Model(inputs=[text_seq_input, auxiliary_input], outputs=l_out) else: model = Model(inputs=text_seq_input, outputs=l_out) if gpus > 0: model = multi_gpu_model(model, gpus=gpus) return model def mgcnn(embedding_matrix1, embedding_matrix2,embedding_matrix3, num_classes, max_seq_len, num_filters=2, filter_sizes=[3,5], l2_weight_decay=0.0001, dropout_val=0.5, dense_dim=32, add_sigmoid=True, train_embeds=False, auxiliary=True, gpus=0): text_seq_input = Input(shape=(max_seq_len,), dtype='int32') text_embedding1 = Embedding(embedding_matrix1.shape[0], embedding_matrix1.shape[1], weights=[embedding_matrix1], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) text_embedding2 = Embedding(embedding_matrix2.shape[0], embedding_matrix2.shape[1], weights=[embedding_matrix2], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) text_embedding3 = Embedding(embedding_matrix3.shape[0], embedding_matrix3.shape[1], weights=[embedding_matrix3], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) k_top = 4 conv_pools = [] for text_embedding in [text_embedding1, text_embedding2, text_embedding3]: for filter_size in filter_sizes: l_zero = ZeroPadding1D((filter_size - 1, filter_size - 1))(text_embedding) l_conv = Conv1D(filters=64, kernel_size=filter_size, padding='same', activation='tanh')(l_zero) l_pool = GlobalMaxPooling1D()(l_conv) conv_pools.append(l_pool) l_merge = Concatenate(axis=1)(conv_pools) l_dense = Dense(128, activation='relu', kernel_regularizer=l2(0.01))(l_merge) l_out = Dense(num_classes, activation='sigmoid')(l_dense) model = Model(inputs=text_seq_input, outputs=l_out) if gpus > 0: model = multi_gpu_model(model, gpus=gpus) return model # can be an alternative to mvcnn def mvcnn3(embedding_matrix1, embedding_matrix2, embedding_matrix3, num_classes, max_seq_len, num_filters=2, filter_sizes=[3, 5], l2_weight_decay=0.0001, dropout_val=0.5, dense_dim=32, add_sigmoid=True, train_embeds=False, auxiliary=True, gpus=0): text_seq_input = Input(shape=(max_seq_len,), dtype='int32') text_embedding1 = Embedding(embedding_matrix1.shape[0], embedding_matrix1.shape[1], weights=[embedding_matrix1], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) text_embedding2 = Embedding(embedding_matrix2.shape[0], embedding_matrix2.shape[1], weights=[embedding_matrix2], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) text_embedding3 = Embedding(embedding_matrix3.shape[0], embedding_matrix3.shape[1], weights=[embedding_matrix3], input_length=max_seq_len, trainable=train_embeds)(text_seq_input) k_top = 4 layer_1 = [] for text_embedding in [text_embedding1, text_embedding2, text_embedding3]: conv_pools = [] for filter_size in filter_sizes: l_zero = ZeroPadding1D((filter_size - 1, filter_size - 1))(text_embedding) l_conv = Conv1D(filters=128, kernel_size=filter_size, padding='same', activation='tanh')(l_zero) l_pool = KMaxPooling(k=30, axis=1)(l_conv) conv_pools.append((filter_size, l_pool)) layer_1.append(conv_pools) last_layer = [] for layer in layer_1: # no of embeddings used for (filter_size, input_feature_maps) in layer: l_zero = ZeroPadding1D((filter_size - 1, filter_size - 1))(input_feature_maps) l_conv = Conv1D(filters=128, kernel_size=filter_size, padding='same', activation='tanh')(l_zero) l_pool = KMaxPooling(k=k_top, axis=1)(l_conv) last_layer.append(l_pool) l_merge = Concatenate(axis=1)(last_layer) l_flat = Flatten()(l_merge) l_dense = Dense(128, activation='relu')(l_flat) l_out = Dense(num_classes, activation='sigmoid')(l_dense) model = Model(inputs=[text_seq_input], outputs=l_out) if gpus > 0: model = multi_gpu_model(model, gpus=gpus) return model def cnn2d(embedding_matrix, num_classes, max_seq_len, num_filters=64, filter_sizes=[1,2,3,5], l2_weight_decay=0.0001, dropout_val=0.25, dense_dim=32, add_sigmoid=True, train_embeds=False, auxiliary=True, gpus=0, n_cnn_layers=1, pool='max', add_embeds=False): text_seq_input = Input(shape=(max_seq_len,)) embeds = Embedding(embedding_matrix.shape[0], embedding_matrix.shape[1], weights=[embedding_matrix], #input_length=max_seq_len, trainable=train_embeds)(text_seq_input) x = SpatialDropout1D(0.3)(embeds) x = Reshape((max_seq_len, embedding_matrix.shape[1], 1))(x) pooled = [] for i in filter_sizes: conv = Conv2D(num_filters, kernel_size=(i, embedding_matrix.shape[1]), kernel_initializer='normal', activation='elu')(x) maxpool = MaxPooling2D(pool_size=(max_seq_len - i + 1, 1))(conv) #avepool = AveragePooling2D(pool_size=(max_seq_len - i + 1, 1))(conv) #globalmax = GlobalMaxPooling2D()(conv) pooled.append(maxpool) z = Concatenate(axis=1)(pooled) z = Flatten()(z) z = BatchNormalization()(z) z = Dropout(dropout_val)(z) if auxiliary: auxiliary_input = Input(shape=(5,), name='aux_input') z = Concatenate()([z, auxiliary_input]) output = Dense(num_classes, activation="sigmoid")(z) if auxiliary: model = Model(inputs=[text_seq_input, auxiliary_input], outputs=output) else: model = Model(inputs=text_seq_input, outputs=output) if gpus > 0: model = multi_gpu_model(model, gpus=gpus) return model #dpcnn http://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf #https://github.com/neptune-ml/kaggle-toxic-starter/blob/master/best_configs/fasttext_dpcnn.yaml def dpcnn(embedding_matrix, num_classes, max_seq_len, num_filters=64, filter_size=3, l2_weight_decay=0.0001, dropout_val=0.25, dense_dim=256, add_sigmoid=True, train_embeds=False, auxiliary=True, gpus=0, n_cnn_layers=1, pool='max', add_embeds=False): max_pool_size = 3 max_pool_strides = 2 spatial_dropout = 0.25 dense_dropout = 0.5 comment = Input(shape=(max_seq_len,)) emb_comment = Embedding(embedding_matrix.shape[0], embedding_matrix.shape[1], weights=[embedding_matrix], trainable=train_embeds)(comment) emb_comment = SpatialDropout1D(spatial_dropout)(emb_comment) block1 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(emb_comment) block1 = BatchNormalization()(block1) block1 = PReLU()(block1) block1 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block1) block1 = BatchNormalization()(block1) block1 = PReLU()(block1) # we pass embedded comment through conv1d with filter size 1 because it needs to have the same shape as block output # if you choose filter_nr = embed_size (300 in this case) you don't have to do this part and can add emb_comment directly to block1_output resize_emb = Conv1D(num_filters, kernel_size=1, padding='same', activation='linear')(emb_comment) resize_emb = PReLU()(resize_emb) block1_output = add([block1, resize_emb]) block1_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block1_output) block2 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block1_output) block2 = BatchNormalization()(block2) block2 = PReLU()(block2) block2 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block2) block2 = BatchNormalization()(block2) block2 = PReLU()(block2) block2_output = add([block2, block1_output]) block2_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block2_output) block3 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block2_output) block3 = BatchNormalization()(block3) block3 = PReLU()(block3) block3 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block3) block3 = BatchNormalization()(block3) block3 = PReLU()(block3) block3_output = add([block3, block2_output]) block3_output = MaxPooling1D(pool_size=max_pool_size, strides=max_pool_strides)(block3_output) block4 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block3_output) block4 = BatchNormalization()(block4) block4 = PReLU()(block4) block4 = Conv1D(num_filters, kernel_size=filter_size, padding='same', activation='linear')(block4) block4 = BatchNormalization()(block4) block4 = PReLU()(block4) output = add([block4, block3_output]) output = GlobalMaxPooling1D()(output) output = Dense(dense_dim, activation='linear')(output) output = BatchNormalization()(output) output = PReLU()(output) output = Dropout(dense_dropout)(output) output = Dense(6, activation='sigmoid')(output) model = Model(comment, output) return model
2.265625
2
main.py
ulianaami/tele_bot
0
12778808
import telebot from settings import TOKEN from telebot import types import random bot = telebot.TeleBot(TOKEN) file = open('affirmations.txt', 'r', encoding='UTF-8') affirmations = file.read().split('\n') file.close() @bot.message_handler(content_types=['text']) def get_text_messages(message): username = message.from_user.username if message.text == 'Привет' or message.text == 'привет': bot.send_message(message.from_user.id, f'Привет, {username}\nНапиши: "Аффирмация"') bot.register_next_step_handler(message, give_affirmation) elif message.text == '/help': bot.send_message(message.from_user.id, 'Напиши: "Привет"') else: bot.send_message(message.from_user.id, 'Я тебя не понимаю. Напиши /help.') @bot.message_handler(func=lambda m: True) def give_affirmation(message): if message.text == 'аффирмация' or message.text == 'Аффирмация': keyboard = types.InlineKeyboardMarkup() key_affirmation = types.InlineKeyboardButton(text='Получить позитивную аффирмацию', callback_data='get_affirm') keyboard.add(key_affirmation) bot.send_message(message.from_user.id, text='Чтобы получить позитивную аффирмацию, нажми на кнопку: ', reply_markup=keyboard) @bot.callback_query_handler(func=lambda call: True) def callback_worker(call): if call.data == 'get_affirm': bot.send_message(call.message.chat.id, random.choice(affirmations)) bot.infinity_polling()
2.5625
3
gears/geometry/arc.py
gfsmith/gears
1
12778809
from point import Point from affinematrix import AffineMatrix from math import pi, sin, cos, atan2, acos from polyline import Polyline # To do: # create arcs in other ways (3 points?) # blow arc into line segments? # fix "area" function to work with direction EPS = 1.0e-6 class Arc(object): ''' an arc in a plane parallel to the X-Y plane (start and end angle are not defined in other planes) startAngle and endAngle are defined CCW from the X-axis, in radians direction controls the wrap direction of the arc ''' def __init__(self, center=Point(x=0.0,y=0.0,z=0.0), radius=1.0, startAngle=0.0, endAngle=90.0*pi/180.0, direction='CCW'): self.center = center self.radius = float(radius) self.startAngle = float(startAngle) self.endAngle = float(endAngle) self.direction = str(direction) self.__type__ = type('Arc') def getEndpoints(self): return (Point(self.center.x + self.radius*cos(self.startAngle), self.center.y + self.radius*sin(self.startAngle), self.center.z), Point(self.center.x + self.radius*cos(self.endAngle), self.center.y + self.radius*sin(self.endAngle), self.center.z)) def reverse(self): (self.startAngle,self.endAngle) = (self.endAngle,self.startAngle) if self.direction == 'CW': self.direction = 'CCW' elif self.direction == 'CCW': self.direction = 'CW' else: raise ValueError('Arc direction is not "CW" or "CCW", undefined behavior!- cannot REVERSE') def __eq__(self,b): print "EPS_ = %f" % float(EPS) if ( ( self.center == b.center ) and ( abs(self.radius - b.radius ) < EPS ) and ( abs(self.startAngle - b.startAngle) < EPS ) and ( abs(self.endAngle - b.endAngle) < EPS ) and ( self.direction == b.direction ) ): return True else: return False def length(self): ''' chord length ''' # start angle and end angle are stored in radians, so chord length is simply radius * angle return ( self.radius * abs(self.startAngle - self.endAngle) ) # def area(self): # ''' # pie slice area # ''' # return (pi * self.radius * self.radius * ( abs(self.endAngle-self.startAngle)/(2.0*pi) ) ) def __str__(self): return 'Arc(center=' + str(self.center) + ', radius=' + str(self.radius) + ', startAngle=' + str(self.startAngle) + ', endAngle=' + str(self.endAngle) + ', direction="' + str(self.direction) + '")' def __repr__(self): return str(self) def dup(self): # center=Point(x=0.0,y=0.0,z=0.0), radius=1.0, startAngle=0.0, endAngle=90.0*pi/180.0, direction='CW'): return Arc(center=self.center.dup(),radius=self.radius,startAngle=self.startAngle,endAngle=self.endAngle,direction=self.direction) def __rmul__(self,a): if isinstance(a,AffineMatrix): cp = a * self.center spx1 = self.radius * cos(self.startAngle) + self.center.x spy1 = self.radius * sin(self.startAngle) + self.center.y sp = Point(spx1,spy1) sp2 = a * sp sa2 = atan2(sp2.y-cp.y,sp2.x-cp.x) r2 = sp2.dist(cp) epx1 = self.radius * cos(self.endAngle) + self.center.x epy1 = self.radius * sin(self.endAngle) + self.center.y ep = Point(epx1,epy1) ep2 = a * ep ea2 = atan2(ep2.y - cp.y, ep2.x - cp.x) return Arc(center=cp,radius=r2,startAngle=sa2,endAngle=ea2,direction=self.direction) else: raise ValueError('Non-AffineMatrix in Arc __rmul__.') def toPolyline(self,maxError=1.0e-5): ''' converts an arc to a Polyline with enough segments so as not to exceed a maxError ''' theta_step = 2.0 * acos( 1.0 - (maxError/self.radius) ) # the angular step needed to exactly meet maxError condition theta = self.endAngle - self.startAngle numSteps = int(abs(theta) / theta_step) + 1 theta_step = theta/numSteps pList = [] for i in range(numSteps+1): x = self.center.x + self.radius * cos(self.startAngle + theta_step * i) y = self.center.y + self.radius * sin(self.startAngle + theta_step * i) p = Point(x,y,0.0) pList.append(p) pl = Polyline(pList) return pl #if __name__ == "__main__": #a=Arc() #print "a = %s" % str(a) #b=Arc() #print "b = %s" % str(b) #print "EPS = %f" % EPS #print "a.center = %s, b.center = %s" % (str(a.center), str(b.center)) #print "a.center == b.center : %s" % str(a.center == b.center) #print "abs(a.radius - b.radius) : %s" % str(abs(a.radius - b.radius)) #print "abs(a.radius - b.radius) < EPS : %s" % str(abs(a.radius-b.radius)<EPS) #print "abs(a.startAngle - b.startAngle) < EPS : %s" % str(abs(a.startAngle-b.startAngle)<EPS) #print "abs(a.endAngle - b.endAngle) < EPS : %s" % str(abs(a.endAngle-b.endAngle)<EPS) #print "a.direction = %s" % str(a.direction) #print "b.direction = %s" % str(b.direction) #print "a.direction == b.direction : %s" % str(a.direction==b.direction) #print "a==b : %s" % str(a==b)
3.6875
4
datasets/custom_data_loader.py
wymGAKKI/saps
0
12778810
