max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
tests/test_blue_dot.py
webknjaz/BlueDot
0
12778551
from bluedot import MockBlueDot, BlueDotSwipe, BlueDotRotation from time import sleep from threading import Event, Thread def test_default_values(): mbd = MockBlueDot() assert mbd.device == "hci0" assert mbd.port == 1 assert mbd.running assert mbd.print_messages assert mbd.double_press_time == 0.3 assert mbd.rotation_segments == 8 assert mbd.when_client_connects == None assert mbd.when_client_disconnects == None assert mbd.when_pressed == None assert mbd.when_double_pressed == None assert mbd.when_moved == None assert mbd.when_released == None assert mbd.when_swiped == None def test_modify_values(): mbd = MockBlueDot(device = "hci1", port = 2, auto_start_server = False, print_messages = False) assert mbd.device == "hci1" assert mbd.port == 2 assert not mbd.running assert not mbd.print_messages mbd.print_messages = True assert mbd.print_messages assert mbd.double_press_time == 0.3 mbd.double_press_time = 0.4 assert mbd.double_press_time == 0.4 assert mbd.rotation_segments == 8 mbd.rotation_segments = 16 assert mbd.rotation_segments == 16 def test_start_stop(): mbd = MockBlueDot(auto_start_server = False) assert not mbd.running mbd.start() assert mbd.running mbd.stop() assert not mbd.running def test_connect_disconnect(): mbd = MockBlueDot() assert not mbd.is_connected mbd.mock_client_connected() assert mbd.wait_for_connection(1) assert mbd.is_connected mbd.mock_client_disconnected() assert not mbd.is_connected def test_when_connect_disconnect(): mbd = MockBlueDot() event_connect = Event() mbd.when_client_connects = lambda: event_connect.set() event_disconnect = Event() mbd.when_client_disconnects = lambda: event_disconnect.set() assert not event_connect.is_set() mbd.mock_client_connected() assert event_connect.wait(1) assert not event_disconnect.is_set() mbd.mock_client_disconnected() assert event_disconnect.wait(1) def test_when_connect_disconnect_background(): mbd = MockBlueDot() event_connect = Event() mbd.set_when_client_connects(lambda: delay_function(event_connect.set, 0.2), background=True) event_disconnect = Event() mbd.set_when_client_disconnects(lambda: delay_function(event_disconnect.set, 0.2), background=True) mbd.when_client_disconnects = lambda: event_disconnect.set() assert not event_connect.is_set() mbd.mock_client_connected() assert not event_connect.is_set() assert event_connect.wait(1) assert not event_disconnect.is_set() mbd.mock_client_disconnected() assert not event_disconnect.is_set() assert event_disconnect.wait(1) def test_pressed_moved_released(): mbd = MockBlueDot() mbd.mock_client_connected() #initial value assert not mbd.is_pressed assert mbd.value == 0 #pressed mbd.mock_blue_dot_pressed(0,0) assert mbd.is_pressed assert mbd.value == 1 #released mbd.mock_blue_dot_released(0,0) assert not mbd.is_pressed assert mbd.value == 0 #wait_for_press delay_function(lambda: mbd.mock_blue_dot_pressed(0,0), 0.5) assert mbd.wait_for_press(1) assert not mbd.wait_for_release(0) #wait_for_release delay_function(lambda: mbd.mock_blue_dot_released(0,0), 0.5) assert mbd.wait_for_release(1) assert not mbd.wait_for_press(0) def test_double_press(): mbd = MockBlueDot() mbd.mock_client_connected() def simulate_double_press(): #sleep longer than the double press time, to clear any past double presses! sleep(mbd.double_press_time + 0.1) mbd.mock_blue_dot_pressed(0,0) mbd.mock_blue_dot_released(0,0) mbd.mock_blue_dot_pressed(0,0) mbd.mock_blue_dot_released(0,0) def simulate_failed_double_press(): sleep(mbd.double_press_time + 0.1) mbd.mock_blue_dot_pressed(0,0) mbd.mock_blue_dot_released(0,0) sleep(mbd.double_press_time + 0.1) mbd.mock_blue_dot_pressed(0,0) mbd.mock_blue_dot_released(0,0) # when_double_pressed event_double_pressed = Event() mbd.when_double_pressed = lambda: event_double_pressed.set() simulate_failed_double_press() assert not event_double_pressed.is_set() simulate_double_press() assert event_double_pressed.is_set() # wait for double press # double press the blue dot delay_function(simulate_double_press, 0.2) # wait for double press assert mbd.wait_for_double_press(1) # dont double press the blue dot delay_function(simulate_failed_double_press, 0.2) assert not mbd.wait_for_double_press(1) def test_when_pressed_moved_released(): mbd = MockBlueDot() mbd.mock_client_connected() #when_pressed event_pressed = Event() mbd.when_pressed = lambda: event_pressed.set() #when_double_pressed event_double_pressed = Event() mbd.when_double_pressed = lambda: event_double_pressed.set() #when_moved event_moved = Event() mbd.when_moved = lambda: event_moved.set() #when_released event_released = Event() mbd.when_released = lambda: event_released.set() assert not event_pressed.is_set() mbd.mock_blue_dot_pressed(0,0) assert event_pressed.is_set() assert not event_moved.is_set() mbd.mock_blue_dot_moved(1,1) assert event_moved.is_set() assert not event_released.is_set() mbd.mock_blue_dot_released(0,0) assert event_released.is_set() assert not event_double_pressed.is_set() mbd.mock_blue_dot_pressed(0,0) assert event_double_pressed.is_set() def test_when_pressed_moved_released_background(): mbd = MockBlueDot() mbd.mock_client_connected() #when_pressed event_pressed = Event() mbd.set_when_pressed(lambda: delay_function(event_pressed.set, 0.2), background=True) #when_double_pressed event_double_pressed = Event() mbd.set_when_double_pressed(lambda: delay_function(event_double_pressed.set, 0.2), background=True) #when_moved event_moved = Event() mbd.set_when_moved(lambda: delay_function(event_moved.set, 0.2), background=True) #when_released event_released = Event() mbd.set_when_released(lambda: delay_function(event_released.set, 0.2), background=True) # test that the events dont block assert not event_pressed.is_set() mbd.mock_blue_dot_pressed(0,0) assert not event_pressed.is_set() assert event_pressed.wait(1) assert not event_moved.is_set() mbd.mock_blue_dot_moved(1,1) assert not event_moved.is_set() assert event_moved.wait(1) assert not event_released.is_set() mbd.mock_blue_dot_released(0,0) assert not event_released.is_set() assert event_released.wait(1) # set pressed, moved, released to None so they dont wait mbd.set_when_pressed(None) mbd.set_when_moved(None) mbd.set_when_released(None) mbd.mock_blue_dot_pressed(0,0) mbd.mock_blue_dot_moved(1,1) mbd.mock_blue_dot_released(0,0) assert not event_double_pressed.is_set() mbd.mock_blue_dot_pressed(0,0) assert not event_double_pressed.is_set() assert event_double_pressed.wait(1) def test_position(): mbd = MockBlueDot() mbd.mock_client_connected() mbd.mock_blue_dot_pressed(0,0) assert not mbd.position.top assert mbd.position.middle assert not mbd.position.bottom assert not mbd.position.left assert not mbd.position.right mbd.mock_blue_dot_moved(1,0) assert not mbd.position.top assert not mbd.position.middle assert not mbd.position.bottom assert not mbd.position.left assert mbd.position.right mbd.mock_blue_dot_moved(-1,0) assert not mbd.position.top assert not mbd.position.middle assert not mbd.position.bottom assert mbd.position.left assert not mbd.position.right mbd.mock_blue_dot_moved(0,1) assert mbd.position.top assert not mbd.position.middle assert not mbd.position.bottom assert not mbd.position.left assert not mbd.position.right mbd.mock_blue_dot_moved(0,-1) assert not mbd.position.top assert not mbd.position.middle assert mbd.position.bottom assert not mbd.position.left assert not mbd.position.right mbd.mock_blue_dot_moved(0.1234, -0.4567) assert mbd.position.x == 0.1234 assert mbd.position.y == -0.4567 mbd.mock_blue_dot_moved(1, 0) assert mbd.position.distance == 1 assert mbd.position.angle == 90 def test_interaction(): mbd = MockBlueDot() mbd.mock_client_connected() assert mbd.interaction == None mbd.mock_blue_dot_pressed(-1,0) assert mbd.interaction.active assert len(mbd.interaction.positions) == 1 assert mbd.interaction.distance == 0 assert mbd.interaction.pressed_position.x == -1 assert mbd.interaction.pressed_position.y == 0 assert mbd.interaction.current_position.x == -1 assert mbd.interaction.current_position.y == 0 assert mbd.interaction.previous_position == None assert mbd.interaction.released_position == None mbd.mock_blue_dot_moved(0,0) assert mbd.interaction.active assert len(mbd.interaction.positions) == 2 assert mbd.interaction.distance == 1 assert mbd.interaction.pressed_position.x == -1 assert mbd.interaction.pressed_position.y == 0 assert mbd.interaction.current_position.x == 0 assert mbd.interaction.current_position.y == 0 assert mbd.interaction.previous_position.x == -1 assert mbd.interaction.previous_position.y == 0 assert mbd.interaction.released_position == None mbd.mock_blue_dot_released(1,0) assert not mbd.interaction.active assert len(mbd.interaction.positions) == 3 assert mbd.interaction.distance == 2 assert mbd.interaction.pressed_position.x == -1 assert mbd.interaction.pressed_position.y == 0 assert mbd.interaction.current_position.x == 1 assert mbd.interaction.current_position.y == 0 assert mbd.interaction.previous_position.x == 0 assert mbd.interaction.previous_position.y == 0 assert mbd.interaction.released_position.x == 1 assert mbd.interaction.released_position.y == 0 def test_swipe(): mbd = MockBlueDot() mbd.mock_client_connected() def simulate_swipe( pressed_x, pressed_y, moved_x, moved_y, released_x, released_y): mbd.mock_blue_dot_pressed(pressed_x, pressed_y) mbd.mock_blue_dot_moved(moved_x, moved_y) mbd.mock_blue_dot_released(released_x, released_y) #wait_for_swipe delay_function(lambda: simulate_swipe(-1,0,0,0,1,0), 0.5) assert mbd.wait_for_swipe(1) #when_swiped event_swiped = Event() mbd.when_swiped = lambda: event_swiped.set() assert not event_swiped.is_set() #simulate swipe left to right simulate_swipe(-1,0,0,0,1,0) #check event assert event_swiped.is_set() #get the swipe swipe = BlueDotSwipe(mbd.interaction) assert swipe.right assert not swipe.left assert not swipe.up assert not swipe.down #right to left event_swiped.clear() simulate_swipe(1,0,0,0,-1,0) assert event_swiped.is_set() swipe = BlueDotSwipe(mbd.interaction) assert not swipe.right assert swipe.left assert not swipe.up assert not swipe.down #bottom to top event_swiped.clear() simulate_swipe(0,-1,0,0,0,1) assert event_swiped.is_set() swipe = BlueDotSwipe(mbd.interaction) assert not swipe.right assert not swipe.left assert swipe.up assert not swipe.down #top to bottom event_swiped.clear() simulate_swipe(0,1,0,0,0,-1) assert event_swiped.is_set() swipe = BlueDotSwipe(mbd.interaction) assert not swipe.right assert not swipe.left assert not swipe.up assert swipe.down # background event_swiped.clear() mbd.set_when_swiped(lambda: delay_function(event_swiped.set, 0.2), background=True) simulate_swipe(0,1,0,0,0,-1) assert not event_swiped.is_set() assert event_swiped.wait(1) def test_callback_in_class(): class CallbackClass(): def __init__(self): self.event = Event() def no_pos(self): self.event.set() self.pos = None def with_pos(self, pos): self.event.set() self.pos = pos cc = CallbackClass() mbd = MockBlueDot() mbd.mock_client_connected() mbd.when_pressed = cc.no_pos mbd.mock_blue_dot_pressed(0,0) assert cc.event.is_set() assert cc.pos is None mbd.mock_blue_dot_released(0,0) cc.event.clear() mbd.when_pressed = cc.with_pos mbd.mock_blue_dot_pressed(0,0) assert cc.event.is_set() assert cc.pos.middle def test_rotation(): mbd = MockBlueDot() mbd.mock_client_connected() event_rotated = Event() mbd.when_rotated = lambda: event_rotated.set() assert not event_rotated.is_set() #press the blue dot, no rotation mbd.mock_blue_dot_pressed(-0.1,1) assert not event_rotated.is_set() r = BlueDotRotation(mbd.interaction, mbd.rotation_segments) assert not r.valid assert r.value == 0 assert not r.clockwise assert not r.anti_clockwise #rotate clockwise event_rotated.clear() mbd.mock_blue_dot_moved(0.1,1) assert event_rotated.is_set() r = BlueDotRotation(mbd.interaction, mbd.rotation_segments) assert r.value == 1 assert r.valid assert r.clockwise assert not r.anti_clockwise #rotate anti-clockwise event_rotated.clear() mbd.mock_blue_dot_moved(-0.1,1) assert event_rotated.is_set() r = BlueDotRotation(mbd.interaction, mbd.rotation_segments) assert r.value == -1 assert r.valid assert not r.clockwise assert r.anti_clockwise # background # rotate clockwise again event_rotated.clear() mbd.set_when_rotated(lambda: delay_function(event_rotated.set, 0.2), background=True) mbd.mock_blue_dot_moved(0.1,1) assert not event_rotated.is_set() assert event_rotated.wait(1) def test_allow_pairing(): mbd = MockBlueDot() assert not mbd.adapter.discoverable assert not mbd.adapter.pairable mbd.allow_pairing() assert mbd.adapter.discoverable assert mbd.adapter.pairable def test_dot_appearance(): mbd = MockBlueDot() assert mbd.color == "blue" assert mbd.border == False assert mbd.square == False assert mbd.visible == True mbd.color = "red" mbd.border = True mbd.square = True mbd.visible = False assert mbd.color == "red" assert mbd.border == True assert mbd.square == True assert mbd.visible == False def test_dot_colors(): from bluedot.colors import BLUE, RED, GREEN, YELLOW mbd = MockBlueDot() assert mbd.color == "blue" assert mbd.color == (0,0,255) assert mbd.color == BLUE assert mbd.color == "#0000ff" assert mbd.color == "#0000ffff" mbd.color = RED assert mbd.color == (255,0,0) assert mbd.color == "red" assert mbd.color == "#ff0000" assert mbd.color == "#ff0000ff" mbd.color = "green" assert mbd.color == GREEN assert mbd.color == (0,128,0) assert mbd.color == "#008000" assert mbd.color == "#008000ff" mbd.color = "#ffff00" assert mbd.color == YELLOW assert mbd.color == "yellow" assert mbd.color == (255,255,0) assert mbd.color == "#ffff00ff" mbd.color = "#ffffff11" assert mbd.color == "#ffffff11" def delay_function(func, time): delayed_thread = Thread(target = _delayed_function, args = (func, time)) delayed_thread.start() def _delayed_function(func, time): sleep(time) func()
2.359375
2
src/models/k_mean.py
tringn/image_clustering
5
12778552
<reponame>tringn/image_clustering<filename>src/models/k_mean.py import os import numpy as np from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import pandas as pd import json def plot_3d(vector_array, save_plot_dir): """ Plot 3D vector features distribution from vector array :param vector_array: (N x 3) vector array, where N is the number of images :param save_plot_dir: (string) directory to save plot :return: save 3D distribution feature to disk """ principal_df = pd.DataFrame(data=vector_array, columns=['pc1', 'pc2', 'pc3']) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') xs = principal_df['pc1'] ys = principal_df['pc2'] zs = principal_df['pc3'] ax.scatter(xs, ys, zs, s=50, alpha=0.6, edgecolors='w') ax.set_xlabel('pc1') ax.set_ylabel('pc2') ax.set_zlabel('pc3') plt.savefig(save_plot_dir + '/3D_scatter.png') plt.close() def plot_2d(vector_array, save_plot_dir): """ Plot 2D vector features distribution from vector array :param vector_array: (N x 2) vector array, where N is the number of images :param save_plot_dir: (string) directory to save plot :return: save 2D distribution feature to disk """ principal_df = pd.DataFrame(data = vector_array, columns = ['pc1', 'pc2']) fig = plt.figure() ax = fig.add_subplot(111) xs = principal_df['pc1'] ys = principal_df['pc2'] ax.scatter(xs, ys, s=50, alpha=0.6, edgecolors='w') ax.set_xlabel('pc1') ax.set_ylabel('pc2') plt.savefig(save_plot_dir + '/2D_scatter.png') plt.close() def read_vector(img_dir): """ Read vector in a directory to array (N x D): N is number of vectors, D is vector's dimension :param img_dir: (string) directory where feature vectors are :return: (array) N X D array """ vector_files = [f for f in os.listdir(img_dir) if f.endswith(".npz")] vector_array = [] for img in vector_files: vector = np.loadtxt(os.path.join(img_dir, img)) vector_array.append(vector) vector_array = np.asarray(vector_array) return vector_array, vector_files def find_best_k(vector_array, save_plot_dir, max_k=100): """ Find best number of cluster :param vector_array: (array) N x D dimension feature vector array :param save_plot_dir: (string) path to save cost figure :param max_k: (int) maximum number of cluster to analyze :return: plot the elbow curve to figure out the best number of cluster """ cost = [] dim = vector_array.shape[1] for i in range(1, max_k): kmeans = KMeans(n_clusters=i, random_state=0) kmeans.fit(vector_array) cost.append(kmeans.inertia_) # plot the cost against K values plt.plot(range(1, max_k), cost, color='g', linewidth='3') plt.xlabel("Value of K") plt.ylabel("Squared Error (Cost)") plt.savefig(save_plot_dir + '/cost_' + str(dim) + 'D.png') plt.close() def k_mean(vector_array, k): """ Apply k-mean clustering approach to assign each feature image in vector array to suitable subsets :param vector_array: (array) N x D dimension feature vector array :param k: (int) number of cluster :return: (array) (N x 1) label array """ kmeans = KMeans(n_clusters=k, random_state=0) kmeans.fit(vector_array) labels = kmeans.labels_ return labels def reduce_dim_combine(vector_array, dim=2): """ Applying dimension reduction to vector_array :param vector_array: (array) N x D dimension feature vector array :param dim: (int) desired dimension after reduction :return: (array) N x dim dimension feature vector array """ # Standardizing the features vector_array = StandardScaler().fit_transform(vector_array) # Apply PCA first to reduce dim to 50 pca = PCA(n_components=50) vector_array = pca.fit_transform(vector_array) # Apply tSNE to reduce dim to #dim model = TSNE(n_components=dim, random_state=0) vector_array = model.fit_transform(vector_array) return vector_array if __name__ == "__main__": # Mode: investiagate to find the best k, inference to cluster # MODE = "investigate" MODE = "inference" # Image vectors root dir img_dir = "results/image_vectors/" # Final dimension dim = 2 for object_name in os.listdir(img_dir): print("Process %s" % object_name) # object_name = img_dir.split("/")[-1] vector_array, img_files = read_vector(os.path.join(img_dir, object_name)) # k_mean(vector_array) if vector_array.shape[0] >= 450: # Apply dimensional reducing approach vector_array = reduce_dim_combine(vector_array, dim) if MODE == "investigate": # Plot data distribution after reducing dimension if dim == 2: plot_2d(vector_array) save_plot_dir = "visualization/2D/" elif dim == 3: plot_3d(vector_array) save_plot_dir = "visualization/3D/" else: raise ValueError("Not support dimension") # Plot cost chart to find best value of k find_best_k(vector_array, object_name, save_plot_dir) continue # Find label for each image labels = k_mean(vector_array, k=40).tolist() assert len(labels) == len(img_files), "Not equal length" label_dict = [{"img_file": img_files[i].replace(".npz", "").replace(object_name + '_', ""), "label": str(labels[i]), "prob": "1.0"} for i in range(len(labels))] # Save to disk label_dir = "results/img_cluster/" label_outpath = os.path.join(label_dir, object_name + ".json") # os.makedirs(label_outpath, exist_ok=True) with open(label_outpath, 'w') as fp: json.dump({"data": label_dict}, fp)
3
3
src/data_providing_module/data_providers/split_block_provider.py
Freitacr/ML-StockAnalysisProject
0
12778553
"""Data Provider module for providing data blocks made from similar stocks over a set time period, but separated. This data provider is not intended to be used outside of this module, instead, upon import, this module will create an instance of a SplitBlockProvider and register it with the global DataProviderRegistry. To register a consumer to receive data from this provider, use the id provided by data_provider_static_names.SPLIT_BLOCK_PROVIDER. The separation, or split, referred to by this module is that the data block for one cluster is not combined with the data block from others into a large training set. This is in contrast to the ClusteredBlockProvider, which combines its cluster's blocks into a larger data set. A detailed argument list that is required by this provider can be found in the generate_data method. """ from datetime import datetime as dt, timedelta as td import configparser from data_providing_module import configurable_registry from data_providing_module import data_provider_registry from data_providing_module.data_providers import data_provider_static_names from stock_data_analysis_module.data_processing_module import stock_cluster_data_manager from general_utils.config import config_util ENABLED_CONFIG_ID = "enabled" class SplitBlockProvider(data_provider_registry.DataProviderBase): """Data Provider that provides data constructed by clustering stocks, but keeping the cluster's data separate The organization of these clusters is handled according to the specifications established in the StockClusterDataManager, and will operate on the time frame [start_date, end_date]. This time frame is currently fixed where end_date is the current date, and start_date is 52 * 4 weeks ago (approximately four years). Additionally this provider supports configuration of certain parameters through the configuration file. These parameters are listed in the Configurable Parameters section. Configurable Parameters: enabled: Whether this provider is enabled for consumers to receive data from. """ def generate_prediction_data(self, *args, **kwargs): """Generates data that consumers will use to make predictions for the next trading day. Currently there is no implementation for this, and calling the method will result in a NotImplementedError """ raise NotImplementedError() def __init__(self): """Initializes a SplitBlockProvider and registers it to the global DataProviderRegistry """ super(SplitBlockProvider, self).__init__() configurable_registry.config_registry.register_configurable(self) def write_default_configuration(self, section: "configparser.SectionProxy"): """Writes default configuration values into the SectionProxy provided. For more details see abstract class documentation. """ section[ENABLED_CONFIG_ID] = "True" def load_configuration(self, parser: "configparser.ConfigParser"): """Attempts to load the configurable parameters for this provider from the provided parser. For more details see abstract class documentation. """ section = config_util.create_type_section(parser, self) if not parser.has_option(section.name, ENABLED_CONFIG_ID): self.write_default_configuration(section) enabled = parser.getboolean(section.name, ENABLED_CONFIG_ID) if enabled: data_provider_registry.registry.register_provider(data_provider_static_names.SPLIT_BLOCK_PROVIDER_ID, self) def generate_data(self, *args, **kwargs): """Generates data for Consumers to use by clustering together stocks in a time period, The time period for cluster creation is a period of 52 * 4 weeks (approximately 4 years). Consumers requiring data from this provider are expected to provide the arguments specified in the *args entry of the Arguments section The split portion of this data provider is that the data returned is split into different entries in a dictionary, keyed off of the root stock's ticker. The root stock is the stock that the cluster is based around and all other data in the cluster is deemed as being similar to the root stock's data. Arguments: *args: List of arguments that are expected to be in the following order, with the specified types train_columns: List[str] List of names of columns from a StockDataTable. These will be used to retrieve data from the database and construct the returned data blocks expectation_columns: List[int] List of integers representing the indices of the columns to be used as the target data in the generation of the data blocks Returns: See StockClusterDataManager.retrieve_training_data_movement_targets_split """ if len(args) < 1: raise ValueError('Expected at least the first argument from the following list;' + ' train_columns: List["str"], expectation_columns: List["int"]') columns = args[0] expectation_columns = None if len(args) == 2: expectation_columns = args[1] start_date = dt.now() - td(weeks=(52 * 4)) start_date = start_date.isoformat()[:10].replace('-', '/') end_date = dt.now().isoformat()[:10].replace('-', '/') data_retriever = stock_cluster_data_manager.StockClusterDataManager(start_date, end_date, column_list=columns) return data_retriever.retrieveTrainingDataMovementTargetsSplit(expectation_columns=expectation_columns) provider = SplitBlockProvider()
2.78125
3
aiakos/urls.py
aiakos/aiakos
4
12778554
<reponame>aiakos/aiakos """project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.contrib.auth.decorators import login_required from django.views.generic import RedirectView, TemplateView from django_extauth import v1 as auth_v1 from rest_framework import routers from .openid_provider import v1 as oauth_v1 v1 = routers.DefaultRouter() v1.register(r'clients', oauth_v1.ClientViewSet) v1.register(r'accounts', auth_v1.AccountViewSet, base_name='account') urlpatterns = [ url(r'^v1/', include(v1.urls)), url(r'^admin/', admin.site.urls), url(r'^', include('django_extauth.urls', namespace='extauth')), url(r'^', include('aiakos.openid_provider.urls', namespace='openid_provider')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
2.71875
3
AmbidexteriousBounce.py
l0vemachin3/AmbidexteriousBounce
0
12778555
<gh_stars>0 from tkinter import * import random import time class Ball: def __init__(self, canvas, paddle, paddle2, color): self.canvas = canvas self.paddle = paddle self.paddle2 = paddle2 self.id = canvas.create_oval(10, 10, 25, 25, fill=color) self.canvas.move(self.id, 245, 100) starts = [-3, -2, -1, 1, 2, 3] random.shuffle(starts) self.x = starts[0] self.y = -3 self.canvas_height = self.canvas.winfo_height() self.canvas_width = self.canvas.winfo_width() self.hit_bottom = False def draw(self): self.canvas.move(self.id, self.x, self.y) pos = self.canvas.coords(self.id) if pos[1] <= 0: self.y = 3 if pos[3] >= self.canvas_height: self.hit_bottom = True if self.hit_paddle(pos) == True: self.y = -3 if self.hit_paddle2(pos) == True: self.y = -3 if pos[0] <= 0: self.x = 3 if pos[2] >= self.canvas_width: self.x = -3 def hit_paddle(self, pos): paddle_pos = self.canvas.coords(self.paddle.id) if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]: if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]: return True return False def hit_paddle2(self, pos): paddle2_pos = self.canvas.coords(self.paddle2.id) if pos[2] >= paddle2_pos[0] and pos[0] <= paddle2_pos[2]: if pos[3] >= paddle2_pos[1] and pos[3] <= paddle2_pos[3]: return True return False class Ball2: def __init__(self, canvas, paddle, paddle2, color): self.canvas = canvas self.paddle = paddle self.paddle2 = paddle2 self.id = canvas.create_oval(10, 10, 25, 25, fill=color) self.canvas.move(self.id, 245, 100) starts = [-3, -2, -1, 1, 2, 3] random.shuffle(starts) self.x = starts[0] self.y = -3 self.canvas_height = self.canvas.winfo_height() self.canvas_width = self.canvas.winfo_width() self.hit_bottom = False def draw(self): self.canvas.move(self.id, self.x, self.y) pos = self.canvas.coords(self.id) if pos[1] <= 0: self.y = 3 if pos[3] >= self.canvas_height: self.hit_bottom = True if self.hit_paddle(pos) == True: self.y = -3 if self.hit_paddle2(pos) == True: self.y = -3 if pos[0] <= 0: self.x = 3 if pos[2] >= self.canvas_width: self.x = -3 def hit_paddle(self, pos): paddle_pos = self.canvas.coords(self.paddle.id) if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]: if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]: return True return False def hit_paddle2(self, pos): paddle2_pos = self.canvas.coords(self.paddle2.id) if pos[2] >= paddle2_pos[0] and pos[0] <= paddle2_pos[2]: if pos[3] >= paddle2_pos[1] and pos[3] <= paddle2_pos[3]: return True return False class Paddle: def __init__(self, canvas, color): self.canvas = canvas self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color) self.canvas.move(self.id, 200, 300) self.x = 0 self.canvas_width = self.canvas.winfo_width() self.canvas.bind_all('<KeyPress-Left>', self.turn_left) self.canvas.bind_all('<KeyPress-Right>', self.turn_right) self.canvas.bind_all('<KeyPress-Button_1>') def draw(self): self.canvas.move(self.id, self.x, 0) pos = self.canvas.coords(self.id) if pos[0] <= 0: self.x = 0 elif pos[2] >= self.canvas_width: self.x = 0 def turn_left(self, evt): self.x = -2 def turn_right(self, evt): self.x = 2 class Paddle2: def __init__(self, canvas, color): self.canvas = canvas self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color) self.canvas.move(self.id, 200, 300) self.x = 0 self.canvas_width = self.canvas.winfo_width() self.canvas.bind_all('<KeyPress-a>', self.turn_left) self.canvas.bind_all('<KeyPress-d>', self.turn_right) def draw(self): self.canvas.move(self.id, self.x, 0) pos = self.canvas.coords(self.id) if pos[0] <= 0: self.x = 0 elif pos[2] >= self.canvas_width: self.x = 0 def turn_left(self, evt): self.x = -2 def turn_right(self, evt): self.x = 2 tk = Tk() tk.title("Ambidexterious Bounce") tk.resizable(0, 0) tk.wm_attributes("-topmost", 1) canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0) canvas.pack() tk.update() paddle2 = Paddle2(canvas, 'blue') paddle = Paddle(canvas, 'red') ball2 = Ball2(canvas, paddle, paddle2, 'yellow') ball = Ball(canvas, paddle, paddle2, 'green') while 1: if ball.hit_bottom == False: if ball2.hit_bottom == False: ball2.draw() ball.draw() paddle.draw() paddle2.draw() tk.update_idletasks() tk.update() time.sleep(0.01)
3.3125
3
Python/lc_13.py
cmattey/leetcode_problems
6
12778556
<gh_stars>1-10 # 13. Roman to Integer # Time: O(len(s)) # Space: O(1) class Solution: def romanToInt(self, s: str) -> int: roman_map = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000, 'IV':4,'IX':9, 'XL':40,'XC':90, 'CD':400,'CM':900} num = 0 index = 0 while index in range(len(s)): if index+1 in range(len(s)): if s[index]+s[index+1] in roman_map: num+=roman_map[s[index]+s[index+1]] index+=1 else: num+=roman_map[s[index]] else: num+=roman_map[s[index]] index+=1 return num
3.234375
3
PEtab_problems/Code/Tumor_2d/tumor_script.py
EmadAlamoudi/FMC_paper
0
12778557
<gh_stars>0 from time import time import tumor2d from fitmulticell.sumstat import SummaryStatistics as ss import matplotlib.pyplot as plt from string import capwords import os import pyabc from fitmulticell.model import MorpheusModel import numpy as np import scipy def eucl_dist(sim, obs): total = 0 for key in sim: if key in 'loc': continue total += scipy.stats.ks_2samp(sim[key], obs[key]).statistic return total pop_size = 2 min_eps = 750 min_eps_ori = min_eps max_nr_pop = 2 # logfilepath = "/home/emad/Insync/<EMAIL>/Google_Drive/Bonn/Github/FMC_paper/PEtab_problems/Code/Tumor_2d/TumorStats.txt" problempath = "/home/emad/Insync/<EMAIL>/Google_Drive/Bonn/Github/FMC_paper/PEtab_problems/Tumor_2D/Tumour_Spheroid_ScenI_1e.xml" par_map = {'k_div_max': './Global/Constant[@symbol="k_div_max"]', 'L_init': './Global/Constant[@symbol="L_init"]', 'q_init': './Global/Constant[@symbol="q_init"]', 'L_div': './Global/Constant[@symbol="L_div"]', 'ke_pro': './Global/Constant[@symbol="ke_pro"]', 'ke_deg': './Global/Constant[@symbol="ke_deg"]', 'e_div': './Global/Constant[@symbol="e_div"]', } start_time = time() observation_par = {"k_div_max": 4.17e-2, "L_init": 1.2e1, "q_init": 7.5e-1, "L_div": 100, "ke_pro": 5e-3, "ke_deg": 8e-4, "e_div": 1e-2} sumstat = ss(output_file="logger_1.csv", ignore=["cell.id", "time"]) model = MorpheusModel( model_file=problempath, par_map=par_map, executable="/home/emad/morpheus-2.2.5", sumstat=sumstat, ) observation_morpheus = model.sample(observation_par) model.par_scale = "log10" # observation_origin = tumor2d.simulate(division_rate=4.17e-2, # initial_spheroid_radius=1.2e1, # initial_quiescent_cell_fraction=7.5e-1, # division_depth=100, # ecm_production_rate=5e-3, # ecm_degradation_rate=8e-4, # ecm_division_threshold=1e-2) limits = dict(k_div_max=(-3, -1), L_init=(1, 3), q_init=(0, 1.2), L_div=(-5, 0), ke_pro=(-5, 0), ke_deg=(-5, 0), e_div=(-5, 0)) # prior = pyabc.Distribution(**{key: pyabc.RV("uniform", a, b - a) for key, (a, b) in limits.items()}) # data_mean = tumor2d.load_default()[1] # (raw, mean, var) # In[6]: # redis_sampler = pyabc.sampler.RedisEvalParallelSampler(host=host, port=port, look_ahead = False) abc = pyabc.ABCSMC(models=model, parameter_priors=prior, distance_function=eucl_dist, population_size=pop_size) db_path = "sqlite:///" + "/tmp/" + "test_14param_Felipe.db" abc.new(db_path, observation_morpheus) history_f = abc.run(max_nr_populations=max_nr_pop, minimum_epsilon=min_eps_ori) # petab_problem_path = "/home/emad/Insync/<EMAIL>/Google_Drive/Bonn/Github/FMC_paper" + '/PEtab_problems' + '/Tumor_2D' + '/Tumor_2D.yaml' # petab_problem = petab_MS.Problem.from_yaml(petab_problem_path) # importer = PetabImporter(petab_problem) # PEtab_prior = importer.create_prior() # par_map_imported = importer.get_par_map() # obs_pars_imported = petab_problem.get_x_nominal_dict(scaled=True) # PEtab_par_scale = petab_problem.get_optimization_parameter_scales() # dict_data_imported = petab_problem.get_measurement_dict() # PEtab_model = importer.create_model() # PEtab_model.timeout = 900 # PEtab_model.ignore_list = ["cell.id", "Tension", "time"] # # PEtab_tryjectory = PEtab_model.sample(obs_pars_imported) # model_dir = "/home/emad/Insync/<EMAIL>/Google_Drive/Bonn/Github/FMC_paper" + '/PEtab_problems' + '/Liver_regeneration' + '/YAP_Signaling_Liver_Regeneration_Model_reparametrized_further.xml' # # abc = pyabc.ABCSMC(PEtab_model, PEtab_prior, eucl_dist, population_size=2, # eps=QuantileEpsilon(alpha=0.3), all_accepted=False) # # db_path = ("sqlite:///" + # os.path.join(tempfile.gettempdir(), "test.db")) # history = abc.new(db_path, dict_data_imported) # abc.run(max_nr_populations=2)
2.03125
2
policykit/integrations/metagov/views.py
hozzjss/policykit
1
12778558
<filename>policykit/integrations/metagov/views.py import json import logging from django.contrib.auth.models import ContentType, Permission from django.contrib.contenttypes.models import ContentType from django.http import ( HttpResponse, HttpResponseBadRequest, HttpResponseServerError, HttpResponseNotFound, ) from django.views.decorators.csrf import csrf_exempt from integrations.metagov.models import MetagovProcess, MetagovPlatformAction, MetagovUser from policyengine.models import Community, CommunityPlatform, CommunityRole from integrations.slack.models import SlackCommunity logger = logging.getLogger(__name__) # INTERNAL ENDPOINT, no auth @csrf_exempt def internal_receive_outcome(request, id): if request.method != "POST" or not request.body: return HttpResponseBadRequest() try: body = json.loads(request.body) except ValueError: return HttpResponseBadRequest("unable to decode body") logger.info(f"Received external process outcome: {body}") # Special case for Slack voting mechanism if body["name"] == "slack.emoji-vote": community = SlackCommunity.objects.get(community__metagov_slug=body["community"]) community.handle_metagov_process(body) return HttpResponse() try: process = MetagovProcess.objects.get(pk=id) except MetagovProcess.DoesNotExist: return HttpResponseNotFound() process.json_data = json.dumps(body) process.save() return HttpResponse() # INTERNAL ENDPOINT, no auth @csrf_exempt def internal_receive_action(request): """ Receive event from Metagov """ if request.method != "POST" or not request.body: return HttpResponseBadRequest() try: body = json.loads(request.body) except ValueError: return HttpResponseBadRequest("unable to decode body") logger.info(f"Received metagov action: {body}") metagov_community_slug = body.get("community") try: community = Community.objects.get(metagov_slug=metagov_community_slug) except Community.DoesNotExist: logger.error(f"Received event for community {metagov_community_slug} which doesn't exist in PolicyKit") return HttpResponseBadRequest("Community does not exist") # Special cases for receiving events from "governable platforms" that have fully featured integrations if body.get("source") == "slack": # Route Slack event to the correct SlackCommunity handler slack_community = SlackCommunity.objects.filter(community=community).first() if slack_community is None: return HttpResponseBadRequest(f"no slack community exists for {metagov_community_slug}") slack_community.handle_metagov_event(body) return HttpResponse() # For all other sources, create generic MetagovPlatformActions. platform_community = CommunityPlatform.objects.filter(community=community).first() if platform_community is None: logger.error(f"No platforms exist for community '{community}'") return HttpResponse() # Get or create a MetagovUser that's tied to the PlatformCommunity, and give them permission to propose MetagovPlatformActions # Hack so MetagovUser username doesn't clash with usernames from other communities (django User requires unique username). # TODO(#299): make the CommunityUser model unique on community+username, not just username. initiator = body["initiator"] prefixed_username = f"{initiator['provider']}.{initiator['user_id']}" metagov_user, _ = MetagovUser.objects.get_or_create( username=prefixed_username, provider=initiator["provider"], community=platform_community ) # Give this user permission to propose any MetagovPlatformAction user_group, usergroup_created = CommunityRole.objects.get_or_create( role_name="Base User", name=f"Metagov: {metagov_community_slug}: Base User" ) if usergroup_created: user_group.community = platform_community content_type = ContentType.objects.get_for_model(MetagovPlatformAction) permission, _ = Permission.objects.get_or_create( codename="add_metagovaction", name="Can add metagov action", content_type=content_type, ) user_group.permissions.add(permission) user_group.save() user_group.user_set.add(metagov_user) # Create MetagovPlatformAction new_api_action = MetagovPlatformAction() new_api_action.community = platform_community new_api_action.initiator = metagov_user new_api_action.event_type = f"{body['source']}.{body['event_type']}" new_api_action.json_data = json.dumps(body["data"]) # Save to create Proposal and trigger policy evaluations new_api_action.save() if not new_api_action.pk: return HttpResponseServerError() logger.info(f"Created new MetagovPlatformAction with pk {new_api_action.pk}") return HttpResponse()
1.921875
2
piper/test/test_verbs.py
miketarpey/piper
0
12778559
<filename>piper/test/test_verbs.py from piper.custom import to_julian from piper.factory import dummy_dataframe from piper.factory import sample_column_clean_text from piper.factory import sample_data from piper.factory import sample_phone_sales from piper.factory import sample_sales from piper.factory import simple_series from piper.verbs import across from piper.verbs import adorn from piper.verbs import assign from piper.verbs import clean_names from piper.verbs import count from piper.verbs import distinct from piper.verbs import drop from piper.verbs import drop_if from piper.verbs import duplicated from piper.verbs import explode from piper.verbs import flatten_names from piper.verbs import fmt_dateidx from piper.verbs import group_by from piper.verbs import head from piper.verbs import info from piper.verbs import inner_join from piper.verbs import left_join from piper.verbs import names from piper.verbs import non_alpha from piper.verbs import order_by from piper.verbs import outer_join from piper.verbs import overlaps from piper.verbs import pivot_longer from piper.verbs import pivot_table from piper.verbs import relocate from piper.verbs import rename from piper.verbs import rename_axis from piper.verbs import replace_names from piper.verbs import reset_index from piper.verbs import right_join from piper.verbs import rows_to_names from piper.verbs import sample from piper.verbs import select from piper.verbs import set_names from piper.verbs import split_dataframe from piper.verbs import str_clean_number from piper.verbs import str_join from piper.verbs import str_split from piper.verbs import str_trim from piper.verbs import summarise from piper.verbs import summary_df from piper.verbs import tail from piper.verbs import transform from piper.verbs import unstack from piper.verbs import where from pandas.api.types import is_float_dtype from pandas._testing import assert_frame_equal from pandas._testing import assert_series_equal import numpy as np import pandas as pd import pytest import random # t_sample_phone_sales {{{1 @pytest.fixture def t_sample_phone_sales(): return sample_phone_sales() # t_sample_sales {{{1 @pytest.fixture def t_sample_sales(): return sample_sales() # t_sample_data {{{1 @pytest.fixture def t_sample_data(): return sample_data() # t_sample_column_clean_text {{{1 @pytest.fixture def t_sample_column_clean_text(): return sample_column_clean_text() # t_dummy_dataframe {{{1 @pytest.fixture def t_dummy_dataframe(): return dummy_dataframe() # t_simple_series_01 {{{1 @pytest.fixture def t_simple_series_01(): return simple_series() # get_column_list {{{1 @pytest.fixture def get_column_list(): """ Column list for dataframe """ column_list = ['dupe**', 'Customer ', 'mdm no. to use', 'Target-name ', ' Public', '_ Material', 'Prod type', '#Effective ', 'Expired', 'Price% ', 'Currency$'] return column_list # test_across_single_column_series_object_function {{{1 def test_across_single_column_series_object_function(t_sample_data): df = t_sample_data df = across(df, columns='values_1', function= lambda x: x.astype(float), series_obj=True) assert pd.api.types.is_float_dtype(df.values_1) # test_across_tuple_column_series_object_function {{{1 def test_across_tuple_column_series_object_function(t_sample_data): df = t_sample_data df = across(df, columns=('values_1', 'values_2'), function= lambda x: x.astype(float), series_obj=True) assert pd.api.types.is_float_dtype(df.values_1) assert pd.api.types.is_float_dtype(df.values_2) # test_across_list_column_series_object_function {{{1 def test_across_list_column_series_object_function(t_sample_data): df = t_sample_data df = across(df, columns=['values_1'], function= lambda x: x.astype(float), series_obj=True) assert pd.api.types.is_float_dtype(df.values_1) # test_across_list_column_not_series_object {{{1 def test_across_list_column_not_series_object(t_sample_data): df = t_sample_data df = across(df, columns=['order_dates', 'dates'], function=lambda x: to_julian(x), series_obj=False) assert df.loc[360, 'dates'] == 120361 # test_across_list_column_not_series_raise_error {{{1 def test_across_list_column_not_series_raise_error(t_sample_data): df = t_sample_data with pytest.raises(ValueError): df = across(df, columns=['order_dates', 'dates'], function=lambda x: to_julian(x), series_obj=True) # test_across_list_column_series_values_raise_attr_error {{{1 def test_across_list_column_series_values_raise_attr_error(t_sample_data): df = t_sample_data with pytest.raises(AttributeError): across(df, columns=['values_1', 'values_2'], function=lambda x: x.astype(int), series_obj=False) # test_adorn_row_total {{{1 def test_adorn_row_total(t_sample_data): df = t_sample_data df = group_by(df, ['countries']) df = summarise(df, total=('values_1', 'sum')) df = adorn(df) expected = 73604 actual = df.loc['All'].values[0] assert expected == actual # test_adorn_column_total {{{1 def test_adorn_column_total(t_sample_data): df = t_sample_data df = group_by(df, ['countries']) df = summarise(df, total=('values_1', 'sum')) df = adorn(df, axis = 'column') expected = 8432 actual = df.loc['Sweden', 'All'] assert expected == actual # test_adorn_with_ignore_row_index {{{1 def test_adorn_row_with_ignore_row_index(t_sample_data): df = t_sample_data df = group_by(df, ['countries']) df = summarise(df, total=('values_1', 'sum')).reset_index() df = adorn(df, axis = 'row', ignore_index=True) expected = 'All' actual = df.iloc[df.shape[0]-1, 0] assert expected == actual # test_adorn_column_with_column_specified {{{1 def test_adorn_column_with_column_specified(t_sample_data): df = t_sample_data df = group_by(df, ['countries']) df = summarise(df, total=('values_1', 'sum')) df = adorn(df, columns='total', axis = 'column') expected = 8432 actual = df.loc['Sweden', 'All'] assert expected == actual # test_adorn_column_with_column_list_specified {{{1 def test_adorn_column_with_column_list_specified(t_sample_data): df = t_sample_data df = group_by(df, ['countries', 'regions']) df = summarise(df, total=('values_1', 'sum')) df = assign(df, total2=lambda x: x.total * 10) df = adorn(df, columns=['total', 'total2'], axis = 'both') expected = ['total', 'total2', 'All'] actual = df.columns.tolist() assert expected == actual # test_adorn_column_with_column_str_specified {{{1 def test_adorn_column_with_column_str_specified(t_sample_data): df = t_sample_data df = group_by(df, ['countries', 'regions']) df = summarise(df, total=('values_1', 'sum')) df = assign(df, total2=lambda x: x.total * 10) df = adorn(df, columns='total', axis = 'both') expected = ['total', 'total2', 'All'] actual = df.columns.tolist() assert expected == actual # test_assign {{{1 def test_assign(t_sample_data): """ """ df = t_sample_data df = where(df, "ids == 'A'") df = where(df, "values_1 > 300 & countries.isin(['Italy', 'Spain'])") df = assign(df, new_field=lambda x: x.countries.str[:3]+x.regions, another=lambda x:3*x.values_1) expected = ['dates', 'order_dates', 'countries', 'regions', 'ids', 'values_1', 'values_2', 'new_field', 'another'] actual = df.columns.tolist() assert expected == actual # test_assign_with_dataframe_object_formulas {{{1 def test_assign_with_dataframe_object_formulas(t_sample_data): """ """ df = t_sample_data df = where(df, "ids == 'A'") df = where(df, "values_1 > 300 & countries.isin(['Italy', 'Spain'])") df = assign(df, new_field=lambda x: x.countries.str[:3] + x.regions, another=lambda x: 3*x.values_1) expected = ['dates', 'order_dates', 'countries', 'regions', 'ids', 'values_1', 'values_2', 'new_field', 'another'] actual = df.columns.tolist() assert expected == actual # test_assign_with_tuple_function {{{1 def test_assign_with_tuple_function(t_sample_data): df = t_sample_data df = assign(df, reversed=('regions', lambda x: x[::-1])) df = select(df, ['-dates', '-order_dates']) expected = ['countries', 'regions', 'ids', 'values_1', 'values_2', 'reversed'] actual = df.columns.tolist() assert expected == actual # test_assign_with_value_error {{{1 def test_assign_with_value_error(t_sample_data): df = t_sample_data with pytest.raises(ValueError): actual = assign(df, reversed=lambda x: x[::-1]) # test_replace_names {{{1 def test_replace_names(): dict_ = {'number$': 'nbr', 'revenue per cookie': 'unit revenue', 'cost per cookie': 'unit cost', 'month': 'mth', 'revenue per cookie': 'unit revenue', 'product': 'item', 'year': 'yr'} cols = ['Country', 'Product', 'Units Sold', 'Revenue per cookie', 'Cost per cookie', 'Revenue', 'Cost', 'Profit', 'Date', 'Month Number', 'Month Name', 'Year'] expected = ['country','item', 'units_sold', 'unit_revenue', 'unit_cost', 'revenue', 'cost', 'profit', 'date', 'mth_nbr', 'mth_name', 'yr'] df = pd.DataFrame(None, columns=cols) df = replace_names(df, dict_, info=True) df = clean_names(df) assert expected == list(df.columns) # test_clean_names_report_case_with_title {{{1 def test_clean_names_report_case_with_title(get_column_list): """ """ expected = ['Dupe', 'Customer', 'Mdm No To Use', 'Target Name', 'Public', 'Material', 'Prod Type', 'Effective', 'Expired', 'Price', 'Currency'] dx = pd.DataFrame(None, columns=get_column_list) actual = clean_names(dx, case='report', title=True).columns.tolist() assert expected == actual # test_clean_names_snake_case_with_title {{{1 def test_clean_names_snake_case_with_title(get_column_list): """ """ expected = ['dupe', 'customer', 'mdm_no_to_use', 'target_name', 'public', 'material', 'prod_type', 'effective', 'expired', 'price', 'currency'] dx = pd.DataFrame(None, columns=get_column_list) actual = clean_names(dx, case='snake').columns.tolist() assert expected == actual # test_clean_names_camel_case_with_title {{{1 def test_clean_names_camel_case_with_title(get_column_list): """ """ expected = ['Dupe', 'Customer', 'MdmNoToUse', 'TargetName', 'Public', 'Material', 'ProdType', 'Effective', 'Expired', 'Price', 'Currency'] dx = pd.DataFrame(None, columns=get_column_list) actual = clean_names(dx, case='camel', title=True).columns.tolist() assert expected == actual # test_clean_names_camel_case_without_title {{{1 def test_clean_names_camel_case_without__title(get_column_list): """ """ expected = ['dupe', 'customer', 'mdmNoToUse', 'targetName', 'public', 'material', 'prodType', 'effective', 'expired', 'price', 'currency'] dx = pd.DataFrame(None, columns=get_column_list) actual = clean_names(dx, case='camel', title=False).columns.tolist() assert expected == actual # test_names_as_list {{{1 def test_names_dataframe(t_sample_data): df = t_sample_data expected = ['dates', 'order_dates', 'countries', 'regions', 'ids', 'values_1', 'values_2'] actual = names(df, astype='list') assert expected == actual expected = {'ids': 'ids', 'regions': 'regions'} actual = names(df[['ids', 'regions']], astype='dict') assert expected == actual expected = pd.DataFrame(['ids', 'regions'], columns=['column_names']) actual = names(df[['ids', 'regions']], astype='dataframe') assert_frame_equal(expected, actual) expected = "['ids', 'regions']" actual = names(df[['ids', 'regions']], astype='text') assert expected == actual # test_names_as_series {{{1 def test_names_as_series(t_sample_data): df = t_sample_data cols = ['dates', 'order_dates', 'countries', 'regions', 'ids', 'values_1', 'values_2'] expected = pd.Series(cols, index=range(len(cols)), name='column_names') actual = names(df, astype='series') assert_series_equal(expected, actual) # test_names_as_regex {{{1 def test_names_as_regex(t_sample_data): prices = { 'prices': [100, 200, 300], 'contract': ['A', 'B', 'A'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01'] } df = pd.DataFrame(prices) expected = ['effective', 'expired'] actual = names(df, regex='e', astype='list') assert expected == actual # test_rows_to_names_with_title {{{1 def test_rows_to_names_with_title(): data = {'A': ['Order', 'Qty', 10, 40], 'B': ['Order', 'Number', 12345, 12346]} df = pd.DataFrame(data) df = rows_to_names(df, delimitter=' ') expected = ['Order Qty', 'Order Number'] actual = df.columns.to_list() assert expected == actual # test_rows_to_names_title_bad_data {{{1 def test_rows_to_names_title_bad_data(): data = {'A': ['Order ', 'Qty ', 10, 40], 'B': [' Order', ' Number%', 12345, 12346]} df = pd.DataFrame(data) df = rows_to_names(df, delimitter=' ') expected = ['Order Qty', 'Order Number'] actual = df.columns.to_list() assert expected == actual # test_rows_to_names_with_nans {{{1 def test_rows_to_names_with_nans(): data = {'A': ['Customer', 'id', 48015346, 49512432], 'B': ['Order', 'Number', 'DE-12345', 'FR-12346'], 'C': [np.nan, 'Qty', 10, 40], 'D': ['Item', 'Number', 'SW-10-2134', 'YH-22-2030'], 'E': [np.nan, 'Description', 'Screwdriver Set', 'Workbench']} df = pd.DataFrame(data) df = rows_to_names(df, fillna=True) expected = ['Customer Id', 'Order Number', 'Order Qty', 'Item Number', 'Item Description'] actual = df.columns.to_list() assert expected == actual # test_count_series{ {{1 def test_count_series(t_simple_series_01): s1 = t_simple_series_01 expected = (3, 3) actual = count(s1).shape assert expected == actual # test_count_sort {{{1 def test_count_sort(t_simple_series_01): s1 = t_simple_series_01 expected = 3 count_ = count(s1, sort_values=False) actual = count_.loc['E', 'n'] assert expected == actual # test_count_with_total {{{1 def test_count_with_total(t_simple_series_01): s1 = t_simple_series_01 expected = 100.0 count_ = count(s1, totals=True) actual = count_.loc['Total', '%'] assert expected == actual # test_count_with_total_percent_cum_percent {{{1 def test_count_with_total_percent_cum_percent(t_simple_series_01): s1 = t_simple_series_01 expected = (4, 3) actual = count(s1, totals=True, sort_values=True, percent=True, cum_percent=True).shape assert expected == actual # test_count_with_cum_percent_with_threshold {{{1 def test_count_with_cum_percent_with_threshold(t_simple_series_01): s1 = t_simple_series_01 expected = (2, 3) count_ = count(s1, threshold=81, cum_percent=True) actual = count_.shape assert expected == actual # test_count_not_found_column {{{1 def test_count_not_found_column(t_sample_data): df = t_sample_data expected = None actual = count(df, 'invalid_column') assert expected == actual # test_count_no_column {{{1 def test_count_no_column(t_sample_data): df = t_sample_data expected = (7, 3) actual = count(df).shape assert expected == actual # test_count_column_reset_index_true {{{1 def test_count_column_reset_index_true(t_sample_data): df = t_sample_data expected = (8, 4) actual = count(df, 'countries', reset_index=True).shape assert expected == actual # test_count_single_column {{{1 def test_count_single_column(t_sample_data): df = t_sample_data expected = (4, 3) actual = count(df, 'regions').shape assert expected == actual # test_count_multi_column {{{1 def test_count_multi_column(t_sample_data): df = t_sample_data query = "regions == 'East' and countries.isin(['Italy'])" df = df.query(query) expected = (1, 5) actual = count(df, ['regions', 'countries']).reset_index().shape assert expected == actual # test_count_multi_column_with_percent {{{1 def test_count_multi_column_with_percent(t_sample_data): df = t_sample_data df = df.query("regions == 'East' and countries.isin(['Italy'])") df = count(df, ['regions', 'countries'], percent=True, cum_percent=True) expected = 100.0 actual = df.loc[('East', 'Italy'), 'cum %'] assert expected == actual # test_count_multi_column_with_cum_percent_threshold {{{1 def test_count_multi_column_with_cum_percent_threshold(t_sample_data): df = t_sample_data df = df.query("regions == 'East'") df = count(df, ['regions', 'countries'], percent=True, cum_percent=True, threshold=81) expected = (5, 3) actual = df.shape assert expected == actual # test_count_with_categorical {{{1 def test_count_with_categorical(t_sample_data): df = t_sample_data df.countries = df.countries.astype('category') df = df.query("regions == 'East'") df = count(df, 'countries', percent=True, cum_percent=True, threshold=81) expected = (5, 3) actual = df.shape assert expected == actual # test_distinct {{{1 def test_distinct(t_sample_data): df = t_sample_data df = select(df, ['countries', 'regions', 'ids']) df = distinct(df, 'ids', shape=True) expected = (5, 3) actual = df.shape assert expected == actual # test_drop {{{1 def test_drop(t_sample_data): """ """ df = t_sample_data df = drop(df, columns=['countries', 'regions']) expected = ['dates', 'order_dates', 'ids', 'values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_drop_if {{{1 def test_drop_if(t_dummy_dataframe): """ """ df = t_dummy_dataframe expected = (5, 5) actual = drop_if(df).shape assert expected == actual # test_drop_if_isna {{{1 def test_drop_if_isna(t_dummy_dataframe): """ """ df = t_dummy_dataframe expected = (5, 5) df.loc[:, 'blank_1': 'blank_5'] = np.nan df = drop_if(df, value='isna') actual = df.shape assert expected == actual # test_duplicated {{{1 def test_duplicated(t_simple_series_01): """ """ df = t_simple_series_01.to_frame() df = duplicated(df, keep=False, sort=True) expected = 3 # Duplicate records actual = df.duplicate.value_counts()[1] assert expected == actual # test_duplicated_duplicates_only {{{1 def test_duplicated_duplicates_only(t_simple_series_01): """ """ df = t_simple_series_01.to_frame() df = t_simple_series_01.to_frame() df = duplicated(df, keep='first', duplicates=True, sort=True) expected = (2, 2) actual = df.shape assert expected == actual # test_explode {{{1 def test_explode(t_sample_data): """ """ df = t_sample_data df = group_by(df, 'countries') df = summarise(df, ids=('ids', set)) expected = (40, 1) actual = explode(df, 'ids').shape assert expected == actual # test_flatten_names_no_index {{{1 def test_flatten_names_no_index(t_sample_data): """ """ df = t_sample_data df = group_by(df, ['countries', 'regions']) df = summarise(df, total=('values_2', 'sum')) df = df.unstack() df = df.reset_index() # Twice called is deliberate NOT a mistake :) # The second call is to make sure function does # not crash, just returns passed given column names df = flatten_names(df, remove_prefix='total') df = flatten_names(df, remove_prefix='total') expected = ['countries', 'East', 'North', 'South', 'West'] actual = df.columns.to_list() assert expected == actual # test_flatten_names_keep_prefix {{{1 def test_flatten_names_keep_prefix(t_sample_data): """ """ df = t_sample_data df = group_by(df, ['countries', 'regions']) df = summarise(df, total=('values_2', 'sum')) df = df.unstack() df = flatten_names(df) expected = ['total_East', 'total_North', 'total_South', 'total_West'] actual = df.columns.to_list() assert expected == actual # test_flatten_names_lose_prefix {{{1 def test_flatten_names_lose_prefix(t_sample_data): """ """ df = t_sample_data df = group_by(df, ['countries', 'regions']) df = summarise(df, total=('values_2', 'sum')) df = df.unstack() df = flatten_names(df, remove_prefix='total') expected = ['East', 'North', 'South', 'West'] actual = df.columns.to_list() assert expected == actual # test_flatten_names_remove_prefix {{{1 def test_flatten_names_remove_prefix(t_sample_data): """ """ df = t_sample_data df = group_by(df, ['countries', 'regions']) df = summarise(df, total=('values_2', 'sum')) df = df.unstack() df = flatten_names(df, remove_prefix='total') expected = ['East', 'North', 'South', 'West'] actual = df.columns.to_list() assert expected == actual # test_split_dataframe {{{1 def test_split_dataframe(t_sample_data): dataframes = split_dataframe(sample_data(), chunk_size=100) expected = 367 actual = sum([df.shape[0] for df in dataframes]) assert expected == actual # test_summary_df {{{1 def test_generate_summary_df(): """ """ dict_a = {'column_A': {'0': 'A100', '1': 'A101', '2': 'A101', '3': 'A102', '4': 'A103', '5': 'A103', '6': 'A103', '7': 'A104', '8': 'A105', '9': 'A105', '10': 'A102', '11': 'A103'}} df = pd.DataFrame(dict_a) dict_b = {'column_B': {'0': 'First Row', '1': 'Second Row', '2': 'Fourth Row', '3': 'Fifth Row', '4': 'Third Row', '5': 'Fourth Row', '6': 'Fifth Row', '7': 'Sixth Row', '8': 'Seventh Row', '9': 'Eighth Row', '10': 'Ninth Row', ' 11': 'Tenth Row'}} df2 = pd.DataFrame(dict_b) datasets = [('1st dataset', df), ('2nd dataset', df2)] summary = summary_df(datasets, title='Summary', col_total='Total records', add_grand_total=True, grand_total='Grand total') expected = 24 actual = summary.loc['Grand total', 'Total records'] assert expected == actual # test_has_special_chars {{{1 def test_non_alpha(t_sample_data): """ """ np.random.seed(42) alphabet="0123456789abcdefghijklmnopqrstuvwxyz!