max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
services/engine/webs/api/models/result.py
huang-zp/crawloop
19
12778151
# -*- coding: utf-8 -*- """ 存储结果 """ from sqlalchemy import Column, BigInteger, String, TIMESTAMP, func, Integer, Text from sqlalchemy.dialects.postgresql import JSONB from webs.api.models import db class Result(db.Model): __tablename__ = 'results' id = Column(BigInteger, primary_key=True, autoincrement=True) subtask_id = Column(Integer, nullable=False, index=True) # 所属子任务任务id url_id = Column(Integer, nullable=False, index=True) # url id url_address = Column(String(1024), nullable=False) # url 地址 http_code = Column(Integer) # 网站状态码 title = Column(Text) # 网站标题 content = Column(Text) # 网站内容 text = Column(Text) # 网页正文 current_url = Column(String(1024)) # 网站最后相应的地址 redirect_chain = Column(JSONB) # 重定向链接 response_headers = Column(JSONB) # response headers har_uuid = Column(String(128)) # 网站交互过程 screenshot_id = Column(String(128)) # 截图Id cookies = Column(JSONB) # cookies finished_at = Column(TIMESTAMP) # 完成时间 wappalyzer_results = Column(JSONB) # 网站指纹 callback_failure_msg = Column(Text) # 回调错误信息 favicon_md5 = Column(String(50)) # 网站图标hash值 favicon_link = Column(String(1024)) # 网站图标链接 response_time = Column(Integer) # 网站响应时间 load_complete_time = Column(Integer) # 页面加载完成时间 charset = Column(String(256)) # 网站编码 create_time = Column(TIMESTAMP, server_default=func.now(), index=True) update_time = Column(TIMESTAMP, server_default=func.now(), onupdate=func.now(), index=True) def __repr__(self): return f'<Result-{self.id}>' def as_dict(self): from webs.api.models.db_proxy import task_model_proxy task_obj = task_model_proxy.query_task_obj_by_subtask(self.subtask_id) return { 'result_id': self.id, 'subtask_id': self.subtask_id, 'task_id': task_obj.id if task_obj else None, 'customer_id': task_obj.customer_id if task_obj else None, 'url_id': self.url_id, 'url_address': self.url_address, 'http_code': self.http_code, 'title': self.title, 'content': self.content, 'text': self.text, 'current_url': self.current_url, 'redirect_chain': self.redirect_chain, 'response_headers': self.response_headers, 'har_uuid': self.har_uuid, 'screenshot_id': self.screenshot_id, 'cookies': self.cookies, 'favicon_md5': self.favicon_md5, 'favicon_link': self.favicon_link, 'wappalyzer_results': self.wappalyzer_results, 'response_time': self.response_time, 'load_complete_time': self.load_complete_time, 'charset': self.charset, 'finished_at': self.finished_at.strftime("%Y-%m-%d %H:%M:%S") }
2.28125
2
apps/panel/migrations/0004_log.py
ivall/IVmonitor
190
12778152
# Generated by Django 3.0.7 on 2021-02-05 09:15 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('panel', '0003_auto_20210205_0955'), ] operations = [ migrations.CreateModel( name='Log', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(max_length=4)), ('time', models.DateTimeField(default=django.utils.timezone.now)), ('monitor_object', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='panel.MonitorObject')), ], ), ]
1.679688
2
ibis_substrait/proto/substrait/plan_pb2.py
gforsyth/ibis-substrait
14
12778153
<reponame>gforsyth/ibis-substrait """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database _sym_db = _symbol_database.Default() from ..substrait import algebra_pb2 as substrait_dot_algebra__pb2 from ..substrait.extensions import extensions_pb2 as substrait_dot_extensions_dot_extensions__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x14substrait/plan.proto\x12\tsubstrait\x1a\x17substrait/algebra.proto\x1a%substrait/extensions/extensions.proto"c\n\x07PlanRel\x12"\n\x03rel\x18\x01 \x01(\x0b2\x0e.substrait.RelH\x00R\x03rel\x12(\n\x04root\x18\x02 \x01(\x0b2\x12.substrait.RelRootH\x00R\x04rootB\n\n\x08rel_type"\xe3\x02\n\x04Plan\x12O\n\x0eextension_uris\x18\x01 \x03(\x0b2(.substrait.extensions.SimpleExtensionURIR\rextensionUris\x12P\n\nextensions\x18\x02 \x03(\x0b20.substrait.extensions.SimpleExtensionDeclarationR\nextensions\x120\n\trelations\x18\x03 \x03(\x0b2\x12.substrait.PlanRelR\trelations\x12X\n\x13advanced_extensions\x18\x04 \x01(\x0b2\'.substrait.extensions.AdvancedExtensionR\x12advancedExtensions\x12,\n\x12expected_type_urls\x18\x05 \x03(\tR\x10expectedTypeUrlsB+\n\x12io.substrait.protoP\x01\xaa\x02\x12Substrait.Protobufb\x06proto3') _PLANREL = DESCRIPTOR.message_types_by_name['PlanRel'] _PLAN = DESCRIPTOR.message_types_by_name['Plan'] PlanRel = _reflection.GeneratedProtocolMessageType('PlanRel', (_message.Message,), {'DESCRIPTOR': _PLANREL, '__module__': 'substrait.plan_pb2'}) _sym_db.RegisterMessage(PlanRel) Plan = _reflection.GeneratedProtocolMessageType('Plan', (_message.Message,), {'DESCRIPTOR': _PLAN, '__module__': 'substrait.plan_pb2'}) _sym_db.RegisterMessage(Plan) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n\x12io.substrait.protoP\x01\xaa\x02\x12Substrait.Protobuf' _PLANREL._serialized_start = 99 _PLANREL._serialized_end = 198 _PLAN._serialized_start = 201 _PLAN._serialized_end = 556
1.179688
1
CodingInterview2/28_01_SymmetricalBinaryTree/symmetrical_binary_tree.py
hscspring/TheAlgorithms-Python
10
12778154
<reponame>hscspring/TheAlgorithms-Python """ 面试题 28:对称的二叉树 题目:请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和 它的镜像一样,那么它是对称的。 """ class BinaryTreeNode: def __init__(self, val): self.val = val self.left = None self.right = None def connect_binarytree_nodes(parent: BinaryTreeNode, left: BinaryTreeNode, right: BinaryTreeNode) -> BinaryTreeNode: if parent: parent.left = left parent.right = right return parent def print_node(node: BinaryTreeNode): if node: print("node value: ", node.val) if node.left: print("left child value: ", node.left.val) else: print("left child null") if node.right: print("right child value: ", node.right.val) else: print("right child null") else: print("node is null") def print_tree(root: BinaryTreeNode): print_node(root) if root: if root.left: print_tree(root.left) if root.right: print_tree(root.right) def is_symmetrical(bt: BinaryTreeNode) -> bool: """ Whether the given BinaryTree is symmetrical. Parameters ----------- bt: BinaryTreeNode Returns --------- out: bool Notes ------ Whether the preorder traversal is the same as symmetrical preorder traversal. Or is the same as its mirror. """ if not bt: return True pre, spre = [], [] preorder(bt, pre) symmetrical_preorder(bt, spre) return pre == spre def preorder(bt: BinaryTreeNode, res: list) -> list: if not bt: res.append(None) return res res.append(bt.val) preorder(bt.left, res) preorder(bt.right, res) def symmetrical_preorder(bt: BinaryTreeNode, res: list) -> list: if not bt: res.append(None) return res res.append(bt.val) symmetrical_preorder(bt.right, res) symmetrical_preorder(bt.left, res) def is_symmetrical_recursion(bt: BinaryTreeNode) -> bool: return is_symmetrical_recursion_core(bt, bt) def is_symmetrical_recursion_core(bt1, bt2) -> bool: if not bt1 and not bt2: return True if not bt1 or not bt2: return False if bt1.val != bt2.val: return False return (is_symmetrical_recursion_core(bt1.left, bt2.right) and is_symmetrical_recursion_core(bt1.right, bt2.left)) if __name__ == '__main__': # 5 # 5 5 # 5 5 tree = BinaryTreeNode(5) connect_binarytree_nodes(tree, BinaryTreeNode(5), BinaryTreeNode(5)) connect_binarytree_nodes(tree.left, BinaryTreeNode(5), None) connect_binarytree_nodes(tree.right, BinaryTreeNode(5), None) # tree = BinaryTreeNode(7) # connect_binarytree_nodes(tree, BinaryTreeNode(7), BinaryTreeNode(7)) # connect_binarytree_nodes(tree.left, BinaryTreeNode(7), BinaryTreeNode(7)) # connect_binarytree_nodes(tree.right, BinaryTreeNode(7), None) res = [] preorder(tree, res) print(res) ress = [] symmetrical_preorder(tree, ress) print(ress) print(is_symmetrical(tree)) print(is_symmetrical_recursion(tree))
3.875
4
setup.py
jneight/pydup
1
12778155
<reponame>jneight/pydup # coding=utf-8 from setuptools import setup, find_packages setup( name='pydup', version='0.11', install_requires=[], url='https://github.com/jneight/pydup', description='Simple implementation of LSH Algorithm', packages=find_packages(), include_package_data=True, license='Apache 2.0', classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', ], author='<NAME>', author_email='<EMAIL>' )
1.390625
1
app/core/tests/test_admin.py
avinashgundala/recipe-app-api
1
12778156
<gh_stars>1-10 from django.test import TestCase,Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTest(TestCase): """testing admin site interface""" def setup(self): """setting up superuser and user for admin page access""" self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='<EMAIL>', name='admin', password='<PASSWORD>' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='<EMAIL>', name='test', password='<PASSWORD>' ) def test_users_listed(self): """testing new user is listed in userlist""" url = reverse('admin:core_user_changelist') response = self.client.get(url) self.assertContains(response, self.user.name) self.assertContains(response, self.user.email) def test_user_change(self): """testing user change""" url = reverse('admin:core_user_change', args=[self.user.id]) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_user_add(self): """testing user add page""" url = reverse('admin:core_user_add') response = self.client.get(url) self.assertEqual(response.status_code, 200)
2.640625
3
spatialpooch/_vector.py
achapkowski/spatial-pooch
1
12778157
import os import importlib import pooch from pooch import Unzip from ._spooch import SPATIALPOOCH as _GOODBOY ########################################################################### allowed_formats = { "pandas" : False, "numpy" : False, "string" : True, "sedf" : False } ########################################################################### if importlib.util.find_spec('numpy') is not None: import numpy as np allowed_formats['numpy'] = True if importlib.util.find_spec('pandas') is not None: import pandas as pd allowed_formats['pandas'] = True if importlib.util.find_spec('arcgis') is not None: from arcgis.features import GeoAccessor, GeoSeriesAccessor allowed_formats['arcgis'] = True ########################################################################### #-------------------------------------------------------------------------- def _fetch(data, f, **kwargs): """gets the data in the proper format""" data = _GOODBOY.fetch(fname=data, processor=Unzip()) if f is None: f = 'string' if str(f) == 'string': return data elif str(f) == 'arcgis' and allowed_formats['arcgis']: for f in data: if str(f).lower().endswith(".shp"): return pd.DataFrame.spatial.from_featureclass(f) elif str(f).lower().endswith('.gdb') and 'dataset' in kwargs: fc = os.path.join(f, kwargs['dataset']) return pd.DataFrame.spatial.from_featureclass(f) return data #-------------------------------------------------------------------------- def fetch_beach_access_data(f=None): """gets the data in the proper format""" data = _fetch(data="vector/Public_Access_Information.zip", f=f) return data #-------------------------------------------------------------------------- def fetch_shipping_lanes_data(f=None): """gets the data in the proper format""" return _fetch(data="vector/Shipping_Lanes.zip", f=f) #-------------------------------------------------------------------------- def fetch_crime_shp_data(f=None): """gets the data in the proper format""" return _fetch(data="vector/Crime.zip", f=f) #-------------------------------------------------------------------------- def fetch_family_resource_centers_data(f=None): """gets the data in the proper format""" return _fetch(data="vector/Family_Resource_Centers.zip", f=f)
2.1875
2
leetcode/contest/week_143_1103.py
JamesCao2048/CodingQuestions
1
12778158
# Distribute candies to people # Easy class Solution(object): def distributeCandies(self, candies, num_people): """ :type candies: int :type num_people: int :rtype: List[int] """ if num_people <= 0 or candies < 0: raise Exception("Invalid input") result = [] for i in range(num_people): result.append(0) if candies == 0: return result rd, last_candy = self.getRound(candies, num_people) for i in range(num_people): result[i] += (i+1) * (rd -1) index = 0 while last_candy > (index + 1) * rd: result[index] += (index + 1) * rd last_candy -= (index + 1) * rd index += 1 result[index] += last_candy return result def getRound(self, candies, num_people): rd = 0 cur_candy_add = num_people * (1 + num_people) / 2 cur_candy_sum = 0 while cur_candy_sum < candies: cur_candy_sum += cur_candy_add cur_candy_add += num_people * num_people rd += 1 last_candy = candies - (cur_candy_sum - cur_candy_add + num_people * num_people) return rd, int(last_candy)
3.640625
4
tests/test_chatbot.py
jvm123/botstory
0
12778159
import sys import os import unittest from botstory.botclass import BotClass sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) class TestChatbot(unittest.TestCase): def test_chatbot(self): chatbot = BotClass() # Check whether the bot is able to respond to a simple phrase from conversations.json self.assertEqual(chatbot.process_query("Thank you."), "You're welcome.") self.assertEqual(chatbot.process_query("thank you"), "You're welcome.")
3.125
3
apero/recipes/spirou/cal_preprocess_spirou.py
njcuk9999/apero-drs
1
12778160
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ # CODE DESCRIPTION HERE Created on 2019-03-05 16:38 @author: ncook Version 0.0.1 """ import numpy as np import os from apero import core from apero import lang from apero.core import constants from apero.science import preprocessing as pp from apero.io import drs_image from apero.io import drs_fits from apero.core.instruments.spirou import file_definitions # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'cal_preprocess_spirou.py' __INSTRUMENT__ = 'SPIROU' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # Get Logging function WLOG = core.wlog # Get the text types TextEntry = lang.drs_text.TextEntry # Raw prefix RAW_PREFIX = file_definitions.raw_prefix # ============================================================================= # Define functions # ============================================================================= # All recipe code goes in _main # Only change the following from here: # 1) function calls (i.e. main(arg1, arg2, **kwargs) # 2) fkwargs (i.e. fkwargs=dict(arg1=arg1, arg2=arg2, **kwargs) # 3) config_main outputs value (i.e. None, pp, reduced) # Everything else is controlled from recipe_definition def main(directory=None, files=None, **kwargs): """ Main function for cal_preprocess_spirou.py :param directory: string, the night name sub-directory :param files: list of strings or string, the list of files to process :param kwargs: any additional keywords :type directory: str :type files: list[str] :keyword debug: int, debug level (0 for None) :returns: dictionary of the local space :rtype: dict """ # assign function calls (must add positional) fkwargs = dict(directory=directory, files=files, **kwargs) # ---------------------------------------------------------------------- # deal with command line inputs / function call inputs recipe, params = core.setup(__NAME__, __INSTRUMENT__, fkwargs) # solid debug mode option if kwargs.get('DEBUG0000', False): return recipe, params # ---------------------------------------------------------------------- # run main bulk of code (catching all errors) llmain, success = core.run(__main__, recipe, params) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- return core.end_main(params, llmain, recipe, success, outputs='None') def __main__(recipe, params): # ---------------------------------------------------------------------- # Main Code # ---------------------------------------------------------------------- # Get hot pixels for corruption check hotpixels = pp.get_hot_pixels(params) # get skip parmaeter skip = params['SKIP_DONE_PP'] # ---------------------------------------------------------------------- # Loop around input files # ---------------------------------------------------------------------- # get files infiles = params['INPUTS']['FILES'][1] # Number of files num_files = len(params['INPUTS']['FILES'][1]) # storage for output files output_names = [] # loop around number of files for it in range(num_files): # ------------------------------------------------------------------ # add level to recipe log log1 = recipe.log.add_level(params, 'num', it) # ------------------------------------------------------------------ # print file iteration progress core.file_processing_update(params, it, num_files) # ge this iterations file file_instance = infiles[it] # ------------------------------------------------------------------ # Fix the spirou header # ------------------------------------------------------------------ # certain keys may not be in some spirou files file_instance = drs_fits.fix_header(params, recipe, file_instance) # ------------------------------------------------------------------ # identification of file drs type # ------------------------------------------------------------------ # identify this iterations file type cond, infile = pp.drs_infile_id(params, recipe, file_instance) # ------------------------------------------------------------------ # if it wasn't found skip this file, if it was print a message if cond: eargs = [infile.name] WLOG(params, 'info', TextEntry('40-010-00001', args=eargs)) else: eargs = [infile.filename] WLOG(params, 'info', TextEntry('40-010-00002', args=eargs)) continue # get data from file instance image = np.array(infile.data) # ------------------------------------------------------------------ # Get out file and check skip # ------------------------------------------------------------------ # get the output drs file oargs = [params, recipe, infile, recipe.outputs['PP_FILE'], RAW_PREFIX] found, outfile = pp.drs_outfile_id(*oargs) # construct out filename outfile.construct_filename(params, infile=infile) # if we didn't find the output file we should log this error if not found: eargs = [outfile.name] WLOG(params, 'error', TextEntry('00-010-00003', args=eargs)) if skip: if os.path.exists(outfile.filename): wargs = [infile.filename] WLOG(params, 'info', TextEntry('40-010-00012', args=wargs)) continue # ---------------------------------------------------------------------- # Check for pixel shift and/or corrupted files # ---------------------------------------------------------------------- # storage snr_hotpix, rms_list = [], [] # do this iteratively as if there is a shift need to re-workout QC for iteration in range(2): # get pass condition cout = pp.test_for_corrupt_files(params, image, hotpixels) snr_hotpix, rms_list = cout[0], cout[1] shiftdx, shiftdy = cout[2], cout[3] # use dx/dy to shift the image back to where the engineering flat # is located if shiftdx != 0 or shiftdy != 0: # log process wmsg = TextEntry('40-010-00013', args=[shiftdx, shiftdy]) WLOG(params, '', wmsg) # shift image image = np.roll(image, [shiftdy], axis=0) image = np.roll(image, [shiftdx], axis=1) # work out QC here qargs = [snr_hotpix, infile, rms_list] qc_params, passed = pp.quality_control(params, *qargs, log=False) # if passed break if passed: break # ------------------------------------------------------------------ # Quality control to check for corrupt files # ------------------------------------------------------------------ # re-calculate qc qargs = [snr_hotpix, infile, rms_list] qc_params, passed = pp.quality_control(params, *qargs, log=True) # update recipe log log1.add_qc(params, qc_params, passed) if not passed: # end log here log1.end(params) # go to next iteration continue # ------------------------------------------------------------------ # correct image # ------------------------------------------------------------------ # correct for the top and bottom reference pixels WLOG(params, '', TextEntry('40-010-00003')) image = pp.correct_top_bottom(params, image) # correct by a median filter from the dark amplifiers WLOG(params, '', TextEntry('40-010-00004')) image = pp.median_filter_dark_amps(params, image) # correct for the 1/f noise WLOG(params, '', TextEntry('40-010-00005')) image = pp.median_one_over_f_noise(params, image) # ------------------------------------------------------------------ # calculate mid observation time # ------------------------------------------------------------------ mout = drs_fits.get_mid_obs_time(params, infile.header) mid_obs_time, mid_obs_method = mout # ------------------------------------------------------------------ # rotate image # ------------------------------------------------------------------ # rotation to match HARPS orientation (expected by DRS) image = drs_image.rotate_image(image, params['RAW_TO_PP_ROTATION']) # ------------------------------------------------------------------ # Save rotated image # ------------------------------------------------------------------ # define header keys for output file # copy keys from input file outfile.copy_original_keys(infile) # add version outfile.add_hkey('KW_PPVERSION', value=params['DRS_VERSION']) # add dates outfile.add_hkey('KW_DRS_DATE', value=params['DRS_DATE']) outfile.add_hkey('KW_DRS_DATE_NOW', value=params['DATE_NOW']) # add process id outfile.add_hkey('KW_PID', value=params['PID']) # add input filename outfile.add_hkey_1d('KW_INFILE1', values=[infile.basename], dim1name='infile') # add qc parameters outfile.add_qckeys(qc_params) # add dprtype outfile.add_hkey('KW_DPRTYPE', value=outfile.name) # add the shift that was used to correct the image outfile.add_hkey('KW_PPSHIFTX', value=shiftdx) outfile.add_hkey('KW_PPSHIFTY', value=shiftdy) # add mid observation time outfile.add_hkey('KW_MID_OBS_TIME', value=mid_obs_time.mjd) outfile.add_hkey('KW_MID_OBSTIME_METHOD', value=mid_obs_method) # ------------------------------------------------------------------ # copy data outfile.data = image # ------------------------------------------------------------------ # log that we are saving rotated image wargs = [outfile.filename] WLOG(params, '', TextEntry('40-010-00009', args=wargs)) # ------------------------------------------------------------------ # writefits image to file outfile.write_file() # add to output files (for indexing) recipe.add_output_file(outfile) # index this file core.end_main(params, None, recipe, success=True, outputs='pp', end=False) # ------------------------------------------------------------------ # append to output storage in p # ------------------------------------------------------------------ output_names.append(outfile.filename) # ------------------------------------------------------------------ # update recipe log file # ------------------------------------------------------------------ log1.end(params) # ---------------------------------------------------------------------- # End of main code # ---------------------------------------------------------------------- return core.return_locals(params, dict(locals())) # ============================================================================= # Start of code # ============================================================================= if __name__ == "__main__": # run main with no arguments (get from command line - sys.argv) ll = main() # ============================================================================= # End of code # =============================================================================
1.867188
2
examen_2_sim02/p5/p5.py
Munoz-Rojas-Adriana/Computacion_para_Ingenieria
0
12778161
# -*- coding: utf-8 -*- """ Created on Thu Feb 17 00:39:13 2022 @author: ACER """ Clase Vehiculo : def __init__ ( self , color , marca ): uno mismo color = color uno mismo marca = marca def mostrarse ( self ): print ( f"la marca { self . marca } y color { self . color } " ) Clase Auto ( Vehículo ): def __init__ ( self , color , marca , maxVelocidad ): súper (). __init__ ( color , marca ) uno mismo maxVelocidad = maxVelocidad clase Bicicleta ( Vehiculo ): def __init__ ( self , color , marca , tipoFreno ): súper (). __init__ ( color , marca ) uno mismo tipoFreno = tipoFreno Persona de clase : def __init__ ( self , nombre , ci , vehiculo ): uno mismo nombre = nombre uno mismo ci = ci uno mismo vehículo = vehículo def mostrarDatos ( auto ): print ( f"persona { self . nombre } tiene como vehiculo { self . vehiculo . mostrarse () } " ) # como se usa todas estas clases vici_phoenix = Bicicleta ( "negro" , "Phoenix" , "Tacos" ) carlos = Persona ( "<NAME>" , 75757 , vici_phoenix ) carlos _ mostrarDatos ()
3.15625
3
picking/algorithms/pso.py
mattianeroni/IndustryAlgorithms
1
12778162
from typing import Dict, List, Tuple, Union, Callable, Set, cast import random import math import time def _bra (lst : List[int], beta : float = 0.3) -> int: """ The estraction of an item from a list, by using a biased randomisation based on a quasi-geometric distribution (i.e. f(x) = (1-beta)^x). :param beta: The parameter of the quasi-geometric. :return: The estracted element. """ return lst[int(math.log(random.random(), 1 - beta)) % len(lst)] def _triangular (lst : List[int]) -> int: """ The estraction of an item from a list, by using a triangular distribution. :return: The estracted element. """ return lst[int(len(lst) - len(lst)*random.random()/2) % len(lst)] def _make_negative_exp (max_iter : int = 1000, max_v : float = 1.0, min_v : float = 0.5) -> Callable[[int],float]: """ This method generates an exponential function used to increase the weight given to the current position of the particle. As the number of iterations increase, the particles get more and more static. ***Note*** : Lower is the value of the weight, grater is the relevance given to the current position of the particles. Hence, for a low weight, the particles are more static. As the number of iterations without improvement increases, the mobility of the particles increases too. :param max_iter: The maximum number of iterations :param max_v: The maximum value the weight of the current position must assume :param min_v: The minimum value the weight of the current position must assume :return: A callable function which represents the exponential needed. def negative_exp (x : int) -> float :param x: The current iteration without improvement. :return: The weight of the current position of the particles. """ alpha = math.log(max_v + min_v)/max_iter def negative_exp (x : int) -> float: return math.exp(alpha * x) - min_v return negative_exp def _negative_exp (x : int, alpha : float) -> float: """ This method return the negative exponential according to equation f(x) = e^(-alpha*x) :param x: The input. :param alpha: The parameter of the exponential (the higher is alpha, the faster is the decrease). :return: The output f(x). """ return math.exp(-alpha*x) def _compute_distance (lst : List[int], distances : List[List[int]]) -> int: """ Given a picking list and a distance matrix, this method calculates the distance ran to complete the picking list. :param lst: The picking list :param distances: The distance matrix :return: The distance ran. """ return sum(distances[lst[i]][lst[i+1]] for i in range(len(lst) - 1)) + distances[lst[-1]][0] + distances[0][lst[0]] def _two_opt (lst : List[int], i : int, j : int) -> List[int]: """ This method, given two cutting positions i and j, makes a 2-Opt on the starting list. :param lst: The starting list. :param i: First cutting point. :param j: Second cutting point. :return: The new list. """ return lst[:min(i,j)] + list(reversed(lst[min(i,j):max(i,j)])) + lst[max(i,j):] def _greedy (lst : List[int], distances : List[List[int]]) -> List[int]: """ This method returns a purely greedy solution. :param lst: The list of nodes to visit. :param distances: The distance matrix. :return: The nodes in the order in which they should be visited. """ c_node = 0; sol : List[int] = []; options = list(lst) while len(options) > 0: options = sorted(options, key=lambda i: distances[c_node][i]) c_node = options.pop(0) sol.append (c_node) return sol class Particle (object): """ An instance of this class represents a particle used in this algorithm. """ def __init__(self, *, distances : Dict[int, Dict[int,int]], picking_list : List[int], paths : Dict[int,Dict[int, Set[int]]], greediness : float = 0.1, beta : float = 0.7, check_paths : float = 0.1, deepsearch : float = 0.05, fulldeepsearch : float = 0.5, max_depth : int = 2500, ) -> None: ''' :param distances: The distance matrix :param picking_list: The picking list. :param paths: The nodes in between two others :param greediness: The importance given to the greedy solution. To the random intention is given a weigth equal to (1 - alpha). :param beta: The parameter of the geometric. :param check_paths: The probability to include the nodes between node i and j, when going from i to j. :param deepsearch: Probability to do deep search. :param fulldeepsearch: Probability to do full deep search. :param max_depth: Maximum number of iteration in case of deep search :attr current: The current solution. :attr intention: The current intention. :attr pbest: The current personal best found do far. :attr vcurrent: The cost of the current. :attr vintention: The cost of the intention. :attr vpbest: The cost of the personal best. :attr greedy: The greedy solution. :attr vgreedy: The cost of the greedy solution. :attr explorations: The number of solutons explored up to now. ''' # set parameters self.distances = dict(distances) self.picking_list = list(picking_list) self.paths = dict(paths) self.greediness = greediness self.beta = beta self.check_paths = check_paths self.deepsearch = deepsearch self.fulldeepsearch = fulldeepsearch self.max_depth = max_depth # starting solutions self.current = list(picking_list) random.shuffle(self.current) self.pbest = list(self.current) self.intention = list(self.current) random.shuffle(self.intention) # evaluate solutions (i.e., distances) self.vpbest, self.vcurrent, self.vintention = cast(int,float("inf")), 0, 0 self.update_dist () # greedy solution self.greedy = _greedy (picking_list, distances) self.vgreedy = _compute_distance (self.greedy, distances) # The number of solutions explored self.explorations : int = 0 def update_dist (self) -> None: """ This method updates the cost of the solutions kept in memory, i.e. current, intention, and pbest. """ self.vcurrent, self.vintention = 0, 0 for i in range(len(self.picking_list) - 1): self.vcurrent += self.distances[self.current[i]][self.current[i+1]] self.vintention += self.distances[self.intention[i]][self.intention[i+1]] self.vcurrent += self.distances[0][self.current[0]] self.vintention += self.distances[0][self.intention[0]] self.vcurrent += self.distances[self.current[-1]][0] self.vintention += self.distances[self.intention[-1]][0] if self.vcurrent < self.vpbest: self.vpbest, self.pbest = self.vcurrent, list(self.current) def move (self, gbest : List[int], vgbest : int) -> Tuple[List[int], int]: """ This method represents the movement of the particle that explores a new solution. :param gbest: The global best of the whole swarm. :param vgbest: The cost of the gbest. :return: the personal best and its cost. """ # Reset the current -> !!! To remove if we want to consider it in the # construction process. self.current = [] # Initialize variables used in the construction process nodes : Set[int] = set(self.picking_list) c_node : int = 0 n_node : int options : List[Tuple[int,float]] # Construct node-by-node a new solution while len(nodes) > 0: options = [] if c_node == 0: options = [(self.intention[0], 1.0 - self.greediness), (self.greedy[0], self.greediness), (self.pbest[0], 1.0), (gbest[0], 1.0) ] else: options = [(sol[sol.index(c_node) + 1], w) for sol, w in ((self.intention, 1.0 - self.greediness), (self.greedy, self.greediness),(self.pbest, 1.0), (gbest, 1.0)) if sol.index(c_node) != len(sol) - 1 and sol[sol.index(c_node) + 1] in nodes] if len(options) == 0: n_node = random.choice(list(nodes)) elif len (options) == 1: n_node = options[0][0] else: n_node = _bra (sorted(options, key=lambda i: self.distances[c_node][i[0]]/i[1]), self.beta)[0] nodes.remove (n_node) # Eventually include before the new node the nodes on the shortest path # between the last visited node and the new one. r = random.random() if r < self.check_paths: in_middle = [i for i in nodes if i in self.paths[c_node][n_node]] while len(in_middle) > 0: in_middle = sorted (in_middle, key=lambda i: self.distances[c_node][i]) c_node = in_middle.pop(0) self.current.append (c_node) nodes.remove (c_node) # Add the new node to the solution self.current.append (n_node) c_node = n_node # Update the number of solutions explored self.explorations += 1 # Shuffle the intention random.shuffle(self.intention) # Update the personal best if needed, the cost of the current # and the cost of the new intention self.update_dist () # Eventually do a deepsearch r = random.random() if len(self.picking_list) > 3 and r < self.deepsearch: r2 = random.random () if r2 < self.fulldeepsearch: self.deep_search(list(self.current), full=True) else: self.deep_search(list(self.current), full=False) if self.vcurrent < self.vpbest: self.pbest, self.vpbest = list(self.current), self.vcurrent return self.pbest, self.vpbest def deep_search(self, lst : List[int], full : bool = False, starting_depth : int = 0) -> None: """ This method does a deepsearch via 2-Opt in the neighbourhood of the current solution. :param lst: The picking list. :param full: If TRUE every time there is an improvement and the maximum depth has not been reached the deepsearch goes on. :param starting_depth: Used in case of full == TRUE to control the depth. """ edges = [(i,j) for i in range(0,len(lst)-2) for j in range(i+2,len(lst))] random.shuffle(edges) self.explorations += len(edges) for i, j in edges: sol = _two_opt (lst, i, j) cost = _compute_distance (sol, self.distances) if cost < self.vcurrent: self.current, self.vcurrent = list(sol), cost if full is True and starting_depth < self.max_depth: starting_depth += 1 self.deep_search(sol, True, starting_depth) class Mattia_PSO: """ An instance of this class represents the Particle Swarm Optimization published by <NAME>, Zammori in 2021. An Hibrid PSO for TSP Solution is generated node by node selecting from four possibilities, namely: current solution, particle best, overall best and intention; the latter one is a random sequence. Say that the generated sequence is 1-3-4 and the alternative are: 1-2-3-4-5; 5-4-3-2-1; 3-2-1-5-4; 5-4-1-2-3 so "suggested nodes" are: (5, 3, nan, 1), since 3 is already in, (5,1) remain choice depends (in a probabilistic way on the corrected distance from 3 to 5 and to 1 to 5 the less the better. Distance is corrected with weigth used to give more importance to the current solution, then to the best and so on. This is the basic generation scheme. Solution may be shaked (using a first level or deep level 2Opt Procedure) """ def __init__ (self,*, distances : Dict[int, Dict[int,int]], picking_list : List[int], paths : Dict[int, Dict[int, Set[int]]], era : int = 10_000, particles : int = 40, max_noimp : int = 1000, print_every : int = 100, finalsearch : bool = True, particle_data : Dict[str, Union[int, float, Callable[[int], float], Dict[str,float], Tuple[float,float], List[int], List[List[int]]]] ) -> None: """ Initialize. :param distances: The distance matrix. :param era: The number of iterations. :param particles: The number of particles. :param max_noimp: The maximum number of iterations with no getting any improvement. :param print_every: The number of iterations between a log and the next one. :attr history: The history of the best solutions found by the algorithm. :attr computations: The number of solutions explored before finding the best. """ self.era = era self.max_noimp = max_noimp self.print_every = print_every self.finalsearch = finalsearch particle_data["distances"] = distances particle_data["picking_list"] = picking_list particle_data["paths"] = paths self.particle_data = particle_data self.swarm : List[Particle] = [Particle(**particle_data) for _ in range(particles)] self.history : List[int] self.computations : int = 0 self.computational_time : float = 0.0 def reset(self): particles = len(self.swarm) self.swarm = [Particle(**self.particle_data) for _ in range(particles)] self.history = [] self.computations = 0 def run (self, verbose : bool = False) -> Tuple[List[int], int]: """ This is the method to execute the algorithm. It finally returns the best solution found and its cost. :return: gbest, vgbest """ # Initialize starting time start = time.time() # Initilaize the best starting position gbest : List[int] vgbest : int = cast(int, float("inf")) for particle in self.swarm: if particle.vpbest < vgbest: gbest, vgbest = list(particle.pbest), particle.vpbest new_vgbest : int = vgbest new_gbest : List[int] = list(gbest) self.history = [vgbest] # Iterations noimp = 0 for i in range(self.era): for particle in self.swarm: pbest, vpbest = particle.move (gbest, vgbest) if vpbest < new_vgbest: new_gbest, new_vgbest = list(pbest), vpbest if new_vgbest < vgbest: gbest, vgbest = new_gbest, new_vgbest noimp = 0 self.computations = sum(p.explorations for p in self.swarm) else: noimp += 1 if noimp > self.max_noimp: break self.history.append(vgbest) if i % self.print_every == 0 and verbose is True: print('Epoch', i, ' Best: ', vgbest) # Final deepsearch if self.finalsearch is True: for particle in self.swarm: particle.deep_search (list(particle.current), True, 0) if particle.vcurrent < particle.vpbest: particle.pbest, particle.vpbest = list(particle.current), particle.vcurrent if particle.vpbest < vgbest: gbest, vgbest = list(particle.current), particle.vcurrent self.computations = sum(p.explorations for p in self.swarm) # Set computational time self.computational_time = time.time() - start return gbest, vgbest
3.78125
4
simplepipreqs/simplepipreqs.py
Atharva-Gundawar/simplepipreqs
1
12778163
<filename>simplepipreqs/simplepipreqs.py #!/usr/bin/env python # -*- coding: utf-8 -*-import os from pathlib import Path import subprocess from yarg import json2package from yarg.exceptions import HTTPError import requests import argparse import os import sys import json import threading import itertools import time try: from pip._internal.operations import freeze except ImportError: # pip < 10.0 from pip.operations import freeze def get_installed_packages(pip_version: str = "pip"): installed_with_versions = [] installed = [] stdout, stderr = subprocess.Popen( [pip_version, "freeze"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT).communicate() for i in stdout.splitlines(): installed_with_versions.append(i.decode("utf-8")) installed.append(i.decode("utf-8").split('==')[0]) return installed_with_versions, installed def get_version_info(module: str, pypi_server: str = "https://pypi.python.org/pypi/", proxy=None): try: response = requests.get( "{0}{1}/json".format(pypi_server, module), proxies=proxy) if response.status_code == 200: if hasattr(response.content, 'decode'): data = json2package(response.content.decode()) else: data = json2package(response.content) elif response.status_code >= 300: raise HTTPError(status_code=response.status_code, reason=response.reason) except HTTPError: return None return str(module) + '==' + str(data.latest_release_id) def get_project_imports(directory: str = os.curdir): modules = [] for path, subdirs, files in os.walk(directory): for name in files: if name.endswith('.py'): # print(path) with open(os.path.join(path, name)) as f: contents = f.readlines() for lines in contents: words = lines.split(' ') if 'import' == words[0] or 'from' == words[0]: line_module = words[1].split('.')[0].split(',') for module in line_module: module = module.split('\n')[0] if module and module not in modules: modules.append(module) # print('found {} in {}'.format(module,name)) elif name.endswith('.ipynb'): with open(str(Path(os.path.join(path, name)).absolute())) as f: contents = f.readlines() listToStr = ' '.join([str(elem) for elem in contents]) contents = json.loads(listToStr) # contents = json.loads(Path(os.path.join(path, name)).absolute().read_text()) for cell in contents["cells"]: for line in cell["source"]: words = line.split(' ') if 'import' == words[0] or 'from' == words[0]: line_module = words[1].split('.')[0].split(',') for module in line_module: module = module.split('\n')[0] if module and module not in modules: modules.append(module) # print('found {} in {}'.format(module, name)) return modules def init(args): done_imports = False def animate_imports(): for c in itertools.cycle(['|', '/', '-', '\\']): if done_imports: break print('Getting imports ' + c, end="\r") sys.stdout.flush() time.sleep(0.1) t_imports = threading.Thread(target=animate_imports) print() t_imports.start() output_text = [] modules = get_project_imports( ) if args['path'] is None else get_project_imports(args['path']) installed_with_versions, installed = get_installed_packages( "pip3") if args['version'] is None else get_installed_packages(args['version']) done_imports = True time.sleep(0.2) done_versions = False def animate_versions(): for c in itertools.cycle(['|', '/', '-', '\\']): if done_versions: print("\033[A \033[A") break print('Getting versions ' + c, end="\r") sys.stdout.flush() time.sleep(0.1) t_versions = threading.Thread(target=animate_versions) t_versions.start() for mod in modules: if mod in installed: mod_info = get_version_info(mod) if mod_info: output_text.append(mod_info) done_versions = True time.sleep(0.2) print('\nGenrating requirements.txt ... ') if args['path']: with open(args['path'] + "/requirements.txt", 'w') as f: f.write("\n".join(map(str, list(set(output_text))))) print("Successfuly created/updated requirements.txt") else: with open("requirements.txt", 'w') as f: f.write("\n".join(map(str, list(set(output_text))))) print("Successfuly created/updated requirements.txt") print() def main(): ap = argparse.ArgumentParser() ap.add_argument("-v", "--version", type=str, help="Pip version") ap.add_argument("-p", "--path", type=str, help="Path to target directory") args = vars(ap.parse_args()) try: init(args) except KeyboardInterrupt: sys.exit(0) if __name__ == '__main__': main()
2.390625
2
nicos_virt_mlz/treff/devices/detector.py
ebadkamil/nicos
12
12778164
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # <NAME> <<EMAIL>> # # ***************************************************************************** """VTREFF detector image based on McSTAS simulation.""" from nicos.core import Attach, Override, Readable from nicos.devices.generic import Slit from nicos.devices.mcstas import McStasSimulation as BaseSimulation from nicos_mlz.treff.devices import MirrorSample class McStasSimulation(BaseSimulation): parameter_overrides = { 'mcstasprog': Override(default='treff_fast'), } attached_devices = { 'sample': Attach('Mirror sample', MirrorSample), 's1': Attach('Slit 1', Slit), 's2': Attach('Slit 2', Slit), 'sample_x': Attach('Sample position x', Readable), 'sample_y': Attach('Sample position y', Readable), 'sample_z': Attach('Sample position z', Readable), 'beamstop': Attach('Beam stop positon', Readable), 'omega': Attach('Sample omega rotation', Readable), 'chi': Attach('Sample chi rotation', Readable), 'phi': Attach('Sample phi rotation', Readable), 'detarm': Attach('Position detector arm', Readable), } def _prepare_params(self): params = [] sample = self._attached_sample params.append('s1_width=%s' % self._attached_s1.width.read(0)) params.append('s1_height=%s' % self._attached_s1.height.read(0)) params.append('s2_width=%s' % self._attached_s2.width.read(0)) params.append('s2_height=%s' % self._attached_s2.height.read(0)) params.append('sample_x=%s' % self._attached_sample_x.read(0)) sample_y = self._attached_sample_y params.append('sample_y=%s' % (sample_y.read(0) + sample_y.offset + sample._misalignments['sample_y'])) params.append('sample_z=%s' % self._attached_sample_z.read(0)) params.append('beamstop_pos=%s' % self._attached_beamstop.read(0)) omega = self._attached_omega params.append('omega=%s' % ( omega.read(0) + omega.offset + sample._misalignments['omega'])) chi = self._attached_chi params.append('chi=%s' % ( chi.read(0) + chi.offset + sample._misalignments['chi'])) params.append('phi=%s' % self._attached_phi.read(0)) detarm = self._attached_detarm params.append('detarm=%s' % ( detarm.read(0) + detarm.offset + sample._misalignments['detarm'])) params.append('mirror_length=%s' % self._attached_sample.length) params.append('mirror_thickness=%s' % self._attached_sample.thickness) params.append('mirror_height=%s' % self._attached_sample.height) params.append('mirror_m=%s' % self._attached_sample.m) params.append('mirror_alfa=%s' % self._attached_sample.alfa) params.append('mirror_wav=%s' % self._attached_sample.waviness) if self._attached_sample.rflfile: params.append('rflfile=%s' % self._attached_sample.getReflectivityFile()) else: params.append('rflfile=0') return params
1.898438
2
tests/zq_crawler/test_yahoo.py
feng-zhe/ZheQuant-brain-python
2
12778165
<gh_stars>1-10 ''' Unit Tests for yahoo.py ''' import unittest import json import random from datetime import datetime from datetime import timedelta import pytz from zq_crawler.yahoo import * # Unit test class class TestYahooCrawler(unittest.TestCase): ''' Test case for yahoo crawler ''' # test response string _rsp_str = '{"chart":{"result":[{"meta":{"currency":"CNY","symbol":"600497.SS",\ "exchangeName":"SHH","instrumentType":"EQUITY","firstTradeDate":1082424600,\ "gmtoffset":28800,"timezone":"CST","exchangeTimezoneName":"Asia/Shanghai",\ "currentTradingPeriod":{"pre":{"timezone":"CST","end":1511746200,"start":1511746200,\ "gmtoffset":28800},"regular":{"timezone":"CST","end":1511766000,"start":1511746200,\ "gmtoffset":28800},"post":{"timezone":"CST","end":1511766000,"start":1511766000,\ "gmtoffset":28800}},"dataGranularity":"1d","validRanges":["1d","5d","1mo","3mo",\ "6mo","1y","2y","5y","10y","ytd","max"]},"timestamp":[1510709400,1510795800,\ 1510882200,1511141400,1511227800,1511314200,1511400600,1511487000,1511746200],\ "indicators":{"quote":[{"low":[null,6.489999771118164,6.099999904632568,6.03000020980835,\ 6.119999885559082,6.170000076293945,6.230000019073486,6.190000057220459,6.449999809265137],\ "volume":[null,34039227,53016969,28656684,39235021,41324595,63648648,52108224,54005417],\ "close":[null,6.510000228881836,6.199999809265137,6.239999771118164,6.179999828338623,\ 6.269999980926514,6.309999942779541,6.5,6.510000228881836],"open":[null,6.650000095367432,\ 6.46999979019165,6.199999809265137,6.210000038146973,6.269999980926514,6.289999961853027,\ 6.25,6.489999771118164],"high":[null,6.679999828338623,6.539999961853027,6.260000228881836,\ 6.260000228881836,6.28000020980835,6.480000019073486,6.519999980926514,6.670000076293945]}],\ "unadjclose":[{"unadjclose":[null,6.510000228881836,6.199999809265137,6.239999771118164,\ 6.179999828338623,6.269999980926514,6.309999942779541,6.5,6.510000228881836]}],\ "adjclose":[{"adjclose":[null,6.510000228881836,6.199999809265137,6.239999771118164,\ 6.179999828338623,6.269999980926514,6.309999942779541,6.5,6.510000228881836]}]}}],\ "error":null}}' def test_validate_response(self): ''' Test response validation ''' self.assertTrue(validate_response(self._rsp_str)) def test_extract_stock_data(self): ''' Test extracting data from response ''' act_docs = extract_stock_data(self._rsp_str) tzinfo = pytz.timezone('Asia/Shanghai') exp_docs = [ { 'code' : '600497.SS', # set to close time because we use close time 'date' : datetime.fromtimestamp(1510795800, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 34039227, 'open' : 6.65, 'close' : 6.51, 'low' : 6.49, 'high' : 6.68 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1510882200, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 53016969, 'open' : 6.47, 'close' : 6.20, 'low' : 6.10, 'high' : 6.54 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1511141400, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 28656684, 'open' : 6.20, 'close' : 6.24, 'low' : 6.03, 'high' : 6.26 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1511227800, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 39235021, 'open' : 6.21, 'close' : 6.18, 'low' : 6.12, 'high' : 6.26 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1511314200, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 41324595, 'open' : 6.27, 'close' : 6.27, 'low' : 6.17, 'high' : 6.28 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1511400600, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 63648648, 'open' : 6.29, 'close' : 6.31, 'low' : 6.23, 'high' : 6.48 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1511487000, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 52108224, 'open' : 6.25, 'close' : 6.50, 'low' : 6.19, 'high' : 6.52 }, { 'code' : '600497.SS', 'date' : datetime.fromtimestamp(1511746200, tz=tzinfo)\ .replace(hour=15, minute=0, second=0, microsecond=0), 'volume' : 54005417, 'open' : 6.49, 'close' : 6.51, 'low' : 6.45, 'high' : 6.67 } ] self.assertEqual(act_docs, exp_docs) def test_request_data(self): ''' Test request data from internet. The internet connection must be correct. So as the response format. ''' tzinfo = pytz.timezone('Asia/Shanghai') start = datetime(2017, 11, 18, tzinfo=tzinfo) end = datetime(2017, 11, 22, tzinfo=tzinfo) rsp = request_data(start, end, '600497.SS') self.assertIsNotNone(rsp) self.assertTrue(validate_response(rsp)) def test_one_attempt(self): ''' Go through one attempt to crawl data (without database updating) Aassuming there is no 15-day continuous vacation Otherwise the test may fail ''' tzinfo = pytz.timezone('Asia/Shanghai') month = random.randint(1, 11) day = random.randint(1, 20) start = datetime(2017, month, day, tzinfo=tzinfo) end = start + timedelta(days=15) rsp = request_data(start, end, '600497.SS') self.assertIsNotNone(rsp) self.assertTrue(validate_response(rsp)) docs = extract_stock_data(rsp) self.assertNotEqual(len(docs), 0) if __name__ == '__main__': unittest.main()