<gh_stars>0 import torch.utils.data def customDataloader(args): args.log.printWrite("=> fetching img pairs in %s" % (args.data_dir)) datasets = __import__('datasets.' + args.dataset) dataset_file = getattr(datasets, args.dataset) train_set = getattr(dataset_file, args.dataset)(args, args.data_dir, 'train') val_set = getattr(dataset_file, args.dataset)(args, args.data_dir, 'val') if args.concat_data: args.log.printWrite('****** Using cocnat data ******') args.log.printWrite("=> fetching img pairs in '{}'".format(args.data_dir2)) train_set2 = getattr(dataset_file, args.dataset)(args, args.data_dir2, 'train') val_set2 = getattr(dataset_file, args.dataset)(args, args.data_dir2, 'val') train_set = torch.utils.data.ConcatDataset([train_set, train_set2]) val_set = torch.utils.data.ConcatDataset([val_set, val_set2]) args.log.printWrite('Found Data:\t %d Train and %d Val' % (len(train_set), len(val_set))) args.log.printWrite('\t Train Batch: %d, Val Batch: %d' % (args.batch, args.val_batch)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=True) test_loader = torch.utils.data.DataLoader(val_set , batch_size=args.val_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return train_loader, test_loader def benchmarkLoader(args): args.log.printWrite("=> fetching img pairs in 'data/%s'" % (args.benchmark)) datasets = __import__('datasets.' + args.benchmark) dataset_file = getattr(datasets, args.benchmark) test_set = getattr(dataset_file, args.benchmark)(args, 'test') args.log.printWrite('Found Benchmark Data: %d samples' % (len(test_set))) args.log.printWrite('\t Test Batch %d' % (args.test_batch)) test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.test_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return test_loader def shadowDataloader(args): args.log.printWrite("=> fetching img pairs in %s" % (args.mydata_dir)) datasets = __import__('datasets.' + args.shadowdataset) dataset_file = getattr(datasets, args.shadowdataset) train_set = getattr(dataset_file, args.shadowdataset)(args, args.mydata_dir, 'train') val_set = getattr(dataset_file, args.shadowdataset)(args, args.mydata_dir, 'val') args.log.printWrite('Found Data:\t %d Train and %d Val' % (len(train_set), len(val_set))) args.log.printWrite('\t Train Batch: %d, Val Batch: %d' % (args.batch, args.val_batch)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=True) test_loader = torch.utils.data.DataLoader(val_set , batch_size=args.val_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return train_loader, test_loader def shadowTestDataloader(args): args.log.printWrite("=> fetching img pairs in %s" % (args.mydata_dir)) datasets = __import__('datasets.' + args.shadowdataset) dataset_file = getattr(datasets, args.shadowdataset) #train_set = getattr(dataset_file, args.shadowdataset)(args, args.mydata_dir, 'train') val_set = getattr(dataset_file, args.shadowdataset)(args, args.mydata_dir, 'val') test_loader = torch.utils.data.DataLoader(val_set , batch_size=args.test_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return test_loader def reflectanceDataloader(args): args.log.printWrite("=> fetching img pairs in %s" % (args.mydata_dir)) datasets = __import__('datasets.' + args.mydataset) dataset_file = getattr(datasets, args.mydataset) train_set = getattr(dataset_file, args.mydataset)(args, args.mydata_dir, 'train') val_set = getattr(dataset_file, args.mydataset)(args, args.mydata_dir, 'val') args.log.printWrite('Found Data:\t %d Train and %d Val' % (len(train_set), len(val_set))) args.log.printWrite('\t Train Batch: %d, Val Batch: %d' % (args.batch, args.val_batch)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=True) test_loader = torch.utils.data.DataLoader(val_set , batch_size=args.val_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return train_loader, test_loader def myDataloader(args): args.log.printWrite("=> fetching img pairs in %s" % (args.mydata_dir)) datasets = __import__('datasets.' + args.mydataset) dataset_file = getattr(datasets, args.mydataset) train_set = getattr(dataset_file, args.mydataset)(args, args.mydata_dir, 'train') val_set = getattr(dataset_file, args.mydataset)(args, args.mydata_dir, 'val') args.log.printWrite('Found Data:\t %d Train and %d Val' % (len(train_set), len(val_set))) args.log.printWrite('\t Train Batch: %d, Val Batch: %d' % (args.batch, args.val_batch)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=True) test_loader = torch.utils.data.DataLoader(val_set , batch_size=args.val_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return train_loader, test_loader def pokemonDataloader(args): args.log.printWrite("=> fetching img pairs in %s" % (args.mydata_dir)) datasets = __import__('datasets.' + args.pokemondataset) dataset_file = getattr(datasets, args.pokemondataset) train_set = getattr(dataset_file, args.pokemondataset)(args, args.pokemondata_dir, 'train') val_set = getattr(dataset_file, args.pokemondataset)(args, args.pokemondata_dir, 'val') args.log.printWrite('Found Data:\t %d Train and %d Val' % (len(train_set), len(val_set))) args.log.printWrite('\t Train Batch: %d, Val Batch: %d' % (args.batch, args.val_batch)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=True) test_loader = torch.utils.data.DataLoader(val_set , batch_size=args.val_batch, num_workers=args.workers, pin_memory=args.cuda, shuffle=False) return train_loader, test_loader
2.453125
2
criteria_comparing_sets_pcs/jsd_calculator.py
VinAIResearch/PointSWD
4
12778811
<filename>criteria_comparing_sets_pcs/jsd_calculator.py import os.path as osp import sys import torch import torch.nn as nn sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__)))) from metrics_from_point_flow.evaluation_metrics import jsd_between_point_cloud_sets class JsdCalculator(nn.Module): def __init__(self): super(JsdCalculator, self).__init__() @staticmethod def forward(sample_pcs, ref_pcs, resolution=28, **kwargs): sample_pcs = sample_pcs.detach().cpu().numpy() ref_pcs = ref_pcs.detach().cpu().numpy() return jsd_between_point_cloud_sets(sample_pcs, ref_pcs, resolution) if __name__ == "__main__": sample_pcs = torch.empty(5, 2048, 3).uniform_(0, 1).numpy() ref_pcs = torch.empty(5, 2048, 3).uniform_(0, 1).numpy() print(JsdCalculator.forward(sample_pcs, ref_pcs))
2.328125
2
Testing/publications/calendars/__init__.py
freder/PageBotExamples
5
12778812
# -*- coding: UTF-8 -*- # ----------------------------------------------------------------------------- # # P A G E B O T # # Copyright (c) 2016+ <NAME> + <NAME> # www.pagebot.io # Licensed under MIT conditions # # Supporting DrawBot, www.drawbot.com # Supporting Flat, xxyxyz.org/flat # ----------------------------------------------------------------------------- # # calendars/__init__.py # from pagebot.publications.calendars.photocalendar import PhotoCalendar CALENDAR_CLASSES = { 'Photo': PhotoCalendar, # Eanch month a photo and a table of month days } if __name__ == "__main__": import doctest import sys sys.exit(doctest.testmod()[0])
1.945313
2
migrations/0001_initial.py
bm424/churchmanager
0
12778813
<filename>migrations/0001_initial.py # -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-05 22:59 from __future__ import unicode_literals import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Church', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('short_description', models.CharField(max_length=128)), ('long_description', models.TextField()), ('photo', models.ImageField(blank=True, upload_to='')), ('address_line_1', models.CharField(max_length=64)), ('address_line_2', models.CharField(max_length=64)), ('postcode', models.CharField(max_length=10, validators=[django.core.validators.RegexValidator(message='Invalid postcode.', regex='^([a-zA-Z](([0-9][0-9]?)|([a-zA-Z][0-9][0-9]?)|([a-zA-Z]?[0-9][a-zA-Z])) ?[0-9][abd-hjlnp-uw-zABD-HJLNP-UW-Z]{2})$')])), ('email', models.EmailField(blank=True, max_length=254)), ('phone_number', models.CharField(blank=True, max_length=20)), ('website', models.URLField(blank=True)), ('slug', models.SlugField(editable=False, unique=True)), ], options={ 'verbose_name_plural': 'Churches', }, ), ]
1.882813
2
kokki/cookbooks/apache2/recipes/default.py
samuel/kokki
11
12778814
<gh_stars>10-100 from kokki import Package, Directory, Service, File, StaticFile, Execute, Template PLATFORM_CONFIGS = dict( centos = "httpd", redhat = "httpd", fedora = "httpd", suse = "httpd", debian = "apache2", ubuntu = "apache2", ) Package("apache2", package_name = "httpd" if env.system.platform in ("centos", "redhat", "fedora", "suse") else "apache2") Directory(env.config.apache.log_dir, mode = 0700, owner = env.config.apache.user, group = env.config.apache.user) if env.system.platform in ("centos", "redhat", "fedora", "suse"): Service("apache2", service_name = "httpd", restart_command = "/sbin/service httpd restart && sleep 1", reload_command = "/sbin/service httpd reload && sleep 1", supports_restart = True, supports_reload = True, supports_status = True) File("/usr/local/bin/apache2_module_conf_generate.pl", mode = 0755, owner = "root", group = "root", content = StaticFile("apache2/files/apache2_module_conf_generate.pl")) for d in ('sites-available', 'sites-enabled', 'mods-available', 'mods-enabled'): Directory("%s/%s" % (env.config.apache.dir, d), mode = 0755, owner = "root", group = "root") libdir = "lib64" if env.system.architecture == "x86_64" else "lib" Execute("generate-module-list", command = "/usr/local/bin/apache2_module_conf_generate.pl /usr/%s/httpd/modules /etc/httpd/mods-available" % libdir) # %w{a2ensite a2dissite a2enmod a2dismod}.each do |modscript| # template "/usr/sbin/#{modscript}" do # source "#{modscript}.erb" # mode 0755 # owner "root" # group "root" # end # end # # # installed by default on centos/rhel, remove in favour of mods-enabled # file "#{node[:apache][:dir]}/conf.d/proxy_ajp.conf" do # action :delete # backup false # end # file "#{node[:apache][:dir]}/conf.d/README" do # action :delete # backup false # end # # # welcome page moved to the default-site.rb temlate # file "#{node[:apache][:dir]}/conf.d/welcome.conf" do # action :delete # backup false # end else: # debian, ubuntu Service("apache2", supports_restart = True, supports_reload = True, supports_status = True) Directory("%s/ssl" % env.config.apache.dir, mode = 0755, owner = "root", group = "root") File("apache2.conf", path = ("%s/conf/httpd.conf" if env.system.platform in ("centos", "redhat", "fedora") else "%s/apache2.conf") % env.config.apache.dir, content = Template("apache2/apache2.conf.j2"), owner = "root", group = "root", mode = 0644, notifies = [("restart", env.resources["Service"]["apache2"])]) File("apache2-security", path = "%s/conf.d/security" % env.config.apache.dir, content = Template("apache2/security.j2"), owner = "root", group = "root", mode = 0644, notifies = [("restart", env.resources["Service"]["apache2"])]) File("apache2-charset", path = "%s/conf.d/charset" % env.config.apache.dir, content = Template("apache2/charset.j2"), owner = "root", group = "root", mode = 0644, notifies = [("restart", env.resources["Service"]["apache2"])]) File("apache2-ports.conf", path = "%s/ports.conf" % env.config.apache.dir, content = Template("apache2/ports.conf.j2"), owner = "root", group = "root", mode = 0644, notifies = [("restart", env.resources["Service"]["apache2"])]) # File("apache2-default", # path = "%s/sites-available/default" % env.config.apache.dir, # content = Template("apache2/default-site.j2"), # owner = "root", # group = "root", # mode = 0644, # noifies = [("restart", env.resources["Service"]["apache2"])]) File("apache2-default-000", path = "%s/sites-enabled/000-default" % env.config.apache.dir, action = "delete") env.cookbooks.apache2.module("alias", conf=False) # env.cookbooks.apache2.module("status", conf=True) # include_recipe "apache2::mod_status" # include_recipe "apache2::mod_alias" # include_recipe "apache2::mod_auth_basic" # include_recipe "apache2::mod_authn_file" # include_recipe "apache2::mod_authz_default" # include_recipe "apache2::mod_authz_groupfile" # include_recipe "apache2::mod_authz_host" # include_recipe "apache2::mod_authz_user" # include_recipe "apache2::mod_autoindex" # include_recipe "apache2::mod_dir" # include_recipe "apache2::mod_env" # include_recipe "apache2::mod_mime" # include_recipe "apache2::mod_negotiation" # include_recipe "apache2::mod_setenvif" # include_recipe "apache2::mod_log_config" if platform?("centos", "redhat", "suse")
1.945313
2
core/forms.py
uktrade/directory-ui-supplier
2
12778815
from django.forms import Select from django.utils import translation from django.utils.translation import ugettext as _ from directory_components import forms, fields from directory_constants import choices class SearchForm(forms.Form): term = fields.CharField( max_length=255, required=False, ) industries = fields.ChoiceField( required=False, choices=( (('', _('All industries')),) + choices.INDUSTRIES ), widget=Select(attrs={'dir': 'ltr'}) ) def get_language_form_initial_data(): return { 'lang': translation.get_language() }
2.0625
2
epi_judge_python/search_frequent_items.py
shobhitmishra/CodingProblems
0
12778816
<filename>epi_judge_python/search_frequent_items.py from typing import Iterator, List from test_framework import generic_test, test_utils # Finds the candidates which may occur > n / k times. def search_frequent_items(k: int, stream: Iterator[str]) -> List[str]: # TODO - you fill in here. return [] def search_frequent_items_wrapper(k, stream): return search_frequent_items(k, iter(stream)) if __name__ == '__main__': exit( generic_test.generic_test_main('search_frequent_items.py', 'search_frequent_items.tsv', search_frequent_items_wrapper, test_utils.unordered_compare))
2.75
3
Part_1_beginner/17_For_in_range_loop/solutions_for_in_range/exercise_1.py
Mikma03/InfoShareacademy_Python_Courses
0
12778817
<filename>Part_1_beginner/17_For_in_range_loop/solutions_for_in_range/exercise_1.py # Poproś użytkownika o podanie numeru telefonu. # Następnie wypisz informacje ile razy występuje w nim każda cyfra. phone_number = input("Podaj numer telefonu: ") for digit in range(10): digit_times_in_number = phone_number.count(str(digit)) print(f"Cyfra {digit} występuje w Twoim numerze: {digit_times_in_number} razy")
4.1875
4
codegen_mat24.py
Martin-Seysen/mmgroup
14
12778818
r"""Generation of C code dealing with the Mathieu group Mat24 Generating the ``mmgroup.mat24`` extension .......................................... Function ``mat24_make_c_code()`` generates C code for basic computations in the Golay code, its cocode, and the Mathieu group Mat24. It also generates code for computations in the Parker loop and in its automorphism group. The generated C modules are used in the python extension ``mmgroup.mat24``. The functions used by that extension are contained in a shared library with name ``mmgroup_mat24.dll``. The reason for creating such a shared library is that that these functions are also called by C functions written for other python extensions. We use the C code generation mechanism in class ``generate_c.TableGenerator``. Here a .c file and a .h file is crreated from file ``mat24_functions.ske`` in subdirectory ``src/mmgroup/dev/mat24``. The .ske file is like a .c file, but augmented with some code generation statements for entering tables and automatically generated code into the .c file to be generated. This .ske file may also have statements for automatically generating a .h file declaring the exported functions. We create an instance ``tg`` of class ``TableGenerator`` for generating the .c files. The table generator ``tg`` takes two dictionaries ``tables`` and ``directives`` as arguments. These dictionaries provide user-defined tables and directives for the code generator. Class ``Mat24`` in module ``mmgroup.dev.mat24.mat24_ref`` has methods ``tables()`` and ``directives()`` creating the required tables and directives. Generating the ``mmgroup.generators`` extension ............................................. Function ``generators_make_c_code`` generates C code for computing the monomial part of the operation of the elements :math`\xi` and :math`\xi^2`of the monster group. These C functions are used for computing (rather large) tables required for the implmentation of the functions that compute the operation :math`\xi` and :math`\xi^2` on a representation of the monster. The generation of the ``mmgroup.generators`` extension is similar to the generation of the ``mmgroup.mat24`` extension. Here the list of .ske file is given in the list GENERATORS_C_FILES. For each file in that list a C file is created. A common header with name given by H_GENERATORS_NAME is created from all these .ske files, prependend by the header files in the list GENERATORS_H_FILES. A .pxd file with name PXD_GENERATORS_NAME is created from that header file. That .pxd file will also contain the declarations in the string PXD_DECLARATIONS. All input files are read fom the directory SKE_DIR. Location of the output files ............................ The location of the generated output files is controlled by certain variables in module config.py. Each of these variables specifies the name of a directory. Files with extension .c, .h go to the directory ``C_DIR``. Files with extension .pxd, .pxi, .pyx go to the directory ``PXD_DIR``. """ from __future__ import absolute_import, division, print_function from __future__ import unicode_literals import types import sys import re import os import subprocess import shutil from config import SRC_DIR, DEV_DIR, C_DIR, PXD_DIR from config import REAL_SRC_DIR sys.path.append(REAL_SRC_DIR) from mmgroup.dev.mat24.mat24_ref import Mat24 from mmgroup.dev.generators.gen_xi_ref import GenXi from mmgroup.generate_c import TableGenerator, make_doc from mmgroup.generate_c import pxd_to_pyx ######################################################################## # Generate mat24_functions.c ######################################################################## pxd_declarations = """ from libc.stdint cimport uint32_t, uint16_t, uint8_t """ def mat24_make_c_code(): """Create .c and .h file with the functionality of class Mat24 The input of this function is the file MAT24_C_FILE.ske that contains a (much faster) C version of the functions in class mmgroup.dev.mat24.mat24_ref.Mat24. The functions in the .ske file make use of the tables that have been generated for this module and also of some functions for generating C code automatically. An example where generating code automatically makes sense is the matrix multiplication with a constant bit matrix. The code generating process is described in class TableGenerator in module make_c_tables. """ print("Creating C source from file mat24_functions.ske\n") MAT24_C_FILE = "mat24_functions" SKE_DIR = os.path.join(DEV_DIR, "mat24") # The follwing two tables can't easily be computed earlier Mat24.tables["Mat24_doc_basis"] = Mat24.str_basis() generator = TableGenerator(Mat24.tables, Mat24.directives) f = os.path.join(SKE_DIR, MAT24_C_FILE) path_ = os.path.join(C_DIR, MAT24_C_FILE) #print("pwd", os.getcwd()) #print(os.path.realpath(path_ + ".c")) generator.generate(f + ".ske", path_ + ".c", path_ + ".h") ## generator.export_tables(file_name = "mat24_export.py") generator.generate_pxd( os.path.join(PXD_DIR, MAT24_C_FILE + ".pxd"), MAT24_C_FILE + ".h", pxd_declarations ) print("C files for extension mat24 have been created" ) ######################################################################## # Generate c files for module 'generators' ######################################################################## SKE_DIR = os.path.join(DEV_DIR, "generators") GENERATORS_C_FILES = [ "gen_xi_functions", "mm_group_n", "gen_leech", "gen_leech3", "gen_leech_reduce", "gen_random", ] GENERATORS_H_START = """ // %%GEN h #ifndef MMGROUP_GENERATORS_H #define MMGROUP_GENERATORS_H // %%GEN c """ GENERATORS_H_END = """ // %%GEN h #endif // ifndef MMGROUP_GENERATORS_H // %%GEN c """ GENERATORS_H_FILES = [ GENERATORS_H_START, "mmgroup_generators.h", ] GENERATORS_TABLE_CLASSES = [ GenXi ] H_GENERATORS_NAME = "mmgroup_generators.h" PXD_GENERATORS_NAME = "generators.pxd" PXI_GENERATORS_NAME = "generators.pxi" PXD_DECLARATIONS = """ from libc.stdint cimport uint64_t, uint32_t, uint16_t, uint8_t from libc.stdint cimport int64_t, int32_t """ def generators_make_c_code(): """Create .c and .h file with the functionality of class Mat24Xi """ print("Creating C sources for the 'generators' extension\n") # Setp table and directives for code generation GenXi.tables["GenXi_doc"] = GenXi # can't do this earlier tables = {} directives = {} for table_class in GENERATORS_TABLE_CLASSES: table_instance = table_class() tables.update(table_instance.tables) directives.update(table_instance.directives) print(tables.keys()) tg = TableGenerator(tables, directives) # Generate c files all_ske_files = [os.path.join(SKE_DIR, name) for name in GENERATORS_H_FILES] for name in GENERATORS_C_FILES: ske_file = name + ".ske" ske_path = os.path.join(SKE_DIR, ske_file) c_file = name + ".c" c_path = os.path.join(C_DIR, c_file) print("Creating %s from %s" % (c_file, ske_file)) tg.generate(ske_path, c_path) all_ske_files.append(ske_path) # generate .h file all_ske_files.append(GENERATORS_H_END) h_file = H_GENERATORS_NAME h_path = os.path.join(C_DIR, h_file) pxd_file = PXD_GENERATORS_NAME print("Creating %s from previous .ske files" % h_file) tg.generate(all_ske_files, None, h_path) # generate .pxd file tg.generate_pxd( os.path.join(PXD_DIR, PXD_GENERATORS_NAME), h_file, PXD_DECLARATIONS ) print("C files for extension 'generators' have been created" ) # generate .pxi file def pxi_comment(text, f): print("\n" + "#"*70 + "\n### %s\n" % text + "#"*70 + "\n\n", file=f ) f_pxi = open(os.path.join(PXD_DIR, PXI_GENERATORS_NAME), "wt") pxi_comment( "Wrappers for C functions from file %s" % PXD_GENERATORS_NAME, f_pxi ) print(PXD_DECLARATIONS, file = f_pxi) pxi_content = pxd_to_pyx( os.path.join(PXD_DIR, PXD_GENERATORS_NAME), os.path.split(PXD_GENERATORS_NAME)[0], select = True ) print(pxi_content, file = f_pxi) f_pxi.close() ######################################################################## # Main program ######################################################################## if __name__ == "__main__": mat24_make_c_code() generators_make_c_code()
2.625
3
app/models.py
dzendjo/aimagicbot
6
12778819
<gh_stars>1-10 from motor.motor_asyncio import AsyncIOMotorClient from umongo import Instance, Document, fields, Schema, ValidationError import asyncio from bson.objectid import ObjectId import pymongo import datetime import pytz from collections import OrderedDict import os import data from pprint import pprint db = AsyncIOMotorClient(data.DB_HOST, port=data.DB_PORT)[data.DB_NAME] instance = Instance(db) @instance.register class User(Document): class Meta: collection_name = 'users' indexes = [] id = fields.IntField(required=True, unique=True, attribute='_id') process_flag = fields.BooleanField(default=False) created = fields.DateTimeField(required=True) visited = fields.DateTimeField(required=True) username = fields.StrField(required=True, allow_none=True) first_name = fields.StrField(required=True) last_name = fields.StrField(required=True, allow_none=True, default=None) language_code = fields.StrField(required=True, allow_none=True) language = fields.StrField(required=True) async def create_indexes(): await User.ensure_indexes() if __name__ == '__main__': pass
2.296875
2
src/grab/__init__.py
Boomatang/git-grab
2
12778820
<filename>src/grab/__init__.py<gh_stars>1-10 # -*- coding: utf-8 -*- """Top-level package for grab.""" __version__ = "0.4.0" __releases__ = ["0.4.0", "0.3.0", "0.2.0", "0.1.2", "0.1.1"] from .api import * # noqa
1.28125
1
algorithms/distribution_based/column_model.py
Soton-Song/valentine
0
12778821
<filename>algorithms/distribution_based/column_model.py import numpy as np import pickle from data_loader.data_objects.column import Column from utils.utils import convert_data_type class CorrelationClusteringColumn(Column): """ A class used to represent a column of a table in the Correlation Clustering algorithm Attributes ---------- data : list The data contained in the column quantiles : int The number of quantiles used in the histogram creation ranks : list A list containing the ranks of the column quantile_histogram : QuantileHistogram The quantile histogram representation of the column using the sorted ranks of the data Methods ------- get_histogram() Returns the quantile histogram of the column get_original_data() Returns the original data instances """ def __init__(self, name: str, data: list, table_name: str, dataset_name: str, quantiles: int): """ Parameters ---------- name : str The name of the column data : list The data instances of the column table_name : str The name of the table dataset_name : str The name of the dataset quantiles: int The number of quantiles of the column's quantile histogram """ super().__init__(name, data, table_name) self.quantiles = quantiles self.dataset_name = dataset_name self.ranks = self.get_global_ranks(self.data, self.dataset_name) self.quantile_histogram = None def get_histogram(self): """Returns the quantile histogram of the column""" return self.quantile_histogram def get_original_data(self): """Returns the original data instances""" return self.data @staticmethod def get_global_ranks(column: list, dataset_name: str): """ Function that gets the column data, reads the pickled global ranks and produces a ndarray that contains the ranks of the data . Parameters ---------- column : list The column data dataset_name : str The name of the dataset Returns ------- ndarray The ndarray that contains the ranks of the data """ with open('cache/global_ranks/' + dataset_name + '.pkl', 'rb') as pkl_file: global_ranks: dict = pickle.load(pkl_file) ranks = np.array(sorted([global_ranks[convert_data_type(x)] for x in column])) return ranks
3.265625
3
moto/redshift/exceptions.py
EvaSDK/moto
1
12778822
from __future__ import unicode_literals import json from werkzeug.exceptions import BadRequest class RedshiftClientError(BadRequest): def __init__(self, code, message): super(RedshiftClientError, self).__init__() self.description = json.dumps({ "Error": { "Code": code, "Message": message, 'Type': 'Sender', }, 'RequestId': '6876f774-7273-11e4-85dc-39e55ca848d1', }) class ClusterNotFoundError(RedshiftClientError): def __init__(self, cluster_identifier): super(ClusterNotFoundError, self).__init__( 'ClusterNotFound', "Cluster {0} not found.".format(cluster_identifier)) class ClusterSubnetGroupNotFoundError(RedshiftClientError): def __init__(self, subnet_identifier): super(ClusterSubnetGroupNotFoundError, self).__init__( 'ClusterSubnetGroupNotFound', "Subnet group {0} not found.".format(subnet_identifier)) class ClusterSecurityGroupNotFoundError(RedshiftClientError): def __init__(self, group_identifier): super(ClusterSecurityGroupNotFoundError, self).__init__( 'ClusterSecurityGroupNotFound', "Security group {0} not found.".format(group_identifier)) class ClusterParameterGroupNotFoundError(RedshiftClientError): def __init__(self, group_identifier): super(ClusterParameterGroupNotFoundError, self).__init__( 'ClusterParameterGroupNotFound', "Parameter group {0} not found.".format(group_identifier)) class InvalidSubnetError(RedshiftClientError): def __init__(self, subnet_identifier): super(InvalidSubnetError, self).__init__( 'InvalidSubnet', "Subnet {0} not found.".format(subnet_identifier))
2.328125
2
scripts/run-nb-experiment.py
yzhan298/radossim
1
12778823
import argparse import json import papermill as pm parser = argparse.ArgumentParser() parser.add_argument("input", help="input Jupyter notebook") parser.add_argument("output", help="output Jupyter notebook") parser.add_argument("parameters", help="parameter file in JSON") args = parser.parse_args() parameters = json.load(open(args.parameters), parse_float=float) pm.execute_notebook(args.input, args.output, parameters)
2.609375
3
subt/ros/robot/src/laserscan_to_pointcloud.py
robotika/osgar
12
12778824
<filename>subt/ros/robot/src/laserscan_to_pointcloud.py #!/usr/bin/python import rospy from sensor_msgs.msg import PointCloud2, LaserScan from laser_geometry import LaserProjection class LaserScanToPointCloud: def __init__(self): self.laserProj = LaserProjection() self.pointCloudPublisher = rospy.Publisher("/points", PointCloud2, queue_size = 1) self.laserScanSubscriber = rospy.Subscriber("/scan", LaserScan, self.laserScanCallback) def laserScanCallback(self, data): self.pointCloudPublisher.publish(self.laserProj.projectLaser(data)) if __name__ == "__main__": rospy.init_node("LaserScanToPointCloud") laserScanToPointCloud = LaserScanToPointCloud() rospy.spin()
2.265625
2
pcg_gazebo/parsers/urdf/inertial.py
TForce1/pcg_gazebo
40
12778825
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..types import XMLBase from .mass import Mass from .origin import Origin from .inertia import Inertia class Inertial(XMLBase): _NAME = 'inertial' _TYPE = 'urdf' _CHILDREN_CREATORS = dict( mass=dict(creator=Mass), origin=dict(creator=Origin), inertia=dict(creator=Inertia) ) def __init__(self): XMLBase.__init__(self) self.reset() @property def mass(self): return self._get_child_element('mass') @mass.setter def mass(self, value): self._add_child_element('mass', value) @property def origin(self): return self._get_child_element('origin') @origin.setter def origin(self, value): self._add_child_element('origin', value) @property def inertia(self): return self._get_child_element('inertia') @inertia.setter def inertia(self, value): self._add_child_element('inertia', value) def to_sdf(self): from ..sdf import create_sdf_element obj = create_sdf_element('inertial') obj.pose = self.origin.to_sdf() obj.inertia = self.inertia.to_sdf() obj.mass = self.mass.to_sdf() return obj
2.078125
2
event/example.py
BrickOzp/TrainController
3
12778826
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Copyright 2018 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import thread from time import sleep import datetime import time class ExampleEvent: def __init__(self, train): print("ExampleEvent init"); self.train = train def sensorDetected(self, rId): pass def stopAndTurn(self, *args): print("[{}] Detected ExampleEvent".format(datetime.datetime.now())); speed = self.train.getSpeed() self.train.onStop() sleep(5) self.train.toggleDirection() self.train.setSpeed(speed, True) def directionToggled(self, direction): pass
2.765625
3
tfx/orchestration/kubeflow/utils.py
jolks/tfx
1
12778827
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utility for Kubeflow-based orchestrator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from typing import Text from kfp import dsl from tfx.orchestration.experimental.runtime_parameter import runtime_string_parameter def replace_placeholder(serialized_component: Text) -> Text: """Replaces the RuntimeParameter placeholders with kfp.dsl.PipelineParam.""" placeholders = re.findall(runtime_string_parameter.PARAMETER_PATTERN, serialized_component) for placeholder in placeholders: parameter = runtime_string_parameter.RuntimeStringParameter.parse( placeholder) dsl_parameter = dsl.PipelineParam(name=parameter.name) serialized_component = serialized_component.replace(placeholder, str(dsl_parameter)) return serialized_component
1.882813
2
app/auth/__init__.py
bluethon/flasky-learn
1
12778828
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2016-04-25 23:12:05 # @Author : Bluethon (<EMAIL>) # @Link : http://github.com/bluethon from flask import Blueprint auth = Blueprint('auth', __name__) # noinspection PyUnresolvedReferences from . import views
1.398438
1
app/tests/test_crawler.py
gontarz/image-crawler
0
12778829
# -*- coding: utf-8 -*- """ description: """ import unittest import os from bs4 import BeautifulSoup from app.crawler import visible, extract_images_links, extract_text from app.settings import BASE_DIR class TestCrawler(unittest.TestCase): def test_visible(self): """ in test_crawler.html all visible text contains 't' and non-visible 'f' """ with open(os.path.join(BASE_DIR, 'app/tests/test_html/test_crawler.html')) as html: soup = BeautifulSoup(html, 'html.parser') data = soup.findAll(text=True) result = {text.strip() for text in filter(visible, data) if text.strip()} self.assertEqual({'t'}, result) result = [elem for elem in data if visible(elem)] self.assertTrue(all(result)) class TestCrawlerAsync(unittest.IsolatedAsyncioTestCase): async def test_extract_text(self): with open(os.path.join(BASE_DIR, 'app/tests/test_html/example.html')) as html: crawled = await extract_text(html) expected = '''Example Domain This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission. More information...''' self.assertEqual(expected, crawled) async def test_extract_images_links(self): with open(os.path.join(BASE_DIR, 'app/tests/test_html/test_crawler.html')) as html: crawled = await extract_images_links(html) expected = {'test1', 'test2', 'test3'} self.assertEqual(expected, crawled) if __name__ == '__main__': unittest.main()
2.703125
3
detectors/eighteen/ensemble.py
zhampel/FakeFinder
0
12778830