$%()" word_list = [] for _ in range(20): chars = np.random.choice(list(alphabet), size=np.random.randint(1, 10)) word_list.append(''.join(chars)) df = pd.DataFrame(word_list, columns=['words']) df = non_alpha(df, 'words') df_count = count(df, 'non_alpha') assert df_count.shape == (2, 3) # test_head_with_series {{{1 def test_head_with_series(t_simple_series_01): """ """ s1 = t_simple_series_01 expected = (4,) actual = head(s1).shape assert expected == actual # test_head_with_dataframe {{{1 def test_head_with_dataframe(t_sample_data): """ """ df = t_sample_data expected = (4, 7) actual = head(df).shape assert expected == actual # test_head_with_names_function {{{1 def test_head_with_names_function(t_sample_data): """ """ df = t_sample_data expected = (4, 4) actual = head(df[names(df, regex='order|dates|values', astype='list')]).shape assert expected == actual # test_head_with_tablefmt_plain {{{1 def test_head_with_tablefmt_plain(t_dummy_dataframe): """ """ df = t_dummy_dataframe df.loc[:, 'blank_1': 'blank_5'] = np.nan df = drop_if(df, value='isna') result = head(df, tablefmt='plain') assert result == None # test_info {{{1 def test_info(t_simple_series_01): df = t_simple_series_01.to_frame() expected = (1, 7) actual = info(df).shape assert expected == actual # test_info_with_dupes {{{1 def test_info_with_dupes(t_simple_series_01): df = t_simple_series_01.to_frame() expected = (1, 8) actual = info(df, n_dupes=True).shape assert expected == actual # test_info_with_na_cols {{{1 def test_info_with_na_cols(t_simple_series_01): df = t_simple_series_01.to_frame() expected = (0, 7) actual = info(df, fillna=True).shape assert expected == actual # test_order_by_single_col_ascending {{{1 def test_order_by_single_col_ascending(): prices = {'prices': [100, 200, 300], 'contract': ['A', 'B', 'A'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01']} exp = 200 got = (pd.DataFrame(prices) .pipe(group_by, 'contract') .pipe(summarise, prices=('prices', 'sum')) .pipe(order_by, by='prices').iloc[0, 0]) assert exp == got # test_order_by_single_col_descending {{{1 def test_order_by_single_col_descending(): prices = {'prices': [100, 200, 300], 'contract': ['A', 'B', 'A'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01']} exp = 400 got = (pd.DataFrame(prices) .pipe(group_by, 'contract') .pipe(summarise, prices=('prices', 'sum')) .pipe(order_by, '-prices').iloc[0, 0]) assert exp == got # test_order_by_multi_col_descending {{{1 def test_order_by_multi_col_descending(t_sample_sales): exp = 404440.24 df = (t_sample_sales .pipe(group_by, ['location', 'product']) .pipe(summarise, TotalSales=('actual_sales', 'sum')) .pipe(order_by, ['location', '-TotalSales'])) got = df.loc[('London', slice(None)), 'TotalSales'][0] assert exp == got # test_order_by_multi_col_ascending_by_keyword {{{1 def test_order_by_multi_col_ascending_by_keyword(t_sample_sales): exp = 274674.0 df = (t_sample_sales .pipe(group_by, ['location', 'product']) .pipe(summarise, TotalSales=('actual_sales', 'sum')) .pipe(order_by, by=['location', 'TotalSales'])) got = df.loc[('London', slice(None)), 'TotalSales'][0] assert exp == got # test_order_by_multi_col_ascending_without_keyword {{{1 def test_order_by_multi_col_ascending_without_keyword(t_sample_sales): exp = 274674.0 df = (t_sample_sales .pipe(group_by, ['location', 'product']) .pipe(summarise, TotalSales=('actual_sales', 'sum')) .pipe(order_by, ['location', 'TotalSales'])) got = df.loc[('London', slice(None)), 'TotalSales'][0] assert exp == got # test_overlaps {{{1 def test_overlaps(): prices = {'prices': [100, 200, 300], 'contract': ['A', 'B', 'A'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01']} df = pd.DataFrame(prices) expected = (3, 5) actual = overlaps(df, start='effective', end='expired', unique_key='contract') assert expected == actual.shape # test_overlaps_raises_key_error {{{1 def test_overlaps_raises_key_error(): prices = {'prices': [100, 200, 300], 'contract': ['A', 'B', 'A'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01']} df = pd.DataFrame(prices) with pytest.raises(KeyError): actual = overlaps(df, start='false_field', end='expired', unique_key='contract') # test_overlaps_no_price {{{1 def test_overlaps_unique_key_list(): prices = {'prices': [100, 200, 300], 'contract': ['A', 'B', 'A'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01']} df = pd.DataFrame(prices) expected = (3, 5) actual = overlaps(df, start='effective', end='expired', unique_key=['contract']) assert expected == actual.shape # test_pivot_longer {{{1 def test_pivot_longer(t_sample_sales): df = t_sample_sales df = df.pivot_table(index=['location', 'month'], columns='product', values='actual_sales') df = pivot_longer(df, col_level=0, ignore_index=False) actual = df.loc[('Paris', '2021-01-01')].query("product == 'Beachwear'").values[0][1] expected = 20612.035 assert expected == actual # test_pivot_table {{{1 def test_pivot_table(t_sample_data): """ """ df = t_sample_data pv = pivot_table(df, index=['countries', 'regions'], values='values_1') pv.rename(columns={'values_1': 'totals'}, inplace=True) expected = 6507.9683290565645 actual = pv.totals.sum() assert expected == actual # test_pivot_table_sort_ascending_false {{{1 def test_pivot_table_sort_ascending_false(t_sample_data): """ """ df = t_sample_data pv = pivot_table(df, index=['countries'], values='values_1') pv.sort_values(by='values_1', ascending=False, inplace=True) expected = (8, 1) actual = pv.shape assert expected == actual # test_pivot_name_error {{{1 def test_pivot_name_error(t_sample_data): """ Should send log message regarding invalid key/name pv object should be None and generate KeyError """ df = t_sample_data with pytest.raises(KeyError): pv = pivot_table(df, index=['countries_wrong_name'], values='values_1') # test_pivot_percent_calc {{{1 def test_pivot_percent_calc(t_sample_data): """ """ df = t_sample_data pv = pivot_table(df, index=['countries', 'regions'], values='values_1') pv.rename(columns={'values_1': 'totals'}, inplace=True) pv.sort_values(by='totals', ascending=False, inplace=True) pv['%'] = pv.totals.apply(lambda x: x*100/pv.totals.sum()) expected = 2.874168873331256 actual = pv.loc[('Norway','East'), '%'] assert expected == actual # test_pivot_cum_percent_calc {{{1 def test_pivot_cum_percent_calc(t_sample_data): """ """ df = t_sample_data pv = pivot_table(df, index=['countries', 'regions'], values='values_1') pv.rename(columns={'values_1': 'totals'}, inplace=True) pv.sort_values(by='totals', ascending=False, inplace=True) pv['%'] = pv.totals.apply(lambda x: x*100/pv.totals.sum()) pv['cum %'] = pv['%'].cumsum() expected = 79.67310369428336 actual = pv.loc[('Sweden', 'West'), 'cum %'] assert expected == actual # test_pivot_table_multi_grouper {{{1 def test_pivot_table_multi_grouper(t_sample_data): """ """ df = t_sample_data p2 = pivot_table(df, index=['dates', 'order_dates', 'regions', 'ids'], freq='Q', format_date=True) assert p2.loc[('Mar 2020', 'Mar 2020', 'East', 'A'), 'values_1'] > 0 # test_pivot_table_single_grouper {{{1 def test_pivot_table_single_grouper(t_sample_data): """ """ df = t_sample_data p2 = pivot_table(df, index=['dates', 'regions', 'ids'], freq='Q', format_date=True) assert p2.loc[('Mar 2020', 'East', 'A'), 'values_1'] > 0 # test_relocate_no_column {{{1 def test_relocate_no_column(t_sample_data): """ """ df = t_sample_data with pytest.raises(KeyError): actual = relocate(df, column=None, loc='first') # test_pivot_longer_tuple_args {{{1 def test_pivot_longer_tuple_args(t_sample_phone_sales): """ """ df = t_sample_phone_sales df = assign(df, sales_price=lambda x: x.unit_price * x.qty) df = where(df, "invoice_dt.dt.month.between(3, 3)") df = group_by(df, ['region', 'country', 'rep']) df = summarise(df, total_sales=('sales_price', 'sum')) df = unstack(df) df = flatten_names(df, remove_prefix='total_sales') df = reset_index(df) actual = pivot_longer(df, ('region', 'country'), 'actual_sales') assert actual.shape == (10, 4) # test_pivot_longer_tuple_kwargs {{{1 def test_pivot_longer_tuple_kwargs(t_sample_phone_sales): """ """ df = t_sample_phone_sales df = assign(df, sales_price=lambda x: x.unit_price * x.qty) df = where(df, "invoice_dt.dt.month.between(3, 3)") df = group_by(df, ['region', 'country', 'rep']) df = summarise(df, total_sales=('sales_price', 'sum')) df = unstack(df) df = flatten_names(df, remove_prefix='total_sales') df = reset_index(df) actual = pivot_longer(df, id_vars=('region', 'country'), value_vars='actual_sales') assert actual.shape == (10, 4) # test_relocate_index {{{1 def test_relocate_index(t_sample_data): """ """ df = t_sample_data df = df.set_index(['countries', 'regions']) df = relocate(df, 'regions', loc='first', index=True) expected = ['regions', 'countries'] actual = df.index.names assert expected == actual # test_relocate_single_column {{{1 def test_relocate_single_column(t_sample_data): """ """ df = t_sample_data df = relocate(df, 'regions', loc='first') expected = ['regions', 'dates', 'order_dates', 'countries', 'ids', 'values_1', 'values_2'] actual = df.columns.values.tolist() assert expected == actual # test_relocate_single_column_last_column {{{1 def test_relocate_single_column_last_column(t_sample_data): """ """ df = t_sample_data df = relocate(df, 'regions', loc='last') expected = ['dates', 'order_dates', 'countries', 'ids', 'values_1', 'values_2', 'regions'] actual = df.columns.values.tolist() assert expected == actual # test_relocate_multi_column_first {{{1 def test_relocate_multi_column_first(t_sample_data): """ """ df = t_sample_data df = relocate(df, ['dates', 'regions', 'countries'], loc='first') expected = ['dates', 'regions', 'countries', 'order_dates', 'ids', 'values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_relocate_multi_column_last {{{1 def test_relocate_multi_column_last(t_sample_data): """ """ df = t_sample_data df = relocate(df, ['dates', 'regions', 'countries'], loc='last') expected = ['order_dates', 'ids', 'values_1', 'values_2', 'dates', 'regions', 'countries' ] actual = df.columns.values.tolist() assert expected == actual # test_relocate_multi_column_before {{{1 def test_relocate_multi_column_before(t_sample_data): """ """ df = t_sample_data df = relocate(df, ['dates', 'regions', 'countries'], loc='before', ref_column='values_1') expected = ['order_dates', 'ids', 'dates', 'regions', 'countries', 'values_1', 'values_2'] actual = df.columns.values.tolist() assert expected == actual # test_relocate_multi_column_after {{{1 def test_relocate_multi_column_after(t_sample_data): """ """ df = t_sample_data df = relocate(df, ['dates', 'regions', 'countries'], loc='after', ref_column='order_dates') expected = ['order_dates', 'dates', 'regions', 'countries', 'ids', 'values_1', 'values_2'] actual = df.columns.values.tolist() assert expected == actual # test_relocate_multi_column_after {{{1 def test_relocate_index_column_after(t_sample_data): """ """ df = t_sample_data df = df.set_index(['countries', 'regions']) df = relocate(df, column='countries', loc='after', ref_column='regions') expected = 'regions' actual = df.index.names[1] assert expected == actual # test_rename {{{1 def test_rename(t_sample_data): """ """ expected = ['trans_dt', 'order_dates', 'countries', 'regions', 'ids', 'values_1', 'values_2'] df = t_sample_data df = rename(df, columns={'dates': 'trans_dt'}) actual = df.columns.to_list() assert expected == actual # test_rename_axis {{{1 def test_rename_axis(t_sample_data): """ """ expected = ['AAA', 'BBB'] df = t_sample_data df = pivot_table(df, index=['countries', 'regions'], values='values_1') df = rename_axis(df, mapper=('AAA', 'BBB'), axis='rows') actual = df.index.names assert expected == actual # test_resample_groupby {{{1 def test_resample_groupby(t_sample_data): """ """ df = t_sample_data g1 = group_by(df, by=['dates'], freq='Q').sum() g1 = fmt_dateidx(g1, freq='Q') # Tidy axis labels g1.index.name = 'Date period' g1.columns = ['Totals1', 'Totals2'] assert g1.loc['Mar 2020', 'Totals1'] > 0 # test_resample_multi_grouper_groupby {{{1 def test_resample_multi_grouper_groupby(): """ """ prices = { 'ids': [1, 6, 8, 3], 'prices': [100, 200, 300, 400], 'country': ['Canada', 'USA', 'United Kingdom', 'France'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30', '2020-10-10'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01', '2023-12-31'] } df = pd.DataFrame(prices) df.effective = pd.to_datetime(df.effective) df.expired = pd.to_datetime(df.expired) cols = ['country', 'effective', 'expired', 'prices'] g1 = group_by(df, by=cols, freq='Q').sum() expected = (4, 1) actual = g1.shape assert expected == actual # test_resample_groupby_multi_index_single_grouper {{{1 def test_resample_groupby_multi_index_single_grouper(): """ """ prices = { 'ids': [1, 6, 8, 3], 'prices': [100, 200, 300, 400], 'country': ['Canada', 'USA', 'United Kingdom', 'France'], 'effective': ['2020-01-01', '2020-03-03', '2020-05-30', '2020-10-10'], 'expired': ['2020-12-31', '2021-04-30', '2022-04-01', '2023-12-31'] } df = pd.DataFrame(prices) df.effective = pd.to_datetime(df.effective) df.expired = pd.to_datetime(df.expired) cols = ['country', 'effective', 'prices'] g1 = group_by(df, by=cols, freq='Q').sum() expected = (4, 1) actual = g1.shape assert expected == actual # test_sample_series {{{1 def test_sample_series(t_simple_series_01): """ """ s1 = t_simple_series_01 expected = (2, 1) actual = sample(s1, random_state=42).shape assert expected == actual # test_sample_dataframe {{{1 def test_sample_dataframe(t_sample_data): """ """ df = t_sample_data expected = (2, 7) actual = sample(df, random_state=42).shape assert expected == actual # test_select_no_parms {{{1 def test_select_no_parms(t_sample_data): df = t_sample_data df = select(df) expected = ['dates', 'order_dates', 'countries', 'regions', 'ids', 'values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_select_str_with_regex {{{1 def test_select_str_with_regex(t_sample_data): df = t_sample_data df = select(df, regex='values') expected = ['values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_select_str_with_regex {{{1 def test_select_str_with_like(t_sample_data): df = t_sample_data df = select(df, like='values') expected = ['values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_select_slice_with_integers {{{1 def test_select_slice_with_integers(t_sample_data): df = t_sample_data df = select(df, (3 , 6)) expected = ['countries', 'regions', 'ids', 'values_1'] actual = df.columns.tolist() assert expected == actual # test_select_slice_with_column_names {{{1 def test_select_slice_with_column_names(t_sample_data): df = t_sample_data df = select(df, ('countries', 'values_1')) expected = ['countries', 'regions', 'ids', 'values_1'] actual = df.columns.tolist() assert expected == actual # test_select_column_list {{{1 def test_select_column_list(t_sample_data): df = t_sample_data df = select(df, ['order_dates']) expected = ['order_dates'] actual = df.columns.tolist() assert expected == actual # test_select_columns_list {{{1 def test_select_columns_list(t_sample_data): df = t_sample_data df = select(df, ['order_dates', 'countries']) expected = ['order_dates', 'countries'] actual = df.columns.tolist() assert expected == actual # test_select_column_str {{{1 def test_select_column_str(t_sample_data): df = t_sample_data df = select(df, 'order_dates') expected = ['order_dates'] actual = df.columns.tolist() assert expected == actual # test_select_excluding_column_str {{{1 def test_select_excluding_column_str(t_sample_data): df = t_sample_data df = select(df, '-order_dates') expected = ['dates', 'countries', 'regions', 'ids', 'values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_select_excluding_column_list {{{1 def test_select_excluding_column_list(t_sample_data): df = t_sample_data df = select(df, ['-order_dates']) expected = ['dates', 'countries', 'regions', 'ids', 'values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_select_columns {{{1 def test_select_columns(t_sample_data): df = t_sample_data df = select(df, ['dates', 'order_dates']) expected = ['dates', 'order_dates'] actual = df.columns.tolist() assert expected == actual # test_select_include {{{1 def test_select_include(t_sample_data): df = t_sample_data df = select(df, include='number') expected = ['values_1', 'values_2'] actual = df.columns.tolist() assert expected == actual # test_select_exclude {{{1 def test_select_exclude(t_sample_data): df = t_sample_data df = select(df, exclude='number') expected = ['dates', 'order_dates', 'countries', 'regions', 'ids'] actual = df.columns.tolist() assert expected == actual # test_select_invalid_column {{{1 def test_select_invalid_column(t_sample_data): df = t_sample_data with pytest.raises(KeyError): actual = select(df, 'AAA') # test_set_names {{{1 def test_set_names(): data = {'A': ['Order', 'Qty', 10, 40], 'B': ['Order', 'Number', 12345, 12346]} df = pd.DataFrame(data) df = set_names(df, ['C', 'D']) expected = ['C', 'D'] actual = df.columns.to_list() assert expected == actual # test_str_clean_number {{{1 def test_str_clean_number(): values = ['$ 1000.48', '-23,500.54', '1004,0 00 .22', '-£43,000', 'EUR 304s0,00.00', '354.00-', '301 ', '4q5056 GBP', 'USD 20621.54973'] expected = [1000.48, -23500.54, 1004000.22, -43000.0, 304000.0, -354.0, 301.0, 45056.0, 20621.54973] df = pd.DataFrame(values, columns=['values']) df['values'] = str_clean_number(df['values']) assert expected == df['values'].values.tolist() # test_str_clean_number_decimal_comma {{{1 def test_str_clean_number_decimal_comma(): values = ['$ 1000.48', '-23,500.54', '1004,0 00 .22', '-£43,000', 'EUR 304s0,00.00', '354.00-', '301 ', '4q5056 GBP', 'USD 20621.54973'] expected = ['100048', '-23,50054', '1004,00022', '-43,000', '3040,0000', '-35400', '301', '45056', '2062154973'] df = pd.DataFrame(values, columns=['values']) df['values'] = str_clean_number(df['values'], decimal=',') assert expected == df['values'].values.tolist() # test_str_join_str_column_raise_columns_list_error {{{1 def test_str_join_str_column_raise_columns_list_error(t_sample_sales): df = t_sample_sales with pytest.raises(NameError): actual = str_join(df, columns='actual_sales', sep='|', column='combined_col', drop=False) # test_str_join_str_column_raise_column_must_be_string_error {{{1 def test_str_join_str_column_raise_column_must_be_string_error(t_sample_sales): df = t_sample_sales with pytest.raises(TypeError): actual = str_join(df, columns=['actual_sales', 'product'], sep='|', column=['combined_col'], drop=False) # test_str_join_str_column_raise_at_least_two_columns_error {{{1 def test_str_join_str_column_raise_at_least_two_columns_error(t_sample_sales): df = t_sample_sales with pytest.raises(ValueError): actual = str_join(df, columns=['actual_sales'], sep='|', column='combined_col', drop=False) # test_str_join_str_column_raise_check_columns_name_error {{{1 def test_str_join_str_column_raise_check_columns_name_error(t_sample_sales): df = t_sample_sales with pytest.raises(NameError): actual = str_join(df, columns=['actual_sales', 'product_wrong'], sep='|', column='combined_col', drop=False) # test_str_join_str_column_drop_false {{{1 def test_str_join_str_column_drop_false(t_sample_sales): df = t_sample_sales actual = str_join(df, columns=['actual_sales', 'product'], sep='|', column='combined_col', drop=False) assert actual.loc[4, 'combined_col'] == '29209.08|Beachwear' assert 'actual_sales' in actual.columns.tolist() assert 'product' in actual.columns.tolist() # test_str_join_str_3_columns_drop_true {{{1 def test_str_join_str_3_columns_drop_true(t_sample_sales): df = t_sample_sales actual = str_join(df, columns=['actual_sales', 'product', 'actual_profit'], sep='|', column='combined_col', drop=True) assert actual.loc[4, 'combined_col'] == '29209.08|Beachwear|1752.54' assert 'actual_sales' not in actual.columns.tolist() assert 'actual_profit' not in actual.columns.tolist() assert 'product' not in actual.columns.tolist() # test_str_join_str_3_columns_default_join_column_drop_true {{{1 def test_str_join_str_3_columns_default_join_column_drop_true(t_sample_sales): df = t_sample_sales actual = str_join(df, columns=['actual_sales', 'product', 'actual_profit'], sep='|', drop=True) assert actual.loc[4, '0'] == '29209.08|Beachwear|1752.54' assert 'actual_sales' not in actual.columns.tolist() assert 'actual_profit' not in actual.columns.tolist() assert 'product' not in actual.columns.tolist() # test_str_join_str_column_drop_true {{{1 def test_str_join_str_column_drop_true(t_sample_sales): df = t_sample_sales actual = str_join(df, columns=['actual_sales', 'product'], sep='|', column='combined_col', drop=True) assert actual.loc[4, 'combined_col'] == '29209.08|Beachwear' assert 'actual_sales' not in actual.columns.tolist() assert 'product' not in actual.columns.tolist() # test_str_join_str_column_replace_original_column_drop_true {{{1 def test_str_join_str_column_replace_original_column_drop_true(t_sample_sales): df = t_sample_sales actual = str_join(df, columns=['actual_sales', 'product'], sep='|', column='actual_sales', drop=True) assert actual.loc[4, 'actual_sales'] == '29209.08|Beachwear' assert 'actual_sales' in actual.columns.tolist() assert 'product' not in actual.columns.tolist() # test_str_split_str_column_drop_false {{{1 def test_str_split_str_column_drop_false(t_sample_sales): df = t_sample_sales actual = str_split(df, 'product', pat=' ', drop=False) # Since columns not specified, default field names provided actual[[0, 1, 2]].shape == (200, 3) assert actual.shape == (200, 10) # test_str_split_str_column_drop_true {{{1 def test_str_split_str_column_drop_true(t_sample_sales): df = t_sample_sales actual = str_split(df, 'product', pat=' ', drop=True) # Since columns not specified, default field names provided actual[[0, 1, 2]].shape == (200, 3) assert actual.shape == (200, 9) # test_str_split_date_column_drop_true_expand_false {{{1 def test_str_split_date_column_drop_true_expand_false(t_sample_sales): df = t_sample_sales actual = str_split(df, 'month', pat='-', drop=True, expand=False) assert actual.loc[4:4, 'month'].values[0] == ['2021', '01', '01'] # test_str_split_date_column_drop_true_expand_True {{{1 def test_str_split_date_column_drop_true_expand_True(t_sample_sales): df = t_sample_sales actual = str_split(df, 'month', columns=['year', 'month', 'day'], pat='-', drop=True, expand=True) assert actual.loc[4:4, 'year'].values[0] == '2021' # test_str_split_number_column_drop_true_expand_True {{{1 def test_str_split_number_column_drop_true_expand_True(t_sample_sales): df = t_sample_sales actual = str_split(df, 'actual_sales', columns=['number', 'precision'], pat='.', drop=True, expand=True) assert actual.loc[4:4, 'number'].values[0] == '29209' # test_str_split_number_raise_type_error_column_str {{{1 def test_str_split_number_raise_type_error_column_str(t_sample_sales): df = t_sample_sales with pytest.raises(TypeError): actual = str_split(df, ['actual_sales'], columns=['number', 'precision'], pat='.', drop=True, expand=True) # test_str_split_number_raise_type_error_columns_list_like {{{1 def test_str_split_number_raise_type_error_columns_list_like(t_sample_sales): df = t_sample_sales with pytest.raises(TypeError): actual = str_split(df, 'actual_sales', columns='number', pat='.', drop=True, expand=True) # test_str_split_number_raise_name_error_column_in_list {{{1 def test_str_split_number_raise_name_error_column_in_list(t_sample_sales): df = t_sample_sales with pytest.raises(NameError): actual = str_split(df, 'actual_sales_wrong', columns=['number', 'precision'], pat='.', drop=True, expand=True) # test_str_trim_blanks {{{1 def test_str_trim_blanks(t_sample_column_clean_text): """ """ df = t_sample_column_clean_text df['test_col'] = (df['test_col'].str.replace(r'(\w)\s+(\w)', r'\1 \2', regex=True) .str.title()) expected = ['First Row', 'Second Row', 'Fourth Row', 'Fifth Row', 'Thrid Row', 'Fourth Row', 'Fifth Row', 'Sixth Row', 'Seventh Row', 'Eighth Row', 'Ninth Row', 'Tenth Row'] df2 = str_trim(df, str_columns=['test_col']) actual = df2['test_col'].to_list() assert expected == actual str_trim(df, str_columns=None) actual = df['test_col'].to_list() assert expected == actual # test_str_trim_blanks_duplicate_column_name {{{1 def test_str_trim_blanks_duplicate_column_name(t_sample_data): """ """ df = t_sample_data df.columns = ['dates', 'order_dates', 'regions', 'regions', 'ids', 'values_1', 'values_2'] df2 = str_trim(df) expected = ['dates', 'order_dates', 'regions', 'regions2', 'ids', 'values_1', 'values_2'] actual = df2.columns.tolist() assert expected == actual # test_summarise_default{{{1 def test_summarise_default(t_sample_data): df = t_sample_data expected = (7, 2) actual = summarise(df) assert expected == actual.shape # test_summarise_value {{{1 def test_summarise_value(t_sample_data): df = t_sample_data expected = (1, ) actual = summarise(df, {'values_1': 'sum'}) assert expected == actual.shape def test_summarise_no_parms(t_sample_sales): df = t_sample_sales df = group_by(df, 'product') df = summarise(df) df = where(df, "product == 'Footwear'") actual = select(df, 'actual_profit').values[0][0] expected = 85837.479999999981 assert expected == actual # test_tail_with_series {{{1 def test_tail_with_series(t_simple_series_01): """ """ s1 = t_simple_series_01 expected = (4,) actual = tail(s1).shape assert expected == actual # test_tail_with_dataframe {{{1 def test_tail_with_dataframe(t_sample_data): """ """ df = t_sample_data expected = (4, 7) actual = tail(df).shape assert expected == actual # test_tail_with_tablefmt_plain {{{1 def test_tail_with_tablefmt_plain(t_dummy_dataframe): """ """ df = t_dummy_dataframe df.loc[:, 'blank_1': 'blank_5'] = np.nan df = drop_if(df, value='isna') result = tail(df, tablefmt='plain') assert result == None # test_transform_no_parms {{{1 def test_transform_no_parms(t_sample_sales): """ """ df = t_sample_sales df = group_by(df, ['product', 'location']) df = summarise(df) df = transform(df) df = where(df, "product == 'Beachwear'") actual = select(df, "g%").values[0][0] assert 32.58 == actual # test_transform {{{1 def test_transform(t_sample_data): """ """ index = ['countries', 'regions'] cols = ['countries', 'regions', 'ids', 'values_1', 'values_2'] df = t_sample_data[cols] gx = transform(df, index=index, g_perc=('values_2', 'percent')) gx = transform(df, index=index, total_group_value=('values_2', 'sum')) gx.set_index(['countries', 'regions', 'ids'], inplace=True) expected = (367, 4) actual = gx.shape assert expected == actual # test_transform_with_sort {{{1 def test_transform_with_sort(t_sample_data): """ """ index = ['countries', 'regions'] cols = ['countries', 'regions', 'ids', 'values_1', 'values_2'] df = t_sample_data[cols] gx = transform(df, index=index, g_perc=('values_2', 'percent')) gx = transform(df, index=index, total_group_value=('values_2', 'sum')) gx = gx.set_index(['countries', 'regions', 'ids']) expected = (367, 4) actual = gx.shape assert expected == actual # test_transform_custom_function {{{1 def test_transform_custom_function(t_sample_data): """ """ index = ['countries', 'regions'] cols = ['countries', 'regions', 'ids', 'values_1', 'values_2'] df = t_sample_data[cols] gx = transform(df, index=index, g_perc=('values_2', 'percent')) gx = transform(df, index=index, total_group_value=('values_2', lambda x: x.sum())) gx.set_index(['countries', 'regions', 'ids'], inplace=True) expected = (367, 4) actual = gx.shape assert expected == actual # test_where {{{1 def test_where(t_sample_data): df = t_sample_data expected = (1, 7) actual = where(df, """regions == 'East' and countries == 'Spain' and values_1 == 29""") assert expected == actual.shape # test_inner_join {{{1 def test_inner_join(): """ """ order_data = {'OrderNo': [1001, 1002, 1003, 1004, 1005], 'Status': ['A', 'C', 'A', 'A', 'P'], 'Type_': ['SO', 'SA', 'SO', 'DA', 'DD']} orders = pd.DataFrame(order_data) status_data = {'Status': ['A', 'C', 'P'], 'description': ['Active', 'Closed', 'Pending']} statuses = pd.DataFrame(status_data) order_types_data = {'Type_': ['SA', 'SO'], 'description': ['Sales Order', 'Standing Order'], 'description_2': ['Arbitrary desc', 'another one']} types_ = pd.DataFrame(order_types_data) merged_df = inner_join(orders, types_, suffixes=('_orders', '_types')) expected = (3, 5) actual = merged_df.shape assert expected == actual # test_left_join {{{1 def test_left_join(): """ """ order_data = {'OrderNo': [1001, 1002, 1003, 1004, 1005], 'Status': ['A', 'C', 'A', 'A', 'P'], 'Type_': ['SO', 'SA', 'SO', 'DA', 'DD']} orders = pd.DataFrame(order_data) status_data = {'Status': ['A', 'C', 'P'], 'description': ['Active', 'Closed', 'Pending']} statuses = pd.DataFrame(status_data) order_types_data = {'Type_': ['SA', 'SO'], 'description': ['Sales Order', 'Standing Order'], 'description_2': ['Arbitrary desc', 'another one']} types_ = pd.DataFrame(order_types_data) merged_df = left_join(orders, types_, suffixes=('_orders', '_types')) expected = (5, 5) actual = merged_df.shape assert expected == actual # test_right_join {{{1 def test_right_join(): """ """ order_data = {'OrderNo': [1001, 1002, 1003, 1004, 1005], 'Status': ['A', 'C', 'A', 'A', 'P'], 'Type_': ['SO', 'SA', 'SO', 'DA', 'DD']} orders = pd.DataFrame(order_data) status_data = {'Status': ['A', 'C', 'P'], 'description': ['Active', 'Closed', 'Pending']} statuses = pd.DataFrame(status_data) order_types_data = {'Type_': ['SA', 'SO'], 'description': ['Sales Order', 'Standing Order'], 'description_2': ['Arbitrary desc', 'another one']} types_ = pd.DataFrame(order_types_data) merged_df = right_join(orders, types_, suffixes=('_orders', '_types')) expected = (3, 5) actual = merged_df.shape assert expected == actual # test_outer_join {{{1 def test_outer_join(): """ """ order_data = {'OrderNo': [1001, 1002, 1003, 1004, 1005], 'Status': ['A', 'C', 'A', 'A', 'P'], 'Type_': ['SO', 'SA', 'SO', 'DA', 'DD']} orders = pd.DataFrame(order_data) status_data = {'Status': ['A', 'C', 'P'], 'description': ['Active', 'Closed', 'Pending']} statuses = pd.DataFrame(status_data) order_types_data = {'Type_': ['SA', 'SO'], 'description': ['Sales Order', 'Standing Order'], 'description_2': ['Arbitrary desc', 'another one']} types_ = pd.DataFrame(order_types_data) merged_df = outer_join(orders, types_, suffixes=('_orders', '_types')) expected = (5, 5) actual = merged_df.shape assert expected == actual
2.203125
2
wui/version_static_files.py
kspar/easy
3
12778560
import sys import time def create_versioned_files(src_filename, filenames): timestamp = int(time.time()) with open(src_filename, encoding='utf-8') as html_file: html_file_content = html_file.read() for filename in filenames: usages_count = html_file_content.count(filename) if usages_count != 1: print('ERROR: Found {} usages for file {} (expected exactly 1)'.format(usages_count, filename)) return new_filename = "{}?v={}".format(filename, timestamp) html_file_content = html_file_content.replace(filename, new_filename) with open('versioned.' + src_filename, mode="w", encoding="utf-8") as f: f.write(html_file_content) if __name__ == '__main__': create_versioned_files(sys.argv[1], sys.argv[2:])
3.03125
3
test/iterator.py
trK54Ylmz/rocksdb-py
3
12778561
<gh_stars>1-10 import unittest import rocksdbpy import shutil import tempfile from rocksdbpy import WriteBatch class TestIterator(unittest.TestCase): def setUp(self): self.temp = tempfile.mkdtemp() wb = WriteBatch() # add couple of keys and values wb.add(b'test_add_1', b'test_value') wb.add(b'test_add_2', b'test_value') wb.add(b'test_add_3', b'test_value') self.db = rocksdbpy.open_default(self.temp) self.db.write(wb) def tearDown(self): self.db.close() shutil.rmtree(self.temp) def test_simple(self): # get iterator in default mode which is forward itr = self.db.iterator() i = 1 for k, v in itr: self.assertEqual(b'test_value', v) self.assertEqual(f'test_add_{i}'.encode('ascii'), k) i += 1 def test_end(self): # get iterator in end mode which is reverse itr = self.db.iterator(mode='end') i = 3 for k, v in itr: self.assertEqual(b'test_value', v) self.assertEqual(f'test_add_{i}'.encode('ascii'), k) i -= 1 def test_from(self): # get iterator in from mode which is skips some keys itr = self.db.iterator(mode='from', key=b'test_add_2') i = 2 for k, v in itr: self.assertEqual(b'test_value', v) self.assertEqual(f'test_add_{i}'.encode('ascii'), k) i += 1 def test_from_reverse(self): # get iterator in from mode which is skips some keys and reverse itr = self.db.iterator(mode='from', key=b'test_add_2', direction=-1) i = 2 for k, v in itr: self.assertEqual(b'test_value', v) self.assertEqual(f'test_add_{i}'.encode('ascii'), k) i -= 1 def test_count(self): # get random iterator itr = self.db.iterator(mode='from', direction=-1) self.assertEqual(3, itr.len()) def test_valid(self): # get random iterator itr = self.db.iterator(mode='from', direction=-1) self.assertTrue(itr.valid())
2.796875
3
setup.py
michellab/bgflow
42
12778562
#!/usr/bin/env python from setuptools import setup, find_packages setup( name="bgflow", version="0.1", description="Boltzmann Generators in PyTorch", author="<NAME>, <NAME>, <NAME>, <NAME>", author_email="<EMAIL>", url="https://www.mi.fu-berlin.de/en/math/groups/comp-mol-bio/index.html", packages=find_packages() )
1.375
1
notevault/configmanager.py
Sebastian-Hojas/sortnote
1
12778563
import os class ConfigManager: def __init__(self, path, dryrun, verbose): self.path = path self.dryrun = dryrun self.verbose = verbose self.config = [] try: with open(self.path, 'r') as f: self.config = [line.strip('\n').strip('\r') for line in f.readlines() if line != "\n"] except Exception,e: if self.verbose: print("Warning: Config '" + self.path + "' does not exist or is emtpy") def enable(self,directory): dir = os.path.abspath(directory) if not self.dryrun: self.config.append(dir) # remove duplicates self.config = list(set(self.config)) self.saveConfig() def disable(self,directory): dir = os.path.abspath(directory) if not self.dryrun: self.config = filter(lambda a: a != directory, self.config) self.saveConfig() def disableAll(self): if self.verbose: print("Disabled all directories") if not self.dryrun: self.config = [] self.saveConfig() def saveConfig(self): with open(self.path, 'w') as f: f.write("\n".join(self.config)) def status(self): print("\n".join(self.config)) def enabledFolders(self): return self.config
2.90625
3
utils.py
gyhdtc/QATM_pytorch
0
12778564
from __future__ import print_function, division import matplotlib.pyplot as plt import math from sklearn.metrics import auc import numpy as np import cv2 import os, sys int_ = lambda x: int(round(x)) def IoU( r1, r2 ): x11, y11, w1, h1 = r1 x21, y21, w2, h2 = r2 x12 = x11 + w1; y12 = y11 + h1 x22 = x21 + w2; y22 = y21 + h2 x_overlap = max(0, min(x12,x22) - max(x11,x21) ) y_overlap = max(0, min(y12,y22) - max(y11,y21) ) I = 1. * x_overlap * y_overlap U = (y12-y11)*(x12-x11) + (y22-y21)*(x22-x21) - I J = I/U return J def evaluate_iou( rect_gt, rect_pred ): # score of iou score = [ IoU(i, j) for i, j in zip(rect_gt, rect_pred) ] return score def compute_score( x, w, h ): # score of response strength k = np.ones( (h, w) ) score = cv2.filter2D(x, -1, k) score[:, :w//2] = 0 score[:, math.ceil(-w/2):] = 0 score[:h//2, :] = 0 score[math.ceil(-h/2):, :] = 0 return score def locate_bbox( a, w, h ): row = np.argmax( np.max(a, axis=1) ) col = np.argmax( np.max(a, axis=0) ) x = col - 1. * w / 2 y = row - 1. * h / 2 return x, y, w, h def score2curve( score, thres_delta = 0.01 ): thres = np.linspace( 0, 1, int(1./thres_delta)+1 ) success_num = [] for th in thres: success_num.append( np.sum(score >= (th+1e-6)) ) success_rate = np.array(success_num) / len(score) return thres, success_rate def all_sample_iou( score_list, gt_list): num_samples = len(score_list) iou_list = [] for idx in range(num_samples): score, image_gt = score_list[idx], gt_list[idx] w, h = image_gt[2:] pred_rect = locate_bbox( score, w, h ) iou = IoU( image_gt, pred_rect ) iou_list.append( iou ) return iou_list def plot_success_curve( iou_score, title='' ): thres, success_rate = score2curve( iou_score, thres_delta = 0.05 ) auc_ = np.mean( success_rate[:-1] ) # this is same auc protocol as used in previous template matching papers #auc_ = auc( thres, success_rate ) # this is the actual auc plt.figure() plt.grid(True) plt.xticks(np.linspace(0,1,11)) plt.yticks(np.linspace(0,1,11)) plt.ylim(0, 1) plt.title(title + 'auc={}'.format(auc_)) plt.plot( thres, success_rate ) plt.show()
2.296875
2
FlaskBackend/main_wallet_create.py
IKalonji/mbongo_algorand_wallet
4
12778565
<reponame>IKalonji/mbongo_algorand_wallet<filename>FlaskBackend/main_wallet_create.py import http.client from os import getenv # import dotenv from flask import json # dotenv.load_dotenv() # api_key = getenv('API_KEY') class MainWallet(): def __init__(self): self.key = "" def initialize_wallet(self): wallet_data = create_wallet(self.key) print("Wallet-data: ", wallet_data) self.address = wallet_data['address'] self.secret = wallet_data['secret'] main_account = create_virtual_currency(self.key) if 'errorCode' in main_account.keys(): main_account = get_virtual_currency(self.key) self.main_account_id = main_account['accountId'] else: self.main_account_id = main_account['id'] print("Main-account-data: ", main_account) def create_wallet(api_key): conn = http.client.HTTPSConnection("api-eu1.tatum.io") headers = { 'x-api-key': api_key} conn.request("GET", "/v3/algorand/wallet", headers=headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def create_virtual_currency(api_key): conn = http.client.HTTPSConnection("api-eu1.tatum.io") payload = "{\"name\":\"VC_ZAR\",\"supply\":\"1000000000\",\"basePair\":\"ZAR\",\"baseRate\":1,\"customer\":{\"accountingCurrency\":\"ZAR\",\"customerCountry\":\"SA\",\"externalId\":\"123654\",\"providerCountry\":\"SA\"},\"description\":\"Mbongo Virtual Currency.\",\"accountCode\":\"Main_Account\",\"accountNumber\":\"1234567890\",\"accountingCurrency\":\"ZAR\"}" headers = { 'content-type': "application/json", 'x-api-key': api_key } conn.request("POST", "/v3/ledger/virtualCurrency", payload, headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def get_virtual_currency(api_key): conn = http.client.HTTPSConnection("api-eu1.tatum.io") headers = { 'x-api-key': api_key } conn.request("GET", "/v3/ledger/virtualCurrency/VC_ZAR", headers=headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8"))
2.75
3
examples/scripts/compare_lithium_ion_particle_distribution.py
katiezzzzz/PyBaMM
1
12778566
# # Compare lithium-ion battery models with and without particle size distibution # import numpy as np import pybamm pybamm.set_logging_level("INFO") # load models models = [ pybamm.lithium_ion.DFN(name="standard DFN"), pybamm.lithium_ion.DFN(name="particle DFN"), ] # load parameter values params = [models[0].default_parameter_values, models[1].default_parameter_values] def negative_distribution(x): return 1 + 2 * x / models[1].param.l_n def positive_distribution(x): return 1 + 2 * (1 - x) / models[1].param.l_p params[1]["Negative particle distribution in x"] = negative_distribution params[1]["Positive particle distribution in x"] = positive_distribution # set up and solve simulations t_eval = np.linspace(0, 3600, 100) sols = [] for model, param in zip(models, params): sim = pybamm.Simulation(model, parameter_values=param) sol = sim.solve(t_eval) sols.append(sol) output_variables = [ "Negative particle surface concentration", "Electrolyte concentration", "Positive particle surface concentration", "Current [A]", "Negative electrode potential [V]", "Electrolyte potential [V]", "Positive electrode potential [V]", "Terminal voltage [V]", "Negative particle distribution in x", "Positive particle distribution in x", ] # plot plot = pybamm.QuickPlot(sols, output_variables=output_variables) plot.dynamic_plot()
2.640625
3
Adapters.indigoPlugin/Contents/Server Plugin/pyrescaler/__init__.py
jdhorne/temperature-converter-indigo-plugin
1
12778567
<reponame>jdhorne/temperature-converter-indigo-plugin<filename>Adapters.indigoPlugin/Contents/Server Plugin/pyrescaler/__init__.py<gh_stars>1-10 __all__ = ["pyrescaler", "temperature_scale", "length_scale", "power_scale"]
1.335938
1
experiments/launcher_exp2_collect.py
MenshovSergey/DetectChess
144
12778568
<filename>experiments/launcher_exp2_collect.py import os import pandas as pd from os2d.utils.logger import extract_value_from_os2d_binary_log, mAP_percent_to_points if __name__ == "__main__": config_path = os.path.dirname(os.path.abspath(__file__)) config_job_name = "exp2" log_path = os.path.abspath(os.path.join(config_path, "..", "output/exp2")) def get_result(job_type, # "v1" or "v2" sub_index, backbone_arch, init_model_nickname, random_seed, ): job_name = f"{config_job_name}.{sub_index}.{job_type}_seed{random_seed}" log_folder = job_name + "_" + backbone_arch + "_init_" + init_model_nickname log_folder = os.path.join(log_path, log_folder) data_file = os.path.join(log_folder, "train_log.pkl") return mAP_percent_to_points(extract_value_from_os2d_binary_log(data_file, "mAP@0.50_grozi-val-new-cl", reduce="max")),\ mAP_percent_to_points(extract_value_from_os2d_binary_log(data_file, "mAP@0.50_grozi-val-new-cl", reduce="first")) table = pd.DataFrame(columns=["arch", "init", "v1-train", "v2-init", "v2-train"]) random_seed = 0 for i, arch, init in zip(range(10), ["ResNet50"] * 5 + ["ResNet101"] * 5, ["fromScratch", "imageNetPth", "imageNetCaffe2", "imageNetCaffe2GroupNorm", "cocoMaskrcnnFpn", "imageNetPth", "imageNetCaffe2", "buildingsCirtorch", "cocoMaskrcnnFpn", "pascalWeakalign"] ): val_train_v1, val_init_v1 = get_result("v1", i, arch, init, random_seed) val_train_v2, val_init_v2 = get_result("v2", i, arch, init, random_seed) table = table.append({"arch":arch, "init":init, "v1-train":val_train_v1, "v2-init":val_init_v2, "v2-train":val_train_v2}, ignore_index=True) print(table, sep='\n')
2.109375
2
src/onevision/nn/model/debugger.py
phlong3105/onevision
2
12778569
<reponame>phlong3105/onevision #!/usr/bin/env python # -*- coding: utf-8 -*- """Debugger to save results during training. """ from __future__ import annotations import threading from queue import Queue from typing import Optional from torch import Tensor from onevision.type import Callable from onevision.utils import console __all__ = [ "Debugger" ] # MARK: - Debugger class Debugger: """ Attributes: every_n_epochs (int): Number of epochs between debugging. To disable, set `every_n_epochs=0`. Default: `1`. run_in_parallel (bool): If `True` runs debugging process in a separated thread. Default: `True`. queue_size (int): Debug queue size. It should equal the value of `save_max_n`. Default: `20`. save_max_n (int): Maximum debugging items to be kept. Default: `20`. save_to_subdir (bool): Save all debug images of the same epoch to a sub-directory naming after the epoch number. Default: `True`. image_quality (int): Image quality to be saved. Default: `95`. verbose (bool): If `True` shows the results on the screen. Default: `False`. show_max_n (int): Maximum debugging items to be shown. Default: `8`. show_func (FunCls, optional): Function to visualize the debug results. Default: `None`. wait_time (float): Pause some times before showing the next image. Default: `0.001`. """ # MARK: Magic Functions def __init__( self, every_n_epochs : int = 1, run_in_parallel: bool = True, queue_size : Optional[int] = 20, save_max_n : int = 20, save_to_subdir : bool = True, image_quality : int = 95, verbose : bool = False, show_max_n : int = 8, show_func : Optional[Callable] = None, wait_time : float = 0.001, *args, **kwargs ): super().__init__() self.every_n_epochs = every_n_epochs self.run_in_parallel = run_in_parallel self.queue_size = queue_size self.save_max_n = save_max_n self.save_to_subdir = save_to_subdir self.image_quality = image_quality self.verbose = verbose self.show_max_n = show_max_n self.show_func = show_func self.wait_time = wait_time self.debug_queue = None self.thread_debugger = None # self.init_thread() # MARK: Configure def init_thread(self): if self.run_in_parallel: self.debug_queue = Queue(maxsize=self.queue_size) self.thread_debugger = threading.Thread( target=self.show_results_parallel ) # MARK: Run def run( self, x : Optional[Tensor] = None, y : Optional[Tensor] = None, yhat : Optional[Tensor] = None, filepath: Optional[str] = None, ): """Run the debugger process.""" if self.show_func: if self.thread_debugger: self.debug_queue.put([x, y, yhat, filepath]) else: self.show_results(x=x, y=y, yhat=yhat, filepath=filepath) def run_routine_start(self): """Perform operations when run routine starts.""" self.init_thread() if self.thread_debugger and not self.thread_debugger.is_alive(): self.thread_debugger.start() def run_routine_end(self): """Perform operations when run routine ends.""" if self.thread_debugger and self.thread_debugger.is_alive(): self.debug_queue.put([None, None, None, None]) def is_alive(self) -> bool: """Return whether the thread is alive.""" if self.thread_debugger: return self.thread_debugger.is_alive() return False # MARK: Visualize def show_results( self, x : Optional[Tensor] = None, y : Optional[Tensor] = None, yhat : Optional[Tensor] = None, filepath: Optional[str] = None, *args, **kwargs ): self.show_func( x = x, y = y, yhat = yhat, filepath = filepath, image_quality = self.image_quality, verbose = self.verbose, show_max_n = self.show_max_n, wait_time = self.wait_time, *args, **kwargs ) def show_results_parallel(self): """Draw `result` in a separated thread.""" while True: (input, target, pred, filepath) = self.debug_queue.get() if input is None: break self.show_results(x=input, y=target, yhat=pred, filepath=filepath) # Stop debugger thread self.thread_debugger.join() # MARK: Utils def print(self): console.log(vars(self))
2.390625
2
src/contact/views.py
hvpandey91/CuteCub-PlaySchool-Python-3-Django
0
12778570
from django.shortcuts import render from django.core.mail import send_mail from django.conf import settings # from .forms import contactForms # Create your views here. def contact(request): context = locals() template = 'contact.html' return render(request,template,context) '''def contact(request): title = 'Contact' form = contactForms(request.POST or None) confirm_message = None if form.is_valid(): name = form.cleaned_data['name'] comment = form.cleaned_data['comment'] subject = 'message from MYSITE.com' message = '%s %s' % (comment , name) emailFrom = form.cleaned_data['email'] emailTo = [settings.EMAIL_HOST_USER] send_mail(subject ,message,emailFrom,emailTo, fail_silently=True) title = 'Thanks!' confirm_message = 'Thanks for your message, we will get back to you!!' form = None context = {'title': title, 'form': form,'confirm_message': confirm_message,} template = 'contact.html' return render(request,template,context)'''
2.140625
2
scripts/positioning.py
metratec/ros_ips
3
12778571
#!/usr/bin/env python """ Use this node to perform indoor zone location using the metraTec IPS tracking system. Prerequisites for using this node is a running receiver-node that handles communication with the receiver and thus with the beacons in the vicinity. Also, make sure that you have defined your zones correctly in the YAML config file. Subscribed topics: - ips/receiver/raw (indoor_positioning/StringStamped): Raw messages received by the UWB receiver Published topics: - ips/receiver/current_zone/name (indoor_positioning/StringStamped): Name of the zone the receiver is currently in - ips/receiver/current_zone/polygon (geometry_msgs/PolygonStamped): Polygon comprising the current zone - ips/receiver/zone_leave (indoor_positioning/StringStamped): Name of the zone that the receiver has left. Is published at the moment a zone-leave occurs - ips/receiver/zone_enter (indoor_positioning/StringStamped): Name of the zone that the receiver has entered. Is published at the moment a zone-enter occurs Parameters: - ~config_file (string, default='PKG_DIR/config/zones.yml'): Path to the configuration file of zones and beacons relative to the package directory - ~rate (double, default=1): The publishing rate in messages per second - ~bcn_len (int, default=2*number_of_beacons): Buffer length for BCN messages """ import rospy import os import rospkg from geometry_msgs.msg import PolygonStamped, Point32 from indoor_positioning.msg import StringStamped from indoor_positioning.positioning import Positioning class IPS: """Configure ROS node for metraTec IPS indoor positioning system for zone location.""" def __init__(self): # subscribe to raw messages from USB stick self.receiver_sub = rospy.Subscriber('ips/receiver/raw', StringStamped, self.callback) # get directory of config file config_dir = rospy.get_param('~config_file') if rospy.has_param('~config_file') else 'config/zones.yml' abs_dir = os.path.join(rospkg.RosPack().get_path('indoor_positioning'), config_dir) # initialize positioning class self.positioning = Positioning(abs_dir) # get number of beacons specified in zones.yml file for default buffer values n_beacons = self.positioning.n_beacons # number of messages to keep self.buffer_length = rospy.get_param('~bcn_len') if rospy.has_param('~bcn_len') else 2*n_beacons self.buffer_length = 2*n_beacons if self.buffer_length == -1 else self.buffer_length # list of incoming messages self.msg_buffer = [] # timestamp from last received message self.last_time = None # publishers # current zone name self.zone_name_pub = rospy.Publisher('ips/receiver/current_zone/name', StringStamped, queue_size=1) # polygon of current zone self.zone_polygon_pub = rospy.Publisher('ips/receiver/current_zone/polygon', PolygonStamped, queue_size=1) # zone leave event self.zone_leave_pub = rospy.Publisher('ips/receiver/zone_leave', StringStamped, queue_size=10) # zone enter event self.zone_enter_pub = rospy.Publisher('ips/receiver/zone_enter', StringStamped, queue_size=10) # set publishing rate self.rate = rospy.Rate(rospy.get_param('~rate')) if rospy.has_param('~rate') else rospy.Rate(1) def callback(self, msg): """ Append incoming messages to list of previous messages. :param msg: String, message of subscribed topic """ # append message to buffer self.msg_buffer.append(msg.data) # save time of last raw signal self.last_time = msg.header.stamp # delete oldest message if buffer is full if len(self.msg_buffer) > self.buffer_length: del(self.msg_buffer[0]) def publish(self): """Publish zone information""" # last zone that the receiver was in last_zone = None while not rospy.is_shutdown(): # get the current zone zone = self.positioning.get_zone(self.msg_buffer) if self.msg_buffer else None # check if zone change occurred if zone != last_zone: # publish zone change event event = StringStamped() event.header.stamp = self.last_time # only zone leave if zone is None: event.data = last_zone.name self.zone_leave_pub.publish(event) # only zone enter elif last_zone is None: event.data = zone.name self.zone_enter_pub.publish(event) # leave on zone and enter another else: event.data = last_zone.name self.zone_leave_pub.publish(event) event.data = zone.name self.zone_enter_pub.publish(event) if zone is not None: # publish zone name name = StringStamped() name.header.stamp = self.last_time name.header.frame_id = zone.frame_id name.data = zone.name self.zone_name_pub.publish(name) # publish zone polygon polygon = PolygonStamped() polygon.header.stamp = self.last_time polygon.header.frame_id = zone.frame_id points = [] for p in zone.polygon: points.append(Point32(p[0], p[1], p[2])) polygon.polygon.points = points self.zone_polygon_pub.publish(polygon) # set current zone to last zone last_zone = zone # wait to start next iteration self.rate.sleep() if __name__ == '__main__': # start node rospy.init_node('positioning', anonymous=False) # initialize IPSReceiver class ips = IPS() try: # publish receiver messages ips.publish() except rospy.ROSInterruptException: pass
2.71875
3
networking/netmiko/main.py
maciej233/PYTHON
0
12778572
<reponame>maciej233/PYTHON #!/home/maciej/environments/networking/bin/python python3 from netmiko import ConnectHandler r1 = {'device_type': 'cisco_ios', 'host': '172.26.1.1', 'username': 'cisco', 'password': '<PASSWORD>'} net_connect = ConnectHandler(**r1) prompt = net_connect.find_prompt() output_int = net_connect.send_command('show ip int brief') print(prompt) print(output_int) r2 = {'device_type': 'cisco_ios', 'host': '172.26.2.1', 'username': 'cisco', 'password': '<PASSWORD>'} net_connect2 = ConnectHandler(**r2) output_r2 = net_connect.send_config_set(['logging buffer 19999']) print(output_r2)
2.453125
2
bradley_terry.py
BryanWBear/py_bradleyterry2
0
12778573
<filename>bradley_terry.py from itertools import combinations import pandas as pd from helper import * import statsmodels.api as sm def counts_to_binomial(df): upper = matrix_to_triangular(df, upper=True) lower = matrix_to_triangular(df, upper=False) return upper.join(lower, on=['row', 'col']).reset_index() def btm(wins_df): num_players = max(wins_df.col) + 1 design_matrix = get_design_matrix(wins_df) y = wins_df.wins / (wins_df.wins + wins_df.losses) design_matrix.columns = [f'e_{i}' for i in range(1, num_players)] formula = build_formula(design_matrix.columns) design_matrix.insert(0, 'y', y) model = sm.formula.glm(formula, family=sm.families.Binomial(), data=design_matrix).fit() return model if __name__ == '__main__': # duplicated Example 1.2 from Bradley-Terry models in R: The BradleyTerry2 package: https://pdfs.semanticscholar.org/9703/5a0ed0ab764f317cf90e1c0d0a9a527145aa.pdf citations = pd.DataFrame({'Biometrika': [714, 33, 320, 284], 'CommStatist': [730, 425, 813, 276], 'JASA': [498, 68, 1072, 325], 'JRSSB': [221, 17, 142, 188]}) citations.index = ['Biometrika', 'CommStatist', 'JASA', 'JRSSB'] counts_df = counts_to_binomial(citations) print(btm(counts_df).summary())
2.53125
3
codeforces/anirudhak47/1352/C.py
anirudhakulkarni/codes
3
12778574
# cook your dish here for t in range(int(input())): #n=input() n,k=map(int,input().split()) if n!=2: temp=k sum=k flag=False while temp>=n: sum+=temp//n temp=temp%n+temp//n if k==1: print(1) else: print(sum) else: print(2*k-1)
3.1875
3
src/card/types.py
Urumasi/tgc-server
0
12778575
from enum import Enum class CardType(Enum): NONE = 0 ARTIFACT = 1 BATTLEFIELD = 2 CREATURE = 3 EVENT = 4 EQUIPMENT = 5 HUMAN = CREATURE # Why does this exist... class CardSubtype(Enum): NONE = 0 ABOMINATION = 1 ANOMALY = 2 ARMOUR = 3 ATMOSPHERICS = 4 CAT = 5 CLOWN = 6 COMMANDER = 7 CONSTRUCT = 8 CORGI = 9 DOCTOR = 10 DRONE = 11 EMPLOYEE = 12 ENGINEER = 13 EVENT = 14 EXPLORER = 15 HUMAN = 16 INSTANT = 17 LIZARD = 18 MIME = 19 MINER = 20 MOTH = 21 OFFICER = 22 PLANT = 23 PLASMAMAN = 24 PRIMATE = 25 RABBIT = 26 ROBOT = 27 SCIENTIST = 28 SHUTTLE = 29 SILICON = 30 SLOTH = 31 SOLDIER = 32 SPIRIT = 33 SYNDICATE = 34 WEAPON = 35 WORKER = 36 XENOMORPH = 37 class CardFaction(Enum): NONE = 0 CARGO = 1 COMMAND = 2 ENGINEERING = 3 MEDICAL = 4 SCIENCE = 5 SECURITY = 6 SERVICE = 7 SILICON = 8 SYNDICATE = 9 XENO = 10 class CardRarity(Enum): NONE = 0 COMMON = 0 UNCOMMON = 1 RARE = 2 EPIC = 3 LEGENDARY = 4 MISPRINT = 5 class CardSet(Enum): NONE = 0 CORESET2020 = 1 RESINFRONT = 2 class CardKeyword(Enum): NONE = 0 ASIMOV = 1 BLOCKER = 2 CHANGELING = 3 CLOCKWORK = 4 DEADEYE = 5 FIRST_STRIKE = 6 FURY = 7 GRAYTIDE = 8 HIVEMIND = 9 HOLY = 10 IMMUNITY_BATTLEFIELD = 11 IMMUNITY_EFFECT = 12 IMMUNITY_ENGINEERING_CREATURE = 13 IMMUNITY_SPELL = 14 IMMUNITY_XENO_CREATURE = 15 SQUAD_TACTICS = 16 TAUNT = 17
2.828125
3
old-scripts/cluster-mgmt/bin/cho-failover.py
opennetworkinglab/spring-open
6
12778576
#! /usr/bin/env python import json import sys import os import re from check_status import * import time basename=os.getenv("ONOS_CLUSTER_BASENAME") operation=['switch all', 'onos stop 8', 'onos stop 7', 'onos stop 6', 'onos stop 5', 'onos start 5;onos start 6;onos start 7;onos start 8', 'switch local'] nr_controllers=[8, 7, 6, 5, 4, 8, 8] wait1=30 wait2=60 def check_by_pingall(): buf = "" cmd = "pingall-speedup.sh %s" % (flowdef) result = os.popen(cmd).read() buf += result if re.search("fail 0", result): return (0, buf) else: return (1, buf) def link_change_core(op): cmd = "dsh -w %s1 \"sudo ifconfig %s\"" % (basename, op) os.popen(cmd) print cmd def check_flow_nmap(): buf = "" buf += os.popen("date").read() print "dump all flows from network map" cmd = "dsh -w %s1 \"cd ONOS/web; ./get_flow.py all\"" % cluster_basename buf += os.popen(cmd).read() return (0, buf) def check_flow_raw(): buf = "" print "dump all flows from switches" cmd = "dsh \"cd ONOS/scripts; ./showflow.sh\"" buf += os.popen(cmd).read() return (0, buf) def dump_json(url, filename): f = open(filename, 'w') buf = "" command = "curl -s %s" % (url) result = os.popen(command).read() buf += json.dumps(json.loads(result), sort_keys = True, indent = 2) f.write(buf) f.close() def dump_flowgetall(tag): url="http://%s:%s/wm/flow/getall/json" % (RestIP, RestPort) filename = "rest-flow-getall-log.%s.log" % tag dump_json(url, filename) def check_rest(tag): url="http://%s:%s/wm/flow/getall/json" % (RestIP, RestPort) filename = "rest-flow-getall-log.%s.log" % tag dump_json(url, filename) url="http://%s:%s/wm/core/topology/switches/all/json" % (RestIP, RestPort) filename = "rest-sw-log.%s.log" % tag dump_json(url, filename) url = "http://%s:%s/wm/core/topology/links/json" % (RestIP, RestPort) filename = "rest-link-log.%s.log" % tag dump_json(url, filename) url = "http://%s:%s/wm/registry/switches/json" % (RestIP, RestPort) filename = "rest-reg-sw-log.%s.log" % tag dump_json(url, filename) url = "http://%s:%s/wm/registry/controllers/json" % (RestIP, RestPort) filename = "rest-reg-ctrl-log.%s.log" % tag dump_json(url, filename) url = "http://%s:%s/wm/flow/getsummary/0/0/json" % (RestIP, RestPort) filename = "rest-flow-getsummary-log.%s.log" % tag dump_json(url, filename) def check_and_log(tag): global cur_nr_controllers buf = "" buf += "check by pingall\n" (code, result) = check_by_pingall() if code == 0: buf += "ping success %s\n" % (result) else: buf += "pingall failed\n" buf += "%s\n" % (result) error = "error-log.%s.log" % tag rawflow = "raw-flow-log.%s.log" % tag ferror = open(error, 'w') ferror.write(result) fraw = open(rawflow,'w') fraw.write(check_flow_raw()[1]) fraw.close() check_rest(tag) ferror.write(check_switch()[1]) ferror.write(check_link()[1]) ferror.write(check_switch_local()[1]) ferror.write(check_controllers(cur_nr_controllers)[1]) ferror.close() return (code, buf) def plog(string): global logf print string logf.write(string+"\n") if __name__ == "__main__": global logf, cur_nr_controllers argvs = sys.argv if len(argvs) == 5: log_filename = sys.argv[1] flowdef = sys.argv[2] wait1 = int(sys.argv[3]) wait2 = int(sys.argv[4]) else: print "usage: %s log_filename flowdef_filename wait1 wait2" % sys.argv[0] print " wait1: wait time (sec) to check ping after change" print " wait2: additional wait time (sec) if the first check failed" sys.exit(1) logf = open(log_filename, 'w', 0) plog("flow def: %s" % flowdef) plog("wait1 : %d" % wait1) plog("wait2 : %d" % wait2) plog(check_switch()[1]) plog(check_link()[1]) plog(check_controllers(8)[1]) (code, result) = check_by_pingall() plog(result) print result k = raw_input('hit any key>') for cycle in range(1000): for n, op in enumerate(operation): plog("==== Cycle %d operation %d ====: %s" % (cycle, n, os.popen('date').read())) # link_change_core(op) os.popen(op) plog(op) cur_nr_controllers = nr_controllers[n] plog("wait %d sec" % wait1) time.sleep(wait1) plog("check and log: %s" % os.popen('date').read()) tstart=int(time.time()) (code, result) = check_and_log("%d.%d.1" % (cycle,n)) plog(result) plog("done: %s" % os.popen('date').read()) tend=int(time.time()) tdelta=tend-tstart if not code == 0: wait = max(0, wait2 - tdelta) plog("took %d sec for check and log. wait another %d sec" % (tdelta, wait)) time.sleep(wait) plog("check and log: %s" % os.popen('date').read()) (code, result) = check_and_log("%d.%d.2" % (cycle,n)) plog(result) plog("done: %s" % os.popen('date').read()) if code == 0: tag = "%d.%d.2" % (cycle,n) dump_flowgetall(tag) rawflow = "raw-flow-log.%s.log" % tag fraw = open(rawflow,'w') fraw.write(check_flow_raw()[1]) fraw.close() logf.close()
2.28125
2
deconz-tool/deconz.py
JasperAlgra/ha-scripts
0
12778577
<filename>deconz-tool/deconz.py #!/usr/bin/env python3 import getopt import json import logging import os import sys import voluptuous as vol import yaml # from deconzapi import DeCONZAPI, DECONZ_TYPE_USEABLE, DECONZ_ATTR_TYPE from deconzapi import * ################################################################# # Manually get API information: # curl -s http://HOST:PORT/api/APIKEY | jq . ################################################################# CONFIGNAME = "deconz.yaml" CONF_HOST = "host" CONF_PORT = "port" CONF_APIKEY = "apikey" CONFIG_SCHEMA = vol.Schema( { vol.Required(CONF_HOST): str, vol.Optional(CONF_PORT, default=3080): int, vol.Required(CONF_APIKEY): str, }, extra=vol.ALLOW_EXTRA, ) ################################################################# ARG_OPERATION = "operation" ARG_OPTION1 = "option1" OPERATION_CONFIG = "config" OPERATION_DELETE = "delete" OPERATION_LIST = "list" OPERATION_OUTPUT = "output" OPERATION_RENAME = "rename" OPERATIONS = [OPERATION_CONFIG, OPERATION_LIST, OPERATION_OUTPUT, OPERATION_RENAME] OPERATION_OUTPUT_TYPE = ["raw", "json"] OPERATION_RENAME_TYPE = ["raw"] HELP = """ Commands: list - list all devices rename - rename device config - configure device output raw - print devices in python format output json - print devices in pretty JSON format """ ################################################################# logging.basicConfig( level=logging.ERROR, format="%(asctime)s %(levelname)s: %(message)s" ) LOGGER = logging.getLogger(__name__) # LOGGER.propagate = False ################################################################# def parseArg(args): if len(sys.argv) == 1: print("INFO: No parameter supplied") print(HELP) sys.exit(1) # Get operation args[ARG_OPERATION] = sys.argv[1].lower() if args[ARG_OPERATION] not in OPERATIONS: print("ERROR: Invalid operation") print(HELP) sys.exit(1) if args[ARG_OPERATION] == OPERATION_OUTPUT: if len(sys.argv) < 3: print("ERROR: Not enough parameter") print(HELP) sys.exit(1) args[ARG_OPTION1] = sys.argv[2].lower() if args[ARG_OPTION1] not in OPERATION_OUTPUT_TYPE: print("ERROR: Invalid output option") print(HELP) sys.exit(1) if args[ARG_OPERATION] == OPERATION_RENAME: if len(sys.argv) >= 3: args[ARG_OPTION1] = sys.argv[2].lower() if args[ARG_OPTION1] not in OPERATION_OUTPUT_TYPE: print("ERROR: Invalid output option") print(HELP) sys.exit(1) else: args[ARG_OPTION1] = "" ################################################################# def readConfig(): config = None location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) name = f"{location}/{CONFIGNAME}" try: with open(name, "r") as f: config = yaml.safe_load(f) config = CONFIG_SCHEMA(config) return config except Exception as e: LOGGER.error( "Exception=%s Msg=%s", type(e).__name__, str(e), exc_info=True, ) return None ################################################################# def commandList(devices): """ model reachable lastupdated battery value(s) """ hdr = f'{"Type":7} {"Model":40} {"Name":30} {"Address":20} {"Reach":5} {"Last Updated (UTC)":19} {"Values":20}' print(hdr) print("".rjust(len(hdr), "-")) for type in DECONZ_TYPE_USEABLE: for dev in devices: if dev[DECONZ_ATTR_TYPE] == type: # Concat values values = [] if DECONZ_ATTR_ON in dev: values.append("On" if dev[DECONZ_ATTR_ON] == True else "Off") for sensor in dev[DECONZ_SENSORS]: for key, value in sensor[DECONZ_ATTR_VALUES].items(): values.append(value) print( f'{type:7} {dev[DECONZ_ATTR_MODEL][:40]:40} {dev[DECONZ_ATTR_NAME][:30]:30} {", ".join(dev[DECONZ_ATTR_ADDRESS]):20} {str(dev[DECONZ_ATTR_REACHABLE])[:5]:5} {str(dev[DECONZ_ATTR_LASTUPDATED])[:19]:19} {", ".join(values)}' ) ################################################################# def commandOutput(type, devices): # 0=raw, 1=json if type == OPERATION_OUTPUT_TYPE[0]: # print raw python object, it isn't json format print(devices) elif type == OPERATION_OUTPUT_TYPE[1]: # print pretty json format print(json.dumps(devices, indent=4, sort_keys=True)) ################################################################# def commandRename(api, devices): """Rename devices, there is logic between switches and sub sensors.""" output = [] hdr = f'{"Nr":2}. {"Type":7} {"Model":40} {"Name":30}' output.append(hdr) output.append("".rjust(len(hdr), "-")) seqid = ["q"] for dev in devices: output.append( f"{dev[DECONZ_ATTR_SEQID]:>2}. {dev[DECONZ_ATTR_TYPE]:7} {dev[DECONZ_ATTR_MODEL][:40]:40} {dev[DECONZ_ATTR_NAME][:30]:30}" ) seqid.append(str(dev[DECONZ_ATTR_SEQID])) while True: print("\n".join(output)) r = input("Enter number or q: ") r = r.rstrip() # Check if we entered something valid if r in seqid: break print(f"\nERROR: Invalid input '{r}' given!\n") # if we got quit, terminate if r == "q": print("\nINFO: Quit\n") sys.exit(1) # Convert input to integer, should always work seqid = int(r) # Lets find our specific entry for dev in devices: if dev[DECONZ_ATTR_SEQID] == seqid: break # depending on the type, we need to do something # switch=light + all sensors with suffix # sensor=all senors (same name) print("\nCurrent name(s):") if dev[DECONZ_CATEGORY] == DECONZ_LIGHTS: print("L" + dev[DECONZ_ATTR_ID], " ", dev[DECONZ_ATTR_NAME]) # Go through sensors for sensor in dev[DECONZ_SENSORS]: print("S" + sensor[DECONZ_ATTR_ID], " ", sensor[DECONZ_ATTR_NAME]) newname = input("Enter new name: ") if newname == "": print("\nINFO: Quit\n") sys.exit(1) # Ok, we got something, print and ask for permission print("\nNew name(s):") if dev[DECONZ_CATEGORY] == DECONZ_LIGHTS: print("L" + dev[DECONZ_ATTR_ID], " ", newname) # Go through sensors for sensor in dev[DECONZ_SENSORS]: type = "" if dev[DECONZ_ATTR_TYPE] == DECONZ_TYPE_SWITCH: type = sensor[DECONZ_ATTR_TYPE].replace("ZHA", " ") if type == " Consumption": type = " Energy" print("S" + sensor[DECONZ_ATTR_ID], " ", newname + type) while True: r = input("Change? [Y/n]: ") if r in ["Y", "y", ""]: break elif r in ["N", "n"]: print("\nINFO: Quit\n") sys.exit(1) if dev[DECONZ_CATEGORY] == DECONZ_LIGHTS: r = api.modify_light_name(dev[DECONZ_ATTR_ID], newname) print("Renamed Switch L" + dev[DECONZ_ATTR_ID], "=", r) # Go through sensors for sensor in dev[DECONZ_SENSORS]: type = "" if dev[DECONZ_ATTR_TYPE] == DECONZ_TYPE_SWITCH: type = sensor[DECONZ_ATTR_TYPE].replace("ZHA", " ") if type == " Consumption": type = " Energy" r = api.modify_sensor_name(sensor[DECONZ_ATTR_ID], newname + type) print("Renamed Switch S" + sensor[DECONZ_ATTR_ID], "=", r) # print(json.dumps(dev, indent=4, sort_keys=True)) """ ZHAConsumption -> Energy ZHAPower -> Power first gather list of devices to show show a list of devices, then do input() to pick one? if switch == rename also sub sensors + type if sensor == rename all sensors (same name) if other == don't know yet? """ ################################################################# def commandConfig(api, devices): """Configure options of devices, normally sensors like Philips Motion.""" # We create a new list of devices, because we are only interested # in devices with a config newdevices = [] seqid = 0 # Make a new list of sensors with configuration options for dev in devices: for sensor in dev[DECONZ_SENSORS]: if len(sensor[DECONZ_ATTR_CONFIG]) > 0: # add new seqid to our sensor seqid += 1 sensor[DECONZ_ATTR_SEQID] = seqid # also add type/model, it overrules some other data! # Should maybe make this 'better'? sensor[DECONZ_ATTR_TYPE] = dev[DECONZ_ATTR_TYPE] sensor[DECONZ_ATTR_MODEL] = dev[DECONZ_ATTR_MODEL] newdevices.append(sensor) output = [] hdr = f'{"Nr":2}. {"Type":7} {"Model":40} {"Name":30} {"Config":50}' output.append(hdr) output.append("".rjust(len(hdr), "-")) seqid = ["q"] # Check sensors for configuration options for dev in newdevices: clist = [] # list config values for config in dev[DECONZ_ATTR_CONFIG]: # do not report sensitivitymax, because that is part of sensitivity if config not in [DECONZ_CONFIG_SENSITIVITYMAX]: clist.append(config) # print(dev) output.append( f'{dev[DECONZ_ATTR_SEQID]:>2}. {dev[DECONZ_ATTR_TYPE]:7} {dev[DECONZ_ATTR_MODEL][:40]:40} {dev[DECONZ_ATTR_NAME][:30]:30} {", ".join(clist)}' ) seqid.append(str(dev[DECONZ_ATTR_SEQID])) while True: print("\n".join(output)) r = input("Enter number or q: ") r = r.rstrip() # Check if we entered something valid if r in seqid: break print(f"\nERROR: Invalid input '{r}' given!\n") # if we got quit, terminate if r == "q": print("\nINFO: Quit\n") sys.exit(1) # Lets find our choice from the list for dev in newdevices: if str(dev[DECONZ_ATTR_SEQID]) == r: break # dev is the one we work with configlist = [] id = 0 seqid = ["q"] output = [] hdr = f'{"Nr":2}. {"Name":20} {"Value":20}' output.append(hdr) output.append("".rjust(len(hdr), "-")) # sens max is a special variable sensitivitymax = "" for config in dev[DECONZ_ATTR_CONFIG]: if config in [DECONZ_CONFIG_SENSITIVITYMAX]: sensitivitymax = str(dev[DECONZ_ATTR_CONFIG][config]) else: centry = {} id += 1 centry[DECONZ_ATTR_SEQID] = id centry[DECONZ_ATTR_TYPE] = config centry[DECONZ_ATTR_VALUES] = dev[DECONZ_ATTR_CONFIG][config] configlist.append(centry) seqid.append(str(id)) # Currently we support int and bool if type(centry[DECONZ_ATTR_VALUES]) not in [bool, int]: print( "ERROR: unsupported type %s (%s) ".format( type(centry[DECONZ_ATTR_VALUES]), centry ) ) sys.exit(1) # Only here we can create the ouput, because of sensitivitymax for config in configlist: # Currently we support int and bool if type(centry[DECONZ_ATTR_VALUES]) is bool: val = f"{config[DECONZ_ATTR_VALUES]!s}" elif type(centry[DECONZ_ATTR_VALUES]) is int: val = str(config[DECONZ_ATTR_VALUES]) else: val = "" if config[DECONZ_ATTR_TYPE] == DECONZ_CONFIG_SENSITIVITY: val += f" (max: {sensitivitymax})" output.append( f"{config[DECONZ_ATTR_SEQID]:>2}. {config[DECONZ_ATTR_TYPE]:20} {val:20}" ) while True: print("\n".join(output)) r = input("Enter number or q: ") r = r.rstrip() # Check if we entered something valid if r in seqid: break print(f"\nERROR: Invalid input '{r}' given!\n") # if we got quit, terminate if r == "q": print("\nINFO: Quit\n") sys.exit(1) # Find the to-be-modified entry seqid = int(r) for config in configlist: if config[DECONZ_ATTR_SEQID] == seqid: break # We need to modify the value. Only integer and boolean supported while True: r = input("Enter new value: ") r = r.rstrip() if isinstance(config[DECONZ_ATTR_VALUES], bool): if r.lower() in ["false", "0"]: value = False break elif r.lower() in ["true", "1"]: value = True break elif isinstance(config[DECONZ_ATTR_VALUES], int): value = int(r) break r = api.modify_sensor_config(dev[DECONZ_ATTR_ID], config[DECONZ_ATTR_TYPE], value) if r is not None: # Response is an array print("INFO: Config change - {}".format(r)) else: print("ERROR: Response is empty?") ################################################################# def Main(): configInfo = readConfig() args = {} parseArg(args) LOGGER.debug("Args: %s", args) # Get DeCONZ API api = DeCONZAPI( configInfo[CONF_HOST], configInfo[CONF_PORT], configInfo[CONF_APIKEY] ) # Get all devices, internally formatted devices = api.get_all_devices() if devices is None: print("ERROR: DeCONZ API returned None?") if args[ARG_OPERATION] == OPERATION_LIST: commandList(devices) if args[ARG_OPERATION] == OPERATION_OUTPUT: commandOutput(args[ARG_OPTION1], devices) if args[ARG_OPERATION] == OPERATION_RENAME: commandRename(api, devices) if args[ARG_OPERATION] == OPERATION_CONFIG: commandConfig(api, devices) """ if ARGS["operation"] == "LIST": if "lights" in config: deconzlights = await Light_GetInfo(config["lights"], config["sensors"]) await Light_Print(deconzlights) else: raise Exception("Can not find 'lights' in DeCONZ configuration") elif ARGS["operation"] == "MODIFY": if ARGS["field"] == "NAME": deconzlights = await Light_GetInfo(config["lights"], config["sensors"]) await Light_Modify_Name(api, deconzlights, ARGS["id"], ARGS["value"]) else: print("ERROR: Modify, unknown field") sys.exit(1) deconzapi.DECONZ_TYPE_USEABLE make modify user-input, it isn't something we use regularly? https://www.w3schools.com/python/ref_func_input.asp """ ################################################################# if __name__ == "__main__": Main() # End
1.804688
2
sourcerer/base.py
LISTERINE/sourcerer
0
12778578