2.65625
3
squarelet_auth/mixins.py
MuckRock/squarelet-auth
0
12778166
# Django from django.contrib.auth import login # Third Party import requests # SquareletAuth from squarelet_auth.users.utils import squarelet_update_or_create from squarelet_auth.utils import squarelet_post class MiniregMixin: """A mixin to expose miniregister functionality to a view""" minireg_source = "Default" field_map = {} def _create_squarelet_user(self, form, data): """Create a corresponding user on squarelet""" generic_error = ( "Sorry, something went wrong with the user service. " "Please try again later" ) try: resp = squarelet_post("/api/users/", data=data) except requests.exceptions.RequestException: form.add_error(None, generic_error) raise if resp.status_code / 100 != 2: try: error_json = resp.json() except ValueError: form.add_error(None, generic_error) else: for field, errors in error_json.iteritems(): for error in errors: form.add_error(self.field_map.get(field, field), error) finally: resp.raise_for_status() return resp.json() def miniregister(self, form, full_name, email): """Create a new user from their full name and email""" full_name = full_name.strip() user_json = self._create_squarelet_user( form, {"name": full_name, "preferred_username": full_name, "email": email} ) user, _ = squarelet_update_or_create(user_json["uuid"], user_json) login(self.request, user, backend="squarelet_auth.backends.SquareletBackend") return user
2.265625
2
yasha/constants.py
alextremblay/yasha
0
12778167
ENCODING = 'utf-8' EXTENSION_FILE_FORMATS = ('.py', '.yasha', '.j2ext', '.jinja-ext')
1.140625
1
opts.py
YBZh/Label-Propagation-with-Augmented-Anchors
18
12778168
import argparse def opts(): parser = argparse.ArgumentParser(description='Train alexnet on the cub200 dataset', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--data_path_source', type=str, default='', help='Root of train data set of the source domain') parser.add_argument('--data_path_source_t', type=str, default='', help='Root of train data set of the target domain') parser.add_argument('--data_path_target', type=str, default='', help='Root of the test data set') parser.add_argument('--src', type=str, default='amazon', help='choose between amazon | dslr | webcam') parser.add_argument('--src_t', type=str, default='webcam', help='choose between amazon | dslr | webcam') parser.add_argument('--tar', type=str, default='webcam', help='choose between amazon | dslr | webcam') parser.add_argument('--num_classes', type=int, default=31, help='number of classes of data used to fine-tune the pre-trained model') # Optimization options parser.add_argument('--epochs', '-e', type=int, default=200, help='Number of epochs to train') parser.add_argument('--batch_size', type=int, default=64, help='Batch size of the source data.') parser.add_argument('--lr', '--learning_rate', type=float, default=0.01, help='The Learning Rate.') parser.add_argument('--lrw', type=float, default=1.0, help='The Learning Rate.') parser.add_argument('--momentum', '-m', type=float, default=0.9, help='Momentum.') parser.add_argument('--weight_decay', '-wd', type=float, default=0.0001, help='Weight decay (L2 penalty).') parser.add_argument('--schedule', type=str, default='rev', help='rev | constant') parser.add_argument('--gamma', type=float, default=0.75, help='2.25 (visda) and 0.75 (others).') # checkpoints parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--resume', type=str, default='', help='Checkpoints path to resume(default none)') parser.add_argument('--pretrained_checkpoint', type=str, default='', help='Pretrained checkpoint to resume (default none)') parser.add_argument('--test_only', '-t', action='store_true', help='Test only flag') #### graph parser.add_argument('--dis_gra', type=str, default='l2', help='dis for graph') parser.add_argument('--cor', type=float, default=1.0, help='cor in the computation of l2 distance') parser.add_argument('--TopkGraph', action='store_true', help='full graph 2 topk graph') parser.add_argument('--graphk', type=int, default=10, help='KNN grapg') parser.add_argument('--AlphaGraph', type=float, default=0.5, help='level for propagation.') parser.add_argument('--noise_level', type=float, default=0.1, help='cor in the computation of l2 distance') parser.add_argument('--noise_flag', action='store_true', help='full graph 2 topk graph') # Architecture parser.add_argument('--arch', type=str, default='resnet101', help='Model name') parser.add_argument('--img_process_t', type=str, default='simple', help='Model name') parser.add_argument('--img_process_s', type=str, default='simple', help='Model name') parser.add_argument('--flag', type=str, default='original', help='flag for different settings') parser.add_argument('--type', type=str, default='type1', help='type1 | type2 | type3') parser.add_argument('--dis', type=str, default='cross_entropy', help='cross_entropy | kl | l1') parser.add_argument('--pretrained', action='store_true', help='whether using pretrained model') parser.add_argument('--per_category', type=int, default=4, help='number of domains') parser.add_argument('--fea_dim', type=int, default=2048, help='feature dim') parser.add_argument('--uniform_type_s', type=str, default='soft', help='hard | soft | none') parser.add_argument('--uniform_type_t', type=str, default='soft', help='hard | soft | none') parser.add_argument('--dsbn', action='store_true', help='whether use domain specific bn') parser.add_argument('--fixbn', action='store_true', help='whether fix the ImageNet pretrained BN layer') parser.add_argument('--OurMec', action='store_true', help='whether use our cross entropy style MEC | original mec') parser.add_argument('--OurPseudo', action='store_true', help='whether use cluster label for cross entropy directly | tangs') parser.add_argument('--category_mean', action='store_true', help='Only True for visda, acc calculated over categories') parser.add_argument('--clufrq_dec', action='store_true', help='whether decrease the cluster freq.') parser.add_argument('--threed', action='store_true', help='ori + aug + grey | ori + grey.') parser.add_argument('--only_lrw', action='store_true', help='lrw weight | lamda') parser.add_argument('--niter', type=int, default=500, help='iteration of clustering') parser.add_argument('--pseudo_type', type=str, default='cluster', help='cluster (spherical_kmeans cluster) or lp (label propagation)') parser.add_argument('--l2_process', action='store_true', help='') parser.add_argument('--spherical_kmeans', action='store_true', help='') parser.add_argument('--entropy_weight', action='store_true', help='whether adopt the prediction entropy of LP prediction as weight') parser.add_argument('--S4LP', type=str, default='all', help='all | cluster | center') parser.add_argument('--LPSolver', type=str, default='Itera', help='Itera | CloseF') parser.add_argument('--LPType', type=str, default='lgc', help='lgc | hmn | parw | omni') parser.add_argument('--alpha', type=float, default=0.99, help='hyper-parameter.') parser.add_argument('--lamb', type=float, default=1.0, help='hyper-parameter') parser.add_argument('--NC4LP', type=int, default=3, help='number of clusters for each category in clustering') parser.add_argument('--LPIterNum', type=int, default=15, help='number of clusters for each category in clustering') parser.add_argument('--LPIterationType', type=str, default='add', help='replace | add') parser.add_argument('--min_num_cate', type=int, default=3, help='lowest number of image in each class') parser.add_argument('--filter_low', action='store_true', help='filter the samples with low prediction confidence') parser.add_argument('--cos_threshold', type=float, default=0.05, help='hyper-parameter.') parser.add_argument('--weight_type', type=str, default='cas_ins', help='replace | add') parser.add_argument('--graph_gama', type=int, default=1, help='for graph construction, follow manifold-based search') parser.add_argument('--dis_margin', type=float, default=1.0, help='hyper-parameter.') parser.add_argument('--moving_weight', type=float, default=0.7, help='hyper-parameter.') # i/o parser.add_argument('--log', type=str, default='./checkpoints', help='Log folder') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--test_freq', default=10, type=int, help='test frequency (default: 1)') parser.add_argument('--cluster_freq', default=1, type=int, help='clustering frequency (default: 1)') parser.add_argument('--print_freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--score_frep', default=300, type=int, metavar='N', help='print frequency (default: 300, not download score)') args = parser.parse_args() args.data_path_source_t = args.data_path_source args.data_path_target = args.data_path_source args.src_t = args.tar args.log = args.log + '_' + args.src + '2' + args.tar + '_' + args.arch + '_' + args.flag + '_' + args.type + '_' + \ args.dis + '_' + args.uniform_type_s + '_' + args.pseudo_type + str(args.lrw) + '_' + str(args.cos_threshold) + args.dis_gra return args
2.734375
3
rcsb/workflow/targets/ProteinTargetSequenceExecutionWorkflow.py
rcsb/py-rcsb_workflow
0
12778169
<filename>rcsb/workflow/targets/ProteinTargetSequenceExecutionWorkflow.py ## # File: ProteinTargetSequenceExecutionWorkflow.py # Author: <NAME> # Date: 25-Jun-2021 # # Updates: # ## """ Execution workflow for protein target data ETL operations. """ __docformat__ = "google en" __author__ = "<NAME>" __email__ = "<EMAIL>" __license__ = "Apache 2.0" import logging import os import platform import resource import time from rcsb.utils.taxonomy.TaxonomyProvider import TaxonomyProvider from rcsb.workflow.targets.ProteinTargetSequenceWorkflow import ProteinTargetSequenceWorkflow from rcsb.utils.config.ConfigUtil import ConfigUtil logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s]-%(module)s.%(funcName)s: %(message)s") logger = logging.getLogger() HERE = os.path.abspath(os.path.dirname(__file__)) class ProteinTargetSequenceExecutionWorkflow(object): def __init__(self): self.__mockTopPath = None configPath = os.path.join(HERE, "exdb-config-example.yml") configName = "site_info_remote_configuration" self.__cfgOb = ConfigUtil(configPath=configPath, defaultSectionName=configName, mockTopPath=self.__mockTopPath) self.__cachePath = os.path.join(HERE, "CACHE") # self.__remotePrefix = None self.__startTime = time.time() logger.info("Starting at %s", time.strftime("%Y %m %d %H:%M:%S", time.localtime())) def resourceCheck(self): unitS = "MB" if platform.system() == "Darwin" else "GB" rusageMax = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss logger.info("Maximum resident memory size %.4f %s", rusageMax / 10 ** 6, unitS) endTime = time.time() logger.info("Completed at %s (%.4f seconds)\n", time.strftime("%Y %m %d %H:%M:%S", time.localtime()), endTime - self.__startTime) def cacheTaxonomy(self): """Cache NCBI taxonomy database files""" ok = False try: tU = TaxonomyProvider(cachePath=self.__cachePath, useCache=False, cleanup=False) ok = tU.testCache() except Exception as e: logger.exception("Failing with %s", str(e)) return ok def fetchUniProtTaxonomy(self): """Reload UniProt taxonomy mapping""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.reloadUniProtTaxonomy() except Exception as e: logger.exception("Failing with %s", str(e)) return ok def updateUniProtTaxonomy(self): """Test case - initialize the UniProt taxonomy provider (from scratch ~3482 secs)""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.updateUniProtTaxonomy() except Exception as e: logger.exception("Failing with %s", str(e)) return ok def fetchProteinEntityData(self): """Export RCSB protein entity sequence FASTA, taxonomy, and sequence details""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.exportRCSBProteinEntityFasta() except Exception as e: logger.exception("Failing with %s", str(e)) return ok def fetchChemicalReferenceMappingData(self): """Export RCSB chemical reference identifier mapping details""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.exportRCSBChemRefMapping() except Exception as e: logger.exception("Failing with %s", str(e)) return ok def fetchLigandNeighborMappingData(self): """Export RCSB ligand neighbor mapping details""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.exportRCSBLigandNeighborMapping() except Exception as e: logger.exception("Failing with %s", str(e)) return ok def exportFasta(self): """Export FASTA target files (and load Pharos from source)""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.exportTargetsFasta(useCache=True, addTaxonomy=True, reloadPharos=True, fromDbPharos=True, resourceNameList=["sabdab", "card", "drugbank", "chembl", "pharos"]) except Exception as e: logger.exception("Failing with %s", str(e)) return ok def createSearchDatabases(self): """Create search databases""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.createSearchDatabases(resourceNameList=["sabdab", "card", "drugbank", "chembl", "pharos", "pdbprent"], addTaxonomy=True, timeOutSeconds=3600, verbose=False) except Exception as e: logger.exception("Failing with %s", str(e)) return ok def searchDatabases(self): """Search sequence databases""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok1 = ptsW.search( referenceResourceName="pdbprent", resourceNameList=["sabdab", "card", "drugbank", "chembl", "pharos"], identityCutoff=0.95, sensitivity=4.5, timeOutSeconds=1000 ) ok2 = ptsW.search(referenceResourceName="pdbprent", resourceNameList=["card"], identityCutoff=0.95, sensitivity=4.5, timeOutSeconds=1000, useBitScore=True) ok = ok1 and ok2 except Exception as e: logger.exception("Failing with %s", str(e)) return ok def buildFeatures(self): """Build features from search results""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.buildFeatureData(referenceResourceName="pdbprent", resourceNameList=["sabdab", "card", "imgt"], useTaxonomy=True, backup=True, remotePrefix=self.__remotePrefix) except Exception as e: logger.exception("Failing with %s", str(e)) return ok def buildActivityData(self): """Build features from search results""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.buildActivityData(referenceResourceName="pdbprent", resourceNameList=["chembl", "pharos"], backup=True, remotePrefix=self.__remotePrefix) except Exception as e: logger.exception("Failing with %s", str(e)) return ok def buildCofactorData(self): """Build features from search results""" ok = False try: ptsW = ProteinTargetSequenceWorkflow(self.__cfgOb, self.__cachePath) ok = ptsW.buildCofactorData(referenceResourceName="pdbprent", resourceNameList=["chembl", "pharos", "drugbank"], backup=True, remotePrefix=self.__remotePrefix) except Exception as e: logger.exception("Failing with %s", str(e)) return ok # # --- --- --- --- def fullWorkflow(): """Entry point for the full targets sequence and cofactor update workflow.""" ptsWf = ProteinTargetSequenceExecutionWorkflow() ok = True ok = ptsWf.cacheTaxonomy() ok = ptsWf.fetchUniProtTaxonomy() ok = ptsWf.fetchProteinEntityData() and ok ok = ptsWf.fetchChemicalReferenceMappingData() and ok ok = ptsWf.fetchLigandNeighborMappingData() and ok ok = ptsWf.exportFasta() and ok ok = ptsWf.createSearchDatabases() and ok ok = ptsWf.searchDatabases() and ok ok = ptsWf.buildFeatures() and ok ok = ptsWf.buildActivityData() and ok ok = ptsWf.buildCofactorData() and ok ptsWf.resourceCheck() return ok if __name__ == "__main__": status = fullWorkflow() print("Full workflow completion status (%r)", status)
2.046875
2
Module3_Data_for_ML/Linear_regression.py
EllieBrakoniecki/AICOREDATASCIENCE
0
12778170
#%% import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets, linear_model, metrics, preprocessing from sklearn.model_selection import train_test_split import itertools import typing class LinearRegression(): def __init__(self, n_features, optimiser): np.random.seed(2) self.w = np.random.randn(n_features) self.b = np.random.randn() self.optimiser = optimiser def fit(self, X, y): ''' Fit model to data ''' losses = [] for epoch in range(self.optimiser.epochs): y_pred = self.predict(X) new_w, new_b = self.optimiser.step(self.w, self.b, X, y_pred, y) self._update_params(new_w, new_b) losses.append(LinearRegression.mse_loss(y_pred, y)) LinearRegression.plot_loss(losses) print('Final cost:', losses[-1]) print('Weight values:', self.w) print('Bias values:', self.b) def predict(self, X): ''' Calculate prediction ''' y_pred = np.dot(X, self.w) + self.b return y_pred @staticmethod def mse_loss(y_pred, y_true): ''' Calculate mean squared error ''' m = y_pred.size errors = y_pred - y_true mse = 1/m * np.dot(errors.T, errors) return mse @staticmethod def plot_loss(losses): ''' Plot losses ''' plt.figure() plt.ylabel('Cost') plt.xlabel('Epoch') plt.plot(losses) plt.show() def _update_params(self, w, b): ''' Update parameters ''' self.w = w self.b = b return w, b def score(self, y_pred, y_true): ''' Calculate R2 score ''' u = np.dot((y_pred - y_true).T, (y_pred - y_true)) y_true_mean = np.full(y_true.shape, np.mean(y_true)) v = np.dot((y_true_mean - y_true).T, (y_true_mean - y_true)) R2 = 1 - u/v return R2 class SGDOptimiser: def __init__(self, alpha, epochs): self.alpha = alpha self.epochs = epochs def _calc_deriv(self, X, y_pred, y_true): ''' Calculate derivate of mean square error(loss) with respect to parameters ''' m = y_pred.size errors = y_pred - y_true dLdw = 2/m * np.sum(X.T * errors).T print('dLdw',dLdw) dLdb = 2/m * np.sum(errors) print('dLdb',dLdb) return dLdw, dLdb def step(self, w, b, X, y_pred, y_true): ''' Calculate updated paramters to decrease mean square error ''' dLdw, dLdb = self._calc_deriv(X, y_pred, y_true) new_w = w - self.alpha * dLdw new_b = b - self.alpha * dLdb return new_w, new_b class DataLoader: def __init__(self, X, y): idx = np.random.permutation(X.shape[0]) self.X = X[idx] self.y = y[idx] def yield_data(self, n): X_yield = self.X[0:n+1] y_yield = self.y[0:n+1] self.X = self.X[n+1:] self.y = self.y[n+1:] return X_yield, y_yield def add_data(self, X_new, y_new): self.X = np.append(X, X_new) self.y = np.append(y, y_new) #%% np.random.seed(2) X, y = datasets.fetch_california_housing(return_X_y=True) scaler = preprocessing.StandardScaler() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.5) X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) X_val = scaler.transform(X_val) np.random.seed(2) epochs = 1000 a = 0.001 optimiser = SGDOptimiser(alpha=a, epochs=epochs) model = LinearRegression(optimiser=optimiser, n_features=X_train.shape[1]) model.fit(X_train, y_train) y_pred = model.predict(X_train) score = model.score(y_pred,y_train) print(score) # %% # %%
3.3125
3
src/LetterFrequency.py
abench/spectrum_of_line_codes
0
12778171
<reponame>abench/spectrum_of_line_codes import sys def LetterFrequency(fname): Freq=[] for i in xrange(256): Freq.append(0.0) while True: try: b=fname.read(1) # print b # Freq[ord(b)]=Freq[ord(b)]+1 except EOFError: break #print b, ord(b) if len(b)!=0: Freq[ord(b)]=Freq[ord(b)]+1 else: break return Freq def Sum(list): s=0 for i in xrange(len(list)): s=s+list[i] return s def PrintResult(list,sum,stream): for i in xrange(len(list)): print >> stream,i,'[',chr(i),']=',list[i]/sum def main(): f=open(sys.argv[1]) Freq=LetterFrequency(f) total=Sum(Freq) PrintResult(Freq,total,sys.stdout) return if __name__=='__main__': main()
2.65625
3
python-the-hard-way/27-memorizing-logic.py
Valka7a/python-playground
0
12778172
<filename>python-the-hard-way/27-memorizing-logic.py # Exercise 27: Memorizing Logic #The Truth Terms: # and # or # not # != (not equal) # == (equal) # >= (greater-than-equal) # <= (less-than-equal) # True # False # The Truth Tables # NOT Table #____________________________ #| NOT | TRUE? | #---------------------------- #| not False | True | #| not True | False | #---------------------------- # OR Table AND Table #____________________________ ________________________________ #| OR | TRUE? | | AND | TRUE? | #---------------------------- --------------------------------- #| True or False | True | | True and False | False | #| True or True | True | | True and True | True | #| False or True | True | | False and True | False | #| False or False | False | | False and False | False | #---------------------------- --------------------------------- # NOT OR Table NOT AND Table #____________________________________ _________________________________ #| NOT OR | TRUE? | | NOT AND | TRUE? | #------------------------------------ --------------------------------- #| not (True or False) | False | | not (True and False) | True | #| not (True or True) | False | | not (True and True) | False | #| not (False or True) | False | | not (False and True) | True | #| not (False or False) | True | | not (False and False) | True | #------------------------------------ --------------------------------- # !=(Not Equal) Table ==(Equal) Table #____________________ _____________________ #| != | TRUE? | | == | TRUE? | #-------------------- --------------------- #| 1 != 0 | True | | 1 == 0 | False | #| 1 != 1 | False | | 1 == 1 | True | #| 0 != 1 | True | | 0 == 1 | False | #| 0 != 0 | False | | 0 == 0 | True | #-------------------- ---------------------
4
4
app.py
edumoraisv/testegeekieo
0
12778173
#----------------------------------------------------------------------------# # Imports #----------------------------------------------------------------------------# from flask import Flask, redirect, render_template, request, url_for import logging from logging import Formatter, FileHandler from forms import * import os from geekie_api_client import GeekieAPIClient from geekie_oauth import OAuthClient #----------------------------------------------------------------------------# # App Config. #----------------------------------------------------------------------------# app = Flask(__name__) app.config.from_object("config") app.config["geekie_api_client"] = GeekieAPIClient( shared_secret=app.config.get("GEEKIE_API_SHARED_SECRET"), ) #----------------------------------------------------------------------------# # Controllers. #----------------------------------------------------------------------------# @app.route("/") def home(): return render_template("pages/home.html") @app.route("/who-am-i", methods=["POST"]) def who_am_i(): api_client = app.config.get("geekie_api_client") remote_organization_id = api_client.who_am_i(request.form["organization_id"]).get( "organization_id" ) return redirect(url_for("show_organization", organization_id=remote_organization_id)) @app.route("/organizations/<organization_id>") def show_organization(organization_id): return render_template("pages/show_organization.html", organization_id=organization_id) @app.route("/organizations/<organization_id>/members") def list_organization_memberships(organization_id): api_client = app.config.get("geekie_api_client") api_response = api_client.get_all_memberships(organization_id) memberships = api_response["results"] oauth_params = {} for membership in memberships: oauth_client = OAuthClient( shared_secret=app.config.get("GEEKIE_API_SHARED_SECRET"), organization_id=organization_id, user_id=membership["id"] ) oauth_params[membership["id"]] = oauth_client.get_oauth_params() return render_template( "pages/members.html", organization_id=organization_id, memberships=memberships, oauth_params=oauth_params, ) @app.route("/organizations/<organization_id>/memberships", methods=["POST"]) def create_membership(organization_id): api_client = app.config.get("geekie_api_client") form_data = request.form membership_data = { "full_name": form_data["full_name"], } api_client.create_membership( organization_id=organization_id, membership_data=membership_data ) return redirect( url_for("list_organization_memberships", organization_id=organization_id) ) @app.route("/organizations/<organization_id>/memberships/<membership_id>/edit", methods=["GET"]) def edit_membership(organization_id, membership_id): api_client = app.config.get("geekie_api_client") membership = api_client.get_membership(organization_id, membership_id) return render_template( "pages/edit_member.html", organization_id=organization_id, membership_id=membership_id, membership=membership, ) @app.route("/organizations/<organization_id>/memberships/<membership_id>", methods=["POST"]) def update_membership(organization_id, membership_id): api_client = app.config.get("geekie_api_client") form_data = request.form membership_data = { "content_group_ids": [], "full_name": form_data["full_name"], "roles": form_data["roles"].split(", "), "tags": form_data["tags"].split(", "), "deleted": form_data.get("deleted", "false"), "external_id": form_data.get("external_id", ""), } api_client.update_membership( organization_id=organization_id, membership_id=membership_id, membership_data=membership_data, ) return redirect( url_for("list_organization_memberships", organization_id=organization_id) ) # Error handlers. @app.errorhandler(500) def internal_error(error): #db_session.rollback() return render_template("errors/500.html"), 500 @app.errorhandler(404) def not_found_error(error): return render_template("errors/404.html"), 404 if not app.debug: file_handler = FileHandler("error.log") file_handler.setFormatter( Formatter("%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]") ) app.logger.setLevel(logging.INFO) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.info("errors") #----------------------------------------------------------------------------# # Launch. #----------------------------------------------------------------------------# # Default port: if __name__ == "__main__": app.run() # Or specify port manually: """ if __name__ == "__main__": port = int(os.environ.get("PORT", 5000)) app.run(host="0.0.0.0", port=port) """
2.0625
2
spam/forms.py
iamsushanth/sms-spam-detector
1
12778174
<reponame>iamsushanth/sms-spam-detector from django import forms class SearchForm(forms.Form): q = forms.CharField(label='',widget=forms.Textarea( attrs={ 'class':'search-query form-control', 'placeholder':'Search' } ))
2.234375
2
bin/train_word_vectors.py
ivigamberdiev/spaCy
12
12778175
<reponame>ivigamberdiev/spaCy #!/usr/bin/env python from __future__ import print_function, unicode_literals, division import logging from pathlib import Path from collections import defaultdict from gensim.models import Word2Vec from preshed.counter import PreshCounter import plac import spacy logger = logging.getLogger(__name__) class Corpus(object): def __init__(self, directory, min_freq=10): self.directory = directory self.counts = PreshCounter() self.strings = {} self.min_freq = min_freq def count_doc(self, doc): # Get counts for this document for word in doc: self.counts.inc(word.orth, 1) return len(doc) def __iter__(self): for text_loc in iter_dir(self.directory): with text_loc.open("r", encoding="utf-8") as file_: text = file_.read() yield text def iter_dir(loc): dir_path = Path(loc) for fn_path in dir_path.iterdir(): if fn_path.is_dir(): for sub_path in fn_path.iterdir(): yield sub_path else: yield fn_path @plac.annotations( lang=("ISO language code"), in_dir=("Location of input directory"), out_loc=("Location of output file"), n_workers=("Number of workers", "option", "n", int), size=("Dimension of the word vectors", "option", "d", int), window=("Context window size", "option", "w", int), min_count=("Min count", "option", "m", int), negative=("Number of negative samples", "option", "g", int), nr_iter=("Number of iterations", "option", "i", int), ) def main( lang, in_dir, out_loc, negative=5, n_workers=4, window=5, size=128, min_count=10, nr_iter=2, ): logging.basicConfig( format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO ) model = Word2Vec( size=size, window=window, min_count=min_count, workers=n_workers, sample=1e-5, negative=negative, ) nlp = spacy.blank(lang) corpus = Corpus(in_dir) total_words = 0 total_sents = 0 for text_no, text_loc in enumerate(iter_dir(corpus.directory)): with text_loc.open("r", encoding="utf-8") as file_: text = file_.read() total_sents += text.count("\n") doc = nlp(text) total_words += corpus.count_doc(doc) logger.info( "PROGRESS: at batch #%i, processed %i words, keeping %i word types", text_no, total_words, len(corpus.strings), ) model.corpus_count = total_sents model.raw_vocab = defaultdict(int) for orth, freq in corpus.counts: if freq >= min_count: model.raw_vocab[nlp.vocab.strings[orth]] = freq model.scale_vocab() model.finalize_vocab() model.iter = nr_iter model.train(corpus) model.save(out_loc) if __name__ == "__main__": plac.call(main)
2.5
2
chapter_05/example_0001.py
yuchen352416/leetcode-example
0
12778176
<reponame>yuchen352416/leetcode-example #!/usr/bin/python3 from typing import List class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ description: 合并两个有序数组 type nums1: List[int] type m: int type nums2: List[int] type n: int rtype: None """ if len(nums1) == 0: for x in nums2[:n]: nums1.append(x) return if len(nums2) == 0: tempNums1 = nums1[:m] nums1.clear() for x in tempNums1: nums1.append(x) return tempNums1 = nums1.copy() i = 0 j = 0 nums1.clear() while i < m or j < n: if i < m and (j == n or tempNums1[i] < nums2[j]): nums1.append(tempNums1[i]) i += 1 elif j < n: nums1.append(nums2[j]) j += 1 # 大神写的(这tm就看不懂了) # nums1[m:m + n] = nums2 # nums1.sort() if __name__ == '__main__': # 简单的问候一下世界 nums1 = [2, 0] nums2 = [1] m = 1 n = 1 Solution().merge(nums1, m, nums2, n) print(nums1)
3.796875
4
core/base_page.py
zoltancsontos/pystack-framework
0
12778177
import os from falcon import falcon from settings.settings import SETTINGS from chameleon import PageTemplateLoader class BasePage(object): """ Generic base page object """ model = None property_types = [] default_404 = SETTINGS['VIEWS']['DEFAULT_404_TEMPLATE'] templates_dir = 'templates/' template = 'index.html' data = {} allowed_methods = ['GET'] group_access = SETTINGS['PERMISSIONS']['GROUPS'] def load_templates(self, base_dir=None): """ Loads the specified templates Args: base_dir: string|None Returns: """ base_dir_path = base_dir if base_dir else self.templates_dir app_path = os.path.abspath(base_dir_path) return PageTemplateLoader(app_path) def get_data(self, req): """ Method to override for data retrieval Args: req: object Returns: mixed """ return self.data def __forbidden_handler__(self, req, resp): """ Default forbidden case handler. Explanation: As this is the BasePage super class anything except GET should be forbidden you should use BaseResource instead of page and create a proper REST api Args: req: resp: Returns: """ templates = self.load_templates(base_dir="/templates") template = templates[self.default_404] resp.status = falcon.HTTP_404 resp.content_type = "text/html" data = { 'req': req } resp.body = (template(data=data)) def on_get(self, req, resp): """ Default HTTP GET method definition Args: req: object resp: object Returns: """ data = self.get_data(req) templates = self.load_templates() try: template = templates[self.template] except ValueError as val: self.__forbidden_handler__(req, resp) resp.status = falcon.HTTP_200 resp.content_type = "text/html" resp.body = (template(data=data)) def on_post(self, req, resp): """ Default POST http method handler Args: req: resp: Returns: """ self.__forbidden_handler__(req, resp) def on_put(self, req, resp): """ Default PUT http method handler Args: req: resp: Returns: """ self.__forbidden_handler__(req, resp) def on_delete(self, req, resp): """ Default DELETE http method handler Args: req: resp: Returns: """ self.__forbidden_handler__(req, resp) def on_patch(self, req, resp): """ Default PATCH http method handler Args: req: resp: Returns: """ self.__forbidden_handler__(req, resp)
2.34375
2
src/load_predicate_embedding.py
heindorf/www19-fair-classification
4
12778178
<reponame>heindorf/www19-fair-classification # ----------------------------------------------------------------------------- # WWW 2019 Debiasing Vandalism Detection Models at Wikidata # # Copyright (c) 2019 <NAME>, <NAME>, <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ----------------------------------------------------------------------------- import collections import logging import numpy as np import pandas as pd from scipy.sparse import vstack from sklearn.feature_selection import SelectKBest from sklearn.preprocessing import Binarizer from load_csr_matrix import load_csr_matrix from transformers import FrequencyTransformer FILE_ITEM_PREDICATES = '../../data/item-properties/item-properties.bz2' PATH_FEATURES = '../../data/features/' PATH_TRAIN = PATH_FEATURES + 'training/' # noqa PATH_VAL = PATH_FEATURES + 'validation/' # noqa PATH_TEST = PATH_FEATURES + 'test/' # noqa def load_matrices(): matrices = collections.OrderedDict() path = PATH_TRAIN + 'embeddings/' matrices['X_S_train'] = path + 'subjectOut' matrices['X_P_train'] = path + 'predicate' matrices['X_O_train'] = path + 'objectIn' matrices['X_OO_train'] = path + 'objectOut' path = PATH_VAL + 'embeddings/' matrices['X_S_val'] = path + 'subjectOut' matrices['X_P_val'] = path + 'predicate' matrices['X_O_val'] = path + 'objectIn' matrices['X_OO_val'] = path + 'objectOut' path = PATH_TEST + 'embeddings/' matrices['X_S_test'] = path + 'subjectOut' matrices['X_P_test'] = path + 'predicate' matrices['X_O_test'] = path + 'objectIn' matrices['X_OO_test'] = path + 'objectOut' for key, X in matrices.items(): logging.debug('load {}...'.format(key)) matrices[key] = load_csr_matrix(X) meta = collections.OrderedDict() meta['n_train'] = matrices['X_O_train'].shape[0] meta['n_val'] = matrices['X_O_val'].shape[0] meta['n_test'] = matrices['X_O_test'].shape[0] data = collections.OrderedDict() data['X_S_all'] = vstack([ matrices['X_S_train'], matrices['X_S_val'], matrices['X_S_test'] ]) data['X_P_all'] = vstack([ matrices['X_P_train'], matrices['X_P_val'], matrices['X_P_test'] ]) data['X_O_all'] = vstack([ matrices['X_O_train'], matrices['X_O_val'], matrices['X_O_test'] ]) data['X_OO_all'] = vstack([ matrices['X_OO_train'], matrices['X_OO_val'], matrices['X_OO_test'] ]) meta['X_S_all'] = np.array( ['S' + str(p) for p in range(data['X_S_all'].shape[1])]) meta['X_P_all'] = np.array( ['P' + str(p) for p in range(data['X_P_all'].shape[1])]) meta['X_O_all'] = np.array( ['O' + str(p) for p in range(data['X_O_all'].shape[1])]) meta['X_OO_all'] = np.array( ['OO' + str(p) for p in range(data['X_OO_all'].shape[1])]) return data, meta def binarize_features(data): encoder = Binarizer(threshold=0.5, copy=False) for key, X in data.items(): data[key] = encoder.fit_transform(X) def select_item_predicates_at_end_of_training_set(data, meta): item_predicates = pd.read_csv(FILE_ITEM_PREDICATES, header=None) item_predicates = item_predicates.values.flatten() def _remove_attribute_predicates_from_X(X): # mask = np.zeros((1, data['X_object_pred_all'].shape[1])) # mask[0, item_predicates] = 1 # return X.multiply(mask).tocsr() return X.tocsc()[:, item_predicates].tocsr() for key, X in data.items(): logging.debug(key) data[key] = _remove_attribute_predicates_from_X(X) meta[key] = meta[key][item_predicates] def count_nonzero(X, _): return np.asarray((X != 0).sum(axis=0)).ravel() def select_features( data, meta, y, slice_fit, score_func=count_nonzero, k=100): if y is None: rand_X = next(iter(data.values())) y = np.zeros(rand_X[slice_fit].shape[0]) logging.debug(slice_fit) for key in data: logging.debug(data[key].shape) selector = SelectKBest(score_func=score_func, k=k) selector = selector.fit(data[key][slice_fit], y[slice_fit]) data[key] = selector.transform(data[key]) meta[key] = meta[key][selector.get_support()] def frequency_encoding(data, slice_fit): # slice_fit = slice(0, n_train + n_val) # convert to DataFrame df_freq = pd.DataFrame() df_freq['subjectPredEmbedFrequency'] = rows_to_str(data['X_S_all']) df_freq['objectPredEmbedFrequency'] = rows_to_str(data['X_O_all']) df_freq['objectOutPredEmbedFrequency'] = rows_to_str(data['X_OO_all']) transformer = FrequencyTransformer() transformer = transformer.fit( df_freq[['subjectPredEmbedFrequency']][slice_fit]) df_freq[['subjectPredEmbedFrequency']] = transformer.transform( df_freq[['subjectPredEmbedFrequency']]) transformer = FrequencyTransformer() transformer = transformer.fit( df_freq[['objectPredEmbedFrequency']][slice_fit]) df_freq[['objectPredEmbedFrequency']] = transformer.transform( df_freq[['objectPredEmbedFrequency']]) transformer = FrequencyTransformer() transformer = transformer.fit( df_freq[['objectOutPredEmbedFrequency']][slice_fit]) df_freq[['objectOutPredEmbedFrequency']] = transformer.transform( df_freq[['objectOutPredEmbedFrequency']]) return df_freq def rows_to_str(array): rows = array.tolil().rows for i in range(len(rows)): rows[i] = ','.join(str(elem) for elem in rows[i]) return rows # --------------------------------------------------------- # Internal Functions # --------------------------------------------------------- def _get_slice_fit(meta, use_test_set): if use_test_set: return slice(0, meta['n_train'] + meta['n_val']) else: return slice(0, meta['n_train'])
1.460938
1
Chapter 01/_aux/anomaly.py
bpbpublications/Time-Series-Forecasting-using-Deep-Learning
7
12778179
import matplotlib.pyplot as plt import random if __name__ == '__main__': random.seed(9) length = 100 A = 5 B = .2 C = 1 trend = [A + B * i for i in range(length)] noise = [] for i in range(length): if 65 <= i <= 75: noise.append(7 * C * random.gauss(0, 1)) plt.axvspan(i, i + 1, color = 'red', alpha = 0.1) else: noise.append(C * random.gauss(0, 1)) ts = [trend[i] + noise[i] for i in range(length)] plt.plot(ts) plt.xticks([]) plt.yticks([]) plt.show()
3.125
3
forest/distinguisher/regex_distinguisher.py
Marghrid/Forest
7
12778180
import random import re import time from itertools import combinations import z3 from forest.logger import get_logger from forest.utils import check_conditions from forest.visitor import ToZ3, RegexInterpreter logger = get_logger('forest') use_derivatives = True # z3.set_param('smt.string_solver', 'z3str3') class RegexDistinguisher: def __init__(self): self._toz3 = ToZ3() self._printer = RegexInterpreter() self.force_multi_distinguish = False self.force_distinguish2 = False def distinguish(self, programs): logger.debug(f"Distinguishing {len(programs)}: " f"{','.join(map(self._printer.eval, programs))}") assert len(programs) >= 2 if not self.force_multi_distinguish and len(programs) == 2: return self.distinguish2(programs[0], programs[1]) if self.force_distinguish2: dist_input, keep_if_valid, keep_if_invalid, _ = \ self.distinguish2(programs[0], programs[1]) return dist_input, keep_if_valid, keep_if_invalid, programs[2:] else: return self.multi_distinguish(programs) def distinguish2(self, r1, r2): global use_derivatives solver = z3.Solver() solver.set('random_seed', 7) solver.set('sat.random_seed', 7) if use_derivatives: try: solver.set('smt.seq.use_derivatives', True) solver.check() except: pass z3_r1 = self._toz3.eval(r1[0]) z3_r2 = self._toz3.eval(r2[0]) dist = z3.String("distinguishing") ro_1 = z3.Bool(f"ro_1") solver.add(ro_1 == z3.InRe(dist, z3_r1)) ro_2 = z3.Bool(f"ro_2") solver.add(ro_2 == z3.InRe(dist, z3_r2)) solver.add(ro_1 != ro_2) if solver.check() == z3.sat: if len(r1[2][0]) == 0 and len(r2[2][0]) == 0: dist_input = solver.model()[dist].as_string() if solver.model()[ro_1]: return dist_input, [r1], [r2], [] else: return dist_input, [r2], [r1], [] # Find dist_input that respects conditions r1_str = self._printer.eval(r1[0], captures=r1[2][1]) r1_conditions = list(map(lambda c: " ".join(map(str, c)), r1[2][0])) r2_str = self._printer.eval(r2[0], captures=r2[2][1]) r2_conditions = list(map(lambda c: " ".join(map(str, c)), r2[2][0])) while True: dist_input = solver.model()[dist].as_string() match = re.fullmatch(r1_str, dist_input) if match is not None and check_conditions(r1_conditions, match): break match = re.fullmatch(r2_str, dist_input) if match is not None and check_conditions(r2_conditions, match): break solver.add(dist != z3.StringVal(dist_input)) if not solver.check() == z3.sat: return None, None, None, None if solver.model()[ro_1]: return dist_input, [r1], [r2], [] else: return dist_input, [r2], [r1], [] else: return None, None, None, None def multi_distinguish(self, regexes): start = time.time() # Problem: cannot distinguish more than 4 regexes at once: it takes forever. # Solution: use only 4 randomly selected regexes for the SMT maximization, # and then add the others to the solution. if len(regexes) <= 4: selected_regexes = regexes others = [] else: random.seed('regex') random.shuffle(regexes) selected_regexes = regexes[:4] others = regexes[4:] solver = z3.Optimize() z3_regexes = [] for regex in selected_regexes: z3_regex = self._toz3.eval(regex) z3_regexes.append(z3_regex) dist = z3.String("distinguishing") # solver.add(z3.Length(dist) <= 6) ro_z3 = [] for i, z3_regex in enumerate(z3_regexes): ro = z3.Bool(f"ro_{i}") ro_z3.append(ro) solver.add(ro == z3.InRe(dist, z3_regex)) # ro_z3[i] == true if dist matches regex[i]. big_or = [] for ro_i, ro_j in combinations(ro_z3, 2): big_or.append(z3.Xor(ro_i, ro_j)) solver.add_soft(z3.Xor(ro_i, ro_j)) solver.add(z3.Or(big_or)) # at least one regex is distinguished if solver.check() == z3.sat: # print(solver.model()) print("took", round(time.time() - start, 2), "seconds") keep_if_valid = [] keep_if_invalid = [] dist_input = str(solver.model()[dist]).strip('"') for i, ro in enumerate(ro_z3): if solver.model()[ro]: keep_if_valid.append(selected_regexes[i]) else: keep_if_invalid.append(selected_regexes[i]) smallest_regex = min(selected_regexes, key=lambda r: len(self._printer.eval(r))) return dist_input, keep_if_valid, keep_if_invalid, others else: return None, None, None, None
2.515625
3
aws/context.py
robertcsapo/aws-lambda-python-local
0
12778181
import uuid from datetime import date import os import humanize class Context: def __init__(self, function_name, function_version): self.function_name = function_name self.function_version = function_version self.invoked_function_arn = "arn:aws:lambda:eu-north-1:000000000000:function:{}".format(self.function_name) self.aws_request_id = uuid.uuid1() self.log_group_name = "/aws/lambda/{}".format(self.function_name) today = date.today() self.log_stream_name = "{}/[{}]4459c970fa6d4c77aca62c95850fce54".format(today.strftime("%Y/%m/%d"), self.function_version) self.memory_limit_in_mb = Context.memory(self) pass def memory(self): mem = int(os.popen("cat /sys/fs/cgroup/memory/memory.limit_in_bytes").read()) self.memory_limit_in_mb = humanize.naturalsize(mem, gnu=True) return (self.memory_limit_in_mb) pass
2.75
3
spherov2/test/BoltTest.py
Cole1220/spherov2.py
1
12778182
# python3 #import sys #sys.path.append('/spherov2/') import time from spherov2 import scanner from spherov2.sphero_edu import EventType, SpheroEduAPI from spherov2.types import Color print("Testing Starting...") print("Connecting to Bolt...") toy = scanner.find_BOLT() if toy is not None: print("Connected.") with SpheroEduAPI(toy) as droid: print("Testing Start...") droid.set_main_led(Color(r=0, g=255, b=0)) #Sets whole Matrix droid.reset_aim() droid.set_main_led(Color(r=0,g=0,b=255)) print("Luminosity: " + str(droid.get_luminosity())) print("Accel: " + str(droid.get_acceleration())) """ print("Testing Main LED") droid.set_main_led(Color(r=0, g=0, b=255)) #Sets whole Matrix time.sleep(1) print("Testing Front LED") droid.set_front_led(Color(r=0, g=255, b=0)) #Sets front LED time.sleep(1) print("Testing Back LED") droid.set_back_led(Color(r=255, g=0, b=0)) #Sets back LED time.sleep(1) print("Set Matrix Pixel") droid.set_matrix_pixel(0, 0, Color(r=255, g=255, b=0)) #Set Matrix Pixel time.sleep(1) print("Set Matrix Line") droid.set_matrix_line(1, 0, 1, 7, Color(r=255, g=0, b=255)) #Set Matrix Line time.sleep(1) print("Set Matrix Fill") droid.set_matrix_fill(2, 0, 6, 6, Color(r=0, g=255, b=255)) #Set Matrix Box time.sleep(2) """ droid.set_main_led(Color(r=255, g=0, b=0)) #Sets whole Matrix print("Testing End...") #droid.register_event(EventType.on_sensor_streaming_data, droid.SensorStreamingInfo) #how you would register to data (function name is custom)
2.8125
3
src/def_func.py
maokuntao/python-study
0
12778183
<reponame>maokuntao/python-study ''' 函数定义 Created on 2017年12月22日 @author: taomaokun ''' from my_lib import my_abs # print(my_abs('A')) #TypeError # print(my_abs('-233'))#TypeError print(my_abs(-233)) # 函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”: another_my_abs = my_abs; print(another_my_abs(-2.333))
3.71875
4
Swift-FHIR/fhir-parser/Python/mappings.py
technosoftgit/Smart_2_8_2_Swift4
0
12778184
<reponame>technosoftgit/Smart_2_8_2_Swift4 # Mappings for the FHIR class generator # Which class names to map to resources and elements classmap = { 'Any': 'Resource', 'boolean': 'bool', 'integer': 'int', 'positiveInt': 'int', 'unsignedInt': 'int', 'date': 'FHIRDate', 'dateTime': 'FHIRDate', 'instant': 'FHIRDate', 'time': 'FHIRDate', 'decimal': 'float', 'string': 'str', 'markdown': 'str', 'id': 'str', 'code': 'str', # for now we're not generating enums for these 'uri': 'str', 'oid': 'str', 'uuid': 'str', 'xhtml': 'str', 'base64Binary': 'str', } # Classes to be replaced with different ones at resource rendering time replacemap = { 'Reference': 'FHIRReference', # `FHIRReference` adds dereferencing capabilities } # Some properties (in Conformance, Profile and Questionnaire currently) can be # any (value) type and have the `value[x]` form - how to substitute is defined # here starexpandtypes = { 'integer', 'decimal', 'dateTime', 'date', 'instant', 'time', 'string', 'uri', 'boolean', 'code', 'base64Binary', 'Coding', 'CodeableConcept', 'Attachment', 'Identifier', 'Quantity', 'Range', 'Period', 'Ratio', 'HumanName', 'Address', 'ContactPoint', 'Timing', 'Signature', 'Reference', } # Which class names are native to the language (or can be treated this way) natives = ['bool', 'int', 'float', 'str', 'dict'] # Which classes are to be expected from JSON decoding jsonmap = { 'str': 'str', 'int': 'int', 'bool': 'bool', 'float': 'float', 'FHIRDate': 'str', } jsonmap_default = 'dict' # Properties that need to be renamed because of language keyword conflicts reservedmap = { 'for': 'for_fhir', 'class': 'class_fhir', 'import': 'import_fhir', 'global': 'global_fhir', 'assert': 'assert_fhir', 'except': 'except_fhir', }
2.140625
2
elosports/elo.py
Anjum48/Elo
0
12778185
<gh_stars>0 class Elo: def __init__(self, k, home_advantage=100): """ :param k: Elo K-Factor :param home_advantage: Home field advantage, Default=100 """ self.ratingDict = {} self.k = k self.home_advantage = home_advantage def add_player(self, name, rating=1500): """ :param name: Player name :param rating: Initial rating. Default=1500 :return: """ self.ratingDict[name] = rating def game_over(self, winner, loser, location): """ Update ratings after a game :param winner: Name of the winning team :param loser: Name of the losing team :param location: Location of the winning team. 'H' if the played at home, 'A' for away, 'N' for neutral :return: """ if location == 'H': # Home result = self.expected_result(self.ratingDict[winner], self.ratingDict[loser], bias=self.home_advantage) elif location == 'A': # Away result = self.expected_result(self.ratingDict[winner], self.ratingDict[loser], bias=-self.home_advantage) else: # Neutral venue result = self.expected_result(self.ratingDict[winner], self.ratingDict[loser]) self.ratingDict[winner] += self.k * (1 - result) # score = 1 for win, minus expected score self.ratingDict[loser] += self.k * (0 - (1 - result)) # score = 0 for loss, minus expected score def expected_result(self, pr_a, pr_b, bias=0, names=False): """ See https://en.wikipedia.org/wiki/Elo_rating_system#Mathematical_details :param pr_a: player A performance rating or names :param pr_b: player B performance rating or names :param bias: Bias number which adds a constant offset to the ratings. Positive bias factors favor player A :param names: Flag to indicate if the inputs re names or performance ratings :return: Expected score """ if names: pr_a = self.ratingDict[pr_a] pr_b = self.ratingDict[pr_b] exp = (pr_b - pr_a + bias) / 400.0 return 1 / (1 + 10.0 ** exp)
3.515625
4
spider/spide.py
virusdefender/qdu_empty_classroot
3
12778186
<gh_stars>1-10 # coding=utf-8 import time import json import re import requests from thread_pool import ThreadPool class Spider(object): def __init__(self): self.cookies = {} self.r = re.compile( u'<tr style="display:" id="tr\d+"[^>]*?>\s*<td>([^<]*?)</td>[\s\S]+?<tr align="center" >[\s\S]+?<tr align="center" >\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)[\s\S]*?(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)[\s\S]*?(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>\s*' u'<td[^>]*?>(?:<a href="#" title="[^"]*?"><font color="#\w+">|)([\s\S]*?)(?:</font></a>|)</td>') def request(self, url, data): return requests.post(url, data=data, cookies=self.cookies) def craw(self, campus, building, week, week_day): #time.sleep(3) data = {"aid": campus, "buildingid": building, "room": "-1", "whichweek": week, "week": week_day} try: html = self.request("http://jw.qdu.edu.cn/academic/teacher/teachresource/roomschedule_week.jsdo", data).content # print html except Exception as e: print e print campus, building, week, week_day return None content = self.r.findall(html) rooms = [] for item in content: l = [] for i in range(0, len(item)): c = item[i].decode("gb2312") if i == 0: l.append(c) else: if c[0] == "&": l.append(0) else: l.append(1) rooms.append(l) with open("data/" + campus + "." + building + "." + week + "." + week_day + ".json", "w") as f: f.write(json.dumps(rooms)) print "finish: week:" + week + " week_day:" + week_day return "success" if __name__ == "__main__": s = Spider() s.cookies = {"JSESSIONID": "8B7DA565F71772D37B04170241A757A8.TAB2;"} pool = ThreadPool(size=20) pool.start() for week in range(1, 21): for week_day in range(1, 8): print "start week:" + str(week) + " week_day:" + str(week_day) # 请自行确定info.py中的校区id和教学楼id是正确的 # 然后按照info.py中的数据修改校区和教学楼id pool.append_job(s.craw, "1709", "1783", str(week), str(week_day)) pool.join()