<reponame>zhampel/FakeFinder import cv2 import numpy as np import copy import math import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision from face_detect_lib.models.retinaface import RetinaFace from face_detect_lib.layers.functions.prior_box import PriorBox from face_detect_lib.utils.box_utils import decode_batch, decode_landm_batch, decode, decode_landm from utils import * from models import * __all__ = ['Ensemble', 'pipeline_cfg'] cfg_mnet = { 'name': 'mobilenet0.25', 'min_sizes': [[16, 32], [64, 128], [256, 512]], 'steps': [8, 16, 32], 'variance': [0.1, 0.2], 'clip': False, 'loc_weight': 2.0, 'gpu_train': True, 'batch_size': 32, 'ngpu': 1, 'epoch': 250, 'decay1': 190, 'decay2': 220, 'image_size': 640, 'pretrain': True, 'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3}, 'in_channel': 32, 'out_channel': 64 } class Config: def __init__(self): self.cuda = True self.face_pretrained_path = './weights/mobilenetV1X0.25_pretrain.tar' self.face_model_path = './weights/mobilenet0.25_Final.pth' self.model_name = 'mobile0.25' self.origin_size = False self.confidence_threshold = 0.02 self.top_k = 5000 self.nms_threshold = 0.4 self.keep_top_k = 750 self.target_size = 400 self.max_size = 2150 self.model_cfg = cfg_mnet self.vis_thres = 0.8 pipeline_cfg = Config() def detect_face(img_list, detect_record): im_shape = img_list[0].shape detect_key = str(im_shape[0]) + '*' + str(im_shape[1]) if detect_key not in detect_record: # print(detect_key + ' not in dict') im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) resize = float(pipeline_cfg.target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(resize * im_size_max) > pipeline_cfg.max_size: resize = float(pipeline_cfg.max_size) / float(im_size_max) im_height, im_width = int( im_shape[0] * resize), int(im_shape[1] * resize) detect_record[detect_key] = { 'resize': resize, 'resized_h': im_height, 'resized_w': im_width} priorbox = PriorBox(pipeline_cfg.model_cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(pipeline_cfg.device) detect_record[detect_key]['priors'] = priors # detect face detect_info = detect_record[detect_key] resize = detect_info['resize'] resize_img_list = [] result_dets_list = [] batch_size = 8 detect_nms_time = 0 for img_idx, img in enumerate(img_list): if detect_info['resize'] != 1: img = cv2.resize(img, None, None, fx=detect_info['resize'], fy=detect_info['resize'], interpolation=cv2.INTER_LINEAR) img = np.float32(img) else: img = np.float32(img) resize_img_list.append(img) img_idx += 1 if img_idx % batch_size == 0 or img_idx == len(img_list): im_height, im_width, _ = resize_img_list[0].shape scale = torch.Tensor([resize_img_list[0].shape[1], resize_img_list[0].shape[0], resize_img_list[0].shape[1], resize_img_list[0].shape[0]]) resize_img_list = np.stack(resize_img_list, axis=0) # [n,h,w,c] resize_img_list -= (104, 117, 123) resize_img_list = resize_img_list.transpose(0, 3, 1, 2) resize_img_list = torch.from_numpy(resize_img_list) resize_img_list = resize_img_list.to(pipeline_cfg.device) scale = scale.to(pipeline_cfg.device) loc, conf, landms = pipeline_cfg.net(resize_img_list) priors = detect_info['priors'] prior_data = priors.data boxes = decode_batch(loc.data, prior_data, pipeline_cfg.model_cfg['variance']) boxes = boxes * scale / resize # [batchsize, proposals, 4] scores = conf[:, :, 1] # [batchsize, proposals] detect_nms_begin = 0 for per_idx in range(boxes.shape[0]): box, score = boxes[per_idx, :, :], scores[per_idx, :] inds = torch.nonzero( score > pipeline_cfg.confidence_threshold)[:, 0] box, score = box[inds, :], score[inds] dets = torch.cat((box, score[:, None]), dim=1) keep = torchvision.ops.nms( box, score, pipeline_cfg.nms_threshold) dets = dets[keep, :] dets = dets.data.cpu().numpy() result_dets_list.append(dets) resize_img_list = [] detect_nms_end = 0 detect_nms_time += detect_nms_end - detect_nms_begin return result_dets_list def init_face_detecor(): torch.set_grad_enabled(False) pipeline_cfg.net = RetinaFace( cfg=pipeline_cfg.model_cfg, model_path=pipeline_cfg.face_pretrained_path, phase='test') pipeline_cfg.net = load_model( pipeline_cfg.net, pipeline_cfg.face_model_path, pipeline_cfg.cuda) pipeline_cfg.net.eval() cudnn.benchmark = True pipeline_cfg.device = torch.device("cuda" if pipeline_cfg.cuda else "cpu") pipeline_cfg.net = pipeline_cfg.net.to(pipeline_cfg.device) return pipeline_cfg.net def get_image_score(face_scale, cls_model, softmax_func, aligned_faces, isRGB, mean, std, isScale, isFlip=False): try: # aligned_faces #[faces,frames,H,W,C] BGR img_aligned_faces = aligned_faces.clone().detach() img_aligned_faces = img_aligned_faces.permute( [0, 1, 4, 2, 3]) # [faces,frames,c,h,w] BGR if isRGB: img_aligned_faces = img_aligned_faces[:, :, [2, 1, 0], :, :] img_frames = 35 interval = max(1, math.ceil(img_aligned_faces.shape[1] / img_frames)) img_aligned_faces = img_aligned_faces[:, 0::interval, :, :, :] img_frames = (img_aligned_faces.shape[1] // 5) * 5 img_aligned_faces = img_aligned_faces[:, :img_frames, :, :, :] all_score, score = [], 0 for face_idx in range(img_aligned_faces.shape[0]): one_face_aligned = img_aligned_faces[face_idx, :, :, :, :] one_face_aligned_mean = ( one_face_aligned - mean) / std # [frames,c,h,w] if isFlip: one_face_aligned_mean_flip = torch.flip( one_face_aligned_mean, dims=[3]) one_face_aligned_input = torch.cat( (one_face_aligned_mean, one_face_aligned_mean_flip), dim=0) output = cls_model(one_face_aligned_input) output = (output[:img_frames, :] + output[img_frames:, :]) / 2 else: output = cls_model(one_face_aligned_mean) output = output.view(-1, 5, 2) output = output.mean(1) output = softmax_func(output) output = output[:, 1].cpu().numpy() # [6,1] if output[output > 0.85].shape[0] / output.shape[0] > 0.7: score = output[output > 0.85].mean() elif output[output < 0.15].shape[0] / output.shape[0] > 0.7: score = output[output < 0.15].mean() else: score = output.mean() all_score.append(score) all_score = np.array(all_score) score_max, score_min, score_avg = np.max( all_score), np.min(all_score), np.mean(all_score) if score_max > 0.9: score = score_max elif len(np.where(all_score > 0.6)[0]) == all_score.shape[0]: score = score_max elif len(np.where(all_score < 0.4)[0]) == all_score.shape[0]: score = score_min else: score = score_avg if isScale: if score >= 0.98 or score <= 0.02: score = (score - 0.5) * 0.96 + 0.5 except Exception as e: print(e) score = -1 return score def get_sf_score(face_scale, cls_model, softmax_func, aligned_faces, isRGB, mean, std): try: # aligned_faces [faces,frames,H,W,C] BGR sf_aligned_faces = aligned_faces.clone().detach() sf_aligned_faces = sf_aligned_faces.permute( [0, 4, 1, 2, 3]) # [faces,c,frames,h,w] if isRGB: sf_aligned_faces = sf_aligned_faces[:, [2, 1, 0], :, :, :] sf_aligned_faces = (sf_aligned_faces - mean) / std sf_output = cls_model(sf_aligned_faces) sf_output = softmax_func(sf_output) sf_output = sf_output[:, 1].cpu().numpy() sf_max, sf_min, sf_avg = np.max(sf_output), np.min( sf_output), np.mean(sf_output) if sf_max > 0.9: sf_score = sf_max elif len(np.where(sf_output > 0.6)[0]) == sf_output.shape[0]: sf_score = sf_max elif len(np.where(sf_output < 0.4)[0]) == sf_output.shape[0]: sf_score = sf_min else: sf_score = sf_avg except Exception as e: print(e) sf_score = -1 return sf_score def get_final_score(score_list, weight_list): final_score = 0 assert len(score_list) == len(weight_list) new_score_list, new_weight_list = [], [] for idx, score in enumerate(score_list): if score != -1: new_score_list.append(score) new_weight_list.append(weight_list[idx]) new_scores, new_weights = np.array( new_score_list), np.array(new_weight_list) if len(new_weights) == 0: return -1 # print('new_scores:', new_scores, 'new_weights', # new_weights / np.sum(new_weights)) final_score = np.sum(new_scores * (new_weights / np.sum(new_weights))) return final_score def get_final_score_policy(score_list, weight_list, img_start_idx, sf_weight): assert len(score_list) == len(weight_list) sf_score_list, sf_weight_list = score_list[: img_start_idx], weight_list[:img_start_idx] img_score_list, img_weight_list = score_list[img_start_idx:], weight_list[img_start_idx:] new_sf_score_list, new_sf_weight_list, new_img_score_list, new_img_weight_list = [], [], [], [] for idx, score in enumerate(sf_score_list): if score != -1: new_sf_score_list.append(score) new_sf_weight_list.append(sf_weight_list[idx]) for idx, score in enumerate(img_score_list): if score != -1: new_img_score_list.append(score) new_img_weight_list.append(img_weight_list[idx]) new_sf_scores, new_sf_weights = np.array( new_sf_score_list), np.array(new_sf_weight_list) new_img_scores, new_img_weights = np.array( new_img_score_list), np.array(new_img_weight_list) sf_success, img_success = True, True # sf if new_sf_scores.shape[0] != 0: if len(np.where(new_sf_scores > 0.8)[0]) / new_sf_scores.shape[0] > 0.7: new_sf_y_scores, new_sf_y_weights = new_sf_scores[new_sf_scores > 0.8], new_sf_weights[new_sf_scores > 0.8] sf_score = np.sum(new_sf_y_scores * (new_sf_y_weights / np.sum(new_sf_y_weights))) elif len(np.where(new_sf_scores < 0.2)[0]) / new_sf_scores.shape[0] > 0.7: new_sf_y_scores, new_sf_y_weights = new_sf_scores[new_sf_scores < 0.2], new_sf_weights[new_sf_scores < 0.2] sf_score = np.sum(new_sf_y_scores * (new_sf_y_weights / np.sum(new_sf_y_weights))) else: sf_score = np.sum( new_sf_scores * (new_sf_weights / np.sum(new_sf_weights))) else: sf_success = False # img if new_img_scores.shape[0] != 0: if len(np.where(new_img_scores > 0.8)[0]) / new_img_scores.shape[0] > 0.7: new_img_y_scores, new_img_y_weights = new_img_scores[new_img_scores > 0.8], new_img_weights[ new_img_scores > 0.8] img_score = np.sum(new_img_y_scores * (new_img_y_weights / np.sum(new_img_y_weights))) elif len(np.where(new_img_scores < 0.2)[0]) / new_img_scores.shape[0] > 0.7: new_img_y_scores, new_img_y_weights = new_img_scores[new_img_scores < 0.2], new_img_weights[ new_img_scores < 0.2] img_score = np.sum(new_img_y_scores * (new_img_y_weights / np.sum(new_img_y_weights))) else: img_score = np.sum( new_img_scores * (new_img_weights / np.sum(new_img_weights))) else: img_success = False if sf_success and img_success: final_score = sf_score * sf_weight + (1 - sf_weight) * img_score elif sf_success and not img_success: final_score = sf_score elif img_success and not sf_success: final_score = img_score else: final_score = -1 return final_score def predict_batch(img_list, sf_model1, sf_model2, sf_model3, xcp_model, b3_model, res34_model, b1_model, b1long_model, b1short_model, b0_model, sf_model4, softmax_func, detect_record): # face det aligned_faceses, noface_flag = detect_video_face(img_list, detect_record) if noface_flag == -1: return -1 sf1_score, sf2_score, sf3_score, sf4_score, xcp_score, b3_score, res34_score, b1_score, b1long_score, b1short_score, b0_score = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 scale_num = len(aligned_faceses) # slowfast model infer sf_mean = torch.from_numpy( np.array([110.63666788 / 255, 103.16065604 / 255, 96.29023126 / 255], dtype=np.float32)).reshape( [1, -1, 1, 1, 1]).cuda() sf_std = torch.from_numpy( np.array([38.7568578 / 255, 37.88248729 / 255, 40.02898126 / 255], dtype=np.float32)).reshape( [1, -1, 1, 1, 1]).cuda() xcp_mean = torch.from_numpy( np.array([0.5, 0.5, 0.5], dtype=np.float32)).reshape([1, -1, 1, 1]).cuda() xcp_std = torch.from_numpy( np.array([0.5, 0.5, 0.5], dtype=np.float32)).reshape([1, -1, 1, 1]).cuda() b3_mean = torch.from_numpy(np.array( [0.485, 0.456, 0.406], dtype=np.float32)).reshape([1, -1, 1, 1]).cuda() b3_std = torch.from_numpy(np.array( [0.229, 0.224, 0.225], dtype=np.float32)).reshape([1, -1, 1, 1]).cuda() for aligned_faces in aligned_faceses: # print('aligned_faces shape:', aligned_faces.shape) aligned_faces = np.float32(aligned_faces) face_scale, face_num, align_frames = aligned_faces.shape[ 3], aligned_faces.shape[0], aligned_faces.shape[1] # init scale tensor aligned_faces = torch.from_numpy(aligned_faces) if pipeline_cfg.cuda: aligned_faces = aligned_faces.cuda() # [faces,frames,H,W,C] aligned_faces /= 255 # xcp inference if face_scale == 299: xcp_score = get_image_score(face_scale, xcp_model, softmax_func, aligned_faces, False, xcp_mean, xcp_std, False, True) b3_score = get_image_score(face_scale, b3_model, softmax_func, aligned_faces, True, b3_mean, b3_std, True, False) b1_score = get_image_score(face_scale, b1_model, softmax_func, aligned_faces, True, b3_mean, b3_std, False, True) b1long_score = get_image_score(face_scale, b1long_model, softmax_func, aligned_faces, True, b3_mean, b3_std, False, False) b1short_score = get_image_score(face_scale, b1short_model, softmax_func, aligned_faces, True, b3_mean, b3_std, False, False) b0_score = get_image_score(face_scale, b0_model, softmax_func, aligned_faces, True, b3_mean, b3_std, False, True) if face_scale == 256: res34_score = get_image_score(face_scale, res34_model, softmax_func, aligned_faces, True, b3_mean, b3_std, True, True) sf1_score = get_sf_score( face_scale, sf_model1, softmax_func, aligned_faces, True, sf_mean, sf_std) sf2_score = get_sf_score( face_scale, sf_model2, softmax_func, aligned_faces, True, sf_mean, sf_std) sf3_score = get_sf_score( face_scale, sf_model3, softmax_func, aligned_faces, True, sf_mean, sf_std) sf4_score = get_sf_score( face_scale, sf_model4, softmax_func, aligned_faces, True, sf_mean, sf_std) score_list = [sf1_score, sf2_score, sf3_score, sf4_score, xcp_score, b3_score, res34_score, b1_score, b1long_score, b1short_score, b0_score] # print(score_list) sf_weight_np, img_weight_np = np.array( [10, 8, 4, 8]), np.array([10, 6, 4, 10, 8, 8, 7]) sf_weight_np = sf_weight_np / np.sum(sf_weight_np) * 0.4 img_weight_np = img_weight_np / np.sum(img_weight_np) * 0.6 weight_np = np.concatenate((sf_weight_np, img_weight_np)) weight_list = list(weight_np) # print(weight_list) final_score = get_final_score_policy( score_list, weight_list, len(sf_weight_np), 0.4) return final_score def detect_video_face(img_list, detect_record): num_frames = len(img_list) num_faces = 0 face_count = {} img_h, img_w = img_list[0].shape[0], img_list[0].shape[1] face_list = [] dets_list = detect_face(img_list, detect_record) # detect_face_time = detect_tmp_end - detect_tmp_begin # global DETECT_FACE_TIME # DETECT_FACE_TIME += detect_face_time # print('detect face time:', detect_face_time) for idx, img_raw in enumerate(img_list): # preserve only faces with confidence above threshold dets = dets_list[idx][np.where(dets_list[idx][:, 4] >= pipeline_cfg.vis_thres)][:, :4].astype( np.int64) # [m,15] face_list.append(dets) if len(dets) not in face_count: face_count[len(dets)] = 0 face_count[len(dets)] += 1 # vote for the number of faces that most frames agree on max_count = 0 for num in face_count: if face_count[num] > max_count: num_faces = num max_count = face_count[num] if num_faces <= 0: return None, -1 active_faces = None face_tubes = [] for frame_idx in range(num_frames): cur_faces = face_list[frame_idx] # if len(cur_faces) <= 0: continue if active_faces is not None: ious = vanilla_bbox_iou_overlaps(cur_faces, active_faces) max_iou, max_idx = np.max(ious, axis=1), np.argmax(ious, axis=1) mark = [False for _ in range(len(active_faces))] else: max_iou, max_idx = None, None for face_idx in range(len(cur_faces)): # IoU threshold 0.5 for determining whether is the same person if max_iou is None or max_iou[face_idx] < 0.5: face = copy.deepcopy(cur_faces[face_idx]) if active_faces is None: active_faces = face[np.newaxis, :] else: active_faces = np.concatenate( (active_faces, face[np.newaxis, :]), axis=0) face_tubes.append([[frame_idx, face_idx]]) else: correspond_idx = max_idx[face_idx] # Each face tube can only add at most one face from a frame if mark[correspond_idx]: continue mark[correspond_idx] = True