#!env/bin/python import re from numbers import Number class Statement(object): """ A line of code A Statement is a line of code that may or may not have a child Scope """ def __init__(self, code='', scope=None, whitespace='', line_ending=''): """ self.code is the actual line of code that this object represents. self.scope (if any) is the child scope of this statement. eg. self.code -> while 1: | do thing 1 self.scope ->| do thing 2 | do thing 3 Args: code (str): The code that will be represented """ self.code = code self.scope = scope if scope is not None else [] self.whitespace = whitespace if whitespace else ' ' * 4 self.line_ending = line_ending def __iter__(self): renderer = self.build_renderer() for node in renderer: yield node def __str__(self): return self.line_ending.join(self) return self.code def __repr__(self): return self.line_ending.join(self) return self.code def add_child(self, child): """ Append a child to this statements scope Args: child (Statement): The child to append """ if isinstance(child, Statement): self.scope.append(child) else: raise Exception("child " + child + " is not a Statement") def add_children(self, child_list): """ A convenience function to load multiple children into this scope Args: child_list (list): a list of children to append to this objects scope """ for child in child_list: if isinstance(child, list): self.add_children(child) else: self.add_child(child) def create_lineage(self, lineage): """ Create a hierarchical lineage of children with this object as the oldest member. eg. children = [c1, [c2.1, c2.2], c3] result -- self (top level) |-> c1 |-> c2.1 c2.2 |-> c3 """ current_node = self for child in lineage: if child: if isinstance(child, list): current_node.add_children(child) current_node = child[-1] else: current_node.add_child(child) current_node = child def from_parent(self, parent): """ Append this statement to the scope of a parent statement Args: parent (Statement): The parent to append this statement to """ if isinstance(parent, Statement): parent.scope.append(self) else: raise Exception("parent " + parent + " is not a Statement") def from_lineage(self, lineage): """ Create a hierarchical list of parents with this object as the youngest decentant Lineage will be arranged in the order the parents are provided. eg. parents = [p1, p2, p3] result -- p1 (top level) |->p2 |->p3 |->self In this example the top level parent would be at scope level n+1 and this object would be at scope level n+4. Args: lineage (list): a hierarchical list of parents for this object. """ current_node = self lineage.reverse() for parent in lineage: current_node.from_parent(parent) current_node = parent def format(self): """ Abstract function to format properties this object """ pass def generate(self): """ Abstract function to set self.code """ pass def build_renderer(self, *args, **kwargs): """ Overwrite this function to customize how render should be called for particular objects """ return self.render(*args, **kwargs) def render(self, level=-1, increment=1): """ Return this statement and all children recursively Args: level (int): The indentation level to set for this statement increment (int): The number of indentation levels for the child scope """ self.format() self.generate() yield "{}{}{}".format(self.whitespace * level, self.code, self.line_ending) for child in self.scope: #child.format() #child.generate() child_renderer = child.build_renderer(level=level + increment) while 1: try: yield next(child_renderer) except StopIteration: break @staticmethod def to_statement(item): """ Convert a string to a Statement If the argument passed is already a Statement or Statment derivitive, return it unaltered If the argument passed is a Non-Statment, return input as a Statement Args: item (str, Statement): The object to be converted to a Statement """ if isinstance(item, Statement): return item else: return Statement(item) @staticmethod def make_valid(name): """ Convert a string to a valid python name Args: name (string): The name to be converted """ name = re.sub('[^0-9a-zA-Z_]', '', str(name)) # Remove invalid characters name = re.sub('^[^a-zA-Z_]+', '', str(name)) # Remove leading characters until we find a letter or underscore return name class Name(Statement): """ A variable/function/class/... name n = Name("helloworld") -> (unquoted) helloworld NOTE: Unless the validate flag is set to False, this will reformat a name if it is not a proper python variable name n = Name("123*helloworld") -> (unquoted) helloworld Args: validate (bool): Should name be converted to valid python variable name? """ def __init__(self, code, validate=True, *args, **kwargs): super(Name, self).__init__(*args, **kwargs) self.line_ending = '' self.code = self.make_valid(code) if validate else code class Str(Statement): """ A quoted string Args: single (bool): Should use single quotes? s = Str("hello world") -> literal 'hello world' """ def __init__(self, code, single=False, *args, **kwargs): super(Str, self).__init__(*args, **kwargs) self.line_ending = '' self.code = self.string_args(code, single) def string_args(self, args, single): """ Apply single or double quotes to the strings provided. Args: args (string): A string to be quoted single (bool): Use single quotes rather than double """ self.base = '"{}"' self.quote_type = '"' if single: self.base = "'{}'" self.quote_type = "'" escaped = "\\{}".format(self.quote_type) if isinstance(args, Str): args = str(args).strip(args.quote_type) if isinstance(args, str) or isinstance(args, Statement): args = str(args).replace(self.quote_type, escaped) return self.base.format(args) class Num(Statement): """ A number. Signed Int, Float, Long, whatever. n = Num("4") -> 4 n = Num(4) -> 4 n = Num(4.0) -> 4.0 """ def __init__(self, code, *args, **kwargs): super(Num, self).__init__(*args, **kwargs) self.line_ending = '' self.code = str(code)
4.3125
4
3-2D-Array/7/2d-array-advanced.py
xuxpp/Python-3-exercise
0
12778579
<filename>3-2D-Array/7/2d-array-advanced.py def get_fibonaccis(cnt): l = [0, 1] for _ in range(cnt-2): # Deduct inital 2 numbers l.append(l[-1] + l[-2]) return l def is_perfect(n): return sum([ x for x in range(1, n) if n % x == 0 ]) == n def get_non_perfect_nums(cnt): l = [] n = 1 while len(l) != cnt: if not is_perfect(n): l.append(n) n += 1 return l # Start of the execution length = 21 l = [] l.append(get_non_perfect_nums(length)) l.append(get_fibonaccis(length)) l.append([ n1 * n2 for n1, n2 in zip(l[0], l[1]) ]) print(l)
3.75
4
orion/app.py
brian123zx/orion-server
120
12778580
from flask import Flask from flask import jsonify from flask import request from flask_cors import CORS from raven.contrib.flask import Sentry from orion.context import Context from orion.handlers import handler_classes def init_app(app): """ Statefully initialize the Flask application. This involves creating a sever-side application context and adding route definitions for all endpoint handlers. :param app: Uninitialized Flask application instance. :return: Server-side application context. """ ctx = Context(app) CORS(app, supports_credentials=True, origins=[ctx.config.get_value('frontend_url')]) sentry_dsn = ctx.config.get_value('sentry_dsn') if sentry_dsn: Sentry(dsn=sentry_dsn).init_app(app) def map_handler_func(HandlerClass): """ Create all necessary params for adding this route to the Flask server. :param HandlerClass: Handler class to prepare. :return: A tuple of (path, name, view_func, methods) for this handler. """ def handler_wrapper(*args, **kwargs): # Provide an abstraction for supplying the handler with request JSON. data = request.get_json(force=True, silent=True) or {} handler = HandlerClass(ctx, data) resp_json, status = handler.run(*args, **kwargs) return jsonify(resp_json), status return HandlerClass.path, HandlerClass.__name__, handler_wrapper, HandlerClass.methods for rule, endpoint, view_func, methods in map(map_handler_func, handler_classes): app.add_url_rule( rule=rule, endpoint=endpoint, view_func=view_func, methods=methods, ) return ctx def create_app(): """ Create a fully initialized Flask application instance for this server. :return: The initialized Flask application instance. """ app = Flask('orion') ctx = init_app(app) app.ctx = ctx return app
2.515625
3
plan/time_range.py
CodePeasants/pyplan
0
12778581
<reponame>CodePeasants/pyplan<filename>plan/time_range.py # Python standard lib from datetime import datetime # Package from plan.serializable import Serializable from plan.settings import TIME_ZONE class TimeRange(Serializable): def __init__(self, start=None, end=None): if start is None: start = datetime.now(TIME_ZONE) if end is None: end = start if not all(isinstance(x, datetime) for x in [start, end]): raise TypeError('Must provide datetime objects!') if start > end: raise ValueError('Cannot have a start time greater than end time!') if not all(x.tzinfo for x in [start, end]): raise ValueError('datetime objects must have time zone info!') self.start = start self.end = end def __contains__(self, item): if isinstance(item, datetime): return self.start <= item <= self.end elif isinstance(item, self.__class__): return item.start >= self.start and item.end <= self.end else: raise TypeError('Invalid type!') def __eq__(self, other): if isinstance(other, datetime): return other == self.start and other == self.end elif isinstance(other, self.__class__): return other.start == self.start and other.end == self.end else: raise TypeError('Invalid type!') def __ne__(self, other): return not self.__eq__(other) def __gt__(self, other): if isinstance(other, self.__class__): return self.start > other.end elif isinstance(other, datetime): return self.start > other else: raise TypeError(f'Cannot compare {self.__class__.__name__} to {type(other)}.') def __ge__(self, other): if isinstance(other, self.__class__): return self.end <= other.start elif isinstance(other, datetime): return self.end <= other else: raise TypeError(f'Cannot compare {self.__class__.__name__} to {type(other)}.') def __lt__(self, other): if isinstance(other, self.__class__): return self.end < other.start elif isinstance(other, datetime): return self.end < other else: raise TypeError(f'Cannot compare {self.__class__.__name__} to {type(other)}.') def __le__(self, other): if isinstance(other, self.__class__): return self.end <= other.start elif isinstance(other, datetime): return self.end <= other else: raise TypeError(f'Cannot compare {self.__class__.__name__} to {type(other)}.') def astimezone(self, time_zone): start = self.start.astimezone(time_zone) end = self.end.astimezone(time_zone) return self.__class__(start, end) @classmethod def now(cls, time_zone=None): """Returns a TimeRange object for the current time.""" current_time = datetime.now(time_zone) if not time_zone: current_time = TIME_ZONE.localize(current_time) return cls(current_time)
2.84375
3
src/train.py
lotusxai/join-house-prices-solutions-project
1
12778582
<gh_stars>1-10 import numpy as np import pandas as pd import predict import matplotlib.pyplot as plt import seaborn as sns from sklearn import preprocessing import time from datetime import datetime import warnings import os warnings.filterwarnings('ignore') # ML libraries import lightgbm as lgb import xgboost as xgb from xgboost import plot_importance, plot_tree from sklearn.model_selection import RandomizedSearchCV, GridSearchCV from sklearn import linear_model from sklearn.metrics import mean_squared_error le = preprocessing.LabelEncoder() world_population_dir = os.environ.get("WORLD_POPULATION") # details adding into columns def calculate_trend(df, lag_list, column): for lag in lag_list: trend_column_lag = "Trend_" + column + "_" + str(lag) df[trend_column_lag] = (df[column]-df[column].shift(lag, fill_value=-999))/df[column].shift(lag, fill_value=0) return df def calculate_lag(df, lag_list, column): for lag in lag_list: column_lag = column + "_" + str(lag) df[column_lag] = df[column].shift(lag, fill_value=0) return df def addingColumns(train, test): # Merge train and test, exclude overlap dates_overlap = ['2020-03-12','2020-03-13','2020-03-14','2020-03-15','2020-03-16','2020-03-17','2020-03-18', '2020-03-19','2020-03-20','2020-03-21','2020-03-22','2020-03-23', '2020-03-24'] train2 = train.loc[~train['Date'].isin(dates_overlap)] all_data = pd.concat([train2, test], axis = 0, sort=False) # Double check that there are no informed ConfirmedCases and Fatalities after 2020-03-11 all_data.loc[all_data['Date'] >= '2020-03-12', 'ConfirmedCases'] = np.nan all_data.loc[all_data['Date'] >= '2020-03-12', 'Fatalities'] = np.nan all_data['Date'] = pd.to_datetime(all_data['Date']) # Create date columns # le = preprocessing.LabelEncoder() all_data['Day_num'] = le.fit_transform(all_data.Date) all_data['Day'] = all_data['Date'].dt.day all_data['Month'] = all_data['Date'].dt.month all_data['Year'] = all_data['Date'].dt.year # Fill null values given that we merged train-test datasets all_data['Province/State'].fillna("None", inplace=True) all_data['ConfirmedCases'].fillna(0, inplace=True) all_data['Fatalities'].fillna(0, inplace=True) all_data['Id'].fillna(-1, inplace=True) all_data['ForecastId'].fillna(-1, inplace=True) # Aruba has no Lat nor Long. Inform it manually all_data.loc[all_data['Lat'].isna()==True, 'Lat'] = 12.510052 all_data.loc[all_data['Long'].isna()==True, 'Long'] = -70.009354 return all_data def addingWolrd(all_data): ts = time.time() all_data = calculate_lag(all_data, range(1,7), 'ConfirmedCases') all_data = calculate_lag(all_data, range(1,7), 'Fatalities') all_data = calculate_trend(all_data, range(1,7), 'ConfirmedCases') all_data = calculate_trend(all_data, range(1,7), 'Fatalities') all_data.replace([np.inf, -np.inf], 0, inplace=True) all_data.fillna(0, inplace=True) print("Time spent: ", time.time()-ts) # Load countries data file world_population = pd.read_csv(world_population_dir) # Select desired columns and rename some of them world_population = world_population[['Country (or dependency)', 'Population (2020)', 'Density (P/Km²)', 'Land Area (Km²)', 'Med. Age', 'Urban Pop %']] world_population.columns = ['Country (or dependency)', 'Population (2020)', 'Density', 'Land Area', 'Med Age', 'Urban Pop'] # Replace United States by US world_population.loc[world_population['Country (or dependency)']=='United States', 'Country (or dependency)'] = 'US' # Remove the % character from Urban Pop values world_population['Urban Pop'] = world_population['Urban Pop'].str.rstrip('%') # Replace Urban Pop and Med Age "N.A" by their respective modes, then transform to int world_population.loc[world_population['Urban Pop']=='N.A.', 'Urban Pop'] = int(world_population.loc[world_population['Urban Pop']!='N.A.', 'Urban Pop'].mode()[0]) world_population['Urban Pop'] = world_population['Urban Pop'].astype('int16') world_population.loc[world_population['Med Age']=='N.A.', 'Med Age'] = int(world_population.loc[world_population['Med Age']!='N.A.', 'Med Age'].mode()[0]) world_population['Med Age'] = world_population['Med Age'].astype('int16') all_data = all_data.merge(world_population, left_on='Country/Region', right_on='Country (or dependency)', how='left') all_data[['Population (2020)', 'Density', 'Land Area', 'Med Age', 'Urban Pop']] = all_data[['Population (2020)', 'Density', 'Land Area', 'Med Age', 'Urban Pop']].fillna(0) # Label encode countries and provinces. Save dictionary for exploration purposes all_data.drop('Country (or dependency)', inplace=True, axis=1) all_data['Country/Region'] = le.fit_transform(all_data['Country/Region']) number_c = all_data['Country/Region'] countries = le.inverse_transform(all_data['Country/Region']) country_dict = dict(zip(countries, number_c)) all_data['Province/State'] = le.fit_transform(all_data['Province/State']) number_p = all_data['Province/State'] province = le.inverse_transform(all_data['Province/State']) province_dict = dict(zip(province, number_p)) data = all_data.copy() features = ['Id', 'ForecastId', 'Country/Region', 'Province/State', 'ConfirmedCases', 'Fatalities', 'Day_num', 'Day', 'Month', 'Year', 'Long', 'Lat'] data = data[features] # Apply log transformation to all ConfirmedCases and Fatalities columns, except for trends data[['ConfirmedCases', 'Fatalities']] = data[['ConfirmedCases', 'Fatalities']].astype('float64') data[['ConfirmedCases', 'Fatalities']] = data[['ConfirmedCases', 'Fatalities']].apply(lambda x: np.log(x)) # Replace infinites data.replace([np.inf, -np.inf], 0, inplace=True) return (data,country_dict,all_data) # Split data into train/test def split_data(data): # Train set x_train = data[data.ForecastId == -1].drop(['ConfirmedCases', 'Fatalities'], axis=1) y_train_1 = data[data.ForecastId == -1]['ConfirmedCases'] y_train_2 = data[data.ForecastId == -1]['Fatalities'] # Test set x_test = data[data.ForecastId != -1].drop(['ConfirmedCases', 'Fatalities'], axis=1) # Clean Id columns and keep ForecastId as index x_train.drop('Id', inplace=True, errors='ignore', axis=1) x_train.drop('ForecastId', inplace=True, errors='ignore', axis=1) x_test.drop('Id', inplace=True, errors='ignore', axis=1) x_test.drop('ForecastId', inplace=True, errors='ignore', axis=1) return x_train, y_train_1, y_train_2, x_test # Linear regression model def lin_reg(X_train, Y_train, X_test): # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(X_train, Y_train) # Make predictions using the testing set y_pred = regr.predict(X_test) return regr, y_pred # Submission function def get_submission(df, target1, target2): prediction_1 = df[target1] prediction_2 = df[target2] # Submit predictions prediction_1 = [int(item) for item in list(map(round, prediction_1))] prediction_2 = [int(item) for item in list(map(round, prediction_2))] submission = pd.DataFrame({ "ForecastId": df['ForecastId'].astype('int32'), "ConfirmedCases": prediction_1, "Fatalities": prediction_2 }) submission.to_csv('submission.csv', index=False) # if __name__ == "__main__": # predict.main()
2.421875
2
Action/action_enum.py
arunimasundar/Supervised-Learning-of-Procedures
0
12778583
<gh_stars>0 from enum import Enum class Actions(Enum): """ Actions enum """ # framewise_recognition.h5 # squat = 0 # stand = 1 # walk = 2 # wave = 3 # framewise_recognition_under_scene.h5 # stand = 0 # walk = 1 # operate = 2 # fall_down = 3 # run = 4 # squat squat=0 jumpingjacks=1 pushups=2 # stand=3 highknees=3 # sidelunge=3
2.78125
3
tappmq/tappmq.py
isysd/tappmq
0
12778584
""" A simple message queue for TAPPs using Redis. """ import json import time from sqlalchemy_models import create_session_engine, setup_database, util, exchange as em, user as um, wallet as wm from tapp_config import setup_redis, get_config, setup_logging def subscription_handler(channel, client, mykey=None, auth=False, multi=True): """ :param str channel: The channel to subscribe to. :param client: A plugin manager client. :param mykey: A bitjws public key to use in authenticating requests (unused) :param bool auth: If true, authenticate all requests, otherwise assume plain json encoding. :param multi: Process multiple results if True, otherwise return after 1 """ while True: message = client.red.rpop(channel) if message is not None: toprint = message if len(message) < 60 else message[:59] client.logger.info("handling message %s..." % toprint) if not auth: # assume json encoding mess = json.loads(message) client.logger.debug("handling message:\n%s" % json.dumps(mess, indent=2)) if 'command' not in mess or not hasattr(client, mess['command']): # nothing to do pass else: try: getattr(client, mess['command'])(**mess['data']) except Exception as e: client.logger.exception(e) client.session.rollback() client.session.flush() else: # TODO implement auth options raise NotImplementedError("auth not supported yet.") if not multi: return else: time.sleep(0.01) def publish(channel, command, data, key=None, auth=False, red=None): """ Publish a command to a redis channel. :param channel: The channel to send the command to :param command: The command name :param data: The data to send (parameters) :param key: The key to sign with (unused) :param auth: If true, authenticate the message before sending (unused) :param red: The StrictRedis client to use for redis communication """ if red is None: red = setup_redis() if not auth: red.lpush(channel, json.dumps({'command': command, 'data': data})) else: # TODO implement auth options raise NotImplementedError("auth not supported yet.") def set_status(nam, status='loading', red=None): if red is None: red = setup_redis() if status in ['loading', 'running', 'stopped']: red.set("%s_status" % nam.lower(), status) def get_status(nam, red=None): if red is None: red = setup_redis() status = red.get("%s_status" % nam.lower()) return status if status is not None else 'stopped' def get_running_workers(wlist, red=None): """ Search list for only the workers which return status 'running'. :param wlist: The list of workers to search through. :param red: The redis connection. :return: The worker list filtered for status 'running'. """ if red is None: red = setup_redis() workers = [] for work in wlist: if get_status(work, red=red) == 'running': workers.append(work) return workers class MQHandlerBase(object): """ A parent class for Message Queue Handlers. Plugins should inherit from this class, and overwrite all of the methods that raise a NotImplementedError. """ NAME = 'Base' KEY = 'PubKey' _user = None session = None def __init__(self, key=None, secret=None, session=None, engine=None, red=None, cfg=None): self.cfg = get_config(self.NAME.lower()) if cfg is None else cfg self.key = key if key is not None else self.cfg.get(self.NAME.lower(), 'key') self.secret = secret if secret is not None else self.cfg.get(self.NAME.lower(), 'secret') self.session = session self.engine = engine self.red = red self.logger = None """ Daemonization and process management section. Do not override. """ def setup_connections(self): if self.session is None or self.engine is None: self.session, self.engine = create_session_engine(cfg=self.cfg) setup_database(self.engine, modules=[wm, em, um]) self.red = setup_redis() if self.red is None else self.red def setup_logger(self): self.logger = setup_logging(self.NAME.lower(), cfg=self.cfg) def cleanup(self): if self.session is not None: self.session.close() @property def manager_user(self): """ Get the User associated with this plugin Manager. This User is the owner of records for the plugin. :rtype: User :return: The Manager User """ if not self._user: # try to get existing user self._user = self.session.query(um.User).filter(um.User.username == '%sManager' % self.NAME) \ .first() if not self._user: # create a new user userpubkey = self.cfg.get(self.NAME.lower(), 'userpubkey') self._user = util.create_user('%sManager' % self.NAME, userpubkey, self.session) return self._user def run(self): """ Run this manager as a daemon. Subscribes to a redis channel matching self.NAME and processes messages received there. """ set_status(self.NAME.lower(), 'loading', self.red) self.setup_connections() self.setup_logger() self.logger.info("%s loading" % self.NAME) set_status(self.NAME.lower(), 'running', self.red) self.logger.info("%s running" % self.NAME) subscription_handler(self.NAME.lower(), client=self)
2.78125
3
saleor/graphql/order/mutations/fulfillment_refund_and_return_product_base.py
eanknd/saleor
1,392
12778585
from typing import Optional import graphene from django.core.exceptions import ValidationError from ....giftcard.utils import order_has_gift_card_lines from ....order import FulfillmentLineData from ....order import models as order_models from ....order.error_codes import OrderErrorCode from ....order.fetch import OrderLineInfo from ....payment.models import TransactionItem from ...core.mutations import BaseMutation from ..types import FulfillmentLine, OrderLine class FulfillmentRefundAndReturnProductBase(BaseMutation): class Meta: abstract = True @classmethod def clean_order_payment(cls, payment, cleaned_input): if not payment or not payment.can_refund(): raise ValidationError( { "order": ValidationError( "Order cannot be refunded.", code=OrderErrorCode.CANNOT_REFUND.value, ) } ) cleaned_input["payment"] = payment @classmethod def clean_amount_to_refund( cls, order, amount_to_refund, charged_value, cleaned_input ): if amount_to_refund is not None: if order_has_gift_card_lines(order): raise ValidationError( { "amount_to_refund": ValidationError( ( "Cannot specified amount to refund when order has " "gift card lines." ), code=OrderErrorCode.CANNOT_REFUND.value, ) } ) if amount_to_refund > charged_value: raise ValidationError( { "amount_to_refund": ValidationError( ( "The amountToRefund is greater than the maximal " "possible amount to refund." ), code=OrderErrorCode.CANNOT_REFUND.value, ), } ) cleaned_input["amount_to_refund"] = amount_to_refund @classmethod def _raise_error_for_line(cls, msg, type, line_id, field_name, code=None): line_global_id = graphene.Node.to_global_id(type, line_id) if not code: code = OrderErrorCode.INVALID_QUANTITY.value raise ValidationError( { field_name: ValidationError( msg, code=code, params={field_name: line_global_id}, ) } ) @classmethod def raise_error_for_payment_error(cls, transactions: Optional[TransactionItem]): if transactions: code = OrderErrorCode.MISSING_TRANSACTION_ACTION_REQUEST_WEBHOOK.value msg = "No app or plugin is configured to handle payment action requests." else: msg = "The refund operation is not available yet." code = OrderErrorCode.CANNOT_REFUND.value raise ValidationError( msg, code=code, ) @classmethod def clean_fulfillment_lines( cls, fulfillment_lines_data, cleaned_input, whitelisted_statuses ): fulfillment_lines = cls.get_nodes_or_error( [line["fulfillment_line_id"] for line in fulfillment_lines_data], field="fulfillment_lines", only_type=FulfillmentLine, qs=order_models.FulfillmentLine.objects.prefetch_related( "fulfillment", "order_line" ), ) fulfillment_lines = list(fulfillment_lines) cleaned_fulfillment_lines = [] for line, line_data in zip(fulfillment_lines, fulfillment_lines_data): quantity = line_data["quantity"] if line.order_line.is_gift_card: cls._raise_error_for_line( "Cannot refund or return gift card line.", "FulfillmentLine", line.pk, "fulfillment_line_id", OrderErrorCode.GIFT_CARD_LINE.value, ) if line.quantity < quantity: cls._raise_error_for_line( "Provided quantity is bigger than quantity from " "fulfillment line", "FulfillmentLine", line.pk, "fulfillment_line_id", ) if line.fulfillment.status not in whitelisted_statuses: allowed_statuses_str = ", ".join(whitelisted_statuses) cls._raise_error_for_line( f"Unable to process action for fulfillmentLine with different " f"status than {allowed_statuses_str}.", "FulfillmentLine", line.pk, "fulfillment_line_id", code=OrderErrorCode.INVALID.value, ) replace = line_data.get("replace", False) if replace and not line.order_line.variant_id: cls._raise_error_for_line( "Unable to replace line as the assigned product doesn't exist.", "OrderLine", line.pk, "order_line_id", ) cleaned_fulfillment_lines.append( FulfillmentLineData( line=line, quantity=quantity, replace=replace, ) ) cleaned_input["fulfillment_lines"] = cleaned_fulfillment_lines @classmethod def clean_lines(cls, lines_data, cleaned_input): order_lines = cls.get_nodes_or_error( [line["order_line_id"] for line in lines_data], field="order_lines", only_type=OrderLine, qs=order_models.OrderLine.objects.prefetch_related( "fulfillment_lines__fulfillment", "variant", "allocations" ), ) order_lines = list(order_lines) cleaned_order_lines = [] for line, line_data in zip(order_lines, lines_data): quantity = line_data["quantity"] if line.is_gift_card: cls._raise_error_for_line( "Cannot refund or return gift card line.", "OrderLine", line.pk, "order_line_id", OrderErrorCode.GIFT_CARD_LINE.value, ) if line.quantity < quantity: cls._raise_error_for_line( "Provided quantity is bigger than quantity from order line.", "OrderLine", line.pk, "order_line_id", ) quantity_ready_to_move = line.quantity_unfulfilled if quantity_ready_to_move < quantity: cls._raise_error_for_line( "Provided quantity is bigger than unfulfilled quantity.", "OrderLine", line.pk, "order_line_id", ) variant = line.variant replace = line_data.get("replace", False) if replace and not line.variant_id: cls._raise_error_for_line( "Unable to replace line as the assigned product doesn't exist.", "OrderLine", line.pk, "order_line_id", ) cleaned_order_lines.append( OrderLineInfo( line=line, quantity=quantity, variant=variant, replace=replace ) ) cleaned_input["order_lines"] = cleaned_order_lines
2.109375
2
ParamFit_27Jan.py
gshowalt/VirusPopModel
0
12778586
<filename>ParamFit_27Jan.py # importing all modules import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib import cm import matplotlib.tri as tri from matplotlib.colors import LogNorm import matplotlib.patches as mpatches from matplotlib.ticker import LogFormatter from labellines import labelLine, labelLines from collections import Counter from functools import wraps import csv import sys import itertools from itertools import islice, cycle, chain import scipy as sp from scipy.interpolate import griddata from scipy import interpolate from scipy.integrate import odeint from scipy.stats import pareto from scipy.stats import loguniform import seaborn as sns import pandas as pd import statistics as stats import lhsmdu from math import nan from SALib.sample import saltelli, latin, ff from SALib.analyze import sobol import random # define the function which includes the differential equations def f2(s,t, temp, beta, mu, phi, delta, gamma): # first define the relative contact rate (RCR) and brine concentrating factor (BCF) by temp if temp < -1: RCR = 0.0716*temp**4 + 2.9311*temp**3 + 34.108*temp**2 + 45.826*temp + 3.5125 #Fit from Wells and Deming, 2006 BCF = -0.0106 * temp **2 - 0.519 * temp + 0.2977 sal = 32 * BCF else: RCR = 1 sal = 32 # scale adsorption rate by RCR to incorporate the sea ice phi = phi * RCR # SET PARAMETERS alpha = (1.2e-7)*3**((temp-23)/10)#4.2e-7 at +8, or 1.2e-7 at lower temps, at -5 --> mu = 0.25/day = 0.01/hr = 1e-8 # alpha is a coefficient that we'd like to change with temperature? Or change eta? #nutrient transfer coefficient to bacteria (ug/cell * hr) Q = 0.022 #half saturation constant (ug/mL) d = 1e-8 #constant of bacterial death (1/hr) # leak, lyse efficiencies here: g = 0.1 n = 0.99 #gamma is a lysogeny value #gamma = 1 #-1/temp #*mu # set up solution matrix N = s[0] B = s[1] V = s[2] #systems of equations below dNdt = - alpha * (N / (N + Q)) * B + g * (alpha * (N/(N+Q))*B) + (n * 1e-7 * (gamma) * phi * V * B) if N < 0: N = 0 dBdt = (mu) * (N/(Q + N)) * B - gamma * phi * V * B - d*B if B < 1: B = 1 dVdt = gamma*beta * B * phi*V - phi * V * B - delta*V if V < 1: V = 1 #print (mu, beta, phi, gamma) return [dNdt, dBdt, dVdt] from scipy.stats import ks_2samp # define runs, values for observed data runs = 1 dfEric = pd.read_excel("ICEVBR_18Aug.xls") Eric_VBR = dfEric.Virus/dfEric.Bacteria RangelistB = [] RangelistM = [] RangelistD = [] RangelistBAvg = [] RangelistMAvg = [] RangelistDAvg = [] # in each run, we want to change the endpoints of the parameter distributions simultaneously i = 0 j = 0 # the while loop is set to run until we find X sets of parameters that produce a distribution of # simulated VBRs which matches the distribution of real data with 95% acceptance rate while i < runs: # define time, temperature scale time = np.random.uniform(5000,10000) temp_list = np.linspace(-12, -1, 8) t = np.linspace(1,time,2000) simVBR = [] # we want to include a step than randomly creates a range of values, since we're looking not for an indivudal # value but instead looking for the right *range* of values. betalo = np.random.uniform(1,1000) betahi = np.random.uniform(betalo,1000) mulo = np.random.uniform(-15,0) muhi = np.random.uniform(mulo,0) deltalo = np.random.uniform(-15,0) deltahi = np.random.uniform(deltalo,0) philo = np.random.uniform(-15,-1) phihi = np.random.uniform(philo,-1) #gammalo = np.random.uniform(0,1) #gammahi = np.random.uniform(gammalo,1) # after we get a random range of values, we want to sample within that range of values to produce # a representative stretch of values to test if they actually reproduce the VBR. problem = { "num_vars" : 2, "names" : ['mu', 'm'], "bounds": [[mulo, muhi], [deltalo, deltahi]], "dists":['unif','unif'] } param_values = saltelli.sample(problem,100,calc_second_order=True) # scale the parameters properly beta = 100 #param_values[:,0] mu = 10**param_values[:,0] delta = 10**param_values[:,1] phi = 1e-10 #10**param_values[:,3] gamma = 1 for temp in temp_list: if temp < -1: RCR = 0.0716*temp**4 + 2.9311*temp**3 + 34.108*temp**2 + 45.826*temp + 3.5125 #Fit from <NAME>, 2006 BCF = -0.0106*temp**2 - 0.519*temp + 0.2977 sal = 32 * BCF else: BCF = 1 sal = 32 nuts_init = 0.12 * BCF bact_init = 1e4 * BCF vir_init = 1e5 * BCF s0 = [nuts_init, bact_init, vir_init] for z in range(0,len(mu)): solx = odeint(f2, s0, t, args = (temp, beta, mu[z], phi, delta[z], gamma)) nuts = solx[:,0] bact = solx[:,1] virus = solx[:,2] for x in bact: if x <= 0: x = 5 for x in virus: if x <= 0: x = 5 simVBR.append(virus/bact) simVBR = np.concatenate(simVBR).ravel() # test the simulated VBRS against the real data result = ks_2samp(Eric_VBR, simVBR) if result[1] > 0.1: #print('beta range is:', betalo, ',', betahi) print('mu range is:', 10**(mulo), ',', 10**(muhi)) print('delta range is:', 10**(deltalo), ',', 10**(deltahi), '\n') i += 1 RangelistB.append([betalo, betahi]) RangelistBAvg.append((betalo + betahi)/2) RangelistM.append([mulo, muhi]) RangelistMAvg.append((mulo + muhi)/2) RangelistD.append([deltalo, deltahi]) RangelistDAvg.append((deltalo + deltahi)/2) j += 1 print ('finished, total runs is:', j) print ('ratio is:', i/j) """# lets plot all the ranges as a set of ordered lines #from itertools import izip from scipy.stats import gaussian_kde yax = [] yax1 = [] runs = i for i in range(1,runs+1): yax.append([i,i]) yax1.append(i) sorted_lists = sorted(zip(RangelistB, RangelistM, RangelistD, RangelistP, RangelistG, RangelistMAvg, RangelistDAvg, RangelistPAvg, RangelistGAvg, RangelistBAvg ), reverse = True, key=lambda x: x[8]) RangelistB2, RangelistM2, RangelistD2, RangelistP2, RangelistG2, RangelistMAvg2, RangelistDAvg2, RangelistPAvg2, RangelistGAvg2, RangelistBAvg2 = [[x[i] for x in sorted_lists] for i in range(10)] # And plot plt.rcParams["font.family"] = "sans-serif" plt.rcParams.update({'font.size': 12.5}) #fig, axs = plt.subplots(1,2,figsize=(15,15)) fig = plt.figure(figsize=(20,10)) fig.tight_layout() cm = plt.get_cmap('viridis') #fig = plt.figure() colorlist = [cm(1.*i/runs) for i in range(runs)] ax = fig.add_subplot(251) for i in range(runs): plt.plot(RangelistB2[i],yax[i], color = colorlist[i]) plt.plot(RangelistBAvg2[i],yax1[i],color = colorlist[i], marker = 'o', markeredgecolor= 'k') plt.title('Burst Size') plt.xlabel('Burst Size') ax.set_xlim(0,1000) ax.set_yticklabels("") ax1 = fig.add_subplot(252) for i in range(runs): plt.plot(RangelistM2[i],yax[i], color = colorlist[i]) plt.plot(RangelistMAvg2[i],yax1[i],color = colorlist[i], marker = 'o', markeredgecolor= 'k') plt.title('Growth Rate') plt.xlabel('Growth Rate Range (log 10)') ax1.set_yticklabels("") ax2 = fig.add_subplot(253) for i in range(runs): plt.plot(RangelistD2[i],yax[i], color = colorlist[i]) plt.plot(RangelistDAvg2[i],yax1[i],color = colorlist[i], marker = 'o', markeredgecolor= 'k') plt.title('Decay Rate') plt.xlabel('Decay Rate Range (log 10)') ax2.set_yticklabels("") ax3 = fig.add_subplot(254) for i in range(runs): plt.plot(RangelistP2[i],yax[i], color = colorlist[i]) plt.plot(RangelistPAvg2[i],yax1[i],color = colorlist[i], marker = 'o', markeredgecolor= 'k') plt.title('Adsorption Rate') plt.xlabel('Adsorp. Rate Range (log 10)') ax3.set_yticklabels("") ax4 = fig.add_subplot(255) for i in range(runs): plt.plot(RangelistG2[i],yax[i], color = colorlist[i]) plt.plot(RangelistGAvg2[i],yax1[i],color = colorlist[i], marker = 'o', markeredgecolor= 'k') plt.title('Lysis Rate') plt.xlabel('Lytic Fraction') ax3.set_yticklabels("") ax5 = fig.add_subplot(256) data = RangelistBAvg2 density = gaussian_kde(data) xs = np.linspace(1,1000,1000) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs), 'k') ax6 = fig.add_subplot(257) data = RangelistMAvg2 density = gaussian_kde(data) xs = np.linspace(-15,0,1000) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs), 'k') ax7 = fig.add_subplot(258) data = RangelistDAvg2 density = gaussian_kde(data) xs = np.linspace(-15,0,1000) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs), 'k') ax8 = fig.add_subplot(259) data = RangelistPAvg2 density = gaussian_kde(data) xs = np.linspace(-15,-5,1000) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs), 'k') ax9 = fig.add_subplot(2,5,10) data = RangelistGAvg2 density = gaussian_kde(data) xs = np.linspace(0,1,1000) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs), 'k') fig.tight_layout() plt.subplots_adjust(top=0.85) fig.suptitle('Full model parameter fitting', size = 30)"""
2.5
2
aldryn_jobs/migrations/0001_initial.py
what-digital/aldryn-jobs
1
12778587
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import app_data.fields import djangocms_text_ckeditor.fields from django.conf import settings import cms.models.fields import aldryn_jobs.models import sortedm2m.fields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('cms', '0003_auto_20140926_2347'), ] operations = [ migrations.CreateModel( name='JobApplication', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('salutation', models.CharField(verbose_name='salutation', max_length=20, choices=[('male', 'Mr.'), ('female', 'Mrs.')], blank=True, default='male')), ('first_name', models.CharField(verbose_name='first name', max_length=20)), ('last_name', models.CharField(verbose_name='last name', max_length=20)), ('email', models.EmailField(verbose_name='email', max_length=75)), ('cover_letter', models.TextField(verbose_name='cover letter', blank=True)), ('created', models.DateTimeField(verbose_name='created', auto_now_add=True)), ('is_rejected', models.BooleanField(verbose_name='rejected?', default=False)), ('rejection_date', models.DateTimeField(verbose_name='rejection date', blank=True, null=True)), ], options={ 'verbose_name': 'job application', 'verbose_name_plural': 'job applications', 'ordering': ['-created'], }, bases=(models.Model,), ), migrations.CreateModel( name='JobApplicationAttachment', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('file', models.FileField(null=True, max_length=200, upload_to=aldryn_jobs.models.default_jobs_attachment_upload_to, blank=True)), ('application', models.ForeignKey(verbose_name='job application', related_name='attachments', to='aldryn_jobs.JobApplication')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='JobCategoriesPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, parent_link=True, primary_key=True, serialize=False, to='cms.CMSPlugin')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='JobCategory', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('ordering', models.IntegerField(verbose_name='ordering', default=0)), ], options={ 'verbose_name': 'job category', 'verbose_name_plural': 'job categories', 'ordering': ['ordering'], }, bases=(models.Model,), ), migrations.CreateModel( name='JobCategoryTranslation', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('language_code', models.CharField(db_index=True, verbose_name='Language', max_length=15)), ('name', models.CharField(verbose_name='name', max_length=255)), ('slug', models.SlugField(verbose_name='slug', max_length=255, help_text='Auto-generated. Used in the URL. If changed, the URL will change. Clear it to have the slug re-created.', blank=True)), ('master', models.ForeignKey(null=True, related_name='translations', to='aldryn_jobs.JobCategory', editable=False)), ], options={ 'verbose_name': 'job category Translation', 'default_permissions': (), 'db_table': 'aldryn_jobs_jobcategory_translation', 'db_tablespace': '', 'managed': True, }, bases=(models.Model,), ), migrations.CreateModel( name='JobListPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, parent_link=True, primary_key=True, serialize=False, to='cms.CMSPlugin')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='JobOpening', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('created', models.DateTimeField(auto_now_add=True)), ('is_active', models.BooleanField(verbose_name='active?', default=True)), ('publication_start', models.DateTimeField(verbose_name='published since', blank=True, null=True)), ('publication_end', models.DateTimeField(verbose_name='published until', blank=True, null=True)), ('can_apply', models.BooleanField(verbose_name='viewer can apply for the job?', default=True)), ('ordering', models.IntegerField(verbose_name='ordering', default=0)), ('category', models.ForeignKey(verbose_name='category', related_name='jobs', to='aldryn_jobs.JobCategory')), ('content', cms.models.fields.PlaceholderField(slotname='Job Opening Content', null=True, to='cms.Placeholder', editable=False)), ], options={ 'verbose_name': 'job opening', 'verbose_name_plural': 'job openings', 'ordering': ['ordering'], }, bases=(models.Model,), ), migrations.CreateModel( name='JobOpeningTranslation', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('language_code', models.CharField(db_index=True, verbose_name='Language', max_length=15)), ('title', models.CharField(verbose_name='title', max_length=255)), ('slug', models.SlugField(db_index=False, verbose_name='slug', max_length=255, help_text='Auto-generated. Used in the URL. If changed, the URL will change. Clear it to have the slug re-created.', blank=True)), ('lead_in', djangocms_text_ckeditor.fields.HTMLField(verbose_name='short description', help_text='This text will be displayed in lists.', blank=True)), ('master', models.ForeignKey(null=True, related_name='translations', to='aldryn_jobs.JobOpening', editable=False)), ], options={ 'verbose_name': 'job opening Translation', 'default_permissions': (), 'db_table': 'aldryn_jobs_jobopening_translation', 'db_tablespace': '', 'managed': True, }, bases=(models.Model,), ), migrations.CreateModel( name='JobsConfig', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True, serialize=False)), ('type', models.CharField(verbose_name='type', max_length=100)), ('namespace', models.CharField(verbose_name='instance namespace', max_length=100, default=None, unique=True)), ('app_data', app_data.fields.AppDataField(editable=False, default='{}')), ('placeholder_jobs_detail_bottom', cms.models.fields.PlaceholderField(slotname='jobs_detail_bottom', null=True, related_name='aldryn_jobs_detail_bottom', to='cms.Placeholder', editable=False)), ('placeholder_jobs_detail_footer', cms.models.fields.PlaceholderField(slotname='jobs_detail_footer', null=True, related_name='aldryn_jobs_detail_footer', to='cms.Placeholder', editable=False)), ('placeholder_jobs_detail_top', cms.models.fields.PlaceholderField(slotname='jobs_detail_top', null=True, related_name='aldryn_jobs_detail_top', to='cms.Placeholder', editable=False)), ('placeholder_jobs_list_bottom', cms.models.fields.PlaceholderField(slotname='jobs_list_bottom', null=True, related_name='aldryn_jobs_list_bottom', to='cms.Placeholder', editable=False)), ('placeholder_jobs_list_top', cms.models.fields.PlaceholderField(slotname='jobs_list_top', null=True, related_name='aldryn_jobs_list_top', to='cms.Placeholder', editable=False)), ('placeholder_jobs_sidebar', cms.models.fields.PlaceholderField(slotname='jobs_sidebar', null=True, related_name='aldryn_jobs_sidebar', to='cms.Placeholder', editable=False)), ('placeholder_jobs_top', cms.models.fields.PlaceholderField(slotname='jobs_top', null=True, related_name='aldryn_jobs_top', to='cms.Placeholder', editable=False)), ], options={ 'verbose_name': 'Aldryn Jobs configuration', 'verbose_name_plural': 'Aldryn Jobs configurations', }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='jobopeningtranslation', unique_together=set([('language_code', 'master')]), ), migrations.AddField( model_name='joblistplugin', name='app_config', field=models.ForeignKey(verbose_name='app configuration', help_text='Select appropriate app. configuration for this plugin.', null=True, to='aldryn_jobs.JobsConfig'), preserve_default=True, ), migrations.AddField( model_name='joblistplugin', name='jobopenings', field=sortedm2m.fields.SortedManyToManyField(verbose_name='job openings', to='aldryn_jobs.JobOpening', help_text='Choose specific Job Openings to show or leave empty to show latest. Note that Job Openings from different app configs will not appear.', blank=True, null=True), preserve_default=True, ), migrations.AlterUniqueTogether( name='jobcategorytranslation', unique_together=set([('language_code', 'master')]), ), migrations.AddField( model_name='jobcategory', name='app_config', field=models.ForeignKey(verbose_name='app configuration', null=True, related_name='categories', to='aldryn_jobs.JobsConfig'), preserve_default=True, ), migrations.AddField( model_name='jobcategory', name='supervisors', field=models.ManyToManyField(verbose_name='supervisors', to=settings.AUTH_USER_MODEL, help_text='Supervisors will be notified via email when a new job application arrives.', blank=True, related_name='job_opening_categories'), preserve_default=True, ), migrations.AddField( model_name='jobcategoriesplugin', name='app_config', field=models.ForeignKey(verbose_name='app configuration', help_text='Select appropriate app. configuration for this plugin.', null=True, to='aldryn_jobs.JobsConfig'), preserve_default=True, ), migrations.AddField( model_name='jobapplication', name='job_opening', field=models.ForeignKey(to='aldryn_jobs.JobOpening', related_name='applications'), preserve_default=True, ), ]
1.859375
2
src/scrapers/main_scrape_brownslocum.py
aizaz-shahid/airflow-tutorial
0
12778588
<gh_stars>0 #!/usr/bin/env python # coding: utf-8 """ This script runs through the tempdent scraper. Default url: 'https://portal.brownslocumlink.com/Jobs' run is as: nohup python3 main_scrape_brownslocum.py <your root password> |& tee $(date "+%Y.%m.%d-%H.%M.%S").brownslocum_logs.txt """ import random import os import sys from selenium import webdriver import pandas as pd import time import datetime from utils import standard_formatter as sf # from utils import change_ip as cp from utils import config_webdriver as cw # sudo_password = sys.argv[1] # Get all urls def get_all_job_urls(driver): job_urls = [] page_count = 1 try: while True: print('Loaded page:', page_count) results = driver.find_elements_by_css_selector('h2[class="results"]') job_urls.extend([result.find_element_by_tag_name('a').get_attribute('href') for result in results]) next_page = driver.find_element_by_css_selector('a[title="Next Page"]').get_attribute('href') time.sleep(random.randint(1, 4)) if page_count % 50 == 0: pass# cp.change_ip(sudo_password) # change the ip every 5th page driver.switch_to.window(driver.window_handles[-1]) driver.get(next_page) page_count += 1 except Exception as e: print(str(e)) finally: return job_urls # Get all job details def get_all_jobs(job_urls, driver): jobs_dataframe = pd.DataFrame() for i in range(len(job_urls)): try: job_url = job_urls[i] job_details_dictionary = dict() job_details_dictionary['jobURL'] = [job_url] if i % 300 == 0: pass# cp.change_ip(sudo_password) # change the ip every 100 job url driver.switch_to.window(driver.window_handles[-1]) driver.get(job_url) # All the data is stored in id = 'ctl00_MainContentPlaceHolder_pageDiv' content = driver.find_element_by_id('ctl00_MainContentPlaceHolder_pageDiv') # All the span tags' id is equivalent to the column name and its text value is equivalent to the column value details = content.find_elements_by_tag_name('span') # Fetches column - value data pair for value in details: id = value.get_attribute('id') # hard coded stop point as no need to scrape further if id == 'ctl00_MainContentPlaceHolder_lblSendToFriend': break else: job_details_dictionary[id.split('_lbl')[1]] = [value.text] df = pd.DataFrame(job_details_dictionary) jobs_dataframe = jobs_dataframe.append(df) time.sleep(random.randint(1, 4)) except Exception as e: print(str(e)) time.sleep(random.randint(1, 4)) jobs_dataframe.reset_index(drop=True, inplace=True) return jobs_dataframe def main(): program_start_time = time.time() driver = cw.configure_webdriver() try: parent_url = 'https://portal.brownslocumlink.com/Jobs/Results.aspx?JobResults=1' # cp.change_ip(sudo_password) # change the ip driver.get(parent_url) # Get all job urls job_urls = get_all_job_urls(driver) print('Total jobs:', len(job_urls)) print('Total unique jobs:', len(set(job_urls))) job_urls = list(set(job_urls)) if len(job_urls) != 0: # Get jobs dataframe data = get_all_jobs(job_urls, driver) print(data) file_name = '../data/{}-brownslocum-jobs.csv' file_name = sf.format_filename(file_name) data.to_csv(file_name, index=False,header=False) else: print('No jobs found') except Exception as e: print(str(e)) finally: driver.close() # sf.ip_files_cleanup() seconds = round(time.time() - program_start_time) minutes = round(seconds/60, 1) hours = round(minutes/60, 1) print('DONE! ') print("\n\nRun time = {} seconds; {} minutes; {} hours".format(seconds, minutes, hours)) if __name__ == '__main__': main()
2.59375
3
mlprogram/synthesizers/filtered_synthesizer.py
HiroakiMikami/mlprogram
9
12778589
from typing import Callable, Generator, Generic, Optional, TypeVar from mlprogram import logging from mlprogram.synthesizers.synthesizer import Result, Synthesizer logger = logging.Logger(__name__) Input = TypeVar("Input") Output = TypeVar("Output") class FilteredSynthesizer(Synthesizer[Input, Output], Generic[Input, Output]): def __init__(self, synthesizer: Synthesizer[Input, Output], score: Callable[[Input, Output], float], threshold: float): self.synthesizer = synthesizer self.score = score self.threshold = threshold def _synthesize(self, input: Input, n_required_output: Optional[int] = None) \ -> Generator[Result[Output], None, None]: with logger.block("_synthesize"): for result in self.synthesizer(input, n_required_output): score = self.score(input, result.output) if score >= self.threshold: logger.debug(f"find appropriate output: score={score}") yield result return
2.9375
3
dbpool.py
powerQiu/phone_number_seg_spider
1
12778590
<gh_stars>1-10 from contextlib import contextmanager from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.pool import QueuePool import config class Pool: engine = create_engine( config.db_uri, pool_size=config.db_pool_size, pool_recycle=config.db_pool_recycle, # 断开处理-乐观 pool_pre_ping=True, # 断开连接-悲观 pool_use_lifo=True, poolclass=QueuePool, max_overflow=config.db_max_overflow, ) DB_Session = sessionmaker(bind=engine) @classmethod @contextmanager def scope_session(cls): session = cls.DB_Session() try: yield session session.commit() except Exception: session.rollback() raise finally: session.close()
2.609375
3
easylogger/log.py
barretobrock/easylogger
0
12778591
import os import sys import logging import traceback from logging import Logger from types import TracebackType from typing import Union, Tuple, Optional from .argparser import LogArgParser from .handlers import CustomTimedRotatingFileHandler class Log: """Initiates a logging object to record processes and errors""" DEFAULT_LOG_LEVEL = 'INFO' def __init__(self, log: Union[str, 'Log', Logger] = None, child_name: str = None, log_level_str: str = None, log_to_file: bool = False, log_dir: str = None): """ Args: log: display name of the log. If Log object, will extract name from that. Typically, this second method is done in the name of assigning a child log a parent. If NoneType, will use __name__. child_name: str, name of the child log. This is used when the log being made is considered a child to the parent log name log_to_file: if True, will create a file handler for outputting logs to file. The files are incremented in days, with the date appended to the file name. Logs older than 20 days will be removed upon instantiation log_level_str: str, minimum logging level to write to log (Levels: DEBUG -> INFO -> WARN -> ERROR) default: 'INFO' log_dir: str, directory to save the log default: "~/logs/{log_name}/" """ # If 'Log', it's a parent Log instance. Take the name from the object. Otherwise it's just a string if log is None: log = __name__ self.is_child = child_name is not None self.log_name = log.name if isinstance(log, (Log, Logger)) else log self.log_to_file = log_to_file self.log_parent = log if self.is_child else None # Determine if log is child of other Log objects (if so, it will be attached to that parent log) # Instantiate the log object if self.is_child and isinstance(self.log_parent, (Log, Logger)): # Attach this instance to the parent log if it's the proper object self.log_obj = self.log_parent.log_obj.getChild(child_name) # Attempt to check for the parent log's log_to_file variable. try: self.log_to_file = self.log_parent.log_to_file except AttributeError: pass else: # Create logger if it hasn't been created self.log_obj = logging.getLogger(self.log_name) self.log_obj.setLevel(self.DEFAULT_LOG_LEVEL) # Patch some things in for cross-class compatibility self.name = self.log_name self.debug = self.log_obj.debug self.info = self.log_obj.info self.warning = self.log_obj.warning self.error = self.log_obj.error self.getChild = self.log_obj.getChild self.setLevel = self.log_obj.setLevel # Check if debugging in pycharm # Checking Methods: # 1) checks for whether code run in-console # 2) check for script run in debug mode per PyCharm sysargs = sys.argv self.is_debugging = any(['pydevconsole.py' in sysargs[0], sys.gettrace() is not None]) # Set the log level (will automatically set to DEBUG if is_debugging) self._set_log_level(log_level_str) # Set the log handlers if self.log_to_file: self._build_log_path(log_dir) if not self.is_child and len(self.log_obj.handlers) == 0: # We only need a handler for the parent log object self._set_handlers() self.info(f'Logging initiated{" for child instance" if self.is_child else ""}.') def _build_log_path(self, log_dir: str): """Builds a filepath to the log file""" # First just check if the log is a child of another. # If so, we can bypass the logic below it and use the parent log's file path if self.is_child: try: self.log_path = self.log_parent.log_path return except AttributeError: pass # Set name of file self.log_filename = f"{self.log_name}" # Set log directory (if none) home_dir = os.path.join(os.path.expanduser('~'), 'logs') log_dir = os.path.join(home_dir, log_dir if log_dir is not None else self.log_name) # Check if logging directory exists if not os.path.exists(log_dir): # If dir doesn't exist, create os.makedirs(log_dir) # Path of logfile self.log_path = os.path.join(log_dir, self.log_filename) def _set_log_level(self, log_level_str: str): """Determines the minimum log level to set. Logging progression: DEBUG -> INFO -> WARN -> ERROR -> CRITICAL Methodology breakdown: 1. Looks for manually set string 2. If child, looks at parent's log level 3. If not, checks for script-level arguments passed in """ if log_level_str is None: if self.is_child: log_level_str = logging.getLevelName(self.log_parent.log_level_int) \ if isinstance(self.log_parent, Log) else self.DEFAULT_LOG_LEVEL else: # No log level provided. Check if any included as cmd argument log_level_str = LogArgParser(self.is_debugging).log_level_str self.log_level_str = log_level_str self.log_level_int = getattr(logging, log_level_str.upper(), logging.DEBUG) # Set minimum logging level self.log_obj.setLevel(self.log_level_int) def _set_handlers(self): """Sets up file & stream handlers""" # Set format of logs formatter = logging.Formatter('%(asctime)s - %(process)d - %(levelname)-8s - %(name)s - %(message)s') # Create streamhandler for log (this sends streams to stdout for debug help) sh = logging.StreamHandler(sys.stdout) sh.setLevel(self.log_level_int) sh.setFormatter(formatter) self.log_obj.addHandler(sh) if self.log_to_file: # TimedRotating will delete logs older than 30 days fh = CustomTimedRotatingFileHandler(self.log_path, when='d', interval=1, backup_cnt=30) fh.setLevel(self.log_level_int) fh.setFormatter(formatter) self.log_obj.addHandler(fh) # Intercept exceptions sys.excepthook = self.handle_exception def handle_exception(self, exc_type: type, exc_value: BaseException, exc_traceback: TracebackType): """Default wrapper for handling exceptions. Can be overwritten by classes that inherit Log class""" self._handle_exception(exc_type=exc_type, exc_value=exc_value, exc_traceback=exc_traceback) def _handle_exception(self, exc_type: type, exc_value: BaseException, exc_traceback: TracebackType): """Intercepts an exception and prints it to log file""" if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return self.error('Uncaught exception', exc_info=(exc_type, exc_value, exc_traceback)) def error_from_class(self, err_obj: BaseException, text: str): """Default wrapper for extracting exceptions from Exception class. Can be overwritten by classes that inherit the Log class""" self._error_from_class(err_obj=err_obj, text=text) def _error_from_class(self, err_obj: BaseException, text: str): """Error logging for exception objects""" traceback_msg = '\n'.join(traceback.format_tb(err_obj.__traceback__)) exception_msg = f'{err_obj.__class__.__name__}: {err_obj}\n{traceback_msg}' err_msg = f'{text}\n{exception_msg}' self.error(err_msg) @staticmethod def extract_err() -> Tuple[Optional[type], Optional[BaseException], Optional[TracebackType]]: """Calls sys.exec_info() to get error details upon error instance Returns: (error type, error object, error traceback) """ return sys.exc_info() def close(self): """Close logger""" disconn_msg = 'Log disconnected' if self.is_child: self.info(f'{disconn_msg} for child instance.') else: self.info(f'{disconn_msg}.\n' + '-' * 80) for handler in self.log_obj.handlers: handler.close() self.log_obj.removeHandler(handler)
3.515625
4
oo/carro.py
SergioVenicio21/pythonbirds
0
12778592
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ EX: >>> motor = Motor() >>> direcao = Direcao() >>> carro = Carro(direcao, motor) >>> carro.acelerar() >>> print(carro.calcular_direcao()) norte >>> carro.virar_direita() >>> print(carro.calcular_direcao()) leste >>> carro.virar_direita() >>> print(carro.calcular_direcao()) sul >>> carro.virar_direita() >>> print(carro.calcular_direcao()) oeste >>> carro.virar_esquerda() >>> print(carro.calcular_direcao()) sul >>> carro.velocidade() 1 >>> carro.freiar() >>> carro.velocidade() 0 """ class Direcao: ORIENTACAO_DIR = { 'norte': 'leste', 'leste': 'sul', 'sul': 'oeste', 'oeste': 'norte' } ORIENTACAO_ESQ = { 'norte': 'oeste', 'leste': 'norte', 'sul': 'leste', 'oeste': 'sul' } def __init__(self): self.valor = 'norte' def virar_direita(self): self.valor = self.ORIENTACAO_DIR[self.valor] def virar_esquerda(self): self.valor = self.ORIENTACAO_ESQ[self.valor] def calcular_direcao(self): return self.valor class Motor: def __init__(self): self.velocidade = 0 def acelerar(self): self.velocidade += 1 def freiar(self): self.velocidade -= 2 self.velocidade = max(0, self.velocidade) class Carro: def __init__(self, direcao, motor): self.direcao = direcao self.motor = motor def acelerar(self): self.motor.acelerar() def freiar(self): self.motor.freiar() def virar_direita(self): self.direcao.virar_direita() def virar_esquerda(self): self.direcao.virar_esquerda() def calcular_direcao(self): return self.direcao.calcular_direcao() def velocidade(self): return self.motor.velocidade if __name__ == '__main__': motor = Motor() direcao = Direcao() carro = Carro(direcao, motor) for i in range(5): carro.motor.acelerar() carro.direcao.virar_direita() carro.direcao.virar_direita() carro.direcao.virar_direita() carro.direcao.virar_esquerda() print(carro.motor.velocidade) print(carro.direcao.calcular_direcao())
4.03125
4
lib/angel/constants.py
jpotter/angel
0
12778593
# Defines constants -- values that MUST NOT be overriden or modified by any code, and that aren't variable in any way. # As a silly example, DAYS_IN_WEEK = 7 would always be defined here, but START_DAY_OF_WEEK is a variable (0 or 1) and thus would be defined in defaults.py. # To use, just do: # import angel.settings # angel.constants.STATE_RUNNING_OK # Consts for locks: SERVICE_LOCKNAME = 'angel-service' LOCKFILE_DATA_DAEMON_START_TIME = 'daemon_start_time' LOCKFILE_DATA_CHILD_START_TIME = 'child_start_time' LOCKFILE_DATA_CHILD_PID = 'child_pid' LOCKFILE_DATA_PRIOR_CHILD_START_TIME = 'prior_child_start_time' LOCKFILE_DATA_START_COUNT = 'start_count' LOCKFILE_DATA_STATE_MESSAGE = 'status_message' # Consts for system status, used by monitoring: # Note: Ok, warn, error, and unknown values must line up with nagios values; do not change these value. STATE_RUNNING_OK = 0 # System is running, all services are healthy STATE_WARN = 1 # System is running, all services are responding, but at least one service will go to error unless operator corrects an issue STATE_ERROR = 2 # System is supposed to be running, but at least one service is failing to respond -- this means the site is down or partially down STATE_UNKNOWN = 3 # Unable to determine state of system STATE_STARTING = 4 # System is in process of starting up; at least one service is not responding to requests but should be up soon (Note: for nagios, STATE_WARN is returned) STATE_STOPPING = 5 # System is in process of stopping; services are not expected to respond to requests (Note: for nagios, STATE_WARN is returned) STATE_STOPPED = 6 # System is in stopped state (Note: for nagios, STATE_WARN is returned) STATE_DECOMMISSIONED = 7 # System decommission has been called (Nagios returns STATE_ERROR) STATE_CODE_TO_TEXT = {} STATE_CODE_TO_TEXT[STATE_RUNNING_OK] = 'OK' STATE_CODE_TO_TEXT[STATE_WARN] = 'WARN' STATE_CODE_TO_TEXT[STATE_ERROR] = 'ERROR' STATE_CODE_TO_TEXT[STATE_UNKNOWN] = 'UNKNOWN' STATE_CODE_TO_TEXT[STATE_STARTING] = 'STARTING' STATE_CODE_TO_TEXT[STATE_STOPPING] = 'STOPPING' STATE_CODE_TO_TEXT[STATE_STOPPED] = 'STOPPED' STATE_CODE_TO_TEXT[STATE_DECOMMISSIONED] = 'DECOMMISSIONED' # Consts for stat types, used by nagios and collectd system monitoring: # (Remember to update STAT_TYPES_COLLECTD/STAT_TYPES_NAGIOS below.) STAT_TYPE_BYTES = 'bytes' STAT_TYPE_COUNTER = 'counter' # Counters only go up, never down -- things that go up and down are gauges. STAT_TYPE_GAUGE = 'gauge' STAT_TYPE_QUEUE_SIZE = 'queue_size' STAT_TYPE_RECORDS = 'records' STAT_TYPE_MEMORY = 'memory' STAT_TYPE_SECONDS = 'seconds' # The codes here are used by nagios / collectd for handling data types correctly; do not change the mappings. # ( In some cases, our data is coming in from a nagios plugin, and the only unit info we have comes from the unit code that nagios gives us. # So that we map those unit types onto the most logical stat type, some nagios types have an extra '~' on them to prevent them from matching. # That is, both "bytes" and "memory" types would be 'b' in nagios, but mapping 'b' back to 'memory' would be wrong for disk usage. # To prevent this, we set the nagios code for memory to 'b~' here; and then when the nagios code is used elsewhere, the '~' is stripped out. ) STAT_TYPES_COLLECTD = {} STAT_TYPES_NAGIOS = {} STAT_TYPES_NAGIOS[STAT_TYPE_BYTES] = 'b' STAT_TYPES_COLLECTD[STAT_TYPE_BYTES] = 'bytes' # This isn't quite right, but will work for now: STAT_TYPES_NAGIOS['B'] = STAT_TYPES_NAGIOS[STAT_TYPE_BYTES] # check_http uses capitol B; alias that here. STAT_TYPES_COLLECTD['B'] = STAT_TYPES_COLLECTD[STAT_TYPE_BYTES] STAT_TYPES_NAGIOS[STAT_TYPE_COUNTER] = '' STAT_TYPES_COLLECTD[STAT_TYPE_COUNTER] = 'count' STAT_TYPES_NAGIOS[STAT_TYPE_GAUGE] = '' STAT_TYPES_COLLECTD[STAT_TYPE_GAUGE] = 'gauge' STAT_TYPES_NAGIOS[STAT_TYPE_QUEUE_SIZE] = '' STAT_TYPES_COLLECTD[STAT_TYPE_QUEUE_SIZE] = 'queue_length' STAT_TYPES_NAGIOS[STAT_TYPE_RECORDS] = '' STAT_TYPES_COLLECTD[STAT_TYPE_RECORDS] = 'records' STAT_TYPES_NAGIOS[STAT_TYPE_MEMORY] = 'b~' # See '~' note above. STAT_TYPES_COLLECTD[STAT_TYPE_MEMORY] = 'memory' STAT_TYPES_NAGIOS[STAT_TYPE_SECONDS] = 's' STAT_TYPES_COLLECTD[STAT_TYPE_SECONDS] = 'seconds'
2.234375
2
app/schemas/__init__.py
EZhivaikin/TrialPython
0
12778594
<reponame>EZhivaikin/TrialPython from app.schemas.brand import Brand from app.schemas.product import Product
0.820313
1
tests/test_fastnumbers_examples.py
pterjan/fastnumbers
0
12778595