2.8125
3
tool.py
zhongguozhi2/myblog
0
12778187
import hashlib import json import sys import time from random import random def custom_print(*args, sep=' ', end='\n', file=None): """ print补丁 :param x: :return: """ # 获取被调用函数在被调用时所处代码行数 line = sys._getframe().f_back.f_lineno # 获取被调用函数所在模块文件名 # file_name = sys._getframe(1).f_code.co_filename # sys.stdout.write(f'"{__file__}:{sys._getframe().f_lineno}" {x}\n') args = (str(arg) for arg in args) # REMIND 防止是数字不能被join sys.stdout.write(f'{line}: \033[0;32m{" ".join(args)}\033[0m\n') def create_digest(username): KEY = b'xdf' PERSON = b'xzz' timestamp = time.time() salt = str(random()).encode('utf-8')[:16] digest = hashlib.blake2b((username + str(timestamp)).encode('utf-8'), key=KEY, salt=salt, person=PERSON).hexdigest() return digest # print(digest.hexdigest()) def postman_to_markdown(postmanfilename, postman_varname, postman_varname_global, markdowndocname=None): with open(postmanfilename, 'r', encoding='UTF-8') as f1: content = json.load(f1) markdowndocname = content['info']['name'] + '接口文档.md' with open(markdowndocname, 'w', encoding='UTF-8') as f: f.write('# ' + content['info']['name'] + '\n') for item in content['item']: custom_print(68) f.write('## ' + item['request']['method'] + ' ' + item['name'] + '\n') f.write(item['request']['url']['raw'] + '\n') try: formdata = item['request']['body']['formdata'] except KeyError: pass else: if formdata: f.write('### ' + 'BODY formdata' + '\n') f.write('参数名|参数值' + '\n') f.write('---:|---:|' + '\n') for i in formdata: custom_print(72) f.write(i['key'] + '|' + i['value'] + '\n') with open(postman_varname, 'r', encoding='UTF-8') as f: content = json.load(f) with open(postman_varname_global, 'r', encoding='UTF-8') as f2: content2 = json.load(f2) key_values = {value['key']: value['value'] for value in content['values']} key2_values = {value['key']: value['value'] for value in content2['values']} key_values.update(key2_values) with open(markdowndocname, 'r', encoding='UTF-8') as f1: content1 = f1.read() for k, v in key_values.items(): custom_print(k, v) if k in content1: custom_print(k) content1 = content1.replace('{{' + k + '}}', v) with open(markdowndocname, 'w', encoding='UTF-8') as f2: f2.write(content1) if __name__ == '__main__': postman_to_markdown('logreport.postman_collection.json', 'logreport_outer_net.postman_environment.json', 'global.postman_environment.json')
2.6875
3
process_deposition_data.py
johnmgregoire/JCAPdepositionmonitor
1
12778188
# <NAME> and <NAME> # Created: 6/05/2013 # Last Updated: 6/14/2013 # For JCAP import numpy as np from PyQt4 import QtCore from dictionary_helpers import * import date_helpers import filename_handler import datareader # global dictionary holds all processed (z, x, y, rate) data for the experiment DEP_DATA = [] zndec = 1 tndec = 0 radius1 = 28. radius2 = 45. """ does all of the data processing necessary for deposition plots """ class ProcessorThread(QtCore.QThread): # transfers new line from reader to MainMenu lineRead = QtCore.pyqtSignal(list) # transfers new processed data to deposition graph newData = QtCore.pyqtSignal(tuple) srcError = QtCore.pyqtSignal(int) def __init__(self, parent=None, filename='default.csv'): super(ProcessorThread, self).__init__() self.file = filename self.rowBuffer = [] self.changeZ = False self.running = True self.reader = datareader.DataReader(parent=self, filename=self.file) self.reader.lineRead.connect(self.newLineRead) def run(self): self.reader.start() # initialize DATA_DICT column numbers used for data processing try: self.tcolnum = getCol('Src%d Motor Tilt Position' %int(filename_handler.FILE_INFO['Source'])) except IndexError: self.srcError.emit(int(filename_handler.FILE_INFO['Source'])) self.zcolnum = getCol('Platen Zshift Motor 1 Position') self.anglecolnum = getCol('Platen Motor Position') while self.running: pass """ called whenever the reader sends a full line """ def newLineRead(self, newRow): self.lineRead.emit(newRow) self.processRow(newRow) """ adds a new row to its own row buffer and processes the data in the row buffer if the azimuth or z-value of the instrument has changed """ def processRow(self, row): if self.rowBuffer == []: self.rowBuffer += [row] else: angle = round(float(row[self.anglecolnum])) zval = round(float(row[self.zcolnum]), 2) prevangle = round(float(self.rowBuffer[-1][self.anglecolnum]), 0) prevz = round(float(self.rowBuffer[-1][self.zcolnum]), 2) if (angle == prevangle and zval == prevz): self.rowBuffer += [row] elif (angle == prevangle): self.processData(prevz, prevangle, radius1) self.processData(prevz, prevangle, radius2) # indicates that center point will need to be # computed in next round of processing self.changeZ = True # reset row buffer self.rowBuffer = [row] else: self.processData(zval, prevangle, radius1) self.processData(zval, prevangle, radius2) self.rowBuffer = [row] """ processes all rates at the same angle and z-value to produce a single (z, x, y, rate) data point """ def processData(self, z, angle, radius): global DEP_DATA rowRange = self.getRowRange() # only one or two data points indicates a transitional angle # that can be ignored - Savitzky Golay can be used in the future if rowRange[1] - rowRange[0] <= 2: pass else: # get only valid rows from buffer dataArray = self.rowBuffer[rowRange[0]:(rowRange[1]+1)] # transpose matrix so that each column in the # spreadsheet becomes a row dataArrayT = np.array(dataArray).T timespan = self.getTimeSpan(dataArrayT) depRates = self.getDepRates(timespan, dataArrayT) # normalize based on drifting center point rate0 = self.getXtalRate(3, dataArrayT).mean() rate = rate0 if radius == radius1: if angle == 0 or self.changeZ: # plot center point along with first set # of data for this z-value DEP_DATA.append((z, 0.0, 0.0, rate)) self.newData.emit((z, 0.0, 0.0, rate)) self.changeZ = False x = radius * np.cos(angle * np.pi/180.) y = radius * np.sin(angle * np.pi/180.) # rate1 corresponds to Xtal4 Rate rate = rate0 * depRates[2]/depRates[1] else: x = radius * np.cos(angle * np.pi/180. + np.pi) y = radius * np.sin(angle * np.pi/180. + np.pi) # rate2 corresponds to Xtal2 Rate rate = rate0 * depRates[0]/depRates[1] # store data points for initializing new graph DEP_DATA.append((z, x, y, rate)) # indicate to exisiting graphs that there is # new data to display self.newData.emit((z, x, y, rate)) """ helper function to correct for instrument noise in measuring z-value """ def roundZ(self, zcol): zrnd=np.round(zcol, decimals=zndec) for i, zval in enumerate(zrnd): if zval not in filename_handler.FILE_INFO['Z_mm']: zrnd[i] = -1 return zrnd """ helper function to correct for instrument noise in measuring tilt """ def roundT(self, tcol): trnd=np.round(tcol, decimals=tndec) for i, tval in enumerate(trnd): if tval not in filename_handler.FILE_INFO['TiltDeg']: trnd[i] = -1 return trnd """ gets range of valid rows in row buffer based on whether z and t values match experimental parameters """ def getRowRange(self): data = np.array(self.rowBuffer) datacols = data.T zcol = map(float, datacols[self.zcolnum]) tcol = map(float, datacols[self.tcolnum]) inds_useful=np.where((self.roundZ(zcol)>=0)&(self.roundT(tcol)>=0))[0] # if rowRange is nonzero, send it if inds_useful.size: return (inds_useful[0], inds_useful[-1]) # otherwise, send dummy rowRange to processData return (0, 0) """ gets time span of valid data set for given angle and z-value """ def getTimeSpan(self, dataArrayT): datecol = getCol('Date') timecol = getCol('Time') datetimeTup = zip(dataArrayT[datecol], dataArrayT[timecol]) startStr = datetimeTup[0][0] + ' ' + datetimeTup[0][1] endStr = datetimeTup[-1][0] + ' ' + datetimeTup[-1][1] durationObj = date_helpers.dateObjFloat(endStr) - date_helpers.dateObjFloat(startStr) return durationObj.total_seconds() """ helper function to return column of Xtal rates from valid data set """ def getXtalRate(self, ratenum, dataArrayT): rcolnum = getCol('Xtal%d Rate' % ratenum) return np.array(map(float, dataArrayT[rcolnum])) """ helper function to compute all deposition rates as time-averaged Xtal rates """ def getDepRates(self, timespan, dataArrayT): depRates = [] for x in range(2,5): rateData = self.getXtalRate(x, dataArrayT) rateDiff = rateData[-1] - rateData[0] depRates += [rateDiff/timespan] return depRates """ re-initializes data sets and reader when a new spreadsheet file is loaded """ def newFile(self, newfile): global DEP_DATA DEP_DATA = [] self.rowBuffer = [] if self.reader: self.reader.end() self.reader = datareader.DataReader(parent=self, filename=newfile) self.reader.lineRead.connect(self.newLineRead) self.reader.start() # re-initialize DATA_DICT column numbers used for data processing try: self.tcolnum = getCol('Src%d Motor Tilt Position' %int(filename_handler.FILE_INFO['Source'])) except IndexError: self.srcError.emit(int(filename_handler.FILE_INFO['Source'])) self.zcolnum = getCol('Platen Zshift Motor 1 Position') self.anglecolnum = getCol('Platen Motor Position') """ empties row buffer and kills reader when experiment has ended """ def onEndExperiment(self): if self.rowBuffer: angle = round(float(self.rowBuffer[0][self.anglecolnum])) zval = round(float(self.rowBuffer[0][self.zcolnum]), 1) self.processData(zval, angle, radius1) self.processData(zval, angle, radius2) self.rowBuffer = [] if self.reader: self.reader.end() self.reader = None """ kills both the reader and data processor threads; called when application exits """ def end(self): if self.reader: self.reader.end() self.running = False
2.171875
2
contas/forms.py
Setti7/itaipu
1
12778189
<reponame>Setti7/itaipu<filename>contas/forms.py from django import forms from django.contrib.auth import ( password_validation, ) from django.contrib.sites.shortcuts import get_current_site from django.core.mail import send_mail from django.forms import widgets from django.template import loader from django.utils.encoding import force_bytes from django.utils.http import urlsafe_base64_encode from django.utils.translation import gettext_lazy as _ from django.contrib.auth.forms import UserCreationForm from contas.models import Residente, Visitante, Chacara from itaipu.settings import REGISTRATION_EMAIL class AssociarResidenteForm(forms.Form): token = forms.CharField(max_length=8) new_password1 = forms.CharField( label=_("New password"), widget=forms.PasswordInput, strip=False, help_text=password_validation.password_validators_help_text_html(), ) new_password2 = forms.CharField( label=_("New password confirmation"), strip=False, widget=forms.PasswordInput, ) email = forms.EmailField(max_length=254) field_order = ['token', 'email', 'new_password1', 'new_password2'] error_messages = { 'password_mismatch': _("The two password fields didn't match."), 'invalid_token': 'Esse token é inválido.', 'email_not_unique': "Esse email já está em uso.", 'account_already_activated': 'Esse token já foi utilizado.<br>Caso tenha esquecido a senha, vá para a página de ' 'login e clique em "Esqueceu a senha?".', } email_template_name = 'contas/associar-residente-email.html' subject = 'Parque Itaipu - Ativação da Conta' def __init__(self, request, *args, **kwargs): self.request = request super().__init__(*args, **kwargs) def clean_email(self): email = self.cleaned_data['email'] if Residente.objects.filter(email=email).exists(): raise forms.ValidationError( self.error_messages['email_not_unique'], code='email_not_unique', ) return email def clean(self): cleaned_data = super().clean() # Token validation token = cleaned_data.get('token') qs = Residente.objects.filter(token=token) if not qs.exists(): error = forms.ValidationError( self.error_messages['invalid_token'], code='invalid_token', ) self.add_error('token', error) self.user = None else: self.user = qs[0] # Active user validation if self.user.is_active: error = forms.ValidationError( self.error_messages['account_already_activated'], code='account_already_activated', ) self.add_error('token', error) # Password validation password1 = <PASSWORD>_data.get('<PASSWORD>') password2 = <PASSWORD>_data.get('<PASSWORD>') if password1 and password2: if password1 != password2: error = forms.ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', ) self.add_error('new_password2', error) password_validation.validate_password(password2, self.user) return cleaned_data def save(self, commit=True): password = self.cleaned_data["<PASSWORD>"] self.user.set_password(password) self.user.email = self.cleaned_data['email'] if commit: self.user.save() current_site = get_current_site(self.request) context = { 'email': self.user.email, 'domain': current_site.domain, 'site_name': current_site.name, 'email_uidb64': urlsafe_base64_encode(force_bytes(self.user.email)).decode(), 'user': self.user, 'token_uidb64': urlsafe_base64_encode(force_bytes(self.cleaned_data['token'])).decode(), 'protocol': 'https' if self.request.is_secure() else 'http', } body = loader.render_to_string(self.email_template_name, context) send_mail( subject=self.subject, message=None, html_message=body, from_email=REGISTRATION_EMAIL, recipient_list=[self.user.email] ) return self.user class EditarVisitanteForm(forms.ModelForm): # Editáveis data = forms.DateField(label='Data', input_formats=['%d/%m/%Y', '%Y-%m-%d'], widget=widgets.DateInput(format='%d/%m/%Y')) # Hidden form_id = forms.IntegerField(min_value=0, max_value=999999, widget=forms.HiddenInput) nomeres = forms.CharField(max_length=50, required=False) foto = forms.ImageField(required=False) class Meta: model = Visitante fields = ['nome', 'data', 'form_id', 'nomeres', 'foto'] def __init__(self, nomeres, *args, **kwargs): self.nomeres = nomeres super().__init__(*args, **kwargs) def save(self, commit=True): v = super().save(commit=False) nome = self.cleaned_data.get('nome') data = self.cleaned_data.get('data') foto = self.cleaned_data.get('foto') pk = self.cleaned_data.get('form_id') nomeres = self.nomeres v = Visitante.objects.get(pk=pk) if commit: v.nome = nome v.foto = foto v.data = data v.agendado = True v.nomeres = nomeres v.save() return v class NovoVisitanteForm(forms.ModelForm): # Editáveis data = forms.DateField(label='Data', input_formats=['%d/%m/%Y', '%Y-%m-%d'], widget=widgets.DateInput(format='%d/%m/%Y')) class Meta: model = Visitante fields = ['nome', 'data'] def __init__(self, user, *args, **kwargs): self.chacara = user.chacara self.nomeres = user.nome super().__init__(*args, **kwargs) def save(self, commit=True): v = super().save(commit=False) nome = self.cleaned_data.get('nome') data = self.cleaned_data.get('data') chacara = self.chacara nomeres = self.nomeres if commit: v = Visitante.objects.create(nome=nome, chacara=chacara, nomeres=nomeres, data=data, agendado=True) v.save() return v class EditarTelefoneForm(forms.ModelForm): class Meta: model = Chacara fields = ['telefone'] class EditarResidenteForm(forms.ModelForm): # Hidden form_id = forms.IntegerField(min_value=0, max_value=999999, widget=forms.HiddenInput) class Meta: model = Residente fields = ['nome', 'status', 'token', 'email', 'form_id'] class NovoResidenteForm(UserCreationForm): STATUS_CHOICES = ( ('P', 'Proprietário'), ('C', 'Caseiro'), ) status = forms.ChoiceField(choices=STATUS_CHOICES) class Meta: model = Residente fields = ['nome', 'status', 'email', 'password1', '<PASSWORD>'] def __init__(self, chac_id, status, *args, **kwargs): super().__init__(*args, **kwargs) self.chac_id = chac_id self.status = status if self._meta.model.USERNAME_FIELD in self.fields: self.fields[self._meta.model.USERNAME_FIELD].widget.attrs.update({'autofocus': True}) def clean_status(self): self.error_messages['caseiro_not_authorized'] = 'Caseiros só podem criar outros caseiros.' status = self.cleaned_data.get("status") if self.status == 'C' and status != 'C': raise forms.ValidationError( self.error_messages['caseiro_not_authorized'], code='caseiro_not_authorized', ) return status def save(self, commit=True): user = super().save(commit=False) user.set_password(self.cleaned_data["<PASSWORD>"]) user.chacara = self.chac_id user.is_active = True if commit: user.save() return user
2.1875
2
pyPLS/pls.py
ocloarec/pyPLS
1
12778190
from __future__ import print_function import numpy as np from ._PLSbase import plsbase as pls_base from .utilities import nanmatprod, isValid from .engines import pls as pls_engine class pls(pls_base): """ This is the classic multivariate NIPALS PLS algorithm. Parameters: X: {N, P} array like a table of N observations (rows) and P variables (columns) - The explanatory variables, Y: {N, Q} array like a table of N observations (rows) and Q variables (columns) - The dependent variables, a: int the number of PLS component to be fitted scaling: float, optional A number typically between 0.0 and 1.0 corresponding to the scaling, typical example are 0.0 corresponds to mean centring 0.5 corresponds to Pareto scaling 1.0 corresponds to unit variance scaling cvfold: int, optional the number of folds in the cross-validation - default is 7 Returns ------- out : a pls2 object with a components Attributes: W : PLS weights table T : PLS scores table P : PLS loadings table C : PLS score regression coefficients B : PLS regression coefficients Yhat: model predicted Y Yhatcv: cross-validation predicted Y R2Y: Determination coefficients of Y Q2Ycol: Cross validation parameters per colums of Y Q2Ycum: Cumulative cross validation parameter Methods: scores(n), loadings(n), weights(n) n: int component id return the scores of the nth component predict(Xnew) Xnew: array like new observation with the same number of variables tha X return predicted Y """ def __init__(self, X, Y, ncp=1, cvfold=None, scaling=0): pls_base.__init__(self, X, Y, ncp=ncp, scaling=scaling, cvfold=cvfold) self.model = "pls" missingValues = False if self.missingValuesInX or self.missingValuesInY: # TODO: For now nissing values in both X and Y are dealt the same way -> Improve this missingValues = True self.T, self.U, self.P, self.W, self.C, self.B = pls_engine(self.X, self.Y, self.ncp, missing_values=missingValues) self.Wstar = self.W @ np.linalg.inv(self.P.T @ self.W) self.Yhat = self.predict(self.X, preprocessing=False) self.R2Y, self.R2Ycol = self._calculateR2Y(self.Yhat) self.cross_validation(ncp=ncp) self.R2X = np.sum(np.square(self.T @ self.P.T))/self.SSX def predict(self, Xnew, preprocessing=True, statistics=False, **kwargs): Xnew, nnew, pxnew = isValid(Xnew, forPrediction=True) if preprocessing: Xnew = (Xnew - self.Xbar) Xnew /= np.power(self.Xstd, self.scaling) assert pxnew == self.px, "New observations do not have the same number of variables!!" if statistics: That = Xnew @ self.W Xpred = That @ self.P.T Xres = Xnew - Xpred Xnew2 = np.square(Xres) if np.isnan(Xnew2).any(): ssrx = np.nansum(Xnew2, axis=0) else: ssrx = np.sum(Xnew2, axis=0) stats = {'That':That, 'ESS':ssrx} if self.B is not None: # Yhat = Xnew @ self.B if self.missingValuesInX: Yhat = nanmatprod(Xnew, self.B) else: Yhat = Xnew @ self.B if preprocessing: Yhat = Yhat * np.power(self.Ystd, self.scaling) + self.Ybar else: Yhat = None if statistics: return Yhat, stats else: return Yhat
2.859375
3
yoloface.py
dsp-c01/patrol_and_greet
0
12778191
<filename>yoloface.py<gh_stars>0 # ******************************************************************* # # Author : <NAME>, 2018 # Email : <EMAIL> # Github : https://github.com/sthanhng # # BAP, AI Team # Face detection using the YOLOv3 algorithm # # Description : yoloface.py # The main code of the Face detection using the YOLOv3 algorithm # # ******************************************************************* # Usage example: python yoloface.py --image samples/outside_000001.jpg \ # --output-dir outputs/ # python yoloface.py --video samples/subway.mp4 \ # --output-dir outputs/ # python yoloface.py --src 1 --output-dir outputs/ import argparse import sys import os from utils import * import math import time import cv2 import numpy as np from age_gender_ssrnet.SSRNET_model import SSR_net_general, SSR_net ##################################################################### parser = argparse.ArgumentParser() parser.add_argument('--model-cfg', type=str, default='./models/face-yolov3-tiny.cfg', help='path to config file') parser.add_argument('--model-weights', type=str, default='./models/face-yolov3-tiny_41000.weights', help='path to weights of model') parser.add_argument('--image', type=str, default='', help='path to image file') parser.add_argument('--video', type=str, default='', help='path to video file') parser.add_argument('--src', type=int, default=0, help='source of the camera') parser.add_argument('--output-dir', type=str, default='outputs/', help='path to the output directory') args = parser.parse_args() ##################################################################### # print the arguments print('----- info -----') print('[i] The config file: ', args.model_cfg) print('[i] The weights of model file: ', args.model_weights) print('[i] Path to image file: ', args.image) print('[i] Path to video file: ', args.video) print('###########################################################\n') # Give the configuration and weight files for the model and load the network # using them. net = cv2.dnn.readNetFromDarknet(args.model_cfg, args.model_weights) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) ######################## Agender model parameter ################################## # Setup global parameters face_size = 64 face_padding_ratio = 0.10 # Default parameters for SSR-Net stage_num = [3, 3, 3] lambda_local = 1 lambda_d = 1 # Initialize gender net gender_net = SSR_net_general(face_size, stage_num, lambda_local, lambda_d)() gender_net.load_weights('age_gender_ssrnet/ssrnet_gender_3_3_3_64_1.0_1.0.h5') # Initialize age net age_net = SSR_net(face_size, stage_num, lambda_local, lambda_d)() age_net.load_weights('age_gender_ssrnet/ssrnet_age_3_3_3_64_1.0_1.0.h5') ################ from agender ####################### def predictAgeGender(faces): # Convert faces to N,64,64,3 blob blob = np.empty((len(faces), face_size, face_size, 3)) for i, face_bgr in enumerate(faces): blob[i, :, :, :] = cv2.resize(face_bgr, (64, 64)) blob[i, :, :, :] = cv2.normalize(blob[i, :, :, :], None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) # Predict gender and age genders = gender_net.predict(blob) ages = age_net.predict(blob) # Construct labels labels = ['{},{}'.format('Male' if (gender >= 0.5) else 'Female', int(age)) for (gender, age) in zip(genders, ages)] return labels def collectFaces(frame, face_boxes): faces = [] # Process faces for i, box in enumerate(face_boxes): # Convert box coordinates from resized frame_bgr back to original frame box_orig = [ int(round(box[0] * width_orig / width)), int(round(box[1] * height_orig / height)), int(round(box[2] * width_orig / width)), int(round(box[3] * height_orig / height)), ] # Extract face box from original frame face_bgr = frame[ max(0, box_orig[1]):min(box_orig[3] + 1, height_orig - 1), max(0, box_orig[0]):min(box_orig[2] + 1, width_orig - 1), : ] faces.append(face_bgr) return faces ######################################################################## def _main(): global width, height, height_orig, width_orig wind_name = 'face detection using YOLOv3' cv2.namedWindow(wind_name, cv2.WINDOW_NORMAL) cap = cv2.VideoCapture(args.src) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320) cap.set(cv2.CAP_PROP_XI_HEIGHT, 240) while True: has_frame, frame = cap.read() start_time = time.time() # source = frame.copy() ############## initial parameter of agender input type ################## height_orig, width_orig = frame.shape[:2] area = width * height width = int(math.sqrt(area * width_orig / height_orig)) height = int(math.sqrt(area * height_orig / width_orig)) ######################################################################### # Stop the program if reached end of video if not has_frame: print('[i] ==> Done processing!!!') print('[i] ==> Output file is stored at', os.path.join(args.output_dir, output_file)) cv2.waitKey(1000) break # Create a 4D blob from a frame. blob = cv2.dnn.blobFromImage(frame, 1 / 255, (IMG_WIDTH, IMG_HEIGHT), [0, 0, 0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(get_outputs_names(net)) # Remove the bounding boxes with low confidence faces = post_process(frame, outs, CONF_THRESHOLD, NMS_THRESHOLD) if len(faces) > 0: ##################################### # convert to agender input type face = collectFaces(frame, faces) # Get age and gender labels = predictAgeGender(face) for (x1, y1, x2, y2) in faces: cv2.rectangle(frame, (x1, y1), (x2, y2), color=(0, 255, 0), lineType=8) # Draw labels for (label, box) in zip(labels, faces): cv2.putText(frame, label, org=(box[0], box[1] - 10), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=1, color=COLOR_BLUE, thickness=1, lineType=cv2.LINE_AA) ###################################### # source = source[faces[0][1]-20:faces[0][3]+20, faces[0][0]-20:faces[0][2]+20] print('[i] ==> # detected faces: {}'.format(len(faces))) print('#' * 60) end_time = time.time() # initialize the set of information we'll displaying on the frame info = [ ('FPS', '{:.2f}'.format(1/(end_time-start_time))) ] for (i, (txt, val)) in enumerate(info): text = '{}: {}'.format(txt, val) cv2.putText(frame, text, (5, (i * 20) + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_RED, 2) # cv2.imshow("source", source) cv2.imshow(wind_name, frame) key = cv2.waitKey(1) if key == 27 or key == ord('q'): print('[i] ==> Interrupted by user!') break cap.release() cv2.destroyAllWindows() print('==> All done!') print('***********************************************************') if __name__ == '__main__': width = 480 height = 340 _main()
2.015625
2
tests/test_parameter.py
lukasz-migas/SimpleParam
0
12778192
<reponame>lukasz-migas/SimpleParam """Test Parameter class""" import operator import pytest import simpleparam as param class TestParameterSetup(object): """Test Parameter class""" @staticmethod def test_creation_float(): """Test Parameter - correct initilization""" value = 1.0 num_a = param.Parameter(value=value) assert num_a.value == value @staticmethod def test_creation_doc(): """Test Parameter - correct initilization""" value = 42.01 doc = "I am a parameter" num_a = param.Parameter(value=value, doc=doc) assert num_a.value == value assert num_a.doc == doc @staticmethod def test_allow_none(): """Test Parameter - correct initilization""" value = None num_a = param.Parameter(value=value, allow_None=True) assert num_a.value == value @staticmethod def test_kind(): """Test Parameter - correct initilization""" value = 11.01474 num_a = param.Parameter(value=value) assert num_a.kind == "Parameter" @staticmethod def test_set_kind(): """Test Parameter - correct initilization""" value = 11.01474 num_a = param.Parameter(value=value) num_a.kind = "Number" assert num_a.kind == "Number" @staticmethod def test_setting_wrong(): """Test Parameter - correct initilization""" with pytest.raises(ValueError) as __: value = 11.01474 num_a = param.Parameter(value=value, allow_None="False") class TestParameterOperations(object): """Test Parameter class operations""" @staticmethod def test_add(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value + 1 num_a.value = num_a.__add__(1) assert num_a.value == new_value @staticmethod def test_sub(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value - 1 num_a.value = num_a.__sub__(1) assert num_a.value == new_value @staticmethod def test_div(): """Test Parameter - correct initilization""" value = 42.0 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value / 2 num_a.value = num_a.__truediv__(2) assert num_a.value == new_value @staticmethod def test_mul(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value * 2 num_a.value = num_a.__mul__(2) assert num_a.value == new_value @staticmethod def test_pow(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value ** 2 num_a.value = num_a.__pow__(2) assert num_a.value == new_value @staticmethod def test_floordiv(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value // 2 num_a.value = num_a.__floordiv__(2) assert num_a.value == new_value @staticmethod def test_mod(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value new_value = value % 2 num_a.value = num_a.__mod__(2) assert num_a.value == new_value @staticmethod def test_rshift(): """Test Parameter - correct initilization""" value = 42 num_a = param.Parameter(value=value) assert num_a.value == value new_value = operator.rshift(value, 1) num_a.value = num_a.__rshift__(1) assert num_a.value == new_value @staticmethod def test_lshift(): """Test Parameter - correct initilization""" value = 42 num_a = param.Parameter(value=value) assert num_a.value == value new_value = operator.lshift(value, 1) num_a.value = num_a.__lshift__(1) assert num_a.value == new_value @staticmethod def test_lt(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value assert num_a.value.__lt__(100) @staticmethod def test_gt(): """Test Parameter - correct initilization""" value = 42.01 num_a = param.Parameter(value=value) assert num_a.value == value assert num_a.value.__gt__(1) @staticmethod def test_abs(): """Test Parameter - correct initilization""" value = -42.01 num_a = param.Parameter(value=value) assert num_a.__abs__() == abs(value) @staticmethod def test_neg(): """Test Parameter - correct initilization""" value = -42.01 num_a = param.Parameter(value=value) assert num_a.__neg__() == -value @staticmethod def test_pos(): """Test Parameter - correct initilization""" value = -42.01 num_a = param.Parameter(value=value) assert num_a.__pos__() == +value @staticmethod def test_setting_wrong(): """Test Parameter - correct initilization""" with pytest.raises(ValueError) as __: value = 11.01474 num_a = param.Parameter(value=value, allow_None="False") del num_a.value
2.90625
3
dissononce/processing/impl/cipherstate.py
dineshks1/dissononce
34
12778193
<filename>dissononce/processing/impl/cipherstate.py class CipherState(object): def __init__(self, cipher): """ :param cipher: :type cipher: dissononce.cipher.Cipher """ self._cipher = cipher self._key = None self._nonce = 0 @property def cipher(self): return self._cipher def initialize_key(self, key): self._key = key self.set_nonce(0) def has_key(self): return self._key is not None def set_nonce(self, nonce): """ SetNonce(nonce): Sets n = nonce. This function is used for handling out-of-order transport messages :param nonce: :type nonce: int :return: :rtype: """ self._nonce = nonce def rekey(self): self._key = self._cipher.rekey(self._key) def encrypt_with_ad(self, ad, plaintext): """ EncryptWithAd(ad, plaintext): If k is non-empty returns ENCRYPT(k, n++, ad, plaintext). Otherwise returns plaintext. :param ad: :type ad: bytes :param plaintext: :type plaintext: bytes :return: :rtype: bytes """ if self._key is None: return plaintext result = self._cipher.encrypt(self._key, self._nonce, ad, plaintext) self._nonce += 1 return result def decrypt_with_ad(self, ad, ciphertext): """ DecryptWithAd(ad, ciphertext): If k is non-empty returns DECRYPT(k, n++, ad, ciphertext). Otherwise returns ciphertext. If an authentication failure occurs in DECRYPT() then n is not incremented and an error is signaled to the caller. :param ad: :type ad: bytes :param ciphertext: :type ciphertext: bytes :return: bytes :rtype: """ if self._key is None: return ciphertext result = self._cipher.decrypt(self._key, self._nonce, ad, ciphertext) self._nonce += 1 return result
2.78125
3
ymir/command/tests/unit/test_cmd_export.py
phoenix-xhuang/ymir
0
12778194
import os import shutil from typing import List, Tuple import unittest from google.protobuf import json_format from mir.commands import exporting from mir.protos import mir_command_pb2 as mirpb from mir.tools import hash_utils, mir_storage_ops from mir.tools.code import MirCode from tests import utils as test_utils class TestCmdExport(unittest.TestCase): # life cycle def __init__(self, methodName: str) -> None: super().__init__(methodName=methodName) self._test_root = test_utils.dir_test_root(self.id().split('.')[-3:]) self._assets_location = os.path.join(self._test_root, 'assets_location') self._dest_root = os.path.join(self._test_root, 'export_dest') self._gt_root = os.path.join(self._dest_root, 'gt_dir') self._mir_root = os.path.join(self._test_root, 'mir-repo') def setUp(self) -> None: self.__prepare_dirs() test_utils.prepare_labels(mir_root=self._mir_root, names=['freshbee', 'type1', 'person', 'airplane,aeroplane']) self.__prepare_mir_repo() self.__prepare_assets() return super().setUp() def tearDown(self) -> None: self.__deprepare_dirs() return super().tearDown() # private: prepare env def __prepare_dirs(self): test_utils.remake_dirs(self._test_root) test_utils.remake_dirs(self._assets_location) test_utils.remake_dirs(self._dest_root) test_utils.remake_dirs(self._mir_root) def __deprepare_dirs(self): if os.path.isdir(self._test_root): shutil.rmtree(self._test_root) def __prepare_assets(self): ''' copy all assets from project to assets_location, assumes that `self._assets_location` already created ''' image_paths = ['tests/assets/2007_000032.jpg', 'tests/assets/2007_000243.jpg'] sha1sum_path_pairs = [(hash_utils.sha1sum_for_file(image_path), image_path) for image_path in image_paths] # type: List[Tuple[str, str]] for sha1sum, image_path in sha1sum_path_pairs: shutil.copyfile(image_path, os.path.join(self._assets_location, sha1sum)) def __prepare_mir_repo(self): ''' creates mir repo, assumes that `self._mir_root` already created ''' test_utils.mir_repo_init(self._mir_root) test_utils.mir_repo_create_branch(self._mir_root, 'a') # metadatas metadatas_dict = { 'attributes': { '430df22960b0f369318705800139fcc8ec38a3e4': { 'assetType': 'AssetTypeImageJpeg', 'width': 500, 'height': 281, 'imageChannels': 3 }, 'a3008c032eb11c8d9ffcb58208a36682ee40900f': { 'assetType': 'AssetTypeImageJpeg', 'width': 500, 'height': 333, 'imageChannels': 3 } } } mir_metadatas = mirpb.MirMetadatas() json_format.ParseDict(metadatas_dict, mir_metadatas) # annotations annotations_dict = { 'task_annotations': { 'a': { 'image_annotations': { '430df22960b0f369318705800139fcc8ec38a3e4': { 'annotations': [{ 'index': 0, 'box': { 'x': 104, 'y': 78, 'w': 272, 'h': 105 }, 'class_id': 3, 'score': 1, 'anno_quality': 0.95, 'tags': {'fake tag name': 'fake tag data'}, }, { 'index': 1, 'box': { 'x': 133, 'y': 88, 'w': 65, 'h': 36 }, 'class_id': 3, 'score': 1, 'anno_quality': 0.95, 'tags': {'fake tag name': 'fake tag data'}, }, { 'index': 2, 'box': { 'x': 195, 'y': 180, 'w': 19, 'h': 50 }, 'class_id': 2, 'score': 1, 'anno_quality': 0.95, 'tags': {'fake tag name': 'fake tag data'}, }, { 'index': 3, 'box': { 'x': 26, 'y': 189, 'w': 19, 'h': 95 }, 'class_id': 2, 'score': 1, 'anno_quality': 0.95, 'tags': {'fake tag name': 'fake tag data'}, }], }, 'a3008c032eb11c8d9ffcb58208a36682ee40900f': { 'annotations': [{ 'index': 0, 'box': { 'x': 181, 'y': 127, 'w': 94, 'h': 67 }, 'class_id': 3, 'score': 1, 'anno_quality': 0.95, 'tags': {'fake tag name': 'fake tag data'}, }], }, } } }, 'image_cks': { 'a3008c032eb11c8d9ffcb58208a36682ee40900f': { 'cks': { 'weather': 'sunny', }, 'image_quality': 0.5 }, '430df22960b0f369318705800139fcc8ec38a3e4': { 'cks': { 'weather': 'sunny', }, 'image_quality': 0.3 } } } mir_annotations = mirpb.MirAnnotations() json_format.ParseDict(annotations_dict, mir_annotations) # tasks task = mir_storage_ops.create_task(task_type=mirpb.TaskType.TaskTypeImportData, task_id='a', message='test_tools_data_exporter_branch_a') # save and commit mir_datas = { mirpb.MirStorage.MIR_METADATAS: mir_metadatas, mirpb.MirStorage.MIR_ANNOTATIONS: mir_annotations, } mir_storage_ops.MirStorageOps.save_and_commit(mir_root=self._mir_root, mir_branch='a', his_branch='master', mir_datas=mir_datas, task=task) def test_normal_00(self): # normal case: voc:raw fake_args = type('', (), {})() fake_args.mir_root = self._mir_root fake_args.asset_dir = self._dest_root fake_args.annotation_dir = self._dest_root fake_args.gt_dir = self._gt_root fake_args.media_location = self._assets_location fake_args.src_revs = 'a@a' fake_args.dst_rev = '' fake_args.format = 'voc' fake_args.asset_format = 'raw' fake_args.in_cis = 'person' fake_args.work_dir = '' runner = exporting.CmdExport(fake_args) result = runner.run() self.assertEqual(MirCode.RC_OK, result) # normal case: voc:lmdb fake_args = type('', (), {})() fake_args.mir_root = self._mir_root fake_args.asset_dir = self._dest_root fake_args.annotation_dir = self._dest_root fake_args.gt_dir = self._gt_root fake_args.media_location = self._assets_location fake_args.src_revs = 'a@a' fake_args.dst_rev = '' fake_args.format = 'voc' fake_args.asset_format = 'lmdb' fake_args.in_cis = 'person' fake_args.work_dir = '' runner = exporting.CmdExport(fake_args) result = runner.run() self.assertEqual(MirCode.RC_OK, result) # abnormal case: no asset_dir, annotation_dir, media_location fake_args = type('', (), {})() fake_args.mir_root = self._mir_root fake_args.asset_dir = '' fake_args.annotation_dir = '' fake_args.gt_dir = '' fake_args.media_location = '' fake_args.src_revs = 'a@a' fake_args.dst_rev = '' # too fast, default task_id will be the same as previous one fake_args.format = 'voc' fake_args.asset_format = 'raw' fake_args.in_cis = 'person' fake_args.work_dir = '' runner = exporting.CmdExport(fake_args) result = runner.run() self.assertNotEqual(MirCode.RC_OK, result)
2.109375
2
quizmake/__main__.py
jnguyen1098/quizmake
1
12778195
<filename>quizmake/__main__.py # !/usr/bin/env python3 # -*- coding: utf-8 -*- """Initialization.""" import sys from . import core if __name__ == "__main__": sys.exit(core.main(sys.argv))
1.90625
2
joelib/physics/jethead.py
Joefdez/joelib
1
12778196
from numpy import * import joelib.constants.constants as cts from joelib.physics.synchrotron_afterglow import * from scipy.stats import binned_statistic from scipy.interpolate import interp1d from tqdm import tqdm class jetHeadUD(adiabatic_afterglow): ############################################################################################### # Methods for initializing the cells in the jet head ############################################################################################### def __init__(self, EE, Gam0, nn, epE, epB, pp, DD, steps, evolution, nlayers, joAngle, shell_type='thin', Rb=1.):#, obsAngle=0.0): self.nlayers = nlayers # Number of layers for the partition #self.nn1 = nn1 # Number of cells in the first layer self.__totalCells() # obtain self.ncells self.joAngle = joAngle # Jet opening angle #self.obsAngle = obsAngle # Angle of jet axis with respect to line of sight self.angExt = 2.*pi*(1.-cos(joAngle)) # Solid area covered by the jet head self.cellSize = self.angExt/self.ncells # Angular size of each cell self.__makeCells() # Generate the cells: calculate the angular positions of the shells adiabatic_afterglow.__init__(self, EE, Gam0, nn, epE, epB, pp, DD, steps, evolution, shell_type, Rb) self.ee = EE/self.ncells # Energy per cell def __makeCells(self): """ This method generates the individual cells: positions of borders between cells and angular positions of the cells themselves. """ self.layer = array([]) self.thetas = array([]) self.phis = array([]) self.cthetas = array([]) self.cphis = array([]) fac1 = arange(0,self.nlayers+1)/float(self.nlayers) # Numerical factor for use during execution self.thetas = 2.*arcsin(fac1*sin(self.joAngle/4.)) # Calculate the propagation angle with respect to jet axis for ii in range(self.nlayers): # Loop over layers and populate the arrays num = self.cellsInLayer(ii) self.phis = append(self.phis, arange(0,num+1)*2.*pi/num) # Phi value of the edges self.layer = append(self.layer,ones(num)*(ii+1)) # Layer on which the cells are self.cthetas = append(self.cthetas,ones(num)*0.5*(self.thetas[ii]+self.thetas[ii+1])) # Central theta values of the cells self.cphis = append(self.cphis,(arange(0,num)+0.5)*2.*pi/num ) # Central phi values of the cells #num = int(round(self.cellsInLayer(ii)/2)) #self.layer = append(self.layer,ones(num+1)*(ii+1)) # Layer on which the phi edges are #self.phis = append(self.phis, arange(0,num+1)*2.*pi/num) # Phi value of the edges #self.cthetas = append(self.cthetas,ones(num)*0.5*(self.thetas[ii]+self.thetas[ii+1])) # Central theta values #self.cphis = append(self.cphis,(arange(0,num)+0.5)*pi/num ) # Central phi values def __totalCells(self): tot = 0 for ii in range(0,self.nlayers): tot = tot + self.cellsInLayer(ii) #tot = tot + int(round(self.cellsInLayer(ii)/2)) self.ncells = tot ############################################################################################### # Methods used by initializers and for getting different physics and general methods not used by initializers ############################################################################################### def cellsInLayer(self, ii): """ Return number of cells in layer ii """ return (2*ii+1) def obsangle(self, theta_obs): """ Return the cosine of the observer angle for the different shockwave segments and and and observer at and angle theta_obs with respect to the jet axis (contained in yz plane) """ #u_obs_x, u_obs_y, u_obs_z = 0., sin(theta_obs), cos(theta_obs) u_obs_y, u_obs_z = sin(theta_obs), cos(theta_obs) #seg_x = seg_y = sin(self.cthetas)*sin(self.cphis) seg_z = cos(self.cthetas) #return arccos(u_obs_x*seg_x + u_obs_y*seg_y + u_obs_z*seg_z) return u_obs_y*seg_y + u_obs_z*seg_z def obsangle_cj(self, theta_obs): """ Return the cosine of the observer angle for the different shockwave segments in the counter jet and observer at an angle theta_obs with respect to the jet axis (contained in yz plane) """ #u_obs_x, u_obs_y, u_obs_z = 0., sin(theta_obs), cos(theta_obs) u_obs_y, u_obs_z = sin(theta_obs), cos(theta_obs) #seg_x = seg_y = sin(pi-self.cthetas)*sin(self.cphis) seg_z = cos(pi-self.cthetas) #return arccos(u_obs_x*seg_x + u_obs_y*seg_y + u_obs_z*seg_z) return u_obs_y*seg_y + u_obs_z*seg_z def dopplerFactor(self, cosa, beta): """ Calculate the doppler factors of the different jethead segments cosa -> cosine of observeration angle, obtained using obsangle """ return (1.-beta)/(1.-beta*cosa) def light_curve_adiabatic(self, theta_obs, obsFreqs, tt0, ttf, num, Rb): if type(obsFreqs)==float: obsFreqs = array([obsFreqs]) calpha = self.obsangle(theta_obs) alpha = arccos(calpha) calpha_cj = self.obsangle_cj(theta_obs) alpha_cj = arccos(calpha_cj) if self.evolution == 'adiabatic': max_Tobs = max(obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, max(alpha)))/cts.sTd max_Tobs_cj = max(obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, max(alpha_cj)))/cts.sTd elif self.evolution == 'peer': max_Tobs = max(obsTime_offAxis_General(self.RRs, self.TTs, max(alpha)))/cts.sTd max_Tobs_cj = max(obsTime_offAxis_General(self.RRs, self.TTs, max(alpha_cj)))/cts.sTd if (ttf>max_Tobs or ttf>max_Tobs_cj): print("ttf larger than maximum observable time. Adjusting value.") ttf = min(max_Tobs, max_Tobs_cj) lt0 = log10(tt0*cts.sTd) # Convert to seconds and then logspace ltf = log10(ttf*cts.sTd) # Convert to seconds and then logspace tts = logspace(lt0, ltf+(ltf-lt0)/num, num) # Timeline on which the flux is evaluated. light_curve = zeros([len(obsFreqs), num]) light_curve_RS = zeros([len(obsFreqs), num]) light_curve_CJ = zeros([len(obsFreqs), num]) for ii in tqdm(range(self.ncells)): #for ii in range(self.ncells): onAxisTint = interp1d(self.RRs, self.TTs) ttobs = obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, alpha[ii]) ttobs_cj = obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, alpha_cj[ii]) filTM = where(tts<=max(ttobs))[0] filTm = where(tts[filTM]>=min(ttobs))[0] filTM_cj = where(tts<=max(ttobs_cj))[0] filTm_cj = where(tts[filTM_cj]>=min(ttobs_cj))[0] Rint = interp1d(ttobs, self.RRs) Robs = Rint(tts[filTM][filTm]) GamObs = self.GamInt(Robs) BetaObs = sqrt(1.-GamObs**(-2.)) #if self.evolution == 'adiabatic': # onAxisTobs = obsTime_onAxis_adiabatic(Robs, BetaObs) #elif self.evolution == 'peer': # onAxisTobs = obsTime_onAxis_integrated(Robs, GamObs, BetaObs) onAxisTobs = onAxisTint(Robs) # Forward shock stuff Bfield = sqrt(32.*pi*self.nn*self.epB*cts.mp)*cts.cc*GamObs gamMobs, nuMobs = minGam(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield) gamCobs, nuCobs = critGam(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, onAxisTobs) Fnuobs = fluxMax(Robs, GamObs, self.nn, Bfield, self.DD) # Reverse shock stuff nuM_RS, nuC_RS, Fnu_RS = params_tt_RS(self, onAxisTobs, Rb) # Counter-jet stuff Rint_cj = interp1d(ttobs_cj, self.RRs) Robs_cj = Rint_cj(tts[filTM_cj][filTm_cj]) GamObs_cj = self.GamInt(Robs_cj) BetaObs_cj = sqrt(1.-GamObs_cj**(-2.)) #onAxisTint = interp1d(self.RRs, self.TTs) #if self.evolution == 'adiabatic': # onAxisTobs = obsTime_onAxis_adiabatic(Robs, BetaObs) #elif self.evolution == 'peer': # onAxisTobs = obsTime_onAxis_integrated(Robs, GamObs, BetaObs) onAxisTobs_cj = onAxisTint(Robs_cj) Bfield_cj = sqrt(32.*pi*self.nn*self.epB*cts.mp)*cts.cc*GamObs_cj gamMobs_cj, nuMobs_cj = minGam(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj) gamCobs_cj, nuCobs_cj = critGam(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj, onAxisTobs_cj) Fnuobs_cj = fluxMax(Robs_cj, GamObs_cj, self.nn, Bfield_cj, self.DD) dopFacs = self.dopplerFactor(calpha[ii], BetaObs) afac = self.cellSize/maximum(self.cellSize*ones(num)[filTM][filTm], 2.*pi*(1.-cos(1./GamObs))) dopFacs_cj = self.dopplerFactor(calpha_cj[ii], BetaObs_cj) afac_cj = self.cellSize/maximum(self.cellSize*ones(num)[filTM_cj][filTm_cj], 2.*pi*(1.-cos(1./GamObs_cj))) for freq in obsFreqs: fil1, fil2 = where(gamMobs<=gamCobs)[0], where(gamMobs>gamCobs)[0] fil3, fil4 = where(nuM_RS<=nuC_RS)[0], where(nuM_RS>nuC_RS)[0] fil5, fil6 = where(nuMobs_cj<=nuCobs_cj)[0], where(nuMobs_cj>nuCobs_cj)[0] freqs = freq/dopFacs # Calculate the rest-frame frequencies correspondng to the observed frequency freqs_cj = freq/dopFacs_cj light_curve[obsFreqs==freq, filTM[filTm][fil1]] = light_curve[obsFreqs==freq, filTM[filTm][fil1]] + ( afac[fil1] * dopFacs[fil1]**3. * FluxNuSC_arr(self, nuMobs[fil1], nuCobs[fil1], Fnuobs[fil1], freqs[fil1]))*calpha[ii] #light_curve[obsFreqs==freq, filTM[filTm][fil2]] = light_curve[obsFreqs==freq, filTM[filTm][fil2]] + ( # afac[fil2] * dopFacs[fil2]**3. * FluxNuFC_arr(self, nuMobs[fil2], nuCobs[fil2], Fnuobs[fil2], freqs[fil2]))*calpha[ii] light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] + ( afac[fil3] * dopFacs[fil3]**3. * FluxNuSC_arr(self, nuM_RS[fil3], nuC_RS[fil3], Fnu_RS[fil3], freqs[fil3]))*calpha[ii] #light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] + ( # afac[fil4] * dopFacs[fil4]**3. * FluxNuFC_arr(self, nuM_RS[fil4], nuC_RS[fil4], Fnu_RS[fil4], freqs[fil4]))*calpha[ii] light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] = light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] + ( afac_cj[fil5] * dopFacs_cj[fil5]**3. * FluxNuSC_arr(self, nuMobs_cj[fil5], nuCobs_cj[fil5], Fnuobs_cj[fil5], freqs_cj[fil5]))*calpha_cj[ii] #return tts, 2.*light_curve, 2.*light_curve_RS return tts, light_curve, light_curve_RS, light_curve_CJ def light_curve_peer(self, theta_obs, obsFreqs, tt0, ttf, num, Rb): if type(obsFreqs)==float: obsFreqs = array([obsFreqs]) calpha = self.obsangle(theta_obs) alpha = arccos(calpha) calpha_cj = self.obsangle_cj(theta_obs) alpha_cj = arccos(calpha_cj) if self.evolution == 'adiabatic': max_Tobs = max(obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, max(alpha)))/cts.sTd max_Tobs_cj = max(obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, max(alpha_cj)))/cts.sTd elif self.evolution == 'peer': max_Tobs = max(obsTime_offAxis_General(self.RRs, self.TTs, max(alpha)))/cts.sTd max_Tobs_cj = max(obsTime_offAxis_General(self.RRs, self.TTs, max(alpha_cj)))/cts.sTd if (ttf>max_Tobs or ttf>max_Tobs_cj): print("ttf larger than maximum observable time. Adjusting value. ") ttf = min(max_Tobs, max_Tobs_cj) lt0 = log10(tt0*cts.sTd) # Convert to seconds and then logspace ltf = log10(ttf*cts.sTd) # Convert to seconds and then logspace tts = logspace(lt0, ltf+(ltf-lt0)/num, num) # Timeline on which the flux is evaluated. light_curve = zeros([len(obsFreqs), num]) light_curve_RS = zeros([len(obsFreqs), num]) light_curve_CJ = zeros([len(obsFreqs), num]) for ii in tqdm(range(self.ncells)): #for ii in range(self.ncells): onAxisTint = interp1d(self.RRs, self.TTs) ttobs = obsTime_offAxis_General(self.RRs, self.TTs, alpha[ii]) ttobs_cj = obsTime_offAxis_General(self.RRs, self.TTs, alpha_cj[ii]) #ttobs = obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, alpha[ii]) filTM = where(tts<=max(ttobs))[0] filTm = where(tts[filTM]>=min(ttobs))[0] filTM_cj = where(tts<=max(ttobs))[0] filTm_cj = where(tts[filTM_cj]>=min(ttobs))[0] #print(len(tts[filT])) Rint = interp1d(ttobs, self.RRs) Robs = Rint(tts[filTM][filTm]) GamObs = self.GamInt(Robs) BetaObs = sqrt(1.-GamObs**(-2.)) #if self.evolution == 'adiabatic': # onAxisTobs = obsTime_onAxis_adiabatic(Robs, BetaObs) #elif self.evolution == 'peer': # onAxisTobs = obsTime_onAxis_integrated(Robs, GamObs, BetaObs) onAxisTobs = onAxisTint(Robs) Rint_cj = interp1d(ttobs_cj, self.RRs) Robs_cj= Rint(tts[filTM_cj][filTm_cj]) GamObs_cj = self.GamInt(Robs_cj) BetaObs_cj = sqrt(1.