active_faces[correspond_idx] = cur_faces[face_idx] face_tubes[correspond_idx].append([frame_idx, face_idx]) # Choose num_faces longest face_tubes as chosen faces face_tubes.sort(key=lambda tube: len(tube), reverse=True) if len(face_tubes) < num_faces: num_faces = len(face_tubes) num_faces = min(num_faces, 2) face_tubes = face_tubes[:num_faces] aligned_faces_img_256, aligned_faces_img_299, aligned_faces_img_320 = [], [], [] for face_idx in range(num_faces): cur_face_list, source_frame_list = [], [] # record max crop_bbox size tube_idx, max_size = 0, 0 for frame_idx in range(num_frames): cur_face = face_tubes[face_idx][tube_idx] next_face = None if tube_idx == len( face_tubes[face_idx]) - 1 else face_tubes[face_idx][tube_idx + 1] # find nearest frame inside face tube if next_face is not None and abs(cur_face[0] - frame_idx) > abs(next_face[0] - frame_idx): tube_idx += 1 cur_face = next_face face = copy.deepcopy(face_list[cur_face[0]][cur_face[1]]) cur_face_list.append(face) source_frame_list.append(cur_face[0]) _, _, size = get_boundingbox(face, img_w, img_h) if size > max_size: max_size = size # align face size max_size = max_size // 2 * 2 max_size = min(max_size, img_w, img_h) # adjust to max face size and crop faces cur_faces_img_256, cur_faces_img_299, cur_faces_img_320 = [], [], [] for frame_idx in range(num_frames): x1, y1, size = adjust_boundingbox( cur_face_list[frame_idx], img_w, img_h, max_size) img = img_list[source_frame_list[frame_idx] ][y1:y1 + size, x1:x1 + size, :] img_256 = cv2.resize( img, (256, 256), interpolation=cv2.INTER_LINEAR) cur_faces_img_256.append(img_256) img_299 = cv2.resize( img, (299, 299), interpolation=cv2.INTER_LINEAR) cur_faces_img_299.append(img_299) cur_faces_numpy_256 = np.stack( cur_faces_img_256, axis=0) # [num_frames, h, w, c] cur_faces_numpy_299 = np.stack( cur_faces_img_299, axis=0) # [num_frames, h, w, c] aligned_faces_img_256.append(cur_faces_numpy_256) aligned_faces_img_299.append(cur_faces_numpy_299) # [num_faces, num_frames, h, w, c] aligned_faces_numpy_256 = np.stack(aligned_faces_img_256, axis=0) # [num_faces, num_frames, h, w, c] aligned_faces_numpy_299 = np.stack(aligned_faces_img_299, axis=0) return [aligned_faces_numpy_256, aligned_faces_numpy_299], 1 class Ensemble: def __init__(self, cls_model_ckpt: str, xcp_model_ckpt: str, slow_fast_2_ckpt: str, slow_fast_3_ckpt: str, b3_model_ckpt: str, res34_model_ckpt: str, b1_model_ckpt: str, b1long_model_ckpt: str, b1short_model_ckpt: str, b0_model_ckpt: str, slow_fast_4_ckpt: str, frame_nums: int, cuda=True): self.cls_model_ckpt = cls_model_ckpt self.xcp_model_ckpt = xcp_model_ckpt self.cls_model2_ckpt = slow_fast_2_ckpt self.cls_model3_ckpt = slow_fast_3_ckpt self.cls_model4_ckpt = slow_fast_4_ckpt self.b3_model_ckpt = b3_model_ckpt self.res34_model_ckpt = res34_model_ckpt self.b1_model_ckpt = b1_model_ckpt self.b1long_model_ckpt = b1long_model_ckpt self.b1short_model_ckpt = b1short_model_ckpt self.b0_model_ckpt = b0_model_ckpt self.frame_nums = frame_nums self.cuda = cuda self.detect_record = {} self.init_model() def init_model(self): self.face_det_model = init_face_detecor() self.face_cls_model = init_slow_fast_model( self.cls_model_ckpt, self.cuda) self.face_cls_model2 = init_slow_fast_model( self.cls_model2_ckpt, self.cuda) self.face_cls_model3 = init_slow_fast_model( self.cls_model3_ckpt, self.cuda) self.face_cls_model4 = init_slow_fast_model( self.cls_model4_ckpt, self.cuda) self.xcp_cls_model = init_xception_cls_model( self.xcp_model_ckpt, self.cuda) self.b3_cls_model = init_b3_cls_model(self.b3_model_ckpt, self.cuda) self.res34_cls_model = init_res34_cls_model( self.res34_model_ckpt, self.cuda) self.b1_cls_model = init_b1_cls_model(self.b1_model_ckpt, self.cuda) self.b1long_cls_model = init_b1_cls_model( self.b1long_model_ckpt, self.cuda) self.b1short_cls_model = init_b1_cls_model( self.b1short_model_ckpt, self.cuda) self.b0_cls_model = init_b0_cls_model(self.b0_model_ckpt, self.cuda) def inference(self, video_pth): post_func = nn.Softmax(dim=1) # init_begin = time.time() # self.init_model() # init_end = time.time() # print('init model time:', init_end - init_begin) # submission = pd.read_csv("./sample_submission.csv", dtype='unicode') score = 0.5 try: # print(video_pth) if video_pth.split('.')[-1] != 'mp4': return score # extract image # print(video_pth) reader = cv2.VideoCapture(video_pth) video_cnt = reader.get(cv2.CAP_PROP_FRAME_COUNT) interval = max(1, math.ceil(video_cnt / self.frame_nums)) # print('video_cnt:', video_cnt, 'interval:', interval) count, test_count = 0, 0 success = True img_list = [] while success: if count % interval == 0: success, image = reader.read() if success: img_list.append(image) else: success = reader.grab() count += 1 reader.release() with torch.no_grad(): score = predict_batch(img_list, self.face_cls_model, self.face_cls_model2, self.face_cls_model3, self.xcp_cls_model, self.b3_cls_model, self.res34_cls_model, self.b1_cls_model, self.b1long_cls_model, self.b1short_cls_model, self.b0_cls_model, self.face_cls_model4, post_func, self.detect_record) except Exception as e: print(e) score = -1 # print('score:', score) if score < 0 or score > 1: score = 0.5 return score
1.734375
2
gists/python-threading-example/threading-example.py
Senzing/knowledge-base
1
12778831
#! /usr/bin/env python3 import random import threading import time class TestThread(threading.Thread): def run(self): for loop_number in range(10): print("{0} Loop: {1}".format(self.name, loop_number)) time.sleep(random.randint(1, 5)) # Construct threads. threads = [] for thread_number in range(5): thread = TestThread() thread.name = "thread-{0}".format(thread_number) threads.append(thread) # Start threads. for thread in threads: thread.start() # Wait for threads to stop. for thread in threads: thread.join()
3.65625
4
ytelapi/controllers/conference_controller.py
Ytel-Inc/YtelAPI-Python
0
12778832
# -*- coding: utf-8 -*- """ ytelapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ from .base_controller import BaseController from ..api_helper import APIHelper from ..configuration import Configuration from ..http.auth.basic_auth import BasicAuth class ConferenceController(BaseController): """A Controller to access Endpoints in the ytelapi API.""" def create_list_conferences(self, page=None, pagesize=None, friendly_name=None, date_created=None): """Does a POST request to /conferences/listconference.json. Retrieve a list of conference objects. Args: page (int, optional): The page count to retrieve from the total results in the collection. Page indexing starts at 1. pagesize (int, optional): Number of individual resources listed in the response per page friendly_name (string, optional): Only return conferences with the specified FriendlyName date_created (string, optional): Conference created date Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/listconference.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'page': page, 'pagesize': pagesize, 'FriendlyName': friendly_name, 'DateCreated': date_created } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_hangup_participant(self, participant_sid, conference_sid): """Does a POST request to /conferences/hangupParticipant.json. Remove a participant from a conference. Args: participant_sid (string): The unique identifier for a participant object. conference_sid (string): The unique identifier for a conference object. Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/hangupParticipant.json' _query_parameters = { 'ParticipantSid': participant_sid } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'ConferenceSid': conference_sid } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_play_audio(self, conference_sid, participant_sid, audio_url): """Does a POST request to /conferences/playAudio.json. Play an audio file during a conference. Args: conference_sid (string): The unique identifier for a conference object. participant_sid (string): The unique identifier for a participant object. audio_url (AudioUrlEnum): The URL for the audio file that is to be played during the conference. Multiple audio files can be chained by using a semicolon. Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/playAudio.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'ConferenceSid': conference_sid, 'ParticipantSid': participant_sid, 'AudioUrl': audio_url } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_list_participants(self, conference_sid, page=None, pagesize=None, muted=None, deaf=None): """Does a POST request to /conferences/listParticipant.json. Retrieve a list of participants for an in-progress conference. Args: conference_sid (string): The unique identifier for a conference. page (int, optional): The page count to retrieve from the total results in the collection. Page indexing starts at 1. pagesize (int, optional): The count of objects to return per page. muted (bool, optional): Specifies if participant should be muted. deaf (bool, optional): Specifies if the participant should hear audio in the conference. Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/listParticipant.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'ConferenceSid': conference_sid, 'Page': page, 'Pagesize': pagesize, 'Muted': muted, 'Deaf': deaf } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_conference(self, url, mfrom, to, method=None, status_call_back_url=None, status_call_back_method=None, fallback_url=None, fallback_method=None, record=None, record_call_back_url=None, record_call_back_method=None, schedule_time=None, timeout=None): """Does a POST request to /conferences/createConference.json. Here you can experiment with initiating a conference call through Ytel and view the request response generated when doing so. Args: url (string): URL requested once the conference connects mfrom (string): A valid 10-digit number (E.164 format) that will be initiating the conference call. to (string): A valid 10-digit number (E.164 format) that is to receive the conference call. method (string, optional): Specifies the HTTP method used to request the required URL once call connects. status_call_back_url (string, optional): URL that can be requested to receive notification when call has ended. A set of default parameters will be sent here once the conference is finished. status_call_back_method (string, optional): Specifies the HTTP methodlinkclass used to request StatusCallbackUrl. fallback_url (string, optional): URL requested if the initial Url parameter fails or encounters an error fallback_method (string, optional): Specifies the HTTP method used to request the required FallbackUrl once call connects. record (bool, optional): Specifies if the conference should be recorded. record_call_back_url (string, optional): Recording parameters will be sent here upon completion. record_call_back_method (string, optional): Specifies the HTTP method used to request the required URL once conference connects. schedule_time (string, optional): Schedule conference in future. Schedule time must be greater than current time timeout (int, optional): The number of seconds the call stays on the line while waiting for an answer. The max time limit is 999 and the default limit is 60 seconds but lower times can be set. Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/createConference.json' _query_parameters = { 'Url': url } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'From': mfrom, 'To': to, 'Method': method, 'StatusCallBackUrl': status_call_back_url, 'StatusCallBackMethod': status_call_back_method, 'FallbackUrl': fallback_url, 'FallbackMethod': fallback_method, 'Record': record, 'RecordCallBackUrl': record_call_back_url, 'RecordCallBackMethod': record_call_back_method, 'ScheduleTime': schedule_time, 'Timeout': timeout } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_view_participant(self, conference_sid, participant_sid): """Does a POST request to /conferences/viewParticipant.json. Retrieve information about a participant by its ParticipantSid. Args: conference_sid (string): The unique identifier for a conference object. participant_sid (string): The unique identifier for a participant object. Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/viewParticipant.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'ConferenceSid': conference_sid, 'ParticipantSid': participant_sid } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_view_conference(self, conference_sid): """Does a POST request to /conferences/viewconference.json. Retrieve information about a conference by its ConferenceSid. Args: conference_sid (string): The unique identifier of each conference resource Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/viewconference.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'ConferenceSid': conference_sid } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def add_participant(self, conference_sid, participant_number, muted=None, deaf=None): """Does a POST request to /conferences/addParticipant.json. Add Participant in conference Args: conference_sid (string): The unique identifier for a conference object. participant_number (string): The phone number of the participant to be added. muted (bool, optional): Specifies if participant should be muted. deaf (bool, optional): Specifies if the participant should hear audio in the conference. Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/addParticipant.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'ConferenceSid': conference_sid, 'ParticipantNumber': participant_number, 'Muted': muted, 'Deaf': deaf } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body def create_silence_participant(self, conference_sid, participant_sid, muted=None, deaf=None): """Does a POST request to /conferences/deafMuteParticipant.json. Deaf Mute Participant Args: conference_sid (string): ID of the active conference participant_sid (string): ID of an active participant muted (bool, optional): Mute a participant deaf (bool, optional): Make it so a participant cant hear Returns: string: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _query_builder = Configuration.base_uri _query_builder += '/conferences/deafMuteParticipant.json' _query_url = APIHelper.clean_url(_query_builder) # Prepare form parameters _form_parameters = { 'conferenceSid': conference_sid, 'ParticipantSid': participant_sid, 'Muted': muted, 'Deaf': deaf } # Prepare and execute request _request = self.http_client.post(_query_url, parameters=_form_parameters) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return _context.response.raw_body
2.515625
3
app/tasks.py
tristan-c/FancyTest
0
12778833
from carotte import Carotte from app.connector import * my_app = Carotte() @my_app.task def refreshYoutube(author=None): youtube = youtubeConnector(username="") log = youtube.check() return log
1.773438
2
sphinx/util/stemmer/__init__.py
danieleades/sphinx
0
12778834