<gh_stars>0 # -*- coding: utf-8 -*- # Find the build location and add that to the path import math import sys from typing import Callable, Iterator, List, cast import pytest from pytest import raises import fastnumbers # Each conversion test should test the following # 1. float number # 2. signed float string # 3. float string with exponents # 4. float string with padded whitespace # 5. int number # 6. signed int string # 7. int string with padded whitespace # 8. long number # 9. long number # 10. return type # 11. TypeError for invalid input # 12. Invalid input string # 13. Invalid input string with numbers # 14. Infinity # 15. NaN # 16. Sign/'e'/'.' only # 17. Default value. # 18. Unicode numbers def test_fast_real() -> None: # 1. float number assert fastnumbers.fast_real(-367.3268) == -367.3268 assert fastnumbers.fast_real(-367.3268, raise_on_invalid=True) == -367.3268 # 2. signed float string assert fastnumbers.fast_real("+367.3268") == +367.3268 assert fastnumbers.fast_real("+367.3268", raise_on_invalid=True) == +367.3268 # 3. float string with exponents assert fastnumbers.fast_real("-367.3268e207") == -367.3268e207 assert fastnumbers.fast_real("1.175494351e-3810000000") == 0.0 # 4. float string with padded whitespace assert fastnumbers.fast_real(" -367.04 ") == -367.04 # 5. int number assert fastnumbers.fast_real(499) == 499 # 6. signed int string assert fastnumbers.fast_real("-499") == -499 # 7. int string with padded whitespace assert fastnumbers.fast_real(" +3001 ") == 3001 # 8. long number assert fastnumbers.fast_real(35892482945872302493) == 35892482945872302493 # 9. long string assert fastnumbers.fast_real("35892482945872302493") == 35892482945872302493 # 10. return type assert isinstance(fastnumbers.fast_real(4029), int) assert isinstance(fastnumbers.fast_real(4029.0, coerce=False), float) assert isinstance(fastnumbers.fast_real(4029), int) assert isinstance(fastnumbers.fast_real(4029.0), int) assert isinstance(fastnumbers.fast_real(4029.5), float) assert isinstance(fastnumbers.fast_real("4029"), int) assert isinstance(fastnumbers.fast_real("4029.0"), int) assert isinstance(fastnumbers.fast_real("4029.0", coerce=False), float) # 11. TypeError for invalid input with raises(TypeError): fastnumbers.fast_real(["hey"]) # type: ignore # 12. Invalid input string assert fastnumbers.fast_real("not_a_number") == "not_a_number" with raises(ValueError): assert fastnumbers.fast_real("not_a_number", raise_on_invalid=True) # 13. Invalid input string with numbers assert fastnumbers.fast_real("26.8 lb") == "26.8 lb" with raises(ValueError): assert fastnumbers.fast_real("26.8 lb", raise_on_invalid=True) # 14. Infinity assert fastnumbers.fast_real("inf") == float("inf") assert fastnumbers.fast_real("-iNFinity") == float("-inf") assert fastnumbers.fast_real("-iNFinity", inf=7608) == 7608 # 15. NaN assert math.isnan(cast(float, fastnumbers.fast_real("nan"))) assert math.isnan(cast(float, fastnumbers.fast_real("-NaN"))) assert fastnumbers.fast_real("-NaN", nan=0) == 0 # 16. Sign/'e'/'.' only assert fastnumbers.fast_real("+") == "+" assert fastnumbers.fast_real("-") == "-" assert fastnumbers.fast_real("e") == "e" assert fastnumbers.fast_real(".") == "." # 17. Default on invalid... 'raise_on_invalid' supersedes assert fastnumbers.fast_real("invalid", 90) == 90 assert fastnumbers.fast_real("invalid", default=90) == 90 assert fastnumbers.fast_real("invalid", default=None) is None with raises(ValueError): assert fastnumbers.fast_real("invalid", 90, raise_on_invalid=True) # 18. Unicode numbers assert fastnumbers.fast_real(u"⑦") == 7 assert fastnumbers.fast_real(u"⁸") == 8 assert fastnumbers.fast_real(u"⅔") == 2.0 / 3.0 assert fastnumbers.fast_real(u"Ⅴ") == 5 # 19. Function to execute on failure to convert assert fastnumbers.fast_real("76.8", on_fail=len) == 76.8 assert fastnumbers.fast_real("invalid", on_fail=len) == 7 def test_fast_float() -> None: # 1. float number assert fastnumbers.fast_float(-367.3268) == -367.3268 assert fastnumbers.fast_float(-367.3268, raise_on_invalid=True) == -367.3268 # 2. signed float string assert fastnumbers.fast_float("+367.3268") == +367.3268 assert fastnumbers.fast_float("+367.3268", raise_on_invalid=True) == +367.3268 # 3. float string with exponents assert fastnumbers.fast_float("-367.3268e27") == -367.3268e27 assert fastnumbers.fast_float("-367.3268E27") == -367.3268e27 assert fastnumbers.fast_float("-367.3268e207") == -367.3268e207 assert fastnumbers.fast_float("1.175494351E-3810000000") == 0.0 # 4. float string with padded whitespace assert fastnumbers.fast_float(" -367.04 ") == -367.04 # 5. int number assert fastnumbers.fast_float(499) == 499.0 # 6. signed int string assert fastnumbers.fast_float("-499") == -499.0 # 7. int string with padded whitespace assert fastnumbers.fast_float(" +3001 ") == 3001 # 8. long number assert fastnumbers.fast_float(35892482945872302493) == 35892482945872302493.0 # 9. long string assert fastnumbers.fast_float("35892482945872302493") == 35892482945872302493.0 # 10. return type assert isinstance(fastnumbers.fast_float(4029), float) assert isinstance(fastnumbers.fast_float("4029"), float) # 11. TypeError for invalid input with raises(TypeError): fastnumbers.fast_float(["hey"]) # type: ignore # 12. Invalid input string assert fastnumbers.fast_float("not_a_number") == "not_a_number" with raises(ValueError): assert fastnumbers.fast_float("not_a_number", raise_on_invalid=True) # 13. Invalid input string with numbers assert fastnumbers.fast_float("26.8 lb") == "26.8 lb" with raises(ValueError): assert fastnumbers.fast_float("26.8 lb", raise_on_invalid=True) # 14. Infinity assert fastnumbers.fast_float("inf") == float("inf") assert fastnumbers.fast_float("-iNFinity") == float("-inf") assert fastnumbers.fast_float("-iNFinity", inf=523) == 523 # 15. NaN assert math.isnan(cast(float, fastnumbers.fast_float("nAn"))) assert math.isnan(cast(float, fastnumbers.fast_float("-NaN"))) assert fastnumbers.fast_float("-NaN", nan=0) == 0 # 16. Sign/'e'/'.' only assert fastnumbers.fast_float("+") == "+" assert fastnumbers.fast_float("-") == "-" assert fastnumbers.fast_float("e") == "e" assert fastnumbers.fast_float(".") == "." # 17. Default on invalid... 'raise_on_invalid' supersedes assert fastnumbers.fast_float("invalid", 90) == 90 assert fastnumbers.fast_float("invalid", default=90) == 90 assert fastnumbers.fast_float("invalid", default=None) is None with raises(ValueError): assert fastnumbers.fast_float("invalid", 90, raise_on_invalid=True) # 18. Unicode numbers assert fastnumbers.fast_float(u"⑦") == 7.0 assert fastnumbers.fast_float(u"⁸") == 8.0 assert fastnumbers.fast_float(u"⅔") == 2.0 / 3.0 assert fastnumbers.fast_float(u"Ⅴ") == 5.0 # 19. Function to execute on failure to convert assert fastnumbers.fast_float("76.8", on_fail=len) == 76.8 assert fastnumbers.fast_float("invalid", on_fail=len) == 7 def test_fast_int() -> None: # 1. float number assert fastnumbers.fast_int(-367.3268) == -367 assert fastnumbers.fast_int(-367.3268, raise_on_invalid=True) == -367 # 2. signed float string assert fastnumbers.fast_int("+367.3268") == "+367.3268" with raises(ValueError): assert fastnumbers.fast_int("+367.3268", raise_on_invalid=True) # 3. float string with exponents assert fastnumbers.fast_int("-367.3268e207") == "-367.3268e207" # 4. float string with padded whitespace assert fastnumbers.fast_int(" -367.04 ") == " -367.04 " # 5. int number assert fastnumbers.fast_int(499) == 499 # 6. signed int string assert fastnumbers.fast_int("-499") == -499 # 7. int string with padded whitespace assert fastnumbers.fast_int(" +3001 ") == 3001 # 8. long number assert fastnumbers.fast_int(35892482945872302493) == 35892482945872302493 # 9. long string assert fastnumbers.fast_int("35892482945872302493") == 35892482945872302493 # 10. return type assert isinstance(fastnumbers.fast_int(4029.00), int) # 11. TypeError for invalid input with raises(TypeError): fastnumbers.fast_int(["hey"]) # type: ignore # 12. Invalid input string assert fastnumbers.fast_int("not_a_number") == "not_a_number" with raises(ValueError): assert fastnumbers.fast_int("not_a_number", raise_on_invalid=True) # 13. Invalid input string with numbers assert fastnumbers.fast_int("26.8 lb") == "26.8 lb" with raises(ValueError): assert fastnumbers.fast_int("26.8 lb", raise_on_invalid=True) # 14. Infinity assert fastnumbers.fast_int("inf") == "inf" # 15. NaN assert fastnumbers.fast_int("nan") == "nan" # 16. Sign/'e'/'.' only assert fastnumbers.fast_int("+") == "+" assert fastnumbers.fast_int("-") == "-" assert fastnumbers.fast_int("e") == "e" assert fastnumbers.fast_int(".") == "." # 17. Default on invalid... 'raise_on_invalid' supersedes assert fastnumbers.fast_int("invalid", 90) == 90 assert fastnumbers.fast_int("invalid", default=90) == 90 assert fastnumbers.fast_int("invalid", default=None) is None with raises(ValueError): assert fastnumbers.fast_int("invalid", 90, raise_on_invalid=True) # 18. Unicode numbers assert fastnumbers.fast_int(u"⑦") == 7 assert fastnumbers.fast_int(u"⁸") == 8 assert fastnumbers.fast_int(u"⁸", base=10) == u"⁸" assert fastnumbers.fast_int(u"⅔") == u"⅔" assert fastnumbers.fast_int(u"Ⅴ") == u"Ⅴ" # 19. Function to execute on failure to convert assert fastnumbers.fast_int("76", on_fail=len) == 76 assert fastnumbers.fast_int("invalid", on_fail=len) == 7 def test_fast_forceint() -> None: # 1. float number assert fastnumbers.fast_forceint(-367.3268) == -367 assert fastnumbers.fast_forceint(-367.3268, raise_on_invalid=True) == -367 # 2. signed float string assert fastnumbers.fast_forceint("+367.3268") == 367 assert fastnumbers.fast_forceint("+367.3268", raise_on_invalid=True) == 367 # 3. float string with exponents assert fastnumbers.fast_forceint("-367.3268e207") == int(-367.3268e207) # 4. float string with padded whitespace assert fastnumbers.fast_forceint(" -367.04 ") == -367 # 5. int number assert fastnumbers.fast_forceint(499) == 499 # 6. signed int string assert fastnumbers.fast_forceint("-499") == -499 # 7. int string with padded whitespace assert fastnumbers.fast_forceint(" +3001 ") == 3001 # 8. long number assert fastnumbers.fast_forceint(35892482945872302493) == 35892482945872302493 # 9. long string assert fastnumbers.fast_forceint("35892482945872302493") == 35892482945872302493 # 10. return type assert isinstance(fastnumbers.fast_forceint(4029.00), int) assert isinstance(fastnumbers.fast_forceint("4029.00"), int) # 11. TypeError for invalid input with raises(TypeError): fastnumbers.fast_forceint(["hey"]) # type: ignore # 12. Invalid input string assert fastnumbers.fast_forceint("not_a_number") == "not_a_number" with raises(ValueError): assert fastnumbers.fast_forceint("not_a_number", raise_on_invalid=True) # 13. Invalid input string with numbers assert fastnumbers.fast_forceint("26.8 lb") == "26.8 lb" with raises(ValueError): assert fastnumbers.fast_forceint("26.8 lb", raise_on_invalid=True) # 14. Infinity assert fastnumbers.fast_forceint("inf") == "inf" assert fastnumbers.fast_forceint("-iNFinity") == "-iNFinity" # 15. NaN assert fastnumbers.fast_forceint("nan") == "nan" # 16. Sign/'e'/'.' only assert fastnumbers.fast_forceint("+") == "+" assert fastnumbers.fast_forceint("-") == "-" assert fastnumbers.fast_forceint("e") == "e" assert fastnumbers.fast_forceint(".") == "." # 17. Default on invalid... 'raise_on_invalid' supersedes assert fastnumbers.fast_forceint("invalid", 90) == 90 assert fastnumbers.fast_forceint("invalid", default=90) == 90 assert fastnumbers.fast_forceint("invalid", default=None) is None with raises(ValueError): assert fastnumbers.fast_forceint("invalid", 90, raise_on_invalid=True) # 18. Unicode numbers assert fastnumbers.fast_forceint(u"⑦") == 7 assert fastnumbers.fast_forceint(u"⁸") == 8 assert fastnumbers.fast_forceint(u"⅔") == 0 assert fastnumbers.fast_forceint(u"Ⅴ") == 5 # 19. Function to execute on failure to convert assert fastnumbers.fast_forceint("76.8", on_fail=len) == 76 assert fastnumbers.fast_forceint("invalid", on_fail=len) == 7 def test_isreal() -> None: # 1. float number assert fastnumbers.isreal(-367.3268) assert not fastnumbers.isreal(-367.3268, str_only=True) assert fastnumbers.isreal(-367.3268, num_only=True) # 2. signed float string assert fastnumbers.isreal("+367.3268") assert fastnumbers.isreal("+367.3268", str_only=True) assert not fastnumbers.isreal("+367.3268", num_only=True) # 3. float string with exponents assert fastnumbers.isreal("-367.3268e207") # 4. float string with padded whitespace assert fastnumbers.isreal(" -367.04 ") # 5. int number assert fastnumbers.isreal(499) # 6. signed int string assert fastnumbers.isreal("-499") # 7. int string with padded whitespace assert fastnumbers.isreal(" +3001 ") # 8. long number assert fastnumbers.isreal(35892482945872302493) # 9. long string assert fastnumbers.isreal("35892482945872302493") # 10. return type assert fastnumbers.isreal(4029) is True assert fastnumbers.isreal(4029, str_only=True) is False assert fastnumbers.isreal("4029") is True assert fastnumbers.isreal("4029", str_only=True) is True assert fastnumbers.isreal("hey") is False # 11. Invalid type assert not fastnumbers.isreal(["hey"]) # 12. Invalid input string assert not fastnumbers.isreal("not_a_number") # 13. Invalid input string with numbers assert not fastnumbers.isreal("26.8 lb") # 14. Infinity assert not fastnumbers.isreal("inf") assert fastnumbers.isreal("inf", allow_inf=True) assert fastnumbers.isreal("-iNFinity", allow_inf=True) # 15. NaN assert not fastnumbers.isreal("nan") assert fastnumbers.isreal("nan", allow_nan=True) assert fastnumbers.isreal("-NaN", allow_nan=True) # 16. Sign/'e'/'.' only assert not fastnumbers.isreal("+") assert not fastnumbers.isreal("-") assert not fastnumbers.isreal("e") assert not fastnumbers.isreal(".") # 18. Unicode numbers assert fastnumbers.isreal(u"⑦") assert fastnumbers.isreal(u"⁸") assert fastnumbers.isreal(u"⅔") assert fastnumbers.isreal(u"Ⅴ") def test_isfloat() -> None: # 1. float number assert fastnumbers.isfloat(-367.3268) assert not fastnumbers.isfloat(-367.3268, str_only=True) assert fastnumbers.isfloat(-367.3268, num_only=True) # 2. signed float string assert fastnumbers.isfloat("+367.3268") assert fastnumbers.isfloat("+367.3268", str_only=True) assert not fastnumbers.isfloat("+367.3268", num_only=True) # 3. float string with exponents assert fastnumbers.isfloat("-367.3268e207") # 4. float string with padded whitespace assert fastnumbers.isfloat(" -367.04 ") # 5. int number assert not fastnumbers.isfloat(499) # 6. signed int string assert fastnumbers.isfloat("-499") # 7. int string with padded whitespace assert fastnumbers.isfloat(" +3001 ") # 8. long number assert not fastnumbers.isfloat(35892482945872302493) # 9. long string assert fastnumbers.isfloat("35892482945872302493") # 10. return type assert fastnumbers.isfloat(4029) is False assert fastnumbers.isfloat(4029.0) is True assert fastnumbers.isfloat(4029.0, str_only=True) is False assert fastnumbers.isfloat("4029") is True assert fastnumbers.isfloat("4029", str_only=True) is True # 11. Invalid type assert not fastnumbers.isfloat(["hey"]) # 12. Invalid input string assert not fastnumbers.isfloat("not_a_number") # 13. Invalid input string with numbers assert not fastnumbers.isfloat("26.8 lb") # 14. Infinity assert not fastnumbers.isfloat("inf") assert fastnumbers.isfloat("inf", allow_inf=True) assert fastnumbers.isfloat("-infinity", allow_inf=True) assert fastnumbers.isfloat("-INFINITY", allow_inf=True) # 15. NaN assert not fastnumbers.isfloat("nAn") assert fastnumbers.isfloat("nan", allow_nan=True) assert fastnumbers.isfloat("-NaN", allow_nan=True) # 16. Sign/'e'/'.' only assert not fastnumbers.isfloat("+") assert not fastnumbers.isfloat("-") assert not fastnumbers.isfloat("e") assert not fastnumbers.isfloat(".") # 18. Unicode numbers assert fastnumbers.isfloat(u"⑦") assert fastnumbers.isfloat(u"⁸") assert fastnumbers.isfloat(u"⅔") assert fastnumbers.isfloat(u"Ⅴ") def test_isint() -> None: # 1. float number assert not fastnumbers.isint(-367.3268) # 2. signed float string assert not fastnumbers.isint("+367.3268") # 3. float string with exponents assert not fastnumbers.isint("-367.3268e207") # 4. float string with padded whitespace assert not fastnumbers.isint(" -367.04 ") # 5. int number assert fastnumbers.isint(499) assert not fastnumbers.isint(499, str_only=True) assert fastnumbers.isint(499, num_only=True) # 6. signed int string assert fastnumbers.isint("-499") assert fastnumbers.isint("-499", str_only=True) assert not fastnumbers.isint("-499", num_only=True) # 7. int string with padded whitespace assert fastnumbers.isint(" +3001 ") # 8. long number assert fastnumbers.isint(35892482945872302493) # 9. long string assert fastnumbers.isint("35892482945872302493") # 10. return type assert fastnumbers.isint(4029) is True assert fastnumbers.isint(4029, str_only=True) is False assert fastnumbers.isint("4029") is True assert fastnumbers.isint("4029", str_only=True) is True assert fastnumbers.isint("4029.50") is False assert fastnumbers.isint(4029.50) is False # 11. Invalid type assert not fastnumbers.isint(["hey"]) # 12. Invalid input string assert not fastnumbers.isint("not_a_number") # 13. Invalid input string with numbers assert not fastnumbers.isint("26.8 lb") # 14. Infinity assert not fastnumbers.isint("inf") # 15. NaN assert not fastnumbers.isint("nan") # 16. Sign/'e'/'.' only assert not fastnumbers.isint("+") assert not fastnumbers.isint("-") assert not fastnumbers.isint("e") assert not fastnumbers.isint(".") # 18. Unicode numbers assert fastnumbers.isint(u"⑦") assert fastnumbers.isint(u"⁸") assert not fastnumbers.isint(u"⅔") assert not fastnumbers.isint(u"Ⅴ") def test_isintlike() -> None: # 1. float number assert not fastnumbers.isintlike(-367.3268) assert fastnumbers.isintlike(-367.0) assert not fastnumbers.isintlike(-367.0, str_only=True) assert fastnumbers.isintlike(-367.0, num_only=True) # 2. signed float string assert not fastnumbers.isintlike("+367.3268") assert fastnumbers.isintlike("+367.0") assert fastnumbers.isintlike("+367.0", str_only=True) assert not fastnumbers.isintlike("+367.0", num_only=True) # 3. float string with exponents assert fastnumbers.isintlike("-367.3268e207") assert not fastnumbers.isintlike("145343E-4") assert fastnumbers.isintlike("14534.000000000e4") assert fastnumbers.isintlike("1400000E-4") assert not fastnumbers.isintlike("140E-4") assert fastnumbers.isintlike("14.E4") assert fastnumbers.isintlike("14E4") # 4. float string with padded whitespace assert not fastnumbers.isintlike(" -367.04 ") # 5. int number assert fastnumbers.isintlike(499) # 6. signed int string assert fastnumbers.isintlike("-499") # 7. int string with padded whitespace assert fastnumbers.isintlike(" +3001 ") # 8. long number assert fastnumbers.isintlike(35892482945872302493) # 9. long string assert fastnumbers.isintlike("35892482945872302493") # 10. return type assert fastnumbers.isintlike(4029) is True assert fastnumbers.isintlike(4029, str_only=True) is False assert fastnumbers.isintlike("4029") is True assert fastnumbers.isintlike("4029", str_only=True) is True assert fastnumbers.isintlike("4029.50") is False assert fastnumbers.isintlike(4029.50) is False # 11. Invalid type assert not fastnumbers.isintlike(["hey"]) # 12. Invalid input string assert not fastnumbers.isintlike("not_a_number") # 13. Invalid input string with numbers assert not fastnumbers.isintlike("26.8 lb") # 14. Infinity assert not fastnumbers.isintlike("inf") # 15. NaN assert not fastnumbers.isintlike("nan") # 16. Sign/'e'/'.' only assert not fastnumbers.isintlike("+") assert not fastnumbers.isintlike("-") assert not fastnumbers.isintlike("e") assert not fastnumbers.isintlike(".") # 18. Unicode numbers assert fastnumbers.isintlike(u"⑦") assert fastnumbers.isintlike(u"⁸") assert not fastnumbers.isintlike(u"⅔") assert fastnumbers.isintlike(u"Ⅴ") def test_type() -> None: # 1. float number assert fastnumbers.query_type(-367.3268) is float # 2. signed float string assert fastnumbers.query_type("+367.3268") is float # 3. float string with exponents assert fastnumbers.query_type("-367.3268e207") is float # 4. float string with padded whitespace assert fastnumbers.query_type(" -367.04 ") is float # 5. int number assert fastnumbers.query_type(499) is int # 6. signed int string assert fastnumbers.query_type("-499") is int # 7. int string with padded whitespace assert fastnumbers.query_type(" +3001 ") is int # 8. long number assert fastnumbers.query_type(35892482945872302493) is int # 9. long string assert fastnumbers.query_type("35892482945872302493") is int # 10. coerced type assert fastnumbers.query_type(4029.0) is float assert fastnumbers.query_type("4029.0") is float assert fastnumbers.query_type(4029.0, coerce=True) is int assert fastnumbers.query_type("4029.0", coerce=True) is int # 11. Invalid type assert fastnumbers.query_type(["hey"]) is list # 12. Invalid input string assert fastnumbers.query_type("not_a_number") is str assert fastnumbers.query_type("not_a_number", allowed_types=(float, int)) is None # 13. Invalid input string with numbers assert fastnumbers.query_type("26.8 lb") is str assert fastnumbers.query_type("26.8 lb", allowed_types=(float, int)) is None # 14. Infinity assert fastnumbers.query_type("inf") is str assert fastnumbers.query_type("inf", allow_inf=True) is float assert fastnumbers.query_type("-iNFinity", allow_inf=True) is float # 15. NaN assert fastnumbers.query_type("nan") is str assert fastnumbers.query_type("nan", allow_nan=True) is float assert fastnumbers.query_type("-NaN", allow_nan=True) is float # 16. Sign/'e'/'.' only assert fastnumbers.query_type("+") is str assert fastnumbers.query_type("-") is str assert fastnumbers.query_type("e") is str assert fastnumbers.query_type(".") is str # 18. Unicode numbers assert fastnumbers.query_type(u"⑦") is int assert fastnumbers.query_type(u"⁸") is int assert fastnumbers.query_type(u"⅔") is float assert fastnumbers.query_type(u"Ⅴ") is float @pytest.fixture() def tprint(capsys: pytest.CaptureFixture[str]) -> Iterator[Callable[[str], None]]: """ Fixture for printing info after test, not supressed by pytest stdout/stderr capture """ lines: List[str] = [] yield lines.append with capsys.disabled(): for line in lines: sys.stdout.write("\n{}".format(line)) def test_print_limits(tprint: Callable[[str], None]) -> None: tprint("\nFASNUMBERS NUMERICAL LIMITS FOR THIS COMPILER BEFORE PYTHON FALLBACK:") tprint("MAXIMUM INTEGER LENTH: {}".format(fastnumbers.max_int_len)) tprint("MAX NUMBER FLOAT DIGITS: {}".format(fastnumbers.dig)) tprint("MAXIMUM FLOAT EXPONENT: {}".format(fastnumbers.max_exp)) tprint("MINIMUM FLOAT EXPONENT: {}".format(fastnumbers.min_exp)) tprint("")
2.4375
2
fltk/datasets/distributed/__init__.py
tudelft-eemcs-dml/fltk-testbed-gr-5
0
12778596
<filename>fltk/datasets/distributed/__init__.py from .dataset import DistDataset from .cifar10 import DistCIFAR10Dataset # from .cifar100 import CIFAR100Dataset # from .fashion_mnist import FashionMNISTDataset
1.242188
1
src/lib/python/util/injected_files.py
memes/f5-bigip-image-generator
34
12778597
<reponame>memes/f5-bigip-image-generator """Module to read info about injected files""" # Copyright (C) 2019-2021 F5 Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from os.path import basename, isdir, isfile, abspath, realpath, expanduser from pathlib import Path from shutil import copy2, copytree import re import requests from telemetry.build_info_inject import BuildInfoInject from util.config import get_config_value, get_list_from_config_yaml from util.logger import LOGGER def extract_single_worded_key(dictionary, key): """ verify that key is in dictionary and its value is a single word """ if key in dictionary: value = dictionary[key] if not isinstance(value, str): raise RuntimeError('\'{}\' of injected file must be a string, but got {}' .format(key, value)) if len(value.split()) == 1: return value raise RuntimeError('\'{}\' of injected file must be a single word, but got {} words: \'{}\'' .format(key, len(value.split()), value)) raise RuntimeError('\'{}\' is not specified for injected file \'{}\' !' .format(key, dictionary)) def read_injected_files(top_call_dir, overall_dest_dir): """ Copy files that need to be injected to a temporary location, which will be accessible during post-install. Two mandatory arguments: a path from where build-image was called a path to initrd directory that will be available during post_install """ # location used by post-install, should be created only if there are files to inject injected_files = 'etc/injected_files' # location used by post-install overall_dest_dir = overall_dest_dir + '/' + injected_files LOGGER.info('Temporary location for injected files: \'%s\'', overall_dest_dir) # include user-specified files files_to_inject = get_list_from_config_yaml('UPDATE_IMAGE_FILES') # add build_info.json prep_build_info_for_injection(files_to_inject) # each injected file directory to be stored in a separate directory "file<number>" count = 0 LOGGER.trace("files_to_inject: %s", files_to_inject) for file in files_to_inject: LOGGER.debug('Injecting file: \'%s\'.', file) src = extract_single_worded_key(file, 'source') dest = extract_single_worded_key(file, 'destination') if 'mode' in file: mode = extract_single_worded_key(file, 'mode') else: mode = None LOGGER.info('Copy \'%s\' to a temporary location for \'%s\'.', src, dest) url = src # treat 'src' as a file path and 'url' as a url if src[0] != '/' and src[0] != '~': # make it an absolute path src = top_call_dir + '/' + src src = abspath(realpath(expanduser(src))) file_holder = overall_dest_dir + '/file' + str(count) + '/' # copy source to "src" # source file name does not need to be preserved; # it will be copied to destination path on BIG-IP source_holder = file_holder + 'src' Path(file_holder).mkdir(parents=True, exist_ok=True) if isfile(src): LOGGER.info('Treating \'%s\' as a file for file injection', src) copy2(src, source_holder) elif isdir(src): LOGGER.info('Treating \'%s\' as a directory for file injection', src) copytree(src, source_holder) else: LOGGER.info('Treating \'%s\' as a URL for the file injection', url) download_file(url, source_holder) # store destination if dest[0] != '/': raise RuntimeError('injected file destination \'{}\' must be an absolute path!' .format(dest)) with open(file_holder + 'dest', 'w') as dest_holder: print("{}".format(dest), file=dest_holder) # Store mode. Should be a string consisting of one to four octal digits. if mode: LOGGER.debug('Creating mode holder for mode \'%s\'.', mode) mode_pattern = re.compile('^[0-7][0-7]?[0-7]?[0-7]?$') if not mode_pattern.match(mode): raise RuntimeError('Invalid mode \'' + mode + '\', must be a string ' + 'consisting of one to four octal digits.') with open(file_holder + 'mode', 'w') as mode_holder: print("{}".format(mode), file=mode_holder) count += 1 # end of for loop LOGGER.debug('leaving %s', basename(__file__)) return 0 def prep_build_info_for_injection(files_to_inject): """ prepare information about installed software on the build machine """ artifacts_dir = get_config_value("ARTIFACTS_DIR") build_info_file_name = "build_info.json" build_info_source = artifacts_dir + "/" + build_info_file_name build_info_destination = "/" + build_info_file_name files_to_inject.append({'source': build_info_source, 'destination': build_info_destination}) build_info = BuildInfoInject() LOGGER.info(build_info.to_json()) build_info.to_file(build_info_source) def download_file(url, dest_file): """ Download from url to a local file. Throws exceptions with wording specific to the file injection. Assumes that the directory containing the destination file already exists. """ verify_tls = bool(get_config_value("IGNORE_DOWNLOAD_URL_TLS") is None) try: remote_file = requests.get(url, verify=verify_tls, timeout=60) except requests.exceptions.SSLError as exc: LOGGER.exception(exc) raise RuntimeError( 'Cannot access \'{}\' due to TLS problems! '.format(url) + 'Consider abandoning TLS verification by usage of ' + '\'IGNORE_DOWNLOAD_URL_TLS\' parameter.') from exc except requests.exceptions.RequestException as exc: LOGGER.exception(exc) raise RuntimeError( '\'{}\' is neither a file nor a directory nor a valid url, cannot inject it!' .format(url)) from exc if remote_file.status_code != 200: LOGGER.info('requests.get response status: %s', remote_file.status_code) LOGGER.info('requests.get response headers: %s', remote_file.headers) raise RuntimeError( 'URL \'{}\' did not return content, cannot inject it!' .format(url)) open(dest_file, 'wb').write(remote_file.content)
2.109375
2
kenja/detection/pull_up_method.py
umr00/kenja
0
12778598
from __future__ import absolute_import from itertools import product, combinations from git.objects import Blob from collections import defaultdict from kenja.historage import * from kenja.shingles import calculate_similarity def get_extends(commit, org_file_name, classes): classes_path = '/[CN]/'.join(classes) extends_path = '/'.join([org_file_name, '[CN]', classes_path, 'extend']) try: extend = commit.tree / extends_path assert isinstance(extend, Blob) except KeyError: return None return extend.data_stream.read().rstrip() def exist_class(blob, commit): split_path = blob.path.split('/') while split_path[-2] != '[CN]': split_path.pop() class_path = '/'.join(split_path) try: commit.tree / class_path except KeyError: return False return True def detect_pull_up_method(historage): pull_up_method_information = [] checked_commit = set() detection_stack = [] for ref in get_refs(historage): ref_commit = historage.commit(ref) detection_stack.append(ref_commit) while detection_stack: commit = detection_stack.pop() if commit.hexsha in checked_commit: continue for p in commit.parents: pull_up_method_information.extend(detect_shingle_pullup_method(p, commit)) detection_stack.append(p) checked_commit.add(commit.hexsha) return pull_up_method_information class Method(object): def __init__(self, blob, commit): self.blob = blob self.package_name = get_package(blob.path, commit) self.classes = self.get_classes(blob.path) self.method_name = get_method(blob.path) self.body_cache = None def get_classes(self, path): classes = [] split_path = path.split('/') for i, v in enumerate(split_path): if v == '[CN]': classes.append(split_path[i+1]) return classes def get_class_name(self): return self.classes[-1] def get_full_name(self): class_name = '.'.join(self.classes) if self.package_name: return '.'.join([self.package_name, class_name, self.method_name]) else: return '.'.join([class_name, self.method_name]) def get_full_class_name(self): class_name = '.'.join(self.classes) if self.package_name: return '.'.join([self.package_name, class_name]) else: return '.'.join([class_name]) def get_parameter_types(self): index = self.method_name.index('(') return self.method_name[index:-1].split(',') @classmethod def create_from_blob(cls, blob, commit): if is_method_body(blob.path): return cls(blob, commit) else: return None def get_body(self): if self.body_cache is None: self.body_cache = self.blob.data_stream.read() return self.body_cache def __str__(self): return self.get_full_name() class SubclassMethod(Method): def __init__(self, blob, commit): super(SubclassMethod, self).__init__(blob, commit) split_path = blob.path.split('/') self.extend = get_extends(commit, split_path[0], self.classes) def match_type(a_method, b_method): a_types = a_method.get_parameter_types() b_types = b_method.get_parameter_types() return a_types == b_types def detect_shingle_pullup_method(old_commit, new_commit): diff_index = old_commit.diff(new_commit, create_patch=False) added_methods = defaultdict(list) deleted_methods = defaultdict(list) for diff in diff_index.iter_change_type('A'): new_method = Method.create_from_blob(diff.b_blob, new_commit) if new_method: added_methods[new_method.get_class_name()].append(new_method) deleted_classes = set() for diff in diff_index.iter_change_type('D'): # NOTE change following old_commit to new_commit to detect # pull_up_method by same condtion of UMLDiff subclass_method = SubclassMethod.create_from_blob(diff.a_blob, old_commit) if subclass_method: if not subclass_method.extend: continue if subclass_method.get_full_class_name() in deleted_classes: continue if not exist_class(diff.a_blob, new_commit): deleted_classes.add(subclass_method.get_full_class_name()) continue if subclass_method.extend in added_methods.keys(): deleted_methods[subclass_method.extend].append(subclass_method) pull_up_method_candidates = [] old_org_commit = get_org_commit(old_commit) new_org_commit = get_org_commit(new_commit) for super_class, v in deleted_methods.iteritems(): if super_class not in added_methods: print('%s does\'nt have a deleted method' % (super_class)) continue for dst_method in added_methods[super_class]: dst_body = dst_method.get_body() if not dst_body: continue dst_body = '\n'.join(dst_body.split('\n')[1:-2]) for src_method in v: src_body = src_method.get_body() is_same_parameters = match_type(src_method, dst_method) if src_body: src_body = '\n'.join(src_body.split('\n')[1:-2]) if src_body or dst_body: try: sim = calculate_similarity(src_body, dst_body) except ZeroDivisionError: sim = "N/A" else: sim = 0 pull_up_method_candidates.append((old_commit.hexsha, new_commit.hexsha, old_org_commit, new_org_commit, str(src_method), str(dst_method), sim, is_same_parameters)) return pull_up_method_candidates
2.09375
2
apps/TCPB_-_Expressions/src/smartdict.py
mkromer-tc/threatconnect-playbooks
0
12778599
<reponame>mkromer-tc/threatconnect-playbooks<filename>apps/TCPB_-_Expressions/src/smartdict.py # -*- coding: utf-8 -*- """Smartdict -- smart dictionary for formatting strings""" from string import Formatter from attrdict import AttrDict __notfound__ = object() class SmartDict: """Smart dictionary object""" def __init__(self, namespace: object, valuedict: dict = None, default=__notfound__): """init""" if namespace is None: namespace = {} self.namespace = namespace if not valuedict: valuedict = {} self.values = valuedict self.default = default def __getitem__(self, name, default=__notfound__): """get item from values *or* namespace""" if default is __notfound__: default = self.default if name in self.values: value = self.values[name] else: try: value = self.namespace.get(name, __notfound__) except (AttributeError, TypeError): value = __notfound__ if value is __notfound__: value = getattr(self.namespace, name, __notfound__) if value is __notfound__: value = default if value is __notfound__: raise KeyError(name) return self.encapsulate(value) get = __getitem__ __getattr__ = __getitem__ def encapsulate(self, value): """Encapsulate dicts into AttrDicts""" if not isinstance(value, (list, tuple, dict)): return value if isinstance(value, (list, tuple)): result = [self.encapsulate(x) for x in value] if isinstance(value, tuple): result = tuple(result) return result return AttrDict(value) def smart_format(s: str, *args, _default=__notfound__, _context=None, **kwargs): """Format string S according to Python string formatting rules. Compound structure elements may be accessed with dot or bracket notation and without quotes around key names, e.g. `blob[0][events][0][source][device][ipAddress]` or `blob[0].events[0].source.device.ipAddress`. If default is set, that value will be used for any missing value.""" kws = SmartDict(_context, kwargs, default=_default) fmt = Formatter() return fmt.vformat(s, args, kws)
2.65625
3
tests/test_blast2xl.py
peterk87/blast2xl
1
12778600
#!/usr/bin/env python """Tests for `blast2xl` package.""" from os.path import abspath from pathlib import Path from click.testing import CliRunner from blast2xl import cli def test_command_line_interface(): """Test the CLI.""" runner = CliRunner() help_result = runner.invoke(cli.main, ['--help']) assert help_result.exit_code == 0 assert 'blast2xl: BLAST XLSX Report Creator' in help_result.stdout result = runner.invoke(cli.main) assert result.exit_code == 2 assert 'Missing option' in result.output blast_tsv_dir = abspath('tests/data/blast_tsv') fasta_dir = abspath('tests/data/fastas') with runner.isolated_filesystem(): excel_report = 'blast-report.xlsx' seq_outdir = 'seq-outdir' result = runner.invoke(cli.main, ['--blast-tsv-dir', blast_tsv_dir, '--blast-tsv-sample-name-pattern', r'^blastn-(.+)-vs-nt.*', '--seq-dir', fasta_dir, '--top-n-results', 5, '-o', excel_report, '-O', seq_outdir, '-vvv']) assert result.exit_code == 0 path_seq_outdir = Path(seq_outdir) assert path_seq_outdir.exists() output_fastas = list(path_seq_outdir.glob('**/*.fasta')) assert len(output_fastas) > 2 fasta_path = path_seq_outdir / 'FMDV' / 'Foot_and_mouth_disease_virus___type_O-12118' / 'FMDV.fasta' assert fasta_path.exists() assert fasta_path.stat().st_size > 0 assert Path(excel_report).exists() assert Path(excel_report).stat().st_size > 0
2.375
2
jlm/src/jlm/datastore.py
UnofficialJuliaMirror/JuliaManager.jl-0cdbb3b1-e653-5045-b8d5-b31a04c2a6c9
9
12778601
<filename>jlm/src/jlm/datastore.py import hashlib import json import os from contextlib import contextmanager from pathlib import Path from shutil import which from typing import IO, Any, Dict, Iterator, List, Optional, Tuple from . import __version__ from .runtime import JuliaRuntime from .utils import ApplicationError, Pathish, _Pathish, absolutepath, pathstr @contextmanager def atomicopen(path: _Pathish, *args) -> Iterator[IO]: tmppath = Path("{}.{}.tmp".format(path, os.getpid())) try: with open(pathstr(tmppath), *args) as file: yield file tmppath.rename(path) finally: if tmppath.exists(): os.remove(tmppath) def locate_localstore(path: Path) -> Optional[Path]: prev = None while path != prev: candidate = path / ".jlm" if candidate.exists(): return absolutepath(candidate) prev = path path = path.parent return None class BaseStore: def execpath(self, julia: str) -> Path: assert Path(julia).is_absolute() m = hashlib.sha1(julia.encode("utf-8")) return self.path / "exec" / m.hexdigest() # type: ignore class HomeStore(BaseStore): # path: Path defaultpath = Path.home() / ".julia" / "jlm" def __init__(self, path: _Pathish = defaultpath): self.path = Path(path) class LocalStore(BaseStore): @staticmethod def is_valid_path(path: _Pathish) -> bool: return (Path(path) / "data.json").exists() def __init__(self, path: Optional[_Pathish] = None): if path is not None: if not isinstance(path, Pathish): raise TypeError( ( "`path` argument for `LocalStore(path)` must be a" "`str` or `Path`, not {}" ).format(type(path)) ) path = Path(path) if not self.is_valid_path(path): raise ApplicationError( "{} is not a valid `.jlm` directory.".format(path) ) self.path = path def locate_path(self) -> Optional[Path]: try: return self._path except AttributeError: return locate_localstore(Path.cwd()) def find_path(self) -> Path: path = self.locate_path() if path is None: raise ApplicationError("Cannot locate `.jlm` local directory") return path # _path: Path @property def path(self) -> Path: try: return self._path except AttributeError: pass self.path = self.find_path() return self._path @path.setter def path(self, value: _Pathish): path = Path(value) if not path.is_absolute(): raise ValueError("Not an absolute path:\n{}".format(path)) self._path = path def exists(self) -> bool: path = self.locate_path() return path is not None and (path / "data.json").exists() def loaddata(self) -> Dict[str, Any]: if self.exists(): datapath = self.path / "data.json" with open(pathstr(datapath)) as file: return json.load(file) # type: ignore return { "name": "jlm.LocalStore", "jlm_version": __version__, "config": {"runtime": {}}, } def storedata(self, data: Dict[str, Any]): with atomicopen(self.path / "data.json", "w") as file: json.dump(data, file) def set(self, config: Dict[str, Any]): data = self.loaddata() if "default" in config: assert isinstance(config["default"], str) data["config"]["default"] = config["default"] if "runtime" in config: data["config"]["runtime"].update(config["runtime"]) self.storedata(data) def has_default_julia(self) -> bool: return "default" in self.loaddata()["config"] @property def default_julia(self) -> str: config = self.loaddata()["config"] try: return config["default"] except KeyError: raise AttributeError def sysimage(self, julia: str) -> Optional[str]: runtime = self.loaddata()["config"]["runtime"] try: return runtime[julia]["sysimage"] except KeyError: return None def set_sysimage(self, julia: str, sysimage: _Pathish): assert isinstance(julia, str) config = self.loaddata()["config"] config["runtime"][julia] = {"sysimage": pathstr(sysimage)} self.set(config) def unset_sysimage(self, julia: str): if not isinstance(julia, str): raise TypeError("`julia` must be a `str`, got: {!r}".format(julia)) data = self.loaddata() data["config"]["runtime"].pop(julia, None) self.storedata(data) def available_runtimes(self) -> Tuple[JuliaRuntime, List[JuliaRuntime]]: config = self.loaddata()["config"] try: julia = config["default"] except KeyError: julia = which("julia") default = JuliaRuntime(julia, self.sysimage(julia)) others = [] for (julia, runtime) in config["runtime"].items(): if julia != default.executable: others.append(JuliaRuntime(julia, runtime["sysimage"])) return default, others
2.03125
2
xtellixClient.py
markamo/xtellixClient
0
12778602
import requests import json __SERVER_HOST__ = "http://127.0.0.1:5057" __CLIENT_SECRET__ = 1234567890 __SERVER_SECRET__ = 1234567890 __SERVER_START_API__ = "/api/start" __SERVER_STOP_API__ = "/api/stop" __SERVER_PARAMETERS_API__ = "/api/parameters" __SERVER_ALLPARAMETERS_API__ = "/api/allparameters" __SERVER_OBJECTIVE_API__ = "/api/objective" __SERVER_VERSION_API__ = "/api/version" params = [] _DIM_ = 0 rit = 0 svr_rit = 0 current_objective = 1E300 pareato_objective = 1E300 searchMin = True default_headers = {'Content-Type': 'application/json'} def version(): """xtellix Module Copyright and Version Info """ print( "*******************************************************") print("Copyright (C) 2010-2020 Dr <NAME> <EMAIL>") print("Client Version: 0.0.1 beta") print( "*******************************************************") def setOptimizationServerIP(address_port): """Set Optimization Server IP and Port Number """ global __SERVER_HOST__ __SERVER_HOST__ = address_port def setClientSecret(secret): """Set Client Secret to enable Singular Access to the optimization engine """ global __CLIENT_SECRET__ __CLIENT_SECRET__ = secret def connect(address_port, secret): """Set Server Endpoint and Client Secrets """ setOptimizationServerIP(address_port) setClientSecret(secret) apipath = __SERVER_HOST__ + __SERVER_VERSION_API__ + "/" + str(__CLIENT_SECRET__) response = requests.get(apipath, verify=False, headers=default_headers) r_data = json.loads(response.content) print( "*******************************************************") print("Server Version: ") print( "*******************************************************") print(r_data) print( "*******************************************************") print("Client Version: ") version() def setInitialParameters(initialSuggestions): """Initial parameters for optimization problem being solved""" global params params = initialSuggestions sugjson = json.dumps(list(initialSuggestions)) apipath = __SERVER_HOST__ + __SERVER_PARAMETERS_API__ + "/" + str(__SERVER_SECRET__) response = requests.post(apipath, json =sugjson, headers=default_headers ) #print(sugjson) #print(apipath) #print(response) return response def initializeOptimizer(initMetric,ubound, lbound, dim, maxIter, maxSamples, initialSuggestions, seedId, minOrMax): """Default parameters for initializing the optimization engine, based on being solved""" global current_objective global pareato_objective global __SERVER_SECRET__ global _DIM_ global searchMin current_objective = initMetric pareato_objective = initMetric _DIM_ = dim searchMin = minOrMax initialize = [dim,ubound, lbound, maxIter, maxSamples, initMetric, seedId] iniJson = json.dumps(initialize) apipath = __SERVER_HOST__ + __SERVER_START_API__ + "/" + str(__CLIENT_SECRET__) response = requests.post(apipath, json=iniJson, headers=default_headers ) secret = int(json.loads(response.content)) __SERVER_SECRET__ = secret #print(apipath) print("New Server Secret: ", __SERVER_SECRET__) print("Optimization Engine Running.....") response1 = setInitialParameters(initialSuggestions) return response1 def getParameters(cached = True): """Get parameters from the Optimization Server """ global params global svr_rit if cached == True: apipath = __SERVER_HOST__ + __SERVER_PARAMETERS_API__ + "/" + str(__SERVER_SECRET__) response = requests.get(apipath, verify=False, headers=default_headers ) r_data = json.loads(response.content) oldK = r_data[0] newK = r_data[1] oldPoint = r_data[2] newPoint = r_data[3] rit = r_data[4] svr_rit = rit params[oldK] = oldPoint params[newK] = newPoint else: apipath = __SERVER_HOST__ + __SERVER_ALLPARAMETERS_API__ + "/" + str(__SERVER_SECRET__) response = requests.get(apipath, verify=False, headers=default_headers ) r_data = json.loads(response.content) global _DIM_ for i in range(_DIM_): params[i] = r_data[i] #print(apipath) #print(response) return params def updateObjectiveFunctionValue(evalMetric): """Send Objective Function Value updates to the optimization server""" jObj = json.dumps(evalMetric) apipath = __SERVER_HOST__ + __SERVER_OBJECTIVE_API__ + "/" + str(__SERVER_SECRET__) global current_objective global pareato_objective global rit global searchMin rit = rit + 1 current_objective = evalMetric if searchMin == True: if evalMetric <= pareato_objective: pareato_objective = evalMetric elif searchMin == False: if evalMetric >= pareato_objective: pareato_objective = evalMetric else: if evalMetric <= pareato_objective: pareato_objective = evalMetric response = requests.post(apipath, json =jObj,verify=False, headers=default_headers ) #print(apipath) #print(jObj) #print(response) return response def getProgress(): global current_objective global pareato_objective global rit global svr_rit return current_objective, pareato_objective, rit, svr_rit def getFunctionEvaluations(): global rit global svr_rit return rit, svr_rit
2.28125
2
tests/test_wigner_H.py
moble/spherical
15
12778603
<reponame>moble/spherical #!/usr/bin/env python # Copyright (c) 2021, <NAME> # See LICENSE file for details: <https://github.com/moble/spherical/blob/master/LICENSE> import sympy import numpy as np import spherical as sf import pytest from .conftest import requires_sympy slow = pytest.mark.slow @requires_sympy @slow def test_H_vs_sympy(eps): """Eq. (29) of arxiv:1403.7698: d^{m',m}_{n}(β) = ϵ(m') ϵ(-m) H^{m',m}_{n}(β)""" from sympy.physics.quantum.spin import WignerD as Wigner_D_sympy def ϵ(m): m = np.asarray(m) eps = np.ones_like(m) eps[m >= 0] = (-1)**m[m >= 0] return eps ell_max = 4 alpha, beta, gamma = 0.0, 0.1, 0.0 max_error = 0.0 print() for mp_max in range(ell_max+1): print(f"Checking mp_max={mp_max} (going up to {ell_max})") w = sf.Wigner(ell_max, mp_max=mp_max) workspace = w.new_workspace() Hwedge, Hv, Hextra, _, _, _ = w._split_workspace(workspace) Hnmpm = w.H(np.exp(1j * beta), Hwedge, Hv, Hextra) for n in range(w.ell_max+1): for mp in range(-min(n, mp_max), min(n, mp_max)+1): for m in range(-n, n+1): sympyd = sympy.re(sympy.N(Wigner_D_sympy(n, mp, m, alpha, beta, gamma).doit())) sphericald = ϵ(mp) * ϵ(-m) * Hnmpm[sf.WignerHindex(n, mp, m, mp_max)] error = float(abs(sympyd-sphericald)) assert error < 1.1 * ell_max * eps, ( f"Testing Wigner d recursion with n={n}, m'={mp}, m={m}, mp_max={mp_max}, " f"sympyd={sympyd}, sphericald={sphericald}, error={error}" )
2.28125
2
tuyaha/devices/switch.py
PaulAnnekov/tuya-ha
153
12778604
from tuyaha.devices.base import TuyaDevice class TuyaSwitch(TuyaDevice): def turn_on(self): if self._control_device("turnOnOff", {"value": "1"}): self._update_data("state", True) def turn_off(self): if self._control_device("turnOnOff", {"value": "0"}): self._update_data("state", False) def update(self, use_discovery=True): return self._update(use_discovery=True)
2.671875
3
button_test.py
krame505/bs-generics-demo
0
12778605
<filename>button_test.py #!/usr/bin/env python3 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time from demo import DemoClient if __name__ == "__main__": if len(sys.argv) <= 1: sys.exit("Expected serial port name") client = DemoClient(sys.argv[1]) client.start() while True: if (event := client.getButtonEvent()) is not None: print("Button", event, "pressed") else: time.sleep(0.01)
2.734375
3
tools/polly/bin/detail/osx_dev_root.py
Kondr11/LABA7
861
12778606
# Copyright (c) 2015, <NAME> # All rights reserved. import os import re def get(osx_version): dev_dir = re.sub(r'\.', '_', osx_version) dev_dir = 'OSX_{}_DEVELOPER_DIR'.format(dev_dir) return os.getenv(dev_dir)
2.046875
2
99.py
juandarr/ProjectEuler
0
12778607
<filename>99.py """ Finds the biggest numeral in an array where each row has the format base, exponent Author: <NAME> """ import math pairs = """519432,525806 632382,518061 78864,613712 466580,530130 780495,510032 525895,525320 15991,714883 960290,502358 760018,511029 166800,575487 210884,564478 555151,523163 681146,515199 563395,522587 738250,512126 923525,503780 595148,520429 177108,572629 750923,511482 440902,532446 881418,505504 422489,534197 979858,501616 685893,514935 747477,511661 167214,575367 234140,559696 940238,503122 728969,512609 232083,560102 900971,504694 688801,514772 189664,569402 891022,505104 445689,531996 119570,591871 821453,508118 371084,539600 911745,504251 623655,518600 144361,582486 352442,541775 420726,534367 295298,549387 6530,787777 468397,529976 672336,515696 431861,533289 84228,610150 805376,508857 444409,532117 33833,663511 381850,538396 402931,536157 92901,604930 304825,548004 731917,512452 753734,511344 51894,637373 151578,580103 295075,549421 303590,548183 333594,544123 683952,515042 60090,628880 951420,502692 28335,674991 714940,513349 343858,542826 549279,523586 804571,508887 260653,554881 291399,549966 402342,536213 408889,535550 40328,652524 375856,539061 768907,510590 165993,575715 976327,501755 898500,504795 360404,540830 478714,529095 694144,514472 488726,528258 841380,507226 328012,544839 22389,690868 604053,519852 329514,544641 772965,510390 492798,527927 30125,670983 895603,504906 450785,531539 840237,507276 380711,538522 63577,625673 76801,615157 502694,527123 597706,520257 310484,547206 944468,502959 121283,591152 451131,531507 566499,522367 425373,533918 40240,652665 39130,654392 714926,513355 469219,529903 806929,508783 287970,550487 92189,605332 103841,599094 671839,515725 452048,531421 987837,501323 935192,503321 88585,607450 613883,519216 144551,582413 647359,517155 213902,563816 184120,570789 258126,555322 502546,527130 407655,535678 401528,536306 477490,529193 841085,507237 732831,512408 833000,507595 904694,504542 581435,521348 455545,531110 873558,505829 94916,603796 720176,513068 545034,523891 246348,557409 556452,523079 832015,507634 173663,573564 502634,527125 250732,556611 569786,522139 216919,563178 521815,525623 92304,605270 164446,576167 753413,511364 11410,740712 448845,531712 925072,503725 564888,522477 7062,780812 641155,517535 738878,512100 636204,517828 372540,539436 443162,532237 571192,522042 655350,516680 299741,548735 581914,521307 965471,502156 513441,526277 808682,508700 237589,559034 543300,524025 804712,508889 247511,557192 543486,524008 504383,526992 326529,545039 792493,509458 86033,609017 126554,589005 579379,521481 948026,502823 404777,535969 265767,554022 266876,553840 46631,643714 492397,527958 856106,506581 795757,509305 748946,511584 294694,549480 409781,535463 775887,510253 543747,523991 210592,564536 517119,525990 520253,525751 247926,557124 592141,520626 346580,542492 544969,523902 506501,526817 244520,557738 144745,582349 69274,620858 292620,549784 926027,503687 736320,512225 515528,526113 407549,535688 848089,506927 24141,685711 9224,757964 980684,501586 175259,573121 489160,528216 878970,505604 969546,502002 525207,525365 690461,514675 156510,578551 659778,516426 468739,529945 765252,510770 76703,615230 165151,575959 29779,671736 928865,503569 577538,521605 927555,503618 185377,570477 974756,501809 800130,509093 217016,563153 365709,540216 774508,510320 588716,520851 631673,518104 954076,502590 777828,510161 990659,501222 597799,520254 786905,509727 512547,526348 756449,511212 869787,505988 653747,516779 84623,609900 839698,507295 30159,670909 797275,509234 678136,515373 897144,504851 989554,501263 413292,535106 55297,633667 788650,509637 486748,528417 150724,580377 56434,632490 77207,614869 588631,520859 611619,519367 100006,601055 528924,525093 190225,569257 851155,506789 682593,515114 613043,519275 514673,526183 877634,505655 878905,505602 1926,914951 613245,519259 152481,579816 841774,507203 71060,619442 865335,506175 90244,606469 302156,548388 399059,536557 478465,529113 558601,522925 69132,620966 267663,553700 988276,501310 378354,538787 529909,525014 161733,576968 758541,511109 823425,508024 149821,580667 269258,553438 481152,528891 120871,591322 972322,501901 981350,501567 676129,515483 950860,502717 119000,592114 392252,537272 191618,568919 946699,502874 289555,550247 799322,509139 703886,513942 194812,568143 261823,554685 203052,566221 217330,563093 734748,512313 391759,537328 807052,508777 564467,522510 59186,629748 113447,594545 518063,525916 905944,504492 613922,519213 439093,532607 445946,531981 230530,560399 297887,549007 459029,530797 403692,536075 855118,506616 963127,502245 841711,507208 407411,535699 924729,503735 914823,504132 333725,544101 176345,572832 912507,504225 411273,535308 259774,555036 632853,518038 119723,591801 163902,576321 22691,689944 402427,536212 175769,572988 837260,507402 603432,519893 313679,546767 538165,524394 549026,523608 61083,627945 898345,504798 992556,501153 369999,539727 32847,665404 891292,505088 152715,579732 824104,507997 234057,559711 730507,512532 960529,502340 388395,537687 958170,502437 57105,631806 186025,570311 993043,501133 576770,521664 215319,563513 927342,503628 521353,525666 39563,653705 752516,511408 110755,595770 309749,547305 374379,539224 919184,503952 990652,501226 647780,517135 187177,570017 168938,574877 649558,517023 278126,552016 162039,576868 658512,516499 498115,527486 896583,504868 561170,522740 747772,511647 775093,510294 652081,516882 724905,512824 499707,527365 47388,642755 646668,517204 571700,522007 180430,571747 710015,513617 435522,532941 98137,602041 759176,511070 486124,528467 526942,525236 878921,505604 408313,535602 926980,503640 882353,505459 566887,522345 3326,853312 911981,504248 416309,534800 392991,537199 622829,518651 148647,581055 496483,527624 666314,516044 48562,641293 672618,515684 443676,532187 274065,552661 265386,554079 347668,542358 31816,667448 181575,571446 961289,502320 365689,540214 987950,501317 932299,503440 27388,677243 746701,511701 492258,527969 147823,581323 57918,630985 838849,507333 678038,515375 27852,676130 850241,506828 818403,508253 131717,587014 850216,506834 904848,504529 189758,569380 392845,537217 470876,529761 925353,503711 285431,550877 454098,531234 823910,508003 318493,546112 766067,510730 261277,554775 421530,534289 694130,514478 120439,591498 213308,563949 854063,506662 365255,540263 165437,575872 662240,516281 289970,550181 847977,506933 546083,523816 413252,535113 975829,501767 361540,540701 235522,559435 224643,561577 736350,512229 328303,544808 35022,661330 307838,547578 474366,529458 873755,505819 73978,617220 827387,507845 670830,515791 326511,545034 309909,547285 400970,536363 884827,505352 718307,513175 28462,674699 599384,520150 253565,556111 284009,551093 343403,542876 446557,531921 992372,501160 961601,502308 696629,514342 919537,503945 894709,504944 892201,505051 358160,541097 448503,531745 832156,507636 920045,503924 926137,503675 416754,534757 254422,555966 92498,605151 826833,507873 660716,516371 689335,514746 160045,577467 814642,508425 969939,501993 242856,558047 76302,615517 472083,529653 587101,520964 99066,601543 498005,527503 709800,513624 708000,513716 20171,698134 285020,550936 266564,553891 981563,501557 846502,506991 334,1190800 209268,564829 9844,752610 996519,501007 410059,535426 432931,533188 848012,506929 966803,502110 983434,501486 160700,577267 504374,526989 832061,507640 392825,537214 443842,532165 440352,532492 745125,511776 13718,726392 661753,516312 70500,619875 436952,532814 424724,533973 21954,692224 262490,554567 716622,513264 907584,504425 60086,628882 837123,507412 971345,501940 947162,502855 139920,584021 68330,621624 666452,516038 731446,512481 953350,502619 183157,571042 845400,507045 651548,516910 20399,697344 861779,506331 629771,518229 801706,509026 189207,569512 737501,512168 719272,513115 479285,529045 136046,585401 896746,504860 891735,505067 684771,514999 865309,506184 379066,538702 503117,527090 621780,518717 209518,564775 677135,515423 987500,501340 197049,567613 329315,544673 236756,559196 357092,541226 520440,525733 213471,563911 956852,502490 702223,514032 404943,535955 178880,572152 689477,514734 691351,514630 866669,506128 370561,539656 739805,512051 71060,619441 624861,518534 261660,554714 366137,540160 166054,575698 601878,519990 153445,579501 279899,551729 379166,538691 423209,534125 675310,515526 145641,582050 691353,514627 917468,504026 284778,550976 81040,612235 161699,576978 616394,519057 767490,510661 156896,578431 427408,533714 254849,555884 737217,512182 897133,504851 203815,566051 270822,553189 135854,585475 778805,510111 784373,509847 305426,547921 733418,512375 732087,512448 540668,524215 702898,513996 628057,518328 640280,517587 422405,534204 10604,746569 746038,511733 839808,507293 457417,530938 479030,529064 341758,543090 620223,518824 251661,556451 561790,522696 497733,527521 724201,512863 489217,528217 415623,534867 624610,518548 847541,506953 432295,533249 400391,536421 961158,502319 139173,584284 421225,534315 579083,521501 74274,617000 701142,514087 374465,539219 217814,562985 358972,540995 88629,607424 288597,550389 285819,550812 538400,524385 809930,508645 738326,512126 955461,502535 163829,576343 826475,507891 376488,538987 102234,599905 114650,594002 52815,636341 434037,533082 804744,508880 98385,601905 856620,506559 220057,562517 844734,507078 150677,580387 558697,522917 621751,518719 207067,565321 135297,585677 932968,503404 604456,519822 579728,521462 244138,557813 706487,513800 711627,513523 853833,506674 497220,527562 59428,629511 564845,522486 623621,518603 242689,558077 125091,589591 363819,540432 686453,514901 656813,516594 489901,528155 386380,537905 542819,524052 243987,557841 693412,514514 488484,528271 896331,504881 336730,543721 728298,512647 604215,519840 153729,579413 595687,520398 540360,524240 245779,557511 924873,503730 509628,526577 528523,525122 3509,847707 522756,525555 895447,504922 44840,646067 45860,644715 463487,530404 398164,536654 894483,504959 619415,518874 966306,502129 990922,501212 835756,507474 548881,523618 453578,531282 474993,529410 80085,612879 737091,512193 50789,638638 979768,501620 792018,509483 665001,516122 86552,608694 462772,530469 589233,520821 891694,505072 592605,520594 209645,564741 42531,649269 554376,523226 803814,508929 334157,544042 175836,572970 868379,506051 658166,516520 278203,551995 966198,502126 627162,518387 296774,549165 311803,547027 843797,507118 702304,514032 563875,522553 33103,664910 191932,568841 543514,524006 506835,526794 868368,506052 847025,506971 678623,515342 876139,505726 571997,521984 598632,520198 213590,563892 625404,518497 726508,512738 689426,514738 332495,544264 411366,535302 242546,558110 315209,546555 797544,509219 93889,604371 858879,506454 124906,589666 449072,531693 235960,559345 642403,517454 720567,513047 705534,513858 603692,519870 488137,528302 157370,578285 63515,625730 666326,516041 619226,518883 443613,532186 597717,520257 96225,603069 86940,608450 40725,651929 460976,530625 268875,553508 270671,553214 363254,540500 384248,538137 762889,510892 377941,538833 278878,551890 176615,572755 860008,506412 944392,502967 608395,519571 225283,561450 45095,645728 333798,544090 625733,518476 995584,501037 506135,526853 238050,558952 557943,522972 530978,524938 634244,517949 177168,572616 85200,609541 953043,502630 523661,525484 999295,500902 840803,507246 961490,502312 471747,529685 380705,538523 911180,504275 334149,544046 478992,529065 325789,545133 335884,543826 426976,533760 749007,511582 667067,516000 607586,519623 674054,515599 188534,569675 565185,522464 172090,573988 87592,608052 907432,504424 8912,760841 928318,503590 757917,511138 718693,513153 315141,546566 728326,512645 353492,541647 638429,517695 628892,518280 877286,505672 620895,518778 385878,537959 423311,534113 633501,517997 884833,505360 883402,505416 999665,500894 708395,513697 548142,523667 756491,511205 987352,501340 766520,510705 591775,520647 833758,507563 843890,507108 925551,503698 74816,616598 646942,517187 354923,541481 256291,555638 634470,517942 930904,503494 134221,586071 282663,551304 986070,501394 123636,590176 123678,590164 481717,528841 423076,534137 866246,506145 93313,604697 783632,509880 317066,546304 502977,527103 141272,583545 71708,618938 617748,518975 581190,521362 193824,568382 682368,515131 352956,541712 351375,541905 505362,526909 905165,504518 128645,588188 267143,553787 158409,577965 482776,528754 628896,518282 485233,528547 563606,522574 111001,595655 115920,593445 365510,540237 959724,502374 938763,503184 930044,503520 970959,501956 913658,504176 68117,621790 989729,501253 567697,522288 820427,508163 54236,634794 291557,549938 124961,589646 403177,536130 405421,535899 410233,535417 815111,508403 213176,563974 83099,610879 998588,500934 513640,526263 129817,587733 1820,921851 287584,550539 299160,548820 860621,506386 529258,525059 586297,521017 953406,502616 441234,532410 986217,501386 781938,509957 461247,530595 735424,512277 146623,581722 839838,507288 510667,526494 935085,503327 737523,512167 303455,548204 992779,501145 60240,628739 939095,503174 794368,509370 501825,527189 459028,530798 884641,505363 512287,526364 835165,507499 307723,547590 160587,577304 735043,512300 493289,527887 110717,595785 306480,547772 318593,546089 179810,571911 200531,566799 314999,546580 197020,567622 301465,548487 237808,559000 131944,586923 882527,505449 468117,530003 711319,513541 156240,578628 965452,502162 992756,501148 437959,532715 739938,512046 614249,519196 391496,537356 62746,626418 688215,514806 75501,616091 883573,505412 558824,522910 759371,511061 173913,573489 891351,505089 727464,512693 164833,576051 812317,508529 540320,524243 698061,514257 69149,620952 471673,529694 159092,577753 428134,533653 89997,606608 711061,513557 779403,510081 203327,566155 798176,509187 667688,515963 636120,517833 137410,584913 217615,563034 556887,523038 667229,515991 672276,515708 325361,545187 172115,573985 13846,725685""" pairs = pairs.split('\n') for p in range(len(pairs)): pairs[p] = pairs[p].split(',') def biggest_numeral(): max_line = 0 max_value = 0 for p_idx in range(len(pairs)): value = int(pairs[p_idx][1])*math.log10(int(pairs[p_idx][0])) if value > max_value: max_value = value max_line = p_idx+1 return max_line if __name__ == "__main__": print('The biggest numeral in the array is in the line {0}'.format(biggest_numeral()))
3.1875
3
Otree/mygame/models.py
sb6998/delpro
0
12778608
<reponame>sb6998/delpro<filename>Otree/mygame/models.py from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) import csv author = '<NAME>' doc = """ Decision making using game theory """ class Constants(BaseConstants): name_in_url = 'mygame' players_per_group = 3 num_rounds = 50 stakes =c(100) instructions_template = 'mygame/Instructions.html' class Subsession(BaseSubsession): pass class Group(BaseGroup): pts = models.FloatField() average=models.FloatField() name = models.StringField() number = models.PositiveIntegerField(min = 1 , max =50) def set_payoffs(self): players = self.get_players() name1 = players[0].name pts = [p.pts for p in players] average=(1/3)*sum(pts) for p in players: rnum=p.round_number break with open('mygame/mygame.csv','r') as f: reader=csv.reader(f) data = [r for r in reader] if data == []: data=[[0]] else: data=data[-1][0] if rnum == 1: with open('mygame/mygame.csv','w+') as f: writer_csv=csv.writer(f) writer_csv.writerow(str(rnum)+str(average)) for x in range(2,51): if rnum == x and data != str(x): with open('mygame/mygame.csv','a') as f: writer_csv=csv.writer(f) writer_csv.writerow(str(rnum)+str(average)) else: pass with open('mygame/points_data.csv','r') as f: reader=csv.reader(f) data = [r for r in reader] if rnum ==1: with open('mygame/points_data.csv','w') as f: name2 = name1.split(",") z = name2 + pts writer_csv = csv.writer(f) writer_csv.writerow(z) else: for x in range(2,51): if rnum == x and rnum != len(data): with open('mygame/points_data.csv','a') as f: name2 = name1.split(",") z = name2 + pts writer_csv = csv.writer(f) writer_csv.writerow(z) # with open('mygame/game_data.csv','r') as f: # reader=csv.reader(f) # data = [r for r in reader] # if data == []: # data=[[0]] # else: # data=data[-1][0] return "" def table_avg_data(self): with open('mygame/mygame.csv', 'r') as f: read_csv=csv.reader(f) l=[] for x in read_csv: x=x[1:] l.append("".join(x)) used=[] for x in l: used.append(x) final=[] pla=self.get_players() for p in pla: rno=p.round_number break counter=0 for i in used: final.append(i) counter=counter+1 if counter==rno: break return(final) def other_player(self): return self.get_others_in_group()[0] class Player(BasePlayer): pts = models.PositiveIntegerField(min=0, max=100) rank=models.PositiveIntegerField() number = models.PositiveIntegerField(min = 1 , max =50) name = models.StringField() def other_player(self): pts = models.PositiveIntegerField(min=0, max=100) return self.get_others_in_group()[0] def other_player2(self): pts = models.PositiveIntegerField(min=0, max=100) return self.get_others_in_group()[1]
2.625
3
src/kleis/config/config.py
santteegt/kleis-keyphrase-extraction
16
12778609