-GamObs_cj**(-2.)) onAxisTobs_cj = onAxisTint(Robs_cj) # Forward shock stuff #gamMobs, gamCobs = self.gamMI(Robs), self.gamCI(Robs) #nuMobs, nuCobs = self.nuMI(Robs), self.nuCI(Robs) #Fnuobs = self.FnuMI(Robs) #Bfield = sqrt(32.*pi*cts.mp*self.nn*self.epB*GamObs*(GamObs-1.))*cts.cc Bfield = Bfield_modified(GamObs, BetaObs, self.nn, self.epB) gamMobs, nuMobs = minGam_modified(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, self.Xp) gamCobs, nuCobs = critGam_modified(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, onAxisTobs) Fnuobs = fluxMax_modified(Robs, GamObs, self.nn, Bfield, self.DD, self.PhiP) Bfield_cj = Bfield_modified(GamObs_cj, BetaObs_cj, self.nn, self.epB) gamMobs_cj, nuMobs_cj = minGam_modified(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj, self.Xp) gamCobs_cj, nuCobs_cj = critGam_modified(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj, onAxisTobs_cj) Fnuobs_cj = fluxMax_modified(Robs_cj, GamObs_cj, self.nn, Bfield_cj, self.DD, self.PhiP) # Reverse shock stuff nuM_RS, nuC_RS, Fnu_RS = params_tt_RS(self, onAxisTobs, Rb) dopFacs = self.dopplerFactor(calpha[ii], BetaObs) afac = self.cellSize/maximum(self.cellSize*ones(num)[filTM][filTm], 2.*pi*(1.-cos(1./GamObs))) dopFacs_cj = self.dopplerFactor(calpha_cj[ii], BetaObs_cj) afac = self.cellSize/maximum(self.cellSize*ones(num)[filTM_cj][filTm_cj], 2.*pi*(1.-cos(1./GamObs_cj))) for freq in obsFreqs: fil1, fil2 = where(gamMobs<=gamCobs)[0], where(gamMobs>gamCobs)[0] fil3, fil4 = where(nuM_RS<=nuC_RS)[0], where(nuM_RS>nuC_RS)[0] fil5, fil6 = where(nuMobs_cj<=nuCobs_cj)[0], where(nuMobs_cj>nuCobs_cj)[0] freqs = freq/dopFacs # Calculate the rest-frame frequencies correspondng to the observed frequency freqs_cj = freq/dopFacs_cj light_curve[obsFreqs==freq, filTM[filTm][fil1]] = light_curve[obsFreqs==freq, filTM[filTm][fil1]] + ( self.cellSize * (GamObs[fil1]*(1.-BetaObs[fil1]*calpha[ii]))**(-3.) * FluxNuSC_arr(self, nuMobs[fil1], nuCobs[fil1], Fnuobs[fil1], freqs[fil1]))#*calpha[ii] #light_curve[obsFreqs==freq, filTM[filTm][fil2]] = light_curve[obsFreqs==freq, filTM[filTm][fil2]] + ( # afac[fil2] * dopFacs[fil2]**3. * FluxNuFC_arr(self, nuMobs[fil2], nuCobs[fil2], Fnuobs[fil2], freqs[fil2]))*calpha[ii] light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] + ( self.cellSize * (GamObs[fil3]*(1.-BetaObs[fil3]*calpha[ii]))**(-3.) * FluxNuSC_arr(self, nuM_RS[fil3], nuC_RS[fil3], Fnu_RS[fil3], freqs[fil3]))#*calpha[ii] #light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] + ( # afac[fil4] * dopFacs[fil4]**3. * FluxNuFC_arr(self, nuM_RS[fil4], nuC_RS[fil4], Fnu_RS[fil4], freqs[fil4]))*calpha[ii] light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] = light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] + ( self.cellSize * (GamObs_cj[fil5]*(1.-BetaObs_cj[fil5]*calpha_cj[ii]))**(-3.) * FluxNuSC_arr(self, nuMobs_cj[fil5], nuCobs_cj[fil5], Fnuobs_cj[fil5], freqs_cj[fil3]))#*calpha[ii] #return tts, 2.*light_curve, 2.*light_curve_RS return tts, light_curve, light_curve_RS, light_curve_CJ def lightCurve_interp(self, theta_obs, obsFreqs, tt0, ttf, num, Rb): if self.evolution == "adiabatic": tts, light_curve, light_curve_RS, light_curve_CJ = self.light_curve_adiabatic(theta_obs, obsFreqs, tt0, ttf, num, Rb) elif self.evolution == "peer": tts, light_curve, light_curve_RS,light_curve_CJ = self.light_curve_peer(theta_obs, obsFreqs, tt0, ttf, num, Rb) return tts, light_curve, light_curve_RS, light_curve_CJ def skymap(self, theta_obs, tt_obs, freq, nx, ny, xx0, yy0): calpha = zeros([2*self.ncells]) alpha = zeros([2*self.ncells]) calpha[:self.ncells] = self.obsangle(theta_obs) calpha[self.ncells:] = self.obsangle_cj(theta_obs) alpha = arccos(calpha) TTs, RRs, Gams, Betas = zeros(2*self.ncells), zeros(2*self.ncells), zeros(2*self.ncells), zeros(2*self.ncells) #nuMs, nuCs, fluxes = zeros(2.*self.ncells), zeros(2.*self.ncells), zeros(2.*self.ncells) fluxes = zeros(2*self.ncells) im_xxs, im_yys = zeros(2*self.ncells), zeros(2*self.ncells) im_xxs[:self.ncells] = -1.*cos(theta_obs)*sin(self.cthetas)*sin(self.cphis) + sin(theta_obs)*cos(self.cthetas) im_yys[:self.ncells] = sin(self.cthetas)*cos(self.cphis) im_xxs[self.ncells:] = -1.*cos(theta_obs)*sin(pi-self.cthetas)*sin(self.cphis) + sin(theta_obs)*cos(pi-self.cthetas) im_yys[self.ncells:] = sin(pi-self.cthetas)*cos(self.cphis) indices = where(im_yys>0) if self.evolution == 'adiabatic': Tint = interp1d(self.RRs, self.TTs) for ii in tqdm(indices):#tqdm(range(self.ncells)): ttobs = obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, alpha[ii]) ttobs_cj = obsTime_offAxis_UR(self.RRs, self.TTs, self.Betas, alpha[ii+self.ncells]) Rint = interp1d(ttobs, self.RRs) Rint_cj = interp1d(ttobs_cj, self.RRs) RRs[ii] = Rint(tt_obs) RRs[ii+self.ncells] = Rint_cj(tt_obs) TTs[ii], TTs[ii+self.ncells] = Tint(RRs[ii]), Tint(RRs[ii+self.ncells]) Gams[ii], Gams[ii+self.ncells] = self.GamInt(RRs[ii]), self.GamInt(RRs[ii+self.ncells]) Betas = sqrt(1.-Gams**(-2.)) Bf = (32.*pi*self.nn*self.epB*cts.mp)**(1./2.) * Gams*cts.cc gamM, nuM = minGam(Gams, self.epE, self.epB, self.nn, self.pp, Bf) gamC, nuC = critGam(Gams, self.epE, self.epB, self.nn, self.pp, Bf, TTs) fMax = fluxMax(RRs, Gams, self.nn, Bf, self.DD) dopFacs = self.dopplerFactor(calpha, sqrt(1.-Gams**(-2))) afac = self.cellSize/maximum(self.cellSize*ones(len(Gams)), 2.*pi*(1.-cos(1./Gams))) obsFreqs = freq/dopFacs fluxes = (self.DD**2./(calpha*self.cellSize*RRs**2.)) *afac * dopFacs**3. * FluxNuSC_arr(self, nuM, nuC, fMax, obsFreqs)*1./calpha #fluxes = afac * dopFacs**3. * FluxNuSC_arr(self, nuM, nuC, fMax, obsFreqs)*calpha elif self.evolution == 'peer': Tint = interp1d(self.RRs, self.TTs) for ii in tqdm(range(self.ncells)): ttobs = obsTime_offAxis_General(self.RRs, self.TTs, alpha[ii]) ttobs_cj = obsTime_offAxis_General(self.RRs, self.TTs, alpha[ii+self.ncells]) Rint, Rint_cj = interp1d(ttobs, self.RRs), interp1d(ttobs_cj, self.RRs) RRs[ii], RRs[ii+self.ncells] = Rint(tt_obs), Rint_cj(tt_obs) TTs[ii], TTs[ii+self.ncells] = Tint(RRs[ii]), Tint(RRs[ii+self.ncells]) Gams[ii], Gams[ii+self.ncells] = self.GamInt(RRs[ii]), self.GamInt(RRs[ii+self.ncells]) Betas = sqrt(1.-Gams**(-2.)) Bf = Bfield_modified(Gams, Betas, self.nn, self.epB) gamM, nuM = minGam_modified(Gams, self.epE, self.epB, self.nn, self.pp, Bf, self.Xp) gamC, nuC = critGam_modified(Gams, self.epE, self.epB, self.nn, self.pp, Bf, TTs) fMax = fluxMax_modified(RRs, Gams, self.nn, Bf, self.DD, self.PhiP) dopFacs = self.dopplerFactor(calpha, sqrt(1.-Gams**(-2))) obsFreqs = freq/dopFacs #fluxes = (self.DD/self.cellSize*RRs)**2. * self.cellSize * (Gams*(1.-Betas*calpha))**(-3.) * FluxNuSC_arr(self, nuM, nuC, fMax, obsFreqs)*1./calpha fluxes = (self.DD**2./(calpha*self.cellSize*RRs**2.)) * self.cellSize * (Gams*(1.-Betas*calpha))**(-3.) * FluxNuSC_arr(self, nuM, nuC, fMax, obsFreqs) #fluxes = self.cellSize * (Gams*(1.-Betas*calpha))**(-3.) * FluxNuSC_arr(self, nuM, nuC, fMax, obsFreqs)#*calpha im_xxs = RRs*im_xxs im_yys = RRs*im_yys return im_xxs, im_yys, fluxes, RRs, Gams, calpha, TTs class jetHeadGauss(jetHeadUD): def __init__(self, EE, Gam0, nn, epE, epB, pp, DD, steps, evolution, nlayers, joAngle, coAngle, shell_type='thin', Rb=1.): # In this case, EE refers to the total energy and Gam0 to the central Gam0 value self.coAngle = coAngle jetHeadUD.__init__(self, EE, Gam0, nn, epE, epB, pp, DD, steps, evolution, nlayers, joAngle, shell_type, Rb) self.__energies_and_LF() if self.evolution == 'adiabatic': self.cell_Rds = (3./(4.*pi) * 1./(cts.cc**2.*cts.mp) * self.cell_EEs/(self.nn*self.cell_Gam0s**2.))**(1./3.) self.cell_Tds = self.cell_Rds/(cts.cc*self.cell_Beta0s) * (1.-self.cell_Beta0s) #self.cell_Tds = self.cell_Rds/(2.*cts.cc*self.cell_Gam0s**2.) #self.Rd/(2.*self.Gam0**2 * cts.cc) elif self.evolution == 'peer': self.cell_Rds = (3./(4.*pi) * 1./(cts.cc**2.*cts.mp) * self.cell_EEs/(self.nn*self.cell_Gam0s**2.))**(1./3.) self.cell_Tds = self.cell_Rds/(cts.cc*self.cell_Beta0s) * (1.-self.cell_Beta0s) print("Calculating dynamical evolution") self.__evolve() print("Calculating reverse shock parmeters") self.__peakParamsRS_struc() def __energies_and_LF(self): #AngFacs = exp(-1.*self.cthetas**2./(2.*self.coAngle**2.)) self.cell_EEs = self.EE * exp(-1.*self.cthetas**2./(self.coAngle**2.)) # Just for texting #self.cell_EEs = self.EE * exp(-1.*self.cthetas**2./(self.coAngle**2.)) self.cell_Gam0s = 1.+(self.Gam0-1)*exp(-1.*self.cthetas**2./(2.*self.coAngle**2.)) self.cell_Beta0s = sqrt(1.-(self.cell_Gam0s)**(-2.)) def __evolve(self): if self.evolution == 'peer': self.RRs, self.Gams, self.Betas = self.evolve_relad_struct() self.TTs = self.obsTime_onAxis_struct() self.Bfield = Bfield_modified(self.Gams, self.Betas, self.nn, self.epB) elif self.evolution == 'adiabatic': self.RRs, self.Gams, self.Betas = self.evolve_ad_struct() self.TTs = self.obsTime_onAxis_struct() self.Bfield = (32.*pi*cts.mp*self.epB*self.nn)**(1./2.)*self.Gams*cts.cc def __peakParamsRS_struc(self): RSpeak_nuM_struc = zeros(self.ncells) RSpeak_nuC_struc = zeros(self.ncells) RSpeak_Fnu_struc = zeros(self.ncells) if self.shell_type=='thin': print("Setting up thin shell") for ii in tqdm(range(self.ncells)): #self.RSpeak_nuM = 9.6e14 * epE**2. * epB**(1./2.) * nn**(1./2) * Gam0**2. #self.RSpeak_nuC = 4.0e16 * epB**(-3./2.) * EE**(-2./3.) * nn**(-5./6.) * Gam0**(4./3.) #self.RSpeak_Fnu = 5.2 * DD**(-2.) * epB**(1./2.) * EE * nn**(1./2.) * Gam0 Rd, Td = self.cell_Rds[ii], self.cell_Tds[ii] #print Rd if self.evolution == 'peer': #print shape(self.RRs), shape(self.Gams) GamsInt = interp1d(self.RRs[:], self.Gams[:,ii]) Gam0 = GamsInt(Rd) Beta0 = sqrt(1.-Gam0**(-2.)) Bf = Bfield_modified(Gam0, Beta0, self.nn, self.epB) gamM, nuM = minGam_modified(Gam0, self.epE, self.epB, self.nn, self.pp, Bf, self.Xp) gamC, nuC = critGam_modified(Gam0, self.epE, self.epB, self.nn, self.pp, Bf, Td) Fnu = fluxMax_modified(Rd, Gam0, self.nn, Bf, self.DD, self.PhiP) elif self.evolution == 'adiabatic': GamsInt = interp1d(self.RRs[:,ii], self.Gams[:,ii]) Gam0 = GamsInt(Rd) Bf = (32.*pi*cts.mp*self.epB*self.nn)**(1./2.)*Gam0*cts.cc gamM, nuM = minGam(Gam0, self.epE, self.epB, self.nn, self.pp, Bf) gamC, nuC = critGam(Gam0, self.epE, self.epB, self.nn, self.pp, Bf, Td) Fnu = fluxMax(Rd, Gam0, self.nn, Bf, self.DD) #print Rd, max(self.RRs[:,ii]), min(self.RRs[:,ii]), self.cell_Gam0s[ii], self.cthetas[ii] #gamM = self.epE*(self.pp-2.)/(self.pp-1.) * cts.mp/cts.me * Gam0 #gamC = 3.*cts.me/(16.*self.epB*cts.sigT*cts.mp*cts.cc*Gam0**3.*Td*self.nn) #nuM = Gam0*gamM**2.*cts.qe*(32.*pi*cts.mp*self.epB*self.nn)**(1./2.)*Gam0*cts.cc/(2.*pi*cts.me*cts.cc) #nuC = Gam0*gamC**2.*cts.qe*(32.*pi*cts.mp*self.epB*self.nn)**(1./2.)*Gam0*cts.cc/(2.*pi*cts.me*cts.cc) #Fnu = self.nn**(3./2.)*Rd**3. * cts.sigT * cts.cc**3. *cts.me* (32.*pi*cts.mp*self.epB # )**(1./2.)*Gam0**2./(9.*cts.qe*self.DD**2.) #RSpeak_nuM_struc[ii] = nuM/(self.cell_Gam0s[ii]**2.) #RSpeak_nuC_struc[ii] = nuC #RSpeak_Fnu_struc[ii] = self.cell_Gam0s[ii] * Fnu RSpeak_nuM_struc[ii] = nuM/(Gam0**2) RSpeak_nuC_struc[ii] = nuC RSpeak_Fnu_struc[ii] = Gam0*Fnu self.RSpeak_nuM_struc = RSpeak_nuM_struc #self.Rb**(1./2.)*RSpeak_nuM_struc self.RSpeak_nuC_struc = RSpeak_nuC_struc #self.Rb**(-3./2.)*RSpeak_nuC_struc self.RSpeak_Fnu_struc = RSpeak_Fnu_struc #self.Rb**(1./2.)*RSpeak_Fnu_struc def evolve_relad_struct(self): """ Evolution following Pe'er 2012. Adbaiatic expansion into a cold, uniform ISM using conservation of energy in relativstic form. This solution transitions smoothly from the ultra-relativistic to the Newtonian regime. Modified for stuctured jet """ Gam0 = self.Gam0 Rl = self.Rd * Gam0**(2./3.) RRs = logspace(log10(self.Rd/1000.), log10(Rl)+3., self.steps+1) #10 #MMs = 4.*pi * cts.mp*self.nn*RRs**3./3.#4./3. *pi*cts.mp*self.nn*RRs**3. MMs = 4./3. * pi*RRs**3. * self.nn * cts.mp #Gams[0,:] = self.cell_Gam0s #print("Calculating Gamma as a function of R for each cell") print("Calculating dynamical evolution for each layer") #for ii in tqdm(range(1,len(self.Betas))): # Gams[ii,:] = rk4(dgdm_struc, self, log10(MMs[ii-1]), Gams[ii-1,:], (log10(MMs[ii])-log10(MMs[ii-1]))) for ii in tqdm(range(self.nlayers)): # Set up initial conditions for the layer #GamEv[0] = Gams[0,self.layer==ii+1][0] MM0 = self.cell_EEs[self.layer==ii+1][0]/(self.cell_Gam0s[self.layer==ii+1][0]*cts.cc**2.) self.cell_Gam0s[self.layer==ii+1][0] #Gams = zeros(len(RRs)) GamEv = zeros([len(RRs)]) GamEv[0] = self.cell_Gam0s[self.layer==ii+1][0] # Calculate dynamical evolution of the layer for jj in range(1, len(GamEv)): GamEv[jj] = rk4(dgdm_mod, MM0, log10(MMs[jj-1]), GamEv[jj-1], (log10(MMs[jj])-log10(MMs[jj-1]))) # Share the values with the rest of the cells of the layer if ii==0: Gams = array([GamEv,]).T else: GamEv = array([GamEv]*self.cellsInLayer(ii)).T #Gams = column_stack((Gams, GamEv)) Gams = concatenate([Gams, GamEv], axis=1) Betas = sqrt(1.-1./Gams**2.) #Betas[-1] = 0.0 #print(shape(Gams)) return RRs, Gams, Betas def evolve_ad_struct(self): """ Evolution following simple energy conservation for an adiabatically expanding relativistic shell. Same scaling as Blanford-Mckee blastwave solution. This calculation is only valid in ultrarelativstic phase. """ Gam = self.Gam0 GamSD = 1.021 Rsd = Gam**(2./3.) *self.Rd / GamSD # Radius at Lorentz factor=1.005 -> after this point use Sedov-Taylor scaling Rl = self.Rd * self.Gam0**(2./3.) #RRs = logspace(log10(self.Rd/100.), log10(Rl), self.steps+1) #10 RRs = zeros([self.steps+1, self.ncells]) Gams = zeros([self.steps+1, self.ncells]) Betas = zeros([self.steps+1, self.ncells]) Gams[0,:] = self.cell_Gam0s for ii in range(self.ncells): RRs[:,ii] = logspace(log10(self.cell_Rds[ii]/100.), log10(0.9999*self.cell_Rds[ii] * self.cell_Gam0s[ii]**(2./3.)), self.steps+1) # All start at same point Gams[RRs[:,ii]<=self.cell_Rds[ii],ii] = self.cell_Gam0s[ii] Gams[RRs[:,ii]>self.cell_Rds[ii], ii] = (self.cell_Rds[ii]/RRs[RRs[:,ii]>self.cell_Rds[ii],ii])**(3./2.) * self.cell_Gam0s[ii] #Gams[RRs>=Rsd] = 1./sqrt( 1.-(Rsd/RRs[RRs>=Rsd])**(6.)*(1.-1./(Gams[(RRs>jet.Rd) & (RRs<Rsd)][-1]**2.))) #Gams[RRs>=jet.Rd] = odeint(jet.dgdr, jet.Gam0, RRs[RRs>=jet.Rd])[:,0] #Gams[RRs>=jet.Rd] = odeint(jet.dgdr, jet.Gam0, RRs[RRs>=jet.Rd])[:,0] Betas[RRs[:,ii]<=self.cell_Rds[ii],ii] = sqrt(1.-(1./self.cell_Gam0s[ii])**2.) Betas[RRs[:,ii]>self.cell_Rds[ii], ii] = sqrt(1.-(1./Gams[RRs[:,ii]>self.cell_Rds[ii], ii])**2.) Betas[-1,:] = 0. #Gams[Gams<=1.] = 1. return RRs, Gams, Betas def obsTime_onAxis_struct(self): """ On-axis observer times calculated for each individual cell """ print("Calculating on-axis observerd time for each cell") #for ii in tqdm(range(1,len(self.Betas))): if self.evolution == "adiabatic": for layer in range(self.nlayers): if layer==0: TTs = obsTime_onAxis_adiabatic(self.RRs[:, layer],self.Betas[:, layer]) else: layerTime = obsTime_onAxis_adiabatic(self.RRs[:, self.layer==layer+1][:,0], self.Betas[:, self.layer==layer+1][:,0]) for cell in range(self.cellsInLayer(layer)): TTs = column_stack((TTs, layerTime)) elif self.evolution == "peer": for layer in tqdm(range(self.nlayers)): if layer==0: TTs = obsTime_onAxis_integrated(self.RRs, self.Gams[:, layer], self.Betas[:, layer]) TTs = array([TTs,]).T else: layerTime = obsTime_onAxis_integrated(self.RRs, self.Gams[:, self.layer==layer+1][:,0], self.Betas[:, self.layer==layer+1][:,0]) #TTs = column_stack((TTs, layerTime)) layerTime = array([layerTime]*self.cellsInLayer(layer)).T TTs = concatenate([TTs, layerTime], axis=1) return TTs def params_tt_RS(self, tt, ii, Rb): if type(tt) == 'float': tt = array([tt]) fil1, fil2 = where(tt<=self.cell_Tds[ii])[0], where(tt>self.cell_Tds[ii])[0] #print ii, len(tt) nuM = zeros(len(tt)) nuC = zeros(len(tt)) fluxMax = zeros(len(tt)) #print len(nuM), len(nuC), len() nuM[fil1] = self.RSpeak_nuM_struc[ii]*(tt[fil1]/self.cell_Tds[ii])**(6.) nuC[fil1] = self.RSpeak_nuC_struc[ii]*(tt[fil1]/self.cell_Tds[ii])**(-2.) fluxMax[fil1] = self.RSpeak_Fnu_struc[ii]*(tt[fil1]/self.cell_Tds[ii])**(3./2.) # Returns fluxes in Jy nuM[fil2] = self.RSpeak_nuM_struc[ii]*(tt[fil2]/self.cell_Tds[ii])**(-54./35.) nuC[fil2] = self.RSpeak_nuC_struc[ii]*(tt[fil2]/self.cell_Tds[ii])**(4./35.) fluxMax[fil2] = self.RSpeak_Fnu_struc[ii]*(tt[fil2]/self.cell_Tds[ii])**(-34./35.) # Returns fluxes in Jy return Rb**(1./2.)*nuM, Rb**(-3./2.)*nuC, Rb**(1./2.)*fluxMax def light_curve_adiabatic(self, theta_obs, obsFreqs, tt0, ttf, num, Rb): if type(obsFreqs)==float: obsFreqs = array([obsFreqs]) calpha = self.obsangle(theta_obs) alpha = arccos(calpha) # Obserer angle for the counter-jet calpha_cj = self.obsangle_cj(theta_obs) alpha_cj = arccos(calpha_cj) Tfil = self.TTs[:,-1]== max(self.TTs[:,-1]) max_Tobs = self.RRs[Tfil, -1]/(self.Betas[Tfil,-1]*cts.cc) * (1.-self.Betas[Tfil,-1]*cos(max(alpha))) #max_Tobs_oa = max(self.TTs[:,-1]) #max_Tobs = max(obsTime_offAxis(self, self.RRs, self.TTs[:,alpha==max(alpha)][:,0], max(alpha)))/cts.sTd if ttf>max_Tobs: print("ttf larger than maximum observable time. Adjusting value. ") ttf = max_Tobs lt0 = log10(tt0*cts.sTd) # Convert to seconds and then logspace ltf = log10(ttf*cts.sTd) # Convert to seconds and then logspace tts = logspace(lt0, ltf+(ltf-lt0)/num, num) # Timeline on which the flux is evaluated. light_curve = zeros([len(obsFreqs), num]) light_curve_RS = zeros([len(obsFreqs), num]) light_curve_CJ = zeros([len(obsFreqs), num]) for ii in tqdm(range(self.ncells)): #for ii in range(self.ncells): ttobs = obsTime_offAxis_UR(self.RRs[:,ii], self.TTs[:,ii], self.Betas[:,ii], alpha[ii]) RRs = self.RRs[:,ii] filTM = where(tts<=max(ttobs))[0] filTm = where(tts[filTM]>=min(ttobs))[0] filTM_cj = where(tts<=max(ttobs))[0] filTm_cj = where(tts[filTM_cj]>=min(ttobs))[0] Rint = interp1d(ttobs, RRs) Gamint = interp1d(RRs, self.Gams[:,ii]) Robs = Rint(tts[filTM][filTm]) GamObs = Gamint(Robs) BetaObs = sqrt(1.-GamObs**(-2.)) dopFacs = self.dopplerFactor(calpha[ii], sqrt(1.-GamObs**(-2))) afac = self.cellSize/maximum(self.cellSize*ones(num)[filTM][filTm], 2.*pi*(1.-cos(1./GamObs))) onAxisTobs = dopFacs*tts[filTM][filTm] # Forward shock stuff Bfield = sqrt(32.*pi*self.nn*self.epB*cts.mp)*cts.cc*GamObs gamMobs, nuMobs = minGam(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield) gamCobs, nuCobs = critGam(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, onAxisTobs) Fnuobs = fluxMax(Robs, GamObs, self.nn, Bfield, self.DD) #Reverse shock stuff nuM_RS, nuC_RS, Fnu_RS = self.params_tt_RS(onAxisTobs, ii, Rb) # Counter jet stuff ttobs_cj = obsTime_offAxis_UR(self.RRs[:,ii], self.TTs[:,ii], self.Betas[:,ii], alpha_cj[ii]) filTM_cj = where(tts<=max(ttobs_cj))[0] filTm_cj = where(tts[filTM]>=min(ttobs_cj))[0] Rint_cj = interp1d(ttobs_cj, RRs) #Gamint = interp1d(RRs, self.Gams[:,ii]) Robs_cj = Rint(tts[filTM_cj][filTm_cj]) GamObs_cj = Gamint(Robs_cj) if len(GamObs_cj)==0: continue BetaObs_cj = sqrt(1.-GamObs_cj**(-2.)) dopFacs_cj = self.dopplerFactor(calpha_cj[ii], sqrt(1.-GamObs_cj**(-2))) afac_cj = self.cellSize/maximum(self.cellSize*ones(num)[filTM_cj][filTm_cj], 2.*pi*(1.-cos(1./GamObs_cj))) onAxisTobs_cj = dopFacs_cj*tts[filTM_cj][filTm_cj] Bfield_cj = sqrt(32.*pi*self.nn*self.epB*cts.mp)*cts.cc*GamObs_cj gamMobs_cj, nuMobs_cj = minGam(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj) gamCobs_cj, nuCobs_cj = critGam(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj, onAxisTobs_cj) Fnuobs_cj = fluxMax(Robs_cj, GamObs_cj, self.nn, Bfield_cj, self.DD) dopFacs_cj = self.dopplerFactor(calpha_cj[ii], sqrt(1.-GamObs_cj**(-2))) dopFacs = self.dopplerFactor(calpha[ii], sqrt(1.-GamObs**(-2))) afac = self.cellSize/maximum(self.cellSize*ones(num)[filTM][filTm], 2.*pi*(1.-cos(1./GamObs))) for freq in obsFreqs: fil1, fil2 = where(gamMobs<=gamCobs)[0], where(gamMobs>gamCobs)[0] fil3, fil4 = where(nuM_RS<=nuC_RS)[0], where(nuM_RS>nuC_RS)[0] fil5, fil6 = where(nuMobs_cj<=nuCobs_cj)[0], where(nuMobs_cj>nuCobs_cj)[0] freqs = freq/dopFacs # Calculate the rest-frame frequencies correspondng to the observed frequency freqs_cj = freq/dopFacs_cj #print shape(freqs), shape(freqs[fil1]), shape(nuMobs[fil1]), shape(nuCobs[fil1]), shape(Fnuobs[fil1]), shape(afac[fil1]), shape(calpha) #print shape(light_curve[obsFreqs==freq, filT]), shape([fil1]) #print fil1 light_curve[obsFreqs==freq, filTM[filTm][fil1]] = light_curve[obsFreqs==freq, filTM[filTm][fil1]] + ( afac[fil1] * dopFacs[fil1]**3. * FluxNuSC_arr(self, nuMobs[fil1], nuCobs[fil1], Fnuobs[fil1], freqs[fil1]))*calpha[ii] #light_curve[obsFreqs==freq, filTM[filTm][fil2]] = light_curve[obsFreqs==freq, filTM[filTm][fil2]] + ( # afac[fil2] * dopFacs[fil2]**3. * FluxNuFC_arr(self, nuMobs[fil2], nuCobs[fil2], Fnuobs[fil2], freqs[fil2]))*calpha[ii] light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] + ( afac[fil3] * dopFacs[fil3]**3. * FluxNuSC_arr(self, nuM_RS[fil3], nuC_RS[fil3], Fnu_RS[fil3], freqs[fil3]))*calpha[ii] #light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] + ( # afac[fil4] * dopFacs[fil4]**3. * FluxNuFC_arr(self, nuM_RS[fil4], nuC_RS[fil4], Fnu_RS[fil4], freqs[fil4]))*calpha[ii] light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] = light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] + ( afac_cj[fil5] * dopFacs_cj[fil5]**3. * FluxNuSC_arr(self, nuMobs_cj[fil5], nuCobs_cj[fil5], Fnuobs_cj[fil5], freqs_cj[fil5]))*calpha_cj[ii] return tts, light_curve, light_curve_RS, light_curve_CJ #return tts, 2.*light_curve, 2.*light_curve_RS def light_curve_peer(self, theta_obs, obsFreqs, tt0, ttf, num, Rb): if type(obsFreqs)==float: obsFreqs = array([obsFreqs]) calpha = self.obsangle(theta_obs) alpha = arccos(calpha) # Obserer angle for the counter-jet calpha_cj = self.obsangle_cj(theta_obs) alpha_cj = arccos(calpha_cj) Tfil = self.TTs[:,-1]== max(self.TTs[:,-1]) max_Tobs = max(obsTime_offAxis_General(self.RRs, self.TTs[:,-1], max(alpha))) if ttf>max_Tobs: print("ttf larger than maximum observable time. Adjusting value.") ttf = max_Tobs lt0 = log10(tt0*cts.sTd) # Convert to seconds and then logspace ltf = log10(ttf*cts.sTd) # Convert to seconds and then logspace tts = logspace(lt0, ltf+(ltf-lt0)/num, num) # Timeline on which the flux is evaluated. light_curve = zeros([len(obsFreqs), num]) light_curve_RS = zeros([len(obsFreqs), num]) light_curve_CJ = zeros([len(obsFreqs), num]) RRs = self.RRs for ii in tqdm(range(self.ncells)): ttobs = obsTime_offAxis_General(self.RRs, self.TTs[:,ii], alpha[ii]) filTM = where(tts<=max(ttobs))[0] filTm = where(tts[filTM]>=min(ttobs))[0] Rint = interp1d(ttobs, RRs) Gamint = interp1d(RRs, self.Gams[:,ii]) Robs = Rint(tts[filTM][filTm]) GamObs = Gamint(Robs) BetaObs = sqrt(1.-GamObs**(-2.)) if len(GamObs)==0: continue onAxisTint = interp1d(RRs, self.TTs[:,ii]) #onAxisTobs = obsTime_onAxis_integrated(Robs, GamObs, BetaObs) onAxisTobs = onAxisTint(Robs) #Bfield = sqrt(32.*pi*cts.mp*self.nn*self.epB*GamObs*(GamObs-1.))*cts.cc #gamMobs, nuMobs = minGam_modified(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield) #gamCobs, nuCobs = critGam_modified(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, onAxisTobs) Bfield = Bfield_modified(GamObs, BetaObs, self.nn, self.epB) gamMobs, nuMobs = minGam_modified(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, self.Xp) gamCobs, nuCobs = critGam_modified(GamObs, self.epE, self.epB, self.nn, self.pp, Bfield, onAxisTobs) #nuMobs, nuCobs = GamObs*nuMobs, GamObs*nuCobs Fnuobs = fluxMax_modified(Robs, GamObs, self.nn, Bfield, self.DD, self.PhiP) #Reverse shock stuff nuM_RS, nuC_RS, Fnu_RS = self.params_tt_RS(onAxisTobs, ii, Rb) dopFacs = self.dopplerFactor(calpha[ii], sqrt(1.-GamObs**(-2))) # Counter jet stuff ttobs_cj = obsTime_offAxis_General(self.RRs, self.TTs[:,ii], alpha_cj[ii]) filTM_cj = where(tts<=max(ttobs_cj))[0] filTm_cj = where(tts[filTM_cj]>=min(ttobs_cj))[0] Rint_cj = interp1d(ttobs_cj, RRs) #Gamint = interp1d(RRs, self.Gams[:,ii]) Robs_cj = Rint(tts[filTM_cj][filTm_cj]) GamObs_cj = Gamint(Robs_cj) if len(GamObs_cj)==0: continue BetaObs_cj = sqrt(1.-GamObs_cj**(-2.)) onAxisTobs_cj = onAxisTint(Robs_cj) Bfield_cj = Bfield_modified(GamObs_cj, BetaObs_cj, self.nn, self.epB) gamMobs_cj, nuMobs_cj = minGam_modified(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj, self.Xp) gamCobs_cj, nuCobs_cj = critGam_modified(GamObs_cj, self.epE, self.epB, self.nn, self.pp, Bfield_cj, onAxisTobs_cj) Fnuobs_cj = fluxMax_modified(Robs_cj, GamObs_cj, self.nn, Bfield_cj, self.DD, self.PhiP) dopFacs_cj = self.dopplerFactor(calpha_cj[ii], sqrt(1.-GamObs_cj**(-2))) #nuMobs = nuMobs/dopFacs #nuCobs = nuCobs/dopFacs #nuMobs_cj = nuMobs_cj/dopFacs_cj #nuCobs_cj = nuCobs_cj/dopFacs_cj for freq in obsFreqs: fil1, fil2 = where(gamMobs<=gamCobs)[0], where(gamMobs>gamCobs)[0] fil3, fil4 = where(nuM_RS<=nuC_RS)[0], where(nuM_RS>nuC_RS)[0] freqs = freq/dopFacs # Calculate the rest-frame frequencies correspondng to the observed frequency light_curve[obsFreqs==freq, filTM[filTm][fil1]] = light_curve[obsFreqs==freq, filTM[filTm][fil1]] + ( self.cellSize*(GamObs[fil1]*(1.-BetaObs[fil1]*calpha[ii]))**(-3.) * FluxNuSC_arr(self, nuMobs[fil1], nuCobs[fil1], Fnuobs[fil1], freqs[fil1]))#*calpha[ii] #light_curve[obsFreqs==freq, filTM[filTm][fil2]] = light_curve[obsFreqs==freq, filTM[filTm][fil2]] + ( # (GamObs[fil2]*(1.-BetaObs[fil2]*calpha[fil2][ii]))**(-3.) * FluxNuFC_arr(self, nuMobs[fil2], nuCobs[fil2], Fnuobs[fil2], freqs[fil2]))#*calpha[ii] light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil3]] + ( self.cellSize*(GamObs[fil3]*(1.-BetaObs[fil3]*calpha[ii]))**(-3.) * FluxNuSC_arr(self, nuM_RS[fil3], nuC_RS[fil3], Fnu_RS[fil3], freqs[fil3]))#*calpha[ii] #light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] = light_curve_RS[obsFreqs==freq, filTM[filTm][fil4]] + ( # (GamObs[fil4]*(1.-BetaObs[fil4]*calpha[fil4][ii]))**(-3.)* FluxNuFC_arr(self, nuM_RS[fil4], nuC_RS[fil4], Fnu_RS[fil4], freqs[fil4]))#*calpha[ii] fil5, fil6 = where(nuMobs_cj<=nuCobs_cj)[0], where(nuMobs_cj>nuCobs_cj)[0] freqs_cj = freq/dopFacs_cj light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] = light_curve_CJ[obsFreqs==freq, filTM_cj[filTm_cj][fil5]] + ( self.cellSize*(GamObs_cj[fil5]*(1.-BetaObs_cj[fil5]*calpha_cj[ii]))**(-3.) * FluxNuSC_arr(self, nuMobs_cj[fil5], nuCobs_cj[fil5], Fnuobs_cj[fil5], freqs_cj[fil5]))#*calpha[ii] return tts, light_curve, light_curve_RS, light_curve_CJ #return tts, 2.*light_curve, 2.*light_curve_RS def lightCurve_interp(self, theta_obs, obsFreqs, tt0, ttf, num, Rb): if self.evolution == "adiabatic": tts, light_curve, light_curve_RS, light_curve_CJ = self.light_curve_adiabatic(theta_obs, obsFreqs, tt0, ttf, num, Rb) elif self.evolution == "peer": tts, light_curve, light_curve_RS, light_curve_CJ = self.light_curve_peer(theta_obs, obsFreqs, tt0, ttf, num, Rb) return tts, light_curve, light_curve_RS, light_curve_CJ def skymap(self, theta_obs, tt_obs, freq, nx, ny, xx0, yy0): calpha = zeros([2*self.ncells]) alpha = zeros([2*self.ncells]) calpha[:self.ncells] = self.obsangle(theta_obs) calpha[self.ncells:] = self.obsangle_cj(theta_obs) alpha = arccos(calpha) TTs, RRs, Gams, Betas = zeros(2*self.ncells), zeros(2*self.ncells), zeros(2*self.ncells), zeros(2*self.ncells) #nuMs, nuCs, fluxes = zeros(2.*self.ncells), zeros(2.*self.ncells), zeros(2.*self.ncells) fluxes = zeros(2*self.ncells) im_xxs, im_yys = zeros(2*self.ncells), zeros(2*self.ncells) im_xxs[:self.ncells] = -1.*cos(theta_obs)*sin(self.cthetas)*sin(self.cphis) + sin(theta_obs)*cos(self.cthetas) im_yys[:self.ncells] = sin(self.cthetas)*cos(self.cphis) im_xxs[self.ncells:] = -1.*cos(theta_obs)*sin(pi-self.cthetas)*sin(self.cphis) + sin(theta_obs)*cos(pi-self.cthetas) im_yys[self.ncells:] = sin(pi-self.cthetas)*cos(self.cphis) if self.evolution == 'adiabatic': for ii in tqdm(range(self.ncells)): Tint = interp1d(self.RRs[:,ii], self.TTs[:,ii]) ttobs = obsTime_offAxis_UR(self.RRs[:,ii], self.TTs[:,ii], self.Betas[:,ii], alpha[ii]) ttobs_cj = obsTime_offAxis_UR(self.RRs[:,ii], self.TTs[:,ii], self.Betas[:,ii], alpha[ii+self.ncells]) Rint = interp1d(ttobs, self.RRs[:,ii]) Rint_cj = interp1d(ttobs_cj, self.RRs[:,ii]) RRs[ii] = Rint(tt_obs) RRs[ii+self.ncells] = Rint_cj(tt_obs) TTs[ii], TTs[ii+self.ncells] = Tint(RRs[ii]), Tint(RRs[ii+self.ncells]) GamInt = interp1d(self.RRs[:,ii], self.Gams[:,ii]) Gams[ii], Gams[ii+self.ncells] = GamInt(RRs[ii]), GamInt(RRs[ii+self.ncells]) Betas = sqrt(1.-Gams**(-2.)) Bf = (32.*pi*self.nn*self.epB*cts.mp)**(1./2.) * Gams*cts.cc gamM, nuM = minGam(Gams, self.epE, self.epB, self.nn, self.pp, Bf) gamC, nuC = critGam(Gams, self.epE, self.epB, self.nn, self.pp, Bf, TTs) flux = fluxMax(RRs, Gams, self.nn, Bf, self.DD) #fluxMax[Gams<=2] = 0. dopFacs = self.dopplerFactor(calpha, sqrt(1.-Gams**(-2))) afac = self.cellSize/maximum(self.cellSize, 2.*pi*(1.-cos(1./Gams))) obsFreqs = freq/dopFacs fluxes = (self.DD**2./(abs(calpha)*self.cellSize*RRs**2.)) * afac * dopFacs**3. * FluxNuSC_arr(self, nuM, nuC, flux, obsFreqs) elif self.evolution == 'peer': for ii in tqdm(range(self.ncells)): Tint = interp1d(self.RRs, self.TTs[:,ii]) ttobs = obsTime_offAxis_General(self.RRs, self.TTs[:,ii], alpha[ii]) ttobs_cj = obsTime_offAxis_General(self.RRs, self.TTs[:,ii], alpha[ii+self.ncells]) Rint, Rint_cj = interp1d(ttobs, self.RRs), interp1d(ttobs_cj, self.RRs) RRs[ii], RRs[ii+self.ncells] = Rint(tt_obs), Rint_cj(tt_obs) TTs[ii], TTs[ii+self.ncells] = Tint(RRs[ii]), Tint(RRs[ii+self.ncells]) GamInt = interp1d(self.RRs, self.Gams[:,ii]) Gams[ii], Gams[ii+self.ncells] = GamInt(RRs[ii]), GamInt(RRs[ii+self.ncells]) Betas = sqrt(1.-Gams**(-2.)) Bf = Bfield_modified(Gams, Betas, self.nn, self.epB) gamM, nuM = minGam_modified(Gams, self.epE, self.epB, self.nn, self.pp, Bf, self.Xp) gamC, nuC = critGam_modified(Gams, self.epE, self.epB, self.nn, self.pp, Bf, TTs) flux = fluxMax_modified(RRs, Gams, self.nn, Bf, self.DD, self.PhiP) #fluxMax[Gams<=5] = 0. #nuM, nuC = nuM/Gams, nuC/Gams dopFacs = self.dopplerFactor(calpha, Betas) obsFreqs = freq/dopFacs #afac = self.cellSize/maximum(self.cellSize*ones(self.ncells), 2.*pi*(1.-cos(1./Gams))) fluxes = (self.DD**2./(abs(calpha)*self.cellSize*RRs**2.)) *self.cellSize* (Gams*(1.-Betas*calpha))**(-3.) * FluxNuSC_arr(self, nuM, nuC, flux, obsFreqs) #fluxes = (Gams*(1.-Betas*calpha))**(-3.) * FluxNuSC_arr(self, nuM, nuC, fluxMax, obsFreqs)*1./calpha fluxes2 = self.cellSize*(Gams*(1.-Betas*calpha))**(-3.)*FluxNuSC_arr(self, nuM, nuC, flux, obsFreqs) im_xxs = RRs*im_xxs im_yys = RRs*im_yys return im_xxs, im_yys, fluxes, fluxes2, RRs, Gams, calpha, TTs
2.078125
2
example.py
reening/pysflow
4
12778197
<reponame>reening/pysflow from binascii import unhexlify from pprint import pprint from sflow import decode # Example datagram taken from http://packetlife.net/captures/protocol/sflow/ raw = '0000000500000001ac15231100000001000001a6673f36a00000000100000002' +\ '0000006c000021280000040c0000000100000001000000580000040c00000006' +\ '0000000005f5e100000000010000000300000000018c6e9400009b9e00029062' +\ '0001f6c400000000000000000000000000000000005380600000a0de0000218a' +\ '000008d7000000000000000000000000' data = unhexlify(raw) pprint(decode(data))
2.671875
3
RabbitMqUdn/client/quorum-queue-test.py
allensanborn/ChaosTestingCode
73
12778198
#!/usr/bin/env python import pika import sys import time import datetime import subprocess import random import threading import requests import json from command_args import get_args, get_mandatory_arg, get_optional_arg, is_true, get_optional_arg_validated from RabbitPublisher import RabbitPublisher from MultiTopicConsumer import MultiTopicConsumer from QueueStats import QueueStats from ChaosExecutor import ChaosExecutor from printer import console_out from MessageMonitor import MessageMonitor from ConsumerManager import ConsumerManager from BrokerManager import BrokerManager def main(): print("quorum-queue-test.py") args = get_args(sys.argv) count = -1 # no limit tests = int(get_mandatory_arg(args, "--tests")) actions = int(get_mandatory_arg(args, "--actions")) in_flight_max = int(get_optional_arg(args, "--in-flight-max", 10)) grace_period_sec = int(get_mandatory_arg(args, "--grace-period-sec")) cluster_size = get_optional_arg(args, "--cluster", "3") queue = get_mandatory_arg(args, "--queue") sac_enabled = is_true(get_mandatory_arg(args, "--sac")) chaos_mode = get_optional_arg(args, "--chaos-mode", "mixed") chaos_min_interval = int(get_optional_arg(args, "--chaos-min-interval", "30")) chaos_max_interval = int(get_optional_arg(args, "--chaos-max-interval", "120")) prefetch = int(get_optional_arg(args, "--pre-fetch", "10")) rmq_version = get_optional_arg_validated(args, "--rmq-version", "3.8-beta", ["3.7", "3.8-beta", "3.8-alpha"]) for test_number in range(1, tests+1): print("") console_out(f"TEST RUN: {str(test_number)} of {tests}--------------------------", "TEST RUNNER") setup_complete = False while not setup_complete: broker_manager = BrokerManager() broker_manager.deploy(cluster_size, True, rmq_version, False) initial_nodes = broker_manager.get_initial_nodes() console_out(f"Initial nodes: {initial_nodes}", "TEST RUNNER") print_mod = in_flight_max * 5 queue_name = queue + "_" + str(test_number) mgmt_node = broker_manager.get_random_init_node() queue_created = False qc_ctr = 0 while queue_created == False and qc_ctr < 20: qc_ctr += 1 if sac_enabled: queue_created = broker_manager.create_quorum_sac_queue(mgmt_node, queue_name, cluster_size, 0) else: queue_created = broker_manager.create_quorum_queue(mgmt_node, queue_name, cluster_size, 0) if queue_created: setup_complete = True else: time.sleep(5) time.sleep(10) msg_monitor = MessageMonitor("qqt", test_number, print_mod, True, False) publisher = RabbitPublisher(1, test_number, broker_manager, in_flight_max, 120, print_mod) publisher.configure_sequence_direct(queue_name, count, 0, 1) consumer_manager = ConsumerManager(broker_manager, msg_monitor, "TEST RUNNER", False) consumer_manager.add_consumers(1, test_number, queue_name, prefetch) chaos = ChaosExecutor(initial_nodes) if chaos_mode == "partitions": chaos.only_partitions() elif chaos_mode == "nodes": chaos.only_kill_nodes() monitor_thread = threading.Thread(target=msg_monitor.process_messages) monitor_thread.start() consumer_manager.start_consumers() pub_thread = threading.Thread(target=publisher.start_publishing) pub_thread.start() console_out("publisher started", "TEST RUNNER") for action_num in range(1, actions+1): wait_sec = random.randint(chaos_min_interval, chaos_max_interval) console_out(f"waiting for {wait_sec} seconds before next action", "TEST RUNNER") time.sleep(wait_sec) console_out(f"execute chaos action {str(action_num)}/{actions} of test {str(test_number)}", "TEST RUNNER") chaos.execute_chaos_action() subprocess.call(["bash", "../cluster/cluster-status.sh"]) time.sleep(60) console_out("repairing cluster", "TEST RUNNER") chaos.repair() console_out("repaired cluster", "TEST RUNNER") publisher.stop_publishing() console_out("starting grace period for consumer to catch up", "TEST RUNNER") ctr = 0 while True: ms_since_last_msg = datetime.datetime.now() - msg_monitor.get_last_msg_time() if msg_monitor.get_unique_count() >= publisher.get_pos_ack_count() and len(publisher.get_msg_set().difference(msg_monitor.get_msg_set())) == 0: break elif ctr > grace_period_sec and ms_since_last_msg.total_seconds() > 15: break time.sleep(1) ctr += 1 confirmed_set = publisher.get_msg_set() lost_msgs = confirmed_set.difference(msg_monitor.get_msg_set()) console_out("RESULTS------------------------------------", "TEST RUNNER") if len(lost_msgs) > 0: console_out(f"Lost messages count: {len(lost_msgs)}", "TEST RUNNER") for msg in lost_msgs: console_out(f"Lost message: {msg}", "TEST RUNNER") console_out(f"Confirmed count: {publisher.get_pos_ack_count()} Received count: {msg_monitor.get_receive_count()} Unique received: {msg_monitor.get_unique_count()}", "TEST RUNNER") success = True if msg_monitor.get_out_of_order() == True: console_out("FAILED TEST: OUT OF ORDER MESSAGES", "TEST RUNNER") success = False if len(lost_msgs) > 0: console_out("FAILED TEST: LOST MESSAGES", "TEST RUNNER") success = False if success == True: console_out("TEST OK", "TEST RUNNER") console_out("RESULTS END------------------------------------", "TEST RUNNER") try: consumer_manager.stop_all_consumers() pub_thread.join() except Exception as e: console_out("Failed to clean up test correctly: " + str(e), "TEST RUNNER") console_out(f"TEST {str(test_number)} COMPLETE", "TEST RUNNER") if __name__ == '__main__': main()
2.015625
2
src/titiler/mosaic/titiler/mosaic/__init__.py
kalxas/titiler
0
12778199
"""titiler.mosaic""" __version__ = "0.6.0" from . import errors, factory # noqa from .factory import MosaicTilerFactory # noqa
1.054688
1
initadmin.py
fga-eps-mds/2017.2-SiGI-Op_API
6
12778200
import os os.environ['DJANGO_SETTINGS_MODULE'] = 'sigi_op.settings' import django django.setup() from django.contrib.auth.management.commands.createsuperuser import get_user_model if get_user_model().objects.filter(username='admin'): print("Super user already created") else: get_user_model()._default_manager.db_manager('default').create_superuser(username='admin', email='<EMAIL>', password='<PASSWORD>') print("Super user created")
2.15625
2
atalaya/parameters.py
jacr13/Atalaya
0
12778201
<reponame>jacr13/Atalaya import json from os.path import join as pjoin class Parameters: """Class that loads hyperparameters from a json file. From : - https://github.com/cs230-stanford/cs230-code-examples/blob/master/pytorch/vision/utils.py Example: ``` params = Params(json_path) print(params.learning_rate) params.learning_rate = 0.5 # change the value of learning_rate in params ``` """ def __init__(self, params=None, path=None): if params is not None: self.__dict__.update(params) elif path is not None: self.update(path) else: raise Exception("params and path at None ! One of them must be not None.") def save(self, path): """Saves parameters to a json file""" with open(pjoin(path, "params.json"), "w") as f: json.dump(self.__dict__, f, indent=4) def update(self, path): """Loads parameters from json file""" with open(pjoin(path, "params.json")) as f: params = json.load(f) params[ list(self.__dict__.keys())[list(self.__dict__.values()).index(path)] ] = path self.__dict__.update(params) @property def dict(self): """Gives dict-like access to Params instance by `params.dict['learning_rate']""" return self.__dict__
3.21875
3
GitHubScripts/merge_data.py
bdqnghi/sstubs_bug_miner
0
12778202
import os, shutil from distutils.dir_util import copy_tree import numpy as np import shutil path = "dataset" split_path = "dataset_splits" all_paths = [] for folder in os.listdir(split_path): folder_path = os.path.join(split_path, folder) print(folder_path) for project_folder in os.listdir(folder_path): # print(project_folder) project_folder_path = os.path.join(folder_path, project_folder) try: shutil.move(project_folder_path, path) except Exception as e: print(e)
2.328125
2
tkinterUI/historyPage.py
moreviraj2000/license-detection-project
0
12778203
import os import sqlite3 from tkinter import * from tkinter import simpledialog from tkinter import ttk from PIL import Image, ImageTk from DetailsPage import DetailsPage import constants from datetime import datetime import tkinter.filedialog from tkinter import messagebox import xlwt class HistoryPage(Frame): def __init__(self, master): Frame.__init__(self, master, padx=20, bg=constants.colors['main']['bg']) self.grid(row=1, column=1) self.style = ttk.Style() self.style.map('TCombobox', fieldbackground=[('readonly', 'gray90')]) self.style.map('TCombobox', selectbackground=[('readonly', 'gray90')]) self.style.map('TCombobox', selectforeground=[('readonly', 'black')]) self.style.map('Treeview', background=[('selected', 'gray70')]) self.searchBar() self.dbtable() self.downloadBar() # connect database cwd = os.getcwd() parDir = cwd.replace('tkinterUI', 'realtest.db') self.db = sqlite3.connect(parDir) self.cur = self.db.cursor() self.cur.execute("SELECT rowid,* FROM realtest") self.searchedEntries = self.entries = self.cur.fetchall() self.resetTree() # resizable self.rowconfigure(1, weight=1) self.columnconfigure(0, weight=1) self.columnconfigure(1, weight=1) self.columnconfigure(2, weight=1) self.columnconfigure(3, weight=1) self.columnconfigure(4, weight=1) def __del__(self): self.db.commit() self.db.close() def searchBar(self): # First Row (search) self.searchby = StringVar(value='Reg. Number') self.entryVar = StringVar(value='Enter Query') searchComboVals = ('Reg. Number','Date','Time','Vehicle','Address',) label = Label(self, text='Search by ', padx=10, pady=10) comboBox = ttk.Combobox(self, textvariable=self.searchby, state="readonly", justify='center') comboBox['values'] = searchComboVals entryBox = ttk.Entry(self, textvariable=self.entryVar, width=40, justify='center') searchBut = ttk.Button(self, text='Search', command=self.searchTree) resetButton = ttk.Button(self, text='Reset', command=self.resetTree) entryBox.bind('<Button-1>', self.OnSingleClickEntry) entryBox.bind("<Return>",lambda _:self.searchTree()) comboBox.bind("<FocusIn>", lambda _: comboBox.selection_range(0, 0)) comboBox.current(0) # grid label.grid(row=0, column=0, sticky=N + E + S + W, pady=(15, 2), padx=(0, 2)) comboBox.grid(row=0, column=1, sticky=N + E + S + W, pady=(15, 2), padx=2) entryBox.grid(row=0, column=2, sticky=N + E + S + W, pady=(15, 2), padx=2) searchBut.grid(row=0, column=3, sticky=N + E + S + W, pady=(15, 2), padx=2) resetButton.grid(row=0, column=4, sticky=N + E + S + W, pady=(15, 2), padx=(2, 0)) def dbtable(self): # treeview self.table = ttk.Treeview(self, height=30, selectmode='browse') verscrlbar = ttk.Scrollbar(self, orient="vertical", command=self.table.yview) self.table.configure(xscrollcommand=verscrlbar.set) self.table["columns"] = ("1", "2", "3", "4", "5") self.table['show'] = 'headings' self.table.column("1", width=30, anchor='c') self.table.column("2", width=120, anchor='c') self.table.column("3", width=220, anchor='c') self.table.column("4", width=230, anchor='c') self.table.column("5", width=300, anchor='c') # Assigning the heading names to the # respective columns self.table.heading("1", text="Id") self.table.heading("2", text="Number") self.table.heading("3", text="TimeStamp") self.table.heading("4", text="Vehicle") self.table.heading("5", text="Address") self.table.bind("<Double-1>", self.OnDoubleClick) self.table.grid(row=1, column=0, columnspan=5, sticky=N + E + S + W) verscrlbar.grid(row=1, column=5, sticky=N + E + S + W) def downloadBar(self): # download frame downloadFrame = Frame(self, bg=constants.colors['main']['bg']) self.downloadType = StringVar(value='Number Plate Image') self.downloadWhat = StringVar(value='Selected Row') downloadLabel = Label(downloadFrame, text='Download the ', padx=10, pady=10) downCombo = ttk.Combobox(downloadFrame, textvariable=self.downloadType, state="readonly", justify='center') downCombo['values'] = ('Number Plate Image','Captured Image','Data as Excel') downCombo.current(0) ofLabel = Label(downloadFrame, text=' of ', padx=10, pady=10) whatCombo = ttk.Combobox(downloadFrame, textvariable=self.downloadWhat, state="readonly", justify='center') whatCombo['values'] = ('Selected Row','Searched Rows','All Rows',) whatCombo.current(0) downloadBut = ttk.Button(downloadFrame, text='Download', command=self.download) downCombo.bind("<FocusIn>", lambda _: downCombo.selection_range(0, 0)) whatCombo.bind("<FocusIn>", lambda _: whatCombo.selection_range(0, 0)) # pack downloadLabel.pack(side=LEFT, fill=X, expand=True, pady=(2, 2), padx=(0, 2)) downCombo.pack(side=LEFT, fill=X, expand=True, pady=(2, 2), padx=2) ofLabel.pack(side=LEFT, fill=X, expand=True, pady=(2, 2), padx=2) whatCombo.pack(side=LEFT, fill=X, expand=True, pady=(2, 2), padx=2) downloadBut.pack(side=LEFT, fill=X, expand=True, pady=(2, 2), padx=(2, 0)) downloadFrame.grid(row=2, column=0, columnspan=5, sticky=N + E + S + W, pady=(2, 15), padx=(2, 2)) def OnSingleClickEntry(self, event): if self.entryVar.get() == 'Enter Query': self.entryVar.set('') def OnDoubleClick(self, event): id = self.table.selection()[0] DetailsPage(self.master, id=id, cur=self.cur) def updateTable(self, entries): self.table.delete(*self.table.get_children()) self.table.tag_configure('odd',background='gray90') self.table.tag_configure('even', background='snow') FirstWhite = 0 if len(entries)%2 == 0 else 1 for entry in reversed(entries): self.table.insert("", 'end', text="", iid=entry[0], values=( entry[0], entry[1], entry[2], entry[3], entry[4]), tags = ('even',) if entry[0]%2 == FirstWhite else ('odd',)) # resets tree to full data resetTree = lambda self: self.updateTable(entries=self.entries) def searchTree(self): # searches and updates table columnMap = { 'Vehicle': 'name', 'Reg. Number': 'numPlate', 'Date': 'timeStamp', 'Time': 'timeStamp', 'Address': 'address', } column = self.searchby.get() query = self.entryVar.get() if column == 'Time': query = f"SELECT rowid,* FROM realtest WHERE {columnMap[column]} LIKE '{query}% | %'" elif column == 'Date': query = f"SELECT rowid,* FROM realtest WHERE {columnMap[column]} LIKE '% | {query}%'" else: query = f"SELECT rowid,* FROM realtest WHERE {columnMap[column]} LIKE '%{query}%'" self.cur.execute(query) self.searchedEntries = self.cur.fetchall() self.updateTable(entries=self.searchedEntries) def download(self): # ifelse for selecting the number of rows to download if self.downloadWhat.get() == 'Selected Row': id = self.table.selection() if not id : tkinter.messagebox.showerror(title='Row Selection Expected', message='No Row Selected') return None self.cur.execute(f"SELECT rowid,* FROM realtest WHERE rowid = {int(id[0])}") dList = [self.cur.fetchone()] elif self.downloadWhat.get() == 'All Rows' : dList = self.entries else:#Searched Row dList = self.searchedEntries # ask save location dirname = tkinter.filedialog.askdirectory(parent=self, initialdir="/",title='Please select location to save file ') if not dirname: return # excel save code if self.downloadType.get() == 'Data as Excel': # ask for file name to save fileName = simpledialog.askstring(title="Excel File Name", prompt="Enter the name to save the excel file :") if not fileName: return excel = xlwt.Workbook() sheet = excel.add_sheet("VInLP export", datetime.now()) style = xlwt.easyxf('font: bold 1, color blue; borders: left thick, right thin, top thin, bottom thin; pattern: pattern solid, fore_color white;') tl = xlwt.easyxf('font: bold 1, color blue; border: left thick, top thick, right thin, bottom thick') t = xlwt.easyxf('font: bold 1, color blue; border: left thin, top thick, right thin, bottom thick') tr = xlwt.easyxf('font: bold 1, color blue; border: left thin, top thick, right thick, bottom thick') r = xlwt.easyxf('border: left thin,right thick') br = xlwt.easyxf('border: left thin, right thick, bottom thick') b = xlwt.easyxf('border: left thin,right thin, bottom thick') bl = xlwt.easyxf('border: left thick, right thin, bottom thick') l = xlwt.easyxf('border: left thick,right thin') m = xlwt.easyxf('border: left thin,right thin') sheet.write(0, 0, 'Id', tl) sheet.write(0, 1, 'Registration Number', t) sheet.write(0, 2, 'Date', t) sheet.write(0, 3, 'Time', t) sheet.write(0, 4, 'Vehicle', t) sheet.write(0, 5, 'Address', tr) sheet.col(0).width = int(4 * 260) sheet.col(1).width = int(17 * 260) sheet.col(2).width = int(11 * 260) sheet.col(3).width = int(12 * 260) sheet.col(4).width = int(30 * 260) sheet.col(5).width = int(35 * 260) sheet.write(1, 0, '', l) sheet.write(1, 1, '', m) sheet.write(1, 2, '', m) sheet.write(1, 3, '', m) sheet.write(1, 4, '', m) sheet.write(1, 5, '', r) for index, row in enumerate(dList): time, date = row[2].split(' | ') sheet.write(index+2, 0, row[0], l) sheet.write(index+2, 1, row[1], m) sheet.write(index+2, 2, date, m) sheet.write(index+2, 3, time, m) sheet.write(index+2, 4, row[3], m) sheet.write(index+2, 5, row[4], r) index = len(dList) + 1 sheet.write(index, 0,style=bl) sheet.write(index, 1, style=b) sheet.write(index, 2, style=b) sheet.write(index, 3, style=b) sheet.write(index, 4, style=b) sheet.write(index, 5, style=br) excel.save(f'{dirname}/{fileName}.xls') # saving images else: for row in dList: print(row[0]) with open(f'{dirname}/{row[1]}.png', 'wb') as file: file.write(row[6] if self.downloadType.get() == 'Captured Image' else row[7])
2.375
2
ali/ali/__init__.py
makefu/ali-orders
3
12778204
from core import run_casper,save_db,load_db from datetime import datetime,timedelta import logging log = logging.getLogger('ali-module') list_js="ali/get_order_list.js" order_js="ali/get_order.js" confirm_js="ali/confirm_order.js" login_js="ali/login.js" order_url="http://trade.aliexpress.com/order_detail.htm?orderId=%s" def get_order_list(full=False): if not full: ret = run_casper (list_js) else: ret = run_casper (list_js,["full"]) return ret def get_order(ident): """ calculate for an order "payment-time": "2014-07-11 01:32:35", "protection-reminder": { "hours": 3, "days": 14, "seconds": 50, "minutes": 50 }, run_casper raises exception if get_order failed. """ ret = run_casper(order_js,[ident]) rem = ret['protection-reminder'] if rem: now=datetime.now() #payment_time=datetime.strptime(ret["payment-time"],"%Y-%m-%d %H:%M:%S") prot_secs=rem["hours"]*60*60+rem["minutes"]*60+rem["seconds"] protection_timeout = timedelta(days=rem["days"],seconds=prot_secs) ret['protection-timeout'] = (datetime.now()+protection_timeout).strftime("%Y-%m-%d %H:%M:%S") del(ret['protection-reminder']) ret['type']='aliexpress' return ret def get_order_link(ident): return order_url % (ident) def confirm_order(ident): try: log.info("confirm order status: %s" %run_casper(confirm_js,[ident])) except Exception as e: log.error("could not confirm order %s"%ident) log.error(e) raise def login(): return run_casper(login_js,[])
2.140625
2
posts/AmericaByTrain/arrow.py
capecchi/capecchi.github.io
0
12778205