"""Word stemming utilities for Sphinx.""" import warnings import snowballstemmer from sphinx.deprecation import RemovedInSphinx70Warning class PorterStemmer: def __init__(self): warnings.warn(f"{self.__class__.__name__} is deprecated, use " "snowballstemmer.stemmer('porter') instead.", RemovedInSphinx70Warning, stacklevel=2) self.stemmer = snowballstemmer.stemmer('porter') def stem(self, p: str, i: int, j: int) -> str: warnings.warn(f"{self.__class__.__name__}.stem() is deprecated, use " "snowballstemmer.stemmer('porter').stemWord() instead.", RemovedInSphinx70Warning, stacklevel=2) return self.stemmer.stemWord(p) class BaseStemmer: def __init__(self): warnings.warn(f"{self.__class__.__name__} is deprecated, use " "snowballstemmer.stemmer('porter') instead.", RemovedInSphinx70Warning, stacklevel=3) def stem(self, word: str) -> str: raise NotImplementedError class PyStemmer(BaseStemmer): def __init__(self): # NoQA super().__init__() self.stemmer = snowballstemmer.stemmer('porter') def stem(self, word: str) -> str: warnings.warn(f"{self.__class__.__name__}.stem() is deprecated, use " "snowballstemmer.stemmer('porter').stemWord() instead.", RemovedInSphinx70Warning, stacklevel=2) return self.stemmer.stemWord(word) class StandardStemmer(BaseStemmer): def __init__(self): # NoQA super().__init__() self.stemmer = snowballstemmer.stemmer('porter') def stem(self, word: str) -> str: warnings.warn(f"{self.__class__.__name__}.stem() is deprecated, use " "snowballstemmer.stemmer('porter').stemWord() instead.", RemovedInSphinx70Warning, stacklevel=2) return self.stemmer.stemWord(word) def get_stemmer() -> BaseStemmer: warnings.warn("get_stemmer() is deprecated, use " "snowballstemmer.stemmer('porter') instead.", RemovedInSphinx70Warning, stacklevel=2) return PyStemmer()
2.609375
3
test/00_unit_test/TestHectareVhdlGen.py
MicroTCA-Tech-Lab/hectare
5
12778835
#! /usr/bin/env python3 """ Copyright (c) 2020 Deutsches Elektronen-Synchrotron DESY See LICENSE.txt for license details. """ import enum import sys import unittest from systemrdl.rdltypes import AccessType from hectare._hectare_types import Field, Register from hectare._HectareVhdlGen import HectareVhdlGen class TestHectareVhdlGen(unittest.TestCase): DATA_W_BYTES = 4 def test_single_addr(self): reg = Register("myreg", 8) s = HectareVhdlGen._gen_single_addr(reg, self.DATA_W_BYTES) self.assertEqual(s, "constant C_ADDR_MYREG : integer := 2;") def test_single_field_range(self): field = Field("myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False) l = HectareVhdlGen._gen_single_field_range("myreg", field) self.assertEqual(l[0], "constant C_FIELD_MYREG_MYFIELD_MSB : integer := 15;") self.assertEqual(l[1], "constant C_FIELD_MYREG_MYFIELD_LSB : integer := 8;") def test_gen_single_reg(self): reg = Register("myreg", 8) s = HectareVhdlGen._gen_single_reg(reg, self.DATA_W_BYTES) self.assertEqual(s, "signal reg_myreg : std_logic_vector(32-1 downto 0);") def test_gen_single_port(self): field = Field("myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False) l = HectareVhdlGen._gen_single_port("myreg", field) self.assertEqual(l[0], "myreg_myfield_o : out std_logic_vector(7 downto 0);") self.assertEqual(l[1], "myreg_myfield_i : in std_logic_vector(7 downto 0);") def test_gen_single_port_onebit(self): field = Field("myfield", 8, 8, AccessType.rw, AccessType.rw, swmod=False) l = HectareVhdlGen._gen_single_port("myreg", field) self.assertEqual(l[0], "myreg_myfield_o : out std_logic;") self.assertEqual(l[1], "myreg_myfield_i : in std_logic;") def test_gen_single_port_swmod(self): field = Field("myfield", 8, 15, AccessType.r, AccessType.rw, swmod=True) l = HectareVhdlGen._gen_single_port("myreg", field) self.assertEqual(len(l), 2, "expect to generate _o and _swmod ports") self.assertEqual(l[0], "myreg_myfield_o : out std_logic_vector(7 downto 0);") self.assertEqual(l[1], "myreg_myfield_swmod : out std_logic;") def test_gen_single_hw_access_reg(self): field = Field("myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False) l = HectareVhdlGen._gen_single_hw_access("myreg", field, in_reg=True) self.assertEqual(l[0], "myreg_myfield_o <= reg_myreg(15 downto 8);") self.assertEqual( l[1], "reg_myreg(15 downto 8) <= myreg_myfield_i when rising_edge(clk);" ) def test_gen_single_hw_access_no_reg(self): field = Field("myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False) l = HectareVhdlGen._gen_single_hw_access("myreg", field, in_reg=False) self.assertEqual(l[0], "myreg_myfield_o <= reg_myreg(15 downto 8);") self.assertEqual(l[1], "reg_myreg(15 downto 8) <= myreg_myfield_i;") def test_gen_single_hw_access_no_reg_onebit(self): field = Field("myfield", 8, 8, AccessType.rw, AccessType.rw, swmod=False) l = HectareVhdlGen._gen_single_hw_access("myreg", field, in_reg=True) self.assertEqual(l[0], "myreg_myfield_o <= reg_myreg(8);") self.assertEqual(l[1], "reg_myreg(8) <= myreg_myfield_i when rising_edge(clk);") def test_gen_single_hw_access_enum_out(self): class ColorSel(enum.Enum): RED = 0 GREEN = 1 BLUE = 2 field = Field( "myfield", 0, 2, AccessType.r, AccessType.rw, swmod=False, encode=ColorSel ) l = HectareVhdlGen._gen_single_hw_access("myreg", field, in_reg=True) self.assertEqual( l[0], "myreg_myfield_o <= ColorSel_t'val(to_integer(unsigned(reg_myreg(2 downto 0))));", ) def test_gen_single_hw_access_enum_in(self): class ColorSel(enum.Enum): RED = 0 GREEN = 1 BLUE = 2 field = Field( "myfield", 0, 2, AccessType.w, AccessType.rw, swmod=False, encode=ColorSel ) l = HectareVhdlGen._gen_single_hw_access("myreg", field, in_reg=True) self.assertEqual( l[0], "reg_myreg(2 downto 0) <= std_logic_vector(to_unsigned(ColorSel_t'pos(myreg_myfield_i), 3)) when rising_edge(clk);", ) def test_gen_single_reg_swmod_no_swmod(self): reg = Register("myreg", 0) reg.fields.append( Field("myfield1", 0, 7, AccessType.rw, AccessType.rw, swmod=False) ) reg.fields.append( Field("myfield2", 8, 15, AccessType.rw, AccessType.rw, swmod=False) ) swmod_reg = HectareVhdlGen._gen_single_reg_swmod(reg, self.DATA_W_BYTES) self.assertIsNone( swmod_reg, "if none of the fields has swmod, no swmod reg is generated" ) def test_gen_single_reg_swmod_with_swmod(self): reg = Register("myreg", 0) reg.fields.append( Field("myfield1", 0, 7, AccessType.rw, AccessType.rw, swmod=False) ) reg.fields.append( Field("myfield2", 8, 15, AccessType.rw, AccessType.rw, swmod=True) ) swmod_reg = HectareVhdlGen._gen_single_reg_swmod(reg, self.DATA_W_BYTES) self.assertEqual( swmod_reg, "signal reg_myreg_swmod : std_logic;", "if at least one reg has swmod attribute set, reg is generated", ) def test_gen_single_enum_type(self): class ColorSel(enum.Enum): RED = 0 GREEN = 1 BLUE = 2 field = Field( "myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False, encode=ColorSel ) lines = HectareVhdlGen._gen_single_enum_type(field) self.assertEqual( len(lines), 1 + 3 + 1, "one line per each item, declaration and closing bracket", ) self.assertTrue("RED" in lines[1]) self.assertTrue("GREEN" in lines[2]) self.assertTrue("BLUE" in lines[3]) def test_gen_single_enum_type_invalid(self): """ generates un-supported encoding (inc != 1) and checks if generator raises expection """ class ColorSelInvalid(enum.Enum): RED = 0 GREEN = 1 BLUE = 10 # <- this is not supported field = Field( "myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False, encode=ColorSelInvalid, ) self.assertRaises(AssertionError, HectareVhdlGen._gen_single_enum_type, field) def test_gen_single_reset_assignment(self): RESET_VAL = 0x12 field = Field( "myfield", 8, 15, AccessType.rw, AccessType.rw, swmod=False, reset=RESET_VAL ) line = HectareVhdlGen._gen_single_reset_assignment("myreg", field) assign_val = line.split("<=")[1].strip().replace(";", "") self.assertEqual(assign_val, '"{0:08b}"'.format(RESET_VAL), "reset value") self.assertEqual(len(assign_val), 8+2, "assign value must be of same size as the field") if __name__ == "__main__": unittest.main()
2.4375
2
tests/test_rfc9092.py
CBonnell/pyasn1-alt-modules
2
12778836
# # This file is part of pyasn1-alt-modules software. # # Created by <NAME> # Copyright (c) 2020-2022, Vigil Security, LLC # License: http://vigilsec.com/pyasn1-alt-modules-license.txt # import sys import unittest from pyasn1.codec.der.decoder import decode as der_decoder from pyasn1.codec.der.encoder import encode as der_encoder from pyasn1.type import univ from pyasn1_alt_modules import pem from pyasn1_alt_modules import rfc5652 from pyasn1_alt_modules import rfc9092 class GeofeedCSVTestCase(unittest.TestCase): pem_text = """\ <KEY> """ def setUp(self): self.asn1Spec = rfc5652.ContentInfo() def testDerCodec(self): substrate = pem.readBase64fromText(self.pem_text) asn1Object, rest = der_decoder(substrate, asn1Spec=self.asn1Spec) self.assertFalse(rest) self.assertTrue(asn1Object.prettyPrint()) self.assertEqual(substrate, der_encoder(asn1Object)) assert asn1Object['contentType'] == rfc5652.id_signedData sd, rest = der_decoder(asn1Object['content'], asn1Spec=rfc5652.SignedData()) self.assertFalse(rest) self.assertTrue(sd.prettyPrint()) self.assertEqual(asn1Object['content'], der_encoder(sd)) found = False for sa in sd['signerInfos'][0]['signedAttrs']: if sa['attrType'] == rfc5652.id_contentType: ct, rest = der_decoder(sa['attrValues'][0], asn1Spec=rfc5652.ContentType()) self.assertFalse(rest) self.assertTrue(ct.prettyPrint()) self.assertEqual(sa['attrValues'][0], der_encoder(ct)) self.assertEqual(rfc9092.id_ct_geofeedCSVwithCRLF, ct) found = True assert found suite = unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite)
2.140625
2
cogs/fire.py
NieR1711/Fire
0
12778837
""" MIT License Copyright (c) 2019 GamingGeek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from jishaku.paginators import PaginatorInterface, PaginatorEmbedInterface, WrappedPaginator from fire.converters import Member from discord.ext import commands from aiotrello import Trello from typing import Union import discord import datetime import os import platform import json import time import psutil import asyncio import traceback import humanfriendly import inspect import textwrap import io import copy import aiohttp import subprocess import random launchtime = datetime.datetime.utcnow() process = psutil.Process(os.getpid()) print("fire.py has been loaded") def config(path: str = None): with open('config.json', 'r') as cfg: config = json.load(cfg) if path != None: return config[path] else: return config config = config() def isadmin(ctx): """Checks if the author is an admin""" if str(ctx.author.id) not in config('admins'): admin = False else: admin = True return admin class firecog(commands.Cog, name="Main Commands"): def __init__(self, bot): self.bot = bot self.trello = Trello(key=config['trellokey'], token=config['trellotoken']) self.launchtime = launchtime self._last_result = None def cleanup_code(self, content): if content.startswith('```') and content.endswith('```'): return '\n'.join(content.split('\n')[1:-1]) return content.strip('` \n') @commands.command(name="invite") async def inviteme(self, ctx): return await ctx.send("https://gaminggeek.dev/fire") @commands.command(description="Shows you my ping to discord's servers") async def ping(self, ctx): """PFXping""" latency = round(self.bot.latency * 1000) start = round(time.time()*1000) msg = await ctx.send(content="Pinging...") end = round(time.time()*1000) elapsed = round(end - start) color = ctx.author.color embed = discord.Embed(title=f":ping_pong: {elapsed}ms.\n:heartpulse: {latency}ms.", colour=color, timestamp=datetime.datetime.utcnow()) await msg.edit(content="`Pong!`", embed=embed) @commands.command(description="Suggest a feature") @commands.cooldown(1, 300, commands.BucketType.user) async def suggest(self, ctx, *, suggestion: str): """PFXsuggest <suggestion>""" if suggestion == None: await ctx.send("You can't suggest nothing!") else: board = await self.trello.get_board(lambda b: b.name == "Fire") suggestions = await board.get_list(lambda l: l.name == "Suggestions") card = await suggestions.create_card(suggestion, f"Suggested by {ctx.author.name} ({ctx.author.id})") now = datetime.datetime.utcnow().strftime('%d/%m/%Y @ %I:%M:%S %p') await card.add_comment(f"Suggested in channel {ctx.channel.name} ({ctx.channel.id}) in guild {ctx.guild.name} ({ctx.guild.id}) at {now} UTC") await ctx.send(f"Thanks! Your suggestion was added to the Trello @ <{card.url}>. Any abuse will lead to being blacklisted from Fire!") @commands.command(description="Shows you some stats about me.", aliases=['about']) async def stats(self, ctx): """PFXstats""" msg = await ctx.send('Gathering info...') delta_uptime = datetime.datetime.utcnow() - launchtime hours, remainder = divmod(int(delta_uptime.total_seconds()), 3600) minutes, seconds = divmod(remainder, 60) days, hours = divmod(hours, 24) uptime = f"{days}d, {hours}h, {minutes}m, {seconds}s" cpustats = psutil.cpu_percent() ramuse = (process.memory_info().rss / 1024) / 1000 online = 0 idle = 0 dnd = 0 offline = 0 streaming = 0 members = self.bot.get_all_members() for member in members: if str(member.status) == 'online': online = online + 1 if str(member.status) == 'idle': idle = idle + 1 if str(member.status) == 'dnd': dnd = dnd + 1 if str(member.status) == 'offline': offline = offline + 1 try: activity = member.activities[0] if isinstance(member.activities[0], discord.activity.Streaming): streaming = streaming + 1 except Exception: pass users = online + idle + dnd + offline embed = discord.Embed(colour=ctx.author.color, timestamp=datetime.datetime.utcnow()) ownerboi = self.bot.get_user(287698408855044097) embed.set_author(name=f"Bot made by {ownerboi}", url="https://gaminggeek.dev", icon_url=str(ownerboi.avatar_url)) embed.add_field(name="Runtime", value=f"{uptime}", inline=False) embed.add_field(name="CPU", value=f"{round(cpustats)}%", inline=False) embed.add_field(name="RAM", value=f"{ramuse} MB", inline=False) embed.add_field(name="Version Info", value=f"discord.py {discord.__version__} | Python: 3.7.4", inline=False) embed.add_field(name="Guilds", value=f"{len(self.bot.guilds)}", inline=True) embed.add_field(name="Prefix", value=f"{ctx.prefix}", inline=True) embed.add_field(name="Commands", value=len(self.bot.commands), inline=True) embed.add_field(name="Members", value=f"{self.bot.get_emoji(313956277808005120)} {online:,d}\n{self.bot.get_emoji(313956277220802560)} {idle:,d}\n{self.bot.get_emoji(313956276893646850)} {dnd:,d}\n{self.bot.get_emoji(313956277132853248)} {streaming:,d}\n{self.bot.get_emoji(313956277237710868)} {offline:,d}\nTotal: {users:,d}\n ", inline=False) await msg.edit(content=None, embed=embed) @commands.command(description="Shows you all the guilds I'm in.") async def listguilds(self, ctx): """PFXlistguilds""" if not isadmin(ctx): return paginator = WrappedPaginator(prefix='```vbs', suffix='```', max_size=1500) gcount = 1 for guild in self.bot.guilds: if guild == ctx.guild: current = ' (HERE)' else: current = '' #paginator.add_line(f'[{gcount}] {guild.name}{current} || {guild.owner} || {guild.member_count} Members') paginator.add_line(f'[{gcount}] {guild.name}{current} || {guild.owner} || {guild.member_count} Members') gcount = gcount + 1 interface = PaginatorInterface(ctx.bot, paginator, owner=ctx.author) await interface.send_to(ctx) @commands.command(name='rpc', description='View someone\'s rich presence') async def rpc(self, ctx, *, member: Member = None, MSG: discord.Message = None, ACT: int = 0): """PFXrpc [<member>]""" if not member: member = ctx.author if ACT == -1: return try: activity = member.activities[ACT] except IndexError: if ACT != 0: return activity = None embed = None if activity != None: if activity.name == 'Spotify': adict = activity.to_dict() embed = discord.Embed(color=activity.color, timestamp=datetime.datetime.utcnow()) embed.set_author(name=f'{member}\'s Spotify Info', icon_url='https://cdn.discordapp.com/emojis/471412444716072960.png') embed.add_field(name='Song', value=activity.title, inline=False) embed.add_field(name='Artists', value=', '.join(activity.artists), inline=False) embed.add_field(name='Album', value=activity.album, inline=False) duration = humanfriendly.format_timespan(activity.duration) now = datetime.datetime.utcnow() elapsed = humanfriendly.format_timespan(now - activity.start) left = humanfriendly.format_timespan(activity.end - now) if 'day' in left: left = '0:00:00' embed.add_field(name='Times', value=f'Duration: {duration}\nElapsed: {elapsed}\nLeft: {left}', inline=False) embed.add_field(name='Listen to this track', value=f'[{activity.title}](https://open.spotify.com/track/{activity.track_id})', inline=False) embed.set_thumbnail(url=activity.album_cover_url) elif type(activity) == discord.Streaming: embed = discord.Embed(color=discord.Color.purple(), timestamp=datetime.datetime.utcnow()) embed.set_author(name=f'{member}\'s Stream Info', icon_url='https://cdn.discordapp.com/emojis/603188557242433539.png') if member.bot: embed.add_field(name='Title', value=activity.name, inline=False) else: embed.add_field(name='Title', value=activity.name, inline=False) embed.add_field(name='Twitch Name', value=activity.twitch_name, inline=False) if activity.details != None: embed.add_field(name='Game', value=activity.details, inline=False) embed.add_field(name='URL', value=f'[{activity.twitch_name}]({activity.url})', inline=False) elif type(activity) == discord.Activity: embed = discord.Embed(color=member.color, timestamp=datetime.datetime.utcnow()) if activity.small_image_url != None: embed.set_author(name=f'{member}\'s Game Info', icon_url=activity.small_image_url) else: embed.set_author(name=f'{member}\'s Game Info') embed.add_field(name='Game', value=activity.name, inline=False) now = datetime.datetime.utcnow() elapsed = None if activity.start: elapsed = humanfriendly.format_timespan(now - activity.start) if activity.details != None and activity.state != None and elapsed != None: embed.add_field(name='Details', value=f'{activity.details}\n{activity.state}\n{elapsed} elapsed', inline=False) elif activity.state != None and elapsed != None: embed.add_field(name='Details', value=f'{activity.state}\n{elapsed} elapsed', inline=False) elif activity.details != None and elapsed != None: embed.add_field(name='Details', value=f'{activity.details}\n{elapsed} elapsed', inline=False) elif activity.details != None and activity.state !