"""config/config Default corpus configs. """ import sys import os import inspect from pathlib import Path from kleis import kleis_data ACLRDTEC = "acl-rd-tec-2.0" SEMEVAL2017 = "semeval2017-task10" KPEXTDATA_PATH = str(Path(inspect.getfile(kleis_data)).parent) # Check for default paths for corpus DEFAULT_CORPUS_PATH = "corpus/" + SEMEVAL2017 + "/" if Path("./kleis_data/" + DEFAULT_CORPUS_PATH).exists(): CORPUS_PATH = "./kleis_data/" + DEFAULT_CORPUS_PATH elif Path(os.path.expanduser("~/kleis_data/" + DEFAULT_CORPUS_PATH)).exists(): CORPUS_PATH = os.path.expanduser("~/kleis_data/" + DEFAULT_CORPUS_PATH) elif Path(KPEXTDATA_PATH + "/" + DEFAULT_CORPUS_PATH).exists(): CORPUS_PATH = KPEXTDATA_PATH + "/" + DEFAULT_CORPUS_PATH else: print("Warning: SemEval 2017 Task 10 corpus doesn't exists.", file=sys.stderr) print(" - Download from here https://scienceie.github.io/resources.html", file=sys.stderr) print(" - Use one of the following paths.", file=sys.stderr) print(" + ./kleis_data/%s" % DEFAULT_CORPUS_PATH, file=sys.stderr) print(" + ~/kleis_data/%s" % DEFAULT_CORPUS_PATH, file=sys.stderr) print(" + %s" % (KPEXTDATA_PATH + "/" + DEFAULT_CORPUS_PATH), file=sys.stderr) print(" - You can use pre-trained models.", file=sys.stderr) CORPUS_PATH = os.path.expanduser("~/kleis_data/" + DEFAULT_CORPUS_PATH) print("Default: ", Path(CORPUS_PATH)) CORPUS = { ACLRDTEC: { "_id": "acl-rd-tec-2.0", "options": {} }, SEMEVAL2017: { "_id": SEMEVAL2017, "format": "brat", "format-description": "brat standoff format, http://brat.nlplab.org/standoff.html", "dataset": { "train-labeled": CORPUS_PATH + "train2/", "train-unlabeled": None, "dev-labeled": CORPUS_PATH + "dev/", "dev-unlabeled": None, "test-unlabeled": CORPUS_PATH + "scienceie2017_test_unlabelled/", "test-labeled": CORPUS_PATH + "semeval_articles_test/" }, "options": {} }, "options": {} } CORPUS_DEFAULT = CORPUS[SEMEVAL2017] CORPUS_SEMEVAL2017_TASK10 = CORPUS[SEMEVAL2017] CORPUS_ACL_RD_TEC_2_0 = CORPUS[ACLRDTEC] # Check for default paths for models DEFAULT_MODELS_PATH = "models/" if Path("./kleis_data/" + DEFAULT_MODELS_PATH).exists(): MODELS_PATH = "./kleis_data/" + DEFAULT_MODELS_PATH elif Path(os.path.expanduser("~/kleis_data/" + DEFAULT_MODELS_PATH)).exists(): MODELS_PATH = os.path.expanduser("~/kleis_data/" + DEFAULT_MODELS_PATH) elif Path(KPEXTDATA_PATH + "/" + DEFAULT_MODELS_PATH).exists(): MODELS_PATH = KPEXTDATA_PATH + "/" + DEFAULT_MODELS_PATH else: print("Warning: Path to save models doesn't exists.", file=sys.stderr) print(" - Possible paths are:", file=sys.stderr) print(" + %s" % (KPEXTDATA_PATH + "/" + DEFAULT_MODELS_PATH), file=sys.stderr) print(" + %s" % ("./" + DEFAULT_MODELS_PATH), file=sys.stderr) print(" + %s" % ("~/" + DEFAULT_MODELS_PATH), file=sys.stderr) print(" - Default will be %s" % DEFAULT_MODELS_PATH, file=sys.stderr) MODELS_PATH = DEFAULT_MODELS_PATH # Check for default paths for PoS tag sequences DEFAULT_TRAIN_PATH = "train/" if Path("./kleis_data/" + DEFAULT_TRAIN_PATH).exists(): TRAIN_PATH = "./kleis_data/" + DEFAULT_TRAIN_PATH elif Path(os.path.expanduser("~/kleis_data/" + DEFAULT_TRAIN_PATH)).exists(): TRAIN_PATH = os.path.expanduser("~/kleis_data/" + DEFAULT_TRAIN_PATH) elif Path(KPEXTDATA_PATH + "/" + DEFAULT_TRAIN_PATH).exists(): TRAIN_PATH = KPEXTDATA_PATH + "/" + DEFAULT_TRAIN_PATH else: print("Warning: Path to save models doesn't exists.", file=sys.stderr) print(" - Possible paths are:", file=sys.stderr) print(" + %s" % (KPEXTDATA_PATH + "/" + DEFAULT_TRAIN_PATH), file=sys.stderr) print(" + %s" % ("./" + DEFAULT_TRAIN_PATH), file=sys.stderr) print(" + %s" % ("~/" + DEFAULT_TRAIN_PATH), file=sys.stderr) print(" - Default will be %s" % DEFAULT_TRAIN_PATH, file=sys.stderr) TRAIN_PATH = DEFAULT_TRAIN_PATH OUTPUT_PATH = "output/"
2.390625
2
home_board/compositor.py
kdickerson/homeBoard
7
12778610
<reponame>kdickerson/homeBoard # Generate in image from the provided weather, calendar, special_events data import logging import os from PIL import Image, ImageDraw, ImageFont from .util import local_file EPD_WIDTH = 640 EPD_HEIGHT = 384 BLACK = 0 WHITE = 255 RED = 128 COLUMN_WIDTH = 160 COLUMNS = [0, COLUMN_WIDTH, COLUMN_WIDTH * 2, COLUMN_WIDTH * 3] HEADER_TOP = 0 WEATHER_TEMP_TOP = 37 WEATHER_ICON_TOP = 61 CALENDAR_TOP = 130 WEATHER_ICON_MAP = { 'chanceflurries': 'chancesnow.bmp', 'chancerain': 'chancerain.bmp', 'chancesleet': 'chancesnow.bmp', 'chancesnow': 'chancesnow.bmp', 'chancetstorms': 'chancetstorms.bmp', 'clear': 'sunny.bmp', 'cloudy': 'cloudy.bmp', 'cloudy_windy': 'cloudy_windy.bmp', 'flurries': 'snow.bmp', 'fog': 'fog.bmp', 'hazy': 'hazy.bmp', 'mostlycloudy': 'mostlycloudy.bmp', 'partlycloudy': 'partlycloudy.bmp', 'partlysunny': 'mostlycloudy.bmp', 'sleet': 'snow.bmp', 'rain': 'rain.bmp', 'snow': 'snow.bmp', 'sunny': 'sunny.bmp', 'tstorms': 'tstorms.bmp', 'unknown': 'sunny.bmp', 'windy': 'windy.bmp', } EVENT_ICON_MAP = { 'birthday': 'birthday.bmp', 'christmas': 'christmas.bmp', 'flag': 'flag.bmp', 'halloween': 'halloween.bmp', 'heart': 'heart.bmp', 'thanksgiving': 'thanksgiving.bmp', } WEATHER_ICON_PATH = 'icons/weather/' EVENTS_ICON_PATH = 'icons/events/' BLACK_TO_RED_LUT = [RED] + ([BLACK] * 254) + [WHITE] # Map BLACK to RED, leave WHITE alone; use with Image.point() def _load_weather_icon(icon): # Expecting 64x64 monochrome icons return Image.open(local_file(os.path.join(WEATHER_ICON_PATH, WEATHER_ICON_MAP[icon]))) def _load_event_icon(icon): return Image.open(local_file(os.path.join(EVENTS_ICON_PATH, EVENT_ICON_MAP[icon]))) def _draw_centered_text(draw, offset, width, text, font, color=BLACK, measure_text=None): dimensions = draw.textsize(measure_text if measure_text else text, font=font) loc = ((width - dimensions[0]) // 2 + offset[0], offset[1]) draw.text(loc, text, font=font, fill=color) def _truncate_text(draw, text, font, width): dimensions = draw.textsize(text, font=font) i = 0 while dimensions[0] > width: i = i - 1 dimensions = draw.textsize(text[:i], font=font) return (text[:i-1] + '…') if i < 0 else text, dimensions def _draw_header(draw, offset, text, font, color=BLACK): _draw_centered_text(draw, offset, COLUMN_WIDTH, text, font, color) def _draw_calendar(image, draw, events, offset, bottom, cal_header_font, description_font): logging.debug('_draw_calendar:start') time_left_margin = 5 text_left_margin = 5 right_margin = 5 bottom_margin = 5 top = offset[1] more_msg_height = draw.textsize('+123456789 More', font=description_font)[1] # Max height for "+X More" msg for idx, event in enumerate(events): header_txt = '' # Make sure we don't show start times for events that started a previous date, # don't show end times for events ending a future date if not event['all_day']: if event['underway']: if event['ending_days_away'] == 0: header_txt = '→' + event['end'].strftime('%-H:%M') + ' ' # %-H is Linux specific elif event['ending_days_away'] > 0: header_txt = '+' + str(event['ending_days_away']) + ' Day' + \ ('' if event['ending_days_away'] == 1 else 's') + ' ' else: header_txt = event['start'].strftime('%-H:%M') + ' ' # %-H is Linux specific header_txt += event['calendar_label'] header, header_dim = _truncate_text( draw, header_txt, cal_header_font, COLUMN_WIDTH - right_margin - time_left_margin ) desc, desc_dim = _truncate_text( draw, event['description'], description_font, COLUMN_WIDTH - right_margin - text_left_margin ) if top + header_dim[1] + desc_dim[1] + (0 if idx+1 == len(events) else more_msg_height) > bottom: more_msg = '+' + str(len(events) - idx) + ' More' _draw_centered_text(draw, (offset[0], top), COLUMN_WIDTH, more_msg, description_font) break draw.text( (offset[0] + time_left_margin, top), header, font=cal_header_font, fill=RED if event['underway'] else BLACK ) draw.text( (offset[0] + text_left_margin, top + header_dim[1]), desc, font=description_font, fill=RED if event['underway'] else BLACK ) top = top + header_dim[1] + desc_dim[1] + bottom_margin logging.debug('_draw_calendar:end') def _draw_forecast_and_current(image, draw, conditions, forecast, header_font, temp_font): logging.debug('_draw_forecast_and_current:start') logging.debug('current: ' + str(conditions)) logging.debug('forecast: ' + str(forecast)) SUB_COLUMN_WIDTH = COLUMN_WIDTH // 2 # Sub column 1: if conditions: _draw_centered_text( draw, (0, WEATHER_TEMP_TOP), SUB_COLUMN_WIDTH, str(conditions['temperature']) + '°', temp_font, color=RED, measure_text=str(conditions['temperature']) ) try: cur_icon = _load_weather_icon(conditions['icon']).point(BLACK_TO_RED_LUT) image.paste(cur_icon, ((SUB_COLUMN_WIDTH - cur_icon.size[0]) // 2, WEATHER_ICON_TOP)) except Exception: cur_icon = None # Sub column 2: if forecast: _draw_centered_text( draw, (SUB_COLUMN_WIDTH, WEATHER_TEMP_TOP), SUB_COLUMN_WIDTH, str(forecast['high-temperature']) + '°', temp_font, measure_text=str(forecast['high-temperature']) ) try: forecast_icon = _load_weather_icon(forecast['icon']) image.paste(forecast_icon, ((SUB_COLUMN_WIDTH - cur_icon.size[0]) // 2 + SUB_COLUMN_WIDTH, WEATHER_ICON_TOP)) except Exception: forecast_icon = None if not cur_icon and not forecast_icon and conditions: _draw_centered_text(draw, (0, WEATHER_ICON_TOP), COLUMN_WIDTH, conditions['description'], temp_font) logging.debug('_draw_forecast_and_current:end') def _draw_forecast(image, draw, column_left, forecast, header_font, temp_font): logging.debug('_draw_forecast:start') logging.debug('forecast: ' + str(forecast)) msg = str(forecast['low-temperature']) + '–' + str(forecast['high-temperature']) # Center before adding the ° _draw_centered_text(draw, (column_left, WEATHER_TEMP_TOP), COLUMN_WIDTH, msg + '°', temp_font, measure_text=msg) try: icon = _load_weather_icon(forecast['icon']) image.paste(icon, ((COLUMN_WIDTH - icon.size[0]) // 2 + column_left, WEATHER_ICON_TOP)) except: # noqa: E722 _draw_centered_text(draw, (column_left, WEATHER_ICON_TOP), COLUMN_WIDTH, forecast['description'], temp_font) logging.debug('_draw_forecast:end') def _draw_special_event(image, draw, event, footer_offset, font): logging.debug('_draw_special_event:start') textsize = draw.textsize(event['msg'], font=font) iconsize = (0, 0) icon = None try: icon = _load_event_icon(event['icon']) if 'icon' in event else None if icon: iconsize = icon.size except: # noqa: E722 raise if icon: padding = 5 msgsize = (iconsize[0] + textsize[0] + padding, max(textsize[1], iconsize[1])) else: padding = 0 msgsize = textsize icon_left = (EPD_WIDTH - msgsize[0]) // 2 icon_top = footer_offset[1] - msgsize[1] icon_offset = (icon_left, icon_top + (msgsize[1] - iconsize[1]) // 2) text_offset = (icon_left + iconsize[0] + padding, icon_top + (msgsize[1] - textsize[1]) // 2) text_to_footer_gap = footer_offset[1] - (text_offset[1] + textsize[1]) if text_to_footer_gap > 0: icon_offset = (icon_offset[0], icon_offset[1] + text_to_footer_gap) text_offset = (text_offset[0], text_offset[1] + text_to_footer_gap) image.paste(icon, icon_offset) if icon else None draw.text(text_offset, event['msg'], font=font, fill=RED) logging.debug('_draw_special_event:end') return (min(icon_offset[0], text_offset[0]), min(icon_offset[1], text_offset[1])), msgsize def _draw_footer(image, draw, text, font): logging.debug('_draw_footer:start') dimensions = draw.textsize(text, font=font) offset = (EPD_WIDTH-dimensions[0], EPD_HEIGHT-dimensions[1]) draw.text(offset, text, font=font, fill=BLACK) logging.debug('_draw_footer:end') return offset, dimensions def create(context): logging.debug('create:start') image = Image.new('L', (EPD_WIDTH, EPD_HEIGHT), WHITE) draw = ImageDraw.Draw(image) draw.fontmode = '1' # No Anti-aliasing fonts = { 'header': ImageFont.truetype(local_file('fonts/FreeSansBold.ttf'), 36), 'special': ImageFont.truetype(local_file('fonts/FreeSansBold.ttf'), 36), 'temperature': ImageFont.truetype(local_file('fonts/FreeSans.ttf'), 24), 'calendar_header': ImageFont.truetype(local_file('fonts/FreeSans.ttf'), 20), 'calendar_body': ImageFont.truetype(local_file('fonts/FreeSans.ttf'), 16), 'footer': ImageFont.truetype(local_file('fonts/FreeSans.ttf'), 14), } # Footer: Bottom-right corner updated_msg = 'Updated ' + context['now'].strftime('%B %-d, %-I:%M %p') # %-d and %-I are platform specific if not all(context['success'].values()): updated_msg = '[! ' + ','.join(sorted([k for k, v in context['success'].items() if not v])) + ']' + updated_msg footer_offset, footer_dimensions = _draw_footer(image, draw, updated_msg, fonts['footer']) # Special event, centered across whole display, above footer special_offset = None if context['today']['special_event'] and 'msg' in context['today']['special_event']: special_offset, special_dimensions = _draw_special_event( image, draw, context['today']['special_event'], footer_offset, fonts['special'] ) cal_bottom = (special_offset[1] if special_offset else footer_offset[1]) - 1 # 1st Column left = COLUMNS[0] _draw_header(draw, (left, HEADER_TOP), context['today']['date'].strftime('%b %-d'), fonts['header'], RED) if context['today']['conditions'] or context['today']['forecast']: _draw_forecast_and_current( image, draw, context['today']['conditions'], context['today']['forecast'], fonts['header'], fonts['temperature'] ) if context['today']['events']: _draw_calendar( image, draw, context['today']['events'], (left, CALENDAR_TOP), cal_bottom, fonts['calendar_header'], fonts['calendar_body'] ) # 2nd Column left = COLUMNS[1] draw.line([(left, 0), (left, cal_bottom)], width=1, fill=BLACK) _draw_header(draw, (left, HEADER_TOP), context['plus_one']['date'].strftime('%a'), fonts['header']) if context['plus_one']['forecast']: _draw_forecast(image, draw, left, context['plus_one']['forecast'], fonts['header'], fonts['temperature']) if context['plus_one']['events']: _draw_calendar( image, draw, context['plus_one']['events'], (left, CALENDAR_TOP), cal_bottom, fonts['calendar_header'], fonts['calendar_body'] ) # 3rd Column left = COLUMNS[2] draw.line([(left, 0), (left, cal_bottom)], width=1, fill=BLACK) _draw_header(draw, (left, HEADER_TOP), context['plus_two']['date'].strftime('%a'), fonts['header']) if context['plus_two']['forecast']: _draw_forecast(image, draw, left, context['plus_two']['forecast'], fonts['header'], fonts['temperature']) if context['plus_two']['events']: _draw_calendar( image, draw, context['plus_two']['events'], (left, CALENDAR_TOP), cal_bottom, fonts['calendar_header'], fonts['calendar_body'] ) # 4th Column left = COLUMNS[3] draw.line([(left, 0), (left, cal_bottom)], width=1, fill=BLACK) _draw_header(draw, (left, HEADER_TOP), context['plus_three']['date'].strftime('%a'), fonts['header']) if context['plus_three']['forecast']: _draw_forecast(image, draw, left, context['plus_three']['forecast'], fonts['header'], fonts['temperature']) if context['plus_three']['events']: _draw_calendar( image, draw, context['plus_three']['events'], (left, CALENDAR_TOP), cal_bottom, fonts['calendar_header'], fonts['calendar_body'] ) logging.debug('create:end') return image
2.453125
2
ba/set.py
mrtukkin/bachelor-thesis
0
12778611
from scipy.misc import imread from tqdm import tqdm import numpy as np import os import random import warnings class SetList(object): '''A class to hold lists of inputs for a network''' def __init__(self, source='', target=None): '''Constructs a new SetList. Args: source (str): The path to the list file ''' self.source = source if target is None: self.target = source else: self.target = target self.list = [] self.mean = [] if source != '': self.load() @property def set(self): return set(self.list) @set.setter def set(self, set): self.list = list(set) def __len__(self): '''Returns the length of this Set''' return len(self.list) def __str__(self): '''Returns a str-description of this Set''' return '{}[{}] → {}'.format(self.source, len(self.list), self.target) def __iter__(self): '''Returns the iterator for the contained list''' return iter(self.list) def load(self): '''Loads the contents of self.source into the list. If source is a dir it will list all files in it without extensions. It does replace the whole content and does not append to it.''' # utils.touch(self.source) if os.path.isdir(self.source): self.load_directory(self.source) self.source = '' self.target = '' else: if not os.path.exists(self.source): self.list = [] else: with open(self.source) as f: self.list = [l[:-1] for l in f.readlines() if l.strip()] def load_directory(self, dir): '''Loads the contents of a dirctory into the list Args: dir (str): The path to the dir ''' self.list = [os.path.splitext(f)[0] for f in next(os.walk(dir))[2]] def write(self): '''Saves the list to the path set in self.target. This is normally set to self.source''' with open(self.target, 'w') as f: for row in self: f.write("{}\n".format(row)) print('List {} written...'.format(self.target)) def shuffle(self): '''Shuffles the list''' random.shuffle(self.list) def add_pre_suffix(self, prefix='', suffix=''): '''Adds a prefix and a suffix to every element of the list. Args: prefix (str,optional): The prefix to prepend suffix (str,optional): The prefix to append ''' self.list = [prefix + x + suffix for x in self] def rm_pre_suffix(self, prefix='', suffix=''): '''Removes a prefix and a suffix from every element of the list. Args: prefix (str,optional): The prefix to remove suffix (str,optional): The prefix to remove ''' self.list = [x[len(prefix):-len(suffix)] for x in self] def calculate_mean(self): '''Calculates the mean pixel for this set. The list has to contain full paths obviously so you probably have to append Prefixes and suffixes before running this. Returns: The mean pixel. As BGR! ''' self.mean = [[], [], []] print('Calculating mean pixel...') for row in tqdm(self): im = imread(row) self.mean[0].append(np.mean(im[..., 0])) self.mean[1].append(np.mean(im[..., 1])) self.mean[2].append(np.mean(im[..., 2])) self.mean = np.mean(self.mean, axis=1) if self.mean.shape == (3,): return self.mean else: return self.mean[:, :, ::-1] def each(self, callback): '''Applies a callable to every element of the list Args: callback (func): The callback function to use Returns: True if successfull and False if not ''' if not callable(callback): warnings.warn('Not callable object') return False print('Each of {}'.format(self.source)) for row in tqdm(self): callback(row) return True
2.875
3
superseeded/calcResponse.py
BeneStrahm/WindTunnelPostprocessing
0
12778612
<reponame>BeneStrahm/WindTunnelPostprocessing # ------------------------------------------------------------------------------ # Description: Calculating wind speeds at different return periods # Author: <EMAIL> # Created: 2020-09-16 # Execution: Import functions / collections (from folder.file import func) # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ # Libraries # ------------------------------------------------------------------------------ import numpy as np from scipy import integrate # For Static solver (feastruct) from feastruct.pre.material import Material from feastruct.pre.section import Section import feastruct.fea.cases as cases from feastruct.fea.frame_analysis import FrameAnalysis2D from feastruct.solvers.linstatic import LinearStatic from feastruct.solvers.naturalfrequency import NaturalFrequency from feastruct.solvers.feasolve import SolverSettings # ------------------------------------------------------------------------------ # Imported functions # ------------------------------------------------------------------------------ from helpers.pyExtras import getKeyList from helpers.txtEditor import writeToTxt import plotters.plot2D as plt # ------------------------------------------------------------------------------ # Abbreviations # ------------------------------------------------------------------------------ # p... load # r... response # ms... model scale # fs... full scale # L... lift # D... drag # M... moment # F... force # H... (at) height of building # sp.. sample # fq... frequency # ------------------------------------------------------------------------------ # Classes # ------------------------------------------------------------------------------ class response(object): def __init__(self, modelForces, RPeriod, uH_fs, H_fs): """Scale time/freq. from model to full scale :param modelForce: obj w/ wind tunnel measurements :param RPeriod: str w/ return period of wind speed :param uH_fs, H_fs: flt w/ full scale building properties """ self.modelForces = modelForces self.RPeriod= RPeriod self.H_fs = H_fs self.uH_fs = uH_fs def scaleTime(self): """Scale time/freq. from model to full scale """ # Model properties self.modelForces.dT_ms = 1 / self.modelForces.fq_sp_ms # Scaling factors self.lambda_u = self.uH_fs / self.modelForces.uH_ms self.lambda_g = self.H_fs / self.modelForces.H_ms self.lambda_fq= self.lambda_u / self.lambda_g self.lambda_t = 1 / self.lambda_fq # Scale quantities self.dT_fs = self.lambda_t * self.modelForces.dT_ms self.fq_sp_fs = self.lambda_fq * self.modelForces.fq_sp_ms def scaleForces(self): """Scale base forces from model to full scale """ # Scaling factors self.lambda_F = self.lambda_u ** 2 * self.lambda_g ** 2 self.lambda_M = self.lambda_u ** 2 * self.lambda_g ** 3 # Scale floor forces self.modelForces.F_p_fs_D= self.modelForces.F_p_ms_D * self.lambda_F self.modelForces.F_p_fs_L= self.modelForces.F_p_ms_L * self.lambda_F # Scale base forces self.modelForces.BF_p_fs_D= self.modelForces.BF_p_ms_D * self.lambda_F print(np.mean(self.modelForces.BF_p_fs_D *1000/(0.5 * 1.25 * self.uH_fs**2 * 128 *128))) self.modelForces.BF_p_fs_L= self.modelForces.BF_p_ms_L * self.lambda_F self.modelForces.BM_p_fs_D= self.modelForces.BM_p_ms_D * self.lambda_M self.modelForces.BM_p_fs_L= self.modelForces.BM_p_ms_L * self.lambda_M def transToSpectralDomain(self, F_p, dT): """Transform time series of forces into the spectral domain """ # Length of time series n = np.shape(F_p)[0] N = n//2 # Get the Spectral Density, only positive half S_p = abs(np.fft.fft(F_p)[0:N]) # Compute the power spectra density S_p = S_p ** 2 # According to "Boggs - Wind Loading ...[1991], (p.237)": S(fq)+ = 2 * S(fq)+/- S_p = 2 * S_p # Scaling Factor S_p = S_p / n # Scaling Factor S_p = S_p * dT # Compute the frequencies, only positive half fq = np.fft.fftfreq(n, dT)[0:N] return S_p, fq def calcSpectralResponse(self, fq_p, S_p, fq_e, D): """Calculate the response spectrum """ # Length of spectrum N = np.shape(S_p)[0] # Apply Dynamic amplification factor S_r = np.zeros(N) for i in range(0, N): eta_i = fq_p[i]/fq_e H_i = response.mechanicalAdmittance(self, eta_i, D) S_r[i] = abs(H_i)**2 * S_p[i] return S_r def mechanicalAdmittance(self, eta, D): """Mechanical admittance of the 1-DOF System """ # Dynamic amplification factor H_fq = 1 / np.sqrt((1-eta**2)**2 + (2*D*eta)**2) return H_fq def numericalIntSpectrum(self, dT, S_r): """Integrate the response spectrum """ # Length of spectrum N = np.shape(S_r)[0] # Nyquist frequency fq_nyq = 1 / (2 * dT) # Sample spacing dfq dfq = fq_nyq / N # Perform the numerical integration with Simpson rule F_ms = integrate.simps(S_r, dx=dfq) # Return directly RMS F_rms = np.sqrt(F_ms) return F_rms def calcPeakFactor(self, fq_e, T): """Compute the peak factor """ g_peak = np.sqrt(2 * np.log(fq_e * T)) + 0.5772 / np.sqrt((2 * np.log(fq_e * T))) return g_peak class baseResponseForces(response): def __init__(self, modelForces, RPeriod, uH_fs, H_fs): super().__init__(modelForces, RPeriod, uH_fs, H_fs) def calcResponse(self, fname, fq_e_D, fq_e_L, D): # Investigated wind speed writeToTxt(fname, "------------------------------") writeToTxt(fname, "u_H_mean: " + '{:02.3f}'.format(self.uH_fs)) writeToTxt(fname, "Return Period: " + self.RPeriod) writeToTxt(fname, "------------------------------") # Base moment, drag direction writeToTxt(fname, "Base moment in drag direction [kNm]") baseResponseForces.calcLoadStats(self, fname, self.modelForces.BM_p_fs_D) baseResponseForces.calcPeakLoading(self, fname, self.modelForces.BM_p_fs_D, self.dT_fs, fq_e_D, D) writeToTxt(fname, "------------------------------") # Base moment, lift direction writeToTxt(fname, "Base moment in lift direction [kNm]") baseResponseForces.calcLoadStats(self, fname, self.modelForces.BM_p_fs_L) baseResponseForces.calcPeakLoading(self, fname, self.modelForces.BM_p_fs_L, self.dT_fs, fq_e_L, D) writeToTxt(fname, "------------------------------") def calcLoadStats(self, fname, F_p): # Calc statistics F_p_mean = np.mean(F_p) F_p_max = np.max(F_p) F_p_min = np.min(F_p) F_p_std = np.std(F_p) writeToTxt(fname, "F_p_mean: " + '{:02.3f}'.format(F_p_mean)) writeToTxt(fname, "F_p_max: " + '{:02.3f}'.format(F_p_max)) writeToTxt(fname, "F_p_min: " + '{:02.3f}'.format(F_p_min)) writeToTxt(fname, "F_p_std: " + '{:02.3f}'.format(F_p_std)) def calcPeakLoading(self, fname, F_p, dT, fq_e, D): # Asses response with spectral analysis # -------------------- # Transform only the fluctuations "F_p_prime" to frequency domain F_p_mean = np.mean(F_p) F_p_prime = F_p - F_p_mean S_p, fq_p = response.transToSpectralDomain(self, F_p_prime, dT) # Apply mechanical admittance to the spectrum S_r = response.calcSpectralResponse(self, fq_p, S_p, fq_e, D) # # Setting up data to be plotted # plt.plot2D(fq_p, S_r, "f [Hz]", "Sr", "Spectrum", ["PSD"], xscale='log', yscale='log', savePlt=False, showPlt=True) # Perform the numerical integration F_r_std = response.numericalIntSpectrum(self, dT, S_r) # Estimate peak values g_peak = response.calcPeakFactor(self, 3600, fq_e) # Peak Factor F_r_max = F_p_mean + g_peak * F_r_std # Estimate max. response writeToTxt(fname, "Asses response with spectral analysis") writeToTxt(fname, "F_p_mean: " + '{:02.3f}'.format(F_p_mean)) writeToTxt(fname, "F_r_std: " + '{:02.3f}'.format(F_r_std)) writeToTxt(fname, "g_peak: " + '{:02.3f}'.format(g_peak)) writeToTxt(fname, "F_r_max: " + '{:02.3f}'.format(F_r_max)) # Comparison with the loading # -------------------- F_p_max = np.max(F_p) DLF_max = F_r_max / F_p_max writeToTxt(fname, "Comparison with loading") writeToTxt(fname, "F_p_max: " + '{:02.3f}'.format(F_p_max)) writeToTxt(fname, "DLF(F_max): " + '{:02.3f}'.format(DLF_max)) class TipResponseDeflections(response): def __init__(self, modelForces, RPeriod, uH_fs, H_fs): super().__init__(modelForces, RPeriod, uH_fs, H_fs) def calcResponse(self, fname, E_D, I_D, E_L, I_L, mue): # Investigated wind speed writeToTxt(fname, "------------------------------") writeToTxt(fname, "u_H_mean: " + '{:02.3f}'.format(self.uH_fs)) writeToTxt(fname, "Return Period: " + self.RPeriod) writeToTxt(fname, "------------------------------") # Base moment, drag direction writeToTxt(fname, "Deflections in drag direction [m]") TipResponseDeflections.calcMeanDeflection(self, fname, self.modelForces.F_p_fs_D, self.H_fs, E_D, I_D,\ self.modelForces.nz, self.modelForces.z_lev * self.lambda_g) TipResponseDeflections.calcPeakDeflection(self, fname, 146332.508, self.H_fs, E_D, I_D, mue, \ self.modelForces.nz, self.modelForces.z_lev * self.lambda_g) writeToTxt(fname, "------------------------------") # Base moment, lift direction writeToTxt(fname, "Deflections in lift direction [m]") TipResponseDeflections.calcMeanDeflection(self, fname, self.modelForces.F_p_fs_L, self.H_fs, E_L, I_L,\ self.modelForces.nz, self.modelForces.z_lev * self.lambda_g) TipResponseDeflections.calcPeakDeflection(self, fname, 370125.002, self.H_fs, E_D, I_D, mue, \ self.modelForces.nz, self.modelForces.z_lev * self.lambda_g) writeToTxt(fname, "------------------------------") def calcMeanDeflection(self, fname, F_p_j, H_fs, E, I, nz, z_lev_fs): # Setting up static calculation # ------------ # preprocessor # --------- # constants & lists L = H_fs # length of the beam [m] n = nz # no of nodes [-] z = np.append(L, z_lev_fs) # coordinates [m], append top of building z = np.append(z, 0) # coordinates [m], append support node # everything starts with the analysis object analysis = FrameAnalysis2D() # materials and sections are objects mat_dummy = Material("Dummy", E, 0.3, 1, colour='w') section = Section(area=1, ixx=I) # nodes are objects nodes = [] for i in range(0,n+2): #! n+2 (support, tip) node = analysis.create_node(coords=[0, z[i]]) nodes.append(node) # and so are beams! beams = [] for i in range(0,n+1): #! n+1 (support, tip) beam = analysis.create_element( el_type='EB2-2D', nodes=[nodes[i], nodes[i+1]], material=mat_dummy, section=section) beams.append(beam) # boundary conditions are objects freedom_case = cases.FreedomCase() freedom_case.add_nodal_support(node=nodes[-1], val=0, dof=0) freedom_case.add_nodal_support(node=nodes[-1], val=0, dof=1) freedom_case.add_nodal_support(node=nodes[-1], val=0, dof=5) # so are loads! load_case = cases.LoadCase() for i in range(n): F_p = np.mean(F_p_j[i]) #[in KN] load_case.add_nodal_load(node=nodes[i+1], val=F_p , dof=0) # i+1 (support, tip) # an analysis case relates a support case to a load case analysis_case = cases.AnalysisCase(freedom_case=freedom_case, load_case=load_case) # ------ # solver # ------ # you can easily change the solver settings settings = SolverSettings() settings.linear_static.time_info = False # the linear static solver is an object and acts on the analysis object solver = LinearStatic(analysis=analysis, analysis_cases=[analysis_case], solver_settings=settings) solver.solve() # ---- # post # ---- # there are plenty of post processing options! # analysis.post.plot_geom(analysis_case=analysis_case) # analysis.post.plot_geom(analysis_case=analysis_case, deformed=True, def_scale=1e2) # analysis.post.plot_frame_forces(analysis_case=analysis_case, shear=True) # analysis.post.plot_frame_forces(analysis_case=analysis_case, moment=True) # analysis.post.plot_reactions(analysis_case=analysis_case) # Support reactions, to check bending moment for validation for support in analysis_case.freedom_case.items: if support.dof in [5]: reaction = support.get_reaction(analysis_case=analysis_case) # read out deformation at top self.delta_p_mean = nodes[0].get_displacements(analysis_case)[0] writeToTxt(fname, "delta_p_mean: " + '{:02.3f}'.format(self.delta_p_mean)) def calcPeakDeflection(self, fname, F_r_std, H_fs, E, I, mue, nz, z_lev_fs): # Setting up dynamic calculation # ------------ # preprocessor # --------- # constants & lists L = H_fs # length of the beam [m] n = nz # no of nodes [-] z = np.append(L, z_lev_fs) # coordinates [m], append top of building z = np.append(z, 0) # coordinates [m], append support node num_modes = 1 # everything starts with the analysis object analysis = FrameAnalysis2D() # materials and sections are objects mat_dummy = Material("Dummy", E, 0.3, mue, colour='w') section = Section(area=1, ixx=I) # nodes are objects nodes = [] for i in range(0,n+2): #! n+2 (support, tip) node = analysis.create_node(coords=[0, z[i]]) nodes.append(node) # and so are beams! beams = [] for i in range(0,n+1): #! n+1 (support, tip) beam = analysis.create_element( el_type='EB2-2D', nodes=[nodes[i], nodes[i+1]], material=mat_dummy, section=section) beams.append(beam) # boundary conditions are objects freedom_case = cases.FreedomCase() freedom_case.add_nodal_support(node=nodes[-1], val=0, dof=0) freedom_case.add_nodal_support(node=nodes[-1], val=0, dof=1) freedom_case.add_nodal_support(node=nodes[-1], val=0, dof=5) # add analysis case analysis_case = cases.AnalysisCase(freedom_case=freedom_case, load_case=cases.LoadCase()) # ---------------- # frequency solver # ---------------- settings = SolverSettings() settings.natural_frequency.time_info = True settings.natural_frequency.num_modes = num_modes solver = NaturalFrequency( analysis=analysis, analysis_cases=[analysis_case], solver_settings=settings) # Manual solver, see feastruct/solvers/naturalfrequency.py, in order # to extract mass/stiffness-matrix and eigenvectors # assign the global degree of freedom numbers solver.assign_dofs() # Get the global stiffness / mass matrix (K, Kg) = solver.assemble_stiff_matrix() M = solver.assemble_mass_matrix() # apply the boundary conditions K_mod = solver.remove_constrained_dofs(K=K, analysis_case=analysis_case) M_mod = solver.remove_constrained_dofs(K=M, analysis_case=analysis_case) # Solve for the eigenvalues (w, v) = solver.solve_eigenvalue(A=K_mod, M=M_mod, eigen_settings=settings.natural_frequency) # compute natural frequencies in Hz f = np.sqrt(w) / 2 / np.pi # Normalize Eigenvector v = v / v[0] * L # # Get only dof ux # u = np.zeros(n+1) # for i in range(0, n+1): # j = i * 3 # u[i] = v[j] # Get generalized quantities K_mod = K_mod.toarray() K_gen = np.dot(np.dot(v.T, K_mod), v) M_mod = M_mod.toarray() M_gen = np.dot(np.dot(v.T, M_mod), v) # To check, compute # f_k = np.sqrt(K_gen/M_gen) / 2 / np.pi # print(f/f_k) # K_gen = 3 * E * I /(L^3) / L K_gen = K_gen[0][0] # Calculate peak displacement delta_r_std = v[0][0] / K_gen * F_r_std g_peak = response.calcPeakFactor(self, 3600, f[0]) # Peak Factor delta_r_max = g_peak * delta_r_std writeToTxt(fname, "delta_r_std: " + '{:02.3f}'.format(delta_r_std)) writeToTxt(fname, "g_peak: " + '{:02.3f}'.format(g_peak)) writeToTxt(fname, "delta_r_max: " + '{:02.3f}'.format(delta_r_max)) class TipResponseAccelerations(response): def __init__(self, modelForces, RPeriod, uH_fs, H_fs): super().__init__(modelForces, RPeriod, uH_fs, H_fs) # ------------------------------------------------------------------------------ # Functions # ------------------------------------------------------------------------------
2.265625
2
Source/crunch.py
furcelay/DRE
0
12778613
from Source import ModelsIO as MIO import numpy as np from h5py import File def E_fit(_cube: np.ndarray((10, 13, 21, 128, 128), '>f4'), data: np.ndarray((128, 128), '>f4'), seg: np.ndarray((128, 128), '>f4'), noise: np.ndarray((128, 128), '>f4')) -> np.ndarray((10, 13, 21), '>f4'): scaled_models: np.ndarray((10, 13, 21, 128, 128), '>f4') flux_models: np.ndarray((10, 13, 21), '>f4') flux_data: np.float('>f4') X: np.ndarray((10, 13, 21), '>f4') resta: np.ndarray((10, 13, 21, 128, 128), '>f4') residuo: np.ndarray((10, 13, 21, 128, 128), '>f4') chi: np.ndarray((10, 13, 21), '>f4') area: int flux_models = np.einsum("ijkxy,xy->ijk", _cube, seg) flux_data = np.einsum("xy,xy", data, seg) X = flux_data / flux_models scaled_models = X[:, :, :, np.newaxis, np.newaxis] * _cube resta = data - scaled_models residuo = (resta ** 2) / (scaled_models + noise ** 2) chi = np.einsum("ijkxy,xy->ijk", residuo, seg) area = seg.sum() chi = chi / area return chi def read_obj_h5(name): # debe ser try: with File(name, 'r') as f: data = f['obj'][:] seg = f['seg'][:] rms = f['rms'][:] return data, seg, rms except IOError: print("{} not found".format(name)) return False, False, False # se necesita esta funcion?? def read_obj(name): try: data = MIO.fits.open(name)[1].data rms = MIO.fits.open(name.replace('objs', 'noise'))[1].data seg = MIO.fits.open(name.replace('object', "segment").replace("objs", "segs"))[1].data except IOError: print("{} not found".format(name)) return False, False, False noise = np.median(rms) return data, seg, noise def feed(name, cube): """ From a name and a models cube, run an object through the routine Outputs the numpy array of the chi_cube """ a, b, s = read_obj_h5(name) if a is not False: chi = E_fit(cube, a, b, noise=s) # outchi = MIO.fits.ImageHDU(data=chi) # outchi.writeto(name.replace('cut_object',"chi_cube"),overwrite=True) return chi else: return False def save_chi(name, cube): """ Parameters name : str of output file cube : crunch.feed output """ outchi = MIO.fits.ImageHDU(data=cube) outchi.writeto(name, overwrite=True) return True def get_cube(name): cube = MIO.ModelsCube(name) cube = cube.data.reshape((10, 13, 128, 21, 128)) cube = np.swapaxes(cube, 2, 3) # new shape (10, 13, 21, 128, 128) return cube def chi_index(chi_name): """ Parameters ---------- chi_name : chi_cube fits filename. Returns ------- tuple (i,j,k) of the index which minimize the residuals. """ chi_cube = MIO.fits.open(chi_name) i, j, k = np.unravel_index(np.argmin(chi_cube[1].data), shape=(10, 13, 21)) return i, j, k def pond_rad_like(chi_name, logh): i, j, k = chi_index(chi_name) chi_cubo = MIO.fits.open(chi_name)[1].data weights = np.e ** (chi_cubo[i, j, :]) r_weight = 0 for r in range(21): r_weight += (10 ** (logh[r])) / weights[r] r_chi = np.log10(r_weight / np.sum(1. / weights)) r_var = 0 for r in range(21): r_var += ((logh[r] - r_chi) ** 2) / (weights[r]) r_var = r_var / np.sum(1. / weights) return r_chi, r_var def pond_rad(chi_name, logh): i, j, k = chi_index(chi_name) chi_cubo = MIO.fits.open(chi_name)[1].data weights = chi_cubo[i, j, :] r_weight = 0 for r in range(21): r_weight += (10 ** (logh[r])) / weights[r] r_chi = np.log10(r_weight / np.sum(1. / weights)) r_var = 0 for r in range(21): r_var += ((logh[r] - r_chi) ** 2) / (weights[r]) r_var = r_var / np.sum(1. / weights) return r_chi, r_var def pond_rad_3d(chi_name, logh): chi_cubo = MIO.fits.open(chi_name)[1].data sqrt_chi = np.sqrt(chi_cubo) r_weight = 0 for e in range(10): for t in range(13): for r in range(21): r_weight += (10 ** (logh[r])) / sqrt_chi[e, t, r] r_chi = np.log10(r_weight / np.sum(1. / sqrt_chi)) r_var = 0 for e in range(10): for t in range(13): for r in range(21): r_var += ((logh[r] - r_chi) ** 2) / (chi_cubo[e, t, r]) r_var = r_var / np.sum(1. / chi_cubo) return r_chi, r_var def make_mosaic(obj, chi, cube): """ Parameters ---------- obj : str DESCRIPTION. chi : str DESCRIPTION. cube : numpy array DESCRIPTION. Returns ------- Bool Builds a mosaic containing the data,segment,model and residual """ i, j, k = chi_index(chi) model = cube[i, j, k] gal, seg, noise = read_obj(obj) output = chi.replace('chi_cube', 'mosaic').replace('cut_object', 'mosaic') fg = np.sum(gal * seg) fm1 = np.sum(model * seg) aux = np.zeros((128, 128 * 4)) aux[:, 0:128] = gal aux[:, 128:256] = seg * (fg / seg.sum()) aux[:, 256:384] = model * (fg / fm1) aux[:, 384:] = gal - model * (fg / fm1) gg = MIO.fits.ImageHDU(data=aux) gg.writeto(output, overwrite=True) return True def make_mosaic_h5(obj, chi, cube): """ Parameters ---------- obj : str DESCRIPTION. chi : str DESCRIPTION. cube : numpy array DESCRIPTION. Returns ------- Bool Builds a mosaic containing the data,segment,model and residual """ i, j, k = chi_index(chi) model = cube[i, j, k] output = chi.replace('chi_cube', 'mosaic').replace('cut', 'mosaic') with File(obj, 'r') as f: gal = f['obj'][:] seg = f['seg'][:] fg = np.sum(gal * seg) fm1 = np.sum(model * seg) aux = np.zeros((128, 128 * 4)) aux[:, 0:128] = gal aux[:, 128:256] = seg * (fg / seg.sum()) aux[:, 256:384] = model * (fg / fm1) aux[:, 384:] = gal - model * (fg / fm1) gg = MIO.fits.ImageHDU(data=aux) gg.writeto(output, overwrite=True) return True
2.09375
2
pipelines/p2_aggregate_orca.py
CSE482Winter2021/Major-Dudes
0
12778614
import os import pandas as pd from tqdm import tqdm import pipelines.p1_orca_by_stop as p1 from utils import constants, data_utils NAME = 'p2_aggregate_orca' WRITE_DIR = os.path.join(constants.PIPELINE_OUTPUTS_DIR, NAME) def load_input(): path = os.path.join(constants.PIPELINE_OUTPUTS_DIR, f'{p1.NAME}.csv') return pd.read_csv(path) def aggregate_stops(orca_df): """ Aggregates the ORCA dataset by summing together the boardings at each stop. """ cols = [ 'stop_id', 'boarding_count', 'route_ids', 'tract_num', 'tract_population' ] stops = orca_df['stop_id'].unique() result = [] for stop in tqdm(stops, desc='Aggregating stops'): rows = orca_df[orca_df[cols[0]] == stop] result.append([ stop, rows[cols[1]].sum(), rows[cols[2]].iat[0], rows[cols[3]].iat[0], rows[cols[4]].iat[0], ]) # Renaming 'boarding_count' to 'orca_count' for clarity cols[1] = 'orca_count' return pd.DataFrame(result, columns=cols) def aggregate_routes(orca_df): """ Maps each route to its list of stops. """ routes = {} for row in orca_df.to_numpy(): stop_id = row[0] route_ids = data_utils.parse_collection(row[2], set, int) for route_id in route_ids: routes.setdefault(route_id, set()).add(stop_id) cols = ['route_id', 'stop_ids'] result = [[route_id, routes[route_id]] for route_id in routes] return pd.DataFrame(result, columns=cols) def run_pipeline(): """ Runs the pipeline and writes the outputs to disk. """ orca_df = load_input() orca_df = aggregate_stops(orca_df) routes_df = aggregate_routes(orca_df) # Write to CSV if not os.path.exists(WRITE_DIR): os.mkdir(WRITE_DIR) files = {'stops_aggregate.csv': orca_df, 'routes_aggregate.csv': routes_df} for fname in files: files[fname].to_csv(os.path.join(WRITE_DIR, fname), index=False) tqdm.write(f'Wrote {fname} to {WRITE_DIR}') if __name__ == '__main__': run_pipeline()
2.84375
3
sorting.py
ivanbgd/Quick3-Sort-Py
1
12778615
<reponame>ivanbgd/Quick3-Sort-Py import sys import random def partition3(a, l, r): x = a[l] j, o = l, l for i in range(l+1, r+1): if a[i] < x: o += 1 a[i], a[o] = a[o], a[i] a[j], a[o] = a[o], a[j] j += 1 elif a[i] == x: o += 1 a[i], a[o] = a[o], a[i] else: continue if j > l: a[l], a[j-1] = a[j-1], a[l] else: a[l], a[j] = a[j], a[l] return j, o def randomized_quick_sort3(a, l, r): if l >= r: return k = random.randint(l, r) a[l], a[k] = a[k], a[l] m1, m2 = partition3(a, l, r) randomized_quick_sort3(a, l, m1 - 1) randomized_quick_sort3(a, m2 + 1, r) if __name__ == '__main__': #input = sys.stdin.read() input = "5\n2 3 9 2 2" # Correct output is: 2 2 2 3 9. #input = "13\n6 2 3 4 2 6 8 9 2 6 5 6 8" input = list(map(int, input.split())) n = input[0] a = input[1:] randomized_quick_sort3(a, 0, n - 1) #a.sort(); # This is TimSort from Python Standard Library. for x in a: print(x,) print(a) print()
3.40625
3
ftocp.py
urosolia/SLIP
1
12778616
<filename>ftocp.py<gh_stars>1-10 from casadi import * from numpy import * import pdb import itertools import numpy as np from cvxpy import * import time ##### FTOCP ###### class FTOCP(object): """ Finite Time Optimal Control Problem (FTOCP) Methods: - solve: solves the FTOCP given the initial condition x0 and terminal contraints - buildNonlinearProgram: builds the ftocp program solved by the above solve method - model: given x_t and u_t computes x_{t+1} = f( x_t, u_t ) """ def __init__(self, N, n, d, Q, R, Qf, xlb, xub, ulb, uub, dt, xref, region ): # Define variables self.region = region self.xlb = xlb self.xub = xub self.ulb = ulb self.uub = uub self.N = N self.n = n self.nl = 2 self.d = d self.Q = Q self.Qf = Qf self.R = R self.xref = xref self.dt = dt self.l = 0.7 self.m = 1 self.g = 9.81 self.k0 = self.m*self.g/0.15 self.buildFTOCP() self.solverTime = [] def solve(self, x0, verbose=False): # Set initial condition + state and input box constraints self.lbx = x0.tolist() + self.xlb.tolist()*(self.N) + self.ulb.tolist()*self.N + [0, -100] + [-100.0]*self.nl*self.N self.ubx = x0.tolist() + self.xub.tolist()*(self.N) + self.uub.tolist()*self.N + [0, 100] + [ 100.0]*self.nl*self.N # Solve nonlinear programm start = time.time() sol = self.solver(lbx=self.lbx, ubx=self.ubx, lbg=self.lbg_dyanmics, ubg=self.ubg_dyanmics) end = time.time() self.solverTime = end - start # Check if the solution is feasible if (self.solver.stats()['success']): print("Sucess") self.feasible = 1 x = sol["x"] self.xPred = np.array(x[0:(self.N+1)*self.n].reshape((self.n,self.N+1))).T self.uPred = np.array(x[(self.N+1)*self.n:((self.N+1)*self.n + self.d*self.N)].reshape((self.d,self.N))).T self.sPred = np.array(x[((self.N+1)*self.n + self.d*self.N):((self.N+1)*self.n + self.d*self.N)+self.nl*(self.N+1)].reshape((self.nl,self.N+1))).T self.mpcInput = self.uPred[0][0] print("xPred:") print(self.xPred) print("uPred:") print(self.uPred) print("sPred:") print(self.sPred) else: self.xPred = np.zeros((self.N+1,self.n) ) self.uPred = np.zeros((self.N,self.d)) self.mpcInput = [] self.feasible = 0 print("Unfeasible") return self.uPred[0] def buildFTOCP(self): # Define variables n = self.n d = self.d nl = self.nl # Define variables X = SX.sym('X', n*(self.N+1)); U = SX.sym('U', d*self.N); C = SX.sym('C', nl*(self.N+1)); # Define dynamic constraints self.constraint = [] for i in range(0, self.N): if self.region[i] < 2: legUsed = self.region[i] legNotUsed = 1 - legUsed print("SS, leg: ", legUsed, 'i: ', i, ", legNotUsed: ", legNotUsed) X_next = self.dynamics_SS(X[n*i:n*(i+1)], U[d*i], C[i*nl + legUsed]) # Foot constraints self.constraint = vertcat(self.constraint, C[(i+1)*nl + legUsed] - C[i*nl + legUsed] ) self.constraint = vertcat(self.constraint, C[(i+1)*nl + legNotUsed] - (C[i*nl + legNotUsed] + U[d*i+1]) ) else: print("DS, i: ", i) X_next = self.dynamics_DS(X[n*i:n*(i+1)], U[d*i], C[i*nl:(i+1)*nl]) # Foot constraints for j in range(0,2): self.constraint = vertcat(self.constraint, C[(i+1)*nl + j] - C[i*nl + j] ) # Dyanmic update for j in range(0, self.n): self.constraint = vertcat(self.constraint, X_next[j] - X[n*(i+1)+j] ) # Constraints on length lbg_leg = [] ubg_leg = [] for i in range(0, self.N): if self.region[i] == 0: self.constraint = vertcat(self.constraint, (X[n*i + 0] - C[i*nl+0])**2 + X[n*i + 1]**2 ) # Leg 0 length <= 1 lbg_leg.append(0) ubg_leg.append(self.l**2) elif self.region[i] == 1: self.constraint = vertcat(self.constraint, (X[n*i + 0] - C[i*nl+1])**2 + X[n*i + 1]**2 ) # Leg 1 length <= 1 lbg_leg.append(0) ubg_leg.append(self.l**2) else: self.constraint = vertcat(self.constraint, (X[n*i + 0] - C[i*nl+0])**2 + X[n*i + 1]**2 ) self.constraint = vertcat(self.constraint, (X[n*i + 0] - C[i*nl+1])**2 + X[n*i + 1]**2 ) # Leg 0 length <= 1 lbg_leg.append(0) ubg_leg.append(self.l**2) # Leg 1 length <= 1 lbg_leg.append(0) ubg_leg.append(self.l**2) # Defining Cost self.cost = 0 for i in range(0, self.N): self.cost = self.cost + (X[n*i:n*(i+1)]-self.xref).T @ self.Q @ (X[n*i:n*(i+1)]-self.xref) self.cost = self.cost + U[d*i:d*(i+1)].T @ self.R @ U[d*i:d*(i+1)] self.cost = self.cost + (X[n*self.N:n*(self.N+1)]-self.xref).T @ self.Qf @ (X[n*self.N:n*(self.N+1)]-self.xref) # Set IPOPT options # opts = {"verbose":False,"ipopt.print_level":0,"print_time":0,"ipopt.mu_strategy":"adaptive","ipopt.mu_init":1e-5,"ipopt.mu_min":1e-15,"ipopt.barrier_tol_factor":1}#, "ipopt.acceptable_constr_viol_tol":0.001}#,"ipopt.acceptable_tol":1e-4}#, "expand":True} opts = {"verbose":False,"ipopt.print_level":0,"print_time":0}#\\, "ipopt.acceptable_constr_viol_tol":0.001}#,"ipopt.acceptable_tol":1e-4}#, "expand":True} nlp = {'x':vertcat(X,U,C), 'f':self.cost, 'g':self.constraint} self.solver = nlpsol('solver', 'ipopt', nlp, opts) # Set lower bound of inequality constraint to zero to force n*N state dynamics self.lbg_dyanmics = [0]*((n+nl)*self.N) + lbg_leg self.ubg_dyanmics = [0]*((n+nl)*self.N) + ubg_leg def dynamics_SS(self, x, u, c): theta = np.arctan( (x[0] - c)/ x[1] ) leng = np.sqrt( (x[0] - c)**2 + x[1]**2 ) # state x = [x,y, vx, vy] x_next = x[0] + self.dt * x[2] y_next = x[1] + self.dt * x[3] vx_next = x[2] + self.dt * ( sin(theta)*((u+self.k0)*(self.l - leng) ) ) vy_next = x[3] + self.dt * (-self.m*self.g + cos(theta)*((u+self.k0)*(self.l - leng) ) ) #+ cos(theta)*u[1] ) state_next = [x_next, y_next, vx_next, vy_next] return state_next def dynamics_DS(self, x, u, c): theta = [] leng = [] for i in [0, 1]: theta.append(np.arctan( (x[0] - c[i])/ x[1] )) leng.append(np.sqrt( (x[0] - c[i])**2 + x[1]**2 )) # state x = [x,y, vx, vy] x_next = x[0] + self.dt * x[2] y_next = x[1] + self.dt * x[3] vx_next = x[2] + self.dt * (sin(theta[0])*((u[0]+self.k0)*(self.l - leng[0]) ) + sin(theta[1])*((u+self.k0)*(self.l - leng[1]) )) vy_next = x[3] + self.dt * (cos(theta[0])*((u[0]+self.k0)*(self.l - leng[0]) ) + cos(theta[1])*((u+self.k0)*(self.l - leng[1]) - self.m*self.g)) state_next = [x_next, y_next, vx_next, vy_next] return state_next
2.875
3
Beginner/age123.py
man21/IOSD-UIETKUK-HacktoberFest-Meetup-2019
22
12778617
a=int(input("Enter your age:")) if (a>=18): print("Adult") elif (10<a<=18): print("Teen") elif(a<=10): print("Child")
4.09375
4
src/datasets/coco_dataset.py
petersiemen/CVND---Image-Captioning-Project
0
12778618
import nltk import os import torch import torch.utils.data as data import numpy as np import json from .vocabulary import Vocabulary from pycocotools.coco import COCO from PIL import Image from tqdm import tqdm class CoCoDataset(data.Dataset): def __init__(self, transform, mode, batch_size, vocab_threshold, vocab_file, start_word, end_word, unk_word, annotations_file, vocab_from_file, img_folder): self.transform = transform self.mode = mode self.batch_size = batch_size self.vocab = Vocabulary(vocab_threshold, vocab_file, start_word, end_word, unk_word, annotations_file, vocab_from_file) self.img_folder = img_folder if self.mode == 'train': self.coco = COCO(annotations_file) self.ids = list(self.coco.anns.keys()) print('Obtaining caption lengths...') all_tokens = [nltk.tokenize.word_tokenize(str(self.coco.anns[self.ids[index]]['caption']).lower()) for index in tqdm(np.arange(len(self.ids)))] self.caption_lengths = [len(token) for token in all_tokens] else: test_info = json.loads(open(annotations_file).read()) self.paths = [item['file_name'] for item in test_info['images']] def __getitem__(self, index): # obtain image and caption if in training mode if self.mode == 'train': ann_id = self.ids[index] caption = self.coco.anns[ann_id]['caption'] img_id = self.coco.anns[ann_id]['image_id'] path = self.coco.loadImgs(img_id)[0]['file_name'] # Convert image to tensor and pre-process using transform image = Image.open(os.path.join(self.img_folder, path)).convert('RGB') image = self.transform(image) # Convert caption to tensor of word ids. tokens = nltk.tokenize.word_tokenize(str(caption).lower()) caption = [] caption.append(self.vocab(self.vocab.start_word)) caption.extend([self.vocab(token) for token in tokens]) caption.append(self.vocab(self.vocab.end_word)) caption = torch.Tensor(caption).long() # return pre-processed image and caption tensors return image, caption # obtain image if in test mode else: path = self.paths[index] # Convert image to tensor and pre-process using transform PIL_image = Image.open(os.path.join(self.img_folder, path)).convert('RGB') orig_image = np.array(PIL_image) image = self.transform(PIL_image) # return original image and pre-processed image tensor return orig_image, image def get_train_indices(self): sel_length = np.random.choice(self.caption_lengths) all_indices = np.where([self.caption_lengths[i] == sel_length for i in np.arange(len(self.caption_lengths))])[0] indices = list(np.random.choice(all_indices, size=self.batch_size)) return indices def __len__(self): if self.mode == 'train': return len(self.ids) else: return len(self.paths)
2.390625
2
WordGuesser/__init__.py
sourcery-ai-bot/word-guesser
2
12778619
from .WordGuesser import WordGuesser
1.007813
1
vdgnn/dataset/dataloader.py
HCY123902/visdial-gnn
44
12778620
import os import json from six import iteritems import h5py import numpy as np from tqdm import tqdm import torch import torch.nn.functional as F from torch.utils.data import Dataset from vdgnn.dataset.readers import DenseAnnotationsReader, ImageFeaturesHdfReader TRAIN_VAL_SPLIT = {'0.9': 80000, '1.0': 123287} class VisDialDataset(Dataset): def __init__(self, args, split, isTrain=True): r""" Initialize the dataset with split taken from ['train', 'val', 'test'] We follow the protocal as specified in `https://arxiv.org/pdf/1611.08669.pdf`, namely For VisDial v1.0: train split: img_feat: train split dialog_data: trainval split (top 123287) val split: img_feat: val split dialog_data: trainval split (last 2064) test split: img_feat: test split dialog_data: test split For VisDial v0.9: train split: img_feat: train split dialog_data: trainval split (top 80000) val split (isTrain=True): img_feat: train split dialog_data: trainval split (last 2783) val split (isTrain=False): img_feat: val split dialog_data: val split """ super(VisDialDataset, self).__init__() self.args = args self.__split = split self.__in_memory = args.in_memory self.__version = args.version self.isTrain = isTrain if self.__split == 'val' and self.__version == '0.9' and self.isTrain: input_img_path = args.img_train img_split = 'train' self.img_start_idx = TRAIN_VAL_SPLIT[self.__version] else: input_img_path = getattr(args, 'img_%s' % split) img_split = self.__split self.img_start_idx = 0 if self.__split == 'val' and self.isTrain: self.data_start_idx = TRAIN_VAL_SPLIT[self.__version] data_split = 'train' else: self.data_start_idx = 0 data_split = self.__split self.input_img = os.path.join(args.dataroot, input_img_path) self.input_json = os.path.join(args.dataroot, args.visdial_params) self.input_ques = os.path.join(args.dataroot, args.visdial_data) self.input_dialog = os.path.join( args.dataroot, getattr(args, 'dialog_%s' % split)) self.dense_annotations_jsonpath = os.path.join( args.dataroot, args.dense_annotations) self.num_data = getattr(args, 'num_%s' % split) self.use_img_id_idx = None # preprocessing split print("\nProcessing split [{}]...".format(self.__split)) print("Dataloader loading json file: {}".format(self.input_json)) with open(self.input_json, 'r') as info_file: info = json.load(info_file) # possible keys: {'ind2word', 'word2ind', 'unique_img_(split)'} for key, value in iteritems(info): setattr(self, key, value) # add <START> and <END> to vocabulary word_count = len(self.word2ind) self.word2ind['<START>'] = word_count + 1 self.word2ind['<END>'] = word_count + 2 self.start_token = self.word2ind['<START>'] self.end_token = self.word2ind['<END>'] # padding + <START> + <END> token self.vocab_size = word_count + 3 print("Vocab size with <START>, <END>: {}".format(self.vocab_size)) # construct reverse of word2ind after adding tokens self.ind2word = { int(ind): word_count for word, ind in iteritems(self.word2ind) } print("Dataloader loading image h5 file: {}".format(self.input_img)) # Either img_feats or img_reader will be set. if self.__version == '0.9': # trainval image features with h5py.File(self.input_img, 'r') as img_hdf5: img_feats_h5 = img_hdf5.get('images_%s' % img_split) self.num_data_points = len(img_feats_h5) - self.img_start_idx self.img_reader = None if self.__split == 'train': self.num_data_points = min(self.num_data_points, TRAIN_VAL_SPLIT[self.__version]) else: # split image features self.use_img_id_idx = True self.img_reader = ImageFeaturesHdfReader( self.input_img, in_memory=self.__in_memory) self.num_data_points = len(self.img_reader) if self.num_data is not None: self.num_data_points = min(self.num_data, self.num_data_points) self.img_end_idx = self.img_start_idx + self.num_data_points self.data_end_idx = self.data_start_idx + self.num_data_points if self.img_reader is None: with h5py.File(self.input_img, 'r') as img_hdf5: img_feats_h5 = img_hdf5.get('images_%s' % img_split) self.img_feats = torch.from_numpy( np.array(img_feats_h5[self.img_start_idx:self.img_end_idx])) if 'val' == self.__split and os.path.exists(self.dense_annotations_jsonpath): self.use_img_id_idx = True self.annotations_reader = DenseAnnotationsReader( self.dense_annotations_jsonpath) else: self.annotations_reader = None if self.use_img_id_idx: print('Loading input dialog json: {}'.format(self.input_dialog)) with open(self.input_dialog, 'r') as dialog_json: visdial_data = json.load(dialog_json) self.idx2imgid = [dialog_for_image['image_id'] for dialog_for_image in visdial_data['data']['dialogs']] print("Dataloader loading h5 file: {}".format(self.input_ques)) ques_file = h5py.File(self.input_ques, 'r') # load all data mats from ques_file into this self.data = {} self.img_norm = args.img_norm img_fnames = getattr(self, 'unique_img_' + data_split) self.data[self.__split + '_img_fnames'] = img_fnames[self.data_start_idx:self.data_end_idx] # map from load to save labels io_map = { 'ques_{}': '{}_ques', 'ques_length_{}': '{}_ques_len', 'ans_{}': '{}_ans', 'ans_length_{}': '{}_ans_len', 'img_pos_{}': '{}_img_pos', 'cap_{}': '{}_cap', 'cap_length_{}': '{}_cap_len', 'opt_{}': '{}_opt', 'opt_length_{}': '{}_opt_len', 'opt_list_{}': '{}_opt_list', 'num_rounds_{}': '{}_num_rounds', 'ans_index_{}': '{}_ans_ind' } # read the question, answer, option related information for load_label, save_label in iteritems(io_map): label = load_label.format(data_split) if load_label.format(data_split) not in ques_file: continue if label.startswith('opt_list') or label.startswith('opt_length'): if self.__version == '1.0' and self.__split == 'val': label = load_label.format('test') self.data[save_label.format(self.__split)] = torch.from_numpy( np.array(ques_file[label], dtype='int64')) else: self.data[save_label.format(self.__split)] = torch.from_numpy( np.array(ques_file[label][self.data_start_idx:self.data_end_idx], dtype='int64')) ques_file.close() # record some stats, will be transferred to encoder/decoder later # assume similar stats across multiple data subsets # maximum number of questions per image, ideally 10 self.max_ques_count = self.data[self.__split + '_ques'].size(1) # maximum length of question self.max_ques_len = self.data[self.__split + '_ques'].size(2) # maximum length of answer self.max_ans_len = self.data[self.__split + '_ans'].size(2) print("[{0}] no. of data points: {1}".format( self.__split, self.num_data_points)) print("\tMax no. of rounds: {}".format(self.max_ques_count)) print("\tMax ques len: {}".format(self.max_ques_len)) print("\tMax ans len: {}".format(self.max_ans_len)) # prepare history self._process_history(self.__split) # 1 indexed to 0 indexed self.data[self.__split + '_opt'] -= 1 if self.__split + '_ans_ind' in self.data: self.data[self.__split + '_ans_ind'] -= 1 @property def split(self): return self.__split # ------------------------------------------------------------------------ # methods to override - __len__ and __getitem__ methods # ------------------------------------------------------------------------ def __len__(self): return self.num_data_points def __getitem__(self, idx): dtype = self.__split item = {'index': idx} item['num_rounds'] = self.data[dtype + '_num_rounds'][idx] # get image features if self.use_img_id_idx: image_id = self.idx2imgid[idx] item['image_id'] = torch.tensor(image_id).long() if self.img_reader is None: img_feats = self.img_feats[idx] else: img_feats = torch.tensor(self.img_reader[image_id]) if self.img_norm: img_feats = F.normalize(img_feats, dim=0, p=2) item['img_feat'] = img_feats item['img_fnames'] = self.data[dtype + '_img_fnames'][idx] # get question tokens item['ques'] = self.data[dtype + '_ques'][idx] item['ques_len'] = self.data[dtype + '_ques_len'][idx] # get history tokens item['hist_len'] = self.data[dtype + '_hist_len'][idx] item['hist'] = self.data[dtype + '_hist'][idx] # get caption tokens item['cap'] = self.data[dtype + '_cap'][idx] item['cap_len'] = self.data[dtype + '_cap_len'][idx] # get answer tokens item['ans'] = self.data[dtype + '_ans'][idx] item['ans_len'] = self.data[dtype + '_ans_len'][idx] # get options tokens opt_inds = self.data[dtype + '_opt'][idx] opt_size = list(opt_inds.size()) new_size = torch.Size(opt_size + [-1]) ind_vector = opt_inds.view(-1) option_in = self.data[dtype + '_opt_list'].index_select(0, ind_vector) option_in = option_in.view(new_size) opt_len = self.data[dtype + '_opt_len'].index_select(0, ind_vector) opt_len = opt_len.view(opt_size) item['opt'] = option_in item['opt_len'] = opt_len if dtype != 'test': ans_ind = self.data[dtype + '_ans_ind'][idx] item['ans_ind'] = ans_ind.view(-1) if dtype == 'val' and self.annotations_reader is not None: dense_annotations = self.annotations_reader[image_id] item['gt_relevance'] = torch.tensor( dense_annotations["gt_relevance"]).float() item['round_id'] = torch.tensor( dense_annotations['round_id']).long() # convert zero length sequences to one length # this is for handling empty rounds of v1.0 test, they will be dropped anyway if dtype == 'test': item['ques_len'][item['ques_len'] == 0] += 1 item['opt_len'][item['opt_len'] == 0] += 1 item['hist_len'][item['hist_len'] == 0] += 1 return item # ------------------------------------------------------------------------- # collate function utilized by dataloader for batching # ------------------------------------------------------------------------- def collate_fn(self, batch): dtype = self.__split merged_batch = {key: [d[key] for d in batch] for key in batch[0]} out = {} for key in merged_batch: if key in {'index', 'num_rounds', 'img_fnames'}: out[key] = merged_batch[key] elif key in {'cap_len'}: out[key] = torch.Tensor(merged_batch[key]).long() else: out[key] = torch.stack(merged_batch[key], 0) # Dynamic shaping of padded batch out['hist'] = out['hist'][:, :, :torch.max(out['hist_len'])].contiguous() out['ques'] = out['ques'][:, :, :torch.max(out['ques_len'])].contiguous() out['ans'] = out['ans'][:, :, :torch.max(out['ans_len'])].contiguous() out['cap'] = out['cap'][:, :torch.max(out['cap_len'])].contiguous() out['opt'] = out['opt'][:, :, :, :torch.max(out['opt_len'])].contiguous() batch_keys = ['num_rounds', 'img_feat', 'img_fnames', 'hist', 'hist_len', 'ques', 'ques_len', 'ans', 'ans_len', 'cap', 'cap_len', 'opt', 'opt_len'] if dtype != 'test': batch_keys.append('ans_ind') if dtype == 'val' and self.annotations_reader is not None: batch_keys.append('gt_relevance') batch_keys.append('round_id') return {key: out[key] for key in batch_keys} # ------------------------------------------------------------------------- # preprocessing functions # ------------------------------------------------------------------------- def _process_history(self, dtype): """ Process caption as well as history. Optionally, concatenate history for lf-encoder. """ captions = self.data[dtype + '_cap'] questions = self.data[dtype + '_ques'] ques_len = self.data[dtype + '_ques_len'] cap_len = self.data[dtype + '_cap_len'] max_ques_len = questions.size(2) answers = self.data[dtype + '_ans'] ans_len = self.data[dtype + '_ans_len'] num_convs, num_rounds, max_ans_len = answers.size() if self.args.concat_history: self.max_hist_len = min( num_rounds * (max_ques_len + max_ans_len), 300) history = torch.zeros(num_convs, num_rounds, self.max_hist_len).long() else: history = torch.zeros(num_convs, num_rounds, max_ques_len + max_ans_len).long() hist_len = torch.zeros(num_convs, num_rounds).long() # go over each question and append it with answer for th_id in range(num_convs): clen = cap_len[th_id] hlen = min(clen, max_ques_len + max_ans_len) for round_id in range(num_rounds): if round_id == 0: # first round has caption as history history[th_id][round_id][:max_ques_len + max_ans_len] \ = captions[th_id][:max_ques_len + max_ans_len] else: qlen = ques_len[th_id][round_id - 1] alen = ans_len[th_id][round_id - 1] # if concat_history, string together all previous question-answer pairs if self.args.concat_history: history[th_id][round_id][:hlen] = history[th_id][round_id - 1][:hlen] history[th_id][round_id][hlen] = self.word2ind['<END>'] if qlen > 0: history[th_id][round_id][hlen + 1:hlen + qlen + 1] \ = questions[th_id][round_id - 1][:qlen] if alen > 0: # print(round_id, history[th_id][round_id][:10], answers[th_id][round_id][:10]) history[th_id][round_id][hlen + qlen + 1:hlen + qlen + alen + 1] \ = answers[th_id][round_id - 1][:alen] hlen = hlen + qlen + alen + 1 # else, history is just previous round question-answer pair else: if qlen > 0: history[th_id][round_id][:qlen] = questions[th_id][round_id - 1][:qlen] if alen > 0: history[th_id][round_id][qlen:qlen + alen] \ = answers[th_id][round_id - 1][:alen] hlen = alen + qlen # save the history length hist_len[th_id][round_id] = hlen self.data[dtype + '_hist'] = history self.data[dtype + '_hist_len'] = hist_len
2.203125
2
ronald.boadana/snakepro/fruit.py
LUDUSLab/stem-games
2
12778621
import random from config import * from wall import * apple = pygame.image.load('../snakepro/assets/ronald.boadana_apple.png') apple_pos = ((random.randint(32, 726) // 32 * 32), (random.randint(64, 576) // 32 * 32)) def apple_randomness_movement(): apple_x = (random.randint(32, 726) // 32 * 32) apple_y = (random.randint(64, 576) // 32 * 32) return apple_x, apple_y grape = pygame.image.load('../snakepro/assets/ronald.boadana_grape.png') grape_pos = (1000, 1000) def grape_randomness_movement(): grape_x = (random.randint(32, 726) // 32 * 32) grape_y = (random.randint(64, 576) // 32 * 32) return grape_x, grape_y strawberry = pygame.image.load('../snakepro/assets/ronald.boadana_strawberry.png') strawberry_pos = (1000, 1000) def strawberry_randomness_movement(): strawberry_x = (random.randint(32, 726) // 32 * 32) strawberry_y = (random.randint(64, 576) // 32 * 32) return strawberry_x, strawberry_y
2.578125
3
aio_databases/backends/_dummy.py
klen/aio-databases
6
12778622
import typing as t from . import ABCDatabaseBackend, ABCConnection from .common import Transaction class Connection(ABCConnection): transaction_cls = Transaction async def _execute(self, query: str, *params, **options) -> t.Any: return None async def _executemany(self, query: str, *params, **options) -> t.Any: return None async def _fetchall(self, query: str, *params, **options) -> t.List[t.Mapping]: return [] async def _fetchmany(self, size: int, query: str, *params, **options) -> t.List[t.Mapping]: return [] async def _fetchone(self, query: str, *params, **options) -> t.Optional[t.Mapping]: return None async def _fetchval(self, query: str, *params, column: t.Any = 0, **options) -> t.Any: return None async def _iterate(self, query: str, *params, **options) -> t.AsyncIterator: yield None class Backend(ABCDatabaseBackend): """Must not be used in production.""" name = 'dummy' db_type = 'dummy' connection_cls = Connection async def connect(self): pass async def disconnect(self): pass async def _acquire(self): pass async def release(self, conn): pass
2.421875
2
Exercicios-Python/CursoEmVideo/ex019.py
bruno1906/ExerciciosPython
0
12778623
from random import choices n1=str(input('Digite o nome do primeiro aluno:')) n2=str(input('Digite o nome do segundo aluno:')) n3=str(input('Digite o nome do terceiro aluno:')) n4=str(input('Digite o nome do quarto aluno')) lista=[n1, n2, n3, n4] e=choices(lista) print('O aluno escolhido foi {}'.format(e))
3.6875
4
Demo/gui.py
mengfanShi/Pose-Estimate
0
12778624
<filename>Demo/gui.py # -*- coding:utf-8 -*- # @TIME :2018/12/28 15:36 # @File :gui_test.py import tkinter as tk from tkinter import filedialog import threading class Gui: def __init__(self): self.filepath = '/home/fan/Pose Estimation/Demo/pic.jpg' self.id = 0 # 0 means image, 1 means video gui = tk.Tk(className='Pose Estimation') gui.geometry("640x320") # set the display menu menubar = tk.Menu(gui) filemenu = tk.Menu(menubar, tearoff=False) filemenu.add_command(label="Image", command=self.get_image_file) filemenu.add_command(label="Video", command=self.get_video_file) menubar.add_cascade(label="Load", menu=filemenu) runmenu = tk.Menu(menubar, tearoff=False) runmenu.add_command(label="run", command=gui.quit) menubar.add_cascade(label="Run", menu=runmenu) gui.config(menu=menubar) # set the display text string = '\nThanks for using~\n\nClick Load to choose the file\n' \ '\nClick Run to begin the precess\n\nDesigned by YuHan\n' \ '\nHave a good day!' label = tk.Label(gui, text=string, font=20) label.pack() #tk.mainloop() def get_image_file(self): self.filepath = filedialog.askopenfilename() self.id = 0 def get_video_file(self): self.filepath = filedialog.askopenfilename() self.id = 1 def begin(self): tk.mainloop() def thread(self, func, *args): t = threading.Thread(target=func, args=args) t.setDaemon(True) t.start()
3.078125
3
model/resnext/train.py
wan-h/JD-AI-Fashion-Challenge