#Amtrak Recursive ROute Writer (ARROW) #cont- does not write initial .npz file, relies on existing partials def main(newdata=False, cont=False, newredund=False, arrive=True): import json import numpy as np import os import route_builder import glob import find_redundancy local = 'F:/Python34/America_By_Train/' rb = local+'route_builder/' direc = 'C:/Users/Owner/Documents/GitHub/capecchi.github.io/posts/AmericaByTrain/' if newdata or not os.path.isfile(local+'endpts.npz'): with open(direc+'amtrak.geojson') as f: data = json.load(f) feats = data['features'] index = np.arange(len(feats)) strt = [] end = [] for i in index: cc = feats[i]['geometry']['coordinates'] strt.append(cc[0]) end.append(cc[-1]) #NEED route GPS endpoints to look for fcoords = local #fraarcid stpaulid = 182592 #keep east pt stpaul_iarr_cid = 182614 #mark eastern segment as redundant so we only search west portland_cid = 266301 #block southern route to Portland seattleid = 241310 #keep south pt laid = 211793 #keep south pt palmspringsid = 263261 #keep west pt neworleansid_end = 178659 #keep east pt NOTE does not connect to neworleans_start neworleansid_start = 243859 #keep south or east pt phillyid = 204870 #keep north pt dcid = 164103 #keep south pt chicagoid = 253079 #keep north pt eb_block = np.array([],dtype=int) cs_block = np.array([],dtype=int) sl_block = np.array([],dtype=int) cr_block = np.array([],dtype=int) cl_block = np.array([],dtype=int) for i in index: cid = feats[i]['properties']['FRAARCID'] coords = feats[i]['geometry']['coordinates'] c1 = coords[0] c2 = coords[-1] if cid == stpaulid: if c1[0] > c2[0]: stpaul = c1 else: stpaul = c2 if cid == stpaul_iarr_cid or cid == portland_cid: eb_block = np.append(eb_block,i) if cid == seattleid: if c1[1] < c2[1]: seattle = c1 else: seattle = c2 if cid == laid: if c1[1] < c2[1]: la = c1 else: la = c2 if cid == seattleid or cid == portland_cid or cid == 189128\ or cid == 244148 or cid == 254149: cs_block = np.append(cs_block,i) if cid == palmspringsid: if c1[0] < c2[0]: palmsprings = c1 else: palmsprings = c2 if cid == neworleansid_end: if c1[0] > c2[0]: neworleans_end = c1 else: neworleans_end = c2 if cid == 263258 or cid == 266284 or cid == 178673: sl_block = np.append(sl_block,i) if cid == neworleansid_start: if c1[0] > c2[0]: neworleans_start = c1 else: neworleans_start = c2 if cid == phillyid: if c1[1] > c2[1]: philly = c1 else: philly = c2 if cid == 243812 or cid == 204623 or cid == 169919 or cid == 169921\ or cid == 125491 or cid == 164053 or cid == 275062 or cid == 261822: cr_block = np.append(cr_block,i) if cid == dcid: if c1[1] < c2[1]: dc = c1 else: dc = c2 if cid == chicagoid: if c1[1] > c2[1]: chicago = c1 else: chicago = c2 if cid == 252822 or cid == 164114 or cid == 252939 or cid == 152297\ or cid == 197933 or cid == 197961 or cid == 192650 or cid == 192649\ or cid == 253070 or cid == 256677 or cid == 193489 or cid == 266257\ or cid == 266676: cl_block = np.append(cl_block,i) cid = [feats[i]['properties']['FRAARCID'] for i in index] if newredund: #Identify redundant track segments fraarcid = [feats[i]['properties']['FRAARCID'] for i in index] iredund = np.array([],dtype=int) np.save(local+'redundant',iredund) redundant = find_redundancy.main(index,strt,end,fraarcid,local) #SAVE STUFF np.savez(local+'endpts',index=index,strt=strt,end=end,cid=cid, stpaul=stpaul,seattle=seattle,la=la,palmsprings=palmsprings, neworleans_end=neworleans_end,neworleans_start=neworleans_start, philly=philly,dc=dc,chicago=chicago,eb_block=eb_block, cs_block=cs_block,sl_block=sl_block,cr_block=cr_block,cl_block=cl_block) print('saved endpts arrays and city GPS coords') else: f=np.load(local+'endpts.npz') index = f['index'] strt = f['strt'] end = f['end'] cid = f['cid'] stpaul = f['stpaul'] eb_block = f['eb_block'] seattle = f['seattle'] la = f['la'] cs_block = f['cs_block'] palmsprings = f['palmsprings'] neworleans_end = f['neworleans_end'] sl_block = f['sl_block'] neworleans_start = f['neworleans_start'] philly = f['philly'] cr_block = f['cr_block'] dc = f['dc'] chicago = f['chicago'] cl_block = f['cl_block'] #EMPIRE BUILDER if 1: print('finding EMPIRE BUILDER routes') ptA = [stpaul] iredund = np.load(local+'redundant.npy') #for i in eb_block: iredund = np.append(iredund,i) iarr = np.array([],dtype=int) if not cont: np.savez(rb+'partial',ptA=ptA,iarr=iarr) partials = glob.glob(rb+'*.npz') while len(partials) > 0: level = 0 with np.load(partials[0]) as f: ptA = f['ptA'] iarr = f['iarr'] os.remove(partials[0]) route_builder.main(ptA,iarr,seattle,rb+'empire_builder',level,\ iredund,arrive=arrive) partials = glob.glob(rb+'*.npz') #COAST STARLIGHT if 0: print('finding COAST STARLIGHT routes') ptA = [seattle] ptB = la iredund = np.load(local+'redundant.npy') for i in cs_block: iredund = np.append(iredund,i) iarr = np.array([],dtype=int) if not cont: np.savez(rb+'partial',ptA=ptA,iarr=iarr) partials = glob.glob(rb+'*.npz') while len(partials) > 0: level = 0 with np.load(partials[0]) as f: ptA = f['ptA'] iarr = f['iarr'] os.remove(partials[0]) route_builder.main(ptA,iarr,ptB,rb+'coast_starlight',level,\ iredund,arrive=arrive) partials = glob.glob(rb+'*.npz') #SUNSET LIMITED if 0: print('finding SUNSET LIMITED routes') ptA = [palmsprings] ptB = neworleans_end iredund = np.load(local+'redundant.npy') for i in sl_block: iredund = np.append(iredund,i) iarr = np.array([],dtype=int) if not cont: np.savez(rb+'partial',ptA=ptA,iarr=iarr) partials = glob.glob(rb+'*.npz') while len(partials) > 0: level = 0 with np.load(partials[0]) as f: ptA = f['ptA'] iarr = f['iarr'] os.remove(partials[0]) route_builder.main(ptA,iarr,ptB,rb+'sunset_limited',\ level,iredund,arrive=arrive) partials = glob.glob(rb+'*.npz') #CRESCENT if 0: print('finding CRESCENT routes') ptA = [neworleans_start] ptB = philly iredund = np.load(local+'redundant.npy') for i in cr_block: iredund = np.append(iredund,i) iarr = np.array([],dtype=int) if not cont: np.savez(rb+'partial',ptA=ptA,iarr=iarr) partials = glob.glob(rb+'*.npz') while len(partials) > 0: level = 0 with np.load(partials[0]) as f: ptA = f['ptA'] iarr = f['iarr'] os.remove(partials[0]) route_builder.main(ptA,iarr,ptB,rb+'crescent',level,iredund,arrive=arrive) partials = glob.glob(rb+'*.npz') #CAPITOL LIMITED if 0: print('finding CAPITOL LIMITED routes') ptA = [dc] ptB = chicago iredund = np.load(local+'redundant.npy') for i in cl_block: iredund = np.append(iredund,i) iarr = np.array([],dtype=int) if not cont: np.savez(rb+'partial',ptA=ptA,iarr=iarr) partials = glob.glob(rb+'*.npz') while len(partials) > 0: level = 0 with np.load(partials[0]) as f: ptA = f['ptA'] iarr = f['iarr'] os.remove(partials[0]) route_builder.main(ptA,iarr,ptB,rb+'capitol_limited',level,\ iredund,arrive=arrive) partials = glob.glob(rb+'*.npz')
2.21875
2
urbanairship/reports/experiments.py
tirkarthi/python-library
0
12778206
<gh_stars>0 from typing import Dict, Any from urbanairship import Airship class ExperimentReport(object): def __init__(self, airship: Airship) -> None: """Access reporting related to A/B Tests (experiments) :param airship: An urbanairship.Airship instance. """ self.airship = airship def get_overview(self, push_id: str) -> Dict[str, Any]: """Returns statistics and metadata about an experiment (A/B Test). :param push_id: A UUID representing an A/B test of the requested experiment. :returns: JSON from the API """ url = self.airship.urls.get("reports_url") + "experiment/overview/{0}".format( push_id ) response = self.airship._request("GET", None, url, version=3) return response.json() def get_variant(self, push_id: str, variant_id: str) -> Dict[str, Any]: """Returns statistics and metadata about a specific variant in an experiment (A/B Test). :param push_id: A UUID representing an A/B test of the requested experiment. :param variant_id: An integer represennting the variant requested. :returns: JSON from the API """ url = self.airship.urls.get("reports_url") + "experiment/detail/{0}/{1}".format( push_id, variant_id ) response = self.airship._request("GET", None, url, version=3) return response.json()
2.796875
3
models.py
iperez319/dog-tinder
0
12778207
from google.appengine.ext import ndb class Dog(ndb.Model): name = ndb.StringProperty() breed = ndb.StringProperty() gender = ndb.StringProperty() age = ndb.StringProperty() size = ndb.StringProperty() socialLevel = ndb.StringProperty() activityLevel = ndb.StringProperty() profilePic = ndb.BlobProperty() ownerEmail = ndb.StringProperty() class UserProfile(ndb.Model): name = ndb.StringProperty() email = ndb.StringProperty() dogs = ndb.KeyProperty(Dog, repeated=True) city = ndb.StringProperty() state = ndb.StringProperty() age = ndb.IntegerProperty() sex = ndb.StringProperty(choices=["Female", "Male", "Prefer not to say"]) profilePic = ndb.BlobProperty()
2.546875
3
aiokts/manage.py
ktsstudio/aiokts
6
12778208
import argparse import inspect import logging import logging.config import os import pkgutil import sys from aiokts.managecommands import Command from aiokts.store import Store CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(CURRENT_DIR) class BaseManage(object): commands_package_path = None store_cls = Store _modules = {} _commands = None def __init__(self): self._logger = None assert self.commands_package_path is not None, \ 'Must specify path to where commands are' self.commands_package_path = os.path.abspath( os.path.join( os.path.dirname(inspect.getfile(self.__class__)), self.commands_package_path)) self.logger.debug('Commands path: %s', self.commands_package_path) @property def commands(self): if self._commands is None: self._commands = ['help'] for loader, name, ispkg in \ pkgutil.iter_modules([self.commands_package_path]): if not ispkg: self._commands.append(name) self._modules[name] = loader.find_module(name) return self._commands @property def config(self): return {} @property def debug(self): return self.config.get('debug', False) def help(self): print('Available commands:\n - %s' % ('\n - '.join(self.commands))) def run(self): args = self._parse_manage_arguments() command = None try: command = args.command if command not in self.commands: logging.error('Command %s not found' % command) self.help() return 1 if command == 'help': self.help() return 0 self._run_command(command, *args.opts) except Exception: self.logger.exception('Exception while running command %s', command) return 2 except BaseException: self.logger.exception('Exception while running command %s', command) return 3 def _run_command(self, command, *args): module = self._modules[command].load_module(command) if hasattr(module, 'main'): module.main(*args) cmd_cls = None for name, cls in module.__dict__.items(): if isinstance(cls, type) and issubclass(cls, Command)\ and cls.__module__ == module.__name__: cmd_cls = cls break assert cmd_cls is not None, \ "Couldn't find Command in command {}".format(command) cmd = cmd_cls(self) cmd.run(*args) def _parse_manage_arguments(self): parser = argparse.ArgumentParser() parser.add_argument('command', help='command to execute') parser.add_argument('opts', nargs=argparse.REMAINDER, default=None) args = parser.parse_args() return args @property def logger(self): if self._logger is None: self._logger = logging.getLogger('Manager') return self._logger def main(manager_cls): manage = manager_cls() exit(manage.run()) if __name__ == '__main__': main(Manage)
2.375
2
compressor/simple/seven.py
httpwg/compression-test
11
12778209
#!/usr/bin/env python """ Serialise ASCII as seven bits. Yes, I threw up a bit too. """ from bitarray import bitarray def encode(text): ba = bitarray() out = bitarray() ba.fromstring(text) s = 0 while s < len(ba): byte = ba[s:s+8] out.extend(byte[1:8]) s += 8 # print out return out.tobytes() def decode(bits): ba = bitarray() out = bitarray() ba.frombytes(bits) s = 0 while s < len(ba): seven = ba[s:s+7] out.append(0) out.extend(seven) s += 7 return out.tostring()[:-1].encode('ascii') if __name__ == "__main__": import sys instr = sys.argv[1].strip().encode('ascii') print "before: %s" % len(instr) f = encode(instr) print "after: %s" % len(f) g = decode(f) assert instr == g, "\n%s\n%s" % (repr(instr), repr(g))
3.671875
4
setup.py
andsor/pyggcq
1
12778210
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Setup file for ggcq. This file was generated with PyScaffold 1.2, a tool that easily puts up a scaffold for your new Python project. Learn more under: http://pyscaffold.readthedocs.org/ """ import inspect import os import sys from distutils.cmd import Command import setuptools from setuptools import setup from setuptools.command.test import test as TestCommand from distutils.extension import Extension import versioneer __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) # Change these settings according to your needs MAIN_PACKAGE = "ggcq" DESCRIPTION = ( "Scientific Python Package for G/G/c Queueing Simulation" ) LICENSE = "apache" URL = "http://github.com/andsor/pyggcq" AUTHOR = "<NAME>" EMAIL = "<EMAIL>" # Add here all kinds of additional classifiers as defined under # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics', ] # Add here console scripts like ['hello_world = devs.module:function'] CONSOLE_SCRIPTS = [] # Versioneer configuration versioneer.VCS = 'git' versioneer.versionfile_source = os.path.join(MAIN_PACKAGE, '_version.py') versioneer.versionfile_build = os.path.join(MAIN_PACKAGE, '_version.py') versioneer.tag_prefix = 'v' # tags are like v1.2.0 versioneer.parentdir_prefix = MAIN_PACKAGE + '-' class Tox(TestCommand): user_options = [ ('tox-args=', 'a', "Arguments to pass to tox"), ] def initialize_options(self): TestCommand.initialize_options(self) self.tox_args = None def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import tox import shlex errno = tox.cmdline( args=shlex.split(self.tox_args) if self.tox_args else None ) sys.exit(errno) class ToxAutoDocs(Tox): def finalize_options(self): Tox.finalize_options(self) if self.tox_args is None: self.tox_args = '' self.tox_args += ' -e autodocs ' def sphinx_builder(): try: from sphinx.setup_command import BuildDoc except ImportError: class NoSphinx(Command): user_options = [] def initialize_options(self): raise RuntimeError("Sphinx documentation is not installed, " "run: pip install sphinx") return NoSphinx class BuildSphinxDocs(BuildDoc): def run(self): if self.builder == "doctest": import sphinx.ext.doctest as doctest # Capture the DocTestBuilder class in order to return the total # number of failures when exiting ref = capture_objs(doctest.DocTestBuilder) BuildDoc.run(self) errno = ref[-1].total_failures sys.exit(errno) else: BuildDoc.run(self) return BuildSphinxDocs class ObjKeeper(type): instances = {} def __init__(cls, name, bases, dct): cls.instances[cls] = [] def __call__(cls, *args, **kwargs): cls.instances[cls].append(super(ObjKeeper, cls).__call__(*args, **kwargs)) return cls.instances[cls][-1] def capture_objs(cls): from six import add_metaclass module = inspect.getmodule(cls) name = cls.__name__ keeper_class = add_metaclass(ObjKeeper)(cls) setattr(module, name, keeper_class) cls = getattr(module, name) return keeper_class.instances[cls] def get_install_requirements(path): content = open(os.path.join(__location__, path)).read() return [req for req in content.split("\\n") if req != ''] def read(fname): return open(os.path.join(__location__, fname)).read() def setup_package(): # Assemble additional setup commands cmdclass = versioneer.get_cmdclass() cmdclass['docs'] = sphinx_builder() cmdclass['doctest'] = sphinx_builder() cmdclass['test'] = Tox cmdclass['autodocs'] = ToxAutoDocs # Some helper variables version = versioneer.get_version() docs_path = os.path.join(__location__, "docs") docs_build_path = os.path.join(docs_path, "_build") install_reqs = get_install_requirements("requirements.txt") extra_doc_reqs = get_install_requirements("requirements-doc.txt") command_options = { 'docs': {'project': ('setup.py', MAIN_PACKAGE), 'version': ('setup.py', version.split('-', 1)[0]), 'release': ('setup.py', version), 'build_dir': ('setup.py', docs_build_path), 'config_dir': ('setup.py', docs_path), 'source_dir': ('setup.py', docs_path)}, 'doctest': {'project': ('setup.py', MAIN_PACKAGE), 'version': ('setup.py', version.split('-', 1)[0]), 'release': ('setup.py', version), 'build_dir': ('setup.py', docs_build_path), 'config_dir': ('setup.py', docs_path), 'source_dir': ('setup.py', docs_path), 'builder': ('setup.py', 'doctest')}, 'test': {'test_suite': ('setup.py', 'tests')}, } setup(name=MAIN_PACKAGE, version=version, url=URL, description=DESCRIPTION, author=AUTHOR, author_email=EMAIL, license=LICENSE, long_description=read('README.rst'), classifiers=CLASSIFIERS, test_suite='tests', packages=setuptools.find_packages(exclude=['tests', 'tests.*']), install_requires=install_reqs, setup_requires=['six', 'setuptools_git>=1.1'], cmdclass=cmdclass, tests_require=['tox'], command_options=command_options, entry_points={'console_scripts': CONSOLE_SCRIPTS}, extras_require={ 'docs': extra_doc_reqs, }, include_package_data=True, # include everything in source control # but exclude these files exclude_package_data={'': ['.gitignore']}, ) if __name__ == "__main__": setup_package()
1.765625
2
utils/mp4-dash-clone.py
kahache/video_packaging_platform
8
12778211
<reponame>kahache/video_packaging_platform #!/usr/bin/env python3 __author__ = '<NAME> (<EMAIL>)' __copyright__ = 'Copyright 2011-2012 Axiomatic Systems, LLC.' ### # NOTE: this script needs Bento4 command line binaries to run # You must place the 'mp4info' and 'mp4encrypt' binaries # in a directory named 'bin/<platform>' at the same level as where # this script is. # <platform> depends on the platform you're running on: # Mac OSX --> platform = macosx # Linux x86 --> platform = linux-x86 # Windows --> platform = win32 ### Imports import sys import os import os.path as path from optparse import OptionParser import urllib.request, urllib.error, urllib.parse import shutil import json import sys from xml.etree import ElementTree from subprocess import check_output, CalledProcessError # constants DASH_NS_URN_COMPAT = 'urn:mpeg:DASH:schema:MPD:2011' DASH_NS_URN = 'urn:mpeg:dash:schema:mpd:2011' DASH_NS_COMPAT = '{'+DASH_NS_URN_COMPAT+'}' DASH_NS = '{'+DASH_NS_URN+'}' MARLIN_MAS_NS_URN = 'urn:marlin:mas:1-0:services:schemas:mpd' MARLIN_MAS_NS = '{'+MARLIN_MAS_NS_URN+'}' def Bento4Command(name, *args, **kwargs): cmd = [path.join(Options.exec_dir, name)] for kwarg in kwargs: arg = kwarg.replace('_', '-') cmd.append('--'+arg) if not isinstance(kwargs[kwarg], bool): cmd.append(kwargs[kwarg]) cmd += args #print cmd try: return check_output(cmd) except CalledProcessError as e: #print e raise Exception("binary tool failed with error %d" % e.returncode) def Mp4Info(filename, **args): return Bento4Command('mp4info', filename, **args) def GetTrackIds(mp4): track_ids = [] json_info = Mp4Info(mp4, format='json') info = json.loads(json_info, strict=False) for track in info['tracks']: track_ids.append(track['id']) return track_ids def ProcessUrlTemplate(template, representation_id, bandwidth, time, number): if representation_id is not None: result = template.replace('$RepresentationID$', representation_id) if number is not None: nstart = result.find('$Number') if nstart >= 0: nend = result.find('$', nstart+1) if nend >= 0: var = result[nstart+1 : nend] if 'Number%' in var: value = var[6:] % (int(number)) else: value = number result = result.replace('$'+var+'$', value) if bandwidth is not None: result = result.replace('$Bandwidth$', bandwidth) if time is not None: result = result.replace('$Time$', time) result = result.replace('$$', '$') return result class DashSegmentBaseInfo: def __init__(self, xml): self.initialization = None self.type = None for type in ['SegmentBase', 'SegmentTemplate', 'SegmentList']: e = xml.find(DASH_NS+type) if e is not None: self.type = type # parse common elements # type specifics if type == 'SegmentBase' or type == 'SegmentList': init = e.find(DASH_NS+'Initialization') if init is not None: self.initialization = init.get('sourceURL') if type == 'SegmentTemplate': self.initialization = e.get('initialization') self.media = e.get('media') self.timescale = e.get('timescale') self.startNumber = e.get('startNumber') # segment timeline st = e.find(DASH_NS+'SegmentTimeline') if st is not None: self.segment_timeline = [] entries = st.findall(DASH_NS+'S') for entry in entries: item = {} s_t = entry.get('t') if s_t is not None: item['t'] = int(s_t) s_d = entry.get('d') if s_d is not None: item['d'] = int(s_d) s_r = entry.get('r') if s_r is not None: item['r'] = int(s_r) else: item['r'] = 0 self.segment_timeline.append(item) break class DashRepresentation: def __init__(self, xml, parent): self.xml = xml self.parent = parent self.init_segment_url = None self.segment_urls = [] self.segment_base = DashSegmentBaseInfo(xml) self.duration = 0 # parse standard attributes self.bandwidth = xml.get('bandwidth') self.id = xml.get('id') # compute the segment base type node = self self.segment_base_type = None while node is not None: if node.segment_base.type in ['SegmentTemplate', 'SegmentList']: self.segment_base_type = node.segment_base.type break node = node.parent # compute the init segment URL self.ComputeInitSegmentUrl() def SegmentBaseLookup(self, field): node = self while node is not None: if field in node.segment_base.__dict__: return node.segment_base.__dict__[field] node = node.parent return None def AttributeLookup(self, field): node = self while node is not None: if field in node.__dict__: return node.__dict__[field] node = node.parent return None def ComputeInitSegmentUrl(self): node = self while node is not None: if node.segment_base.initialization is not None: self.initialization = node.segment_base.initialization break node = node.parent self.init_segment_url = ProcessUrlTemplate(self.initialization, representation_id=self.id, bandwidth=self.bandwidth, time=None, number=None) def GenerateSegmentUrls(self): if self.segment_base_type == 'SegmentTemplate': return self.GenerateSegmentUrlsFromTemplate() else: return self.GenerateSegmentUrlsFromList() def GenerateSegmentUrlsFromTemplate(self): media = self.SegmentBaseLookup('media') if media is None: print('WARNING: no media attribute found for representation') return timeline = self.SegmentBaseLookup('segment_timeline') if timeline is None: start = self.SegmentBaseLookup('startNumber') if start is None: current_number = 1 else: current_number = int(start) while True: url = ProcessUrlTemplate(media, representation_id=self.id, bandwidth=self.bandwidth, time="0", number=str(current_number)) current_number += 1 yield url else: current_number = 1 current_time = 0 for s in timeline: if 't' in s: current_time = s['t'] for _ in range(1+s['r']): url = ProcessUrlTemplate(media, representation_id=self.id, bandwidth=self.bandwidth, time=str(current_time), number=str(current_number)) current_number += 1 current_time += s['d'] yield url def GenerateSegmentUrlsFromList(self): segs = self.xml.find(DASH_NS+'SegmentList').findall(DASH_NS+'SegmentURL') for seg in segs: media = seg.get('media') if media is not None: yield media def __str__(self): result = "Representation: " return result class DashAdaptationSet: def __init__(self, xml, parent): self.xml = xml self.parent = parent self.segment_base = DashSegmentBaseInfo(xml) self.representations = [] for r in self.xml.findall(DASH_NS+'Representation'): self.representations.append(DashRepresentation(r, self)) def __str__(self): result = 'Adaptation Set:\n' + '\n'.join([str (r) for r in self.representations]) return result class DashPeriod: def __init__(self, xml, parent): self.xml = xml self.parent = parent self.segment_base = DashSegmentBaseInfo(xml) self.adaptation_sets = [] for s in self.xml.findall(DASH_NS+'AdaptationSet'): self.adaptation_sets.append(DashAdaptationSet(s, self)) def __str__(self): result = 'Period:\n' + '\n'.join([str(s) for s in self.adaptation_sets]) return result class DashMPD: def __init__(self, url, xml): self.url = url self.xml = xml self.parent = None self.periods = [] self.segment_base = DashSegmentBaseInfo(xml) self.type = xml.get('type') for p in self.xml.findall(DASH_NS+'Period'): self.periods.append(DashPeriod(p, self)) # compute base URL (note: we'll just use the MPD URL for now) self.base_urls = [url] base_url = self.xml.find(DASH_NS+'BaseURL') if base_url is not None: self.base_urls = [base_url.text] def __str__(self): result = "MPD:\n" + '\n'.join([str(p) for p in self.periods]) return result def ParseMpd(url, xml): mpd_tree = ElementTree.XML(xml) if mpd_tree.tag.startswith(DASH_NS_COMPAT): global DASH_NS global DASH_NS_URN DASH_NS = DASH_NS_COMPAT DASH_NS_URN = DASH_NS_URN_COMPAT if Options.verbose: print('@@@ Using backward compatible namespace') mpd = DashMPD(url, mpd_tree) if not (mpd.type is None or mpd.type == 'static'): raise Exception('Only static MPDs are supported') return mpd def MakeNewDir(dir, is_warning=False): if path.exists(dir): if is_warning: print('WARNING: ', end=' ') else: print('ERROR: ', end=' ') print('directory "'+dir+'" already exists') if not is_warning: sys.exit(1) else: os.mkdir(dir) def OpenURL(url): if url.startswith("file://"): return open(url[7:], 'rb') else: return urllib.request.urlopen(url) def ComputeUrl(base_url, url): if url.startswith('http://') or url.startswith('https://'): raise Exception('Absolute URLs are not supported') if base_url.startswith('file://'): return path.join(path.dirname(base_url), url) else: return urllib.parse.urljoin(base_url, url) class Cloner: def __init__(self, root_dir): self.root_dir = root_dir self.track_ids = [] self.init_filename = None def CloneSegment(self, url, path_out, is_init): while path_out.startswith('/'): path_out = path_out[1:] target_dir = path.join(self.root_dir, path_out) if Options.verbose: print('Cloning', url, 'to', path_out) #os.makedirs(target_dir) try: os.makedirs(path.dirname(target_dir)) except OSError: if path.exists(target_dir): pass except: raise data = OpenURL(url) outfile_name = path.join(self.root_dir, path_out) use_temp_file = False if Options.encrypt: use_temp_file = True outfile_name_final = outfile_name outfile_name += '.tmp' outfile = open(outfile_name, 'wb') try: shutil.copyfileobj(data, outfile) outfile.close() if Options.encrypt: if is_init: self.track_ids = GetTrackIds(outfile_name) self.init_filename = outfile_name #shutil.copyfile(outfile_name, outfile_name_final) args = ["--method", "MPEG-CENC"] for t in self.track_ids: args.append("--property") args.append(str(t)+":KID:"+Options.kid.encode('hex')) for t in self.track_ids: args.append("--key") args.append(str(t)+":"+Options.key.encode('hex')+':random') args += [outfile_name, outfile_name_final] if not is_init: args += ["--fragments-info", self.init_filename] if Options.verbose: print('mp4encrypt '+(' '.join(args))) Bento4Command("mp4encrypt", *args) finally: if use_temp_file and not is_init: os.unlink(outfile_name) def Cleanup(self): if (self.init_filename): os.unlink(self.init_filename) def main(): # determine the platform binary name platform = sys.platform if platform.startswith('linux'): platform = 'linux-x86' elif platform.startswith('darwin'): platform = 'macosx' # parse options parser = OptionParser(usage="%prog [options] <file-or-http-url> <output-dir>\n") parser.add_option('', '--quiet', dest="verbose", action='store_false', default=True, help="Be quiet") parser.add_option('', "--encrypt", metavar='<KID:KEY>', dest='encrypt', default=None, help="Encrypt the media, with KID and KEY specified in Hex (32 characters each)") parser.add_option('', "--exec-dir", metavar="<exec_dir>", dest="exec_dir", default=path.join(SCRIPT_PATH, 'bin', platform), help="Directory where the Bento4 executables are located") global Options (Options, args) = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(1) # process arguments mpd_url = args[0] output_dir = args[1] if Options.encrypt: if len(Options.encrypt) != 65: raise Exception('Invalid argument for --encrypt option') Options.kid = bytes.fromhex(Options.encrypt[:32]) Options.key = bytes.fromhex(Options.encrypt[33:]) # create the output dir MakeNewDir(output_dir, True) # load and parse the MPD if Options.verbose: print("Loading MPD from", mpd_url) try: mpd_xml = OpenURL(mpd_url).read().decode('utf-8') except Exception as e: print("ERROR: failed to load MPD:", e) sys.exit(1) if Options.verbose: print("Parsing MPD") mpd_xml = mpd_xml.replace('nitialisation', 'nitialization') mpd = ParseMpd(mpd_url, mpd_xml) ElementTree.register_namespace('', DASH_NS_URN) ElementTree.register_namespace('mas', MARLIN_MAS_NS_URN) cloner = Cloner(output_dir) for period in mpd.periods: for adaptation_set in period.adaptation_sets: for representation in adaptation_set.representations: # compute the base URL base_url = representation.AttributeLookup('base_urls')[0] if Options.verbose: print('Base URL = '+base_url) # process the init segment if Options.verbose: print('### Processing Initialization Segment') url = ComputeUrl(base_url, representation.init_segment_url) cloner.CloneSegment(url, representation.init_segment_url, True) # process all segment URLs if Options.verbose: print('### Processing Media Segments for AdaptationSet', representation.id) for seg_url in representation.GenerateSegmentUrls(): url = ComputeUrl(base_url, seg_url) try: cloner.CloneSegment(url, seg_url, False) except (urllib.error.HTTPError, urllib.error.URLError, IOError): # move to the next representation break # cleanup the init segment cloner.Cleanup() # modify the MPD if needed if Options.encrypt: for p in mpd.xml.findall(DASH_NS+'Period'): for s in p.findall(DASH_NS+'AdaptationSet'): cp = ElementTree.Element(DASH_NS+'ContentProtection', schemeIdUri='urn:uuid:5E629AF5-38DA-4063-8977-97FFBD9902D4') cp.tail = s.tail cids = ElementTree.SubElement(cp, MARLIN_MAS_NS+'MarlinContentIds') cid = ElementTree.SubElement(cids, MARLIN_MAS_NS+'MarlinContentId') cid.text = 'urn:marlin:kid:'+Options.kid.encode('hex') s.insert(0, cp) # write the MPD xml_tree = ElementTree.ElementTree(mpd.xml) xml_tree.write(path.join(output_dir, path.basename(urllib.parse.urlparse(mpd_url).path)), encoding="UTF-8", xml_declaration=True) ########################### SCRIPT_PATH = path.abspath(path.dirname(__file__)) if __name__ == '__main__': main()
1.9375
2
examples/multi-apps/app/libs/logging.py
luohu1/flask-example
0
12778212
# coding: utf-8 import logging import sys from flask.logging import default_handler default_formatter = '%(asctime)s %(process)d,%(threadName)s %(filename)s:%(lineno)d [%(levelname)s] %(message)s' def configure_logging(app): # handler = None if app.debug: handler = logging.StreamHandler(sys.stdout) else: filename = app.config['LOGFILE'] handler = logging.handlers.TimedRotatingFileHandler(filename, when='D') handler.setLevel(logging.INFO) handler.setFormatter(logging.Formatter(default_formatter)) app.logger.addHandler(handler) app.logger.removeHandler(default_handler)
2.375
2
audb/core/info.py
audeering/audb
1
12778213
<filename>audb/core/info.py<gh_stars>1-10 import typing import pandas as pd import audformat from audb.core import define from audb.core.api import ( dependencies, latest_version, ) from audb.core.load import ( database_cache_folder, load_header, ) def author( name: str, *, version: str = None, cache_root: str = None, ) -> str: """Author(s) of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: author(s) of database Example: >>> author('emodb', version='1.1.1') '<NAME>, <NAME>, <NAME>, <NAME>, <NAME>' """ # noqa: E501 db = header(name, version=version, cache_root=cache_root) return db.author def bit_depths( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Set[int]: """Media bit depth. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: bit depths Example: >>> bit_depths('emodb', version='1.1.1') {16} """ deps = dependencies(name, version=version, cache_root=cache_root) df = deps() return set(df[df.type == define.DependType.MEDIA].bit_depth) def channels( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Set[int]: """Media channels. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: channel numbers Example: >>> channels('emodb', version='1.1.1') {1} """ deps = dependencies(name, version=version, cache_root=cache_root) df = deps() return set(df[df.type == define.DependType.MEDIA].channels) def description( name: str, *, version: str = None, cache_root: str = None, ) -> str: """Description of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: description of database Example: >>> desc = description('emodb', version='1.1.1') >>> desc.split('.')[0] # show first sentence 'Berlin Database of Emotional Speech' """ db = header(name, version=version, cache_root=cache_root) return db.description def duration( name: str, *, version: str = None, cache_root: str = None, ) -> pd.Timedelta: """Total media duration. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: duration Example: >>> duration('emodb', version='1.1.1') Timedelta('0 days 00:24:47.092187500') """ deps = dependencies(name, version=version, cache_root=cache_root) df = deps() return pd.to_timedelta( df[df.type == define.DependType.MEDIA].duration.sum(), unit='s', ) def formats( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Set[str]: """Media formats. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: format Example: >>> formats('emodb', version='1.1.1') {'wav'} """ deps = dependencies(name, version=version, cache_root=cache_root) df = deps() return set(df[df.type == define.DependType.MEDIA].format) def header( name: str, *, version: str = None, cache_root: str = None, ) -> audformat.Database: r"""Load header of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: database object without table data Example: >>> db = header('emodb', version='1.1.1') >>> db.name 'emodb' """ if version is None: version = latest_version(name) db_root = database_cache_folder(name, version, cache_root) db, _ = load_header(db_root, name, version) return db def languages( name: str, *, version: str = None, cache_root: str = None, ) -> typing.List[str]: """Languages of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: languages of database Example: >>> languages('emodb', version='1.1.1') ['deu'] """ db = header(name, version=version, cache_root=cache_root) return db.languages def license( name: str, *, version: str = None, cache_root: str = None, ) -> str: """License of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: license of database Example: >>> license('emodb', version='1.1.1') 'CC0-1.0' """ db = header(name, version=version, cache_root=cache_root) return db.license def license_url( name: str, *, version: str = None, cache_root: str = None, ) -> str: """License URL of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: license URL of database Example: >>> license_url('emodb', version='1.1.1') 'https://creativecommons.org/publicdomain/zero/1.0/' """ db = header(name, version=version, cache_root=cache_root) return db.license_url def media( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Dict: """Audio and video media of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: media of database Example: >>> media('emodb', version='1.1.1') microphone: {type: other, format: wav, channels: 1, sampling_rate: 16000} """ db = header(name, version=version, cache_root=cache_root) return db.media def meta( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Dict: """Meta information of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: meta information of database Example: >>> meta('emodb', version='1.1.1') pdf: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.8506&rep=rep1&type=pdf """ db = header(name, version=version, cache_root=cache_root) return db.meta def organization( name: str, *, version: str = None, cache_root: str = None, ) -> str: """Organization responsible for database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: organization responsible for database Example: >>> organization('emodb', version='1.1.1') 'audEERING' """ db = header(name, version=version, cache_root=cache_root) return db.organization def raters( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Dict: """Raters contributed to database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: raters of database Example: >>> raters('emodb', version='1.1.1') gold: {type: human} """ db = header(name, version=version, cache_root=cache_root) return db.raters def sampling_rates( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Set[int]: """Media sampling rates. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: sampling rates Example: >>> sampling_rates('emodb', version='1.1.1') {16000} """ deps = dependencies(name, version=version, cache_root=cache_root) df = deps() return set(df[df.type == define.DependType.MEDIA].sampling_rate) def schemes( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Dict: """Schemes of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: schemes of database Example: >>> list(schemes('emodb', version='1.1.1')) ['confidence', 'duration', 'emotion', 'speaker', 'transcription'] """ db = header(name, version=version, cache_root=cache_root) return db.schemes def source( name: str, *, version: str = None, cache_root: str = None, ) -> str: """Source of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: source of database Example: >>> source('emodb', version='1.1.1') 'http://emodb.bilderbar.info/download/download.zip' """ db = header(name, version=version, cache_root=cache_root) return db.source def splits( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Dict: """Splits of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: splits of database Example: >>> splits('emodb', version='1.1.1') """ db = header(name, version=version, cache_root=cache_root) return db.splits def tables( name: str, *, version: str = None, cache_root: str = None, ) -> typing.Dict: """Tables of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: tables of database Example: >>> list(tables('emodb', version='1.1.1')) ['emotion', 'files'] """ db = header(name, version=version, cache_root=cache_root) return db.tables def usage( name: str, *, version: str = None, cache_root: str = None, ) -> str: """Usage of database. Args: name: name of database version: version of database cache_root: cache folder where databases are stored. If not set :meth:`audb.default_cache_root` is used Returns: usage of database Example: >>> usage('emodb', version='1.1.1') 'unrestricted' """ db = header(name, version=version, cache_root=cache_root) return db.usage
2.484375
2
tool/border_binaries_finder/utils.py
MageWeiG/karonte
1
12778214
import string # Defines CMP_SUCCS = ["strcmp", "memcmp", "strncmp", "strlcmp", "strcasecmp", "strncasecmp", "strstr"] NETWORK_KEYWORDS = ["QUERY_STRING", "username", "HTTP_", "REMOTE_ADDR", "boundary=", "Content-Type", "Content-Length", "http_", "http", "HTTP", "query", "remote", "user-agent", "soap", "index."] CASE_SENS_NETWORK_KEYWORDS = ["GET", "POST", "PUT", "DELETE", "HEAD"] MIN_STR_LEN = 3 STR_LEN = 255 ALLOWED_CHARS = string.digits + string.ascii_letters + '-/_' EXTENDED_ALLOWED_CHARS = ALLOWED_CHARS + "%,.;+=_)(*&^%$#@!~`|<>{}[]" DEFAULT_PICKLE_DIR = '/tmp/karonte/pickles/parser/' def populate_symbol_table(p): """ Populate a binary symbol table, if present :param p: angr project :return: None """ buckets = p.loader.main_object.hashtable.buckets + p.loader.main_object.hashtable.chains symtab = p.loader.main_object.hashtable.symtab names = [symtab.get_symbol(n).name for n in buckets] names = list(set([str(n) for n in names if n])) for name in names: # this will provoke symbol table to be populated [x for x in p.loader.find_all_symbols(name)]
2.125
2
src/carim_discord_bot/__init__.py
schana/carim-discord-bot
14
12778215
VERSION = '2.2.5'
1.132813
1
practicas/diccionarios.py
7junior7/python_comands
2
12778216
#********************************************************DICCIONARIOS******************************************************** # Los diccionarios en python son tipos de datos muy parecidos a los archivos json, los cuales nos permiten crear una lista # pero con identificadores definidos por nosotros. # sintaxis dicc = {"id":"valor"} producto = {"Tipo":"Laptop", "Marca":"Asus", "Precio":350.9, "Modelo":"mod01b148s"} print producto # imprime todo los datos print producto["Marca"] # imprime la marca de la laptop producto["Tipo"] = "PC" print producto
3.234375
3
Practice/Python/Basic Data Types/List_Comprehensions.py
alexanderbauer89/HackerRank
1
12778217
def print_list_comprehensions(x, y, z, n): print([[a, b, c] for a in range(0, x + 1) for b in range(0, y + 1) for c in range(0, z + 1) if a + b + c != n ]) if __name__ == '__main__': x = int(input()) y = int(input()) z = int(input()) n = int(input()) print_list_comprehensions(x, y, z, n)
3.6875
4
Scripts/Cogs/setup.py
Mahas1/BotMan.py-rewritten
0
12778218
import json from discord.ext import commands import discord import os with open('config.json') as configFile: configs = json.load(configFile) prefix = configs.get('prefix_list')[0] class Setup(commands.Cog, description='Used to set up the bot for welcome messages, mute/unmute etc.'): def __init__(self, bot): self.bot = bot @commands.command(name='setup', description='Used to set the bot up, for welcome messages, mute roles, etc.\n' 'Recommended to set the bot up as early as possible when it joins a ' 'server.') @commands.guild_only() async def setup_welcome(self, ctx): embed = discord.Embed(title='You can setup preferences for your server with these commands.', timestamp=ctx.message.created_at, color=discord.Color.random()) embed.add_field(name='Set channel for welcome messages', value=f'`{prefix}setwelcomechannel [channel]`\nExample: `{prefix}setwelcomechannel #welcome`\n' f'__**What you\'d see:**__\n' f'{ctx.author.mention} has joined **{ctx.guild.name}**! Say hi!\n' f'{ctx.author.mention} has left **{ctx.guild.name}**. Until Next time!', inline=False) embed.add_field(name='Set default reason when kicking/banning members', value=f'`{prefix}setkickreason [reason]`\nExample: `{prefix}setkickreason Being a jerk`\n' f'__**What the kicked member would see**__:\n' f'You have been kicked from **{ctx.guild.name}** for **Being a jerk**.', inline=False) embed.add_field(name='Set the mute role for this server', value=f'`{prefix}setmuterole [role]`\nExample: `{prefix}setmuterole muted` ' f'(muted must be an actual role).\n' f'You can create a mute role by `{prefix}createmuterole [role name]`', inline=False) embed.add_field(name='Set the default Member role for this server', value=f'`{prefix}setmemberrole [role]`\nExample: `{prefix}setmemberrole Member`' f' (Member must be an actual role).', inline=False) embed.set_footer(text=f'Command requested by {ctx.author.name}') await ctx.send(embed=embed) @commands.command(name='setwelcomechannel', description="Used to set the channel welcome messages arrive. " "See description of the `setup` command for more info.") @commands.has_permissions(administrator=True) @commands.guild_only() async def set_welcome_channel(self, ctx, channel: discord.TextChannel): channel_id = channel.id if not os.path.exists(f'./configs/guild{ctx.guild.id}.json'): with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump({}, jsonFile) with open(f'./configs/guild{ctx.guild.id}.json', 'r') as jsonFile: data = json.load(jsonFile) data['welcome_channel'] = channel_id with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump(data, jsonFile) await ctx.send(f'Welcome channel set to {channel.mention} successfully.') @commands.command(name='setkickreason', description='Used to set the default kick/ban reason ' 'in a case where no reason is given.\n' 'Check the description of the `setup` command ' 'for more information.') @commands.has_permissions(administrator=True) @commands.guild_only() async def set_kick_reason(self, ctx, *, reason): if not os.path.exists(f'./configs/guild{ctx.guild.id}.json'): with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump({}, jsonFile) with open(f'./configs/guild{ctx.guild.id}.json', 'r') as jsonFile: data = json.load(jsonFile) data['default_kick_ban_reason'] = str(reason) with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump(data, jsonFile) await ctx.send(f'Default kick/ban reason set to **{reason}** successfully.') @commands.command(name='setmemberrole', description='Used to set the role which is given to every member upon ' 'joining. ' 'Check description of `setup` command for more info.') @commands.has_permissions(administrator=True) @commands.guild_only() async def set_member_role(self, ctx, role: discord.Role): if not os.path.exists(f'./configs/guild{ctx.guild.id}.json'): with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump({}, jsonFile) with open(f'./configs/guild{ctx.guild.id}.json', 'r') as jsonFile: data = json.load(jsonFile) data['member_role'] = role.id with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump(data, jsonFile) await ctx.send(f'Member role set to **{role.name}** successfully.') @commands.command(name='setmuterole', description='Sets the role assigned to muted people. ' 'Use `createmuterole` for creating a muted role and ' 'automatically setting permissions to every channel.') @commands.has_permissions(administrator=True) @commands.guild_only() async def set_mute_role(self, ctx, role: discord.Role): if not os.path.exists(f'./configs/guild{ctx.guild.id}.json'): with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump({}, jsonFile) with open(f'./configs/guild{ctx.guild.id}.json', 'r') as jsonFile: data = json.load(jsonFile) data['mute_role'] = role.id with open(f'./configs/guild{ctx.guild.id}.json', 'w') as jsonFile: json.dump(data, jsonFile) await ctx.send(f'Mute role set to **{role.name}** successfully.') @commands.command(name='createmuterole', description='Creates a mute role, and sets messaging permissions to ' 'every channel.\n ' 'the `rolename` argument is optional. (Defaults to "Muted")') @commands.has_permissions(manage_roles=True) @commands.guild_only() async def create_mute_role(self, ctx, rolename=None): if rolename is None: rolename = 'Muted' guild = ctx.guild mutedRole = await guild.create_role(name=rolename) # creating the role for channel in guild.channels: await channel.set_permissions(mutedRole, speak=False, send_messages=False, use_slash_commands=False) # setting permissions for each channel await ctx.send(f'Created role **{mutedRole}** and set permissions accordingly.') await Setup.set_mute_role(self, ctx, mutedRole) def setup(bot): bot.add_cog(Setup(bot))
2.734375
3
nmosquery/__init__.py
bbc/nmos-query
1
12778219
VALID_TYPES = ["flows", "sources", "nodes", "devices", "senders", "receivers"]
1.078125
1
oxasl/basil.py
physimals/oxasl
1
12778220