=None and elapsed == None: embed.add_field(name='Details', value=f'{activity.details}\n{activity.state}', inline=False) elif activity.state != None and elapsed == None: embed.add_field(name='Details', value=f'{activity.state}', inline=False) elif activity.details != None and elapsed == None: embed.add_field(name='Details', value=f'{activity.details}', inline=False) if activity.large_image_url != None: embed.set_thumbnail(url=activity.large_image_url) else: pass if embed: if MSG: await MSG.edit(embed=embed) def react_check(reaction, user): return user.id == ctx.author.id try: reaction, user = await self.bot.wait_for('reaction_add', check=react_check, timeout=120) except asyncio.TimeoutError: return if reaction.emoji == '⏹': await MSG.delete() elif reaction.emoji == '◀': await MSG.remove_reaction('◀', ctx.author) await ctx.invoke(self.bot.get_command('rpc'), member=member, MSG=MSG, ACT=ACT-1) elif reaction.emoji == '▶': await MSG.remove_reaction('▶', ctx.author) await ctx.invoke(self.bot.get_command('rpc'), member=member, MSG=MSG, ACT=ACT+1) else: MSG = await ctx.send(embed=embed) await MSG.add_reaction('⏹') await MSG.add_reaction('◀') await MSG.add_reaction('▶') def react_check(reaction, user): return user.id == ctx.author.id try: reaction, user = await self.bot.wait_for('reaction_add', check=react_check, timeout=120) except asyncio.TimeoutError: return if reaction.emoji == '⏹': await MSG.delete() elif reaction.emoji == '◀': await MSG.remove_reaction('◀', ctx.author) await ctx.invoke(self.bot.get_command('rpc'), member=member, MSG=MSG, ACT=ACT-1) elif reaction.emoji == '▶': await MSG.remove_reaction('▶', ctx.author) await ctx.invoke(self.bot.get_command('rpc'), member=member, MSG=MSG, ACT=ACT+1) else: await ctx.send(f'{discord.utils.escape_mentions(discord.utils.escape_markdown(str(member)))} doesn\'t seem to be playing something with rich presence integration...') else: await ctx.send(f'{discord.utils.escape_mentions(discord.utils.escape_markdown(str(member)))} doesn\'t seem to be playing something with rich presence integration...') @commands.command(description="dab") async def dab(self, ctx): """PFXdab""" await ctx.send(f"{ctx.message.author.mention}, <o/") @commands.command(description="idk") async def warm(self, ctx, *, warm: str): """PFXwarm <item>""" await ctx.send(f'🔥 Warming up {discord.utils.escape_mentions(discord.utils.escape_markdown(warm))}') @commands.command(description='Cow goes moo') async def cowsay(self, ctx, *, cow: str): """PFXcowsay <text>""" async with aiohttp.ClientSession() as session: async with session.get(f'http://cowsay.morecode.org/say?message={cow}&format=json') as resp: body = await resp.json() cow = body['cow'] cow = discord.utils.escape_mentions(cow).replace('`', '') await ctx.send(f'```{cow}```') @commands.command(description='ascii text') async def ascii(self, ctx, *, text: str): """PFXascii <text>""" textsplit = text.split(' ') text = '+'.join(textsplit) async with aiohttp.ClientSession() as session: async with session.get(f'http://artii.herokuapp.com/make?text={text}') as resp: body = await resp.text() try: asciimsg = discord.utils.escape_mentions(body).replace('`', '') await ctx.send(f'```{asciimsg}```') except discord.HTTPException as e: e = str(e) if 'Must be 2000 or fewer in length.' in e: return await ctx.send('That message is too long. Try a shorter one!') @commands.command(name='👏', aliases=['clap'], description='Emphasize your message with claps') async def clap(self, ctx, *, clappyboi: str = 'You need to provide a message for me to emphasize'): '''PFXclap <message>''' message = discord.utils.escape_mentions(clappyboi) message = message.split(' ') message = ' 👏 '.join(message) await ctx.send(message + ' 👏') @commands.command(name="8ball") async def eightball(self, ctx, *, q: str = None): if not q: return await ctx.send(f'<a:fireFailed:603214400748257302> You need to ask a question!') possible = ["It is certain.", "It is decidedly so.", "Without a doubt.", "Yes - definitely.", "You may rely on it.", "As I see it, yes.", "Most likely.", "Outlook good.", "Yes.", "Signs point to yes.", "Reply hazy, try again.", "Ask again later.", "Better not tell you now.", "Cannot predict now.", "Concentrate and ask again.", "Don't count on it.", "My reply is no.", "My sources say no.", "Outlook not so good.", "Very doubtful."] answer = random.choice(possible) await ctx.send(answer) def setup(bot): bot.add_cog(firecog(bot))
1.609375
2
test_sql.py
konstdimasik/python_code
0
12778838
<filename>test_sql.py<gh_stars>0 import sqlite3 from random import randint global db global sql db = sqlite3.connect('test_server.db') sql = db.cursor() sql.execute("""CREATE TABLE IF NOT EXISTS users ( id SERIAL PRIMARY KEY, login TEXT, password TEXT, cash BIGINT )""") db.commit() def reg(): user_login = input('Login: ') user_password = input('Password: ') sql.execute(f"SELECT login FROM users WHERE login = '{user_login}'") if sql.fetchone() is None: sql.execute(f"INSERT INTO users VALUES (?, ?, ?)", (user_login, user_password, 0)) db.commit() print('Зарегистрировано!') else: print('Такой логин уже есть') for value in sql.execute("SELECT * FROM users"): print(value) def casino(): user_login = input('Log in: ') number = randint(1, 2) sql.execute(f"SELECT login FROM users WHERE login = '{user_login}'") if sql.fetchone() is None: print("Такого логина не существует. Зарегистрируйтесь") reg() else: if number == 1: sql.execute(f'UPDATE users SET cash = {1000} WHERE login = "{user_login}"') db.commit() else: print('Вы проиграли!') def enter(): for i in sql.execute('SELECT * FROM users'): print(i) def main(): casino() enter() main()
3.46875
3
openspeech/modules/add_normalization.py
CanYouImagine/openspeech
207
12778839
<filename>openspeech/modules/add_normalization.py # MIT License # # Copyright (c) 2021 <NAME> and <NAME> and <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch.nn as nn class AddNorm(nn.Module): """ Add & Normalization layer proposed in "Attention Is All You Need". Transformer employ a residual connection around each of the two sub-layers, (Multi-Head Attention & Feed-Forward) followed by layer normalization. """ def __init__(self, sublayer: nn.Module, d_model: int = 512) -> None: super(AddNorm, self).__init__() self.sublayer = sublayer self.layer_norm = nn.LayerNorm(d_model) def forward(self, *args): residual = args[0] outputs = self.sublayer(*args) if isinstance(outputs, tuple): return self.layer_norm(outputs[0] + residual), outputs[1] return self.layer_norm(outputs + residual)
2.140625
2
find_missing_files_in_sequence.py
neilrjones/DevOps-Python-tools
1
12778840
#!/usr/bin/env python # coding=utf-8 # vim:ts=4:sts=4:sw=4:et # # Author: <NAME> # Date: 2020-07-31 11:03:17 +0100 (Fri, 31 Jul 2020) # # https://github.com/harisekhon/pytools # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn # and optionally send me feedback to help steer this or other code I publish # # https://www.linkedin.com/in/harisekhon # """ Finds missing files by numeric sequence, assuming a uniformly numbered file naming convention across files Files / directories are given as arguments or via standard input Directories are recursed and their files examined for missing numbers before each one Only supply files / directories that should be sharing a contiguously numbered file naming convention in each single run of this tool Accounts for zero padding in numbered files Caveats: - This is more complicated than you'd first think as there are so many file naming variations that no code could ever be universally bulletproof and will likely require advanced regex tuning to match your use case and naming convention - Won't detect missing files higher than the highest numbered file as there is no way to know how many there should be. If you are looking for missing MP3 files, then you might be able to check the mp3 tag metadata using programs like 'mediainfo' to get the total number of tracks and see if the files go that high - Returns globs by default instead of explicit missing filenames since suffixes can vary after numbers. If you have a simple enough use case with a single fixed filename convention such as 'blah_01.txt' then you can find code to print the missing files more explicitly, but in the general case you cannot account for suffix naming that isn't consistent, such as chapters of audiobooks eg. 'blah 01 - chapter about X.mp3' 'blah 02 - chapter about Y.mp3' so in the general case you cannot always infer suffixes, hence why it is left as globs. If you are sure that the suffixes don't change then you can specify --fixed-suffix and it will infer each file's suffix as the basis for any numerically missing files in the sequence, but if used where this is not the case, it'll generate a lot of false positives that the default globbing mode would have handled - Doesn't currently find entire missing CD / disks in the naming format, but you should be able to see those cases easily by eye """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import glob #import logging import os import re import sys import traceback srcdir = os.path.abspath(os.path.dirname(__file__)) libdir = os.path.join(srcdir, 'pylib') sys.path.append(libdir) try: from harisekhon.utils import log, log_option, validate_regex, isInt, UnknownError from harisekhon import CLI except ImportError as _: print(traceback.format_exc(), end='') sys.exit(4) __author__ = '<NAME>' __version__ = '0.3.2' # pylint: disable=too-many-instance-attributes class FindMissingFiles(CLI): def __init__(self): # Python 2.x super(FindMissingFiles, self).__init__() # Python 3.x # super().__init__() self.paths = [] self.regex_default = r'(?<!dis[ck]\s)' + \ r'(?<!CD\s)' + \ r'(?<!-)' + \ r'(?<!-\d)' + \ r'(?<!-\d\d)' + \ r'(?<!0)' + \ r'(?<!\d\.)' + \ r'(?<!\.mp)' + \ r'(\d+)' + \ r'(?![\w,@-])' + \ r'(?!\.\d)' self.exclude_default = r'^\d+\s' self.regex = None self.include = None self.exclude = None self.fixed_suffix = False self.missing_files = [] def add_options(self): super(FindMissingFiles, self).add_options() self.add_opt('-r', '--regex', metavar='REGEX', default=self.regex_default, help='Regex capture of the portion of the filename to compare ' + \ '- must have capture brackets capturing an integer ' + \ '(default: "{}" )'\ .format(self.regex_default)) self.add_opt('-i', '--include', metavar='REGEX', help=r"Include only paths that match the given case-insensitive regex (eg. '\.mp3$')") self.add_opt('-e', '--exclude', metavar='REGEX', default=self.exclude_default, help='Exclude paths that match the given case-insensitive regex (default: "{}" )'\ .format(self.exclude_default)) self.add_opt('-s', '--fixed-suffix', action='store_true', help='Assume fixed suffixes and infer explicit filenames rather than globs. The reason this ' + \ 'is not the default is that if this is not the case and there is some variation in ' + \ 'suffixes, such as with audiobook chapters, then you will hit a lot of false positives ' + \ 'that would have been caught by globbing') def process_options(self): super(FindMissingFiles, self).process_options() self.regex = self.get_opt('regex') self.include = self.get_opt('include') self.exclude = self.get_opt('exclude') self.fixed_suffix = self.get_opt('fixed_suffix') validate_regex(self.regex) self.regex = re.compile('(.*?)' + self.regex + '(.*)', re.I) if self.include is not None: validate_regex(self.include) self.include = re.compile(self.include, re.I) if self.exclude is not None: validate_regex(self.exclude) self.exclude = re.compile(self.exclude, re.I) if self.args: self.paths = self.args else: self.paths = sys.stdin.readlines() log_option('paths', self.paths) def is_included(self, path): if not self.include: return True if self.include.search(path): log.debug("including path: %s", path) return True return False def is_excluded(self, path): if not self.exclude: return False if self.exclude.search(path): log.debug("excluding path: %s", path) return True return False def run(self): for path in self.paths: if self.is_excluded(path): continue if not self.is_included(path): continue if not os.path.exists(path): raise UnknownError('path not found: {}'.format(path)) if os.path.isdir(path): self.process_directory(directory=path) elif os.path.isfile(path): self.check_file(filename=path) def process_directory(self, directory): for root, dirs, files in os.walk(directory, topdown=True): for filename in files: file_path = os.path.join(root, filename) if not self.is_included(file_path): continue if self.is_excluded(file_path): continue self.check_file(filename=file_path) for dirname in dirs: dir_path = os.path.join(root, dirname) if not self.is_included(dir_path): continue if self.is_excluded(dir_path): continue # massive depth directories will hit a recursion limit here but this is very rare in the real world # and probably a sign the filesystem should be better structured self.process_directory(directory=dir_path) def check_file(self, filename): log.debug('checking file \'%s\'', filename) match = self.regex.search(os.path.basename(filename)) if not match: log.debug('no numeric regex match for file, probably not a sequential file' + \ ', skipping \'%s\'', filename) return # will error out here if you've supplied your own regex without capture brackets # or if you've got pre-captures - let this bubble to user to fix their regex file_prefix = os.path.join(os.path.dirname(filename), match.group(1)) file_number = match.group(2) file_suffix = match.group(3) if not isInt(file_number): raise UnknownError('regex captured non-float for filename: {}'.format(filename)) if file_prefix is None: file_prefix = '' if file_suffix is None: file_suffix = '' padding = len(file_number) file_number = int(file_number) while file_number > 1: file_number = self.determine_missing_file_backfill(file_prefix, file_number, padding, file_suffix) if self.missing_files: print('\n'.join(reversed(self.missing_files))) self.missing_files = [] def determine_missing_file_backfill(self, file_prefix, file_number, padding, file_suffix): file_number -= 1 if self.fixed_suffix: explicit_last_filename = '{}{:0>%(padding)s}{}' % {'padding': padding} explicit_last_filename = explicit_last_filename.format(file_prefix, file_number, file_suffix) if not os.path.isfile(explicit_last_filename): self.missing_files.append(explicit_last_filename) else: file_number = -1 else: expected_last_filename_glob = '{}{:0>%(padding)s}*' % locals() expected_last_filename_glob = expected_last_filename_glob.format(file_prefix, file_number) if not glob.glob(expected_last_filename_glob): self.missing_files.append(expected_last_filename_glob) else: file_number = -1 return file_number if __name__ == '__main__': FindMissingFiles().main()