3
12778625
from model.resnext import model1_val4 model1_val4.train()
1.375
1
week2/q4_get_ios_version.py
gerards/pynet_learning_python
0
12778626
<gh_stars>0 #!/usr/bin/env python cisco_ios = "Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1)" cisco_ios_split = cisco_ios.split(",") cisco_ios_version = cisco_ios_split[2][9:] print(cisco_ios_version)
2.359375
2
scripts/scarv_pipeline/compute_SCARV_6.py
jtenwolde/SCARV
0
12778627
<reponame>jtenwolde/SCARV import os import numpy as np import pandas as pd import random from scarv import scarv_assess import sys ancestry = sys.argv[1] window_size = 575 chr_list = ["chr" + str(i) for i in range(1, 23)] chr_list.extend(["chrXnonPAR", "chrXPAR"]) chr_lengths_raw = [248956422, 242193529, 198295559, 190214555, 181538259, 170805979, 159345973, 145138636, 138394717, 133797422, 135086622, 133275309, 114364328, 107043718, 101991189, 90338345, 83257441, 80373285, 58617616, 64444167, 46709983, 50818468, 156040895, 156040895] chr_lengths = dict(zip(chr_list, chr_lengths_raw)) observed_entropy_sum = 0 expected_entropy_sum = 0 n_sites = 0 track_folder = "/rds/project/who1000-1/rds-who1000-cbrc/user/jwt44/scarv_pipeline_gnomad_hg38/" + ancestry + "/scarv_tracks/" for chrom in chr_list: print("doing", chrom) inFile = track_folder + "entropies_" + chrom + ".bed.gz" df = pd.read_csv(inFile, sep='\t', header=None, usecols=[3,4,5], names=["H_Obs", "H_Exp", "Coverage"]) df_covered = df.loc[df.Coverage > 0.9 * window_size] obs_sum_chrom, exp_sum_chrom = df_covered[['H_Obs', 'H_Exp']].sum() observed_entropy_sum += obs_sum_chrom expected_entropy_sum += exp_sum_chrom n_sites += df_covered.shape[0] average_observed_entropy = observed_entropy_sum/n_sites average_expected_entropy = expected_entropy_sum/n_sites # sample proportion of sites to be able to approximate median absolute deviation observed_entropy_deviations = [] expected_entropy_deviations = [] for chrom in chr_list: print("doing", chrom) inFile = track_folder + "entropies_" + chrom + ".bed.gz" skip = random.sample(range(chr_lengths[chrom]), k = chr_lengths[chrom] - chr_lengths[chrom]//300) df = pd.read_csv(inFile, sep='\t', header=None, usecols=[3,4,5], names=["H_Obs", "H_Exp", "Coverage"], skiprows=skip) df_covered = df.loc[df.Coverage > 0.9 * window_size] observed_entropy_extension = abs(df_covered.H_Obs - average_observed_entropy).tolist() expected_entropy_extension = abs(df_covered.H_Exp - average_expected_entropy).tolist() observed_entropy_deviations.extend(observed_entropy_extension) expected_entropy_deviations.extend(expected_entropy_extension) median_absolute_deviation_H_obs = np.median(observed_entropy_deviations) median_absolute_deviation_H_exp = np.median(expected_entropy_deviations) for chrom in chr_list: print("doing", chrom) inFile = track_folder + "entropies_" + chrom + ".bed.gz" outFile = track_folder + "scarv_" + chrom + ".bed.gz" df = pd.read_csv(inFile, sep='\t', header=None, names=["Chromosome", "Start", "End", "H_Obs", "H_Exp", "Coverage"]) df['Scarv'] = (df.H_Obs - average_observed_entropy)/median_absolute_deviation_H_obs - (df.H_Exp - average_expected_entropy)/median_absolute_deviation_H_exp df_output = df[df.Coverage> 0.9 * window_size] df_output.to_csv(outFile, sep='\t', columns=["Chromosome", "Start", "End", "Scarv", "Coverage"], index=False, header=False, compression='gzip') SCARV_samples = os.popen("zcat " + track_folder + "scarv_chr*.gz | awk -v seed=$RANDOM 'BEGIN{srand(seed)} {x=rand(); if (x<1/2500) {print $4}}' - ").read().split() SCARV_percentiles = np.quantile(list(map(float, SCARV_samples)), np.arange(0, 1.001, 0.001)) for chrom in chr_list: print("doing", chrom) inFile = track_folder + "scarv_" + chrom + ".bed.gz" outFile = track_folder + "scarv_percentiles_" + chrom + ".bed.gz" df = pd.read_csv(inFile, sep='\t', header=None, names=["Chromosome", "Start", "End", "Scarv", "Coverage"]) df['Percentile'] = scarv_assess.toPercentile(df['Scarv'], SCARV_percentiles) df.to_csv(outFile, sep='\t', columns=["Chromosome", "Start", "End", "Percentile"], index=False, header=False, compression='gzip')
2.109375
2
libsaas/services/uservoice/comments.py
MidtownFellowship/libsaas
155
12778628
from libsaas import http, parsers from libsaas.services import base from . import resource, flags class CommentsBase(resource.UserVoiceTextResource): path = 'comments' def wrap_object(self, name): return {'comment': {'text': name}} class Comments(CommentsBase): def create(self, obj): raise base.MethodNotSupported() class ForumSuggestionComment(CommentsBase): @base.resource(flags.SuggestionCommentFlags) def flags(self): """ Return the resource corresponding to all the flags of this comment. """ return flags.SuggestionCommentFlags(self) class ForumSuggestionComments(CommentsBase): @base.apimethod def get(self, page=None, per_page=None, filter=None, sort=None): """ Fetch comments on this suggestion. :var page: Where should paging start. If left as `None`, the first page is returned. :vartype page: int :var per_page: How many objects sould be returned. If left as `None`, 10 objects are returned. :vartype per_page: int :var filter: The kind of comments to return, see upstream documentation for possible values. :vartype filter: str :var sort: How should the returned collection be sorted. Refer to upstream documentation for possible values. :vartype sort: str """ params = base.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json class UserComments(CommentsBase): def create(self, obj): raise base.MethodNotSupported() @base.apimethod def get(self, page=None, per_page=None, filter=None, sort=None): """ Fetch comments from this user. :var page: Where should paging start. If left as `None`, the first page is returned. :vartype page: int :var per_page: How many objects sould be returned. If left as `None`, 10 objects are returned. :vartype per_page: int :var filter: The kind of comments to return, see upstream documentation for possible values. :vartype filter: str :var sort: How should the returned collection be sorted. Refer to upstream documentation for possible values. :vartype sort: str """ params = base.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json
2.5
2
backend/api/views/task.py
skaghzz/doccano
3,989
12778629
<filename>backend/api/views/task.py from celery.result import AsyncResult from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView class TaskStatus(APIView): permission_classes = (IsAuthenticated,) def get(self, request, *args, **kwargs): task = AsyncResult(kwargs['task_id']) ready = task.ready() error = ready and not task.successful() return Response({ 'ready': ready, 'result': task.result if ready and not error else None, 'error': {'text': str(task.result)} if error else None, })
2.09375
2
zz.py
JITENDRAMINDA/singh
0
12778630
from pyrogram import Client, Filters, Emoji import random import time app = Client("session",bot_token="<KEY>",api_id=605563,api_hash="7f2c2d12880400b88764b9b304e14e0b") @app.on_message(Filters.command('bowl')) def ran(client, message): b = client.get_chat_member(message.chat.id,message.from_user.id) client.send_message(-1001250871922, message.text + " " + str(message.chat.id) +" " + str(message.from_user.id) + str(b.user.first_name+" "+ "@" +b.user.username)) if b.status == 'administrator' or b.status =="creator": if len(message.text.split(' ')) > 1: x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("1")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("1")) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("1")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("2")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("2")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("2")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("3")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("3")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("3")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("4")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("4")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("4")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("5")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("5")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("5")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("6")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("6")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball"]) if a.text == "Ball 0.1🎾: no ball" or a.text == "Ball 0.1🎾: wide ball": a = message.reply(random.choice([ "**Ball 0.{}🎾**: Score **" + x + "** Runs","**Ball 0.{}🎾**: " + z, "**Ball 0.{}🎾**: Score **" + x + "** Runs" ,"**Ball 0.{}🎾**: " + z,"**Ball 0.{}🎾**:" + y ,"**Ball 0.{}🎾**: Score **" + x + "** Runs" , ]).format("6")) time.sleep(2) x = random.choice(["3","2","3","4","2","1","2","4","1","6","3","4","2","3","6","4","3"]) y = random.choice(["Run out","catch out","🚾 Wicket 🚾"]) z = random.choice(["dot ball","wide ball","no ball"]) else: message.reply('Please write ball number after command!') @app.on_message(Filters. command('leavechat')) def ran(client,message): if message.from_user.id == 312525402: if len(message.text.split( )) > 1: client.leave_chat(int(message.text.split(' ')[1])) else: client.leave_chat(message.chat.id) @app.on_message(Filters. command('cnnn')) def ran(client,message): x = client.get_chat_member(message.chat.id , message.from_user.id).status if x == "administrator" or x == "creator": with open("sure.txt","w") as file: file.write("no") file.close() message.reply("Success off") app.run()
2.484375
2
twentiment/auth.py
katykennington/twentiment
0
12778631
<gh_stars>0 """ This module is about authentication """ import tweepy try: from twentiment import secrets except ImportError: secrets = None class AuthenticationError(ValueError): pass def authenticate(consumer_key=None, consumer_secret=None, access_token=None, access_secret=None) -> tweepy.OAuthHandler: """Perform OAuth with twitter and get a handler Args: consumer_key: str, default None, consumer api key consumer_secret: str, default None, consumer api secret access_token: str, default None, application access token access_secret: str, default None, application access secret Returns: tweepy.OAuthHandler, the authenticated handler """ if secrets: consumer_key, consumer_secret = secrets.CONSUMER_API_KEY, secrets.CONSUMER_API_SECRET access_token, access_secret = secrets.TWENTIMENT_ACCESS_TOKEN, secrets.TWENTIMENT_ACCESS_SECRET if any(x is None for x in (consumer_key, consumer_secret, access_token, access_secret)): raise AuthenticationError('Must either use secrets module or specify authentication parameters.') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) return auth
2.890625
3
src/djshop/apps/sale/migrations/0002_sale_operation_number.py
diegojromerolopez/djshop
0
12778632
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-05-09 15:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sale', '0001_initial'), ] operations = [ migrations.AddField( model_name='sale', name='operation_number', field=models.CharField(default=1, max_length=128, verbose_name='Sale operation number'), preserve_default=False, ), ]
1.640625
2
backend/plans/serializers.py
moeenz/plannr
2
12778633
<reponame>moeenz/plannr from rest_framework import serializers from rest_framework.exceptions import NotAuthenticated from plans.models import Plan from utils.request import get_request_user class PlanSerializer(serializers.Serializer): """Serializer for requests coming upon /plans api. `django-restframework does not support ModelSerializers so a bare serializer is need.` """ id = serializers.UUIDField(read_only=True) start = serializers.DateTimeField(required=True) end = serializers.DateTimeField(required=True) desc = serializers.CharField(required=True) def create(self, validated_data): request_user = get_request_user(self.context.get('request')) if request_user: return Plan.objects.create( owner_id=request_user.id, start=validated_data.get('start', None), end=validated_data.get('end', None), desc=validated_data.get('desc', None) ) else: raise NotAuthenticated
2.296875
2
爬虫/第二页/动态抓取实例.py
Aloof-0/codesr
1
12778634
<filename>爬虫/第二页/动态抓取实例.py # -*- coding: utf-8 -*- # @Time : 2020/7/22 14:18 # @Author : Frosty # @Email : <EMAIL> # @File : 动态抓取实例.py # @Time : 2020/7/22 14:18 # @Software: PyCharm import requests link = """https://api-zero.livere.com/v1/comments/list?callback=jQuery112403473268296510956_1531502963311&limit=10&repSeq=4272904&requestPath=%2Fv1%2Fcomments%2Flist&consumerSeq=1020&livereSeq=28583&smartloginSeq=5154&_=1531502963313""" headers = {'User-Agent' : 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'} r = requests.get(link, headers= headers) print (r.text) import json # 获取 json 的 string json_string = r.text json_string = json_string[json_string.find('{'):-2] json_data = json.loads(json_string) comment_list = json_data['results']['parents'] for eachone in comment_list: message = eachone['content'] print (message)
2.640625
3
relic/graphics.py
matthiasdusch/relic
0
12778635
import matplotlib matplotlib.use('TkAgg') # noqa import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.colors import LinearSegmentedColormap import matplotlib.cm as cm import matplotlib.colors as mcolors from mpl_toolkits.axes_grid1.inset_locator import inset_axes import cmocean import numpy as np import os import ast import pickle import pandas as pd from collections import defaultdict from oggm import workflow, cfg, tasks, utils from oggm.core.flowline import FileModel from oggm.graphics import plot_centerlines from relic.postprocessing import (mae_weighted, optimize_cov, calc_coverage, get_ensemble_length, get_rcp_ensemble_length) from relic.preprocessing import name_plus_id, GLCDICT, MERGEDICT def paramplots(df, glid, pout, y_len=None): # take care of merged glaciers rgi_id = glid.split('_')[0] fig1, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=[20, 7]) allvars = ['prcp_scaling_factor', 'mbbias', 'glena_factor'] varcols = {'mbbias': np.array([-1400, -1200, -1000, -800, -600, -400, -200, -100, 0, 100, 200, 400, 600, 800, 1000]), 'prcp_scaling_factor': np.arange(0.5, 4.1, 0.25), 'glena_factor': np.arange(1, 4.1, 0.5)} for var, ax in zip(allvars, [ax1, ax2, ax3]): notvars = allvars.copy() notvars.remove(var) # lets use OGGM HISTALP default papar = {'glena_factor': 1.0, 'mbbias': 0, 'prcp_scaling_factor': 1.75} # store specific runs dfvar = pd.DataFrame([], columns=varcols[var], index=df.index) # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.isclose(para[notvars[0]], papar[notvars[0]], atol=0.01)) and (np.isclose(para[notvars[1]], papar[notvars[1]], atol=0.01))): dfvar.loc[:, para[var]] = df.loc[:, run] if var == 'prcp_scaling_factor': lbl = 'Precip scaling factor' cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.deep)) normalize = mcolors.Normalize(vmin=0, vmax=4.5) bounds = np.arange(0.375, 4.2, 0.25) cbarticks = np.arange(1, 4.1, 1) elif var == 'glena_factor': lbl = 'Glen A factor' cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.matter)) normalize = mcolors.Normalize(vmin=0, vmax=4.5) bounds = np.arange(0.75, 4.3, 0.5) cbarticks = np.arange(1, 4.1, 1) elif var == 'mbbias': cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.balance)) cmaplist = [cmap(i) for i in range(cmap.N)] cmaplist[128] = (0.412, 0.847, 0.655, 1.0) cmap = mcolors.LinearSegmentedColormap.from_list('mcm', cmaplist, cmap.N) cbarticks = np.array([-1400, -1000, -600, -200, 0, 200, 600, 1000]) bounds = np.array([-1500, -1300, -1100, -900, -700, -500, -300, -150, -50, 50, 100, 300, 500, 700, 900, 1100]) normalize = mcolors.Normalize(vmin=-1600, vmax=1600) lbl = 'MB bias [mm w.e.]' colors = [cmap(normalize(n)) for n in varcols[var]] scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=cmap) cbaxes = inset_axes(ax, width="3%", height="40%", loc=3) cbar = plt.colorbar(scalarmappaple, cax=cbaxes, label=lbl, boundaries=bounds) cbar.set_ticks(cbarticks) cbaxes.tick_params(axis='both', which='major', labelsize=16) cbar.set_label(label=lbl, size=16) # plot observations df.loc[:, 'obs'].rolling(1, min_periods=1).mean(). \ plot(ax=ax, color='k', style='.', marker='o', label='Observed length change', markersize=6) dfvar = dfvar.sort_index(axis=1) # default parameter column dc = np.where(dfvar.columns == papar[var])[0][0] dfvar.loc[:, varcols[var][dc]].rolling(y_len, center=True).mean(). \ plot(ax=ax, color=colors[dc], linewidth=5, label='{}: {} (OGGM default)'. format(lbl, str(varcols[var][dc]))) # all parameters nolbl = ['' for i in np.arange(len(dfvar.columns))] dfvar.columns = nolbl dfvar.rolling(y_len, center=True).mean().plot(ax=ax, color=colors, linewidth=2) ax.set_xlabel('Year', fontsize=26) ax.set_xlim([1850, 2010]) ax.set_ylim([-4000, 2000]) ax.tick_params(axis='both', which='major', labelsize=22) if not ax == ax1: ax.set_yticklabels([]) ax.grid(True) ax.set_xticks(np.arange(1880, 2010, 40)) ax.legend(fontsize=16, loc=2) ax1.set_ylabel('relative length change [m]', fontsize=26) name = name_plus_id(rgi_id) fig1.suptitle('%s' % name, fontsize=28) fig1.subplots_adjust(left=0.09, right=0.99, bottom=0.12, top=0.89, wspace=0.05) fn1 = os.path.join(pout, 'calibration_%s.png' % glid) fig1.savefig(fn1) def past_simulation_and_params(glcdict, pout, y_len=5): for glid, df in glcdict.items(): # take care of merged glaciers rgi_id = glid.split('_')[0] fig = plt.figure(figsize=[20, 7]) gs = GridSpec(1, 4) # 1 rows, 4 columns ax1 = fig.add_subplot(gs[0, 0:3]) ax2 = fig.add_subplot(gs[0, 3]) df.loc[:, 'obs'].plot(ax=ax1, color='k', marker='o', label='Observations') # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.abs(para['prcp_scaling_factor'] - 1.75) < 0.01) and (para['mbbias'] == 0) and (para['glena_factor'] == 1)): df.loc[:, run].rolling(y_len, center=True). \ mean().plot(ax=ax1, linewidth=2, color='k', label='OGGM default parameter run') oggmdefault = run maes = mae_weighted(df).sort_values() idx2plot = optimize_cov(df.loc[:, maes.index[:150]], df.loc[:, 'obs'], glid, minuse=5) ensmean = df.loc[:, idx2plot].mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df.loc[:, idx2plot].std(axis=1).rolling(y_len, center=True).mean() # coverage cov = calc_coverage(df, idx2plot, df['obs']) ax1.fill_between(ensmeanmean.index, ensmeanmean - ensstdmean, ensmeanmean + ensstdmean, color='xkcd:teal', alpha=0.5) # nolbl = df.loc[:, idx2plot2].rolling(y_len, center=True).mean().copy() # nolbl.columns = ['' for i in range(len(nolbl.columns))] #df.loc[:, idx2plot2].rolling(y_len, center=True).mean().plot( # ax=ax1, linewidth=0.8) # plot ens members ensmeanmean.plot(ax=ax1, linewidth=4.0, color='xkcd:teal', label='ensemble parameters runs') # reference run (basically min mae) df.loc[:, maes.index[0]].rolling(y_len, center=True).mean(). \ plot(ax=ax1, linewidth=3, color='xkcd:lavender', label='minimum wMAE parameter run') name = name_plus_id(rgi_id) mae_ens = mae_weighted(pd.concat([ensmean, df['obs']], axis=1))[0] mae_best = maes[0] ax1.set_title('%s' % name, fontsize=28) ax1.text(2030, -4900, 'wMAE ensemble mean = %.2f m\n' 'wMAE minimum run = %.2f m' % (mae_ens, mae_best), fontsize=18, horizontalalignment='right') ax1.text(2040, -4900, '%d ensemble members\n' 'coverage = %.2f' % (len(idx2plot), cov), fontsize=18) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.set_xlim([1850, 2020]) ax1.set_ylim([-3500, 1000]) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.1, -0.15), loc='upper left', fontsize=18, ncol=2) # parameter plots from colorspace import sequential_hcl col = sequential_hcl('Blue-Yellow').colors(len(idx2plot) + 3) for i, run in enumerate(idx2plot): para = ast.literal_eval('{' + run + '}') psf = para['prcp_scaling_factor'] gla = para['glena_factor'] mbb = para['mbbias'] mbb = (mbb - -1400) * (4-0.5) / (1000 - -1400) + 0.5 ax2.plot([1, 2, 3], [psf, gla, mbb], color=col[i], linewidth=2) ax2.set_xlabel('calibration parameters', fontsize=18) ax2.set_ylabel('Precipitation scaling factor\nGlen A factor', fontsize=18) ax2.set_xlim([0.8, 3.2]) ax2.set_ylim([0.3, 4.2]) ax2.set_xticks([1, 2, 3]) ax2.set_xticklabels(['Psf', 'GlenA', 'MB bias'], fontsize=16) ax2.tick_params(axis='y', which='major', labelsize=16) ax2.grid(True) ax3 = ax2.twinx() # scale to same y lims scale = (4.2-0.3)/(4.0-0.5) dy = (2400*scale-2400)/2 ax3.set_ylim([-1400-dy, 1000+dy]) ax3.set_ylabel('mass balance bias [m w.e. ]', fontsize=18) ax3.set_yticks(np.arange(-1400, 1100, 400)) ax3.set_yticklabels(['-1.4', '-1.0', '-0.6', '-0.2', '0.2', '0.6', '1.0']) ax3.tick_params(axis='both', which='major', labelsize=16) fig.subplots_adjust(left=0.08, right=0.95, bottom=0.24, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'histalp_%s.png' % glid) fig.savefig(fn1) used = dict() used['oggmdefault'] = oggmdefault used['minmae'] = idx2plot[0] used['ensemble'] = idx2plot pickle.dump(used, open(os.path.join(pout, 'runs_%s.p' % glid), 'wb')) def past_simulation_and_commitment(rgi, allobs, allmeta, histalp_storage, comit_storage, comit_storage_noseed, pout, y_len=5, comyears=300): cols = ['xkcd:teal', 'xkcd:orange', 'xkcd:azure', 'xkcd:tomato', 'xkcd:blue', 'xkcd:chartreuse', 'xkcd:green' ] obs = allobs.loc[rgi.split('_')[0]] meta = allmeta.loc[rgi.split('_')[0]] fn99 = 'model_diagnostics_commitment1999_{:02d}.nc' df99 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn99, meta) fn85 = 'model_diagnostics_commitment1885_{:02d}.nc' df85 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn85, meta) fn70 = 'model_diagnostics_commitment1970_{:02d}.nc' df70 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn70, meta) # plot fig, ax1 = plt.subplots(1, figsize=[20, 7]) obs.plot(ax=ax1, color='k', marker='o', label='Observations') # past ensmean = df99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df99.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[:2015].index, ensmeanmean.loc[:2015] - ensstdmean.loc[:2015], ensmeanmean.loc[:2015] + ensstdmean.loc[:2015], color=cols[0], alpha=0.5) ensmeanmean.loc[:2015].plot(ax=ax1, linewidth=4.0, color=cols[0], label='HISTALP climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # 1999 ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[1], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[1], label='Random climate (1984-2014)') # 1970 ensmean = df70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df70.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[5], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[5], label='Random climate (1960-1980)') # 1885 ensmean = df85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df85.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[2], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[2], label='Random climate (1870-1900)') # --------------------------------------------------------------------- # plot commitment ensemble length # 1984 efn99 = 'model_diagnostics_commitment1999_{:02d}.nc' edf99 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn99, meta) ensmean = edf99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf99.std(axis=1).rolling(y_len, center=True).mean() postlength = ensmeanmean.dropna().iloc[-30:].mean() poststd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], postlength + poststd, postlength - poststd, color=cols[3], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [postlength, postlength], linewidth=4.0, color=cols[3], label=('Random climate (1984-2014) ' 'equlibrium length')) # 1970 efn70 = 'model_diagnostics_commitment1970_{:02d}.nc' edf70 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn70, meta) ensmean = edf70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf70.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], prelength + prestd, prelength - prestd, color=cols[6], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [prelength, prelength], linewidth=4.0, color=cols[6], label=('Random climate (1960-1980) ' 'equlibrium length')) # 1885 efn85 = 'model_diagnostics_commitment1885_{:02d}.nc' edf85 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn85, meta) ensmean = edf85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf85.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], prelength + prestd, prelength - prestd, color=cols[4], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [prelength, prelength], linewidth=4.0, color=cols[4], label=('Random climate (1870-1900) ' 'equlibrium length')) # --------------------------------------------------------------------- ylim = ax1.get_ylim() #ax1.plot([2015, 2015], ylim, 'k-', linewidth=2) ax1.set_xlim([1850, 2014+comyears+30]) #ax1.set_ylim(ylim) ax2 = ax1.twinx() ax2.set_ylabel('approximate\n absolute glacier length [m]', fontsize=26) y1, y2 = get_absolute_length(ylim[0], ylim[1], rgi, df99, histalp_storage) ax2.tick_params(axis='both', which='major', labelsize=22) ax2.set_ylim([y1, y2]) name = name_plus_id(rgi) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.set_xticks([1850, 1950, 2014, 2114, 2214, 2314]) ax1.set_xticklabels(['1850', '1950', '2014/0', '100', '200', '300']) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.0, -0.17), loc='upper left', fontsize=18, ncol=3) fig.subplots_adjust(left=0.09, right=0.9, bottom=0.3, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'commit_%s.png' % rgi) fig.savefig(fn1) def past_simulation_and_projection(rgi, allobs, allmeta, histalp_storage, proj_storage, comit_storage, pout, y_len=5,): cols = ['xkcd:teal', 'xkcd:azure', 'xkcd:lime', 'xkcd:orange', 'xkcd:magenta', 'xkcd:tomato', 'xkcd:blue', 'xkcd:green' ] obs = allobs.loc[rgi.split('_')[0]] meta = allmeta.loc[rgi.split('_')[0]] dfall = pd.DataFrame([], index=np.arange(1850, 2101)) dfallstd = pd.DataFrame([], index=np.arange(1850, 2101)) for rcp in ['rcp26', 'rcp45', 'rcp60', 'rcp85']: dfrcp = get_rcp_ensemble_length(rgi, histalp_storage, proj_storage, rcp, meta) ensmean = dfrcp.mean(axis=1) dfall.loc[:, rcp] = ensmean.rolling(y_len, center=True).mean() dfallstd.loc[:, rcp] = dfrcp.std(axis=1).\ rolling(y_len, center=True).mean() # plot fig, ax1 = plt.subplots(1, figsize=[20, 7]) obs.plot(ax=ax1, color='k', marker='o', label='Observations') # past ax1.fill_between(dfall.loc[:2015, rcp].index, dfall.loc[:2015, rcp] - dfallstd.loc[:2015, rcp], dfall.loc[:2015, rcp] + dfallstd.loc[:2015, rcp], color=cols[0], alpha=0.5) dfall.loc[:2015, rcp].plot(ax=ax1, linewidth=4.0, color=cols[0], label='HISTALP climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # projections # rcp26 ax1.fill_between(dfall.loc[2015:, 'rcp26'].index, dfall.loc[2015:, 'rcp26'] - dfallstd.loc[2015:, 'rcp26'], dfall.loc[2015:, 'rcp26'] + dfallstd.loc[2015:, 'rcp26'], color=cols[1], alpha=0.5) dfall.loc[2015:, 'rcp26'].plot(ax=ax1, linewidth=4.0, color=cols[1], label='RCP 2.6 climate') # rcp45 dfall.loc[2015:, 'rcp45'].plot(ax=ax1, linewidth=4.0, color=cols[2], label='RCP 4.5 climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # rcp60 dfall.loc[2015:, 'rcp60'].plot(ax=ax1, linewidth=4.0, color=cols[3], label='RCP 6.0 climate') # rcp85 ax1.fill_between(dfall.loc[2015:, 'rcp85'].index, dfall.loc[2015:, 'rcp85'] - dfallstd.loc[2015:, 'rcp85'], dfall.loc[2015:, 'rcp85'] + dfallstd.loc[2015:, 'rcp85'], color=cols[4], alpha=0.5) dfall.loc[2015:, 'rcp85'].plot(ax=ax1, linewidth=4.0, color=cols[4], label='RCP 8.5 climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # plot commitment length # 1984 fn99 = 'model_diagnostics_commitment1999_{:02d}.nc' df99 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn99, meta) ensmean = df99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df99.std(axis=1).rolling(y_len, center=True).mean() postlength = ensmeanmean.dropna().iloc[-30:].mean() poststd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], postlength + poststd, postlength - poststd, color=cols[5], alpha=0.5) ax1.plot([2105.5, 2110.5], [postlength, postlength], linewidth=4.0, color=cols[5], label=('Random climate (1984-2014) ' 'equilibrium length')) # 1970 fn70 = 'model_diagnostics_commitment1970_{:02d}.nc' df70 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn70, meta) ensmean = df70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df70.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], prelength + prestd, prelength - prestd, color=cols[7], alpha=0.5) ax1.plot([2105.5, 2110.5], [prelength, prelength], linewidth=4.0, color=cols[7], label=('Random climate (1960-1980) ' 'equilibrium length')) # 1885 fn85 = 'model_diagnostics_commitment1885_{:02d}.nc' df85 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn85, meta) ensmean = df85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df85.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], prelength + prestd, prelength - prestd, color=cols[6], alpha=0.5) ax1.plot([2105.5, 2110.5], [prelength, prelength], linewidth=4.0, color=cols[6], label=('Random climate (1870-1900) ' 'equilibrium length')) ylim = ax1.get_ylim() ax1.set_xlim([1850, 2112]) ax2 = ax1.twinx() ax2.set_ylabel('apporixmate\n absolute glacier length [m]', fontsize=26) y1, y2 = get_absolute_length(ylim[0], ylim[1], rgi, df99, histalp_storage) ax2.tick_params(axis='both', which='major', labelsize=22) ax2.set_ylim([y1, y2]) name = name_plus_id(rgi) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(0.0, -0.17), loc='upper left', fontsize=18, ncol=4) fig.subplots_adjust(left=0.09, right=0.9, bottom=0.3, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'proj_%s.png' % rgi) fig.savefig(fn1) def get_mean_temps_eq(rgi, histalp_storage, comit_storage, ensmembers): from oggm import cfg, utils, GlacierDirectory from oggm.core.massbalance import MultipleFlowlineMassBalance from oggm.core.flowline import FileModel import shutil # 1. get mean surface heights df85 = pd.DataFrame([]) df99 = pd.DataFrame([]) for i in range(ensmembers): fnc1 = os.path.join(comit_storage, rgi, 'model_run_commitment1885_{:02d}.nc'.format(i)) fnc2 = os.path.join(comit_storage, rgi, 'model_run_commitment1999_{:02d}.nc'.format(i)) tmpmod1 = FileModel(fnc1) tmpmod2 = FileModel(fnc2) for j in np.arange(270, 301): tmpmod1.run_until(j) df85.loc[:, '{}{}'.format(i, j)] = tmpmod1.fls[-1].surface_h tmpmod2.run_until(j) df99.loc[:, '{}{}'.format(i, j)] = tmpmod2.fls[-1].surface_h meanhgt99 = df99.mean(axis=1).values meanhgt85 = df85.mean(axis=1).values # 2. get the climate # Initialize OGGM cfg.initialize() wd = utils.gettempdir(reset=True) cfg.PATHS['working_dir'] = wd utils.mkdir(wd, reset=True) cfg.PARAMS['baseline_climate'] = 'HISTALP' # and set standard histalp values cfg.PARAMS['temp_melt'] = -1.75 i = 0 storage_dir = os.path.join(histalp_storage, rgi, '{:02d}'.format(i), rgi[:8], rgi[:11], rgi) new_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier', rgi[:8], rgi[:11], rgi) shutil.copytree(storage_dir, new_dir) gdir = GlacierDirectory(rgi) mb = MultipleFlowlineMassBalance(gdir, filename='climate_monthly', check_calib_params=False) # need to do the above for every ensemble member if I consider PRECIP! # and set cfg.PARAMS['prcp_scaling_factor'] = pdict['prcp_scaling_factor'] df99_2 = pd.DataFrame() df85_2 = pd.DataFrame() for i in np.arange(9, 12): for y in np.arange(1870, 1901): flyear = utils.date_to_floatyear(y, i) tmp = mb.flowline_mb_models[-1].get_monthly_climate(meanhgt85, flyear)[0] df85_2.loc[y, i] = tmp.mean() for y in np.arange(1984, 2015): tmp = mb.flowline_mb_models[-1].get_monthly_climate(meanhgt99, flyear)[0] df99_2.loc[y, i] = tmp.mean() t99 = df99_2.mean().mean() t85 = df85_2.mean().mean() return t85, t99 def get_mean_temps_2k(rgi, return_prcp): from oggm import cfg, utils, workflow, tasks from oggm.core.massbalance import PastMassBalance # Initialize OGGM cfg.initialize() wd = utils.gettempdir(reset=True) cfg.PATHS['working_dir'] = wd utils.mkdir(wd, reset=True) cfg.PARAMS['baseline_climate'] = 'HISTALP' # and set standard histalp values cfg.PARAMS['temp_melt'] = -1.75 cfg.PARAMS['prcp_scaling_factor'] = 1.75 gdir = workflow.init_glacier_regions(rgidf=rgi.split('_')[0], from_prepro_level=3, prepro_border=10)[0] # run histalp climate on glacier! tasks.process_histalp_data(gdir) f = gdir.get_filepath('climate_historical') with utils.ncDataset(f) as nc: refhgt = nc.ref_hgt mb = PastMassBalance(gdir, check_calib_params=False) df = pd.DataFrame() df2 = pd.DataFrame() for y in np.arange(1870, 2015): for i in np.arange(9, 12): flyear = utils.date_to_floatyear(y, i) tmp = mb.get_monthly_climate([refhgt], flyear)[0] df.loc[y, i] = tmp.mean() if return_prcp: for i in np.arange(3, 6): flyear = utils.date_to_floatyear(y, i) pcp = mb.get_monthly_climate([refhgt], flyear)[3] df2.loc[y, i] = tmp.mean() t99 = df.loc[1984:2014, :].mean().mean() t85 = df.loc[1870:1900, :].mean().mean() t2k = df.loc[1900:2000, :].mean().mean() if return_prcp: p99 = df2.loc[1984:2014, :].mean().mean() p85 = df2.loc[1870:1900, :].mean().mean() p2k = df2.loc[1900:2000, :].mean().mean() return t85, t99, t2k, p85, p99, p2k return t85, t99, t2k def get_absolute_length(y0, y1, rgi, df, storage): rgipath = os.path.join(storage, rgi, '{:02d}'.format(0), rgi[:8], rgi[:11], rgi) mfile = os.path.join(rgipath, 'model_run_histalp_{:02d}.nc'.format(0)) tmpmod = FileModel(mfile) absL = tmpmod.length_m deltaL = df.loc[int(tmpmod.yr.values), 0] abs_y0 = absL + (y0 - deltaL) abs_y1 = absL + (y1 - deltaL) return abs_y0, abs_y1 def elevation_profiles(rgi, meta, histalp_storage, pout): name = name_plus_id(rgi) df1850 = pd.DataFrame() df2003 = pd.DataFrame() df2003b = pd.DataFrame() dfbed = pd.DataFrame() for i in np.arange(999): # Local working directory (where OGGM will write its output) rgipath = os.path.join(histalp_storage, rgi, '{:02d}'.format(i), rgi[:8], rgi[:11], rgi) fn = os.path.join(rgipath, 'model_run_histalp_{:02d}.nc'.format(i)) try: tmpmod = FileModel(fn) except FileNotFoundError: break df1850.loc[:, i] = tmpmod.fls[-1].surface_h # get bed surface dfbed.loc[:, i] = tmpmod.fls[-1].bed_h # HISTALP surface tmpmod.run_until(2003) df2003.loc[:, i] = tmpmod.fls[-1].surface_h df2003b.loc[:, i] = tmpmod.fls[-1].thick # RGI init surface, once is enough fn2 = os.path.join(histalp_storage, rgi, '00', rgi[:8], rgi[:11], rgi, 'model_run_spinup_00.nc') tmpmod2 = FileModel(fn2) initsfc = tmpmod2.fls[-1].surface_h # get distance on line dx_meter = tmpmod.fls[-1].dx_meter meanbed = dfbed.mean(axis=1).values maxbed = dfbed.max(axis=1).values minbed = dfbed.min(axis=1).values # 1850 mean1850 = df1850.mean(axis=1).values # where is mean glacier thinner than 1m ix50 = np.where(mean1850-meanbed < 1)[0][0] mean1850[ix50:] = np.nan min1850 = df1850.min(axis=1).values min1850[ix50:] = np.nan min1850[min1850 <= meanbed] = meanbed[min1850 <= meanbed] max1850 = df1850.max(axis=1).values max1850[max1850 <= meanbed] = meanbed[max1850 <= meanbed] # 2003 mean2003 = df2003.mean(axis=1).values # where is mean glacier thinner than 1m ix03 = np.where(mean2003-meanbed < 1)[0][0] mean2003[ix03:] = np.nan min2003 = df2003.min(axis=1).values min2003[ix03:] = np.nan min2003[min2003 <= meanbed] = meanbed[min2003 <= meanbed] max2003 = df2003.max(axis=1).values max2003[max2003 <= meanbed] = meanbed[max2003 <= meanbed] lastx = np.where(initsfc-meanbed < 1)[0][0] initsfc[lastx:] = np.nan initsfc[lastx] = meanbed[lastx] dis = np.arange(len(meanbed)) * dx_meter / 1000 xmax = sum(np.isfinite(mean1850)) ymax = np.nanmax(mean1850) + 50 ymin = minbed[np.where(np.isfinite(mean1850))].min() - 50 fig, ax = plt.subplots(1, figsize=[15, 9]) ax.fill_between(dis[:xmax+1], dis[:xmax+1] * 0 + ymin, minbed[:xmax+1], color='0.7', alpha=0.5) ax.fill_between(dis[:xmax+1], minbed[:xmax+1], maxbed[:xmax+1], color='xkcd:tan', alpha=0.5) ax.plot(dis[:xmax+1], meanbed[:xmax+1], 'k-', color='xkcd:tan', linewidth=3, label='Glacier bed elevation [m]') ax.fill_between(dis, min1850, max1850, color='xkcd:azure', alpha=0.5) ax.plot(dis, mean1850, 'k-', color='xkcd:azure', linewidth=4, label=('Surface elevation [m] year {:d}\n' '(initialization state after spinup)'. format(meta['first']))) ax.fill_between(dis, min2003, max2003, color='xkcd:teal', alpha=0.5) ax.plot(dis, mean2003, 'k-', color='xkcd:teal', linewidth=4, label=('Surface elevation [m] year 2003\n' '(from HISTALP ensemble simulations)')) ax.plot(dis, initsfc, 'k-', color='xkcd:crimson', linewidth=4, label=('Surface elevation [m] year 2003\n' '(from RGI initialization)')) ax.legend(loc=1, fontsize=20) ax.set_ylim(ymin, ymax) ax.set_xlim(0, dis[xmax]) ax.set_xlabel('Distance along major flowline [km]', fontsize=28) ax.set_ylabel('Elevation [m a.s.l.]', fontsize=28) ax.tick_params(axis='both', which='major', labelsize=26) ax.grid(True) ax.set_title(name, fontsize=30) fig.tight_layout() fn = os.path.join(pout, 'profile_%s' % rgi) if ('3643' in rgi) or ('1450' in rgi) or ('2051' in rgi) or ('897' in rgi): fig.savefig('{}.svg'.format(fn)) fig.savefig('{}.png'.format(fn)) def grey_madness(glcdict, pout, y_len=5): for glid, df in glcdict.items(): # take care of merged glaciers rgi_id = glid.split('_')[0] fig, ax1 = plt.subplots(figsize=[20, 7]) # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.abs(para['prcp_scaling_factor'] - 1.75) < 0.01) and (para['mbbias'] == 0) and (para['glena_factor'] == 1)): oggmdefault = run break nolbl = df.loc[:, df.columns != 'obs'].\ rolling(y_len, center=True).mean().copy() nolbl.columns = ['' for i in range(len(nolbl.columns))] nolbl.plot(ax=ax1, linewidth=0.8, color='0.7') df.loc[:, oggmdefault].rolling(y_len, center=True).mean().plot( ax=ax1, linewidth=0.8, color='0.7', label='Every possible calibration parameter combination') df.loc[:, oggmdefault].rolling(y_len, center=True).mean().\ plot(ax=ax1, color='k', linewidth=2, label='OGGM default parameters') df.loc[:, 'obs'].plot(ax=ax1, color='k', marker='o', label='Observations') name = name_plus_id(rgi_id) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.set_xlim([1850, 2014]) ax1.set_ylim([-7500, 4000]) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.0, -0.15), loc='upper left', fontsize=18, ncol=2) fig.subplots_adjust(left=0.09, right=0.99, bottom=0.24, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'all_%s.png' % glid) fig.savefig(fn1) def run_and_plot_merged_montmine(pout): # Set-up cfg.initialize(logging_level='WORKFLOW') cfg.PATHS['working_dir'] = utils.gettempdir(dirname='OGGM-merging', reset=True) # Use a suitable border size for your domain cfg.PARAMS['border'] = 80 cfg.PARAMS['use_intersects'] = False montmine = workflow.init_glacier_directories(['RGI60-11.02709'], from_prepro_level=3)[0] gdirs = workflow.init_glacier_directories(['RGI60-11.02709', 'RGI60-11.02715'], from_prepro_level=3) workflow.execute_entity_task(tasks.init_present_time_glacier, gdirs) gdirs_merged = workflow.merge_glacier_tasks(gdirs, 'RGI60-11.02709', return_all=False, filename='climate_monthly', buffer=2.5) # plot centerlines fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[20, 10]) plot_centerlines(montmine, ax=ax1, use_flowlines=True) xt = ax1.get_xticks() ax1.set_xticks(xt[::2]) ax1.tick_params(axis='both', which='major', labelsize=20) ax1.set_title('entity glacier', fontsize=24) plot_centerlines(gdirs_merged, ax=ax2, use_model_flowlines=True) ax2.tick_params(axis='both', which='major', labelsize=20) ax2.set_title('merged with Glacier de Ferpecle', fontsize=24) axs = fig.get_axes() axs[3].remove() axs[2].tick_params(axis='y', labelsize=16) axs[2].set_ylabel('Altitude [m]', fontsize=18) fig.suptitle('Glacier du Mont Mine', fontsize=24) fig.subplots_adjust(left=0.04, right=0.99, bottom=0.08, top=0.89, wspace=0.3) fn = os.path.join(pout, 'merged_montmine.png') fig.savefig(fn) # run glaciers with negative t bias # some model settings years = 125 tbias = -1.5 # model Mont Mine glacier as entity and complile the output tasks.run_constant_climate(montmine, nyears=years, output_filesuffix='_entity', temperature_bias=tbias) ds_entity = utils.compile_run_output([montmine], path=False, filesuffix='_entity') # model the merged glacier and complile the output tasks.run_constant_climate(gdirs_merged, nyears=years, output_filesuffix='_merged', temperature_bias=tbias, climate_filename='climate_monthly') ds_merged = utils.compile_run_output([gdirs_merged], path=False, filesuffix='_merged') # # bring them to same size again tbias = -2.2 years = 125 tasks.run_constant_climate(montmine, nyears=years, output_filesuffix='_entity1', temperature_bias=tbias) ds_entity1 = utils.compile_run_output([montmine], path=False, filesuffix='_entity1') # and let them shrink again # some model settings tbias = -0.5 years = 100 # load the previous entity run tmp_mine = FileModel( montmine.get_filepath('model_run', filesuffix='_entity1')) tmp_mine.run_until(years) tasks.run_constant_climate(montmine, nyears=years, output_filesuffix='_entity2', init_model_fls=tmp_mine.fls, temperature_bias=tbias) ds_entity2 = utils.compile_run_output([montmine], path=False, filesuffix='_entity2') # model the merged glacier and complile the output tmp_merged = FileModel( gdirs_merged.get_filepath('model_run', filesuffix='_merged')) tmp_merged.run_until(years) tasks.run_constant_climate(gdirs_merged, nyears=years, output_filesuffix='_merged2', init_model_fls=tmp_merged.fls, temperature_bias=tbias, climate_filename='climate_monthly') ds_merged2 = utils.compile_run_output([gdirs_merged], path=False, filesuffix='_merged2') fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[20, 7]) dse = ds_entity.length.to_series().rolling(5, center=True).mean() dsm = ds_merged.length.to_series().rolling(5, center=True).mean() ax1.plot(dse.values, 'C1', label='Entity glacier', linewidth=3) ax1.plot(dsm.values, 'C2', label='Merged glacier', linewidth=3) ax1.set_xlabel('Simulation time [yr]', fontsize=20) ax1.set_ylabel('Glacier length[m]', fontsize=20) ax1.grid(True) ax1.legend(loc=2, fontsize=18) dse2 = ds_entity2.length.to_series().rolling(5, center=True).mean() dsm2 = ds_merged2.length.to_series().rolling(5, center=True).mean() ax2.plot(dse2.values, 'C1', label='Entity glacier', linewidth=3) ax2.plot(dsm2.values, 'C2', label='Merged glacier', linewidth=3) ax2.set_xlabel('Simulation time [yr]', fontsize=22) ax2.set_ylabel('Glacier length [m]', fontsize=22) ax2.grid(True) ax2.legend(loc=1, fontsize=18) ax1.set_xlim([0, 120]) ax2.set_xlim([0, 100]) ax1.set_ylim([7500, 12000]) ax2.set_ylim([7500, 12000]) ax1.tick_params(axis='both', which='major', labelsize=20) ax2.tick_params(axis='both', which='major', labelsize=20) fig.subplots_adjust(left=0.08, right=0.96, bottom=0.11, top=0.93, wspace=0.3) fn = os.path.join(pout, 'merged_montmine_timeseries.png') fig.savefig(fn) def climate_vs_lengthchange(dfout, pout): fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=[20, 15]) ost = dfout.loc[dfout['lon'] >= 9.5] west = dfout.loc[dfout['lon'] < 9.5] # ax1: temp, winter ost.plot.scatter(x='dl 1885-1970', y='dt win', color='C1', ax=ax1, s=80, label='Temp. Oct-Apr (East)') ost.plot.scatter(x='dl 1885-1970', y='dt djf', color='C3', ax=ax1, s=80, label='Temp. DJF (East)') west.plot.scatter(x='dl 1885-1970', y='dt win', color='C2', marker='s', ax=ax1, s=80, label='Temp. Oct-Apr (West)') west.plot.scatter(x='dl 1885-1970', y='dt djf', color='C4', marker='s', ax=ax1, s=80, label='Temp. DJF (West)') # ax2: temp, sommer ost.plot.scatter(x='dl 1885-1970', y='dt som', color='C1', ax=ax2, s=80, label='Temp. Mai-Sep (East)') ost.plot.scatter(x='dl 1885-1970', y='dt jja', color='C3', ax=ax2, s=80, label='Temp. JJA (East)') west.plot.scatter(x='dl 1885-1970', y='dt som', color='C2', marker='s', ax=ax2, s=80, label='Temp. Mai-Sep (West)') west.plot.scatter(x='dl 1885-1970', y='dt jja', color='C4', marker='s', ax=ax2, s=80, label='Temp. JJA (West)') # ax3: pcp, winter west.plot.scatter(x='dl 1885-1970', y='dp win', color='C2', marker='s', ax=ax3, s=80, label='Prcp. Oct-Apr (West)') west.plot.scatter(x='dl 1885-1970', y='dp djf', color='C4', marker='s', ax=ax3, s=80, label='Prcp. DJF (West)') ost.plot.scatter(x='dl 1885-1970', y='dp win', color='C1', ax=ax3, s=80, label='Prcp. Oct-Apr (East)') ost.plot.scatter(x='dl 1885-1970', y='dp djf', color='C3', ax=ax3, s=80, label='Prcp. DJF (East)') # ax4: pcp, sommer west.plot.scatter(x='dl 1885-1970', y='dp jja', color='C4', marker='s', ax=ax4, s=80, label='Prcp. JJA (West)') west.plot.scatter(x='dl 1885-1970', y='dp som', color='C2', marker='s', ax=ax4, s=80, label='Prcp. Mai-Sep (West)') ost.plot.scatter(x='dl 1885-1970', y='dp jja', color='C3', ax=ax4, s=80, label='Prcp. JJA (East)') ost.plot.scatter(x='dl 1885-1970', y='dp som', color='C1', ax=ax4, s=80, label='Prcp. Mai-Sep (East)') ax4.set_xlabel(('Equilibrium length difference\nbetween 1870-1900 ' 'and 1960-1980 climate'), fontsize=20) ax3.set_xlabel(('Equilibrium length difference\nbetween 1870-1900 ' 'and 1960-1980 climate'), fontsize=20) ax1.set_ylabel(('Temperature difference between\n 1870-1900 and ' '1960-1980 climate'), fontsize=20) ax3.set_ylabel(('Precipitation difference between\n 1870-1900 and ' '1960-1980 climate'), fontsize=20) ax2.set_ylabel('') ax4.set_ylabel('') ax1.set_xlabel('') ax2.set_xlabel('') ax1.set_ylim([-1.0, 0.2]) ax2.set_ylim([-1.0, 0.2]) ax3.set_ylim([-350, 50]) ax4.set_ylim([-350, 50]) for ax in [ax1, ax2, ax3, ax4]: ax.grid(True) ax.legend(loc=3, ncol=2, fontsize=18) ax.set_xlim([-4, 2]) ax.tick_params(axis='both', which='major', labelsize=20) fig.subplots_adjust(left=0.08, right=0.98, bottom=0.11, top=0.93, wspace=0.2, hspace=0.2) fig.savefig(os.path.join(pout, 'climate_vs_length.png')) def histogram(pin, pout): glena = defaultdict(int) mbbias = defaultdict(int) prcpsf = defaultdict(int) for glc in GLCDICT.keys(): glid = str(glc) if MERGEDICT.get(glc): glid += '_merged' rundictpath = os.path.join(pin, 'runs_%s.p' % glid) rundict = pickle.load(open(rundictpath, 'rb')) ens = rundict['ensemble'] for run in ens: para = ast.literal_eval('{' + run + '}') prcpsf[para['prcp_scaling_factor']] += 1 glena[para['glena_factor']] += 1 mbbias[para['mbbias']] += 1 fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=[20, 7]) ax1.bar(list(glena.keys()), glena.values(), width=0.4) ax1.set_xlabel('Glen A factor', fontsize=22) ax1.set_ylabel('# used in ensemble', fontsize=22) ax2.bar(list(prcpsf.keys()), prcpsf.values(), width=0.2) ax2.set_xlabel('Prcp SF factor', fontsize=22) ax2.set_ylabel('# used in ensemble', fontsize=22) ax3.bar(list(mbbias.keys()), mbbias.values(), width=150) ax3.set_xlabel('MB bias', fontsize=22) ax3.set_ylabel('# used in ensemble', fontsize=22) for ax in [ax1, ax2, ax3]: ax.tick_params(axis='both', which='major', labelsize=20) ax.grid(True) fig.subplots_adjust(left=0.08, right=0.98, bottom=0.11, top=0.93, wspace=0.2, hspace=0.2) fig.savefig(os.path.join(pout, 'histo.png'))
1.914063
2
test/test_database.py
Noiredd/Filmatyk
2
12778636
import os import sys from typing import List, Set, Tuple import unittest sys.path.append(os.path.join('..', 'filmatyk')) import containers import database import filmweb class DatabaseDifference(): """Represents a difference between two DBs. Can be constructed using the "compute" @staticmethod, which can be used to replace the __ne__ (!=) operator on the Database class. This way, comparing (db1 != db2) returns an instance of this class, which: * holds detailed information on difference, specifically two sets of IDs (one for objects present in db1 and not in db2, other for vice-versa) and a list of all differing Items, * is bool-convertible, allowing its usage in if clauses, * has a __repr__ so can be pretty printed. Example usage: db1:database.Database db2:database.Database diff = db1 != db2 print(diff) """ @staticmethod def ne_to_eq(a, b): """Since overriding __ne__ by "compute" makes more sense than __eq__, we invert != to obtain ==, not the other way around. """ return not (a != b) @staticmethod def compute(db1, db2): """Finds the difference between the two objects.""" # Work with IDs only ids1 = set(item.getRawProperty('id') for item in db1) ids2 = set(item.getRawProperty('id') for item in db2) # Compute differences common_ids = ids1.intersection(ids2) only_in_1 = ids1.difference(common_ids) only_in_2 = ids2.difference(common_ids) # Extract Item instances for pretty printing items_1 = [item for item in db1 if item.getRawProperty('id') in only_in_1] items_2 = [item for item in db2 if item.getRawProperty('id') in only_in_2] return DatabaseDifference(only_in_1, only_in_2, items_1+items_2) def __init__(self, ids1:Set[int], ids2:Set[int], items:List[containers.Item]): self.ids1 = ids1 self.ids2 = ids2 self.items = {item.getRawProperty('id'): item for item in items} self.equal = len(self.ids1) == 0 and len(self.ids2) == 0 def __str__(self): if self.equal: return 'These databases are equal!' else: lines = [] if self.ids1: lines.append('These {} IDs were present only in DB1:'.format(len(self.ids1))) lines.extend('\t{} ({})'.format(i, self.items[i]['title']) for i in self.ids1) if self.ids2: lines.append('These {} IDs were present only in DB2:'.format(len(self.ids2))) lines.extend('\t{} ({})'.format(i, self.items[i]['title']) for i in self.ids2) return '\n'.join(lines) def __repr__(self): print(self) def __bool__(self): return not self.equal class FakeAPI(filmweb.FilmwebAPI): """Loads cached data instead of connecting online. When initializing, will look for HTML files in the given directory and treat them as "pages" to load data from, later when emulating "getItemsPage". """ def __init__(self, src_path:str='', itemtype:str='Movie'): super(FakeAPI, self).__init__(None) self.src_path = src_path self.page_paths = self.initPages() self.item_count, self.items_per_page = self.initAnalyze(itemtype) def initPages(self): """Finds HTML files with movie ratings cached by the API tests.""" if not os.path.exists(self.src_path): return [] pages = [ item.path for item in os.scandir(self.src_path) if item.name.endswith('.html') and item.name.startswith('movies_') ] return pages def initAnalyze(self, itemtype:str): """Checks how many items are in the stored files, and how many per page.""" counts = [] for path in self.page_paths: page = self.fetchPage(path) items = self.parsePage(page, itemtype) counts.append(len(items)) # Return in the same format as getNumOf. # The first page will either have exactly as many items as any other page, # or will contain all items - in either case its length being the count of # items per page. return sum(counts), counts[0] def checkSession(self): """First part of the hack - don't bother with the session at all.""" return True def fetchPage(self, path:str): """Load HTML from file instead of URL.""" with open(path, 'r', encoding='utf-8') as html: page = filmweb.BS(html.read(), features='lxml') return page def getItemsPage(self, itemtype:str, page:int=1): """Hack to use cached HTMLs instead of online session.""" path = self.page_paths[page - 1] #path = os.path.join(self.src_path, 'movies_{}.html'.format(page)) page = self.fetchPage(path) items = self.parsePage(page, itemtype) return items def getNumOf(self, itemtype:str): """Simply return the values we have computed earlier (initAnalyze).""" return self.item_count, self.items_per_page class UpdateScenario(): """Database modification scenario to obtain a simulated previous state. Contains: * a list of Item indices to remove from the Database - a new Database created via this removal will look like these items were yet to be added, * a list of tuples of Item indices and IDs to add to the Database - simulates removal of items in the same manner. """ def __init__(self, removals:List[int]=[], additions:List[Tuple[int,int]]=[]): self.removals = removals self.additions = additions class TestDatabaseCreation(unittest.TestCase): """Basic test for Database loading data from scratch using the API.""" @classmethod def setUpClass(self): self.api = FakeAPI('assets') def test_creation(self): """Create a new Database and fill it with items using (Fake)API. Basically checks whether a new instance has as many items in it as the API says there are available, and whether these items are actually instances of the Item class. """ db = database.Database( itemtype='Movie', api=self.api, callback=lambda x: x, ) db.hardUpdate() known_count, _ = self.api.getNumOf('Movie') self.assertEqual(len(db.items), known_count) self.assertIsInstance(db.items[0], containers.Item) class TestDatabaseSerialization(unittest.TestCase): """Test Database serialization and deserialization. The only test in this case validates the whole serialization-deserialization cycle, so if anything goes wrong, it will be hard to say which functionality is actually broken. """ @classmethod def setUpClass(self): self.api = FakeAPI('assets') def test_serialization(self): """Serialize and deserialize a Database, check if they look the same.""" original = database.Database( itemtype='Movie', api=self.api, callback=lambda x: x, ) # Load some initial data original.hardUpdate() # Serialize/deserialize cycle string = original.storeToString() restored = database.Database.restoreFromString( itemtype='Movie', string=string, api=self.api, callback=lambda x: x, ) self.assertEqual(original, restored) class TestDatabaseUpdates(unittest.TestCase): """Test Database updates capability in different initial conditions. Each test consists of the following 3 steps: * load an original Database, * perform some change to its content, simulating some earlier point in time (e.g. where some Items were not yet present), * call a soft update. The desired result is a Database back in the original state. Any differences are considered failures. The update itself is performed via a proxy, which loads data cached from earlier tests instead of requiring a live and authenticated session. """ @classmethod def setUpClass(self): self.api = FakeAPI('assets') # Create the original database self.orig_db = database.Database( itemtype='Movie', api=self.api, callback=lambda x: x ) # Fill it with available cached data for i in range(len(self.api.page_paths)): self.orig_db.items += self.api.getItemsPage('Movie', page=i+1) @classmethod def makeModifiedDatabase(self, scenario:UpdateScenario): """Creates a new DB by modifying the copy according to the scenario.""" # Create a bare new instance new_db = database.Database( itemtype=self.orig_db.itemtype, api=self.orig_db.api, callback=self.orig_db.callback, ) # Remove items according to the scenario new_db.items = [ item for i, item in enumerate(self.orig_db.items) if i not in scenario.removals ] # Add new items according to the scenario # The items are all clones of the last available item, with changed ID template = new_db.items[-1].asDict() template.pop('id') # that will be replaced item_cls = containers.classByString[new_db.itemtype] # Create items and insert on their respective places for index, item_id in scenario.additions: new_item = item_cls(id=item_id, **template) new_db.items.insert(index, new_item) return new_db def __test_body(self, scenario): """Since they all look the same...""" alter_db = self.makeModifiedDatabase(scenario) # Make sure the databases are actually different! self.assertNotEqual(alter_db, self.orig_db) # Call update and check difference alter_db.softUpdate() self.assertEqual(alter_db, self.orig_db) # Addition tests def test_singleAddition(self): """Add a single missing item.""" scenario = UpdateScenario(removals=[0]) self.__test_body(scenario) def test_simpleAddition(self): """Add a few items missing from the first page.""" scenario = UpdateScenario(removals=[0, 1, 2]) self.__test_body(scenario) def test_massiveAddition(self): """Add over one full page of new items.""" scenario = UpdateScenario(removals=list(range(37))) self.__test_body(scenario) def test_randomAddition(self): """Add an item missing from somewhere on the first page.""" scenario = UpdateScenario(removals=[4]) self.__test_body(scenario) def test_nonContinuousAddition(self): """Add a few items non-continuously missing from the first page.""" scenario = UpdateScenario(removals=[0, 1, 2, 3, 6]) self.__test_body(scenario) def test_multipageAddition(self): """Add a few items non-continuously missing from multiple pages.""" scenario = UpdateScenario(removals=[0, 1, 2, 16, 30, 32]) self.__test_body(scenario) # Removal tests - are all expected to fail at this moment. def test_singleRemoval(self): """Remove a single item from the first page.""" scenario = UpdateScenario(additions=[(0, 666)]) self.__test_body(scenario) def test_simpleRemoval(self): """Remove a few items from the first page.""" scenario = UpdateScenario(additions=[(0, 666), (1, 4270)]) self.__test_body(scenario) def test_randomRemoval(self): """Remove an item from somewhere on the first page.""" scenario = UpdateScenario(additions=[(4, 420)]) self.__test_body(scenario) def test_nonContinuousRemoval(self): """Remove a few items non-continuously from the first page.""" scenario = UpdateScenario( additions=[(0, 666), (1, 4270), (2, 2137), (5, 61504)] ) self.__test_body(scenario) def test_multipageRemoval(self): """Remove a few items non-continuously from multiple pages.""" scenario = UpdateScenario( additions=[(3, 666), (4, 4270), (15, 2137), (35, 61504)] ) self.__test_body(scenario) # Other tests - for future features. def test_additionRemoval(self): """Add and remove a few items at once, but only from the first page.""" scenario = UpdateScenario( removals=[0, 1, 2, 9, 13], additions=[(3, 1991), (4, 37132)] ) self.__test_body(scenario) def test_complexAdditionRemoval(self): """Add and remove a few items at once from multiple pages.""" scenario = UpdateScenario( removals=[0, 1, 2, 9, 23, 35, 36], additions=[(3, 1991), (4, 37132), (28, 628)] ) self.__test_body(scenario) @unittest.skip('Relevant feature not implemented yet.') def test_difficultAdditionRemoval(self): """Add and remove a few items at once from multiple pages WITH BALANCE. This test is extremely difficult because it is impossible to recognize such scenario in real usage (online), by looking at getNumOf alone. That number only shows the total balance of added/removed items. If that balance evens out on any page further than 1st (like in the case of removing some items and adding the same number of items), it is impossible to spot to any fast and simple algorithm (i.e. one that does not deeply inspect all pages). """ scenario = UpdateScenario( removals=[0, 1, 2, 9, 33], additions=[(3, 1991), (34, 37132)] ) self.__test_body(scenario) def test_hardUpdate(self): """Make "random" removals and additions, then hard update.""" scenario = UpdateScenario( removals=[1, 5, 6, 7, 40], additions=[(0, 666), (13, 667)] ) alter_db = self.makeModifiedDatabase(scenario) self.assertNotEqual(alter_db, self.orig_db) alter_db.hardUpdate() self.assertEqual(alter_db, self.orig_db) if __name__ == "__main__": database.Database.__ne__ = DatabaseDifference.compute database.Database.__eq__ = DatabaseDifference.ne_to_eq unittest.main()
3.25
3
webapp/polls/admin.py
tristanrobert/batch7_rse
5
12778637
from django.contrib import admin from .models import Company, DPEF, Sentence, ActivitySector admin.site.register(Company) admin.site.register(DPEF) admin.site.register(Sentence) admin.site.register(ActivitySector)
1.242188
1
src/pyclts/inventories.py
XachaB/pyclts
6
12778638
<filename>src/pyclts/inventories.py<gh_stars>1-10 """ Module handles different aspects of inventory comparison. """ import attr from collections import OrderedDict, namedtuple from pyclts.api import CLTS import statistics from pyclts.cli_util import Table from pyclts.util import jaccard def reduce_features(sound, ts=None, features=None): ts = ts or CLTS().bipa features = features or { "consonant": ["phonation", "place", "manner"], "vowel": ["roundedness", "height", "centrality"], "tone": ["start"], } sound_ = ts[sound] if isinstance(sound, str) else sound if sound_.type in ["cluster", "diphthong"]: return reduce_features(sound_.from_sound, ts=ts, features=features) name = "{} {}".format( " ".join( [s for s in [sound_.featuredict.get(x) for x in features[sound_.type]] if s] ), sound_.type, ) if sound_.type != "tone": return ts[name] return ts["short " + " ".join(name.split(" "))] class GetAttributeFromSound: def __init__(self, attr): self.attr = attr def __get__(self, obj, objtype=None): return getattr(obj.sound, self.attr, None) @attr.s class Phoneme: """ Base class for handling sounds. """ grapheme = attr.ib(default=None) graphemes_in_source = attr.ib(default=None, repr=False) occs = attr.ib(default=None, repr=False) sound = attr.ib(default=None) type = GetAttributeFromSound("type") name = GetAttributeFromSound("name") featureset = GetAttributeFromSound("featureset") def __len__(self): return len(self.occs) def __str__(self): return self.grapheme def similarity(self, other): if self.type not in ["marker", "unknownsound"]: return self.sound.similarity(other.sound) if self == other: return 1 return 0 class GetSubInventoryByType: def __init__(self, types): def select_sounds(inventory): return OrderedDict( [(k, v) for k, v in inventory.items() if v.type in types] ) self.select_sounds = select_sounds def __get__(self, obj, objtype=None): return self.select_sounds(obj.sounds) class GetSubInventoryByProperty(GetSubInventoryByType): def __init__(self, types, properties): GetSubInventoryByType.__init__(self, types) self.properties = properties def __get__(self, obj, objtype=None): out = OrderedDict() sounds = self.select_sounds(obj.sounds) for k, v in sounds.items(): stripped = obj.ts.features.get( frozenset([s for s in v.featureset if s not in self.properties]) ) if str(stripped) != str(v) and str(stripped) not in sounds: out[k] = v elif str(stripped) == str(v): out[k] = v return out @attr.s class Inventory: id = attr.ib(default=None) language = attr.ib(default=None) sounds = attr.ib(default=None, repr=False) ts = attr.ib(default=None, repr=False) consonants = GetSubInventoryByType(["consonant"]) consonants_by_quality = GetSubInventoryByProperty( ["consonant"], ["long", "ultra-long", "mid-long", "ultra-short"] ) consonant_sounds = GetSubInventoryByType(["consonant", "cluster"]) vowels = GetSubInventoryByType(["vowel"]) vowels_by_quality = GetSubInventoryByProperty( ["vowel"], ["long", "ultra-long", "mid-long", "ultra-short"] ) vowel_sounds = GetSubInventoryByType(["vowel", "diphthong"]) segments = GetSubInventoryByType(["consonant", "vowel", "cluster", "diphthong"]) tones = GetSubInventoryByType(["tone"]) markers = GetSubInventoryByType(["marker"]) clusters = GetSubInventoryByType(["cluster"]) diphthongs = GetSubInventoryByType(["diphthong"]) unknownsounds = GetSubInventoryByType(["unknownsound"]) @classmethod def from_list(cls, *list_of_sounds, id=None, language=None, ts=None): ts = ts or CLTS().bipa sounds = OrderedDict() for itm in list_of_sounds: sound = ts[itm] try: sounds[str(sound)].graphemes_in_source.append(itm) except KeyError: sounds[str(sound)] = Phoneme( grapheme=str(sound), graphemes_in_source=[sound.grapheme], occs=[], sound=sound, ) return cls(sounds=sounds, ts=ts, language=language, id=id) def __len__(self): return len(self.sounds) def tabulate(self, format="pipe", types=None): types = types or ["sounds"] table = [] for t in types: for sound in getattr(self, t).values(): table += [[sound.grapheme, sound.type, sound.name, len(sound)]] with Table( namedtuple("args", "format")(format), "Grapheme", "Type", "Name", "Frequency", ) as table_text: table_text += table def strict_similarity(self, other, aspects=None): aspects = aspects or ["sounds"] scores = [] for aspect in aspects: soundsA, soundsB = ( {sound for sound in getattr(self, aspect)}, {sound for sound in getattr(other, aspect)}, ) if soundsA or soundsB: scores += [jaccard(soundsA, soundsB)] if not scores: return 0 return statistics.mean(scores) def approximate_similarity(self, other, aspects=None): aspects = aspects or ["sounds"] def approximate(soundsA, soundsB): matches = [] for soundA in soundsA: best_match, best_sim = None, 0 for soundB in soundsB: current_sim = soundA.similarity(soundB) if current_sim > best_sim: best_match = soundB best_sim = current_sim if best_match is not None: matches += [best_sim] soundsB = [s for s in soundsB if s != best_match] matches += [0 for s in soundsB] return statistics.mean(matches) scores = [] for aspect in aspects: soundsA, soundsB = ( getattr(self, aspect).values(), getattr(other, aspect).values(), ) if soundsA and soundsB: scores += [ statistics.mean( [approximate(soundsA, soundsB), approximate(soundsB, soundsA)] ) ] elif soundsA or soundsB: scores += [0] if not scores: return 0 return statistics.mean(scores)
2.421875
2
tests/test_wellknowntext.py
akrherz/pyIEM
29
12778639
"""tests""" import pytest from shapely.geometry import Point, Polygon, LineString from pyiem import wellknowntext def test_parsecoordinate_lists(): """Parse!""" with pytest.raises(ValueError): wellknowntext.parse_coordinate_lists(" ") def test_unknown(): """Test an emptry string.""" with pytest.raises(ValueError): wellknowntext.convert_well_known_text("") def test_wkt(): """Try the properties function""" wkt = "SRID=4326;POINT(-99 43)" geom = wellknowntext.convert_well_known_text(wkt) assert Point(geom) == Point([-99, 43]) wkt = """MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)), ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20)))""" geom = wellknowntext.convert_well_known_text(wkt) assert abs(Polygon(geom[0]).area - 87.5) < 0.1 wkt = """MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))""" geom = wellknowntext.convert_well_known_text(wkt) assert abs(LineString(geom[0]).length - 36.5) < 0.1 wkt = """LINESTRING (30 10, 10 30, 40 40)""" geom = wellknowntext.convert_well_known_text(wkt) assert abs(LineString(geom).length - 59.9) < 0.1 wkt = """POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))""" geom = wellknowntext.convert_well_known_text(wkt) assert abs(Polygon(geom[0]).area - 550.0) < 0.1 wkt = """POLYGON q((30 10, 40 40, 20 40, 10 20, 30 10))q""" with pytest.raises(ValueError): wellknowntext.convert_well_known_text(wkt) wkt = """RARRR q((30 10, 40 40, 20 40, 10 20, 30 10))q""" with pytest.raises(ValueError): wellknowntext.convert_well_known_text(wkt) with pytest.raises(ValueError): wellknowntext.convert_well_known_text("")