#!/usr/bin/env python """ OXASL - Bayesian model fitting for ASL The BASIL module is a little more complex than the other Workspace based modules because of the number of options available and the need for flexibility in how the modelling steps are run. The main function is ``basil`` which performs model fitting on ASL data in the Workspace ``asldata`` attribute. wsp = Workspace() wsp.asldata = AslImage("asldata.nii.gz", tis=[1.6,]) wsp.infertiss = True basil(wsp.sub("basil")) basil.finalstep.mean_ftiss.save("mean_ftiss.nii.gz") Because of the number of options possible for the modelling process, the workspace attribute ``basil_options`` can be set as a dictionary of extra options relevant only to Basil: wsp = Workspace() wsp.asldata = AslImage("asldata.nii.gz", tis=[1.6,]) wsp.basil_options = {"infertiss" : True, "spatial" : True} basil(wsp.sub("basil")) basil.finalstep.mean_ftiss.save("mean_ftiss.nii.gz") All options specified in basil_options are either consumed by Basil, or if not passed directly to the model. Copyright (c) 2008-2020 Univerisity of Oxford """ import sys import math import numpy as np import scipy.ndimage from fsl.wrappers import LOAD from fsl.data.image import Image from oxasl import __version__, __timestamp__, AslImage, Workspace, image, reg from oxasl.options import AslOptionParser, OptionCategory, OptionGroup, GenericOptions def basil(wsp, prefit=True, **kwargs): """ For oxasl_deblur compatibility """ run(wsp, prefit, **kwargs) def run(wsp, prefit=True, **kwargs): """ Run BASIL modelling on ASL data in a workspace :param wsp: Workspace object :param prefit: If True, run a pre-fitting step using the mean over repeats of the ASL data Required workspace attributes ----------------------------- - ``asldata`` : AslImage object Optional workspace attributes ----------------------------- - ``mask`` : Brain mask (fsl.Image) - ``wp`` : If True, use 'white paper' mode (Alsop et al) - modifies some defaults and infers tissue component only - ``infertiss`` : If True, infer tissue component (default: True) - ``inferbat`` : If True, infer bolus arrival time (default: False) - ``infertau`` : If True, infer bolus duration (default: False) - ``inferart`` : If True, infer arterial component (default: False) - ``infert1`` : If True, infer T1 (default: False) - ``inferpc`` : If True, infer PC (default: False) - ``t1``: Assumed/initial estimate for tissue T1 (default: 1.65 in white paper mode, 1.3 otherwise) - ``t1b``: Assumed/initial estimate for blood T1 (default: 1.65) - ``bat``: Assumed/initial estimate for bolus arrival time (s) (default 0 in white paper mode, 1.3 for CASL, 0.7 otherwise) - ``t1im`` : T1 map as Image - ``pgm`` : Grey matter partial volume map as Image - ``pwm`` : White matter partial volume map as Image - ``initmvn`` : MVN structure to use as initialization as Image - ``spatial`` : If True, include final spatial VB step (default: False) - ``onestep`` : If True, do all inference in a single step (default: False) - ``basil_options`` : Optional dictionary of additional options for underlying model """ wsp.log.write("\nRunning BASIL Bayesian modelling on ASL data in '%s' data space\n" % wsp.ifnone("image_space", "native")) # Single or Multi TI setup if wsp.asldata.ntis == 1: # Single TI data - don't try to infer arterial component of bolus duration, we don't have enough info wsp.log.write(" - Operating in Single TI mode - no arterial component, fixed bolus duration\n") wsp.inferart = False wsp.infertau = False batsd_default = 0.1 else: # For multi TI/PLD data, set a more liberal prior for tissue ATT since we should be able to # determine this from the data. NB this leaves the arterial BAT alone. batsd_default = 1 if wsp.wp: # White paper mode - this overrides defaults, but can be overwritten by command line # specification of individual parameters wsp.log.write(" - Analysis in white paper mode: T1 default=1.65, BAT default=0, voxelwise calibration\n") t1_default = 1.65 bat_default = 0.0 else: t1_default = 1.3 if wsp.asldata.casl: bat_default = 1.3 else: bat_default = 0.7 if wsp.t1 is None: wsp.t1 = t1_default if wsp.t1b is None: wsp.t1b = 1.65 if wsp.bat is None: wsp.bat = bat_default if wsp.batsd is None: wsp.batsd = batsd_default if wsp.infertiss is None: wsp.infertiss = True # if we are doing CASL then fix the bolus duration, unless explicitly told us otherwise if wsp.infertau is None: wsp.infertau = not wsp.asldata.casl # Pick up extra BASIL options wsp.basil_options = dict(wsp.ifnone("basil_options", {})) mask_policy = wsp.ifnone("basil_mask", "default") if mask_policy in ("default", "dilated"): wsp.log.write(" - Using pipeline analysis mask\n") # Two possible locations for compatibility if wsp.rois is not None and wsp.rois.mask is not None: mask = wsp.rois.mask else: mask = wsp.mask if mask_policy == "dilated": # Use 3x3x3 kernel for compatibility with fslmaths default wsp.log.write(" - Dilating mask for Basil analysis\n") struct = scipy.ndimage.generate_binary_structure(3, 3) mask = Image(scipy.ndimage.binary_dilation(mask.data, structure=struct).astype(np.int), header=mask.header) elif mask_policy == "none": wsp.log.write(" - Not using mask for Basil - will fit every voxel\n") mask = Image(np.ones(wsp.asldata.data.shape[:3]), header=wsp.asldata.header) else: raise ValueError("Unrecognized mask policy: %s" % mask_policy) # If we only have one volume, set a nominal noise prior as it is not possible to # estimate from the data if wsp.asldata.nvols / wsp.asldata.ntc == 1: wsp.log.write(" - Restricting noise prior as only one ASL volume\n") wsp.basil_options["prior-noise-stddev"] = 1.0 if prefit and max(wsp.asldata.rpts) > 1: # Initial BASIL run on mean data wsp.log.write(" - Doing initial fit on mean at each TI\n\n") init_wsp = wsp.sub("init") main_wsp = wsp.sub("main") basil_fit(init_wsp, wsp.asldata.mean_across_repeats(), mask=mask) wsp.basil_options["continue-from-mvn"] = wsp.init.finalstep.finalMVN main_wsp.initmvn = wsp.basil_options["continue-from-mvn"] else: main_wsp = wsp # Main run on full ASL data wsp.log.write("\n - Doing fit on full ASL data\n\n") basil_fit(main_wsp, wsp.asldata, mask=mask) wsp.finalstep = main_wsp.finalstep def basil_fit(wsp, asldata, mask=None): """ Run Bayesian model fitting on ASL data See ``basil`` for details of workspace attributes used :param wsp: Workspace object :param asldata: AslImage object to use as input data """ if len(asldata.tes) > 1: steps = basil_steps_multite(wsp, asldata, mask) else: steps = basil_steps(wsp, asldata, mask) prev_result = None wsp.asldata_diff = asldata.diff().reorder("rt") wsp.basil_mask = mask for idx, step in enumerate(steps): step_wsp = wsp.sub("step%i" % (idx+1)) desc = "Step %i of %i: %s" % (idx+1, len(steps), step.desc) if prev_result is not None: desc += " - Initialise with step %i" % idx step_wsp.log.write(desc + " ") result = step.run(prev_result, log=wsp.log, fsllog=wsp.fsllog, fabber_corelib=wsp.fabber_corelib, fabber_libs=wsp.fabber_libs, fabber_coreexe=wsp.fabber_coreexe, fabber_exes=wsp.fabber_exes) for key, value in result.items(): if key == "modelfit": # Treat model fit specially - make it an AslImage and also output a mean # across repeats version for comparison value = wsp.asldata_diff.derived(value.data, header=value.header) modelfit_mean = value.mean_across_repeats() setattr(step_wsp, "modelfit_mean", modelfit_mean) setattr(step_wsp, key, value) if step_wsp.logfile is not None and step_wsp.savedir is not None: step_wsp.set_item("logfile", step_wsp.logfile, save_fn=str) prev_result = result wsp.finalstep = step_wsp wsp.log.write("\nEnd\n") def _calc_slicedt(wsp, options): """ Calculate the slicedt for basil given that we may be quantifying in a space other than the usual ASL space We do this by generating a slice time offset image and transforming it to quantification space. Since this could be rotated wrt to the asl data we may need to warn if the resulting image has significant slice time variation across X or Y axes """ img_space = wsp.ifnone("image_space", "native") if img_space != "native": asldata = options["data"] _x, _y, z, _t = np.indices(list(asldata.data.shape[:3]) + [asldata.ntis,]) print(z.shape) tis_arr = np.array(asldata.tis) + (z.astype(np.float32) * options["slicedt"]) print(tis_arr.shape) tis_img = Image(tis_arr, header=options["data"].header) wsp.tiimg = reg.change_space(wsp, tis_img, wsp.ifnone("image_space", "native")) #print(ztrans.data) print(wsp.tiimg.data.shape) del options["slicedt"] ti_idx = 1 while "ti%i" % ti_idx in options: del options["ti%i" % ti_idx] ti_idx += 1 options["tiimg"] = wsp.tiimg def basil_steps(wsp, asldata, mask=None): """ Get the steps required for a BASIL run This is separated for the case where an alternative process wants to run the actual modelling, or so that the steps can be checked prior to doing an actual run. Arguments are the same as the ``basil`` function. No workspace is required. """ if asldata is None: raise ValueError("Input ASL data is None") wsp.log.write("BASIL v%s\n" % __version__) asldata.summary(log=wsp.log) asldata = asldata.diff().reorder("rt") # Default Fabber options for VB runs and spatial steps. Note that attributes # which are None (e.g. sliceband) are not passed to Fabber options = { "data" : asldata, "model" : "aslrest", "disp" : "none", "exch" : "mix", "method" : "vb", "noise" : "white", "allow-bad-voxels" : True, "max-iterations" : 20, "convergence" : "trialmode", "max-trials" : 10, "save-mean" : True, "save-mvn" : True, "save-std" : True, "save-model-fit" : True, "save-residuals" : wsp.ifnone("output_residuals", False), } if mask is not None: options["mask"] = mask # We choose to pass TIs (not PLDs). The asldata object ensures that # TIs are correctly derived from PLDs, when these are specified, by adding # the bolus duration. for idx, ti in enumerate(asldata.tis): options["ti%i" % (idx+1)] = ti options["rpt%i" % (idx+1)] = asldata.rpts[idx] # Bolus duration - use a single value where possible as cannot infer otherwise taus = getattr(asldata, "taus", [1.8,]) if min(taus) == max(taus): options["tau"] = taus[0] else: for idx, tau in enumerate(taus): options["tau%i" % (idx+1)] = tau # Other asl data parameters for attr in ("casl", "slicedt", "sliceband"): if getattr(asldata, attr, None) is not None: options[attr] = getattr(asldata, attr) _calc_slicedt(wsp, options) if wsp.noiseprior: # Use an informative noise prior if wsp.noisesd is None: snr = wsp.ifnone("snr", 10) wsp.log.write(" - Using SNR of %f to set noise std dev\n" % snr) # Estimate signal magntiude FIXME diffdata_mean is always 3D? if wsp.diffdata_mean.ndim > 3: datamax = np.amax(wsp.diffdata_mean.data, 3) else: datamax = wsp.diffdata_mean.data brain_mag = np.mean(datamax.data[mask.data != 0]) # this will correspond to whole brain CBF (roughly) - about 0.5 of GM noisesd = math.sqrt(brain_mag * 2 / snr) else: noisesd = wsp.noisesd wsp.log.write(" - Using a prior noise sd of: %f\n" % noisesd) options["prior-noise-stddev"] = noisesd # Add Basil-specific options defined on the workspace options.update(wsp.ifnone("basil_options", {})) # Additional optional workspace arguments for attr in ("t1", "t1b", "bat", "FA", "pwm", "pgm", "batsd"): value = getattr(wsp, attr) if value is not None: options[attr] = value # Options for final spatial step prior_type_spatial = "M" prior_type_mvs = "A" options_svb = { "method" : "spatialvb", "param-spatial-priors" : "N+", "convergence" : "maxits", "max-iterations": 20, } wsp.log.write("Model (in fabber) is : %s\n" % options["model"]) wsp.log.write("Dispersion model option is %s\n" % options["disp"]) wsp.log.write("Compartment exchange model option is %s\n" % options["exch"]) inferdisp = options["disp"] != "none" inferexch = options["exch"] != "mix" # Partial volume correction pvcorr = "pgm" in options or "pwm" in options if pvcorr: if not wsp.infertiss: raise ValueError("ERROR: PV correction is not compatible with --artonly option (there is no tissue component)") options["incpve"] = True if "pgm" not in options or "pwm" not in options: raise ValueError("Only one partial volume map (GM / WM) was supplied for PV correctioN") # Need a spatial step with more iterations for the PV correction wsp.spatial = True options_svb["max-iterations"] = 200 # Ignore partial volumes below 0.1 pgm_img = options.pop("pgm") pwm_img = options.pop("pwm") pgm = np.copy(pgm_img.data) pwm = np.copy(pwm_img.data) pgm[pgm < 0.1] = 0 pgm[pgm > 1] = 1 pwm[pwm < 0.1] = 0 pwm[pwm > 1] = 1 pgm = Image(pgm, header=pgm_img.header) pwm = Image(pwm, header=pwm_img.header) # Set general parameter inference and inclusion if wsp.infertiss: options["inctiss"] = True if wsp.inferbat: options["incbat"] = True options["inferbat"] = True # Infer in first step if wsp.inferart: options["incart"] = True if wsp.inferpc: options["incpc"] = True if wsp.infertau: options["inctau"] = True if wsp.infert1: options["inct1"] = True # Keep track of the number of spatial priors specified by name spriors = 1 if wsp.initmvn: # we are being supplied with an initial MVN wsp.log.write("Initial MVN being loaded %s\n" % wsp.initmvn.name) options["continue-from-mvn"] = wsp.initmvn # T1 image prior if wsp.t1im is not None: spriors = _add_prior(options, spriors, "T_1", type="I", image=wsp.t1im) # BAT image prior if wsp.batim is not None: # With a BAT image prior we must include BAT even if we are not inferring it # (in this case the image prior will be treated as ground truth) spriors = _add_prior(options, spriors, "delttiss", type="I", image=wsp.batim) options["incbat"] = True steps = [] components = "" ### --- TISSUE MODULE --- if wsp.infertiss: components += " Tissue " options["infertiss"] = True step_desc = "VB - %s" % components if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) # setup spatial priors ready spriors = _add_prior(options_svb, spriors, "ftiss", type=prior_type_spatial) ### --- ARTERIAL MODULE --- if wsp.inferart: components += " Arterial " options["inferart"] = True step_desc = "VB - %s" % components if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) # setup spatial priors ready spriors = _add_prior(options_svb, spriors, "fblood", type=prior_type_mvs) ### --- BOLUS DURATION MODULE --- if wsp.infertau: components += " Bolus duration " options["infertau"] = True step_desc = "VB - %s" % components if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) ### --- MODEL EXTENSIONS MODULE --- # Add variable dispersion and/or exchange parameters and/or pre-capiliary if inferdisp or inferexch or wsp.inferpc: if inferdisp: components += " dispersion" options["inferdisp"] = True if inferexch: components += " exchange" options["inferexch"] = True if wsp.inferpc: components += " pre-capiliary" options["inferpc"] = True step_desc = "VB - %s" % components if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) ### --- T1 MODULE --- if wsp.infert1: components += " T1 " options["infert1"] = True step_desc = "VB - %s" % components if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) ### --- PV CORRECTION MODULE --- if pvcorr: # setup ready for PV correction, which has to be done with spatial priors components += " PVE" options["pvcorr"] = True # set the image priors for the PV maps spriors = _add_prior(options, spriors, "pvgm", type="I", image=pgm) spriors = _add_prior(options, spriors, "pvwm", type="I", image=pwm) spriors = _add_prior(options, spriors, "fwm", type="M") if steps: # Add initialisaiton step for PV correction - ONLY if we have something to init from steps.append(PvcInitStep(wsp, {"data" : asldata, "mask" : mask, "pgm" : pgm, "pwm" : pwm}, "PVC initialisation")) ### --- SPATIAL MODULE --- if wsp.spatial: step_desc = "Spatial VB - %s" % components options.update(options_svb) del options["max-trials"] if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) ### --- SINGLE-STEP OPTION --- if wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) if not steps: raise ValueError("No steps were generated - no parameters were set to be inferred") return steps def basil_steps_multite(wsp, asldata, mask=None, **kwargs): """ Get the steps required for a BASIL run on multi-TE data This is separated for the case where an alternative process wants to run the actual modelling, or so that the steps can be checked prior to doing an actual run. Arguments are the same as the ``basil`` function. """ if asldata is None: raise ValueError("Input ASL data is None") wsp.log.write("BASIL v%s\n" % __version__) asldata.summary(log=wsp.log) asldata = asldata.diff().reorder("rt") # Default Fabber options for VB runs and spatial steps. Note that attributes # which are None (e.g. sliceband) are not passed to Fabber options = { "data" : asldata, "model" : "asl_multite", "method" : "vb", "noise" : "white", "allow-bad-voxels" : True, "max-iterations" : 20, "convergence" : "trialmode", "max-trials" : 10, "save-mean" : True, "save-mvn" : True, "save-std" : True, "save-model-fit" : True, } if mask is not None: options["mask"] = mask # We choose to pass TIs (not PLDs). The asldata object ensures that # TIs are correctly derived from PLDs, when these are specified, by adding # the bolus duration. _list_option(options, asldata.tis, "ti") # Pass multiple TEs _list_option(options, asldata.tes, "te") # Bolus duration must be constant for multi-TE model if min(asldata.taus) != max(asldata.taus): raise ValueError("Multi-TE model does not support variable bolus durations") else: options["tau"] = asldata.taus[0] # Repeats must be constant for multi-TE model if min(asldata.rpts) != max(asldata.rpts): raise ValueError("Multi-TE model does not support variable repeats") else: options["repeats"] = asldata.rpts[0] # Other asl data parameters for attr in ("casl", "slicedt", "sliceband"): if getattr(asldata, attr, None) is not None: options[attr] = getattr(asldata, attr) # Keyword arguments override options options.update(kwargs) # Additional optional workspace arguments for attr in ("t1", "t1b", "t2", "t2b"): value = getattr(wsp, attr) if value is not None: if attr.startswith("t2"): # Model expects T2 in seconds not ms options[attr] = float(value) / 1000 else: options[attr] = value # Options for final spatial step prior_type_spatial = "M" prior_type_mvs = "A" options_svb = { "method" : "spatialvb", "param-spatial-priors" : "N+", "convergence" : "maxits", "max-iterations": 20, } wsp.log.write("Model (in fabber) is : %s\n" % options["model"]) # Set general parameter inference and inclusion if not wsp.infertiss: wsp.log.write("WARNING: infertiss=False but ftiss is always inferred in multi-TE model\n") if not wsp.inferbat: wsp.log.write("WARNING: inferbat=False but BAT is always inferred in multi-TE model\n") if wsp.inferart: wsp.log.write("WARNING: inferart=True but multi-TE model does not support arterial component\n") if wsp.infertau: options["infertau"] = True if wsp.infert1: options["infert1"] = True if wsp.infert2: options["infert2"] = True # Keep track of the number of spatial priors specified by name spriors = 1 if wsp.initmvn: # we are being supplied with an initial MVN wsp.log.write("Initial MVN being loaded %s\n" % wsp.initmvn.name) options["continue-from-mvn"] = wsp.initmvn # T1 image prior if wsp.t1im: spriors = _add_prior(options, spriors, "T_1", type="I", image=wsp.t1im) # BAT image prior if wsp.batim is not None: # With a BAT image prior we must include BAT even if we are not inferring it # (in this case the image prior will be treated as ground truth) spriors = _add_prior(options, spriors, "delttiss", type="I", image=wsp.batim) options["incbat"] = True steps = [] components = "" ### --- TISSUE MODULE --- #if wsp.infertiss: if True: components += " Tissue" ### Inference options if wsp.infertau: components += " Bolus duration" options["infertau"] = True if wsp.infert1: components += " T1" options["infert1"] = True if wsp.infertexch: components += " Exchange time" options["infertexch"] = True step_desc = "VB - %s" % components if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) # Setup spatial priors ready spriors = _add_prior(options_svb, spriors, "ftiss", type=prior_type_spatial) ### --- SPATIAL MODULE --- if wsp.spatial: step_desc = "Spatial VB - %s" % components options.update(options_svb) del options["max-trials"] if not wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) ### --- SINGLE-STEP OPTION --- if wsp.onestep: steps.append(FabberStep(wsp, options, step_desc)) if not steps: raise ValueError("No steps were generated - no parameters were set to be inferred") return steps def _list_option(options, values, name): for idx, value in enumerate(values): options["%s%i" % (name, idx+1)] = value def _add_prior(options, prior_idx, param, **kwargs): options["PSP_byname%i" % prior_idx] = param for key, value in kwargs.items(): options["PSP_byname%i_%s" % (prior_idx, key)] = value return prior_idx + 1 class Step(object): """ A step in the Basil modelling process """ def __init__(self, wsp, options, desc): self.options = dict(options) self.desc = desc # Need to convert all images to target image space for key in list(options.keys()): poss_img = self.options[key] if isinstance(poss_img, Image): image_space = wsp.ifnone("image_space", "native") self.options[key] = reg.change_space(wsp, poss_img, image_space, mask=(key == 'mask')) class FabberStep(Step): """ A Basil step which involves running Fabber """ def run(self, prev_output, log=sys.stdout, fsllog=None, **kwargs): """ Run Fabber, initialising it from the output of a previous step """ if prev_output is not None: self.options["continue-from-mvn"] = prev_output["finalMVN"] from .wrappers import fabber ret = fabber(self.options, output=LOAD, progress_log=log, log=fsllog, **kwargs) log.write("\n") return ret class PvcInitStep(Step): """ A Basil step which initialises partial volume correction """ def run(self, prev_output, log=sys.stdout, fsllog=None, **kwargs): """ Update the MVN from a previous step to include initial estimates for PVC parameters """ log.write("Initialising partial volume correction...\n") # set the inital GM amd WM values using a simple PV correction wm_cbf_ratio = 0.4 # Modified pvgm map temp_pgm = np.copy(self.options["pgm"].data) temp_pgm[temp_pgm < 0.2] = 0.2 # First part of correction psuedo WM CBF term prev_ftiss = prev_output["mean_ftiss"].data wm_cbf_term = (prev_ftiss * wm_cbf_ratio) * self.options["pwm"].data gmcbf_init = (prev_ftiss - wm_cbf_term) / temp_pgm wmcbf_init = gmcbf_init * wm_cbf_ratio mvn = prev_output["finalMVN"] gmcbf_init = Image(gmcbf_init, header=mvn.header) wmcbf_init = Image(wmcbf_init, header=mvn.header) # HACK: This seems to be required to get the fslpy decorators to write # the temporary file correctly mask = Image(self.options["mask"].data, header=self.options["mask"].header) # load these into the MVN mvn = prev_output["finalMVN"] from .wrappers import mvntool params = prev_output["paramnames"] mvn = mvntool(mvn, params.index("ftiss")+1, output=LOAD, mask=mask, write=True, valim=gmcbf_init, var=0.1, log=fsllog)["output"] mvn = mvntool(mvn, params.index("fwm")+1, output=LOAD, mask=mask, write=True, valim=wmcbf_init, var=0.1, log=fsllog)["output"] log.write("DONE\n") return {"finalMVN" : mvn, "gmcbf_init" : gmcbf_init, "wmcbf_init" : wmcbf_init} class BasilOptions(OptionCategory): """ BASIL option category """ def __init__(self): OptionCategory.__init__(self, "basil") def groups(self, parser): groups = [] group = OptionGroup(parser, "BASIL options") group.add_option("--infertau", help="Infer bolus duration", action="store_true", default=False) group.add_option("--inferart", help="Infer macro vascular (arterial) signal component (not supported for multi-TE data)", action="store_true", default=False) group.add_option("--inferpc", help="Infer pre-capillary signal component (not supported for multi-TE data)", action="store_true", default=False) group.add_option("--infert1", help="Include uncertainty in T1 values", action="store_true", default=False) group.add_option("--infertexch", help="Infer exchange time (multi-TE data only)", action="store_true", default=False) group.add_option("--artonly", help="Remove tissue component and infer only arterial component (not supported for multi-TE data)", action="store_true", default=False) group.add_option("--fixbat", help="Fix bolus arrival time", action="store_false", default=True) group.add_option("--batsd", help="Bolus arrival time standard deviation (s) - default 1.0 for multi-PLD, 0.1 otherwise", type=float) group.add_option("--spatial", help="Add step that implements adaptive spatial smoothing on CBF", action="store_true", default=False) group.add_option("--fast", help="Faster analysis (1=faster, 2=single step", type=int, default=0) group.add_option("--noiseprior", help="Use an informative prior for the noise estimation", action="store_true", default=False) group.add_option("--noisesd", help="Set a custom noise std. dev. for the nosie prior", type=float) group.add_option("--basil-mask", help="Masking policy to use for Basil model fitting. Does not affect analysis mask used in rest of pipeline. 'dilate' means dilate the default analysis mask. 'none' means use no masking", type="choice", choices=["default", "dilated", "none"]) group.add_option("--basil-options", "--fit-options", help="File containing additional options for model fitting step", type="optfile") groups.append(group) group = OptionGroup(parser, "Model options") group.add_option("--disp", help="Model for label dispersion", default="none") group.add_option("--exch", help="Model for tissue exchange (residue function)", default="mix") groups.append(group) group = OptionGroup(parser, "Partial volume correction / CBF estimation (enforces --spatial)") group.add_option("--pgm", help="Gray matter PV map", type="image") group.add_option("--pwm", help="White matter PV map", type="image") groups.append(group) group = OptionGroup(parser, "Special options") group.add_option("--t1im", help="Voxelwise T1 tissue estimates", type="image") group.add_option("--batim", "--attim", help="Voxelwise BAT (ATT) estimates in seconds", type="image") groups.append(group) return groups def main(): """ Entry point for BASIL command line application """ try: parser = AslOptionParser(usage="basil -i <ASL input file> [options...]", version=__version__) parser.add_category(image.AslImageOptions()) parser.add_category(BasilOptions()) parser.add_category(GenericOptions()) options, _ = parser.parse_args(sys.argv) if not options.output: options.output = "basil" if not options.asldata: sys.stderr.write("Input file not specified\n") parser.print_help() sys.exit(1) asldata = AslImage(options.asldata, **parser.filter(options, "image")) wsp = Workspace(savedir=options.output, **vars(options)) wsp.asldata = asldata # Deal with --artonly if wsp.artonly: wsp.infertiss = False wsp.inferart = True # Adjust number of iterations based on fast option if not wsp.fast: num_iter, num_trials, onestep = 20, 10, False elif wsp.fast == 1: num_iter, num_trials, onestep = 5, 2, False elif wsp.fast == 2: num_iter, num_trials, onestep = 10, 5, True else: raise ValueError("Not a valid option for fast: %s" % str(wsp.fast)) wsp.max_iterations = num_iter wsp.max_trials = num_trials wsp.onestep = onestep # Run BASIL processing, passing options as keyword arguments using ** basil(wsp) except ValueError as exc: sys.stderr.write("\nERROR: " + str(exc) + "\n") sys.stderr.write("Use --help for usage information\n") sys.exit(1) if __name__ == "__main__": main()
2.5625
3
src/controls/array_control.py
furbrain/CVExplorer
0
12778221
from typing import Optional, TYPE_CHECKING import wx if TYPE_CHECKING: from gui.pane import FunctionPane # noinspection PyPep8Naming class ArrayControl(wx.ComboBox): # noinspection PyShadowingBuiltins def __init__(self, parent, id): from functions import Function choices = list(Function.get_all_vars().keys()) super().__init__(parent, id, choices=choices, value=choices[0]) def get_pane(self, window: wx.Window) -> "FunctionPane": from gui.pane import FunctionPane parent = window.GetParent() if isinstance(parent, FunctionPane): return parent if parent is None: raise ValueError("Could not find a FunctionPane parent for element") return self.get_pane(parent) def SetValue(self, value: Optional[str]): if value is None: self.SetSelection(0) else: super().SetValue(value) def GetValue(self): from gui.gui import MainFrame frame: MainFrame = self.GetTopLevelParent() return eval(super().GetValue(), frame.get_vars(self)) def GetCode(self): return super().GetValue()
2.453125
2
memwatch.py
Ezibenroc/memwatch
0
12778222
import sys import csv import datetime import time import argparse from subprocess import Popen, PIPE class Watcher: def __init__(self, cmd, time_interval, filename): self.cmd = cmd self.time_interval = time_interval self.filename = filename self.outputfile = open(filename, 'w') self.writer = csv.writer(self.outputfile) self.meminfo_keys = list(self.parse_meminfo().keys()) self.writer.writerow(['timestamp'] + self.meminfo_keys) @staticmethod def parse_meminfo(): with open('/proc/meminfo') as meminfo: lines = meminfo.readlines() result = {} for line in lines: name, value = line.split(':') value = value.strip() if value.endswith('kB'): value = int(value[:-2])*1000 else: value = int(value) result[name] = value return result def add_measure(self): meminfo = self.parse_meminfo() timestamp = str(datetime.datetime.now()) self.writer.writerow([timestamp] + [meminfo[k] for k in self.meminfo_keys]) return meminfo['MemAvailable'] def run_and_watch(self): min_mem = self.add_measure() max_mem = min_mem proc = Popen(self.cmd, stdout=PIPE, stderr=PIPE) while proc.poll() is None: time.sleep(self.time_interval) new_mem = self.add_measure() if new_mem > max_mem: max_mem = new_mem if new_mem < min_mem: min_mem = new_mem stdout, stderr = proc.communicate() sys.stdout.write(stdout.decode()) sys.stderr.write(stderr.decode()) sys.stderr.write(f'Memory consumption: {(max_mem - min_mem)*1e-9:.3f} GB\n') self.outputfile.flush() sys.exit(proc.returncode) def main(args): parser = argparse.ArgumentParser(description='Monitoring of a command memory consumption') parser.add_argument('--time_interval', '-t', type=int, default=1, help='Period of the measures, in seconds') parser.add_argument('--output', '-o', type=str, default='/tmp/memwatch.csv', help='Output file for the measures') parser.add_argument('command', type=str, help='Command line to execute') args = parser.parse_args(args) watcher = Watcher(cmd=args.command.split(), time_interval=args.time_interval, filename=args.output) watcher.run_and_watch() if __name__ == '__main__': main(sys.argv[1:])
2.6875
3
mobtick/models.py
proteus2171/test
0
12778223
from django.db import models # Create your models here. class ticket(models.Model): timestamp = models.DateField(auto_now_add=True,auto_now=False,) tech = models.CharField(max_length=50,) site = models.CharField(max_length=50,) user = models.CharField(max_length=50,) issue = models.CharField(max_length=200,) tickid = models.AutoField(primary_key=True) complete = models.BooleanField() reqact = models.CharField(max_length=200, blank=True,) def __unicode__(self): return self.site
2.078125
2
tests/derivate/linear_equation_derivate_test.py
cenkbircanoglu/clustering
23
12778224
from unittest import TestCase from similarityPy.derivate.linear_equation_derivate import LinearEquationDerivate from tests import test_logger __author__ = 'cenk' class LinearEquationDerivateTest(TestCase): def setUp(self): pass def test_algorithm(self): test_logger.debug("LinearEquationDerivateTest - test_algorithm Starts") """ This data symbolise "y=2x + 1" """ data = [2, 1] linear_equation_derivate = LinearEquationDerivate.calculate(data) expected_result = [2] self.assertEquals(expected_result, linear_equation_derivate) linear_equation_derivate = LinearEquationDerivate.calculate_equation(data) expected_result = "2" self.assertEquals(expected_result, linear_equation_derivate) data = [3, 4, 5, 6, 2, 1] linear_equation_derivate = LinearEquationDerivate.calculate(data) expected_result = [15, 16, 15, 12, 2] self.assertEquals(expected_result, linear_equation_derivate) linear_equation_derivate = LinearEquationDerivate.calculate_equation(data) expected_result = "15*x^4+ 16*x^3+ 15*x^2+ 12*x+ 2" self.assertEquals(expected_result, linear_equation_derivate) test_logger.debug("LinearEquationDerivateTest - test_algorithm Ends") def derivative(f): """Computes the numerical derivative of a function.""" def df(x, h=0.1e-5): return (f(x + h / 2) - f(x - h / 2) ) / h return df def g(x): return x * x * x dg = derivative(g) print dg(3)
3.671875
4
leetcode/LCP_40.py
zhaipro/acm
0
12778225
class Solution: def maxmiumScore(self, cards: List[int], cnt: int) -> int: cards.sort() r = sum(cards[-cnt:]) if r % 2 == 0: return r r0 = 0 r1 = 0 try: x0 = next(x for x in cards[-cnt:] if x % 2 == 0) y1 = next(x for x in cards[-cnt - 1::-1] if x % 2) r0 = r - x0 + y1 except: pass try: x1 = next(x for x in cards[-cnt:] if x % 2) y0 = next(x for x in cards[-cnt - 1::-1] if x % 2 == 0) r1 = r - x1 + y0 except: pass return max(r0, r1)
2.78125
3
backend/models.py
nhatnxn/layout_GateGCN
17
12778226
import torch from vietocr.tool.config import Cfg from vietocr.tool.predictor import Predictor import configs as cf from models.saliency.u2net import U2NETP from backend.text_detect.craft_utils import get_detector def load_text_detect(): text_detector = get_detector(cf.text_detection_weights_path, cf.device) return text_detector def load_saliency(): net = U2NETP(3, 1) net = net.to(cf.device) net.load_state_dict(torch.load(cf.saliency_weight_path, map_location=cf.device)) net.eval() return net def load_text_recognize(): config = Cfg.load_config_from_name("vgg_seq2seq") config["cnn"]["pretrained"] = False config["device"] = cf.device config["predictor"]["beamsearch"] = False detector = Predictor(config) return detector
2.171875
2
python/cartons_inventory/cartons.py
sdss/cartons_inventory
0
12778227
<reponame>sdss/cartons_inventory<filename>python/cartons_inventory/cartons.py import csv import inspect import os import numpy as np import pandas as pd from astropy.io import ascii from sdssdb.peewee.sdss5db.targetdb import (Cadence, Carton, CartonToTarget, Category, Instrument, Magnitude, Mapper, Version) import cartons_inventory from cartons_inventory import log, main Car = Carton.alias() CarTar = CartonToTarget.alias() Cad = Cadence.alias() Inst = Instrument.alias() Categ = Category.alias() Map = Mapper.alias() Mag = Magnitude.alias() class CartonInfo(object): """Saves targetdb info for cartons. This class takes basic information from a carton (``name``, ``plan``, and ``category_label`` at minimum) and at instantiation sets the carton dependent (as opposed to target dependent) information of the carton. ``stage`` and ``active`` parameters can also be provided but currently nothing is done with those. Carton dependent information is either taken from input parameters of __init__ or by the assign_carton_info function that also set the boolean in_targetdb to check the existence of the carton. Then, function assign_target_info assigns target dependent information which can be the magnitude placholders used for the different photometric system in the carton (calculate_mag_placeholders=True), and/or python sets with the unique values found per cadence, lambda, and instrument in the carton, along with ``priority`` and ``value`` ranges. Finally, function process_cartons wraps all the functions of this class. Based on the value of the ``origin`` parameter, takes as input a file from rsconfig or curstom, or takes a selection criteria to search cartons in targetdb. With this function we can evaluate the existence of a list of cartons, check their content, save a selection criteria as an input file ready to be used by process_cartons, runs assign_target_info to get target parameter set, ranges, and/or magnitude_placeholders, saves an output .csv file with the information of each carton, or return a list of all the CartonInfo objects. Parameters ---------- carton: str Carton name in table targetdb.carton plan: str Plan in table targetdb.version category_label: str Label in targetdb.category table (e.g. science, standard_boss, guide) stage: str Robostrategy stage, could be srd, open, none, filler. Default is 'N/A' active: str ``y`` or ``n`` to check if it is active in robostrategy. Default is 'N/A' mapper_label: str Label in targetdb.mapper (MWM or BHM) program: str Program in targetdb.program table version_pk: int ID in targetdb.verion table tag: str tag in targetdb.version table mapper_pk: int Mapper_pk in targetdb.carton table. 0 for MWM and 1 for BHM category_pk: int category_pk in targetdb.carton table (e.g. 0 for science) in_targetdb: bool True is carton/plan/category_label combination is found in targetdb, false if not. sets_calculated: bool True when in_targetdb is True and target dependent parameters value_min, value_max, priority_min, priority_max, cadence_pk, cadence_label, lambda_eff, instrument_pk, and instrument_label have been calculated for the carton using assign_target_info(calculate_sets=True) mag_placeholders_calculated: bool True when magnitude placholdes used for SDSS, TMASS, and GAIA photometric systems have been calculated. These are calculated using check_magnitude_outliers function """ cfg = cartons_inventory.config def __init__(self, carton, plan, category_label, stage='N/A', active='N/A'): self.carton = carton self.plan = plan self.category_label = category_label self.stage = stage self.active = active self.mapper_label, self.program, self.version_pk = [], [], [] self.tag, self.mapper_pk, self.category_pk = [], [], [] self.in_targetdb = False self.sets_calculated = False self.mag_placeholders_calculated = False self.assign_carton_info() def assign_carton_info(self): """Assigns carton dependent information for cartons in targetdb. If the carton/plan/category_label combination in the CartonInfo object is found in targetdb this function assigns attributes for carton dependent parameters (parameters shared for all targets in the carton). These paraemters are mapper_label, program, version_pk, tag, mapper_pk, and category_pk. Finally it set in_targetdb attribute as True when found in the database. """ cfg = cartons_inventory.config basic_info = ( Car .select(Map.label.alias('mapper_label'), Car.version_pk.alias('version_pk'), Car.category_pk.alias('category_pk'), Car.mapper_pk.alias('mapper_pk'), Version.tag, Car.program) .join(Version, on=(Version.pk == Car.version_pk)) .join(Categ, 'LEFT JOIN', Car.category_pk == Categ.pk) .join(Map, 'LEFT JOIN', Car.mapper_pk == Map.pk) .where(Car.carton == self.carton) .where(Version.plan == self.plan) .where(Categ.label == self.category_label).dicts() ) if len(basic_info) > 0: # If the carton is in targetdb assigns carton info res = basic_info[0] carton_parameter_names = cfg['db_fields']['carton_dependent'] for parameter in carton_parameter_names: setattr(self, parameter, res[parameter]) self.in_targetdb = True if self.in_targetdb is False: # If not in targetdb still tries to get the Version info query_version = ( Version .select(Version.tag, Version.pk) .where(Version.plan == self.plan).dicts() ) if len(query_version) > 0: ver_info = query_version[0] self.tag = ver_info['tag'] self.version_pk = ver_info['pk'] def build_query_target(self): """Creates the query with the target dependet information of the carton.""" query_target = ( Car .select(Inst.label.alias('instrument_label'), CarTar.cadence_pk.alias('cadence_pk'), CarTar.lambda_eff, CarTar.instrument_pk.alias('instrument_pk'), CarTar.priority, CarTar.value, Cad.label.alias('cadence_label'), Mag.g, Mag.r, Mag.i, Mag.z, Mag.h, Mag.j, Mag.k, Mag.bp, Mag.rp, Mag.gaia_g) .join(Version, on=(Version.pk == Car.version_pk)) .join(CarTar, on=(CarTar.carton_pk == Car.pk)) .join(Cad, 'LEFT JOIN', on=(Cad.pk == CarTar.cadence_pk)) .join(Inst, 'LEFT JOIN', CarTar.instrument_pk == Inst.pk) .join(Mag, 'LEFT JOIN', CarTar.pk == Mag.carton_to_target_pk) .where(Car.carton == self.carton) .where((Version.plan == self.plan) & (Version.tag == self.tag)) ) return query_target def return_target_dataframe(self): """Executes query from build_query_target and returns it in a Pandas DataFrame.""" if not self.in_targetdb: print(self.carton, 'not in targetdb so we cant return the target dataframe') return target_query = self.build_query_target() df = pd.DataFrame(list(target_query.dicts())) return df def assign_target_info(self, calculate_sets=True, calculate_mag_placeholders=False): """Assignt target dependent information for cartons in targetdb. This function calls return_target_dataframe to get a Pandas DataFrame with target dependent information for a carton. Then it sets different attributes to the CartonInfo object depending on the values of calculate_sets and calculate_mag_placeholders Parameters ---------- calculate_sets : bool If true this function assigns the attributes value_min, value_max, priority_min, priority_max, cadence_pk, cadence_label, lambda_eff, instrument_pk, and instrument_label, based on information from targetdb. It also sets the attribute sets_calculated as True to keep record. calculate_mag_placeholders : bool If true this function assigns the attribute magnitude_placeholders using check_mag_outliers function, and sets mag_placeholers_calculated=True to keep record. magnitude_placeholres is a set with all the combination of photometric system (SDSS, TMASS, GAIA) and mag placeholder used for that photometric system in that carton (None, Invalid, 0.0, -9999.0, 999, 99.9). """ dataframe_created = False if not self.in_targetdb: print('carton', self.carton, 'version_pk', self.version_pk, 'category_label', self.category_label, 'not found in database', 'so we cant assign target info') return if calculate_sets: if self.sets_calculated: print('Sets already calculated for this carton') else: dataframe = self.return_target_dataframe() dataframe_created = True target_parameters = self.cfg['db_fields'] set_names = target_parameters['sets'] set_range_names = target_parameters['set_ranges'] for set_name in set_names: setattr(self, set_name, main.set_or_none(dataframe[set_name])) for set_name in set_range_names: set_range = main.get_range(getattr(self, set_name)) setattr(self, set_name + '_min', set_range[0]) setattr(self, set_name + '_max', set_range[1]) self.sets_calculated = True if calculate_mag_placeholders: if self.mag_placeholders_calculated: print('Magnitude placeholders already caclulated for this carton') else: if not dataframe_created: dataframe = self.return_target_dataframe() dataframe_created = True bands = self.cfg['bands'] mags_names = [el for key in bands.keys() for el in bands[key]] systems_names = [key for key in bands.keys() for el in bands[key]] self.magnitude_placeholders = check_mag_outliers(dataframe, mags_names, systems_names) self.mag_placeholders_calculated = True def check_existence(self, log, verbose=True): """Checks if the carton/plan/category_label from object is found in targetdb. This function checks whether a carton exists or not in targetdb, to be used when a list of cartons is used in process_cartons (i.e. ``origin`` rsconfig or custom) or to check the existence of a single carton. Parameters ---------- log : SDSSLogger Log used to store information of cartons_inventory verbose : bool If true and if the carton is not found in the database the function will print and save on log information to try to correct the input file from which the carton/plan/category_label was taken (and stored in the object). If no carton with that name is found in targetdb it will print the associated warning, and if cartons with the same name but different plan or category_label are found a line with input file format will be printed for each of those cartons so the user can replace the line in the input file with one of the options proposed. Returns ------- cartons_aleternatives : Pandas DataFrame A Pandas DataFrame that for each carton/plan/category_label combination not found in targetdb has an entry for it and for all the alternative cartons found in targetdb that have the same carton name but different plan or category. For each entry the dataframe contains the columns carton, plan, category_label, stage, active, tag, version_pk, and in_targetdb. """ df_data = {} msg = '' if self.in_targetdb is False: colnames = ['carton', 'plan', 'category_label', 'stage', 'active', 'tag', 'version_pk', 'in_targetdb'] for index in range(len(colnames)): colname = colnames[index] locals()[colname] = [] locals()[colname].append(getattr(self, colname)) alternatives_info = ( Car .select(Car.carton, Version.plan, Car.version_pk.alias('version_pk'), Categ.label.alias('category_label'), Version.tag, Car.program) .join(Version, on=(Version.pk == Car.version_pk)) .join(Categ, 'LEFT JOIN', Car.category_pk == Categ.pk) .where(Car.carton == self.carton).dicts() ) if len(alternatives_info) == 0: msg = 'Wargning: Carton' + self.carton + ' not in targetdb'\ 'not in targetdb and there is no carton with that name' else: msg = 'Carton ' + self.carton + ' not in targetdb, to avoid this you can replace '\ 'the next\nline with the information that follows '\ 'replacing (stage) and (active) if it corresponds\n' msg += '|' + self.carton.rjust(41) + ' | ' + self.plan.rjust(6) + ' | '\ + self.category_label.rjust(20) + ' |'\ + self.stage.rjust(6) + ' | ' + self.active.rjust(6) + ' | '\ + '--> Replace this line\n' for ind in range(len(alternatives_info)): res = alternatives_info[ind] res['stage'], res['active'] = 'N/A', 'N/A' for colname in colnames[:-1]: locals()[colname].append(res[colname]) locals()['in_targetdb'].append(True) msg += '|' + res['carton'].rjust(41) + ' | ' + res['plan'].rjust(6) + ' | '\ + res['category_label'].rjust(20) + ' | N/A | N/A |\n' for index in range(len(colnames)): df_data[colnames[index]] = locals()[colnames[index]] if verbose is True and msg != '': log.debug(msg) print(msg) df = pd.DataFrame(data=df_data) return df def visualize_content(self, log, width=140): """Logs and prints information from targetdb for a given carton.""" pars = cartons_inventory.config['db_fields'] log.info(' ') log.info('#' * width) print_centered_msg('CARTON DEPENDENT INFORMATION', width, log) print_centered_msg(' ', width, log) for par in ['carton'] + pars['input_dependent'] + ['in_targetdb']: self.print_param(par, width, log) for par in pars['carton_dependent']: self.print_param(par, width, log) log.info('#' * width) if not self.in_targetdb: print_centered_msg('Since the carton is not in targetdb', width, log) print_centered_msg('this is all the information we can get', width, log) log.info('#' * width) return if not(self.sets_calculated): print_centered_msg('The list of values par target parameter has', width, log) print_centered_msg('not been calculated for this carton, to do so', width, log) print_centered_msg('first run assign_target_info on this carton', width, log) print_centered_msg('using calculate_sets=True (default)', width, log) log.info('#' * width) else: print_centered_msg('VALUES PER TARGET DEPENDENT PARAMETER', width, log) print_centered_msg(' ', width, log) for par in [el for el in pars['sets'] if el not in pars['set_ranges']]: self.print_param(par, width, log) for par in pars['set_ranges']: self.print_range(par, width, log) log.info('#' * width) if not(self.mag_placeholders_calculated): print_centered_msg('The list of mag placeholers for each photometric', width, log) print_centered_msg('system has not been calculated for this carton yet,', width, log) print_centered_msg('to do so first run assign_target_info on this carton', width, log) print_centered_msg('using calculate_mag_placeholers=True (not default)', width, log) log.info('#' * width) else: print_centered_msg('MAGNITUDE PLACEHOLDERS PER PHOTOMETRIC SYSTEM', width, log) print_centered_msg(' ', width, log) self.print_param('magnitude_placeholders', width, log) log.info('#' * width) def print_param(self, par, width, log): """logs a message with width=width containing a parameter from carton object.""" log.info('### ' + par + ': ' + str(getattr(self, par)).ljust(width - len(par) - 10) + ' ###') def print_range(self, par, width, log): """logs a message with width=width containing the range of a parameter from the carton.""" left_msg = str(getattr(self, par + '_min')) right_msg = str(getattr(self, par + '_max')) log.info('### ' + par + ' range: ' + left_msg + ' to ' + right_msg + ' ' * (width - len(left_msg) - len(right_msg) - len(par) - 20) + ' ###') def print_centered_msg(st, width, log): """Logs and prints string st with width=width in the log""" left = round((width - len(st) - 7) / 2.0) right = width - len(st) - 7 - left log.info('###' + ' ' * left + st + ' ' * right + ' ###') def gets_carton_info(carton_list_filename, header_length=1, delimiter='|'): """Get the necessary information from the input carton list file.""" cat = np.loadtxt(carton_list_filename, dtype='str', skiprows=header_length, delimiter=delimiter) cartons = [str.strip(cat[ind, 1]) for ind in range(len(cat))] plans = [str.strip(cat[ind, 2]) for ind in range(len(cat))] categories = [str.strip(cat[ind, 3]) for ind in range(len(cat))] stages = [str.strip(cat[ind, 4]) for ind in range(len(cat))] actives = [str.strip(cat[ind, 5]) for ind in range(len(cat))] return cartons, plans, categories, stages, actives def check_mag_outliers(datafr, bands, systems): """Returns a list with all the types of outliers found for each photometric system. Parameters ---------- datafr : Pandas DataFrame Containing the magnitudes from different photometric systems for the stars in a given carton. bands : strings list Containing the bands to search each belonging to a given photometric system. system : strings list Photometric system to which each band listed belongs to. The options are 'SDSS', 'TMASS', and 'GAIA'. The system to which a band belongs is defined by the index of the band in the list (i.e. band[ind] belongs to systems[ind]) Returns ------- placeholders : set A set of strings where each string starts with the photometric system, then an underscore and finally the type of magnitude outlier that at least one magnitude of the corresponding system has. The type of outliers are: None (For empty entries), Invalid (For Nan's and infinite values), and <<Number>> (For values brighter than -9, dimmer than 50, or equal to zero), in the latter cases the number itself is returned as the outlier type. For example if a carton contains stars with h=999.9, k=999.9, j=None, and bp=Inf. This function will return {'TMASS_999.9', 'TMASS_None', 'GAIA_Invalid}. """ out_bands, out_systems = [], [] for ind_band in range(len(bands)): maglist = datafr[bands[ind_band]] nonempty_maglist = [el for el in maglist if el is not None] magarr_filled = np.array(nonempty_maglist) ind_valid = np.where(np.isfinite(magarr_filled))[0] magarr_valid = magarr_filled[ind_valid] ind_out = np.where((magarr_valid < -9) | (magarr_valid > 50) | (magarr_valid == 0))[0] out_band = list(set([str(magarr_valid[indice]) for indice in ind_out])) if len(maglist) > len(nonempty_maglist): out_band.append('None') if len(magarr_filled) > len(magarr_valid): out_band.append('Invalid') n_out = len(out_band) out_bands = out_bands + out_band out_systems = out_systems + [systems[ind_band]] * n_out out = main.set_or_none([out_systems[idx] + '_' + out_bands[idx] for idx in range(len(out_bands))]) return out def process_cartons(origin='rsconfig', files_folder='./files/', inputname=None, delim='|', check_exists=False, verb=False, return_objects=False, write_input=False, write_output=False, assign_sets=False, assign_placeholders=False, visualize=False, overwrite=False, all_cartons=False, cartons_name_pattern=None, versions='latest', forced_versions=None, unique_version=None): """Get targetdb information for list of cartons or selection criteria and outputs .csv file. Takes as input a file with a list of cartons from rsconfig (origin=``rsconfig``) or custom (origin=``custom``) or a selection criteria to be applied on targetdb (origin=``targetdb) in which case an input list file can also be created (with write_input=True) for future use. This function can be used to check the existence of the cartons (check_exist=True) in which case it returns a dataframe with the alternative cartons information, or it can be used to call assign_target_info to get the targetdb information of all the cartons (check_exists=False) and store it in a .csv file and/or return the CartonInfo objects. The function also has provides the option of logging and printing the targetdb information from all the cartons in a human readable way by using visualize=True. Parameters ---------- origin : str ``rsconfig`` to use input list file from rsconfig, ``custom`` to use