2.953125
3
start.py
aragaer/partner
1
12778841
#!/usr/bin/env python3 # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 from dbus.mainloop.glib import DBusGMainLoop from gi.repository import GObject from partner import PartnerService def main(): """ Entry point. """ DBusGMainLoop(set_as_default=True) PartnerService() GObject.MainLoop().run() if __name__ == '__main__': main()
1.648438
2
tworaven_apps/api_docs/urls.py
TwoRavens/TwoRavens
20
12778842
from django.conf.urls import url from tworaven_apps.api_docs import views, views_swagger urlpatterns = ( url(r'^grpc-test-form$', views.view_test_form, name='view_test_form'), #url(r'^v1/swagger.yml$', # views_swagger.view_swagger_doc_v1, # name='view_swagger_doc_v1'), )
1.476563
1
processing.py
summa-platform/summa-deeptagger
0
12778843
<filename>processing.py #!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function import os import sys import pickle import json import numpy as np from nltk.tokenize import sent_tokenize, word_tokenize from keras.utils.np_utils import to_categorical import gzip embeddings_folder = "word_vectors/" def load_word_vectors(langs, emb='40'): """ Function to load pre-trained word vectors. Output: dictionary { "french": np.array([w-fr_1,w-fr_2,...,w-fr_|V-fr|]) "german": np.array([w-de_1,w-de_2,...,w-de_|V-de|]) ... } dictionary { "french": [w-fr_1, ...] "german": [w-de_1, ...] } """ print("[*] Loading %s word vectors..." % ','.join(langs)) wvec, vocab = {}, {} print(emb, embeddings_folder) for fname in os.listdir(embeddings_folder): if fname in langs: with (gzip.open if fname.endswith('.gz') else open)(embeddings_folder+fname, 'rb') as f: try: lang_embeddings = pickle.load(f, encoding='latin1') except TypeError: f.seek(0) # reset lang_embeddings = pickle.load(f) lang = fname.split('.')[0] wvec[lang] = lang_embeddings[1] vocab[lang] = list(lang_embeddings[0]) sys.stdout.write("\t%s\r" % (fname) ) sys.stdout.flush() return wvec, vocab def compute_label_indexes(x, y, labels): Y_labs, X_labs, ids = [], [], [] for idx in range(len(y)): y_labs = [] for yy, yidx in enumerate(y[idx]): y_key = '_'.join([str(yy) for yy in yidx]) if len(yidx) > 0 and y_key in labels: y_labs.append(labels.index(y_key)) if len(y_labs) > 0 and len(x[idx]) > 0: Y_labs.append(y_labs) X_labs.append(x[idx]) ids.append(idx) return X_labs, Y_labs, ids def load_yvec(wvec, y_idxs, wpad): wdim = wvec[0].shape[0] total = wpad y_vec = np.zeros((wpad, wdim)) vecs = wvec[y_idxs[:wpad]] y_vec[0:len(vecs)] = vecs return y_vec def load_xvec(wvec, x_idxs, wpad, spad): wdim = wvec[0].shape[0] total = spad*wpad x_vec =[] for j,x in enumerate(x_idxs): vecs = wvec[x[:wpad]] zeros = np.zeros((wpad, wdim)) zeros[0:len(vecs)] = vecs if j == 0: x_vec = zeros else: x_vec = np.vstack([x_vec, zeros]) if x_vec.shape[0] < total: szeros = np.zeros((total - x_vec.shape[0], wdim)) x_vec = np.vstack([x_vec,szeros]) else: x_vec = x_vec[:total,:] return x_vec def load_vecs_multilabel(wvec, labels, x_idxs, y_idxs, wpad, spad, simple_mode): X_vecs, Y_labels = [], [] wdim = wvec[0].shape[0] total = spad*wpad for idx, x_idx_set in enumerate(x_idxs): x_vec =[] for j,x in enumerate(x_idx_set): vecs = wvec[x[:wpad]] zeros = np.zeros((wpad, wdim)) zeros[0:len(vecs)] = vecs if j == 0: x_vec = zeros else: x_vec = np.vstack([x_vec, zeros]) if x_vec.shape[0] < total: szeros = np.zeros((total - x_vec.shape[0], wdim)) x_vec = np.vstack([x_vec,szeros]) else: x_vec = x_vec[:total,:] X_vecs.append(x_vec) try: y_cats = np.sum(to_categorical(y_idxs[idx], nb_classes=len(labels)),axis=0) except: y_cats = np.array([]) y_cats[y_cats>1] = 1 Y_labels.append(y_cats) return np.array(X_vecs), np.array(Y_labels) def load_data(lang, ltype, vocab, path='', emb='512'): print("[*] Loading %s documents..." % lang) print("\t%s" % path) doc_folder = path docs = os.listdir(doc_folder) X_idxs, Y_idxs, Y_cidxs, Y_ridxs, fnames = [],[],[],[], [] for i, fname in enumerate(docs): if fname.find('.json') > -1: doc = json.load(open(doc_folder+fname)) sys.stdout.write("\t%s (%d/%d)\r" % (lang, i+1, len(docs)) ) sys.stdout.flush() title = doc["name"].lower() if 'teaser' in doc: teaser = doc["teaser"].lower() else: teaser = "" if 'text' in doc: body = doc['text'].lower() else: continue refgroups, keywords = [], [] if "referenceGroups" in doc: refgroups = doc["referenceGroups"] for refgroup in refgroups: if refgroup["type"] == "Keywords": if lang == "arabic": keywords = [w["name"].strip().lower() for w in refgroup['items']] else: keywords = [w["name"].strip().lower() for w in refgroup['items']] category = doc["categoryName"].lower() routes = doc["trackingInfo"]["customCriteria"]["x10"].lower().split("::")[2:] sentences = [clean(title)] sentences += sent_tokenize(clean(teaser)) sentences += sent_tokenize(clean(body)) # Exctract word ids and vectors per sentence x, x_ids = [], [] for sentence in sentences: vecs, vecs_ids = [], [] for word in word_tokenize(sentence): try: idx = vocab[lang].index(word) vecs_ids.append(idx) except: continue if len(vecs_ids) > 0: x_ids.append(vecs_ids) y_ids = extract_wordids(keywords, lang, vocab) # y_cids = extract_wordids([category], lang, vocab) y_rids = extract_wordids(routes, lang, vocab) X_idxs.append(x_ids) Y_idxs.append(y_ids) Y_cidxs.append(y_cids) Y_ridxs.append(y_rids) fnames.append(fname) h = {'X_idxs': X_idxs, 'Y_idxs': Y_idxs, 'Y_cidxs': Y_cidxs, 'Y_ridxs': Y_ridxs, 'fnames':fnames} if ltype == "kw": return X_idxs, Y_idxs, fnames elif ltype == "cat": return X_idxs, Y_cidxs, fnames elif ltype == "rou": return X_idxs, Y_ridxs, fnames def extract_wordids(keywords, lang, vocab): y_ids = [] for keyword in keywords: keyword = keyword.strip() vecs_ids = [] for word in keyword.split(): try: idy = vocab[lang].index(word) vecs_ids.append(idy) except: continue if len(vecs_ids) > 0: y_ids.append(vecs_ids) return y_ids def clean(text): text = text.replace('\n', ' ') text = text.replace('\r', ' ') text = text.replace('\t', ' ') return text
2.578125
3
wordlist/cpf_tools.py
andradjp/tools
0
12778844
""" Authon: <NAME> Data: 12/05/2018 """ import random def gera_cpf():#Função para gerar CPF cpf = list(random.choices([0,1,2,3,4,5,6,7,8,9], k=9))#Gera o CPF Aleatório #Cálculo do primeiro digito verificador pesos = [10, 9, 8, 7, 6, 5, 4, 3, 2] primeiro_digito = [] for idx,i in enumerate(cpf): primeiro_digito.append(i * pesos[idx]) primeiro_digito = sum(primeiro_digito) if (primeiro_digito % 11) < 2: cpf.append(0) else: cpf.append(11 - (primeiro_digito % 11)) #Cálculo do segundo dígito verificador pesos = [11, 10, 9, 8, 7, 6, 5, 4, 3, 2] segundo_digito = [] for idx,i in enumerate(cpf): segundo_digito.append(i * pesos[idx]) segundo_digito = sum(segundo_digito) if (segundo_digito % 11) < 2: cpf.append(0) else: cpf.append(11 - (segundo_digito % 11)) return '{}{}{}.{}{}{}.{}{}{}-{}{}'.format(*cpf) def verifica_cpf(cpf):#Função para verificar se o CPF é válido cpf = cpf.replace('.','') cpf = cpf.replace('-', '') cpf = list(map(int, cpf)) cpf_temp = cpf[0:9] pesos = [10, 9, 8, 7, 6, 5, 4, 3, 2] primeiro_digito = [] for idx, i in enumerate(cpf_temp): primeiro_digito.append(i * pesos[idx]) primeiro_digito = sum(primeiro_digito) if (primeiro_digito % 11) < 2: cpf_temp.append(0) else: cpf_temp.append(11 - (primeiro_digito % 11)) pesos = [11, 10, 9, 8, 7, 6, 5, 4, 3, 2] segundo_digito = [] for idx,i in enumerate(cpf_temp): segundo_digito.append(i * pesos[idx]) segundo_digito = sum(segundo_digito) if (segundo_digito % 11) < 2: cpf_temp.append(0) else: cpf_temp.append(11 - (segundo_digito % 11)) if cpf == cpf_temp: return 'CPF valido!' else: return 'CPF invalido' for x in range(50): print(gera_cpf())
3.546875
4
actions/cloudbolt_plugins/power_off_expired_servers/power_off_expired_servers.py
p6knewman/cloudbolt-forge
34
12778845
<reponame>p6knewman/cloudbolt-forge from utilities import events def run(job, logger=None, **kwargs): """ A post-expire hook that, given a list of expired servers, powers off any that are not off yet. The expiration_date parameter is used to determine whether a server is expired. Also updates their history with the event & an explanation. """ for server in job.server_set.all(): if server.power_status != "POWEROFF": job.set_progress("Powering off %s." % server.hostname) server.power_off() msg = "Server powered off because it expired at %s." % (server.expiration_date) events.add_server_event('MODIFICATION', server, msg, job=job) return '', '', ''
2.90625
3
UI/Container.py
FearlessClock/RobotFactory
0
12778846
import pygame from pygame.math import Vector2 from pygame.rect import Rect from UI.Button import Button class Container: """ Position in screen space menuSize in screen space""" def __init__(self, position: Vector2, menuSize: Vector2): self.size = menuSize self.position = position self.buttons = [] """Buttons in the list have to be placed in relation to the container and not the screen""" def addButton(self, button: Button): self.buttons.append(button); def drawContainer(self, surface, fontRenderer): pygame.draw.rect(surface, (0, 255, 0), Rect(self.position.x, self.position.y, self.size.x, self.size.y)) for i in range(len(self.buttons)): self.buttons[i].draw(surface, self.position, fontRenderer) def getButtonPressed(self, clickPos): relativePos = clickPos - self.position for button in self.buttons: if button.rect.x < relativePos.x < button.rect.topright[0] and button.rect.y < relativePos.y < button.rect.bottomright[1]: button.click() return True return False
3.625
4
app/migrations/0006_auto_20200530_1922.py
fluix-dev/cloak
3
12778847
# Generated by Django 3.0.6 on 2020-05-30 23:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0005_formfield_multiple_choices'), ] operations = [ migrations.AlterModelOptions( name='formfield', options={'ordering': ['order']}, ), migrations.AddField( model_name='formfield', name='order', field=models.PositiveIntegerField(default=0), ), ]
1.648438
2
db_storage/urls.py
jskopek/frame
0
12778848
from django.conf.urls import patterns, include, url from db_storage.views import ImageView urlpatterns = patterns('', url(r'^(?P<file_name>[^/]+)$', ImageView.as_view(), name='db_storage_image'), )
1.84375
2
readtagger/cli/findcluster.py
bardin-lab/read_tagger
3
12778849
<gh_stars>1-10 import logging import click from readtagger.findcluster import ClusterManager from readtagger import VERSION import multiprocessing_logging @click.command() @click.option('-i', '--input_path', help='Find cluster in this BAM file.', type=click.Path(exists=True), required=True) @click.option('-r', '--region', help='Find clusters in this Region (Format is chrX:2000-1000).', default=None,) @click.option('--max_proper_pair_size', help='Maximum proper pairs size. If not given will be inferred from the data.', default=0,) @click.option('--output_bam', help='Write out BAM file with cluster information to this path. ' 'Reads will have an additional "CD" tag to indicate the cluster number', type=click.Path(exists=False)) @click.option('--output_gff', help='Write out GFF file with cluster information to this path.', type=click.Path(exists=False)) @click.option('--output_vcf', help='Write out VCF file with cluster information to this path.', type=click.Path(exists=False)) @click.option('--output_fasta', help='Write out supporting evidence for clusters to this path.', type=click.Path(exists=False)) @click.option('--sample_name', default=None, help='Sample name to use when writing out clusters in GFF file. ' 'Default is to infer the name from the input filename.', ) @click.option('--include_duplicates/--no-include_duplicates', help='Include reads marked as duplicates when finding clusters.', default=False) @click.option('--transposon_reference_fasta', type=click.Path(exists=True), help=('Transposon fasta to align clipped reads to. ' 'Not necessary if BWA index is provided.'), default=None, required=False) @click.option('--transposon_bwa_index', help='Transposon BWA index to align clipped reads to', default=None, required=False) @click.option('--genome_reference_fasta', type=click.Path(exists=True), help=('Genome fasta to align clipped reads to. ' 'Not necessary if BWA index is provided.'), default=None, required=False) @click.option('--genome_bwa_index', help='Genome BWA index to align clipped reads to', default=None, required=False) @click.option('--min_mapq', help="Only consider reads with MAPQ equal to or higher than this setting.", default=4, type=click.IntRange(0, 60)) @click.option('-t', '--threads', help='Threads to use for cap3 assembly step', default=1, type=click.IntRange(1, 100)) @click.option('--shm_dir', envvar="SHM_DIR", help='Path to shared memory folder', default=None, type=click.Path(exists=True)) @click.option('-v', '--verbosity', default='DEBUG', help="Set the default logging level.") @click.option('-l', '--log_to', default=None, help='Write logs to this file', type=click.Path(exists=False)) @click.version_option(version=VERSION) def findcluster(**kwds): """Find clusters of reads that support a TE insertion.""" logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s - %(message)s', filename=kwds.pop('log_to'), level=getattr(logging, kwds.pop('verbosity'))) multiprocessing_logging.install_mp_handler() return ClusterManager(**kwds)
2.34375
2
docs/api-references/conf.py
bayeshack2016/icon-service
52
12778850
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import os import sys # -- Path setup -------------------------------------------------------------- from recommonmark.transform import AutoStructify sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'ICONService API References' copyright = '2019, ICON Foundation' author = 'ICON Foundation' about = {} path = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../../iconservice/__version__.py') with open(path, 'r', encoding='utf-8') as f: exec(f.read(), about) version = about["__version__"] release = '' # -- General configuration --------------------------------------------------- needs_sphinx = '1.8' extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'recommonmark' ] source_suffix = {'.md': 'markdown'} master_doc = 'index' add_module_names = False autodoc_mock_imports = [ "setproctitle", "plyvel", "earlgrey", "iconcommons", "coincurve", ] # -- Options for HTML output ------------------------------------------------- html_theme = 'sphinx_rtd_theme' html_show_sourcelink = False # -- Options for HTMLHelp output --------------------------------------------- htmlhelp_basename = 'ICONServicedoc' # -- Options for manual page output ------------------------------------------ man_pages = [ (master_doc, 'iconservice', 'ICONService Documentation', [author], 1) ] # -- recommenmark configuration ------------------------------------------------- github_doc_root = 'https://github.com/rtfd/recommonmark/tree/master/doc/' def setup(app): app.add_config_value('recommonmark_config', { 'url_resolver': lambda url: github_doc_root + url, 'auto_toc_tree_section': 'Contents', }, True) app.add_transform(AutoStructify)
1.539063
2