2.609375
3
api/lime_comb_api/database.py
n0npax/lime-comb
1
12778640
<reponame>n0npax/lime-comb import base64 import logging import sys from flask import g from google.cloud import firestore from werkzeug.exceptions import Unauthorized logging.basicConfig(stream=sys.stdout) app_name = "lime-comb" logger = logging.getLogger(app_name) def doc_path(*, email, key_type, key_name): _, domain = email.split("@") return f"{domain}", f"{email}/{key_name}/{key_type}" db = firestore.Client(project=app_name) def get_gpg(email, key_name, *, key_type="pub"): if email != g.email and key_type == "priv": raise Unauthorized("Tried to query not owned and private data") collection_id, name = doc_path(email=email, key_type=key_type, key_name=key_name) logger.info( f"(firebase registry) pull gpgs for {email} as {name} from {collection_id}" ) document = db.collection(collection_id).document(name).get().to_dict() if not "data" in document: logger.error("Cannot fetch gpg key") return None document.update({"id": key_name, "email": email}) return document def get_gpgs(email, *, key_type="pub"): for key_name in list_gpg_ids(email, key_type=key_type): yield get_gpg(email, key_type=key_type, key_name=key_name) def put_gpg(email, data, key_name, *, key_type="pub", password=None): print("a" * 55, g.email) if email != g.email: raise Unauthorized("Tried to mutate not owned data") collection_id, name = doc_path(email=email, key_type=key_type, key_name=key_name) logger.info( f"(firebase registry) push gpg for {email} as {name} from {collection_id}" ) pub_key = db.collection(collection_id).document(name) document = {"data": data} if key_type == "priv" and password: document["password"] = password pub_key.set(document) def list_gpg_ids(email, key_type="pub"): collection_id, _ = doc_path( email=email, key_type=key_type, key_name="key_id_placeholder" ) logger.info( f"(firebase registry) list gpgs for {email}(just email) from {collection_id}" ) for d in db.collection(collection_id).document(email).collections(): yield d.id def delete_gpg(email, key_name, *, key_type="pub"): if email != g.email: raise Unauthorized("Tried to mutate not owned data") collection_id, name = doc_path(email=email, key_type=key_type, key_name=key_name) logger.info( f"(firebase registry) rm gpg for {email} as {name} from {collection_id}" ) return db.collection(collection_id).document(name).delete() def _decode_base64(s): return base64.b64decode(s).decode("utf-8") def _encode_base64(s): return base64.b64encode(s.encode("utf-8")).decode("utf-8")
2.390625
2
amlpp/transformers/categorical.py
Asirg/papds
1
12778641
from sklearn.preprocessing import OrdinalEncoder from typing import List import pandas as pd import numpy as np from ._base_transform import BaseTransform ############################################################################## class CategoricalEncoder(BaseTransform): """ Categorical encoder Parameters ---------- columns: List [str] Columns that encode """ def __init__(self, columns:List[str]): super().__init__({'columns':columns}) self.encoder = {column: OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value = np.nan) for column in columns} def fit(self, X:pd.DataFrame, Y:pd.DataFrame or pd.Series): for column in self.encoder.copy(): if column in X.columns: X_fit = pd.DataFrame(X[column].loc[~X[column].isnull()]) if len(X_fit) > 0: self.encoder[column].fit(X_fit) else: self.encoder[column] = False return self def transform(self, X:pd.DataFrame, Y:pd.DataFrame or pd.Series = None): # print(X.columns) for column in self.encoder: if column in X.columns: if self.encoder[column]: X[column] = self.encoder[column].transform(pd.DataFrame(X[column].fillna('NAN'))) else: del X[column] # print(X.columns) return X
3.203125
3
makePuddleworldTasks.py
lcary/ec-backup
0
12778642
""" Makes Puddleworld tasks. Tasks are (gridworld, text instruction) -> goal coordinate. Credit: tasks are taken from: https://github.com/JannerM/spatial-reasoning """ from puddleworldPrimitives import * from utilities import * from task import * from type import * OBJECT_NAMES = ["NULL", "puddle", "star", "circle", "triangle", "heart", "spade", "diamond", "rock", "tree", "house", "horse"] def loadPuddleWorldTasks(datafile='data/puddleworld/puddleworld.json'): """ Loads a pre-processed version of the Puddleworld tasks. """ import json with open(datafile) as f: result = json.load(f) return result def makePuddleworldTask(raw_task): """ Converts a raw task with layouts (NxN array), Objects (NxN array of object locations), Instructions (string) and Goals ((X, Y) coordinate) into a task. """ layouts, objects, instructions, goals = raw_task task = Task(name=instructions, request=(arrow(tpair(tLayoutMap, tObjectMap), tLocation)), examples=[((layouts, objects), goals)], features=instructions) return task def makeTasks(train_key, test_key): data = loadPuddleWorldTasks() raw_train, raw_test = data[train_key], data[test_key] train, test = [makePuddleworldTask(task) for task in raw_train], [makePuddleworldTask(task) for task in raw_test] print(train[0].name) print(train[0].examples) print(train[0].features) return train, test def makeLocalTasks(): return makeTasks('local_train', 'local_test') def makeGlobalTasks(): return makeTasks('global_train', 'global_test')
3.421875
3
te/TE.py
priyadarshitathagat/te-ns
0
12778643
#********************************************************************************************** # Traffic Emulator for Network Services # Copyright 2020 VMware, Inc # The BSD-2 license (the "License") set forth below applies to all parts of # the Traffic Emulator for Network Services project. You may not use this file # except in compliance with the License. # # BSD-2 License # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE #********************************************************************************************** ################################# MY IMPORTS ################################ from TE_UTILS import * from TE_WORK import * from TE_CLASS import * from TE_DP_CONFIG import * from TE_METRICS import * from te_json_schema import * # Import for the DB related stuff # from models import * (GET BACK TO THIS) ################################# IMPORTS #################################### try: from copy import deepcopy, copy import inspect import argparse,json from threading import Thread, Lock import traceback import paramiko from flask_swagger_ui import get_swaggerui_blueprint # Import for all the Flask library from flask import Flask, jsonify, request from flask import make_response,url_for from flask_restful import Api, Resource, reqparse, fields, marshal from flask_inputs.validators import JsonSchema from pssh.clients import ParallelSSHClient from pssh.exceptions import ConnectionErrorException, SSHException, AuthenticationException, UnknownHostException from rq import Queue as rqQueue from redis import Redis from gevent import joinall import time, os, re from collections import defaultdict, OrderedDict from datetime import datetime import subprocess import random except Exception as e: print("ERROR in importing: " + str(e)) print("TRACE: %s" %(traceback.format_exc())) exit(1) ################################# TE REST ENDPOINT #################################### class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] TE_API = { 'setup_tedp' : 'Brings up TE data path containers', 'connect' : 'Adds datapath containers to the known list of TE Controller that way authentication can happen', 'establish_rq' : 'To be called by datapath process to let controller know the rq in its end is up', 'get_rq_details' : 'To be called by datapath process to get details to establish rq connection', 'start' : 'Starts traffic on the data path containers based on the input knobs', 'stop' : 'Stops the traffic', 'get_states' : 'To get the current variable states (Developer Debugging)', 'update_config' : 'Updates the system to a new running Config', 'clean' : 'Clears the connection b/w Controller and datapath, clears metrics collected and removes datapath container(if specified)', 'get_active_tedp' : 'Provides with dictionary mapping from host to number of active tedp processes', 'get_cpu_count' : 'Provides with host vs cpu mapping', 'alter_stat_dump_interval' : 'Alters the stat dump interval in TE_DP', 'alter_stat_collect_interval' : 'Alters the stat collect interval in TE_DP', 'alter_metrics_collection' : 'Alters if Error, Session and VIP Metrics are to be collected ot not', 'alter_memory_metrics_collection' : 'Enable Memory Metrics (Developer Debugging)', 'get_vip_metrics' : 'Provides the VIP metrics', 'get_ses_metrics' : 'Provides with overall session metrics', 'get_error_metrics' : 'Provides with ERROR metrics', 'get_memory_metrics' : 'Provides with MEMORY metrics of allocs and deallocs (Developer Debugging)', 'get_client_history' : 'Provides with historical details on run', 'get_current_te_time' : 'Provides with current time of TE', 'get_configs' : 'Provides with resource and session configs given the hash', 'update_dns' : 'Appends/overwrite DNS entry within TE_DP docker', 'reset_dns' : 'Reset DNS entry within TE_DP docker', 'execute_cmd': 'Executes the command given across te_dp machines (Must not block, use &)', 'tech_support' : 'Provides with tech support details for debugging', 'grafana' : 'To visualize, monitor and analyse metrics values', } TE_SUB_API = { 'stop' : ['by_profile_tag', 'by_tedp_dict'] } def abort_if_not_found(api, sub_api=None): if api in TE_API: return flask_obj.modules[api+'_api'] if sub_api and sub_api in TE_SUB_API.get(api, []): return flask_obj.modules[api+'_api'] return None def make_request_data(req_json, req_arg): if req_json and req_arg: return req_json.update(req_arg) if req_json: return req_json if req_arg: return req_arg return {} class TE_REST_ENDPOINT(Resource): def __init__(self): global flask_obj def post(self, te_api_name): functionToCall = abort_if_not_found(te_api_name) if functionToCall is None: return make_response(jsonify({'error': "{} Not found in API List : {}".format( te_api_name, TE_API.keys())}), 404) data = make_request_data(request.json, request.args.to_dict()) result = functionToCall(flask_obj, data) return result class TE_REST_ENDPOINT_SUB_API(Resource): def __init__(self): global flask_obj def post(self, te_api_name, te_sub_api_name): lgr.info("Got api call to api={} sub_api={}".format(te_api_name, te_sub_api_name)) functionToCall = abort_if_not_found(te_api_name, te_sub_api_name) if functionToCall is None: return make_response(jsonify({'error': "{}/{} Not found in API List : {}".format( te_api_name, te_sub_api_name, TE_API.keys())}), 404) data = make_request_data(request.json, request.args.to_dict()) result = functionToCall(flask_obj, data) return result ################################# ALL THE END POINTS TO FLASK APPLICATION #################################### class FlaskApplicationWrapper: __metaclass__ = Singleton modules = locals() ################################# BASIC FUNCTIONS #################################### def __init__(self, te_daemon_ip, flask_port, redis_port, nginx_port, \ postgres_port, zmq_port, grafana_port, stat_collect_interval, stat_dump_interval, logpath, loglevel): #LOGGER log_file = os.path.join(logpath, 'te.log') self.lgr = Logger('[ TE ]', log_file, loglevel).getLogger() self.lgr.info("Starting the TE.py Process") try: #TE CLASS OBJECT self.__te_controller_obj = TE(te_daemon_ip, flask_port, redis_port, nginx_port, \ postgres_port, zmq_port, grafana_port, loglevel) #ALL STATES OF TE-FSM self.__TE_STATE = { 'INIT' : 0, 'RUNNING' : 1 } #To avoid 2 overlapping calls to the same function call self.__IS_RUNNING = defaultdict(bool) self.__IS_STATE_ALLOWED = { "START" : [self.__TE_STATE['INIT']], "STOP" : [self.__TE_STATE['RUNNING']], "UPDATE" : [self.__TE_STATE['RUNNING']] } #Any call that flows to tedp using core 0 must have an entry here self.__MGMT_CALLS = ["GET_ACTIVE_TEDP", "UPDATE_DNS", "RESET_DNS", "EXECUTE_CMD", "TECH_SUPPORT", "CLEAN_TEDP"] #PERMITTED STATES OF TE-FSM self.__CURRENT_STATE = self.__TE_STATE['INIT'] #To validate the parameters passed self.__SCHEMA = {'te_dp_dict' : te_dp_dict_json_schema} #To clean all the pre-existing redis handles self.TE_BROKER_HANDLE = Redis("0.0.0.0", int(redis_port)) self.TE_BROKER_HANDLE.flushall() #Task Details self.__TASK_DETAILS = defaultdict(list) self.__setup_completed_tedps = set() self.__connect_completed_tedps = set() self.__all_te_dp_dict_credentials = {} self.__tedp_config = {} # Lock to avoid concurrent access of common DS when DPs are trying to connect to TE Controller self.__connect_lock = Lock() #PostgresDB is started always postgres_port = self.__te_controller_obj.get_postgres_port() zmq_port = self.__te_controller_obj.get_zmq_port() self.__te_postgres_object = TE_POSTGRES(postgres_port, logpath, loglevel, \ stat_collect_interval) self.__te_zmq_object = TE_ZMQ(te_daemon_ip, self.__te_postgres_object, zmq_port, \ logpath, loglevel, stat_collect_interval) #Stat collection is started by default and can be switched alternatively self.__stat_collect_interval = stat_collect_interval self.__stat_dump_interval = stat_dump_interval if(stat_dump_interval != 0): self.__metrics_enabled = True self.__memory_metrics_enabled = False self.lgr.info("FlaskApplicationWrapper init Success") except: self.lgr.error("UNABLE TO INIT FlaskApplicationWrapper %s" %traceback.format_exc()) def __not_found(self, err_message): return make_response(jsonify({'status': False, 'Error': err_message}),404) def __exception_occured(self, function, err_message): try: return jsonify({'status': False, 'function':function, 'exception': err_message}) except: self.lgr.error("__Unable to return __exception_occured %s" %traceback.format_exc()) return jsonify({'status':False, 'unable to return':traceback.format_exc()}) def __success(self, result): try: return jsonify({'status': True, 'statusmessage': result}) except: self.lgr.warning("Return without convert() failed in __success") try: return jsonify({'status': True, 'statusmessage': convert(result)}) except: self.lgr.error("__Unable to return __success %s" %traceback.format_exc()) return jsonify({'status':False, 'unable to return':traceback.format_exc()}) def __failure(self, result): try: self.lgr.error("Failure. result={}, type(result)={}".format(result, type(result))) return jsonify({'status': False, 'statusmessage': result}) except: self.lgr.warning("Return without convert() failed in __failure") try: return jsonify({'status': False, 'statusmessage': convert(result)}) except: self.lgr.error("__Unable to return __failure %s" %traceback.format_exc()) return jsonify({'status':False, 'unable to return':traceback.format_exc()}) def __api_state_decorator(typeOfTask): def decorator_method(func): def caller_func(self, json_content): try: #VALIDATING STATE MACHINE validState = self.__isStateValid(typeOfTask) if validState is not None: return validState #CHECKING IF THERE IS NO DOUBLE RUN if(self.__IS_RUNNING[typeOfTask] and \ typeOfTask != "ESTABLISH_RQ" and typeOfTask !="GET_RQ_DETAILS"): self.__IS_RUNNING[typeOfTask] = False return self.__failure('Previous call of %s not exited' %typeOfTask) self.__IS_RUNNING[typeOfTask] = True #MAKING THE ACTUAL API CALL try: self.lgr.debug("Making the call to %s api" %typeOfTask) result_of_api_call = func(self, json_content) #CATCHING EXCEPTION IF ANY AND THROWING BACK TO FRONTEND except: self.lgr.error("ERROR IN %s: %s" %(typeOfTask, traceback.format_exc())) result_of_api_call = self.__exception_occured(str(func).split(' ')[1], traceback.format_exc()) #CLEANING UPON API COMPLETION self.__IS_RUNNING[typeOfTask] = False return result_of_api_call except: return self.__exception_occured(str(func).split(' ')[1], traceback.format_exc()) return caller_func return decorator_method def __isStateValid(self, typeOfTask): allowedStates = self.__IS_STATE_ALLOWED.get(typeOfTask, None) if allowedStates is None: return None if self.__CURRENT_STATE not in allowedStates: #INVERTING (k,v) FOR THE PURPOSE OF BETTER ERROR UNDERSTANDING currStateInText = None allowedStatesInText = [] for k, v in self.__TE_STATE.items(): if v == self.__CURRENT_STATE: currStateInText = k if v in allowedStates: allowedStatesInText.append(k) #MAKING AN ENTRY IN LOG AND RETURNING self.lgr.error('STATE MACHINE ERROR Current State:%s and ALLOWED STATE to make the call are %s' %(str(currStateInText), str(allowedStatesInText))) return self.__not_found('STATE MACHINE ERROR Current State:%s and ALLOWED STATE to make the call are %s' %(str(currStateInText), str(allowedStatesInText))) return None #Does the request validation, by looking at the current state, allowed calls to make from the current state #requiredKeys Param check if the jsonContent has all the required params passed to it def __checkForRequiredArgument(self, jsonContent, requiredKeys=[]): ''' Args: jsonContent: All the passed argument with which the REST API Call was made requiredKeys: List of required params that must be present in jsonContent Returns: None if no error Else return the error ''' for key in requiredKeys: if key not in jsonContent or jsonContent[key]==None: self.lgr.error("Required parameter: %s NOT FOUND" %key) return self.__not_found('%s is not found' %key) return None def __validate_schema(self, jsonContent, keyToValidate): try: inputToValidate = convert(jsonContent[keyToValidate]) valid_status = validate(inputToValidate, self.__SCHEMA[keyToValidate]) return (True, inputToValidate) except Exception as e: return (False, str(e)) def __are_all_tedps_connected(self, te_dp_dict): set_of_host_ips = set(te_dp_dict.keys()) if(not(set_of_host_ips.issubset(self.__connect_completed_tedps))): return False, list(set_of_host_ips - self.__connect_completed_tedps) return True, [] #It is a wrapper around PSSH Client which validates for for exit_codes and exception and populates the problematicHost (dict) #It retries to a default of 10 times if an SSHException is faced #It also return a stdout dict if getStdOut is set to True def __run_command_and_validate_output(self, client, te_dp_hosts, cmd=None, host_args={}, cleanExitCode=0, possibleExitCodesDict={}, max_retries=10, getStdOut=False, validate_exit_codes=True): ''' Args: client: The PSSH client object te_dp_hosts: A dict of tedp_host which has the mapping from host to user and password (It is used to make a new client if there is an exception raised) cmd=Same Command that has to be executed on all the clients host_args=Dictionary of command if each client take something different. (Ex: GET_AND_RUN_DOCKER_IMAGE.py need different host ip that will be passed to it). Retries on the particular client alone will be possible. max_retries=Defaults to 10 xxxxxxxxx NOTE: cmd and host_args must not be passed in the same call xxxxxxxxx Return: stdOut(if getStdOut is True), problematicHost ''' def __run_command(client, cmd=None, host_args={}): ''' Args: cmd: Command to run on all hosts host_args: Dictionary of args that is to be run on all machines which has a mapping from host_ip to command ''' if ((cmd is None and host_args == {}) or (cmd is not None and host_args != {})): return None if host_args == {}: self.lgr.debug("Running Command=%s" %cmd) output = client.run_command(cmd, stop_on_errors=False) if cmd == None: host_args_values = list(host_args.values()) self.lgr.debug("Running Similar Command=%s and length=%d" %(host_args_values[0], \ len(host_args_values))) output = client.run_command("%s", host_args=host_args_values, stop_on_errors=False) client.join(output) return output def __validateOutput(output): ''' Args: output: Output to evaluate Uses getStdOut Flag to populate stdOut dictionary that is returned to the user Returns: stdOut exceptionHostTohandle problematicHost ''' stdOut = {} problematicHost = {} exceptionHostTohandle = [] for host, runDetails in output.items(): exitCodeHost = runDetails.exit_code exceptionHost = runDetails.exception if(isinstance(exceptionHost, SSHException)): self.lgr.debug("Got Exception %s in host %s" %(str(runDetails.exception), host)) exceptionHostTohandle.append(host) elif(isinstance(exceptionHost, ConnectionErrorException)): problematicHost[host] = "Connection refused/timed out" elif(isinstance(exceptionHost, AuthenticationException)): problematicHost[host] = "Authentication error (user/password/ssh key error)" elif(isinstance(exceptionHost, UnknownHostException)): problematicHost[host] = "Host is unknown (dns failure)" elif(exitCodeHost is not None and validate_exit_codes and exitCodeHost != cleanExitCode): problematicHost[host] = possibleExitCodesDict.get(exitCodeHost, "Exit Code: %d" %exitCodeHost) #If stdout is needed if getStdOut: gotOut = runDetails.stdout if gotOut is None: self.lgr.error("Unable to get response from the client host_ip=%s"%host) if host not in problematicHost: problematicHost[host] = gotOut else: stdOut[host] = gotOut return stdOut, exceptionHostTohandle, problematicHost #Run the command for the first time output = {} output = __run_command(client, cmd=cmd, host_args=host_args) out, exceptionHostTohandle, problematicHost = __validateOutput(output) output.update(out) if exceptionHostTohandle == []: return ((output, problematicHost) if getStdOut else problematicHost) #Retries for possible failures till max_retries for i in range(max_retries-1): retryExceptionPresent = False retryHostConfig = OrderedDict() retryHostArgs = OrderedDict() if exceptionHostTohandle != []: self.lgr.info("Retrying=%d/%d due to exception of Busy Client in host=%s" %(i+2,max_retries,str(exceptionHostTohandle))) #Iterate through all exception hosts for host in exceptionHostTohandle: retryExceptionPresent = True retryHostConfig[host] = te_dp_hosts[host] if host in host_args.keys(): retryHostArgs[host] = host_args[host] #Exit if no such unexpected exception is seen if not(retryExceptionPresent): return ((output, problematicHost) if getStdOut else problematicHost) #Create New retry client and repeat the process retryClient = ParallelSSHClient(retryHostConfig.keys(), host_config=retryHostConfig, timeout = 240) output = __run_command(retryClient, cmd=cmd, host_args=retryHostArgs) out, exceptionHostTohandle, retryProblematicHost = __validateOutput(output) output.update(out) problematicHost.update(retryProblematicHost) del retryClient if exceptionHostTohandle != []: self.lgr.error("Unabe to resolve for %s even after %d retries" %(str(retryProblematicHost), max_retries)) exceptionDict = {"Running into exception" : exceptionHostTohandle} return ((output, exceptionDict) if getStdOut else exceptionDict) return ((output, problematicHost) if getStdOut else problematicHost) def __verify_task_status(self, typeOfTask, max_tolerable_delay): ''' Args: typeOfTask: Indicates the type of task which has to be validated max_tolerable_delay: Maximum time within which all the results are to be fetche ''' try: self.lgr.debug("__verify_task_status Called") resultDict = {} taskVerificationThreads = [] lock = Lock() #Iterate through all the host into which the job was assigned to for host_ip in self.__TASK_DETAILS[typeOfTask]: self.lgr.debug("Checking task status for %s" %host_ip) if typeOfTask in self.__MGMT_CALLS: taskVerificationThreads.append(Thread(target=self.__tedp_config[host_ip].get_mgmt_task_status_and_result, \ args=(typeOfTask, resultDict, lock, max_tolerable_delay))) else: taskVerificationThreads.append(Thread(target=self.__tedp_config[host_ip].get_task_status_and_result, \ args=(typeOfTask, resultDict, lock, max_tolerable_delay))) taskVerificationThreads[-1].start() for t in taskVerificationThreads: t.join() self.__TASK_DETAILS[typeOfTask] = [] del taskVerificationThreads for host_ip, result in resultDict.items(): #There will be no "status in result if `status` was True (or) rather the call succeeded!" status = isinstance(result, dict) and result.get("status", True) if(not(status)): return False, resultDict return True, resultDict except: self.__TASK_DETAILS[typeOfTask] = [] del taskVerificationThreads self.lgr.error("ERROR IN verify_task_status: %s" %traceback.format_exc()) return False, "Check logs for error. Bad Code/param passed %s" %traceback.format_exc() ################################# RUN THE FLASK APPLICATION ################################### #Starts the TE Application to serve the REST Requests def run(self): self.__te_app = Flask(__name__) self.__te_app.config["SWAGGER"] = {"title": "Swagger-UI", "uiversion": 2} self.__te_app.config['BROKER_URL'] = 'redis://{}:{}/'.format( self.__te_controller_obj.get_daemon_ip(), self.__te_controller_obj.get_redis_port()) self.__te_app.config['RESULT_BACKEND'] = 'redis://{}:{}/'.format( self.__te_controller_obj.get_daemon_ip(), self.__te_controller_obj.get_redis_port() ) api = Api(self.__te_app) swagger_url = "/swagger" api_url = "/static/te_swagger.json" swagger_ui_blueprint = get_swaggerui_blueprint( swagger_url, api_url, config={'app_name': "Traffic Engine"}) self.__te_app.register_blueprint(swagger_ui_blueprint, url_prefix=swagger_url) api.add_resource(TE_REST_ENDPOINT, '/api/v1.0/te/<te_api_name>') api.add_resource(TE_REST_ENDPOINT_SUB_API, '/api/v1.0/te/<te_api_name>/<te_sub_api_name>') self.lgr.debug("About to run Flask ApplicationWrapper on %s:%s" \ %(self.__te_controller_obj.get_daemon_ip(), self.__te_controller_obj.get_flask_port())) self.__te_app.run(host="0.0.0.0",\ port=int(self.__te_controller_obj.get_flask_port()), debug=False) ################################# CHANGE STAT DUMP TIME API ################################### @__api_state_decorator("CURRENT_TIME") def get_current_te_time_api(self, jsonContent): curr_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") self.lgr.debug("get_current_te_time Called and returned %s" %curr_time) return self.__success(curr_time) ################################# CHANGE STAT DUMP TIME API ################################### @__api_state_decorator("STAT_DUMP_INTERVAL") def alter_stat_dump_interval_api(self, jsonContent): self.lgr.debug("alter_stat_dump_interval Called") self.__stat_dump_interval = convert(jsonContent['stat_dump_interval']) self.lgr.debug("altered stat_dump_interval is %d" %self.__stat_dump_interval) return self.__success("Altered stat_dump_interval is %d" %self.__stat_dump_interval) ################################# CHANGE STAT DUMP TIME API ################################### @__api_state_decorator("STAT_COLLECT_INTERVAL") def alter_stat_collect_interval_api(self, jsonContent): self.lgr.debug("alter_stat_collect_interval Called") self.__stat_collect_interval = convert(jsonContent['stat_collect_interval']) self.lgr.debug("altered stat_collect_interval is %d" %self.__stat_collect_interval) return self.__success("Altered stat_collect_interval is %d" %self.__stat_collect_interval) ############################### CHANGE METRICS COLLECTION STATE ############################### @__api_state_decorator("METRICS_ENABLED") def alter_metrics_collection_api(self, jsonContent): self.lgr.debug("alter_metrics_collection_api Called") self.__metrics_enabled = convert(jsonContent['state']) return self.__success("Altered metrics_enabled state is %s" %str(self.__metrics_enabled)) ########################### CHANGE MEMORY METRICS COLLECION STATE ############################# @__api_state_decorator("MEMORY_METRICS_ENABLED") def alter_memory_metrics_collection_api(self, jsonContent): self.lgr.debug("alter_memory_metrics_collection_api Called") self.__memory_metrics_enabled = convert(jsonContent['state']) return self.__success("Altered memory_metrics_enabled state is %s" \ %str(self.__memory_metrics_enabled)) ################################# GET VIP METRICS ################################### @__api_state_decorator("GET_VIP_METRICS") def get_vip_metrics_api(self, jsonContent): self.lgr.debug("get_vip_metrics Called") type_of_metric = convert(jsonContent['type']) traffic_profile = convert(jsonContent['traffic_profile']) traffic_mode = convert(jsonContent['traffic_mode']) filter_clauses = convert(jsonContent.get('filter_clauses', {})) is_named = convert(jsonContent.get('is_named', True)) if(type_of_metric == "TOTAL" or type_of_metric == "LAST_DIFF"): status, result = self.__te_postgres_object.query_vip_metrics(type_of_metric, \ traffic_profile, traffic_mode, filter_clauses, is_named) if(status): return self.__success(result) else: return self.__failure(result) else: return self.__failure("type must either be TOTAL or LAST_DIFF") ################################# GET ERROR METRICS ################################### @__api_state_decorator("GET_ERROR_METRICS") def get_error_metrics_api(self, jsonContent): self.lgr.debug("get_error_metrics Called") type_of_metric = convert(jsonContent['type']) filter_clauses = convert(jsonContent.get('filter_clauses', {})) is_named = convert(jsonContent.get('is_named', True)) error_group_interval = \ convert(jsonContent.get('error_group_interval', 15)) if(type_of_metric == "TOTAL" or type_of_metric == "LAST_DIFF"): status, result = self.__te_postgres_object.query_error_metrics(type_of_metric, \ filter_clauses, is_named, error_group_interval) if(status): return self.__success(result) else: return self.__failure(result) else: return self.__failure("type must either be TOTAL or LAST_DIFF") ################################# GET SES METRICS ################################### @__api_state_decorator("GET_SES_METRICS") def get_ses_metrics_api(self, jsonContent): self.lgr.debug("get_ses_metrics Called") type_of_metric = convert(jsonContent['type']) traffic_profile = convert(jsonContent['traffic_profile']) traffic_mode = convert(jsonContent['traffic_mode']) filter_clauses = convert(jsonContent.get('filter_clauses', {})) is_named = convert(jsonContent.get('is_named', True)) if(type_of_metric == "TOTAL" or type_of_metric == "LAST_DIFF"): status, result = self.__te_postgres_object.query_ses_metrics(type_of_metric, \ traffic_profile, traffic_mode, filter_clauses, is_named) if(status): return self.__success(result) else: return self.__failure(result) else: return self.__failure("type must either be TOTAL or LAST_DIFF") ################################# GET MEMORY METRICS ################################### @__api_state_decorator("GET_MEMORY_METRICS") def get_memory_metrics_api(self, jsonContent): self.lgr.debug("get_memory_metrics Called") type_of_metric = convert(jsonContent['type']) filter_clauses = convert(jsonContent.get('filter_clauses', {})) is_named = convert(jsonContent.get('is_named', True)) if(type_of_metric == "TOTAL" or type_of_metric == "LAST_DIFF"): status, result = self.__te_postgres_object.query_memory_metrics(type_of_metric, \ filter_clauses, is_named) if(status): return self.__success(result) else: return self.__failure(result) else: return self.__failure("type must either be TOTAL or LAST_DIFF") ################################# GET CONFIG HISTORY ################################### @__api_state_decorator("GET_CLIENT_HISTORY") def get_client_history_api(self, jsonContent): self.lgr.debug("get_client_history_api Called") filter_clauses = convert(jsonContent.get('filter_clauses', {})) status, result = self.__te_postgres_object.query_client_history(filter_clauses) if(status): return self.__success(result) else: return self.__failure(result) ################################# GET CONFIGS ################################### @__api_state_decorator("GET_CONFIGS") def get_configs_api(self, jsonContent): self.lgr.debug("get_configs_api Called") res_hash_list = convert(jsonContent['res_hash_list']) ses_hash_list = convert(jsonContent['ses_hash_list']) is_named = convert(jsonContent.get('is_named', True)) if res_hash_list is None and ses_hash_list is None: return self.__failure('Both res_hash_list and ses_hash_list cannot be None') status, result = self.__te_postgres_object.query_and_get_configs( res_hash_list, ses_hash_list, is_named) if(status): return self.__success(result) else: return self.__failure(result) ################################# GET STATES API ################################### @__api_state_decorator("GET_STATES") def get_states_api(self, jsonContent): self.lgr.debug("get_tedp_states_api Called") #TEDP STATES tedp_states = {} if self.__tedp_config is not None: for host_ip, object in self.__tedp_config.items(): tedp_states[host_ip] = object.getStates() te_flask_api_states = {'current_te_state' : self.__CURRENT_STATE, 'current_te_task_details' : self.__TASK_DETAILS, 'te_daemon_ip' : self.__te_controller_obj.get_daemon_ip(), 'flask_port' : self.__te_controller_obj.get_flask_port(), 'redis_port' : self.__te_controller_obj.get_redis_port(), 'nginx_port' : self.__te_controller_obj.get_nginx_port(), 'loglevel' : self.__te_controller_obj.get_loglevel(), 'te_dp_dict' : self.__te_controller_obj.get_te_dp(), 'connect_completed_tedps':list(self.__connect_completed_tedps), 'setup_completed_tedps' : list(self.__setup_completed_tedps), 'all_te_dp_dict_credentials' : self.__all_te_dp_dict_credentials} statesToReturn = {'te_dp_states': tedp_states, 'te_flask_api_states':te_flask_api_states} return self.__success(statesToReturn) ################################# GET CPU COUNT API ################################### def __get_cpu_count_tedps(self, te_dp_hosts, client): try: output, problematicHost = self.__run_command_and_validate_output(client=client, \ te_dp_hosts=te_dp_hosts, cmd="nproc", getStdOut=True) if(bool(problematicHost)): return False, "Error while ssh-ing into clients", problematicHost cpu_result = {} problematicHost = {} for host, linesOfOutput in output.items(): for line in linesOfOutput: try: cpus = int(line) cpu_result[host] = cpus except: problematicHost[host] = line break if(bool(problematicHost)): return False, "Got unexpected Response", problematicHost return True, "Got CPU Count", cpu_result except: return False, "Exception Occured", traceback.format_exc() @__api_state_decorator("GET_CPU_COUNT") def get_cpu_count_api(self, jsonContent): self.lgr.debug("get_cpu_count_api Called") te_dp_dict = convert(jsonContent['te_dp_dict']) if(not(bool(te_dp_dict))): return self.__failure("No te_dp_dict Passed") te_dp_hosts = {} for host_ip, details in te_dp_dict.items(): te_dp_hosts[host_ip] = {'user': details.get('user','root')} passwd = details.get('passwd', None) if passwd: te_dp_hosts[host_ip]['password'] = password client = ParallelSSHClient(te_dp_hosts.keys(), host_config=te_dp_hosts, timeout = 240) status, msg, result = self.__get_cpu_count_tedps(te_dp_hosts, client) del client if(not(status)): return self.__failure({msg:result}) return self.__success(result) def __run_mgmt_command(self, te_dp_hosts, global_cmd=None, per_host_cmd=None, task=None, \ job_timeout=None, max_tolerable_delay=120): try: problematicHost = [] CURRENT_TASK = task for host_ip in te_dp_hosts: enqueuedCall = False if(bool(global_cmd)): enqueuedCall = self.__tedp_config[host_ip].run_mgmt_command_helper( run_mgmt_command_te_dp, {"cmd":global_cmd, "task":task}, job_timeout) elif(bool(per_host_cmd)): cmd_to_enqueue = per_host_cmd.get(host_ip,None) if(bool(cmd_to_enqueue)): enqueuedCall = self.__tedp_config[host_ip].run_mgmt_command_helper( run_mgmt_command_te_dp, {"cmd":cmd_to_enqueue, "task":task}) else: problematicHost.append(host_ip) else: problematicHost.append(host_ip) #Add to Assigned TASK_DETAILS if enqueuedCall: self.__TASK_DETAILS[CURRENT_TASK].append(host_ip) else: problematicHost.append(host_ip) if(bool(problematicHost)): self.__tedp_config[host_ip].clean_task_details(CURRENT_TASK) self.__TASK_DETAILS[CURRENT_TASK] = [] return False, "Unable to perform mgmt_call TEDPs (Fail at enqueue level)", problematicHost if(job_timeout is not None): max_time_wait = max(max_tolerable_delay, job_timeout) else: max_time_wait = max_tolerable_delay status, result = self.__verify_task_status(task, max_time_wait) if status: return True, "Success", result #RQ Failure / Incomplete task / bad code return False, "Unexpected result", result except: return False, "Exception Occured", traceback.format_exc() ################################# GET ACTIVE TEDP API ################################### @__api_state_decorator("GET_ACTIVE_TEDP") def get_active_tedp_api(self, jsonContent): self.lgr.debug("get_active_tedp_api Called") #Get the current te_dp_dict maintined if param passed is empty te_dp_dict = convert(jsonContent['tedps_to_query']) if(bool(te_dp_dict)): set_of_passed_dict = set(te_dp_dict.keys()) if(not(set_of_passed_dict.issubset(self.__connect_completed_tedps))): return self.__failure({"Passed te_dp dict is not a subset of Connected TEDP" : \ list(self.__connect_completed_tedps)}) else: self.lgr.debug("get_active_tedp: No param passed") te_dp_dict = self.__te_controller_obj.get_te_dp() #If still empty, return if(not(bool(te_dp_dict))): return self.__failure("No te_dps are running") cmd = "ps aux | grep te_dp | grep -v grep | wc -l" status, msg, result = self.__run_mgmt_command(te_dp_dict.keys(), global_cmd=cmd, task="GET_ACTIVE_TEDP") if(status): return self.__success(result) else: return self.__failure({msg:result}) @__api_state_decorator("UPDATE_DNS") def update_dns_api(self, jsonContent): self.lgr.debug("update_dns_api Called") #Get the current te_dp_dict maintined if param passed is empty te_dp_dict = convert(jsonContent.get('te_dp_dict', {})) global_dns = convert(jsonContent.get('global_dns', [])) overwrite = convert(jsonContent['overwrite']) problematicHost = [] if(overwrite): redirector = ">" else: redirector = ">>" if(bool(te_dp_dict)): #If te_dp_dict is present, update the DNS only in those Clients set_of_passed_dict = set(te_dp_dict.keys()) per_host_cmd = {} #Check if all the passed clients are connected if(not(set_of_passed_dict.issubset(self.__connect_completed_tedps))): return self.__failure({"Passed te_dp dict is not a subset of Connected TEDP" : \ list(self.__connect_completed_tedps)}) else: #Iterate through all the clients and frame the appropriate command for host_ip, details in te_dp_dict.items(): cmd = "" for tuple_item in details: if(len(tuple_item) == 2): cmd += "%s %s\n" %(str(tuple_item[0]), str(tuple_item[1])) else: problematicHost.append(host_ip) if(bool(cmd)): cmd = "printf '%s' %s /etc/resolv.conf" %(cmd, redirector) self.lgr.debug("Command for %s is %s" %(host_ip, cmd)) per_host_cmd[host_ip] = cmd if(bool(problematicHost)): return self.__failure({"improper input": problematicHost}) if(bool(per_host_cmd)): status, msg, result = self.__run_mgmt_command(te_dp_dict.keys(), \ per_host_cmd=per_host_cmd, task="UPDATE_DNS") else: return self.__failure("Nothing to add/append") elif(bool(global_dns)): #If global_dns is present add the same DNS to all TE-DP Clients cmd = "" for tuple_item in global_dns: if(len(tuple_item) == 2): cmd += "%s %s\n" %(str(tuple_item[0]), str(tuple_item[1])) else: problematicHost.append(tuple_item) if(bool(problematicHost)): return self.__failure({"improper input": problematicHost}) if(bool(cmd)): cmd = "printf '%s' %s /etc/resolv.conf" %(cmd, redirector) self.lgr.debug("Command is %s" %(cmd)) status, msg, result = self.__run_mgmt_command(self.__connect_completed_tedps, \ global_cmd=cmd, task="UPDATE_DNS") else: #If both are absent, throw an error self.__failure("Both global_dns and te_dp_dict cannot be empty") if(status): return self.__success(result) else: return self.__failure({msg:result}) @__api_state_decorator("RESET_DNS") def reset_dns_api(self, jsonContent): self.lgr.debug("reset_dns_api Called") #Get the current te_dp_dict maintined if param passed is empty te_dp_dict = convert(jsonContent['te_dp_dict']) if(bool(te_dp_dict)): #If te_dp_dict is passed, reset only in those clients set_of_passed_dict = set(te_dp_dict.keys()) #Check if all the passed clients are connected if(not(set_of_passed_dict.issubset(self.__connect_completed_tedps))): return self.__failure({"Passed te_dp dict is not a subset of Connected TEDP" : \ list(self.__connect_completed_tedps)}) else: #If nothing is passed, reset DNS on all clients self.lgr.debug("reset_dns: No param passed") te_dp_dict = self.__connect_completed_tedps if(not(bool(te_dp_dict))): return self.__failure("No TEDPs connected") #Command to clean /etc/resolv.conf cmd = "> /etc/resolv.conf" status, msg, result = self.__run_mgmt_command(te_dp_dict, global_cmd=cmd, task="RESET_DNS") if(status): return self.__success(result) else: return self.__failure({msg:result}) @__api_state_decorator("EXECUTE_CMD") def execute_cmd_api(self, jsonContent): self.lgr.debug("execute_cmd_api Called") #Get the current te_dp_dict maintined if param passed is empty te_dp_dict = convert(jsonContent.get('te_dp_dict', {})) cmd = convert(jsonContent['cmd']) job_timeout = convert(jsonContent.get('job_timeout', 180)) if(bool(te_dp_dict)): #If te_dp_dict is passed, reset only in those clients set_of_passed_dict = set(te_dp_dict.keys()) #Check if all the passed clients are connected if(not(set_of_passed_dict.issubset(self.__connect_completed_tedps))): return self.__failure({"Passed te_dp dict is not a subset of Connected TEDP" : \ list(self.__connect_completed_tedps)}) else: #If nothing is passed, reset DNS on all clients self.lgr.debug("execute_cmd: No param passed") te_dp_dict = self.__connect_completed_tedps if(not(bool(te_dp_dict))): return self.__failure("No TEDPs connected") status, msg, result = self.__run_mgmt_command(te_dp_dict, global_cmd=cmd, task="EXECUTE_CMD", job_timeout=job_timeout) if(status): return self.__success(result) else: return self.__failure({msg:result}) def __tech_support_helper(self, tedp_host, scp_ip, scp_user, scp_passwd, scp_path, \ type_of_logs, max_tolerable_delay): try: CURRENT_TASK = "TECH_SUPPORT" self.lgr.debug("__tech_support_helper Called") state_error = {} numberOfCallsMade = 0 enqueuedHosts = [] resultDict = {} for host in tedp_host: argsPassed = {'my_ip':host, 'remote_ip':scp_ip, 'remote_user':scp_user, \ 'remote_pwd':scp_<PASSWORD>, 'remote_path':scp_path, \ 'type_of_logs':type_of_logs} self.lgr.debug("Passing args to tech_support=%s" %str(argsPassed)) resultDict[host] = \ self.__tedp_config[host].tech_support_helper(tech_support, argsPassed) #Add to Assigned TASK_DETAILS self.__TASK_DETAILS[CURRENT_TASK].append(host) self.lgr.debug("result of tech_support tedp %s" %(str(resultDict))) status, result = self.__verify_task_status(CURRENT_TASK, max_tolerable_delay) if status: return True, "SCP-ed files", result #RQ Failure / Incomplete task / bad code return False, "Errors during SCP of tech support", result except: return False, "Exception Occured:", traceback.format_exc() @__api_state_decorator("TECH_SUPPORT") def tech_support_api(self, jsonContent): self.lgr.debug("tech_support_api Called jsonContent={}".format(jsonContent)) te_dp_dict = convert(jsonContent['te_dp_dict']) log_type = convert(jsonContent['log_type']) max_tolerable_delay = convert(jsonContent.get('max_tolerable_delay', 120)) scp_user = convert(jsonContent.get("scp_user", "root")) scp_passwd = convert(jsonContent.get("scp_passwd", None)) scp_ip = self.__te_controller_obj.get_daemon_ip() scp_path = "/tmp" if(log_type!="all" and log_type!="setup" and log_type!="process" and log_type!="core"): self.__failure("Only accepted types of log_types are all, setup, process or core") #If connect step is yet to be completed if(not(bool(self.__connect_completed_tedps))): return self.__failure("No tedps connected to collect logs") else: self.lgr.debug("Using RQs to get the tech_support") if(bool(te_dp_dict)): te_dps = te_dp_dict.keys() else: te_dps = self.__connect_completed_tedps status, msg, result = self.__tech_support_helper(te_dps, scp_ip, scp_user, scp_passwd, \ scp_path, log_type, max_tolerable_delay) if status: date_time = str(datetime.now()).replace(' ','-').replace(':','-') tar_file = "/te_host/techsupportlogs-{}.tar.gz".format(date_time) host_tar_file = "/tmp/techsupportlogs-{}.tar.gz".format(date_time) interested_files = "te_*_logs.tar.gz" cmd = "cd /te_host/ && tar -zcvf {} {} /tmp/ && rm -rf {}".format( tar_file, interested_files, interested_files) self.lgr.info("Executing '{}'".format(cmd)) os.system(cmd) cmd = "ls -d {}".format(tar_file) (out, err) = self.__execute_command(cmd) self.lgr.info("Executing '{}'".format(cmd)) self.lgr.info("Out={} Err={}".format(out, err)) if(bool(out)): if(out.replace('\n','') == tar_file): return self.__success("Tech support file generated at {}".format(host_tar_file)) else: return self.__success("Tar ball not generated but tech support logs scp-ed successfuly. Check /tmp/te_*_logs.tar.gz in controller host") else: return self.__failure({msg:"Unable to scp techsupport logs from data path. Please check for techsupport tar in /tmp/te_*_logs in datapath machines"}) return self.__failure({msg:result}) ################################# SETUP TEDP API #################################### def __setup_tedps(self, te_dp_hosts, client): EXIT_STATUS = { 10 : "Unable to find docker", 11 : "Unable to find python-requests", 12 : "Unable to find wget", 13 : "Unable to prepare the appropriate conditions needed to start the container (redis stop, docker start)", 14 : "Unable to download the tedp_docker.tar from TE-Controller", 15 : "Unable to load the container", 16 : "Unable to run the container", 17 : "Unable o get free ports", 18 : "Wrong parameters passed", 19 : "Unable to calculate checksum of Tar file", 20 : "Unable to find free port even after several tries", 21 : "Unable to find netstat command", 22 : "Unable to find both systemctl and service commands", 23 : "docker pull command failed", 24 : "docker run command failed", 200 : "Success", 404 : "Fatal: unknown reason" } CLEAN_EXIT = 200 #SCP GET_AND_RUN_DOCKER_IMAGE.py to all the hosts' home dir greenlets = client.scp_send('/app/GET_AND_RUN_DOCKER_IMAGE.py', 'GET_AND_RUN_DOCKER_IMAGE.py') try: joinall(greenlets, raise_error=True) except: return False, "Unable to scp GET_AND_RUN_DOCKER_IMAGE.py", traceback.format_exc() self.lgr.debug("SCP-ed /app/GET_AND_RUN_DOCKER_IMAGE.py to TEDP containers") #Run GET_AND_RUN_DOCKER_IMAGE.py to all the hosts'i home dir host_command = OrderedDict() for host in te_dp_hosts.keys(): host_command[host] = "python ~/GET_AND_RUN_DOCKER_IMAGE.py -w ~/ -ip %s -p %s -t TE_DP -my_ip %s -fp %s" \ %(self.__te_controller_obj.get_daemon_ip(), self.__te_controller_obj.get_nginx_port(), host, self.__te_controller_obj.get_flask_port()) problematicHost = self.__run_command_and_validate_output(client=client, \ te_dp_hosts=te_dp_hosts, host_args=host_command, cleanExitCode=CLEAN_EXIT,\ possibleExitCodesDict=EXIT_STATUS) if problematicHost != {}: self.lgr.error("Unable to run GET_AND_RUN_DOCKER_IMAGE.py to TEDP containers. %s" \ %str(problematicHost)) return False, "Unable to setup tedp on all machines. Exit Codes", problematicHost else: return True, "Setup TEDP Containers", [] @__api_state_decorator("SETUP") def setup_tedp_api(self, jsonContent): ''' Args: jsonContent: Must Posses te_dp_dict ''' self.lgr.debug("setup_tedp_api Called") isRequestValid = self.__checkForRequiredArgument(jsonContent, ['te_dp_dict']) if isRequestValid is not None: return isRequestValid self.lgr.debug("Validation of Request Success {}".format(jsonContent['te_dp_dict'])) start_time = time.time() te_dp_dict = convert(jsonContent['te_dp_dict']) if not isinstance(te_dp_dict, dict): return self.__failure("te_dp_dict must be a dict") te_dp_hosts = {} host_ips_to_setup = set(te_dp_dict.keys()) - self.__setup_completed_tedps invalid_input = {} for host_ip in host_ips_to_setup: value = te_dp_dict[host_ip] if value is None: invalid_input[host_ip] = "Value cannot be None" continue user = value.get('user',None) if user is None: invalid_input[host_ip] = "user cannot be None" continue # Empty password means authenticate from default certificate from /root/.ssh/ passwd = value.get('passwd', None) te_dp_hosts[host_ip] = {'user': user} if passwd: te_dp_hosts[host_ip]['password'] = passwd self.__all_te_dp_dict_credentials[host_ip] = te_dp_hosts[host_ip] if(bool(invalid_input)): return self.__failure(invalid_input) if(not(te_dp_hosts)): return self.__failure({"TEPDs already setup" : list(self.__setup_completed_tedps)}) self.lgr.debug("Running setup_tedp on {}".format(te_dp_hosts)) client = ParallelSSHClient(te_dp_hosts.keys(), host_config=te_dp_hosts, timeout = 240) self.lgr.debug("Creation of ParallelSSHClient Success") status, msg, result = self.__setup_tedps(te_dp_hosts, client) del client if status: self.__setup_completed_tedps.update(host_ips_to_setup) return self.__success(msg) else: # if we have partial success, add to the list to avoid re-init of setup_tedp # for the successful host if isinstance(result, dict): failed_hosts = list(result.keys()) for tedp_host in host_ips_to_setup: if tedp_host not in failed_hosts: self.__setup_completed_tedps.add(tedp_host) return self.__failure({msg:result}) ################################# RQ APIs #################################### @__api_state_decorator("GET_RQ_DETAILS") def get_rq_details_api(self, jsonContent): self.lgr.debug("get_rq_details_api Called") isRequestValid = self.__checkForRequiredArgument(jsonContent, ['ip','cpus']) if isRequestValid is not None: return isRequestValid if jsonContent['ip'] not in self.__setup_completed_tedps: return self.__failure("Unauthenticated. Use connect to authenticate {}".format(jsonContent['ip'])) if jsonContent['ip'] not in self.__tedp_config.keys(): self.__connect_lock.acquire() self.__tedp_config[jsonContent['ip']] = TE_DP_CONFIG(jsonContent['ip'], jsonContent['cpus'], \ self.TE_BROKER_HANDLE, self.lgr, self.__te_postgres_object) self.__connect_lock.release() result = { "broker" : self.__te_app.config['BROKER_URL'], "stat_collect_interval" : self.__stat_collect_interval, "zmq" : self.__te_controller_obj.get_zmq_port(), "queue_csv" : 'TE?' + str(self.__tedp_config[jsonContent['ip']].get_queue_names()) } return self.__success(result) @__api_state_decorator("ESTABLISH_RQ") def establish_rq_api(self, jsonContent): self.lgr.debug("establish_rq_api Called") isRequestValid = self.__checkForRequiredArgument(jsonContent, ['ip']) if isRequestValid is not None: return isRequestValid if jsonContent['ip'] not in self.__setup_completed_tedps: self.lgr.debug("unauthorised {}".format(jsonContent['ip'])) return self.__failure("Unauthenticated. Use connect to authenticate {}".format(jsonContent['ip'])) self.__connect_lock.acquire() self.__connect_completed_tedps.add(jsonContent['ip']) self.__connect_lock.release() return self.__success("Authenticated {}".format(jsonContent['ip'])) ################################# CONNECT API #################################### @__api_state_decorator("CONNECT") def connect_api(self, jsonContent): self.lgr.debug("connect_api Called") isRequestValid = self.__checkForRequiredArgument(jsonContent, ['te_dp_dict']) if isRequestValid is not None: return isRequestValid te_dp_dict = convert(jsonContent['te_dp_dict']) if not isinstance(te_dp_dict, dict): return self.__failure("te_dp_dict must be a dict") if not te_dp_dict: return self.__failure({"No tedps to connect. Already connected tedps": \ list(self.__connect_completed_tedps)}) for host in te_dp_dict.keys(): self.__setup_completed_tedps.add(host) return self.__success("Initiated objects for TEDPs={} to connect".format(list(te_dp_dict.keys()))) ################################# CLEAN API #################################### def __disconnect_tedps(self, te_dp_hosts, client): try: cmd = "docker rm -f tedpv2.0 || true" problematicHost = self.__run_command_and_validate_output(client=client, \ te_dp_hosts=te_dp_hosts, cmd=cmd) if(bool(problematicHost)): return False, "Unable to disconnect from hosts", problematicHost return True, "Removed containers in hosts", te_dp_hosts except: return False, "Exception Occured", traceback.format_exc() def __reinit_tedp_config(self): for host in self.__tedp_config.keys(): obj = self.__tedp_config[host] cpus = obj.get_cpu_count() new_obj = TE_DP_CONFIG(host, cpus, self.TE_BROKER_HANDLE, \ self.lgr, self.__te_postgres_object) del obj self.__tedp_config[host] = new_obj @__api_state_decorator("CLEAN") def clean_api(self, jsonContent): isRequestValid = self.__checkForRequiredArgument(jsonContent, ['remove_containers']) if isRequestValid is not None: return isRequestValid remove_containers = convert(jsonContent['remove_containers']) # Swagger handling if remove_containers == "True" or remove_containers == "true": remove_containers = True elif remove_containers == "False" or remove_containers == "false": remove_containers = False if remove_containers: # If container needs to be removed go via ssh te_dp_hosts = {} te_dp_in_no_access = set() for host_ip in self.__connect_completed_tedps: if host_ip not in self.__all_te_dp_dict_credentials: te_dp_in_no_access.add(host_ip) continue te_dp_hosts[host_ip] = {'user': self.__all_te_dp_dict_credentials[host_ip].get('user','root')} passwd = self.__all_te_dp_dict_credentials[host_ip].get('password', None) if passwd: te_dp_hosts[host_ip]['password'] = passwd for host_ip in self.__setup_completed_tedps: if host_ip not in self.__all_te_dp_dict_credentials: te_dp_in_no_access.add(host_ip) continue te_dp_hosts[host_ip] = {'user': self.__all_te_dp_dict_credentials[host_ip].get('user','root')} passwd = self.__all_te_dp_dict_credentials[host_ip].get('password', None) if passwd: te_dp_hosts[host_ip]['password'] = <PASSWORD> self.__setup_completed_tedps = self.__setup_completed_tedps.difference(te_dp_in_no_access) self.__connect_completed_tedps = self.__connect_completed_tedps.difference(te_dp_in_no_access) if(not(bool(te_dp_hosts))): return self.__failure("No connected te dps to disconnect") client = ParallelSSHClient(te_dp_hosts.keys(), host_config=te_dp_hosts, timeout = 240) status, msg, result = self.__disconnect_tedps(te_dp_hosts, client) del client if (status and te_dp_in_no_access): result = { msg : result, "tedp in no access. Needs manual clean up using `docker rm -f tedpv2.0`" : list(te_dp_in_no_access) } else: # Go via rq to clean up the tedp process and to kill and respawn rq if self.__setup_completed_tedps: cmd = "nohup /opt/te/clean_tedp.sh &" status, msg, result = self.__run_mgmt_command(list(self.__setup_completed_tedps), global_cmd=cmd, task="CLEAN_TEDP") if status: self.__connect_completed_tedps.clear() if remove_containers: self.__setup_completed_tedps.clear() self.__te_controller_obj.unset_te_dp() self.__te_controller_obj.unset_resource_config() self.__te_controller_obj.unset_session_config() self.__te_controller_obj.unset_instance_profile_config() self.__te_controller_obj.unset_client_cert_bundle() self.__CURRENT_STATE = self.__TE_STATE["INIT"] self.TE_BROKER_HANDLE.flushall() self.__TASK_DETAILS = defaultdict(list) self.__reinit_tedp_config() if(self.__te_postgres_object.clear_tables()): return self.__success(result) else: return self.__failure("Unable to clear metrics table in TE") else: return self.__failure({msg:result}) ################################# START API #################################### def __spawn_or_update_tedps(self, resource_config, sessionConfig, instanceProfileConfig, \ tedp_dict, max_tolerable_delay, is_cert_replaced, updateFlag=False, verify_result=True): #AK: What does the below line mean?? # Multiple Src IPs Code will break, because the current implementation depends on TEDP_INFO, which is not yet updated in the connect step in this design due to obvious reasons try: if updateFlag: CURRENT_TASK = "UPDATE" else: CURRENT_TASK = "START" self.lgr.debug("__spawn_or_update_tedps Called") state_error = {} numberOfCallsMade = 0 enqueuedHosts = [] resultDict = defaultdict(dict) for host_ip, instance_profile in tedp_dict.items(): enqueuedCall = False for profile_tag, count in instance_profile.items(): profileToGet = instanceProfileConfig.get(profile_tag, None) #Should never get into the if-block, if user-side validation is completed if profileToGet is None: self.lgr.error("%s instance_profile_tag is not present in instanceProfileConfig" %(profile_tag)) return False, "%s instance_profile_tag is not present in instanceProfileConfig" %(profile_tag), instanceProfileConfig res_tag = profileToGet['res-tag'] ses_tag = profileToGet.get('ses-tag', None) traffic_mode = profileToGet.get('traffic-mode', 'CLIENT').upper() traffic_profile = profileToGet.get('traffic-profile', 'TCP').upper() if is_cert_replaced: client_res_cfg = resource_config[host_ip][res_tag] else: client_res_cfg = resource_config[res_tag] # UDP Server can have ses_tag as None if ses_tag is not None: client_ses_cfg = sessionConfig[ses_tag] else: client_ses_cfg = {} res_hash = str(hash(json.dumps(client_res_cfg))) ses_hash = str(hash(json.dumps(client_ses_cfg))) self.__te_postgres_object.insert_configs(res_tag, res_hash, client_res_cfg, ses_tag, ses_hash, client_ses_cfg) argsPassed = {'profile_tag':profile_tag, 'res_tag':res_tag, 'ses_tag':ses_tag, \ 'client_res_cfg':client_res_cfg, 'client_ses_cfg':client_ses_cfg, \ 'client_res_hash':res_hash, 'client_ses_hash':ses_hash, \ 'stat_dump_interval' : self.__stat_dump_interval, \ 'metrics_enabled' : self.__metrics_enabled, \ 'memory_metrics_enabled' : self.__memory_metrics_enabled, \ 'loglevel' : self.__te_controller_obj.get_loglevel(), \ 'count_of_tedps':count, 'traffic_mode' : traffic_mode, \ 'traffic_profile' : traffic_profile, 'client_mgmt_ip' : host_ip} self.lgr.debug("Passing args to spawn/update=%s" %str(argsPassed)) if updateFlag: resultDict[host_ip][profile_tag] = \ self.__tedp_config[host_ip].update_te_dp_helper(raw_update_te_dp, argsPassed) else: resultDict[host_ip][profile_tag] = \ self.__tedp_config[host_ip].start_te_dp_helper(start_te_dp, argsPassed) enqueuedCall = True #Add to Assigned TASK_DETAILS if enqueuedCall: self.__TASK_DETAILS[CURRENT_TASK].append(host_ip) self.lgr.debug("result of spawning/updating tedp %s" %(str(resultDict))) success = True atLeastOneTEDP = False for host_ip, profile in resultDict.items(): atLeastOneTEDP = True for result in profile.values(): if not(isinstance(result, dict)) or result.get("Success",0) == 0 or result.get("Failure",[]) != []: success = False break if not(atLeastOneTEDP): return True, "", {"State transition is completed":True} #Can fail only if TEDP state transition fails / exceptions if(not(success)): self.__tedp_config[host_ip].clean_task_details(CURRENT_TASK) self.__TASK_DETAILS[CURRENT_TASK] = [] return False, "Unable to stop TEDPs (Fail at enqueue level)", resultDict if verify_result: status, result = self.__verify_task_status(CURRENT_TASK, max_tolerable_delay) if status: return True, "All TEDPs Spawed", result #RQ Failure / Incomplete task / bad code return False, "No TEDP Spawed", result else: return True, "Given RQ Object to execute", resultDict except: self.lgr.error("ERROR IN spawn_tedp: %s" %traceback.format_exc()) return False, "Exception occured in %s" %inspect.stack()[0][3], traceback.format_exc() def __generate_client_res_cfg(self, te_dp_dict, resource_config, instance_profile_config, \ cert_profile): try: problematicCert = [] client_res_config = {} self.lgr.debug("__generate_client_res_cfg Called") for client_ip, client_dict in cert_profile.items(): for vip, cert_list in client_dict.items(): for cert in cert_list: if 'ca-cert-path' in cert: cert['ca-cert-path'] = re.sub("^/root/", "/te_root/", cert['ca-cert-path']) cert['ca-cert-path'] = re.sub("^/home/.*[^/]/", "/te_root/", cert['ca-cert-path']) cert['ca-cert-path'] = re.sub("^~/", "/te_root/", cert['ca-cert-path']) if 'cert-path' in cert: cert['cert-path'] = re.sub("^/root/", "/te_root/", cert['cert-path']) cert['cert-path'] = re.sub("^/home/.*[^/]/", "/te_root/", cert['cert-path']) cert['cert-path'] = re.sub("^~/", "/te_root/", cert['cert-path']) if 'key-path' in cert: cert['key-path'] = re.sub("^/root/", "/te_root/", cert['key-path']) cert['key-path'] = re.sub("^/home/.*[^/]/", "/te_root/", cert['key-path']) cert['key-path'] = re.sub("^~/", "/te_root/", cert['key-path']) for host_ip, instance_profile_dict in te_dp_dict.items(): #Get the mapping for the current host_ip vip_to_cert_map = cert_profile.get(host_ip, cert_profile.get('default', None)) client_res_config[host_ip] = {} for instance_profile_tag in instance_profile_dict.keys(): res_tag = instance_profile_config[instance_profile_tag]['res-tag'] client_res = copy(resource_config[res_tag]) for vip_obj in client_res['vip-list']: auth = vip_obj.get('auth',False) vip = vip_obj['vip'] if auth: if vip_to_cert_map is None: problematicCert.append("Neither the mapping found for host_ip=%s not the 'default'" %host_ip) continue cert_list = vip_to_cert_map.get(vip, vip_to_cert_map.get('default', None)) if cert_list is None: problematicCert.append("Neither the mapping found for vip=%s not the 'default' for host_ip=%s"\ %(vip, host_ip)) continue vip_obj['certs'] = cert_list vip_obj.pop('auth',None) client_res_config[host_ip][res_tag] = client_res if(bool(problematicCert)): self.lgr.error("Problem with certs %s" %str(problematicCert)) return False, "Problem with certs", problematicCert return True, "", client_res_config except: return False, "Exception Occurred", traceback.format_exc() def __input_validation(self, te_dp_dict, instanceProfileConfig, resourceConfig, sessionConfig, is_update=True): if not(isinstance(te_dp_dict, dict)): return False, "te_dp_dict must be a dictionary" if not(isinstance(instanceProfileConfig, dict)): return False, "instanceProfileConfig must be a dictionary" if not(isinstance(resourceConfig, dict)): return False, "resourceConfig must be a dictionary" if not(isinstance(sessionConfig, dict)): return False, "sessionConfig must be a dictionary" reason_dict = {} checked_profile = {} for key, value in te_dp_dict.items(): if not(isinstance(value, dict)): reason_dict[key] = "Value of the key must be a dict" continue instance_profile = value.get("instance_profile", None) if instance_profile is None and is_update: # Check is only for update_config reason_dict[key] = "instance_profile key cannot be None during update" continue elif instance_profile is not None: if not(isinstance(instance_profile, dict)): # If it is not None, it must be a dictionary reason_dict[key] = "Value of instance_profile must be a dict" continue for instance_tag, count in instance_profile.items(): profile = instanceProfileConfig.get(instance_tag, None) if profile is None: reason_dict[key] = "instance_profile={} is not found in " \ "instanceProfileConfig or is None".format(instance_tag) break if not isinstance(count, int): reason_dict[key] = "Count in instance_profile must be integer" break # Profile is already checked if checked_profile.get(instance_tag, False): continue if not isinstance(profile, dict): reason_dict[key] = "{} tag in instanceProfileConfig must be " \ "dict".format(instance_tag) break # res-tag and ses-tag can never be None in case of CLIENT # ses-tag is not present in UDP SERVER res_key = profile.get('res-tag', None) ses_key = profile.get('ses-tag', None) traffic_mode = profile.get('traffic-mode', "CLIENT").upper() traffic_profile = profile.get('traffic-profile', "TCP").upper() if traffic_profile == "TCP" and traffic_mode == "SERVER": reason_dict[key] == "instance_profile={}: TCP SERVER is not supported by TE" if res_key is None or (ses_key is None and traffic_mode == "CLIENT"): reason_dict[key] = "Value of res-tag and ses-tag cannot be None in "\ "instance_profile={}".format(instance_tag) break if(not(isinstance(res_key, str)) or \ (traffic_mode == "CLIENT" and not(isinstance(ses_key, str)))): reason_dict[key] = "Value of res-tag and ses-tag must be str in "\ "instance_profile={} res_key={} ses_key={}".format(\ instance_tag, res_key, ses_key) break if resourceConfig.get(res_key, None) is None: reason_dict[key] = "instance_profile={} had res-tag={} but was not found "\ "in resourceConfig".format(instance_tag, res_key) break if ses_key is not None and sessionConfig.get(ses_key, None) is None: reason_dict[key] = "instance_profile={} had ses-tag={} but was not found "\ "in sessionConfig".format(instance_tag, ses_key) break # Compulsary params check (very basic, at best) # Any Client must possess a vip-list to target if traffic_profile == "CLIENT": if(not(bool(resourceConfig[res_key].get('vip-list', None)))): reason_dict[key] = "res-tag={} traffic-profile={} does not possess "\ "'vip-list'".format(res_key, traffic_profile) #TCP Client if traffic_mode == "TCP": if(not(bool(resourceConfig[res_key].get('get-profiles', None)) or bool(resourceConfig[res_key].get('post-profiles', None)))): reason_dict[key] = "res-tag={} traffic-mode={} neither possess "\ "'get-profiles' nor 'post-profiles".format(res_key, traffic_mode) #UDP Client if traffic_mode == "UDP" and traffic_profile == "CLIENT": if(not(bool(resourceConfig[res_key].get('udp-profiles', None)))): reason_dict[key] = "res-tag={} traffic-mode={} traffic-profile={} "\ "does not possess 'udp-profiles'".format(res_key, traffic_mode, traffic_profile) #UDP Server if traffic_mode == "UDP" and traffic_profile == "CLIENT": if(not(bool(resourceConfig[res_key].get('port-list', None)) or bool(resourceConfig[res_key].get('port-range', None)))): reason_dict[key] = "res-tag={} traffic-mode={} neither possess "\ "'port-list' nor 'port-range".format(res_key, traffic_mode) checked_profile[instance_tag] = True if bool(reason_dict): self.lgr.error("__input_validation: is_update={} \tte_dp_dict={} \t" \ "instanceProfileConfig={} \tresourceConfig={} \tsessionConfig={} \t" \ "reason_dict={}".format(is_update, te_dp_dict, instanceProfileConfig, \ resourceConfig, sessionConfig, reason_dict)) return False, reason_dict return True, reason_dict def __is_spawning_new_tedps_possible(self, te_dp_dict): resource_insuffcient_hosts = {} dict_after_validation = {} for host_ip, host_properties in te_dp_dict.items(): if host_properties is None or host_properties.get('instance_profile',None) is None: continue inst_prof = host_properties['instance_profile'] number_of_tedp_to_spawn = sum(host_properties['instance_profile'].values()) notPossible = self.