custom input list of carton or ``targetdb`` to look for cartons in targetdb based on the ``all_cartons``, ``cartons_name_pattern``, ``versions``, ``forced_versions``, and ``unique_versions`` parameters. files_folder : str Main folder where input and output files would be stored. In this folder subfolders rsconfig, custom, and targetdb are expected. inputname : str or None Name of input file to be searched in <<files_folder>>/<<origin>> folder delim : str Delimiter character to use when creating output .csv file check_exists : bool If true and origin is rsconfig or custom the function looks for alternatives to cartons that exist in targetdb but have different values of plan or category_label than carton object. In this case the function returns a dataframe with the original carton versions not found and the alternatives and exits the function verb : bool If True function logs and prints alternatives to replace the input lines corresponding to carton/plan/category_label combinations not found in targetdb with lines corresponding to the same carton but with existing plan/category_label combinations. return_objects : bool If True the function returns the CartonInfo objects. write_input : bool If True the function writes a file to be used then as input by process_cartons with the cartons retrieved by the targetdb query. write_output : bool If True the function creates an output .csv file with the information of each CartonInfo object. assign_sets : bool If True assign_target_info assigns the attributes for target dependent parameters for the carton. For each parameter returns a python set with all the values present in the carton targets or the range spanned by them. assign_placeholders : bool If True assign_target_info assigns magnitude placeholders found in targetdb for each photometric system (SDSS, TMASS, GAIA) for each carton using check_mag_outliers. visualize : bool If True we log and print all the information found in targetdb for each carton in a human readable way overwrite : bool If True enables that inputfile like and output file could be overwritten. all_cartons : bool If True and origin=targetdb cartons with any name are taken from targetdb. from targetdb cartons_name_pattern : str or None If True and origin=targetdb only cartons with pattern name cartons_name_pattern are are taken from targetdb. The string uses * character as wildcard versions : str If True and origin=targetdb sets the versions that would be taken for each carton name If ``single`` only versions matching ``unique_version`` will be taken, if ``latest`` only the latest version of each carton would be taken, if ``all`` all versions from each carton is taken. forced_versions: dict or None If present, and origin=targetdb all cartons in this dictionary are forced to consider only the version in the dictionary corresponding value, independent on the ``versions`` value. unique_version : Int or None If present, origin=targetdb, and versions=single then only this version_pk will be considered for each carton Returns ------- """ cfg = cartons_inventory.config # Check that we have a valid origin parameter assert origin in ['targetdb', 'rsconfig', 'custom'], f'{origin!r} is not a valid'\ ' option for origin parameter' fullfolder = files_folder + origin + '/' # If an input file is used check that it exists and that we are not trying to overwrite it if origin in ['rsconfig', 'custom']: assert write_input is False, 'write_input=True only available for origin=\'targetdb\'' assert inputname is not None, f'for origin={origin!r} an inputname has to be provided' inputread_filename = fullfolder + inputname assert os.path.isfile(inputread_filename), 'file: ' + \ os.path.realpath(inputread_filename) + '\n' + f' required for origin={origin!r}'\ f'and inputname={inputname!r} but file doesn\'t exist' outputbase_filename = fullfolder + 'Info_' + inputname.replace('.txt', '') if origin == 'targetdb': # First check if the input arguments are valid assert check_exists is False, 'check_exists=True option only valid for origin'\ '\'rsconfig\' or \'custom\'' assert versions in ['latest', 'all', 'single'], f'{versions!r} is not a valid option'\ ' for versions parameter' assert forced_versions is None or type(forced_versions) == dict, 'if used, '\ f'forced_versions has to be type=dict not type={type(forced_versions)}' assert all_cartons is True or cartons_name_pattern is not None, ' carton_name_pattern'\ ' needed when all_cartons=False (e.g. cartons_name_pattern=\'bhm_rm_*\')' assert versions != 'single' or type(unique_version) == int, 'If versions=\'single\' then'\ ' unique version has to be an integer' assert write_input is True or write_output is False, 'To create an output file'\ ' an input file has to be created as well to help keep record' # Then I calculate the base name for input and output files based on selection criteria if all_cartons is True: basename = 'Cartons_all' if all_cartons is False: basename = 'Cartons_sample' if versions != 'unique': basename += '_Versions_' + versions if versions == 'unique': basename += '_Version_' + str(unique_version) if forced_versions is not None: basename += '_and_forced' inputwrite_filename = fullfolder + basename + '.txt' outputbase_filename = fullfolder + 'Info_' + basename if write_input is True and overwrite is False: assert not os.path.isfile(inputwrite_filename), 'input file '\ f'{os.path.realpath(inputwrite_filename)}\n already exists and overwrite=False' # If write_output set the final output_filename and check overwritting if write_output is True: assert assign_sets is True or assign_placeholders is True, 'to create an output .csv'\ 'at least one of assign_sets or assign_placeholders has to be True' if assign_sets is True and assign_placeholders is False: output_filename = outputbase_filename + '_sets.csv' if assign_sets is False and assign_placeholders is True: output_filename = outputbase_filename + '_magplaceholers.csv' if assign_sets is True and assign_placeholders is True: output_filename = outputbase_filename + '_all.csv' if overwrite is False: assert not os.path.isfile(output_filename), 'output file '\ f'{os.path.realpath(output_filename)}\n already exists and overwrite=False' if origin in ['rsconfig', 'custom']: cartons, plans, categories, stages, actives = gets_carton_info(inputread_filename) if origin == 'targetdb': if all_cartons is True: pattern = '%%' if all_cartons is False: pattern = cartons_name_pattern.replace('*', '%') cartons_list = ( Car .select(Car.carton, Version.pk.alias('version_pk'), Version.plan, Categ.label.alias('category_label')) .join(Version, on=(Version.pk == Car.version_pk)) .join(Categ, 'LEFT JOIN', Car.category_pk == Categ.pk) .where(Car.carton ** pattern) .dicts() ) # Here we look for the basic information of each carton/plan/category_label # available in targetdb to then instantiate the objects with that information # For each carton name we calculate the version_pk(s) that match the selection criteria # according to the value of ``versions`` parameter (single, all, latest) and override # the value if carton is present in forced_versions dictionary. cart_results = pd.DataFrame(cartons_list) cartons_unique = np.sort(list(set(cart_results['carton']))) all_indices = [] for name in cartons_unique: indcart = np.where(cart_results['carton'] == name)[0] if forced_versions and name in forced_versions.keys(): inds = np.where((cart_results['carton'] == name) & (cart_results['version_pk'] == forced_versions[name]))[0] elif versions == 'single': inds = np.where((cart_results['carton'] == name) & (cart_results['version_pk'] == unique_version))[0] elif versions == 'all': inds = indcart elif versions == 'latest': max_version = np.max(cart_results['version_pk'][indcart]) inds = np.where((cart_results['carton'] == name) & (cart_results['version_pk'] == max_version))[0] all_indices += list(inds) assert len(all_indices) > 0, 'There are no carton/version_pk pairs matching the selection'\ ' criteria used' carts_sel = cart_results.iloc[all_indices] cartons = carts_sel['carton'].values.tolist() plans = carts_sel['plan'].values.tolist() categories = carts_sel['category_label'].values.tolist() stages, actives = ['N/A'] * len(carts_sel), ['N/A'] * len(carts_sel) # Here we start the corresponding log based on the origin, assign_sets, # and assign_placeholders value log.start_file_logger(f'./logs/origin_{origin}_sets_{assign_sets}' f'_mags_{assign_placeholders}.log') log.info('#' * 60) print_centered_msg('STARTING CODE EXECUTION', 60, log) log.info('#' * 60) log.info('Ran process_cartons using the following arguments') signature = inspect.signature(process_cartons) # First thing we log is the parameters used in process_cartons function for param in signature.parameters.keys(): arg = locals()[param] log.info(f'{param}={arg}') log.info(' ') # Here we write an input-like file if requested if origin == 'targetdb' and write_input is True: data = np.transpose([cartons, plans, categories, stages, actives]) ascii.write(data, inputwrite_filename, format='fixed_width', names=['carton', 'plan', 'category', 'stage', 'active'], overwrite=overwrite) log.info(f'Wrote file {inputwrite_filename}') # If write_output then we prepare the .csv writer if write_output is True: fields = cfg['db_fields'] f = open(output_filename, 'w') writer = csv.writer(f, delimiter=delim) columns = ['carton'] + fields['input_dependent'] + fields['carton_dependent'] if assign_sets is True: new_cols = [x for x in fields['sets'] if x not in fields['set_ranges']] columns += new_cols for col in fields['set_ranges']: columns += [col + '_min', col + '_max'] if assign_placeholders is True: columns += ['magnitude_placeholders'] writer.writerow(columns) # Here we start the actual processing of the cartons objects, diffs = [], [] for index in range(len(cartons)): # First we instantiate the CartonInfo objects with the information we have obj = CartonInfo(cartons[index], plans[index], categories[index], stages[index], actives[index]) # If check_exists we run check_existence on the cartons and return the diff dataframe if check_exists is True: output = None diff = obj.check_existence(log, verbose=verb) if len(diff) > 0: diffs.append(diff) if index == len(cartons) - 1: log.info('Ran check_existence to compare input file ' f'{inputname} with targetdb content') if len(diffs) > 0: output = pd.concat(diffs) return output continue if obj.in_targetdb is False: log.debug(f'carton={obj.carton} plan={obj.plan} version_pk={obj.version_pk}' f'category={obj.category_label} not found in targetdb') # Here we assign sets and or mag placeholders info based on input arguments # And we visualize and write in output .csv if it corresponds if obj.in_targetdb is True: if assign_sets is True or assign_placeholders is True: obj.assign_target_info(calculate_sets=assign_sets, calculate_mag_placeholders=assign_placeholders) objects.append(obj) log.info(f'Ran assign_target_info on carton {obj.carton}') else: objects.append(obj) log.info(f'Appending object for carton {obj.carton}' 'but without running assign_target_info') if visualize is True: obj.visualize_content(log) if write_output is True: curr_info = [getattr(obj, attr) for attr in columns] writer.writerow(curr_info) log.info(f'wrote row to output csv for carton={obj.carton}' f' ({index + 1}/{len(cartons)})') if write_output is True: f.close() log.info(f'Saved output file={output_filename}') if return_objects is True: return objects
2.796875
3
shadon/testsToken.py
subbc/devops_jkweb
0
12778228
#!/usr/bin/evn python # -*- coding:utf-8 -*- from shadon.tsetsHttp import testsHttp from shadon.testsConfig import testsConfig import os class testsToken(): def __init__(self): self.url = '/oauth/authorizationServer/accessToken' self.mytestsConfig = testsConfig() self.mytestsConfig.getConfig() self.path = os.path.dirname(__file__) + "/../config/" + self.mytestsConfig.env + "/" self.grant='client_credentials' pass def setGrant(self,grant): global localgrant localgrant = grant if os.path.exists(self.path + 'token.txt') != True: os.remove(self.path + 'token.txt') pass def getToken(self): global apiToken if os.path.exists(self.path+ 'token.txt') != True: self.setToken(localgrant) file = open(self.path + 'token.txt', 'r') value = file.read() apiToken = eval(value) file.close() return apiToken def setToken(self,grant): myhttp = testsHttp() myhttp.set_url(self.url) self.data = {"grant_type": "client_credentials", "client_id": self.mytestsConfig.client_id,"client_secret": self.mytestsConfig.client_secret} if grant == 'password': self.mytestsConfig.grant_type = self.mytestsConfig.getFile('password', 'grant_type') self.mytestsConfig.username = self.mytestsConfig.getFile('password', 'username') self.mytestsConfig.password = self.mytestsConfig.getFile('password', 'password') self.data = {"grant_type": "password", "client_id": self.mytestsConfig.client_id,"client_secret": self.mytestsConfig.client_secret,"username":self.mytestsConfig.username,"password":self.mytestsConfig.password} myhttp.set_data(self.data) tokenInfo =myhttp.post().json() #如果目录不存在,建立目录 if os.path.exists(self.path) != True: os.makedirs(self.path) #写入数据 file = open(self.path+'token.txt','w') file.write(str(tokenInfo)) file.close() pass if __name__ == "__main__": shadon = testsToken() shadon.setToken('<PASSWORD>') print(shadon.getToken())
2.265625
2
finchan/__main__.py
msgroup/finchan
3
12778229
<reponame>msgroup/finchan # -*- coding: utf-8 -*- # This file is part of finchan. # Copyright (C) 2017-present qytz <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import asyncio import logging import logging.config import click import uvloop from .env import Env from .exts import ExtManager from .options import load_configs from .dispatcher import get_dispatcher @click.command() @click.option( "-v", "--verbose", count=True, help="Count output level, can set multipule times." ) @click.option("-c", "--config", help="Specify config file.") def main(verbose=0, config=None): """Console script for finchan Copyright (C) 2017-present qytz <<EMAIL>> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Project url: https://github.com/qytz/finchan """ env = Env() # asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) env.verbose = verbose if not config: # first find the configs in current directory conf_path = ".finchan_configs" if not os.path.exists(conf_path): # the use the final default one conf_path = os.path.expanduser("~/.finchan/configs") else: conf_path = config try: env.options = load_configs(conf_path) except (SyntaxError, TypeError) as e: print("Parse configure file failed, please check: %s" % e) return work_dir = os.path.expanduser(env.options.get("work_dir", "~/.finchan")) os.makedirs(work_dir, exist_ok=True) os.makedirs(os.path.join(work_dir, "logs"), exist_ok=True) os.chdir(work_dir) env.set_work_dir(work_dir) log_config = env.options.get("log_config", {}) # patch the log filter parameters if "filters" in log_config and "finchan" in log_config["filters"]: log_config["filters"]["finchan"]["env"] = env logging.config.dictConfig(log_config) root_logger = logging.getLogger() handler = logging.StreamHandler() handler.setFormatter( logging.Formatter("%(asctime)s %(tracktime)s %(levelname)-8s %(message)s") ) if verbose > 0: handler.setLevel("DEBUG") else: handler.setLevel("INFO") root_logger.addHandler(handler) root_logger.info("Run in %s mode", env.options["run_mode"]) if env.options["run_mode"] == "backtrack": env.run_mode = "backtrack" exts = env.options.get("enabled_backtrack_exts", []) else: env.run_mode = "live_track" exts = env.options.get("enabled_live_exts", []) dispatcher = get_dispatcher(env) env.set_dispatcher(dispatcher) extm_args = env.options["ext_manager"] if not extm_args: extm_args = {} ext_manager = ExtManager(env, **extm_args) env.set_ext_manager(ext_manager) env.load_exts(exts) return env.run() if __name__ == "__main__": main()
1.679688
2
scripts/test_velocity.py
done-jithinlal/ubiquity_motor
0
12778230
<reponame>done-jithinlal/ubiquity_motor #!/usr/bin/env python # VELOCITY can be positive (driving forward) or negative (driving backward) VELOCITY = 0.2 # Initial turn angle (Z axis) ANGLE = 0.0 import rospy from geometry_msgs.msg import Twist,Point from nav_msgs.msg import Odometry rospy.init_node('slow_motion', anonymous=True) last_t = None last_pos = None print ("""------------------------------------------------------------- Odometer consistency check ------------------------------------------------------------- """) def odometry_callback(msg): # Calculate velocity error (%) global last_t global last_pos now = rospy.Time.now().to_sec() cur_pos = msg.pose.pose.position if last_pos: pos_distance = ((cur_pos.x-last_pos.x)**2 + (cur_pos.y-last_pos.y)**2)**0.5 t_distance = VELOCITY*(now-last_t) print "Velocity error: {}%".format(round(abs(msg.twist.twist.linear.x-VELOCITY)/VELOCITY*100,2)),\ " Position error: {}%".format(round(abs(pos_distance-t_distance)/t_distance*100,2)) last_pos = cur_pos last_t = now def slow_motion(): pub = rospy.Publisher('cmd_vel', Twist, queue_size=10) rospy.Subscriber('odom',Odometry,odometry_callback) vel_msg = Twist() initial = True vel_msg.linear.x = VELOCITY vel_msg.angular.z = ANGLE while not rospy.is_shutdown(): # Publish the velocity pub.publish(vel_msg) if initial: vel_msg.angular.z = 0.0 initial = False rospy.sleep(0.05) if __name__ == '__main__': if abs(VELOCITY)<0.000001: print ("VELOCITY must be different from zero") else: try: slow_motion() except rospy.ROSInterruptException: pass
2.75
3
quickq/model.py
valleau-lab/quickq
0
12778231
<gh_stars>0 """Keras based deepchem DNN model. The native deepchem DNN has been changed to pytorch, and tensorflow is desired. Here we create a Deepchem simple dense Neural network. """ import os from typing import Iterable, Union, List import deepchem.models import deepchem.data import numpy import tensorflow.keras as ks import tensorflow as tf try: from collections.abc import Sequence as SequenceCollection except: from collections import Sequence as SequenceCollection class DCDNN(deepchem.models.KerasModel): """Adapted from deepchem RobustMultitaskRegressor. Parameters ---------- n_features : int size of feature vector layer_sizes : iterable Neurons counts for the DNN. Length of the iterable determines the layer counts, and the values the number of neurons in each of those layers. Alternative to specifying neuron and layer count. neuron_count : int Number of neurons in each hidden layer, alternative to specifying layer_sizes layer_count : int Number of layers with neuron_count, alternative to specifting layer_sizes weight_init_stdevs : iterable of float or float Standard deviation of random weight initialization for each or all layers bias_init_consts : iterable of float or float value of bias initialization for each or all layers weight_decay_penalty : float Value of weight regularization weight_decay_penalty_type : str Type of regularization eg. "l2" dropouts : iterable of float or float Dropout rates to use for each or all layers. activation_fns : iterable of callable or callable tensorflow activation functions to use for each or all layers. """ def __init__( self, n_features: int, layer_sizes: Union[List[int], int] = None, neuron_count: int = None, layer_count: int = None, weight_init_stddevs: Union[List[float], float] = 0.02, bias_init_consts: Union[List[float], float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = "l2", dropouts: Union[List[float], float] = 0.0, activation_fns: Union[List[callable], callable] = tf.nn.relu, **kwargs ): if layer_sizes is not None: assert neuron_count is None, 'Cannot specify both layer_sizes and neuron_count.' assert layer_count is None, 'Cannot specify both layer_sizes and layer_count.' else: if neuron_count is None or layer_count is None: raise TypeError( 'Must specify neuron and layer count if layer_sizes not specified.' ) layer_sizes = [neuron_count]*layer_count self.n_features = n_features n_layers = len(layer_sizes) if not isinstance(weight_init_stddevs, SequenceCollection): weight_init_stddevs = [weight_init_stddevs] * n_layers if not isinstance(bias_init_consts, SequenceCollection): bias_init_consts = [bias_init_consts] * n_layers if not isinstance(dropouts, SequenceCollection): dropouts = [dropouts] * n_layers if not isinstance(activation_fns, SequenceCollection) or type(activation_fns) == str: activation_fns = [activation_fns] * n_layers if weight_decay_penalty != 0.0: if weight_decay_penalty_type == 'l1': regularizer = ks.regularizers.l1(weight_decay_penalty) else: regularizer = ks.regularizers.l2(weight_decay_penalty) else: regularizer = None def build(): # begin with the input features = ks.Input(shape=(n_features,)) prev_layer = features # add the DNN layers for size, weight_stddev, bias_const, dropout, activation_fn in zip( layer_sizes, weight_init_stddevs, bias_init_consts, dropouts, activation_fns ): if size == 0: continue layer = ks.layers.Dense( size, activation=activation_fn, kernel_initializer=ks.initializers.TruncatedNormal( stddev=weight_stddev ), bias_initializer=tf.constant_initializer(value=bias_const), kernel_regularizer=regularizer )(prev_layer) if dropout > 0.0: layer = ks.layers.Dropout(rate=dropout)(layer) prev_layer = layer # add the output layer output = ks.layers.Dense(1)(prev_layer) model = ks.Model(inputs=features, outputs=output) return model model = build() # init the deepchem wrapper super().__init__( model, deepchem.models.losses.L2Loss(), output_types=['prediction'], **kwargs ) return def default_generator( self, dataset: deepchem.data.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = False ): """Default data generator for the model. Wraps the dataset iterbatches to produce data of the correct form for this class. Parameters ---------- dataset : deepchem.data.Dataset dataset to iterate epochs : int Number of passes through the data mode : str ignored deterministic : bool, default True Whether to produce deterministic target values pad_batches : bool, default False Whether to pad the last batch. """ for epoch in range(epochs): for (X_b, y_b, w_b, ids_b) in dataset.iterbatches( batch_size=self.batch_size, deterministic=deterministic, pad_batches=pad_batches ): yield ([X_b], [y_b], [w_b])
2.78125
3
src/cacofonix/main.py
jonathanj/cacofonix
5
12778232
<filename>src/cacofonix/main.py import click import datetime from fs import open_fs from collections import OrderedDict from typing import Optional, List, Tuple, TextIO from . import _yaml from ._app import Application from ._cli import ( iso8601date, validate_fragment_type, validate_section, split_issues, compose_interactive, guess_version) from ._prompt import ( print_formatted_yaml_text, prompt_confirm) from ._config import Config from ._util import ( pluralize, string_escape) from ._effects import make_effects from ._log import setup_logging pass_app = click.make_pass_decorator(Application) @click.group() @click.option('--dry-run', '-n', 'dry_run', is_flag=True, default=False, help='''Perform a dry run.''') @click.option('--log-level', default='ERROR', type=click.Choice([ 'DEBUG', 'INFO', 'WARNING', 'ERROR'])) @click.option('--config', required=True, type=click.File()) @click.version_option() @click.pass_context def cli(ctx, config: TextIO, dry_run: bool, log_level: str): """ Compose and compile change fragments into changelogs. New changes will be integrated into an existing changelog. """ setup_logging(log_level) root_fs = open_fs('.') config = Config.parse(config) ctx.obj = Application( config=config, effects=make_effects(root_fs, config, dry_run)) if dry_run: echo_warning('Performing a dry run, no changes will be made!') @cli.command() @pass_app def list_types(app: Application): """ List known fragment types. """ for fragment_type in app.config.available_fragment_types(): if fragment_type: echo_out(fragment_type) @cli.command() @pass_app def list_sections(app: Application): """ List known sections. """ for section in app.config.available_sections(): if section: echo_out(section) @cli.command() @pass_app def list_versions(app: Application): """ List all versions tracked by this tool. """ for version in app.known_versions(): echo = echo_warning_out if version.prerelease else echo_out echo(str(version)) @cli.command() @click.option('-t', '--type', 'fragment_type', callback=validate_fragment_type, help='Fragment type, should match a value from `list-types`') @click.option('-s', '--section', callback=validate_section, help='Section type, should match a value from `list-sections`') @click.option('-i', '--issue', 'issues', multiple=True, callback=split_issues, help='''Related issue, should be formatted as issue_number or issue_number:issue_url, can be specified multiple times''') @click.option('-f', '--feature-flag', 'feature_flags', multiple=True, help='Required feature flag, can be specified multiple times') @click.option('-d', '--description', help='Description of the change') @click.option('--edit', is_flag=True, default=None, help='Complete the changelog fragment in EDITOR') @click.option('--interactive / --no-interactive', is_flag=True, help='Complete the changelog fragment interactively') @pass_app def compose(app: Application, interactive: bool, **kw): """ Compose a new change fragment. Preset values can be given as options with the unspecified value being completed interactively or via a text editor. """ def _validate(yaml_text): try: app.validate_fragment_text(yaml_text) return True except Exception as e: echo_error('Oops! There was a problem with your change data.') echo(str(e)) return False def _compose(fragment_type: str, section: Optional[str], issues: List[Tuple[str, str]], feature_flags: List[str], description: str, edit: bool): change_fragment_data = OrderedDict([ ('type', fragment_type), ('section', section), ('issues', dict(issues)), ('feature_flags', list(feature_flags)), ('description', _yaml.literal_str( string_escape(description or ''))), ]) yaml_text = _yaml.dump(change_fragment_data) echo_info('\nOkay, this is your change:\n') print_formatted_yaml_text(yaml_text) edit = kw.get('edit') if interactive: if edit is None: edit = prompt_confirm('Open it in your editor?') else: if not _validate(yaml_text): raise SystemExit(2) if edit: while True: yaml_text = click.edit( yaml_text, require_save=False, extension='.yaml') if not yaml_text: echo_error('Aborting composition!') raise SystemExit(2) if _validate(yaml_text): break else: if not prompt_confirm('Open it in your editor?'): raise SystemExit(2) else: continue fragment_filename = app.create_new_fragment(yaml_text) echo_success('Wrote new fragment {}'.format(fragment_filename)) if interactive: config = app.config kw = compose_interactive( available_sections=config.available_sections(), available_fragment_types=config.available_fragment_types(), **kw) return _compose(**kw) @cli.command() @click.option('--draft', is_flag=True, help='Do not perform any permanent actions.') @click.option('--version', 'project_version', default=None, callback=guess_version, help='Version to stamp in the changelog.') @click.option('--date', 'version_date', callback=iso8601date, help='ISO8601 date for the changelog, defaults to today.') @click.option('--archive / --no-archive', 'archive_fragments', is_flag=True, default=None, help='Archive fragments after writing a new changelog.') @click.option('--confirm / --no-confirm', 'confirm_write', is_flag=True, default=True, help='Confirm before writing the changelog') @pass_app def compile(app: Application, draft: bool, project_version: Tuple[Optional[str], str], version_date: datetime.date, archive_fragments: Optional[bool], confirm_write: bool): """ Compile change fragments into a changelog. The existing changelog will be updated with the new changes, and the old change fragments discarded. """ version_guess, version_number = project_version if version_guess is not None: echo('Guessed version {} via {}'.format( version_number, version_guess)) new_fragments = list(app.find_new_fragments()) with open_fs('temp://') as tmp_fs: n = len(app.compile_fragment_files(tmp_fs, new_fragments)) echo('Found {} new changelog fragments'.format(n)) changelog = app.render_changelog( fs=tmp_fs, version=version_number, version_date=version_date) if draft: echo_info( 'Showing a draft changelog -- no changes will be made!\n') echo_out(changelog) return echo_info('This is the changelog to be added:\n') echo_out(changelog) if confirm_write: if not prompt_confirm('Merge this with the existing changelog?'): echo_info('Aborting at user request') raise SystemExit(2) app.merge_with_existing_changelog(changelog) echo_success('Wrote changelog.') if n: if archive_fragments is None: archive_fragments = prompt_confirm( 'Archive {} {}?'.format( n, pluralize(n, 'fragment', 'fragments')), default=True) if archive_fragments: n, not_removed = app.archive_fragments( found_fragments=new_fragments, version=version_number, version_date=version_date, version_author=app.effects.git_user()) if not_removed: echo_error('Could not archive the following:') for name in not_removed: echo(name) else: echo_info( 'Archived {} {} as version {}.'.format( n, pluralize(n, 'fragment', 'fragments'), version_number)) def echo_partial(**kw): """ Partially applied version of `click.secho`. """ return lambda msg: click.secho(msg, **kw) echo = echo_partial(err=True) echo_out = echo_partial() echo_error = echo_partial(fg='red', err=True) echo_info = echo_partial(fg='yellow', err=True) echo_warning = echo_partial(fg='bright_yellow', err=True) echo_warning_out = echo_partial(fg='bright_yellow') echo_success = echo_partial(fg='green', err=True) def main(): cli() if __name__ == '__main__': main()
2.140625
2
taskobra/orm/relationships/system_component.py
manistal/taskobra
0
12778233
<reponame>manistal/taskobra # Libraries from sqlalchemy import Column, ForeignKey, Integer from sqlalchemy.orm import relationship # Taskobra from taskobra.orm.base import ORMBase class SystemComponent(ORMBase): __tablename__ = "SystemComponent" system_id = Column(Integer, ForeignKey("System.unique_id"), primary_key=True) component_id = Column(Integer, ForeignKey("Component.unique_id"), primary_key=True) count = Column(Integer, default=1) _system = relationship("System") _component = relationship("Component") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if "count" not in kwargs: self.count = 1 @property def component(self): return self._component @component.setter def component(self, component: "taskobra.orm.Component"): del self.component self._component = component self._component.system_components.append(self) @component.deleter def component(self): if self._component: self._component.system_components.remove(self) del self._component @property def system(self): return self._system @system.setter def system(self, system: "taskobra.orm.System"): del self.system self._system = system self._system.system_components.append(self) @system.deleter def system(self): if self._system: self._system.system_components.remove(self) del self._system def __repr__(self): return f"<SystemComponent({self.system.name}: {self.component})>"
2.453125
2
helpers/team_manipulator.py
enterstudio/the-blue-alliance
0
12778234
import logging from google.appengine.api import search from helpers.cache_clearer import CacheClearer from helpers.location_helper import LocationHelper from helpers.manipulator_base import ManipulatorBase from helpers.search_helper import SearchHelper class TeamManipulator(ManipulatorBase): """ Handle Team database writes. """ @classmethod def getCacheKeysAndControllers(cls, affected_refs): return CacheClearer.get_team_cache_keys_and_controllers(affected_refs) @classmethod def postDeleteHook(cls, teams): ''' To run after the team has been deleted. ''' for team in teams: SearchHelper.remove_team_location_index(team) @classmethod def postUpdateHook(cls, teams, updated_attr_list, is_new_list): """ To run after models have been updated """ for (team, updated_attrs) in zip(teams, updated_attr_list): # Disabled due to unreliability. 2017-01-24 -fangeugene # try: # LocationHelper.update_team_location(team) # except Exception, e: # logging.error("update_team_location for {} errored!".format(team.key.id())) # logging.exception(e) try: SearchHelper.update_team_location_index(team) except Exception, e: logging.error("update_team_location_index for {} errored!".format(team.key.id())) logging.exception(e) cls.createOrUpdate(teams, run_post_update_hook=False) @classmethod def updateMerge(self, new_team, old_team, auto_union=True): """ Given an "old" and a "new" Team object, replace the fields in the "old" team that are present in the "new" team, but keep fields from the "old" team that are null in the "new" team. """ attrs = [ "city", "state_prov", "country", "postalcode", "normalized_location", # Overwrite whole thing as one "name", "nickname", "website", "rookie_year", "motto", ] for attr in attrs: if getattr(new_team, attr) is not None: if getattr(new_team, attr) != getattr(old_team, attr): setattr(old_team, attr, getattr(new_team, attr)) old_team.dirty = True # Take the new tpid and tpid_year iff the year is newer than or equal to the old one if (new_team.first_tpid_year is not None and new_team.first_tpid_year >= old_team.first_tpid_year): old_team.first_tpid_year = new_team.first_tpid_year old_team.first_tpid = new_team.first_tpid old_team.dirty = True return old_team
2.140625
2
api/applications/tests/tests_create_application.py
django-doctor/lite-api
3
12778235
from parameterized import parameterized from rest_framework import status from rest_framework.reverse import reverse from api.applications.enums import ( ApplicationExportType, ApplicationExportLicenceOfficialType, GoodsTypeCategory, ) from api.applications.models import ( StandardApplication, OpenApplication, HmrcQuery, BaseApplication, ExhibitionClearanceApplication, GiftingClearanceApplication, F680ClearanceApplication, ) from api.cases.enums import CaseTypeEnum, CaseTypeReferenceEnum from lite_content.lite_api import strings from api.staticdata.trade_control.enums import TradeControlActivity, TradeControlProductCategory from test_helpers.clients import DataTestClient class DraftTests(DataTestClient): url = reverse("applications:applications") def test_create_draft_standard_individual_export_application_successful(self): """ Ensure we can create a new standard individual export application draft """ data = { "name": "Test", "application_type": CaseTypeReferenceEnum.SIEL, "export_type": ApplicationExportType.TEMPORARY, "have_you_been_informed": ApplicationExportLicenceOfficialType.YES, "reference_number_on_information_form": "123", } response = self.client.post(self.url, data, **self.exporter_headers) response_data = response.json() standard_application = StandardApplication.objects.get() self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response_data["id"], str(standard_application.id)) self.assertEqual(StandardApplication.objects.count(), 1) def test_create_draft_exhibition_clearance_application_successful(self): """ Ensure we can create a new Exhibition Clearance draft object """ self.assertEqual(ExhibitionClearanceApplication.objects.count(), 0) data = { "name": "Test", "application_type": CaseTypeReferenceEnum.EXHC, } response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(ExhibitionClearanceApplication.objects.count(), 1) def test_create_draft_gifting_clearance_application_successful(self): """ Ensure we can create a new Exhibition Clearance draft object """ self.assertEqual(GiftingClearanceApplication.objects.count(), 0) data = { "name": "Test", "application_type": CaseTypeReferenceEnum.GIFT, } response = self.client.post(self.url, data, **self.exporter_headers) application = GiftingClearanceApplication.objects.get() self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(GiftingClearanceApplication.objects.count(), 1) self.assertEqual(application.name, data["name"]) self.assertEqual(application.case_type.id, CaseTypeEnum.GIFTING.id) def test_create_draft_f680_clearance_application_successful(self): """ Ensure we can create a new Exhibition Clearance draft object """ self.assertEqual(F680ClearanceApplication.objects.count(), 0) data = { "name": "Test", "application_type": CaseTypeReferenceEnum.F680, } response = self.client.post(self.url, data, **self.exporter_headers) application = F680ClearanceApplication.objects.get() self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(F680ClearanceApplication.objects.count(), 1) self.assertEqual(application.name, data["name"]) self.assertEqual(application.case_type.id, CaseTypeEnum.F680.id) def test_create_draft_open_application_successful(self): """ Ensure we can create a new open application draft object """ data = { "name": "Test", "application_type": CaseTypeReferenceEnum.OIEL, "export_type": ApplicationExportType.TEMPORARY, "goodstype_category": GoodsTypeCategory.MILITARY, "contains_firearm_goods": True, } response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(OpenApplication.objects.count(), 1) def test_create_draft_hmrc_query_successful(self): """ Ensure we can create a new HMRC query draft object """ data = { "name": "Test", "application_type": CaseTypeReferenceEnum.CRE, "organisation": self.organisation.id, } response = self.client.post(self.url, data, **self.hmrc_exporter_headers) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(HmrcQuery.objects.count(), 1) def test_create_draft_hmrc_query_failure(self): """ Ensure that a normal exporter cannot create an HMRC query """ data = { "application_type": CaseTypeReferenceEnum.CRE, "organisation": self.organisation.id, } response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(HmrcQuery.objects.count(), 0) @parameterized.expand( [ [{}], [{"application_type": CaseTypeReferenceEnum.SIEL, "export_type": ApplicationExportType.TEMPORARY}], [{"name": "Test", "export_type": ApplicationExportType.TEMPORARY}], [{"name": "Test", "application_type": CaseTypeReferenceEnum.SIEL}], [{"application_type": CaseTypeReferenceEnum.EXHC}], [{"name": "Test"}], ] ) def test_create_draft_failure(self, data): """ Ensure we cannot create a new draft object with POST data that is missing required properties Applications require: application_type, export_type & name Exhibition clearances require: application_type & name Above is a mixture of invalid combinations for these cases """ response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual(BaseApplication.objects.count(), 0) def test_create_no_application_type_failure(self): """ Ensure that we cannot create a new application without providing a application_type. """ data = {} response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json()["errors"]["application_type"][0], strings.Applications.Generic.SELECT_A_LICENCE_TYPE ) @parameterized.expand( [(CaseTypeEnum.SICL.reference, StandardApplication), (CaseTypeEnum.OICL.reference, OpenApplication)] ) def test_trade_control_application(self, case_type, model): data = { "name": "Test", "application_type": case_type, "trade_control_activity": TradeControlActivity.OTHER, "trade_control_activity_other": "other activity type", "trade_control_product_categories": [key for key, _ in TradeControlProductCategory.choices], } response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_201_CREATED) application_id = response.json()["id"] application = model.objects.get(id=application_id) self.assertEqual(application.trade_control_activity, data["trade_control_activity"]) self.assertEqual(application.trade_control_activity_other, data["trade_control_activity_other"]) self.assertEqual( set(application.trade_control_product_categories), set(data["trade_control_product_categories"]) ) @parameterized.expand( [ ( CaseTypeEnum.SICL.reference, "trade_control_activity", strings.Applications.Generic.TRADE_CONTROL_ACTIVITY_ERROR, ), ( CaseTypeEnum.SICL.reference, "trade_control_activity_other", strings.Applications.Generic.TRADE_CONTROL_ACTIVITY_OTHER_ERROR, ), ( CaseTypeEnum.SICL.reference, "trade_control_product_categories", strings.Applications.Generic.TRADE_CONTROl_PRODUCT_CATEGORY_ERROR, ), ( CaseTypeEnum.OICL.reference, "trade_control_activity", strings.Applications.Generic.TRADE_CONTROL_ACTIVITY_ERROR, ), ( CaseTypeEnum.OICL.reference, "trade_control_activity_other", strings.Applications.Generic.TRADE_CONTROL_ACTIVITY_OTHER_ERROR, ), ( CaseTypeEnum.OICL.reference, "trade_control_product_categories", strings.Applications.Generic.TRADE_CONTROl_PRODUCT_CATEGORY_ERROR, ), ] ) def test_trade_control_application_failure(self, case_type, missing_field, expected_error): data = { "name": "Test", "application_type": case_type, "trade_control_activity": TradeControlActivity.OTHER, "trade_control_activity_other": "other activity type", "trade_control_product_categories": [key for key, _ in TradeControlProductCategory.choices], } data.pop(missing_field) response = self.client.post(self.url, data, **self.exporter_headers) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) errors = response.json()["errors"] self.assertEqual(errors[missing_field], [expected_error])
2.296875
2
run_terminate_appstream_fleet_autoscale.py
HardBoiledSmith/johanna
64
12778236
<reponame>HardBoiledSmith/johanna<filename>run_terminate_appstream_fleet_autoscale.py #!/usr/bin/env python3 from env import env from run_common import AWSCli from run_common import print_message from run_common import print_session options, args = dict(), list() if __name__ == "__main__": from run_common import parse_args options, args = parse_args() def terminate_appstream_fleet_autoscale(settings): aws_cli = AWSCli(settings['AWS_REGION']) fleet_name = settings['FLEET_NAME'] print_message(f'terminate fleet autoscale for: {fleet_name}') fleet_path = f"fleet/{settings['FLEET_NAME']}" cc = ['cloudwatch', 'delete-alarms'] cc += ['--alarm-names', 'scale-out-utilization-policy'] aws_cli.run(cc, ignore_error=True) cc = ['cloudwatch', 'delete-alarms'] cc += ['--alarm-names', 'scale-in-utilization-policy'] aws_cli.run(cc, ignore_error=True) cc = ['application-autoscaling', 'deregister-scalable-target'] cc += ['--service-namespace', 'appstream'] cc += ['--resource-id', fleet_path] cc += ['--scalable-dimension', 'appstream:fleet:DesiredCapacity'] aws_cli.run(cc, ignore_error=True) ################################################################################ # # start # ################################################################################ print_session('terminate appstream autoscaling setting for stack & fleet') appstream = env['appstream'] target_name = None region = options.get('region') is_target_exists = False if len(args) > 1: target_name = args[1] for settings in appstream.get('STACK', list()): if target_name and settings['NAME'] != target_name: continue if region and settings['AWS_REGION'] != region: continue is_target_exists = True terminate_appstream_fleet_autoscale(settings) if is_target_exists is False: mm = list() if target_name: mm.append(target_name) if region: mm.append(region) mm = ' in '.join(mm) print(f'appstream autoscale: {mm} is not found in config.json')
2.34375
2
lcm/lcm/nf_pm/serializers/create_thresho_id_request.py
onap/vfc-gvnfm-vnflcm
1
12778237
<reponame>onap/vfc-gvnfm-vnflcm # Copyright (c) 2019, CMCC Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rest_framework import serializers from lcm.nf_pm.counst import THRESHOLDTYPE class ThresholdCriteriaSerializer(serializers.Serializer): performanceMetric = serializers.CharField(help_text="Defines the performance metric associated with the" "threshold, as specified in an external measurement" "specification.", required=True, allow_null=False) thresholdType = serializers.ChoiceField(help_text="Type of threshold", required=True, allow_null=False, choices=THRESHOLDTYPE) simpleThresholdDetails = serializers.CharField(help_text="Details of a simple threshold", required=False, allow_null=True) class CreateThresholdRequestSerializer(serializers.Serializer): objectInstanceId = serializers.CharField(help_text="Identifier of the VNF instance associated with this " "threshold.", required=True, allow_null=False) criteria = ThresholdCriteriaSerializer(help_text="Criteria that define this threshold.", required=True, allow_null=False)
1.765625
2
sphere_SA_population/sphere_SA_population.py
trevorgokey/misc
0
12778238
<filename>sphere_SA_population/sphere_SA_population.py<gh_stars>0 #!/usr/bin/env python3 import numpy as np from matplotlib import animation from matplotlib import rc import matplotlib.pyplot as plt def cart2sph(x, y, z): hxy = np.hypot(x, y) r = np.hypot(hxy, z) phi = np.arctan2(y, x) theta = np.arctan2(hxy,z) return np.array([r,theta,phi]) def sph2cart(r,theta,phi): rsin_theta = r * np.sin(theta) x = rsin_theta * np.cos(phi) y = rsin_theta * np.sin(phi) z = r * np.cos(theta) return np.array([x, y, z]) def read_coordinates(filename): if type(filename) == str: return np.loadtxt(filename) return np.vstack([np.loadtxt(f) for f in filename]) def update_vis(i,self): batch=self.batch_size iterations=self.iterations polar = self.polar N = self.N hit = self.hit theta,phi = np.random.random((batch,2)).T theta = np.arccos(1 - 2*theta) phi = self.phi_min + (self.phi_max - self.phi_min)*phi for (t,p) in zip(theta,phi): d = self.__class__.arclen(t,p,polar[1],polar[2], self.shell_radius) if (d < self.point_radius).any(): hit += 1 if self.verbose: XYZ = sph2cart(self.shell_radius,t,p) self.hitout.write("H {:8.3f} {:8.3f} {:8.3f}\n".format(*XYZ)) x,y = self.__class__.cart_project_onto_disc( np.atleast_2d(XYZ), self.visual_2d_clip) self.hitx_data.extend(x) self.hity_data.extend(y) else: XYZ = sph2cart(self.shell_radius,t,p) if self.verbose: x,y = self.__class__.cart_project_onto_disc( np.atleast_2d(XYZ), self.visual_2d_clip) self.missout.write("H {:8.3f} {:8.3f} {:8.3f}\n".format(*XYZ)) self.missx_data.extend(x) self.missy_data.extend(y) self.hitout.flush() self.missout.flush() self.vis_hit.set_data(self.hitx_data, self.hity_data) self.vis_miss.set_data(self.missx_data, self.missy_data) self.ax.set_xlim( min(self.hitx_data + self.missx_data), max(self.hitx_data + self.missx_data) ) self.ax.set_ylim( min(self.hity_data + self.missy_data), max(self.hity_data + self.missy_data) ) N += batch outstr = "r={:8.2f} {:12.8f} N={:d} hit%={:10.6e} iter={:8d}/{:8d}\n" if not self.quiet: print(outstr.format( self.shell_radius, hit/N * 4*np.pi*self.shell_radius, N, hit/N, i, iterations), end='') self.N = N self.hit = hit return [self.vis_hit, self.vis_miss] class SphereSAPopulation: def __init__(self, crd, **kwargs): """ """ self.visual=False self.visual_2d_clip=10.0 self.quiet=True self.batch_size = 1 self.iterations=10000 self.crd = crd self.theta_min = 0 self.theta_max = np.pi self.phi_min = 0.0 self.phi_max = 2.0*np.pi self.point_radius=1.0 self.shell_radius=1.0 for k,v in kwargs.items(): if v is not None: self.__dict__[k] = v if not self.quiet: print(self.__dict__) @staticmethod def arclen(t, p, data_theta, data_phi, r): central_angle = np.arccos( np.cos(data_theta)*np.cos(t) + np.sin(data_theta)*np.sin(t)*np.cos(abs(p - data_phi))) d = r * central_angle return d def run(self): if self.visual: return self.run_visual() polar = cart2sph(*self.crd.T) batch=self.batch_size iterations=self.iterations hit = 0 i = 0 N = 0 while i < iterations: theta,phi = np.random.random((batch,2)).T theta = np.arccos(1 - 2*theta) phi = self.phi_min + (self.phi_max - self.phi_min)*phi for (t,p) in zip(theta,phi): d = __class__.arclen(t,p,polar[1],polar[2], self.shell_radius) if (d < self.point_radius).any(): hit += 1 N += batch i += 1 outstr = "r={:8.2f} {:12.8f} N={:d} hit%={:10.6e} iter={:8d}/{:8d}\n" if not self.quiet: print(outstr.format( self.shell_radius, hit/N * 4*np.pi*self.shell_radius, N, hit/N, i, iterations), end='') print(outstr.format( self.shell_radius, hit/N * 4*np.pi*self.shell_radius, N, hit/N, i, iterations), end='') @staticmethod def cart_project_onto_disc(crd, clip=10.0): x = crd[:,0] / (1-crd[:,2]) y = crd[:,1] / (1-crd[:,2]) mag = np.sqrt((x**2 + y**2)) maxmag = clip mask = mag > maxmag x[mask] = x[mask] / mag[mask] * maxmag y[mask] = y[mask] / mag[mask] * maxmag return x,y def run_visual(self): self.fig = plt.figure(figsize=(10, 10), dpi=120) rc("font", **{"size": 12}) self.ax = self.fig.add_subplot(111) self.missx_data = [] self.missy_data = [] self.hitx_data = [] self.hity_data = [] if self.verbose: self.hitout = open('hit.xyz','w') self.missout = open('miss.xyz','w') self.vis_miss = self.ax.plot([], [], 'r.', ms=1)[0] # self.vis_miss = self.ax.scatter([0], [0], ',', ms=1, c='r')[0] self.vis_hit = self.ax.plot([], [], 'g.', ms=5)[0] #self.crd /= np.atleast_2d(np.linalg.norm(self.crd,axis=1)*self.shell_radius).T x,y = self.cart_project_onto_disc(self.crd, self.visual_2d_clip) self.vis_data = self.ax.plot(x,y, 'k,', ms=1.0,alpha=.5)[0] #ax.set_ylim(-20, 20) self.polar = cart2sph(*self.crd.T) self.hit = 0 self.N = 0 update = 1 ani = animation.FuncAnimation(self.fig, update_vis, fargs=(self,), interval=update, blit=False, frames=self.iterations, repeat=False) plt.show() if not self.quiet: print("Press any key to abort") input() if self.verbose: self.hitout.close() self.missout.close() def main(): import argparse parser = argparse.ArgumentParser(description='MC integration of a spherical shell') parser.add_argument( 'filename', metavar='filename', type=str, nargs='+', help='input filename containing coordinates' ) #parser.add_argument('--theta-min', type=float) #parser.add_argument('--theta-max', type=float) #parser.add_argument('--phi-min', type=float) #parser.add_argument('--phi-max', type=float) parser.add_argument('--point-radius', type=float) parser.add_argument('--shell-radius', type=float) parser.add_argument('--iterations', type=int) parser.add_argument('--batch-size', type=int) parser.add_argument('--visual', action="store_true") parser.add_argument('--quiet', action="store_true") parser.add_argument('--verbose', action="store_true") parser.add_argument('--visual-2d-clamp', type=float) args = parser.parse_args() crd = read_coordinates(args.filename) obj = SphereSAPopulation( crd, **args.__dict__) obj.run() if __name__ == "__main__": main()