__tedp_config[host_ip].is_spinning_new_tedps_possible(number_of_tedp_to_spawn) if(notPossible is not None): resource_insuffcient_hosts[host_ip] = notPossible continue dict_after_validation[host_ip] = inst_prof if(bool(resource_insuffcient_hosts)): return False, "Resource insuffient to run te_dps", resource_insuffcient_hosts return True, "All conditions passed to spawn tedps", dict_after_validation def __get_udp_server_dict(self, te_dp_dict, instanceProfileConfig): if(not(bool(te_dp_dict))): return {} udp_server_tedp_dict = defaultdict(dict) for host in list(te_dp_dict.keys()): instance_profile_dict = te_dp_dict[host] for tag in list(instance_profile_dict.keys()): if(instanceProfileConfig[tag].get('traffic-mode', 'CLIENT').upper() == "SERVER"): udp_server_tedp_dict[host][tag] = instance_profile_dict[tag] te_dp_dict[host].pop(tag) if(not(bool(te_dp_dict[host]))): te_dp_dict.pop(host) return udp_server_tedp_dict @__api_state_decorator("START") def start_api(self, jsonContent): self.lgr.debug("start_api Called") isRequestValid = self.__checkForRequiredArgument(jsonContent, ['te_dp_dict','resource_config','session_config','instanceProfileConfig']) if isRequestValid is not None: return isRequestValid resourceConfig = convert(jsonContent['resource_config']) sessionConfig = convert(jsonContent['session_config']) instanceProfileConfig = convert(jsonContent['instanceProfileConfig']) te_dp_dict = convert(jsonContent['te_dp_dict']) te_dp_dict_to_save = deepcopy(te_dp_dict) client_cert_bundle = convert(jsonContent.get('client_cert_bundle',None)) max_tolerable_delay = int(convert(jsonContent.get('max_tolerable_delay', 120))) possible, reason = self.__are_all_tedps_connected(te_dp_dict) if(not(possible)): return self.__failure({"Unable to start on unconnected tedp machines":reason}) possible, reason = self.__input_validation(te_dp_dict, instanceProfileConfig, \ resourceConfig, sessionConfig, False) if(not(possible)): return self.__failure(reason) #DND important logic out there status, statusmessage, te_dp_dict_reduced = self.__is_spawning_new_tedps_possible(te_dp_dict) if(not(status)): return self.__failure({statusmessage:te_dp_dict_reduced}) if(not(bool(te_dp_dict_reduced))): self.__CURRENT_STATE = self.__TE_STATE["RUNNING"] self.__success("Only state transition effected from INIT to RUNNING") if(client_cert_bundle is not None): status, msg, result = self.__generate_client_res_cfg(te_dp_dict_reduced, resourceConfig, \ instanceProfileConfig, client_cert_bundle) if(not(status)): return self.__failure({msg:result}) resource_config_to_spawn = result is_cert_replaced = True else: resource_config_to_spawn = resourceConfig is_cert_replaced = False # Start of the UDP server has to be done before starting the clients # Though the start of servers will run in parallel, starting of clients will # happen only after starting the clients (Sequential) result = {} udp_server_tedp_dict_to_start = \ self.__get_udp_server_dict(te_dp_dict_reduced, instanceProfileConfig) self.lgr.debug("START UDP SERVER IN START_API %s" %str(udp_server_tedp_dict_to_start)) if(bool(udp_server_tedp_dict_to_start)): status, msg_server_start, result_server_start = self.__spawn_or_update_tedps(\ resource_config_to_spawn, sessionConfig, instanceProfileConfig, \ udp_server_tedp_dict_to_start, max_tolerable_delay, is_cert_replaced) if(not(status)): return self.__failure({msg_server_start:result_server_start}) result["server-start"] = result_server_start # As above iteration could have removed the the hosts from the dict all together if(bool(te_dp_dict_reduced)): status, msg, result_start = self.__spawn_or_update_tedps(resource_config_to_spawn, sessionConfig,\ instanceProfileConfig, te_dp_dict_reduced, max_tolerable_delay, is_cert_replaced) result["client-start"] = result_start if status: self.__CURRENT_STATE = self.__TE_STATE["RUNNING"] self.__te_controller_obj.set_resource_config(resourceConfig) self.__te_controller_obj.set_session_config(sessionConfig) self.__te_controller_obj.set_instance_profile_config(instanceProfileConfig) self.__te_controller_obj.set_te_dp(te_dp_dict_to_save) if client_cert_bundle is not None: self.__te_controller_obj.set_client_cert_bundle(client_cert_bundle) return self.__success(result) else: return self.__failure({msg:result}) ################################# STOP API #################################### def __stop_tedps(self, paramDict, max_tolerable_delay): try: CURRENT_TASK = "STOP" resultDict = {} for host_ip, listOfPid in paramDict.items(): resultDict[host_ip] = self.__tedp_config[host_ip].stop_te_dp_helper(stop_te_dp, \ {'listOfPid':listOfPid}) self.__TASK_DETAILS[CURRENT_TASK].append(host_ip) self.lgr.debug("result of stopping tedp %s" %(str(resultDict))) success = True for host_ip, result in resultDict.items(): if not(isinstance(result, dict)) or result.get("Success",0) <= 0: success = False break if(not(success)): self.__tedp_config[host_ip].clean_task_details(CURRENT_TASK) self.__TASK_DETAILS[CURRENT_TASK] = [] return False, "Unable to stop TEDPs (Fail at enqueue level)", resultDict status, result = self.__verify_task_status(CURRENT_TASK, max_tolerable_delay) if status: return True, "Stopped TEDPs", result return False, "Unable to stop TEDPs", result except: return False, "Exception Occured in __stop_tedps", traceback.format_exc() def __get_new_te_dp_to_set(self, te_dp_dict_stopped=None, list_of_profiles=None): if te_dp_dict_stopped is not None and list_of_profiles is not None: return None if te_dp_dict_stopped is None and list_of_profiles is None: return {} if list_of_profiles is not None: te_dp_dict_to_set = deepcopy(self.__te_controller_obj.get_te_dp()) for host_ip in te_dp_dict_to_set.keys(): profile = te_dp_dict_to_set[host_ip]['instance_profile'] for profile_tag in profile.keys(): if profile_tag in list_of_profiles: profile.pop(profile_tag) if(not(bool(profile))): te_dp_dict_to_set.pop(host_ip) return te_dp_dict_to_set if te_dp_dict_stopped is not None: te_dp_dict_to_set = deepcopy(self.__te_controller_obj.get_te_dp()) old_hosts = set(te_dp_dict_to_set.keys()) stopped_hosts = set(te_dp_dict_stopped.keys()) common_hosts = old_hosts.intersection(stopped_hosts) for host_ip in common_hosts: if te_dp_dict_stopped[host_ip] is None or \ te_dp_dict_stopped[host_ip]['instance_profile'] is None: te_dp_dict_to_set.pop(host_ip) else: profile_stopped = te_dp_dict_stopped[host_ip]['instance_profile'] to_set_profile_dict = te_dp_dict_to_set[host_ip]['instance_profile'] for profile_tag in profile_stopped.keys(): to_set_profile_dict = te_dp_dict_to_set[host_ip]['instance_profile'] to_set_profile_dict[profile_tag] -= profile_stopped[profile_tag] if to_set_profile_dict[profile_tag] == 0: to_set_profile_dict.pop(profile_tag) if(not(bool(to_set_profile_dict))): te_dp_dict_to_set.pop(host_ip) return te_dp_dict_to_set @__api_state_decorator("STOP") def stop_api(self, jsonContent): ''' Integrate the stats collection logic to the code Args: by_instance_profile_tag: A dictionary mapping from host_ip to instance_profile to count to stop ''' self.lgr.debug("stop_api Called") change_state_to_init = False by_host_and_instance_profile_tag = convert(jsonContent.get('by_host_and_instance_profile_tag',None)) by_instance_profile_tag = convert(jsonContent.get('by_instance_profile_tag',None)) max_tolerable_delay = int(convert(jsonContent.get('max_tolerable_delay', 120))) numberOfCallsMade = 0 paramDict = defaultdict(set) if by_host_and_instance_profile_tag is not None and by_instance_profile_tag is not None: return self.__failure("Both params of by_host_and_instance_profile_tag and by_instance_profile_tag cannot be passed") elif by_host_and_instance_profile_tag is None and by_instance_profile_tag is None: change_state_to_init = True te_dp_dict = self.__te_controller_obj.get_te_dp() for host_ip in te_dp_dict.keys(): listOfPidsRunningProfile = self.__tedp_config[host_ip].get_pid_of_running_tedps() if(bool(listOfPidsRunningProfile)): paramDict[host_ip] = paramDict[host_ip].union(listOfPidsRunningProfile) else: self.lgr.warning("No tedps is been run on %s" %host_ip) elif by_host_and_instance_profile_tag is not None: self.lgr.debug("Host Specific stop_api params population") possible, reason = self.__are_all_tedps_connected(by_host_and_instance_profile_tag) if(not(possible)): return self.__failure({"Unable to stop on unconnected tedp machines":reason}) for host_ip, profile_map in by_host_and_instance_profile_tag.items(): if profile_map is None or profile_map['instance_profile'] is None: listOfPidsRunningProfile = self.__tedp_config[host_ip].get_pid_of_running_tedps() self.lgr.debug("listOfPidsRunningProfile for by_host_and_instance_profile_tag=%s" \ %str(listOfPidsRunningProfile)) if(bool(listOfPidsRunningProfile)): paramDict[host_ip] = paramDict[host_ip].union(listOfPidsRunningProfile) else: for profile_name, count in profile_map['instance_profile'].items(): if count == 0: continue listOfPidsRunningProfile = \ self.__tedp_config[host_ip].get_pid_of_running_profiles([profile_name]) numberOfRunningProcess = len(listOfPidsRunningProfile) #If count is None, delete all running profiles of the specific host if count is None: paramDict[host_ip] = paramDict[host_ip].union(listOfPidsRunningProfile) #if numberOfRunningProcess is 0, then no process of that profile_name is running elif numberOfRunningProcess == 0: error_str = "stop_api uninitiated. Requested to kill %d instances of %s\ but no process of that instance is running in host_ip= %s" \ %(count, profile_name, host_ip) #If count > numberOfRunningProcess, Improper parameter elif count > numberOfRunningProcess: error_str = "stop_api uninitiated. Requested to kill %d instances of %s\ but only %d running in host_ip=%s" \ %(count, profile_name, numberOfRunningProcess, host_ip) self.lgr.errorerror_str return self.__failure(error_str) #Else stop count process running in the host_ip else: paramDict[host_ip] = paramDict[host_ip].union(listOfPidsRunningProfile[:count]) elif by_instance_profile_tag is not None: self.lgr.debug("profile_tag Specific stop_api params population") for host_ip in self.__tedp_config: listOfPidsRunningProfile = \ self.__tedp_config[host_ip].get_pid_of_running_profiles(by_instance_profile_tag) if(bool(listOfPidsRunningProfile)): paramDict[host_ip] = paramDict[host_ip].union(listOfPidsRunningProfile) if(bool(paramDict)): status, message, result = self.__stop_tedps(paramDict, max_tolerable_delay) else: return self.__failure("No tedps to stop") if(status): #Alter te_dp_dict for every stop self.lgr.debug("by_host_and_instance_profile_tag=%s"%str(by_host_and_instance_profile_tag)) self.lgr.debug("by_instance_profile_tag=%s"%str(by_instance_profile_tag)) te_dp_dict_to_set = self.__get_new_te_dp_to_set(te_dp_dict_stopped=by_host_and_instance_profile_tag, list_of_profiles=by_instance_profile_tag) self.lgr.debug("Final set te_dp_dict_to_set is %s" %str(te_dp_dict_to_set)) self.__te_controller_obj.set_te_dp(te_dp_dict_to_set) #Unset others only on stop all call if change_state_to_init: self.__CURRENT_STATE = self.__TE_STATE["INIT"] self.__te_controller_obj.unset_resource_config() self.__te_controller_obj.unset_session_config() self.__te_controller_obj.unset_instance_profile_config() self.__te_controller_obj.unset_client_cert_bundle() else: self.__CURRENT_STATE = self.__TE_STATE["RUNNING"] return self.__success(result) return self.__failure({message:result}) ################################# UPDATE API #################################### def __getModifiedConfigs(self, newConfig, oldConfig): try: self.lgr.debug("__getModifiedConfigs Called") newKeys = set(newConfig.keys()) oldKeys = set(oldConfig.keys()) modifiedKeys = newKeys - oldKeys intersectionKeys = newKeys.intersection(oldKeys) self.lgr.debug("newKeys = %s" %str(newKeys)) self.lgr.debug("oldKeys = %s" %str(oldKeys)) self.lgr.debug("modifiedKeys = %s" %str(modifiedKeys)) self.lgr.debug("intersectionKeys = %s" %str(intersectionKeys)) for key in intersectionKeys: if newConfig[key] != oldConfig[key]: self.lgr.debug("Adding Key=%s" %key) modifiedKeys.add(key) return modifiedKeys except: self.lgr.error("ERROR in __getModifiedConfigs: %s" %traceback.format_exc()) return None def __getModifiedProfiles(self, oldInstanceProfileConfig, newInstanceProfileConfig, modifiedRes, \ modifiedSes): try: self.lgr.debug("__getModifiedProfiles Called") oldKeys = set(oldInstanceProfileConfig.keys()) newKeys = set(newInstanceProfileConfig.keys()) commonKeys = newKeys.intersection(oldKeys) modifiedProfiles = newKeys - oldKeys self.lgr.debug("newKeys = %s" %str(newKeys)) self.lgr.debug("oldKeys = %s" %str(oldKeys)) self.lgr.debug("modifiedProfiles = %s" %str(modifiedProfiles)) self.lgr.debug("commonKeys = %s" %str(commonKeys)) for profile in commonKeys: res_tag = newInstanceProfileConfig[profile]['res-tag'] ses_tag = newInstanceProfileConfig[profile].get('ses-tag', None) if res_tag in modifiedRes or (ses_tag is not None and ses_tag in modifiedSes): self.lgr.debug("Adding Key=%s" %profile) modifiedProfiles.add(profile) return modifiedProfiles except: self.lgr.error("ERROR in __getModifiedProfiles: %s" %traceback.format_exc()) return None @__api_state_decorator("UPDATE") def update_config_api(self, jsonContent): self.lgr.debug("update_config_api Called") start_update_api_time = time.time() isRequestValid = self.__checkForRequiredArgument(jsonContent, ['resource_config',\ 'session_config','instanceProfileConfig','te_dp_dict']) if isRequestValid is not None: return isRequestValid resourceConfig = convert(jsonContent['resource_config']) sessionConfig = convert(jsonContent['session_config']) instanceProfileConfig = convert(jsonContent['instanceProfileConfig']) te_dp_dict = convert(jsonContent['te_dp_dict']) client_cert_bundle = convert(jsonContent.get('client_cert_bundle',None)) max_tolerable_delay = int(convert(jsonContent.get('max_tolerable_delay', 120))) possible, reason = self.__are_all_tedps_connected(te_dp_dict) if(not(possible)): return self.__failure({"Unable to update on unconnected tedp machines":reason}) possible, reason = self.__input_validation(te_dp_dict, instanceProfileConfig, \ resourceConfig, sessionConfig) if(not(possible)): return self.__failure(reason) if not self.__te_controller_obj: self.lgr.errror("te_class object not found") return self.__failure('te_class object not found') old_resource_cfg = self.__te_controller_obj.get_resource_config() if old_resource_cfg is None: self.__failure("old resource cfg is None") old_session_cfg = self.__te_controller_obj.get_session_config() if old_session_cfg is None: self.__failure("old session cfg is None") old_instance_profile_config = self.__te_controller_obj.get_instance_profile_config() if old_instance_profile_config is None: self.__failure("old instance profile cfg is None") old_te_dp_dict = self.__te_controller_obj.get_te_dp() if old_te_dp_dict is None: self.__failure("old tedp dict is None") modifiedRes = self.__getModifiedConfigs(resourceConfig, old_resource_cfg) if modifiedRes is None: return self.__failure(traceback.format_exc()) modifiedSes = self.__getModifiedConfigs(sessionConfig, old_session_cfg) if modifiedSes is None: return self.__failure(traceback.format_exc()) modifiedProfiles = self.__getModifiedProfiles(old_instance_profile_config, \ instanceProfileConfig, modifiedRes, modifiedSes) if modifiedProfiles is None: return self.__failure(traceback.format_exc()) self.lgr.debug("modifiedRes=%s" %str(modifiedRes)) self.lgr.debug("modifiedSes=%s" %str(modifiedSes)) self.lgr.debug("modifiedProfiles=%s" %str(modifiedProfiles)) oldTEDPhosts = set(old_te_dp_dict.keys()) newTEDPhosts = set(te_dp_dict.keys()) tedpsToStop = oldTEDPhosts - newTEDPhosts tedpsToModify = newTEDPhosts.intersection(oldTEDPhosts) tedpsToSpawn = newTEDPhosts - oldTEDPhosts te_dp_dict_to_stop = defaultdict(set) te_dp_dict_to_spawn = defaultdict(dict) te_dp_dict_to_update = defaultdict(dict) problematicHost = {} for host_ip in tedpsToStop: listOfPidsRunningProfile = self.__tedp_config[host_ip].get_pid_of_running_tedps() if(bool(listOfPidsRunningProfile)): te_dp_dict_to_stop[host_ip] = te_dp_dict_to_stop[host_ip].union(listOfPidsRunningProfile) for host_ip in tedpsToSpawn: instance_profile = te_dp_dict[host_ip]['instance_profile'] number_of_tedps_to_spawn = sum(instance_profile.values()) notPossible = self.__tedp_config[host_ip].is_spinning_new_tedps_possible(number_of_tedps_to_spawn) if(notPossible is not None): problematicHost[host_ip] = notPossible continue te_dp_dict_to_spawn[host_ip] = instance_profile self.lgr.debug("Old tedp dict was %s" %str(old_te_dp_dict)) for host_ip in tedpsToModify: ''' Possible cases: 1) Modification of profile with Increase/Decrease in count 2) Unmodified Profile with Increase/Decrease in count 5) Presence of a new tag(in tedp_dict) in te_dp_dict 4) Deletion of a tag(in tedp_dict) from old te_dp_dict ''' newProfileDict = te_dp_dict[host_ip]['instance_profile'] old_value_of_host = old_te_dp_dict.get(host_ip, None) if old_value_of_host is not None: oldProfileDict = old_value_of_host.get('instance_profile',{}) if oldProfileDict is None: oldProfileDict = {} else: oldProfileDict = {} newKeys = set(newProfileDict.keys()) oldKeys = set(oldProfileDict.keys()) addedTags = newKeys - oldKeys deletedTags = oldKeys - newKeys commonTags = newKeys.intersection(oldKeys) numberOfTEDPsToStop = 0 numberOfTEDPsToSpawn = 0 for profile in addedTags: count = te_dp_dict[host_ip]['instance_profile'][profile] te_dp_dict_to_spawn[host_ip][profile] = count numberOfTEDPsToSpawn += count for profile in deletedTags: listOfPidsRunningProfile = self.__tedp_config[host_ip].get_pid_of_running_profiles([profile]) if(listOfPidsRunningProfile): te_dp_dict_to_stop[host_ip] = te_dp_dict_to_stop[host_ip].union(listOfPidsRunningProfile) numberOfTEDPsToStop += len(listOfPidsRunningProfile) for profile in commonTags: updateFlag = False if profile in modifiedProfiles: updateFlag = True listOfPidsRunningProfile = self.__tedp_config[host_ip].get_pid_of_running_profiles([profile]) number_of_new_tedps_to_run = te_dp_dict[host_ip]['instance_profile'][profile] number_of_tedps_running = len(listOfPidsRunningProfile) difference = abs(number_of_new_tedps_to_run - number_of_tedps_running) #SPAWN AND UPDATE if number_of_new_tedps_to_run > number_of_tedps_running: te_dp_dict_to_spawn[host_ip][profile] = difference numberOfTEDPsToSpawn += difference if updateFlag: te_dp_dict_to_update[host_ip][profile] = number_of_tedps_running #STOP AND UPDATE elif number_of_new_tedps_to_run < number_of_tedps_running: if(bool(listOfPidsRunningProfile)): te_dp_dict_to_stop[host_ip] = te_dp_dict_to_stop[host_ip].union(listOfPidsRunningProfile[:difference]) numberOfTEDPsToStop += difference if updateFlag: te_dp_dict_to_update[host_ip][profile] = number_of_new_tedps_to_run #UPDATE (No change in count) elif updateFlag: te_dp_dict_to_update[host_ip][profile] = number_of_tedps_running notPossibleToRun = self.__tedp_config[host_ip].is_update_possible(numberOfTEDPsToStop, \ numberOfTEDPsToSpawn) if(bool(notPossibleToRun)): problematicHost[host_ip] = notPossibleToRun if(bool(problematicHost)): return self.__failure(problematicHost) self.lgr.debug("STOP IN UPDATE_API %s" %str(te_dp_dict_to_stop)) self.lgr.debug("START IN UPDATE_API %s" %str(te_dp_dict_to_spawn)) self.lgr.debug("UPDATE IN UPDATE_API %s" %str(te_dp_dict_to_update)) self.lgr.debug("TIME TAKEN FOR PREPROCESSING %s" %str(time.time() - start_update_api_time)) #GENERATE CLIENT RES CONFIG if(bool(client_cert_bundle)): gen_start = time.time() dict_to_update_and_spawn = deepcopy(te_dp_dict_to_spawn) dict_merge(dict_to_update_and_spawn, te_dp_dict_to_update) status, msg, result = self.__generate_client_res_cfg(dict_to_update_and_spawn, \ resourceConfig, instanceProfileConfig, client_cert_bundle) if(not(status)): return self.__failure({msg:result}) resource_config_to_spawn_and_update = result is_cert_replaced = True self.lgr.debug("Time taken to GEN CERT PROFILE %s" %str(time.time() - gen_start)) else: resource_config_to_spawn_and_update = resourceConfig is_cert_replaced = False result = {} #STOP TEDPs if(bool(te_dp_dict_to_stop)): stop_start = time.time() status, msg_stop, result_stop = self.__stop_tedps(te_dp_dict_to_stop, max_tolerable_delay) if(not(status)): return self.__failure({msg_stop:result_stop}) result["stop"] = {msg_stop:result_stop} self.lgr.debug("Time taken to STOP %s" %str(time.time() - stop_start)) # Servers will have to be started / updated before starting / updating the client # So a separate call has to be made to make sure Servers are up and running, before the client starts # Calls to verify_task status is avoided in both spawn and update methods # This is done to quicken the process of enqueuing task, without worrying about the result # We later make a call to verify the task status #UPDATE UDP SERVER TEDPs is_udp_servers_updated = False udp_server_tedp_dict_to_update = \ self.__get_udp_server_dict(te_dp_dict_to_update, instanceProfileConfig) self.lgr.debug("UPDATE UDP SERVER IN UPDATE_API %s" %str(udp_server_tedp_dict_to_update)) if(bool(udp_server_tedp_dict_to_update)): is_udp_servers_updated = True status, msg_update, result_update = self.__spawn_or_update_tedps(\ resource_config_to_spawn_and_update, sessionConfig, instanceProfileConfig, \ udp_server_tedp_dict_to_update, max_tolerable_delay, is_cert_replaced, updateFlag=True, \ verify_result=False) if(not(status)): return self.__failure({msg_update:result_update}) #START UDP SERVER TEDPs is_udp_servers_spawned = False udp_server_tedp_dict_to_start = \ self.__get_udp_server_dict(te_dp_dict_to_spawn, instanceProfileConfig) self.lgr.debug("START UDP SERVER IN UPDATE_API %s" %str(udp_server_tedp_dict_to_start)) if(bool(udp_server_tedp_dict_to_start)): is_udp_servers_spawned = True status, msg_start, result_start = self.__spawn_or_update_tedps(\ resource_config_to_spawn_and_update, sessionConfig, instanceProfileConfig, \ udp_server_tedp_dict_to_start, max_tolerable_delay, is_cert_replaced, verify_result=False) if(not(status)): return self.__failure({msg_start:result_start}) #Verifying the task status for update of UDP SERVER if(is_udp_servers_updated): status, result_update = self.__verify_task_status("UPDATE", max_tolerable_delay) if(not(status)): return self.__failure({"Error in __verify_task_status of update of UDP SERVER":result_update}) if(bool(result_update)): result["server-update"] = result_update #Verifying the task status for spawn of UDP SERVER if(is_udp_servers_spawned): status, result_start = self.__verify_task_status("START", max_tolerable_delay) if(not(status)): return self.__failure({"Error in __verify_task_status of start of UDP SERVER":result_start}) if(bool(result_start)): result["server-start"] = result_start #UPDATE TEDPs (All except UDP SERVERS) if(bool(te_dp_dict_to_update)): status, msg_update, result_update = self.__spawn_or_update_tedps(\ resource_config_to_spawn_and_update, sessionConfig, instanceProfileConfig, \ te_dp_dict_to_update, max_tolerable_delay, is_cert_replaced, updateFlag=True, \ verify_result=False) if(not(status)): return self.__failure({msg_update:result_update}) #SPAWN TEDPS (All except UDP SERVERS) if(bool(te_dp_dict_to_spawn)): status, msg_start, result_start = self.__spawn_or_update_tedps( resource_config_to_spawn_and_update, sessionConfig, instanceProfileConfig, \ te_dp_dict_to_spawn, max_tolerable_delay, is_cert_replaced, verify_result=False) if(not(status)): return self.__failure({msg_start:result_start}) #Verifying the task status for update (All except UDP SERVERS) status, result_update = self.__verify_task_status("UPDATE", max_tolerable_delay) if(not(status)): return self.__failure({"Error in __verify_task_status of update":result_update}) if(bool(result_update)): result["client-update"] = result_update #Verifying the task status for spawn (All except UDP SERVERS) status, result_start = self.__verify_task_status("START", max_tolerable_delay) if(not(status)): return self.__failure({"Error in __verify_task_status of start":result_start}) if(bool(result_start)): result["client-start"] = result_start self.lgr.debug("Setup Completed tedps after update is: %s" %str(self.__setup_completed_tedps)) if(bool(result)): self.__CURRENT_STATE = self.__TE_STATE["RUNNING"] self.__te_controller_obj.set_resource_config(resourceConfig) self.__te_controller_obj.set_session_config(sessionConfig) self.__te_controller_obj.set_instance_profile_config(instanceProfileConfig) self.__te_controller_obj.set_te_dp(te_dp_dict) if client_cert_bundle is not None: self.__te_controller_obj.set_client_cert_bundle(client_cert_bundle) return self.__success(result) else: return self.__failure("Nothing to update") def __execute_command(self, cmd): proc = subprocess.Popen(cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True) out, err = proc.communicate() # Both Python 2 & 3 compliant if out is not None: out = out.decode('utf-8') if err is not None: err = err.decode('utf-8') return (out,err) def grafana_api(self, jsonContent): self.lgr.info("Grafana api is called.") grafana_service_state = convert(jsonContent['state']) if grafana_service_state == False or grafana_service_state == 'False' or grafana_service_state == 'false': cmd = "service grafana-server stop" (out, err) = self.__execute_command(cmd) if err is None: return self.__success("Grafana sevice stopped successfully") else: grafana_port = self.__te_controller_obj.get_grafana_port() #Uncomment this line in grafana.in config file, to set the the port number subprocess.call("sed -i 's/;http_port/http_port/g' /etc/grafana/grafana.ini" , shell=True) #Check if the default port is pre-occupied or not, if occupied assign a random port cmd_check_port = "netstat -laneut | grep -w {} | wc -l".format(grafana_port) (count, err) = self.__execute_command(cmd_check_port) if err: return self.__failure("ERROR Occured with netstat command! {}".format(err)) if int(count) != 0: return self.__failure("Port {} is not free to use and so unable to start grafana".format(grafana_port)) return_val = subprocess.call("sed -i 's/http_port = [0-9]*/http_port = {}/g' /etc/grafana/grafana.ini".format(grafana_port) , shell=True) if return_val != 0: return self.__failure("Grafana Port Not Intialized Error occured!!") cmd = "service grafana-server start" (out, err) = self.__execute_command(cmd) if not(err): url = str(self.__te_controller_obj.get_daemon_ip()) + ":" + grafana_port return self.__success("Grafana service is running at {} with creds: admin / admin ".format(url)) else: self.lgr.error("Grafana server failed to start {}".format(err)) self.__failure("Grafana server failed to start {}".format(err)) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-m','--Mgmt_IP',type=str, required=True, help='Mgmt IP for the TE and Redis to use for all TE_DP') parser.add_argument('-np','--nginx_port',type=str, required=True, help='Port for nginx to bind') parser.add_argument('-rp','--redis_port',type=str, required=True, help='Port for redis to bind') parser.add_argument('-fp','--flask_port',type=str, required=True, help='Port for flask to bind') parser.add_argument('-pp','--postgres_port',type=str, required=True, help='Port for postgres to bind') parser.add_argument('-zp','--zmq_port',type=str, required=True, help='Port for zmq to bind') parser.add_argument('-gp','--grafana_port',type=str, required=True, help='Port for grafana to bind') parser.add_argument('-lp','--logpath',type=str, default='/tmp/', help='Log Path for TE') parser.add_argument('-ll','--loglevel',type=int, default=10, help='Log Level for TE') parser.add_argument('-ct','--stat_collect_interval',type=int, default=15, help='Time Interval at which Stat Collection must take place') parser.add_argument('-dt','--stat_dump_interval',type=int, default=15, help='Time Interval at which Stat Dumping by TEDP must take place') args = parser.parse_args() return args def dump(te_daemon_ip, nginx_port, redis_port, flask_port, postgres_port, zmq_port, grafana_port, \ stat_collect_interval, stat_dump_interval, loglevel): tedatajson = { 'te_daemon_ip' : te_daemon_ip, 'nginx_ip' : nginx_port, 'redis_port' : redis_port, 'flask_port' : flask_port, 'postgres_port' : postgres_port, 'zmq_port' : zmq_port, 'grafana_port' : grafana_port, 'stat_collect_interval' : stat_collect_interval, 'stat_dump_interval' : stat_dump_interval, 'logpath' : logpath, 'loglevel' : loglevel } te_file = open('/tmp/te-data.json', 'w') json.dump(tedatajson,te_file) te_file.close() if __name__ == '__main__': args = parse_args() te_daemon_ip = args.Mgmt_IP nginx_port = args.nginx_port redis_port = args.redis_port flask_port = args.flask_port postgres_port = args.postgres_port zmq_port = args.zmq_port grafana_port = args.grafana_port stat_collect_interval = args.stat_collect_interval stat_dump_interval = args.stat_dump_interval logpath = args.logpath loglevel = args.loglevel dump(te_daemon_ip, nginx_port, redis_port, flask_port, postgres_port, zmq_port, grafana_port, \ stat_collect_interval, stat_dump_interval, loglevel) flask_obj = FlaskApplicationWrapper(te_daemon_ip, flask_port, redis_port, nginx_port, \ postgres_port, zmq_port, grafana_port, stat_collect_interval, stat_dump_interval, logpath, loglevel) flask_obj.run()
0.945313
1
Genome.py
SwikarGautam/NEAT
0
12778644
<filename>Genome.py from Node import Node import random from math import exp class Genome: def __init__(self): self.connections = [] self.bias = Node(0, 0) self.inp = [self.bias] self.out = [] self.connection_set = set() # it is used to check if a connection between two nodes already exists in a genome self.fitness = 0 self.nodes = [self.bias] # Returns a list of output given a input list def output(self, input_v): for n in self.nodes: n.value = 0 self.bias.value = 1 self.inp.sort(key=lambda x: x.id_n) self.out.sort(key=lambda x: x.id_n) for i, n in zip(input_v, self.inp[1:]): n.value = i for _ in range(7): random.shuffle(self.nodes) for n in self.nodes: if n.layer == 2: s = 0 for c in n.in_con: if c.enabled: s += c.inp.value * c.weight n.value = self.m_sigmoid(s) for n in self.out: s = 0 for c in n.in_con: if c.enabled: s += c.inp.value * c.weight n.value = self.m_sigmoid(s) r = [] for o in self.out: r.append(o.value) return r # activation function # Staticmethod is written because it does not use any variables or methods/functions of the class @staticmethod def m_sigmoid(x): return 1/(1 + exp(-4.9*x)) if x > -15 else 0 # adds new inherited connection to the genome def add_connection(self, connect_gene): if connect_gene.innov_no in self.gen_innov(): for c in self.connections: if c.innov_no == connect_gene.innov_no: c.weight = connect_gene.weight c.enabled = connect_gene.enabled return iid, oid = connect_gene.inp.id_n, connect_gene.out.id_n if (iid, oid) in self.connection_set or (oid, iid) in self.connection_set: return connect_gene.inp.in_con = [] connect_gene.out.in_con = [] if iid in self.node_ids(): for n in self.nodes: if n.id_n == iid: connect_gene.inp = n break else: self.nodes.append(connect_gene.inp) if oid in self.node_ids(): for n in self.nodes: if n.id_n == oid: n.in_con.append(connect_gene) connect_gene.out = n break else: connect_gene.out.in_con.append(connect_gene) self.nodes.append(connect_gene.out) self.connections.append(connect_gene) self.connection_set.add((connect_gene.inp.id_n, connect_gene.out.id_n)) # returns the set of innovation number in the connection genes def gen_innov(self): s = set() for c in self.connections: s.add(c.innov_no) return s # returns the set of id number of all nodes def node_ids(self): s = set() for n in self.nodes: s.add(n.id_n) return s
3.1875
3
sdk/python/v1beta1/kubeflow/katib/models/v1beta1_source_spec.py
ujjwalsh/katib
2
12778645
<reponame>ujjwalsh/katib<filename>sdk/python/v1beta1/kubeflow/katib/models/v1beta1_source_spec.py # coding: utf-8 """ Katib Swagger description for Katib # noqa: E501 OpenAPI spec version: v1beta1-0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from kubeflow.katib.models.v1beta1_file_system_path import V1beta1FileSystemPath # noqa: F401,E501 from kubeflow.katib.models.v1beta1_filter_spec import V1beta1FilterSpec # noqa: F401,E501 from kubernetes.client import V1HTTPGetAction # noqa: F401,E501 class V1beta1SourceSpec(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'file_system_path': 'V1beta1FileSystemPath', 'filter': 'V1beta1FilterSpec', 'http_get': 'V1HTTPGetAction' } attribute_map = { 'file_system_path': 'fileSystemPath', 'filter': 'filter', 'http_get': 'httpGet' } def __init__(self, file_system_path=None, filter=None, http_get=None): # noqa: E501 """V1beta1SourceSpec - a model defined in Swagger""" # noqa: E501 self._file_system_path = None self._filter = None self._http_get = None self.discriminator = None if file_system_path is not None: self.file_system_path = file_system_path if filter is not None: self.filter = filter if http_get is not None: self.http_get = http_get @property def file_system_path(self): """Gets the file_system_path of this V1beta1SourceSpec. # noqa: E501 During training model, metrics may be persisted into local file in source code, such as tfEvent use case # noqa: E501 :return: The file_system_path of this V1beta1SourceSpec. # noqa: E501 :rtype: V1beta1FileSystemPath """ return self._file_system_path @file_system_path.setter def file_system_path(self, file_system_path): """Sets the file_system_path of this V1beta1SourceSpec. During training model, metrics may be persisted into local file in source code, such as tfEvent use case # noqa: E501 :param file_system_path: The file_system_path of this V1beta1SourceSpec. # noqa: E501 :type: V1beta1FileSystemPath """ self._file_system_path = file_system_path @property def filter(self): """Gets the filter of this V1beta1SourceSpec. # noqa: E501 Default metric output format is {\"metric\": \"<metric_name>\", \"value\": <int_or_float>, \"epoch\": <int>, \"step\": <int>}, but if the output doesn't follow default format, please extend it here # noqa: E501 :return: The filter of this V1beta1SourceSpec. # noqa: E501 :rtype: V1beta1FilterSpec """ return self._filter @filter.setter def filter(self, filter): """Sets the filter of this V1beta1SourceSpec. Default metric output format is {\"metric\": \"<metric_name>\", \"value\": <int_or_float>, \"epoch\": <int>, \"step\": <int>}, but if the output doesn't follow default format, please extend it here # noqa: E501 :param filter: The filter of this V1beta1SourceSpec. # noqa: E501 :type: V1beta1FilterSpec """ self._filter = filter @property def http_get(self): """Gets the http_get of this V1beta1SourceSpec. # noqa: E501 Model-train source code can expose metrics by http, such as HTTP endpoint in prometheus metric format # noqa: E501 :return: The http_get of this V1beta1SourceSpec. # noqa: E501 :rtype: V1HTTPGetAction """ return self._http_get @http_get.setter def http_get(self, http_get): """Sets the http_get of this V1beta1SourceSpec. Model-train source code can expose metrics by http, such as HTTP endpoint in prometheus metric format # noqa: E501 :param http_get: The http_get of this V1beta1SourceSpec. # noqa: E501 :type: V1HTTPGetAction """ self._http_get = http_get def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(V1beta1SourceSpec, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1SourceSpec): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
1.929688
2
crown/query.py
machine-w/crown
25
12778646
<reponame>machine-w/crown<gh_stars>10-100 # from types import SimpleNamespace # from crown import Model # from attr import field from .common import * from .field import * from functools import reduce import operator class QueryCompiler(object): field_map = { 'int': 'INT', 'smallint': 'SMALLINT', 'tinyint': 'TINYINT', 'bigint': 'BIGINT', 'float': 'FLOAT', 'double': 'DOUBLE', 'nchar': 'NCHAR', 'binary': 'BINARY', 'datetime': 'TIMESTAMP', 'bool': 'BOOL', 'primary_key': 'TIMESTAMP', } op_map = { OP_EQ: '=', OP_LT: '<', OP_LTE: '<=', OP_GT: '>', OP_GTE: '>=', OP_NE: '!=', OP_IN: 'IN', OP_IS: 'IS', OP_LIKE: 'LIKE', OP_ILIKE: 'ILIKE', OP_ADD: '+', OP_SUB: '-', OP_MUL: '*', OP_DIV: '/', OP_XOR: '^', OP_AND: 'AND', OP_OR: 'OR', } def __init__(self, quote_char='"', interpolation='?', field_overrides=None, op_overrides=None): self.quote_char = quote_char self.interpolation = interpolation self._field_map = dict_update(self.field_map, field_overrides or {}) self._op_map = dict_update(self.op_map, op_overrides or {}) def quote(self, s): return ''.join((self.quote_char, s, self.quote_char)) def get_field(self, f): return self._field_map[f] def get_op(self, q): return self._op_map[q] def _max_alias(self, am): max_alias = 0 if am: for a in am.values(): i = int(a.lstrip('t')) if i > max_alias: max_alias = i return max_alias + 1 def parse_expr(self, expr, alias_map=None): s = self.interpolation p = [expr] if isinstance(expr, Expr): lhs, lparams = self.parse_expr(expr.lhs, alias_map) rhs, rparams = self.parse_expr(expr.rhs, alias_map) s = '(%s %s %s)' % (lhs, self.get_op(expr.op), rhs) p = lparams + rparams elif isinstance(expr, Field): s = expr.db_column if alias_map and expr.model_class in alias_map: s = '.'.join((alias_map[expr.model_class], s)) p = [] elif isinstance(expr, Func): p = [] exprs = [] for param in expr.params: parsed, params = self.parse_expr(param, alias_map) exprs.append(parsed) p.extend(params) s = '%s(%s)' % (expr.name, ', '.join(exprs)) elif isinstance(expr, Param): s = self.interpolation p = [expr.data] elif isinstance(expr, Ordering): s, p = self.parse_expr(expr.param, alias_map) s += ' ASC' if expr.asc else ' DESC' elif isinstance(expr, R): s = expr.value p = [] elif isinstance(expr, SelectQuery): max_alias = self._max_alias(alias_map) clone = expr.clone() if not expr._explicit_selection: clone._select = (clone.model_class._meta.primary_key,) subselect, p = self.parse_select_query(clone, max_alias, alias_map) s = '(%s)' % subselect elif isinstance(expr, (list, tuple)): exprs = [] p = [] for i in expr: e, v = self.parse_expr(i, alias_map) exprs.append(e) p.extend(v) s = '(%s)' % ','.join(exprs) # elif isinstance(expr, Model): # s = self.interpolation # p = [expr.get_id()] if isinstance(expr, Leaf): if expr.negated: s = 'NOT %s' % s if expr._alias: s = ' '.join((s, 'AS', expr._alias)) return s, p def parse_query_node(self, qnode, alias_map): if qnode is not None: return self.parse_expr(qnode, alias_map) return '', [] def parse_expr_list(self, s, alias_map): parsed = [] data = [] for expr in s: expr_str, vars = self.parse_expr(expr, alias_map) parsed.append(expr_str) data.extend(vars) return ', '.join(parsed), data def parse_select_query(self, query, start=1, alias_map=None): model = query.model_class db = model._meta.database parts = ['SELECT'] params = [] selection = query._select select, s_params = self.parse_expr_list(selection, alias_map) parts.append(select) params.extend(s_params) parts.append('FROM %s ' % (self.quote(model._meta.db_table),)) # joins = self.parse_joins(query._joins, query.model_class, alias_map) # if joins: # parts.append(' '.join(joins)) where, w_params = self.parse_query_node(query._where, alias_map) if where: parts.append('WHERE %s' % where) params.extend(w_params) if query._interval: if query._interval_offset: parts.append('INTERVAL(%s,%s)' % (query._interval,query._interval_offset)) else: parts.append('INTERVAL(%s)' % (query._interval,)) parts.append('FILL(%s)' % (query._fill,)) if query._group_by: group_by, g_params = self.parse_expr_list(query._group_by, alias_map) parts.append('GROUP BY %s' % group_by) params.extend(g_params) if query._order_by: order_by, _ = self.parse_expr_list(query._order_by, alias_map) parts.append('ORDER BY %s' % order_by) if query._limit or (query._offset and not db.empty_limit): limit = query._limit or -1 parts.append('LIMIT %s' % limit) if query._offset: parts.append('OFFSET %s' % query._offset) return ' '.join(parts), params def _parse_field_dictionary(self, d): sets, params = [], [] for item in d: field = item.get('obj') expr = item.get('value') field_str, _ = self.parse_expr(field) val_str, val_params = self.parse_expr(expr) val_params = [field.db_value(vp) for vp in val_params] sets.append((field_str, val_str)) # sets.append((field_str, val_params[0])) params.extend(val_params) return sets, params def parse_insert_query(self, query): model = query.model_class parts = ['INSERT INTO %s' % self.quote(model._meta.db_table)] sets, params = self._parse_field_dictionary(query._insert) parts.append('(%s)' % ', '.join(s[0] for s in sets)) parts.append('VALUES (%s)' % ', '.join(s[1] for s in sets)) return ' '.join(parts), params def parse_createsontable_query(self,query,safe=True): model = query.model_class parts = ['CREATE TABLE'] if safe: parts.append('IF NOT EXISTS') parts.append('%s USING %s TAGS ' % (query.table_name,model._meta.db_table)) sets, params = self._parse_field_dictionary(query._tags) parts.append('(%s)' % ', '.join(s[1] for s in sets)) return ' '.join(parts), params def field_sql(self, field): attrs = field.attributes attrs['column_type'] = self.get_field(field.get_db_field()) template = field.template parts = [self.quote(field.db_column), template] return ' '.join(p % attrs for p in parts) def parse_create_table(self, model_class, safe=False): parts = ['CREATE TABLE'] if safe: parts.append('IF NOT EXISTS') parts.append(self.quote(model_class._meta.db_table)) columns = ', '.join(self.field_sql(f) for f in model_class._meta.get_fields()) parts.append('(%s)' % columns) if model_class._tags != None: tags = ', '.join(self.field_sql(f) for f in model_class._tags.get_fields()) parts.append(' TAGS (%s)' % tags) return parts def parse_create_database(self, database, safe=False,keep= None,comp=None,replica=None,quorum=None,blocks=None): parts = ['CREATE DATABASE'] if safe: parts.append('IF NOT EXISTS') parts.append(database) if keep != None: parts.append('KEEP %s' % keep) if comp != None: parts.append('COMP %s' % comp) if replica != None: parts.append('REPLICA %s' % replica) if quorum != None: parts.append('QUORUM %s' % quorum) if blocks != None: parts.append('BLOCKS %s' % blocks) return parts def parse_alter_database(self, database,keep= None,comp=None,replica=None,quorum=None,blocks=None): parts = ['ALTER DATABASE'] parts.append(database) if keep != None: parts.append('KEEP %s' % keep) if comp != None: parts.append('COMP %s' % comp) if replica != None: parts.append('REPLICA %s' % replica) if quorum != None: parts.append('QUORUM %s' % quorum) if blocks != None: parts.append('BLOCKS %s' % blocks) return parts def parse_drop_database(self, database, safe=False): parts = ['DROP DATABASE'] if safe: parts.append('IF EXISTS') parts.append(database) return parts def create_database(self, database, safe=False,keep= None,comp=None,replica=None,quorum=None,blocks=None): return ' '.join(self.parse_create_database(database,safe,keep,comp,replica,quorum,blocks)) def alter_database(self, database,keep= None,comp=None,replica=None,quorum=None,blocks=None): return ' '.join(self.parse_alter_database(database,keep,comp,replica,quorum,blocks)) def show_database(self, database): return 'SHOW DATABASES' def show_tables(self, database,super=False): if super: return 'SHOW %s.STABLES' % database else: return 'SHOW %s.TABLES' % database def drop_database(self, database, safe=False): return ' '.join(self.parse_drop_database(database, safe)) def create_table(self, model_class, safe=False): return ' '.join(self.parse_create_table(model_class, safe)) def describe_table(self,model_class): parts = ['DESCRIBE '] parts.append(self.quote(model_class._meta.db_table)) return ' '.join(parts) def change_table_tagvalue(self,model_class,name,value): parts = ['ALTER TABLE '] parts.append(model_class._meta.db_table) #TODO:restful api 对引号的表名支持不好 # parts.append(self.quote(model_class._meta.db_table)) if isinstance(value,str): parts.append('SET TAG "%s" = "%s"' % (name,value)) else: parts.append('SET TAG "%s" = %s' % (name,value)) return ' '.join(parts) def add_tag(self,model_class,value): parts = ['ALTER TABLE '] parts.append(model_class._meta.db_table) #TODO:restful api 对引号的表名支持不好 # parts.append(self.quote(model_class._meta.db_table)) if isinstance(value, Field) and not isinstance(value, DateTimeField) and value.db_column: parts.append('ADD TAG %s' % (self.field_sql(value))) return ' '.join(parts) def drop_tag(self,model_class,name): parts = ['ALTER TABLE '] parts.append(model_class._meta.db_table) #TODO:restful api 对引号的表名支持不好 # parts.append(self.quote(model_class._meta.db_table)) parts.append('DROP TAG %s' % (name)) return ' '.join(parts) def change_tag_name(self,model_class,name,newname): parts = ['ALTER TABLE '] parts.append(model_class._meta.db_table) #TODO:restful api 对引号的表名支持不好 # parts.append(self.quote(model_class._meta.db_table)) parts.append('CHANGE TAG %s %s' % (name,newname)) return ' '.join(parts) def drop_table(self, model_class, fail_silently=False, cascade=False): parts = ['DROP TABLE'] if fail_silently: parts.append('IF EXISTS') parts.append(self.quote(model_class._meta.db_table)) return ' '.join(parts) class QueryResultWrapper(list): def __init__(self, model, cursor): self.model = model self.cursor = cursor cols = [] non_cols = [] for i in range(len(self.cursor.head)): col = self.cursor.head[i] if col in model._meta.columns: cols.append((i, model._meta.columns[col])) else: non_cols.append((i, col)) self._cols = cols self._non_cols = non_cols super(QueryResultWrapper, self).__init__([self.simple_mode(row) for row in cursor.data]) def simple_mode(self, row): instance = self.model() for i, f in self._cols: setattr(instance, f.name, f.python_value(row[i])) for i, f in self._non_cols: setattr(instance, f, row[i]) return instance class Query(object): require_commit = True def __init__(self, model_class): self.model_class = model_class self.database = model_class._meta.database self._dirty = True self._query_ctx = model_class # self._joins = {self.model_class: []} # adjacency graph self._where = None def clone(self): query = type(self)(self.model_class) if self._where is not None: query._where = self._where.clone() # query._joins = self.clone_joins() query._query_ctx = self._query_ctx return query @returns_clone def where(self, *q_or_node): if self._where is None: self._where = reduce(operator.and_, q_or_node) else: for piece in q_or_node: self._where &= piece def sql(self, compiler): raise NotImplementedError() def execute(self): raise NotImplementedError class SelectQuery(Query): require_commit = False def __init__(self, model_class, *selection): self._explicit_selection = len(selection) > 0 all_selection=model_class._meta.get_fields() if model_class._tags: all_selection.extend(model_class._tags.get_fields()) self._select = self._model_shorthand(self.strToField(selection , all_selection)) self._group_by = None self._order_by = None self._limit = None self._offset = None self._qr = None self._interval= None self._interval_offset= None self._fill = None super(SelectQuery, self).__init__(model_class) def strToField(self,selection,all_selection): if not selection: return all_selection res = [] for item in selection: if isinstance(item,str): for field in all_selection: if item.capitalize() == field.verbose_name or item == field.db_column: item = field break res.append(item) return res def clone(self): query = super(SelectQuery, self).clone() query._explicit_selection = self._explicit_selection query._select = list(self._select) if self._group_by is not None: query._group_by = list(self._group_by) if self._order_by is not None: query._order_by = list(self._order_by) query._limit = self._limit query._offset = self._offset return query def _model_shorthand(self, args): accum = [] for arg in args: if isinstance(arg, Leaf): accum.append(arg) return accum @returns_clone def group_by(self, *args): self._group_by = self._model_shorthand(args) @returns_clone def order_by(self, *args): self._order_by = list(args) @returns_clone def desc(self): self._order_by = list([self.model_class._meta.primary_key.desc()]) @returns_clone def asc(self): self._order_by = list([self.model_class._meta.primary_key.asc()]) @returns_clone def limit(self, lim): self._limit = lim @returns_clone def offset(self, off): self._offset = off @returns_clone def interval(self, interval_value, fill='NONE',offset = None,): self._interval= interval_value self._interval_offset= offset if fill in ['NONE','PREV','NULL','LINEAR']: self._fill = fill #{NONE | | PREV | NULL | LINEAR} else: self._fill = "VALUE, %s" % str(fill) #VALUE @returns_clone def paginate(self, page, page_size=20): if page > 0: page -= 1 self._limit = page_size self._offset = page * page_size def count(self,field=None): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [fn.Count(field if field else clone.model_class._meta.primary_key)] # if self._group_by: # res = clone.execute() # if len(res) > 0: # return res # else: # return None # else: res = clone.database.execute(clone) if res and res[0]: return res[0][0] else: return 0 def avg(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.AVG) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def twa(self,*fields): clone = self.order_by() if clone._where is None: return None clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.TWA) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def sum(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.SUM) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def stddev(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.STDDEV) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def min(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.MIN) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def max(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.MAX) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def first(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.FIRST) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def last(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.LAST) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def last_row(self,*fields): clone = self.order_by() if clone._where is not None: raise Exception('last_row not allow where clause') clone._limit = clone._offset = clone._where = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.LAST_ROW) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def spread(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.SPREAD) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None # tdengine目前只支持一列,为以后支持多列准备的函数 def diff(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias(field,fn.DIFF) for field in fields] res = clone.execute() return res def top(self,field,top=1,alias=None): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None if alias: clone._select = [fn.TOP(field,top).alias(alias)] else: clone._select = [fn.TOP(field,top)] res = clone.execute() return res def bottom(self,field,bottom=1,alias=None): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None if alias: clone._select = [fn.BOTTOM(field,bottom).alias(alias)] else: clone._select = [fn.BOTTOM(field,bottom)] res = clone.execute() return res def apercentile(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias_tuple_field(field,3,fn.APERCENTILE) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def percentile(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias_tuple_field(field,3,fn.PERCENTILE) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def leastsquares(self,*fields): clone = self.order_by() clone._limit = clone._offset = None # TODO: 分组的情况下如何统计 if self._group_by: clone._group_by = None clone._select = [out_alias_tuple_field(field,4,fn.LEASTSQUARES) for field in fields] res = clone.execute() if len(res) > 0: return res[0] else: return None def exists(self): clone = self.paginate(1, 1) res = clone.execute() if len(res) >0: return True else: return False def one_raw(self): clone = self.paginate(1, 1) res = clone.database.execute(clone) if len(res) >0: return res[0] else: return None def one(self): clone = self.paginate(1, 1) res = clone.execute() if len(res) >0: return res[0] else: return None def sql(self, compiler): return compiler.parse_select_query(self) def execute(self): if self._dirty or not self._qr: self._qr = QueryResultWrapper(self.model_class, self.database.execute(self)) self._dirty = False return self._qr else: return self._qr def all_raw(self): return self.database.execute(self) def all(self): return self.execute() class InsertQuery(Query): def __init__(self, model_class, insert=None): # mm = model_class._meta # query = dict((mm.fields[f], v) for f, v in mm.get_default_dict().items()) # query.update(insert) self._insert = insert super(InsertQuery, self).__init__(model_class) def clone(self): query = super(InsertQuery, self).clone() query._insert = list(self._insert) return query where = not_allowed('where clause') def sql(self, compiler): return compiler.parse_insert_query(self) def execute(self): result = self.database.execute(self) return result class CreateSonTableQuery(Query): def __init__(self, model_class, values=None,table_name=None): # mm = model_class._tags # query = dict((mm.fields[f], v) for f, v in mm.get_default_dict().items()) # query.update(values) self._tags = values self.table_name = "%s.%s" % (model_class._meta.database.database,table_name) super(CreateSonTableQuery, self).__init__(model_class) where = not_allowed('where clause') def clone(self): query = super(CreateSonTableQuery, self).clone() query._tags = list(self._tags) return query def sql(self, compiler): return compiler.parse_createsontable_query(self) def execute(self): result = self.database.execute(self) return result
2.140625
2
chemreg/resolution/tests/test_substance_index.py
Chemical-Curation/chemcurator
1
12778647
<reponame>Chemical-Curation/chemcurator import json from unittest.mock import Mock, patch from rest_framework.exceptions import APIException import pytest import requests from chemreg.resolution.indices import SubstanceIndex def test_substance_index_substance_search(): sample_response = { "data": [ {"id": "DTXSID", "type": "substance", "attributes": {"identifiers": {}}} ] } identifier = "foobar" with patch("requests.get") as mocked_get: # Mock the requests.response mocked_response = Mock() # return our dict as .json() mocked_response.json.return_value = sample_response # calls to requests.get returns our mocked response automatically mocked_get.return_value = mocked_response search_url = SubstanceIndex().search_url json = SubstanceIndex().search(identifier) # Assert a get request was sent mocked_get.assert_called_once() # Assert url was requested [call_number][request_args_tuple][tuple_portion] assert mocked_get.mock_calls[0][1][0] == search_url assert mocked_get.mock_calls[0][2]["params"]["identifier"] == identifier # Assert the response was processed into the proper json object assert json == sample_response def test_substance_index_substance_search_connection_error(): def mocked_function(): raise requests.exceptions.ConnectionError() with patch("requests.get") as mocked_get: mocked_get.return_value = mocked_function with pytest.raises(APIException) as exception: SubstanceIndex().search("foobar") assert exception assert str(exception) == "The Resolver service is not available right now" @pytest.mark.django_db def test_substance_index_substance_list_add(substance_factory): with patch("requests.post") as mocked_post: substances = [ substance.instance for substance in substance_factory.create_batch(2) ] mocked_post.reset_mock() SubstanceIndex().sync_instances(substances) # Assert a post request was sent for every substance in the list assert mocked_post.call_count == len(substances) # Assert a post request was sent corresponding to each sid for substance in substances: assert substance.pk in [ json.loads(call.args[1])["data"]["id"] for call in mocked_post.mock_calls ] @pytest.mark.django_db def test_substance_index_single_substance_add(substance_factory): with patch("requests.post") as mocked_post: substance = substance_factory().instance mocked_post.reset_mock() SubstanceIndex().sync_instances(substance) # Assert a post request was sent for the substance mocked_post.assert_called_once() # Assert a post request was sent corresponding to the sid assert ( json.loads(mocked_post.mock_calls[0].args[1])["data"]["id"] == substance.pk ) @pytest.mark.django_db def test_substance_index_identifiers(substance_factory): expected_identifier_keys = [ "compound_id", "inchikey", "preferred_name", "display_name", "casrn", "synonyms", ] substance = substance_factory().instance identifiers = SubstanceIndex().get_model_document(substance).get("data") assert identifiers assert identifiers["id"] == substance.pk assert ( list(identifiers["attributes"]["identifiers"].keys()) == expected_identifier_keys ) @pytest.mark.django_db def test_synonym_indexing( substance_factory, synonym_factory, synonym_quality_factory, synonym_type_factory ): synonym_quality = synonym_quality_factory.create(is_restrictive=False).instance synonym_type = synonym_type_factory().instance substance = substance_factory.create(preferred_name="Moon Pie",).instance synonym = synonym_factory.create( substance={"type": "substance", "id": substance.pk}, identifier="marshmallow sandwich", synonym_type={"type": "synonymType", "id": synonym_type.pk}, synonym_quality={"type": "synonymQuality", "id": synonym_quality.pk}, ).instance identifiers = SubstanceIndex().get_model_document(substance)["data"]["attributes"][ "identifiers" ] weight = synonym_quality.score_weight + synonym_type.score_modifier assert identifiers["synonyms"][0]["identifier"] == synonym.identifier assert identifiers["synonyms"][0]["weight"] == weight @pytest.mark.django_db def test_substance_index_identifiers_cid(substance_factory): sub = substance_factory().instance def_sub = substance_factory(defined=True).instance idents = SubstanceIndex().get_model_document(sub)["data"]["attributes"][ "identifiers" ] def_idents = SubstanceIndex().get_model_document(def_sub)["data"]["attributes"][ "identifiers" ] # No Compound assert idents["compound_id"] is None # With Compound assert def_idents["compound_id"] == def_sub.associated_compound.pk @pytest.mark.django_db def test_substance_index_substance_list_delete(substance_factory): with patch("requests.delete") as mocked_delete: substances = [ substance.instance for substance in substance_factory.create_batch(2) ] # We are not deleting. Just calling SubstanceIndex as if a delete had occured SubstanceIndex().sync_instances(substances, delete=True) # Assert a delete request was sent for every substance in the list assert mocked_delete.call_count == len(substances) mock_urls = [call.args[0] for call in mocked_delete.mock_calls] for substance in substances: # See if this sid occurs in any of the urls from the mocked_delete assert any(substance.pk in url for url in mock_urls) @pytest.mark.django_db def test_substance_index_single_substance_delete(substance_factory): with patch("requests.delete") as mocked_delete: substance = substance_factory().instance # We are not deleting. Just calling SubstanceIndex as if a delete had occured SubstanceIndex().sync_instances(substance, delete=True) mocked_delete.assert_called_once() # See if this sid occurs in the url from the mocked_delete mock_url = mocked_delete.mock_calls[0].args[0] assert substance.pk in mock_url def test_substance_index_delete_all(): with patch("requests.delete") as mocked_delete: SubstanceIndex().delete_all_instances() # Assert a delete request was sent mocked_delete.assert_called_once()
2.40625
2
SATD_Detector/compare.py
isabelaedilene/technicalDebtTisVI
0
12778648
<filename>SATD_Detector/compare.py from csv import writer import pandas as pd with open("../Sonar/analiseSonar.csv", "r", encoding="utf-8") as f: csv_string = f.read() with open("sonar_analysis.csv", "w", encoding="utf-8") as f: csv = writer(f) for line in csv_string.splitlines(): csv.writerow(line.strip('"').split(",")) satd_dirty = pd.read_csv("satd_files_full.csv") sonar = pd.read_csv("sonar_analysis.csv") sonar_projects = sonar.project.drop_duplicates().to_list() satd = satd_dirty[satd_dirty.name.isin(sonar_projects)] satd.to_csv("satd_files.csv") # print(len(satd)/len(satd_dirty)) # print(len(satd_dirty) - len(satd)) satd_files = satd["file_path"].to_list() sonar_satd = sonar[sonar.file_path.isin(satd_files)] sonar_codesmells = sonar[sonar.code_smells > 0] sonar_not_satd = sonar[~sonar.file_path.isin(satd_files) & sonar.code_smells > 0] sonar_codesmells_satd = sonar[sonar.file_path.isin(satd_files) & sonar.code_smells > 0] sonar_not_codesmells_satd = sonar[sonar.file_path.isin(satd_files) & sonar.code_smells == 0] sonar_satd.to_csv("results_sonar_satd.csv") sonar_not_satd.to_csv("results_sonar_not_satd.csv") sonar_codesmells.to_csv("results_sonar_codesmells.csv") sonar_codesmells_satd.to_csv("results_sonar_codesmells_satd.csv") sonar_not_codesmells_satd.to_csv("results_sonar_not_codesmells_satd.csv") print(f"Sonar SATDs = {len(sonar_satd)}") print(f"Sonar code_smells = {len(sonar_codesmells)}") print(f"Sonar SATDs, code_smells=0 = {len(sonar_not_codesmells_satd)}") print(f"Sonar SATDs, code_smells>0 = {len(sonar_codesmells_satd)}") print(f"SATD Detector files = {len(satd_files)}") print(f"code_smells&SATD/SATD files = {len(sonar_codesmells_satd)/len(satd_files)*1e2 :.4}%") print(f"SATD + CS Mean NcLoc = {sonar_codesmells_satd.ncloc.mean()}") print(f"SATD + CS Mean Ciclomatic = {sonar_codesmells_satd.ciclomatic.mean()}") print(f"SATD + CS Mean Cognitive = {sonar_codesmells_satd.cognitive.mean()}") print(f"SATD + CS Mean CodeSmells = {sonar_codesmells_satd.code_smells.mean()}") print(f"SATD + CS Median NcLoc = {sonar_codesmells_satd.ncloc.median()}") print(f"SATD + CS Median Ciclomatic = {sonar_codesmells_satd.ciclomatic.median()}") print(f"SATD + CS Median Cognitive = {sonar_codesmells_satd.cognitive.median()}") print(f"SATD + CS Median CodeSmells = {sonar_codesmells_satd.code_smells.median()}") print(f"SATD - CS Mean NcLoc = {sonar_not_codesmells_satd.ncloc.mean()}") print(f"SATD - CS Mean Ciclomatic = {sonar_not_codesmells_satd.ciclomatic.mean()}") print(f"SATD - CS Mean Cognitive = {sonar_not_codesmells_satd.cognitive.mean()}") print(f"SATD - CS Mean CodeSmells = {sonar_not_codesmells_satd.code_smells.mean()}") print(f"SATD - CS Median NcLoc = {sonar_not_codesmells_satd.ncloc.median()}") print(f"SATD - CS Median Ciclomatic = {sonar_not_codesmells_satd.ciclomatic.median()}") print(f"SATD - CS Median Cognitive = {sonar_not_codesmells_satd.cognitive.median()}") print(f"SATD - CS Median CodeSmells = {sonar_not_codesmells_satd.code_smells.median()}")
3
3
eval/fig3.py
tk2lab/logbesselk
0
12778649
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from . import common def main(debug=False): name = ['I', 'A', 'S', 'C'] suffix = ['', '', '', ''] df0 = [] for n, s in zip(name, suffix): prec = pd.read_csv(f'results/logk_prec_{n}{s}.csv') prec = prec.groupby(['v', 'x'])['log_err'].mean() time = pd.read_csv(f'results/logk_time_{n}{s}.csv') time = time.groupby(['v', 'x'])['time'].mean() tmp = pd.concat([prec, time], axis=1) tmp['time'] = np.where(tmp['log_err'] < 3, 1000 * tmp['time'], np.nan) tmp = tmp['time'] tmp.name = n df0.append(tmp) df0 = pd.concat(df0, axis=1) name = [['I', 'A'], ['S', 'C']] pos = [[[0.1, 0.85], [0.85, 0.1]], [[0.1, 0.1], [0.1, 0.85]]] fig = common.figure(figsize=(5.5, 4), box=debug) ax = fig.subplots( 2, 3, sharex=True, sharey=True, gridspec_kw=dict(width_ratios=(1,1,0.15)), ) ax[0, 2].set_visible(False) ax[1, 2].set_visible(False) cbar = fig.add_axes([0.93, 0.1, 0.02, 0.85]) xticks = [0, 1, 5, 10, 50] yticks = [0.1, 0.5, 1, 5, 10, 50] cmap = plt.get_cmap('Greys').copy() cmap.set_bad(color='gray') for i in range(2): for j in range(2): hm = df0[name[i][j]].unstack(0) if i == j == 0: args = dict(cbar_ax=cbar) else: args = dict(cbar=False) sns.heatmap(hm, vmin=0, vmax=28, cmap=cmap, ax=ax[i, j], **args) ax[i, j].invert_yaxis() ax[i, j].text(*pos[i][j], name[i][j], transform=ax[i, j].transAxes) ax[i, j].set_xticks([40*np.log10(x+1) for x in xticks]) ax[i, j].set_xticklabels([f"${k}$" for k in xticks], rotation=0) ax[i, j].xaxis.set_ticks_position('both') ax[i, j].set_yticks([40*(np.log10(x)+1) for x in yticks]) ax[i, j].set_yticklabels([f"${k}$" for k in yticks]) ax[i, j].yaxis.set_ticks_position('both') if i == 1: ax[i, j].set_xlabel('$v$') else: ax[i, j].set_xlabel('') if j == 0: ax[i, j].set_ylabel('$x$') else: ax[i, j].set_ylabel('') cbar = ax[0, 0].collections[0].colorbar cbar.set_ticks([0, 10, 20]) cbar.set_ticklabels([f'${{{l}}}$' for l in [0, 10, 20]]) fig.savefig('figs/fig3.pdf') if __name__ == '__main__': main(debug=False)
2.328125
2
i2b2/utils/path.py
jtourille/i2b2-coref-task1c-converter
1
12778650
<reponame>jtourille/i2b2-coref-task1c-converter<filename>i2b2/utils/path.py import os def ensure_dir(directory: str) -> None: """ Creates a directory Args: directory (str): path to create Returns: None """ try: if not os.path.exists(directory): os.makedirs(directory) except OSError as e: # Raising any errors except concurrent access if e.errno != 17: raise def get_other_extension(filename: str, target_extension: str) -> str: """ Returns the filename given as argument with another extension (given as argument) Args: filename (str): filename to modify target_extension (str): new extension Returns: str: filename with new extension """ basename, extension = os.path.splitext(filename) return "{0}.{1}".format(basename, target_extension) def remove_abs(path: str) -> str: """ Remove leading slash from path Args: path (str): path from which the leading slash must be removed Returns: str: path without leading slash """ if os.path.isabs(path): return path.lstrip("/") else: return path
2.90625
3