2.703125
3
hummingbot/strategy/dev_0_hello_world/start.py
cardosofede/hummingbot
542
12778239
<reponame>cardosofede/hummingbot #!/usr/bin/env python from hummingbot.strategy.dev_0_hello_world.dev_0_hello_world_config_map import dev_0_hello_world_config_map from hummingbot.strategy.dev_0_hello_world import HelloWorldStrategy def start(self): try: exchange = dev_0_hello_world_config_map.get("exchange").value.lower() trading_pair = dev_0_hello_world_config_map.get("trading_pair").value asset = dev_0_hello_world_config_map.get("asset").value self._initialize_markets([(exchange, [trading_pair])]) exchange = self.markets[exchange] self.strategy = HelloWorldStrategy(exchange=exchange, trading_pair=trading_pair, asset=asset, ) except Exception as e: self.notify(str(e)) self.logger().error("Unknown error during initialization.", exc_info=True)
2.28125
2
Cimple_Compiler.py
Triantafullenia-Doumani/Cimple-Compiler
0
12778240
# <NAME> 4191 # <NAME> 4052 import sys SINGLE_TOKENS_LIST = [",", ";", "+", "-", "*", "/", ")", "(", "[", "]", "{", "}", ">", "<", "="] VARLIST = [] AUTO = [ [4, 3, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 0, 7, 8, 5, 5, 5], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 6, 1], [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6], [-1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [4, 4, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2], [4, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5], [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5], ] class Entities: arguments = [] def __init__(self, name, value, parMode, offset, type, startQuad, framelength): self.name = name self.type = type self.offset = offset self.startQuad = startQuad self.framelength = framelength self.value = value self.parMode = parMode class Scope: entity = [] offset = 12 def __init__(self, nestingLevel): self.nestingLevel = nestingLevel class Arguments: def __init__(self, parMode, varType): self.parMode = parMode self.varType = varType class Buffers: def __init__(self, string_buffer, counter, temp, filename, state): self.word_buffer = string_buffer self.charType = string_buffer self.char_buffer = string_buffer self.assigment_buffer = string_buffer self.temp_counter = counter self.T1_place = temp self.input_file_name = filename self.state = state class Quads: def __init__(self): self.quad_list = [] self.quad_list_for_c = [] class Flag: def __init__(self, flag): self.sub = flag self.program_includes_fun_or_prod = flag def main(argv): global BUFFERS global QUADS global FLAG global input global tokenType global tokenString global line global scopes global level tokenType = "" tokenString = "" scopes = [] line = 1 level = 0 BUFFERS = Buffers("", 0, "T_0", argv[0], 0) QUADS = Quads() FLAG = Flag(0) input = open(argv[0], "r") program() ###################################### INTERMEDIATE CODE ######################################### def create_int_file(): int_file_name = BUFFERS.input_file_name.replace(".ci", ".int") int_file = open(int_file_name, "w") for quad in QUADS.quad_list: int_file.write(str(quad) + "\n") int_file.close() def create_c_file(): c_file_name = BUFFERS.input_file_name.replace(".ci", ".c") c_file = open(c_file_name, "w") c_file.write("#include <stdio.h> \n") c_file.write("\nvoid main() \n{\n") c_file.write("int ") var_len = len(VARLIST) for var in range(var_len - 1): c_file.write(str(VARLIST[var]) + ",") if len(VARLIST) > 1: c_file.write(str(VARLIST[-1]) + "; \n") for line in QUADS.quad_list_for_c: c_file.write(str(line)) c_file.write("}") c_file.close() # returns the number of the next quad def nextquad(): return len(QUADS.quad_list) # generates the new quand def genquad(op, x, y, z): label = nextquad() new_quad = [label, op, x, y, z] QUADS.quad_list.append(new_quad) return new_quad # creates and returns a new temporary variable # the temporary changes are of the form T_1, T_2, T_3 ... def newtemp(): # def __init__(self, name, value, parMode, offset, type, startQuad, framelength): global temp_counter new_temp = 'T_%s' % BUFFERS.temp_counter addNewTempVar(new_temp) BUFFERS.temp_counter += 1 return new_temp # creates a blank list of labels def emptylist(): new_quad = ["_", "_", "_", "_", "_"] return new_quad # creates a list of labels containing only x def makelist(x): new_quad = [x, "_", "_", "_", "_"] return new_quad # creates a list of labels from the merge of list 1 and list 2 def merge(list1, list2): new_list = list1 + list2 return new_list # the list consists of indices in quads whose last end is not is completed # The backpatch visits these quads one by one and completes them with the z tag def backpatch(pointers_list, z): for i in pointers_list: for q in range(1, len(QUADS.quad_list)): if (QUADS.quad_list[q][0] == i): QUADS.quad_list[q][4] = z def backpatch_c(z): for x in range(len(QUADS.quad_list_for_c)): string = str(QUADS.quad_list_for_c[x]) QUADS.quad_list_for_c[x] = string.replace("null", str(z)) def addNewScope(): level = len(scopes) #maria scopes.append(Scope(level)) def addNewVar(name): ent = Entities(name,None,None,scopes[-1].offset, "Var",None,None) scopes[-1].entity.append(ent) scopes[-1].offset += 4 #obj = scopes[-1] #print(obj.entity[-1].name," ",obj.entity[-1].type, " ",obj.entity[-1].offset) def addNewTempVar(name): ent = Entities(name,None,None,scopes[-1].offset,"tempVar",None,None) scopes[-1].entity.append(ent) scopes[-1].offset += 4 #obj = scopes[-1] #print(obj.entity[-1].name," ",obj.entity[-1].type, " ",obj.entity[-1].offset) def addNewPar(name,parMode): ent = Entities(name,None,parMode,scopes[-1].offset, "Par",None,None) scopes[-1].entity.append(ent) scopes[-1].offset += 4 #obj = scopes[-1] #print(obj.entity[-1].name," ",obj.entity[-1].type, " ",obj.entity[-1].offset," ",obj.entity[-1].parMode) def addNewFunction(name): ent = Entities(name,None,None,None,"Function",None,None) scopes[-1].entity.append(ent) def addArgument(parMode): scopes[-2].entity[-1].arguments.append(parMode) obj = scopes[-2] print(obj.entity[-1].name," ",obj.entity[-1].type, " ",obj.entity[-1].offset," ",obj.entity[-1].parMode) def removeScope(): global level print("Scope : " , level,"\n") obj = scopes[-1] for ent in obj.entity: if(ent.type == "Var"): print(ent.name," ",ent.type, " ",ent.offset) elif(ent.type == "tempVar"): print(ent.name," ",ent.type, " ",ent.offset) elif(ent.type == "Par"): print(ent.name," ",ent.type, " ",ent.offset," ",ent.parMode) elif(ent.type == "Function" or ent.type == "procedure"): print(ent.name," ",ent.type, " ",ent.startQuad) print("\n") scopes.pop(level - 1) level = level - 1 ###################################### GRAMMAR ANALYSIS ######################################### def program(): global tokenType global program_name lex() if (tokenString == "program"): lex() addNewScope() if (tokenType == "idtk"): program_name = tokenString block() else: print("Syntax Error line: " + str(line) + "\nProgram name expected") exit() else: print("Syntax Error line: " + str(line) + "\nThe keyword ' program' expected") exit() def block(): lex() declarations() subprograms() statements() def declarations(): if (tokenType == "BracesOpentk"): lex() while (tokenString == "declare"): while (1): lex() if (tokenType == "idtk"): if (tokenString not in VARLIST): VARLIST.append(tokenString) addNewVar(tokenString) else: print("ERROR line: " + str(line) + "\nYou can't declare the same id multiple times" + tokenString) exit() else: print("Syntax Error in line: " + str( line) + "\nExpected ID not " + tokenType + " ( " + tokenString + " )") exit() lex() if (tokenType == "commatk"): continue if (tokenType == "semicolontk"): lex() break else: print("Syntax Error in line: " + str(line) + "\nWrong syntax of declaration") exit() continue def subprograms(): global BUFFERS if (tokenType == "BracesOpentk" and FLAG.sub == 0): genquad("begin_block", program_name, "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ":\n" QUADS.quad_list_for_c.append(line_c) FLAG.sub = 1 elif (tokenType == "BracesOpentk"): lex() while (tokenString == "function" or tokenString == "procedure"): FLAG.program_includes_fun_or_prod = 1 FLAG.sub = 1 lex() if (tokenType != "idtk"): print("Syntax Error in line: " + str( line) + "\nExpected ID not " + tokenType + " ( " + tokenString + " ) after function/procedure") exit() function_name = tokenString addNewFunction(function_name) #maria addNewScope() genquad("begin_block", function_name, "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) QUADS.quad_list_for_c.append(line_c) lex() if (tokenType != "ParenthesesOpentk"): print("Syntax Error in line: " + str(line) + "\nExpected to open Parentheses") exit() formalparlist() scopes[-2].entity[-1].startQuad = len(QUADS.quad_list) #maria block() removeScope() genquad("end_block", function_name, "_", "_") FLAG.sub = 0 if (tokenType == "BracesOpentk" and FLAG.sub == 0): genquad("begin_block", program_name, "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ":\n" QUADS.quad_list_for_c.append(line_c) FLAG.sub = 1 # 1 or more statements def statements(): if (tokenType == "BracesOpentk"): lex() while (1): if (tokenType == "BracesOpentk"): lex() while (1): statem = tokenString statement() if (tokenType == "BracesClosetk"): lex() if (tokenType != "semicolontk"): print("Syntax Error in line: " + str( line) + "\nStatement " + statem + " must finish with semicolon not " + tokenString) exit() break else: continue else: statem = tokenString if statement(): # if(tokenType == "semicolontk"): # print("Syntax Error in line: " + str(line) + " Duplicate semicolon \n") # exit() break if (tokenString == "}"): lex() return # one statement def statement(): if (tokenString == 'if'): ifStat() if (tokenString == "while"): whileStat() elif (tokenString == "switchcase"): switchcaseStat() elif (tokenString == "forcase"): forcaseStat() elif (tokenString == "incase"): incaseStat() elif (tokenString == "call"): callStat() elif (tokenString == "return"): returnStat() elif (tokenString == "input"): inputStat() elif (tokenString == "print"): printStat() elif (tokenType == "idtk"): assignStat() else: return 1 def incaseStat(): lex() w = newtemp() iquad = nextquad() # genquad(":=","1","_",w) # active_case_flag = 1 while (tokenString == "case"): lex() if (tokenType == "ParenthesesOpentk"): lex() C_place = condition() backpatch_c(nextquad() + 1) genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_null ; // ( jump,_,_,null )\n" QUADS.quad_list_for_c.append(line_c) if (tokenType == "ParenthesesClosetk"): lex() backpatch(C_place[1], nextquad()) # genquad(":=","0","_",w) statements() # line_c = "L_"+str(len(QUADS.quad_list) -1)+": if "+str(w)+" == 0 goto L_"+str(iquad)+" // ( jump,_,_,"+str(iquad)+")\n" # QUADS.quad_list_for_c.append(line_c) backpatch(C_place[0], nextquad()) backpatch_c(nextquad()) else: print("Syntax Error in line: " + str( line) + "\nExpected ')' to close the expression in IncaseStat() not " + tokenString) exit() else: print("Syntax Error in line: " + str(line) + "\nExpected '(' after ID in IncaseStat() not " + tokenString) exit() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str(line) + "\nStatement incase must finish with semicolon not " + tokenString) exit() genquad("=", w, "0", iquad) line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": if " + str(w) + " == 0 goto L_" + str( iquad) + "; // ( jump,_,_," + str(iquad) + ") \n" QUADS.quad_list_for_c.append(line_c) def forcaseStat(): lex() fquad = nextquad() while (tokenString == "case"): lex() if (tokenType == "ParenthesesOpentk"): lex() C_place = condition() backpatch_c(nextquad() + 1) genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_null ; // ( jump,_,_,null )\n" QUADS.quad_list_for_c.append(line_c) if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str( line) + "\nExpected ')'' to close the expression in forcaseStat() not " + tokenString) exit() else: lex() backpatch(C_place[1], nextquad()) statements() genquad("jump", "_", "_", fquad) line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_" + str(fquad) + " ; // ( jump,_,_," + str( fquad) + ")\n" QUADS.quad_list_for_c.append(line_c) backpatch(C_place[0], nextquad()) backpatch_c(nextquad()) else: print("Syntax Error in line: " + str(line) + "\nExpected '('' to open case not " + tokenString) exit() if (tokenString != "default"): print("Syntax Error in line: " + str(line) + "\nYou must have 'default' case at forcase") exit() lex() statements() if (check_statement_to_finish_with_semicolon() == 0): print( "Syntax Error in line: " + str(line) + "\nStatement forcase must finish with semicolon not " + tokenString) exit() def switchcaseStat(): lex() exit_list = emptylist() pointers_list = [] while (tokenString == "case"): lex() if (tokenType == "ParenthesesOpentk"): lex() C_place = condition() backpatch_c(nextquad() + 1) genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_null ; // ( jump,_,_,null )\n" QUADS.quad_list_for_c.append(line_c) if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str( line) + "\nExpected ')'' to close the expression in switchcaseStat() not " + tokenString) exit() else: lex() backpatch(C_place[1], nextquad()) statements() e = makelist(nextquad()) genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_null //( jump,_,_, null)\n" QUADS.quad_list_for_c.append(line_c) exit_list = merge(exit_list, e) backpatch(C_place[0], nextquad()) # backpatch_c(nextquad()) else: print("Syntax Error in line: " + str(line) + "\nExpected '('' to open case not " + tokenString) exit() if (tokenString != "default"): print("Syntax Error in line: " + str(line) + "\nYou must have 'default' case at switchcase") exit() lex() statement() backpatch(exit_list, nextquad()) backpatch_c(nextquad()) # while statement def whileStat(): lex() pointers_list = [] bquad = nextquad() if (tokenType == "ParenthesesOpentk"): lex() C_place = condition() backpatch_c(nextquad() + 1) genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_null ; // ( jump,_,_,null )\n" QUADS.quad_list_for_c.append(line_c) if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str( line) + "\nExpected ')'' to close the expression in WhileStat() not " + tokenString) exit() else: lex() print(C_place[1] + "ddd") backpatch(C_place[1], nextquad()) statements() backpatch_c(nextquad() + 1) else: print("Syntax Error in line: " + str(line) + "\nExpected '('' after ID in whileStat() not " + tokenString) exit() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str(line) + "\nStatement while must finish with semicolon not " + tokenString) exit() genquad("jump", "_", "_", bquad) backpatch(C_place[0], nextquad()) line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_" + str(bquad) + " ; // ( jump,_,_," + str(bquad) + ")\n" QUADS.quad_list_for_c.append(line_c) # assignment statement def assignStat(): ID = tokenString lex() if (tokenType != "assignmenttk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of assignment") exit() lex() E_place = expression() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str( line) + "\nStatement assignment must finish with semicolon not " + tokenString) exit() genquad(":=", ID, "_", E_place) line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": " + str(ID) + " = " + str(E_place) + " ; // (:= ," + str( ID) + ",_," + str(E_place) + ")\n" QUADS.quad_list_for_c.append(line_c) # if statement def ifStat(): lex() if (tokenType == "ParenthesesOpentk"): lex() C_place = condition() backpatch_c(nextquad() + 1) genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": goto L_null ; // ( jump,_,_,null )\n" QUADS.quad_list_for_c.append(line_c) if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str( line) + "\nExpected ')'' to close the expression in IfStat() not " + tokenString) exit() lex() backpatch(C_place[1], nextquad()) statements() backpatch(C_place[0], nextquad()) backpatch_c(nextquad()) # ifList = makelist(nextquad()) elsepart() # backpatch(ifList,nextquad()) else: print("Syntax Error in line: " + str(line) + "\nExpected '('' after ID in IfStat() not " + tokenString) exit() def elsepart(): if (tokenString == "else"): lex() statements() else: pass # call statement def callStat(): lex() if (tokenType != "idtk"): print("Syntax Error in line: " + str( line) + "\nExpected ID not " + tokenType + " ( " + tokenString + " ) after 'call' statement") exit() called_function_name = tokenString lex() if (tokenType == "ParenthesesOpentk"): actualparlist() else: print("Syntax Error in line: " + str( line) + "\nExpected '('' after to start actualparlist in call() not " + tokenString) exit() lex() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str(line) + "\nStatement else must fiish with semicolon not " + tokenString) exit() genquad("call", "", "_", called_function_name) # input statement def inputStat(): lex() if (tokenType == "ParenthesesOpentk"): lex() if (tokenType != "idtk"): print("Syntax Error in line: " + str(line) + "\nExpected keyword inside 'input'") exit() ID_place = tokenString genquad("inp", ID_place, "_", "_") input = ': scanf("%f", &' + str(ID_place) + ")" line_c = "L_" + str(len(QUADS.quad_list) - 1) + input + " ;// ( inp," + str(ID_place) + "_,_,)\n" QUADS.quad_list_for_c.append(line_c) lex() if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str(line) + "\nExpected ') to close the expression 'input(ID)'") exit() else: print("Syntax Error in line: " + str(line) + "\nWrong syntax of input(ID)") exit() lex() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str(line) + "\nStatement input must finish with semicolon not " + tokenString) exit() # print statement def printStat(): lex() if (tokenType != "ParenthesesOpentk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of print()") exit() lex() E_place = expression() genquad("out", E_place, "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": printf(" + str(E_place) + "); // ( out," + str( E_place) + "_,_,)\n" QUADS.quad_list_for_c.append(line_c) lex() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str(line) + "\nStatement print must finish with semicolon not " + tokenString) exit() # return statement def returnStat(): lex() if (tokenType != "ParenthesesOpentk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of return() - Does not open") exit() lex() E_place = expression() lex() if (check_statement_to_finish_with_semicolon() == 0): print("Syntax Error in line: " + str(line) + "\nStatement return must finish with semicolon not " + tokenString) exit() genquad("retv", E_place, "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": return " + str(E_place) + "; // ( retv," + str( E_place) + "_,_,)\n" QUADS.quad_list_for_c.append(line_c) def check_statement_to_finish_with_semicolon(): if (tokenType != "semicolontk"): return 0 else: lex() return 1 def formalparlist(): lex() while (formalparitem() == 1): if (tokenType == "commatk"): lex() continue elif (tokenType == "ParenthesesClosetk"): lex() break else: print("Syntax Error in line: " + str(line) + "\nWrong syntax of formalparlist )'") exit() def formalparitem(): if (tokenString == "in"): lex() if (tokenType != "idtk"): print("Syntax Error in line: " + str(line) + "\nExpected ID after 'inout' or 'in' )'") exit() else: genquad("par", tokenString, "CV", "_") lex() return 1 elif (tokenString == "inout"): lex() if (tokenType != "idtk"): print("Syntax Error in line: " + str(line) + "\nExpected ID after 'inout' or 'in' )'") exit() else: genquad("par", tokenString, "REF", "_") lex() return 1 else: return 0 def actualparlist(): lex() while (actualparitem() == 1): if (tokenType == "ParenthesesClosetk"): break lex() while (tokenType == "commatk"): lex() continue def actualparitem(): if (tokenString == "in"): argument = tokenString lex() E_place = expression() addNewPar(E_place,"cv") addArgument(argument) genquad("par", E_place, "CV", "_") return 1 elif (tokenString == "inout"): argument = tokenString lex() if (tokenType != "idtk"): print("Syntax Error in line: " + str(line) + "\nExpected ID after 'inout')'") exit() else: genquad("par", tokenString, "REF", "_") lex() addNewPar(tokenString,"ref") addArgument(argument) return 1 else: return 0 def condition(): BT_place = boolterm() C_place = BT_place if (tokenType == "ParenthesesClosetk"): # backpatch_c(nextquad()+ 1) # genquad("jump", "_", "_", "_") # line_c = "L_"+str(len(QUADS.quad_list) - 1)+": goto L_null ; // ( jump,_,_,null )\n" # QUADS.quad_list_for_c.append(line_c) return C_place lex() while (tokenString == "or"): lex() backpatch(C_place[0], nextquad()) BT_place = boolterm() C_place[0] = BT_place[0] C_place[1] = merge(C_place[1], BT_place[1]) lex() return C_place def boolterm(): BF_place = boolfactor() BT_place = BF_place while (tokenString == "and"): backpatch(BT_place[1], nextquad()) BF_place = boolfactor() BT_place[1] = BF_place[1] BT_place[0] = merge(BT_place[0], BF_place[0]) return BT_place def boolfactor(): BF_place = [[], []] # lista apoteloumenh apo 2 listes ( h prwth gia false h deuterh gia true) if (tokenString == "not"): lex() if (tokenType != "bracketOpentk"): print("Syntax Error in line: " + str(line) + "\nExpected '[' before condition") exit() lex() C_place = condition() if (tokenType != "bracketClosetk"): print("Syntax Error in line: " + str(line) + "\nExpected ']' before closing") exit() BF_place[1] = C_place[0] BF_place[0] = C_place[1] return BF_place elif (tokenType == "bracketOpentk"): C_place = condition() if (tokenType != "bracketClosetk"): print("Syntax Error in line: " + str(line) + "\nExpected ']' before closing") exit() return C_place else: E1_place = expression() RO_place = REL_OP() E2_place = expression() BF_place[1] = makelist(nextquad()) genquad(RO_place, E1_place, E2_place, "_") BF_place[0] = makelist(nextquad()) # genquad("jump", "_", "_", "_") line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": if (" + str(E1_place) + " " + str(RO_place) + " " + str( E2_place) + ") goto L_null // (" + str(RO_place) + "," + str(E1_place) + "," + str(E2_place) + ",null )\n" QUADS.quad_list_for_c.append(line_c) return BF_place def expression(): OS_place = optional_sign() T1_place = term() while (1): if (tokenType == "semicolontk"): break if (tokenType == "idtk"): break if (ADD_OP() == 1): while (ADD_OP() == 1): op = tokenString lex() T2_place = term() w = newtemp() genquad(op, T1_place, T2_place, w) line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": " + str(w) + " = " + str(T1_place) + " " + str( op) + " " + str(T2_place) + "; //(" + str(op) + "," + str(T1_place) + "," + str(T2_place) + str( w) + ")\n" QUADS.quad_list_for_c.append(line_c) T1_place = w if (tokenType == "ParenthesesClosetk"): break lex() if (tokenString in SINGLE_TOKENS_LIST): break if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of expresion") exit() return T1_place def term(): F1_place = factor() while (MUL_OP() == 1 or ADD_OP() == 1): op = tokenString lex() F2_place = factor() w = newtemp() genquad(op, F1_place, F2_place, w) line_c = "L_" + str(len(QUADS.quad_list) - 1) + ": " + str(w) + " = " + str(F1_place) + " " + str( op) + " " + str(F2_place) + "; // (" + str(op) + "," + str(F1_place) + ",_," + str(F2_place) + "," + str( w) + ")\n" QUADS.quad_list_for_c.append(line_c) F1_place = w return F1_place def factor(): if (tokenType == "numbertk"): T = tokenString lex() return T elif (tokenType == "idtk"): ID_place = idtail() return ID_place else: # EXPRESSION if (tokenType != "ParenthesesOpentk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of expresion") exit() E_place = expression() if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of expresion") exit() return E_place def idtail(): global w if (tokenString in VARLIST): T = tokenString lex() return T else: var = tokenString called_function_name = tokenString lex() if (tokenType == "ParenthesesOpentk"): actualparlist() w = newtemp() genquad("par", w, "RET", "_") genquad("call", "_", "_", called_function_name) if (tokenType != "ParenthesesClosetk"): print("Syntax Error in line: " + str(line) + "\nWrong syntax of actualparlist, does not close") exit() lex() return w # else: # print("Error in line: " + str(line) + "\nVariable is not defined : "+ var) # exit() return var # symbols + and - (are optional) def optional_sign(): if (ADD_OP() == 1): lex() else: pass def ADD_OP(): if (tokenString == "+" or tokenString == "-"): return 1 return 0 def MUL_OP(): if (tokenString == "*" or tokenString == "/"): return 1 return 0 def REL_OP(): if (tokenString == "="): relop_buffer = tokenString lex() return relop_buffer elif (tokenType == "lesstk"): relop_buffer = tokenString lex() if (tokenType == "greatertk" or tokenString == "="): relop_buffer += tokenString lex() return relop_buffer elif (tokenType == "greatertk"): relop_buffer = tokenString lex() if (tokenString == "="): relop_buffer += tokenString lex() return relop_buffer else: print("Syntax Error in line: " + str( line) + "\nYou must have REL_OP between expressions in boolfactor() not " + tokenType) exit() ###################################### LEXICAL ANALYSIS ######################################### def newSymbol(): global char global line char = input.read(1) if (char == '\n'): line += 1 def lex(): global char global tokenString global line while (True): if (add_char_to_buffer() == 1): break BUFFERS.state = AUTO[BUFFERS.state][BUFFERS.charType] if (BUFFERS.state == -1): potential_num() check_state() break elif (BUFFERS.state == -2): potential_ID_or_Keyword() check_state() break check_state() def check_if_EOF_after_dot(): newSymbol() while (char == "\n" or char == "\t" or char == " "): newSymbol() if not char: print("COMPILE SUCCESSFUL COMPLETE!\n") genquad("halt", "_", "_", "_") genquad("end_block", program_name, "_", "_") if FLAG.program_includes_fun_or_prod == 0: line_c = "L_" + str(len(QUADS.quad_list) - 1) + ":\n" QUADS.quad_list_for_c.append(line_c) create_c_file() create_int_file() input.close() exit(1) else: print("ERROR line: " + str(line) + "\nProgram must finish with '.'") exit() def check_if_programm_ends_with_dot(): if (BUFFERS.char_buffer == '.'): print("COMPILE SUCCESSFUL COMPLETE!\n") genquad("halt", "_", "_", "_") genquad("end_block", program_name, "_", "_") if FLAG.program_includes_fun_or_prod == 0: line_c = "L_" + str(len(QUADS.quad_list) - 1 + ": \n") QUADS.quad_list_for_c.append(line_c) create_c_file() input.close() create_int_file() exit(1) else: print("ERROR line: " + str(line) + "\nProgram must finish with '.'") exit() def add_char_to_buffer(): global char global comment_state global tokenType global tokenString if (BUFFERS.char_buffer in SINGLE_TOKENS_LIST): BUFFERS.charType = find_char_type(BUFFERS.char_buffer) tokenString = BUFFERS.char_buffer BUFFERS.char_buffer = '' return 1 if (BUFFERS.assigment_buffer == ":="): tokenType = "assignmenttk" tokenString = ":=" BUFFERS.assigment_buffer = "" return 1 newSymbol() BUFFERS.charType = find_char_type(char); if (BUFFERS.charType == 13): cross_comment() if (BUFFERS.charType == 12): check_if_EOF_after_dot() if not char: check_if_programm_ends_with_dot() if (BUFFERS.charType == -1): print("ERROR line:" + str(line) + "\nChar:" + char + " is not belongs to alphabet") exit() if (BUFFERS.assigment_buffer == ":" and char != "="): print("ERROR line: " + str(line) + "\nCharacter '=' must exist after character ':' ") exit() elif (BUFFERS.assigment_buffer == ':' and char == '='): BUFFERS.assigment_buffer += char BUFFERS.state = 5 check_state() return 0 elif (BUFFERS.charType == 0 or BUFFERS.charType == 1): BUFFERS.word_buffer += char # word_buffer only stores numbers , strings and ':' elif (BUFFERS.charType == 5): BUFFERS.assigment_buffer = ":" if (BUFFERS.charType != 18): BUFFERS.char_buffer = char return 0 def check_state(): global BUFFERS global tokenString if (BUFFERS.state == 6): # error print("ERROR line: " + str(line) + "\nBecause of: " + BUFFERS.word_buffer) exit() elif (BUFFERS.state == 5): # OK tokenString = BUFFERS.word_buffer BUFFERS.word_buffer = '' def cross_comment(): global line global charType global char global tokenType comment_line = line newSymbol() while (char != "#"): if not char: print("ERROR line :" + str(comment_line) + "\nWrong syntax of comment") exit() newSymbol() BUFFERS.charType = find_char_type(char); def potential_num(): global BUFFERS global tokenType if not (BUFFERS.word_buffer.isnumeric()): print("ERROR line :" + str(line) + "\nKeyword cant start with number : ( " + word_buffer + " )") exit() if (int(BUFFERS.word_buffer) > -4294967295 or int(BUFFERS.word_buffer) < 4294967295): tokenType = "num<PASSWORD>" BUFFERS.state = 5 else: print("ERROR line: " + str(line) + "\nNumber is not between -(2^32-1) and (2^32-1)") exit() def potential_ID_or_Keyword(): global tokenType global BUFFERS if (BUFFERS.word_buffer in ID_words): tokenType = "keywordtk" BUFFERS.state = 5 elif (len(BUFFERS.word_buffer) < 30): tokenType = "idtk" BUFFERS.state = 5 else: print("ERROR line: " + str(line) + "\nThe length of the string is more than 30") exit() def find_char_type(c): global tokenType if (c.isalpha()): tokenType = "" return 0 elif (c.isdigit()): tokenType = "" return 1 elif (c == '+' or c == '-' or c == '*' or c == '/'): tokenType = "arithmetictk" return 2 elif (c == ';'): tokenType = "semicolontk" return 3 elif (c == ','): tokenType = "commatk" return 4 elif (c == ':'): return 5 tokenType = "" elif (c == '['): tokenType = "bracketOpentk" return 6 elif (c == ']'): tokenType = "bracketClosetk" return 7 elif (c == '{'): tokenType = "BracesOpentk" return 8 elif (c == '}'): tokenType = "BracesClosetk" return 9 elif (c == '('): tokenType = "ParenthesesOpentk" return 10 elif (c == ')'): tokenType = "ParenthesesClosetk" return 11 elif (c == '.'): tokenType = "dottk" return 12 elif (c == '#'): tokenType = "commenttk" return 13 elif (c == '<'): tokenType = "lesstk" return 14 elif (c == '>'): tokenType = "greatertk" return 15 elif (c == '='): tokenType = "" return 16 elif (not c): tokenType = "" return 17 elif (c == " " or c == '\n' or c == '\t'): tokenType = "whiteSpacetk" return 18 else: tokenType = "" return -1 # char is not in alphabet ID_words = ["program", "if", "switchcase", "not", "function", "input", "declare", "else", "forcase", "and", "procedure", "print", "while", "incase", "or", "call", "case", "default", "return", "in", "inout"] if __name__ == "__main__": main(sys.argv[1:]) # STRUCTURE OF AUTO ARRAY # LETTERS - NUMBERS - (+-*/) - ; - , - : - [ - ] - { - } - ( - ) - . - # - < - > - = - EOF - (white spaces) # start = 0 # rem = 1 # asgn = 2 # dig = 3 # idk = 4 # OK = 5 # ERROR = 6 # smaller = 7 # larger = 8 # -1 pn # -2 pik
2.296875
2
tests/integration/test_rerun.py
JoshKarpel/condormap
21
12778241
# Copyright 2018 HTCondor Team, Computer Sciences Department, # University of Wisconsin-Madison, WI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from pathlib import Path import pytest import htmap TIMEOUT = 300 @pytest.mark.timeout(TIMEOUT) def test_rerun(mapped_doubler): m = mapped_doubler.map([1]) m.wait() m.rerun() assert list(m) == [2] @pytest.mark.timeout(TIMEOUT) def test_load_then_rerun(mapped_doubler): m = mapped_doubler.map([1], tag="load-then-rerun") m.wait() loaded = htmap.load("load-then-rerun") loaded.rerun() assert list(loaded) == [2] @pytest.mark.timeout(TIMEOUT) def test_rerun_out_of_range_component_raises(mapped_doubler): m = mapped_doubler.map([1], tag="load-then-rerun") m.wait() with pytest.raises(htmap.exceptions.CannotRerunComponents): m.rerun([5]) @pytest.fixture(scope="function") def sleepy_doubler_that_writes_a_file(): @htmap.mapped def sleepy_double(x): time.sleep(1) r = x * 2 p = Path("foo") p.write_text("hi") htmap.transfer_output_files(p) return r return sleepy_double @pytest.mark.timeout(TIMEOUT) def test_rerun_removes_current_output_file(sleepy_doubler_that_writes_a_file): m = sleepy_doubler_that_writes_a_file.map([1], tag="load-then-rerun") m.wait() assert m.get(0) == 2 m.rerun() with pytest.raises(htmap.exceptions.OutputNotFound): m[0] @pytest.mark.timeout(TIMEOUT) def test_rerun_removes_current_user_output_file(sleepy_doubler_that_writes_a_file): m = sleepy_doubler_that_writes_a_file.map([1], tag="load-then-rerun") m.wait() assert (m.output_files.get(0) / "foo").read_text() == "hi" m.rerun() with pytest.raises(FileNotFoundError): (m.output_files[0] / "foo").read_text()
2.125
2
py/caesar_cipher.py
sti320a/security_tools
0
12778242
#! python3 def generate_cryptogram(text: str, keynum: int) -> str: encrypted = '' for char in text: encrypted += chr(ord(char) + keynum) return encrypted def try_decrypt(text: str) -> list: res = [] for keynum in range(1, 27): res.append(generate_cryptogram(text, -keynum)) return res if __name__ == '__main__': print(generate_cryptogram('test', 1)) try_decrypt('uftu')
3.828125
4
tests/unit/test_modulegraph/testpkg-packages/pkg/__init__.py
hawkhai/pyinstaller
9,267
12778243
<reponame>hawkhai/pyinstaller """ pkg.init """
0.757813
1
bagou/exceptions.py
toxinu/django-bagou
4
12778244
<reponame>toxinu/django-bagou # -*- coding: utf-8 -*- class BagouException(Exception): pass class BagouChannelException(Exception): pass
1.054688
1
configs/distiller/cwd/cwd_psp_r101-d8_distill_psp_r18_d8_512_1024_80k_cityscapes.py
pppppM/mmsegmentation-distiller
35
12778245
<filename>configs/distiller/cwd/cwd_psp_r101-d8_distill_psp_r18_d8_512_1024_80k_cityscapes.py _base_ = [ '../../_base_/datasets/cityscapes.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_80k.py' ] find_unused_parameters=True weight=5.0 tau=1.0 distiller = dict( type='SegmentationDistiller', teacher_pretrained = 'pretrained_model/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth', distill_cfg = [ dict(student_module = 'decode_head.conv_seg', teacher_module = 'decode_head.conv_seg', output_hook = True, methods=[dict(type='ChannelWiseDivergence', name='loss_cwd', student_channels = 19, teacher_channels = 19, tau = tau, weight =weight, ) ] ), ] ) student_cfg = 'configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes.py' teacher_cfg = 'configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py'
1.382813
1
src/pyhn/urls.py
knownsec/PyHackerNews
8
12778246
#!/usr/bin/env python from django.conf.urls import patterns, include, url urlpatterns = patterns( '', url(r'^$', 'pyhn.apps.news.views.index.index', name='index'), url( r'^social/', include('social.apps.django_app.urls', namespace='social') ), url(r'^news/', include('pyhn.apps.news.urls', namespace='news')), url(r'^accounts/', include('pyhn.apps.account.urls', namespace='account')), url( r'^user/(?P<user_id>\d+)/', 'pyhn.apps.account.views.user_profile', name='profile' ), )
1.953125
2
crimsobot/utils/games.py
the-garlic-os/crimsoBOT
0
12778247
import random from collections import Counter from datetime import datetime from typing import List, Tuple, Union import discord from discord import Embed from discord.ext import commands from crimsobot.models.currency_account import CurrencyAccount from crimsobot.models.guess_statistic import GuessStatistic from crimsobot.utils import tools as c DiscordUser = Union[discord.User, discord.Member] def get_crimsoball_answer(ctx: commands.Context) -> str: # function to give first answer a ctx to work with # don't know if this is any better than just putting it # inside of the crimsoball command answer_list = [ '{} haha ping'.format(ctx.message.author.mention), 'ye!', '**no**', 'what do you think?', '*perhaps*', 'OMAN', "i can't answer this, you need an adult", 'absolutely!\n\n\n`not`', 'of course!', 'according to quantum superposition, the answer was both yes and no before you asked.', "is the sky blue?\n\n(is it? i don't know. i don't have eyes.)", "i can't be bothered with this right now.", 'funny you should ask--', 'fine, sure, whatever', '<:xok:551174281367650356>', 'ask seannerz. ping him now and ask.', 'ehhhh sure', 'hmmmm. no.', 'uhhhhhhhhh', '<:uhhhh:495249068789071882>', 'eat glass!', 'it is important that you stop bothering me.', 'you CANNOT be serious', 'sure? how would i know?', 'what heck', 'random_response', # leave this alone ] return random.choice(answer_list) def emojistring() -> str: emojis = [] for line in open(c.clib_path_join('games', 'emojilist.txt'), encoding='utf-8', errors='ignore'): line = line.replace('\n', '') emojis.append(line) emoji_string = random.sample(''.join(emojis), random.randint(3, 5)) return ' '.join(emoji_string) def tally(ballots: List[str]) -> Tuple[str, int]: counter = Counter(sorted(ballots)) winner = counter.most_common(1)[0] return winner def winner_list(winners: List[str]) -> str: if len(winners) > 1: winners_ = ', '.join(winners[:-1]) winners_ = winners_ + ' & ' + winners[-1] # winner, winner & winner else: winners_ = winners[0] return winners_ def get_story() -> str: story = open( c.clib_path_join('games', 'madlibs.txt'), encoding='utf-8', errors='ignore' ).readlines() story = [line[:-1] for line in story] story = [line.replace('\\n', '\n') for line in story] return random.choice(story) def get_keys(format_string: str) -> List[str]: """format_string is a format string with embedded dictionary keys. Return a set containing all the keys from the format string.""" keys = [] end = 0 repetitions = format_string.count('{') for _ in range(repetitions): start = format_string.find('{', end) + 1 # pass the '{' end = format_string.find('}', start) key = format_string[start:end] keys.append(key) # may add duplicates # find indices of marked tags (to be used more than once) ind = [i for i, s in enumerate(keys) if '#' in s] # isolate the marked tags and keep one instance each mults = [] for ele in ind: mults.append(keys[ele]) mults = list(set(mults)) # delete all marked tags from original list for ele in sorted(ind, reverse=True): del keys[ele] # ...and add back one instance each keys = keys + mults return keys async def win(discord_user: DiscordUser, amount: float) -> None: account = await CurrencyAccount.get_by_discord_user(discord_user) # type: CurrencyAccount account.add_to_balance(amount) await account.save() async def daily(discord_user: DiscordUser, lucky_number: int) -> Embed: # fetch account account = await CurrencyAccount.get_by_discord_user(discord_user) # type: CurrencyAccount # get current time now = datetime.utcnow() # arbitrary "last date collected" and reset time (midnight UTC) reset = datetime(1969, 7, 20, 0, 0, 0) # ymd required but will not be used last = account.ran_daily_at # check if dates are same; if so, gotta wait if last and last.strftime('%Y-%m-%d') == now.strftime('%Y-%m-%d'): hours = (reset - now).seconds / 3600 minutes = (hours - int(hours)) * 60 title = 'Patience...' award_string = 'Daily award resets at midnight UTC, {}h{}m from now.'.format(int(hours), int(minutes + 1)) thumb = 'clock' color = 'orange' # if no wait, then check if winner or loser else: winning_number = random.randint(1, 100) if winning_number == lucky_number: daily_award = 500 title = 'JACKPOT!' wrong = '' # they're not wrong! thumb = 'moneymouth' color = 'green' else: daily_award = 10 title_choices = [ '*heck*', '*frick*', '*womp womp*', '**😩**', 'Aw shucks.', 'Why even bother?', ] title = random.choice(title_choices) wrong = 'The winning number this time was **{}**, but no worries:'.format(winning_number) thumb = 'crimsoCOIN' color = 'yellow' # update daily then save account.ran_daily_at = now await account.save() # update their balance now (will repoen and reclose user) await win(discord_user, daily_award) award_string = '{} You have been awarded your daily **\u20A2{:.2f}**!'.format(wrong, daily_award) thumb = thumb color = color # the embed to return embed = c.crimbed( title=title, descr=award_string, thumb_name=thumb, color_name=color, ) return embed async def check_balance(discord_user: DiscordUser) -> float: account = await CurrencyAccount.get_by_discord_user(discord_user) # type: CurrencyAccount return account.get_balance() def guess_economy(n: int) -> Tuple[float, float]: """ input: integer output: float, float""" # winnings for each n=0,...,20 winnings = [0, 7, 2, 4, 7, 11, 15, 20, 25, 30, 36, 42, 49, 56, 64, 72, 80, 95, 120, 150, 200] # variables for cost function const = 0.0095 # dampener multiplier sweet = 8 # sweet spot for guess favor = 1.3 # favor to player (against house) at sweet spot # conditionals if n > 2: cost = winnings[n] / n - (-const * (n - sweet) ** 2 + favor) else: cost = 0.00 return winnings[n], cost async def guess_luck(discord_user: DiscordUser, n: int, won: bool) -> None: stats = await GuessStatistic.get_by_discord_user(discord_user) # type: GuessStatistic stats.plays += 1 stats.add_to_expected_wins(n) if won: stats.wins += 1 await stats.save() # async def guess_luck_balance(discord_user: DiscordUser) -> Tuple[float, int]: # stats = await GuessStatistic.get_by_discord_user(discord_user) # type: GuessStatistic # return stats.luck_index, stats.plays async def guess_stat_embed(user: DiscordUser) -> Embed: """Return a big ol' embed of Guessmoji! stats""" s = await GuessStatistic.get_by_discord_user(user) if s.plays == 0: embed = c.crimbed( title='HOW—', descr="You haven't played GUESSMOJI! yet!", thumb_name='weary', footer='Play >guess [n] today!', ) else: embed = c.crimbed( title='GUESSMOJI! stats for {}'.format(user), descr=None, thumb_name='crimsoCOIN', footer='Stat tracking as of {d.year}-{d.month:02d}-{d.day:02d}'.format(d=s.created_at), ) ess = '' if s.plays == 1 else 's' ess2 = '' if s.wins == 1 else 's' # list of tuples (name, value) for embed.add_field field_list = [ ( 'Gameplay', '**{}** game{ess} played, **{}** win{ess2}'.format(s.plays, s.wins, ess=ess, ess2=ess2) ), ( 'Luck index (expected: 100)', '**{:.3f}**'.format(100 * s.luck_index) ), ] for field in field_list: embed.add_field(name=field[0], value=field[1], inline=False) return embed def guesslist() -> str: output = [' n · cost · payout', '·························'] for i in range(2, 21): spc = '\u2002' if i < 10 else '' w, c = guess_economy(i) output.append('{}{:>d} · \u20A2{:>5.2f} · \u20A2{:>6.2f}'.format(spc, i, c, w)) return '\n'.join(output)
2.609375
3
custom_components/afvalinfo/location/venlo.py
reindrich/home-assistant-config
0
12778248
from ..const.const import ( MONTH_TO_NUMBER, SENSOR_LOCATIONS_TO_URL, _LOGGER, ) from datetime import datetime, date from bs4 import BeautifulSoup import urllib.request import urllib.error class VenloAfval(object): def get_date_from_afvaltype(self, tableRows, afvaltype): try: for row in tableRows: garbageDate = row.find("td") garbageType = row.find("span") if garbageDate and garbageType: garbageDate = row.find("td").string garbageType = row.find("span").string #Does the afvaltype match... if garbageType == afvaltype: day = garbageDate.split()[1] month = MONTH_TO_NUMBER[garbageDate.split()[2]] year = str( datetime.today().year if datetime.today().month <= int(month) else datetime.today().year + 1 ) garbageDate = year + "-" + month + "-" + day if datetime.strptime(garbageDate, '%Y-%m-%d').date() >= date.today(): return garbageDate # if nothing was found return "" except Exception as exc: _LOGGER.error("Error occurred while splitting data: %r", exc) return "" def get_data(self, city, postcode, street_number): _LOGGER.debug("Updating Waste collection dates") try: url = SENSOR_LOCATIONS_TO_URL["venlo"][0].format( postcode, street_number ) req = urllib.request.Request(url=url) f = urllib.request.urlopen(req) html = f.read().decode("utf-8") soup = BeautifulSoup(html, "html.parser") html = soup.find("div", {"class": "trash-removal-calendar"}) tableRows = html.findAll("tr") # Place all possible values in the dictionary even if they are not necessary waste_dict = {} # GFT waste_dict["gft"] = self.get_date_from_afvaltype(tableRows, "GFT") # Restafval waste_dict["restafval"] = self.get_date_from_afvaltype(tableRows, "Restafval/PMD") # PMD waste_dict["pbd"] = self.get_date_from_afvaltype(tableRows, "Restafval/PMD") return waste_dict except urllib.error.URLError as exc: _LOGGER.error("Error occurred while fetching data: %r", exc.reason) return False
2.875
3
cogs/Games.py
YeetVegetabales/NOVA
7
12778249
import discord import aiohttp import random import asyncio import json import io import re import akinator import time import asyncpraw import requests import urllib3 import urllib import itertools import time import textwrap from time import perf_counter from aiotrivia import TriviaClient, AiotriviaException from discord.ext import commands from secrets import * from contextlib import suppress from async_timeout import timeout from big_lists import * from PIL import Image, ImageDraw, ImageSequence, ImageFont class games(commands.Cog): """Play games in your server""" def __init__(self, client, reddit): self.client = client self.trivia = TriviaClient() self.aki = akinator.Akinator() self.coin = "<:coin:781367758612725780>" self.reddit = reddit reddit = asyncpraw.Reddit(client_id=reddit_client_id, client_secret=reddit_client_secret, username=reddit_username, password=<PASSWORD>, user_agent=reddit_user_agent) @commands.command(aliases=['mm']) async def mastermind(self, ctx): """You have 5 tries to guess a 4 digit code. Can you do it?""" part = random.sample(list(map(str, list(range(9)))), 4) code = [int(x) for x in part] human_code = "".join(str(x) for x in code) embed = discord.Embed(title='Welcome to Mastermind', color=0x5643fd, timestamp=ctx.message.created_at, description='Mastermind is a logic and guessing game where you have to find a four-digit ' 'code in only five tries. Type out four numbers to begin guessing!\n\n' '<:redx:732660210132451369> ``The number you guessed is incorrect``\n' '<:ticknull:732660186057015317> ``The number you guessed is in the code, ' 'but not ' 'in the right spot``\n' '<:tickgreen:732660186560462958> ``You have the right digit and in the ' 'correct spot``') await ctx.send(embed=embed) i = 0 while i < 5: try: result = "" msg = await self.client.wait_for('message', timeout=60, check=lambda m: m.author == ctx.author) r = [int(x) for x in msg.content] if len(msg.content) != 4: await ctx.send('Please only guess four-digit numbers.') continue for element in r: if element in code: if r.index(element) == code.index(element): result += "<:tickgreen:732660186560462958>" else: result += "<:ticknull:732660186057015317>" else: result += "<:redx:732660210132451369>" await ctx.send(result) if r == code: await ctx.send(f"<a:party:773063086109753365> That's the right code. You win! " f"<a:party:773063086109753365>\nYou cracked the code in **{i + 1}** tries.") break i += 1 except ValueError: await ctx.send(f'{ctx.message.author.mention}, that is not a valid code! Please try again ' f'with actual numbers.') continue except asyncio.TimeoutError: await ctx.send(f'{ctx.message.author.mention},' f' you took too long to guess! The correct code was **{human_code}**.') break else: await ctx.send(f"{ctx.message.author.mention}, you ran out of tries! The correct code was " f"**{human_code}**.") @commands.command() async def fight(self, ctx, member: discord.Member = None): """Fight other members to the death.""" if member is None: return await ctx.send('<:redx:732660210132451369> You must have someone ' 'to fight in order to run this command!') user_mention = member user = member.display_name auth_mention = ctx.message.author.mention auth = ctx.message.author.display_name weapon_list = ['Russian AK-47', 'revolver', 'crossbow', 'Sniper-AWP', 'SCAR-20', 'sword', 'knife', 'shotgun', 'spear', 'desert eagle', 'steel axe', 'trebuchet', 'Marksmen rifle', 'Hunting rifle', 'slingshot', 'nuclear bomb', 'trident', 'torpedo', 'cannon', 'catapult', 'nerf gun', 'land mine', 'grenade', 'M-16', 'lead-pipe', 'Glock-17', 'Burst-AUG', 'P-90', 'double-barrel shotgun', 'sawed-off shotgun', 'FAMAS', '.22 caliber rifle', 'hammer', 'bottle of bleach', 'tide-pod'] healing_list = ['band-aid', 'first aid kit', 'bottle of alcohol', 'bottle of essential oils', 'flu vaccine', 'plague mask', 'gas mask', 'magic potion', "witch's spell", 'bottle of cough syrup'] try: await ctx.send(f"**{auth}** has entered the arena and challenged **{user}** to a duel.\n" f"{user_mention.mention} do you accept?\n``yes|no``") msg = await self.client.wait_for('message', check=lambda m: m.author == user_mention, timeout=15) if msg.content.lower() == 'yes': await ctx.send(f'Fight has begun!') auth_health = 100 user_health = 100 await ctx.send(embed=discord.Embed(description=f'{auth}: <:heart:775889971931512842>' f'{auth_health}\n' f'{user}: <:heart:775889971931512842>{user_health}', color=0x5643fd)) while user_health > 0 and auth_health > 0: try: await asyncio.sleep(2) await ctx.send(f"{user_mention.mention} it is now your turn. Would you like to ``attack``, " f"``heal``, or ``end``?") msg = await self.client.wait_for('message', check=lambda m: m.author == user_mention, timeout=15) if msg.content.lower() == 'attack': weapon = random.choice(weapon_list) damage = random.randint(25, 50) after = auth_health - damage auth_health -= damage await ctx.send(f"{user_mention.mention} did **{damage}** " f"damage to {auth} with a " f"{weapon}.\n{auth} has <:heart:775889971931512842>{after} health" f" remaining.") elif msg.content.lower() == 'heal': if user_health > 99: await ctx.send("Well that did nothing, " "you can't heal if you already have full health.") else: heal = random.choice(healing_list) points = random.randint(25, 50) after = user_health + points user_health += points await ctx.send(f"After deciding to heal, {user} gained **{points}** health by " f"using a {heal}. \nTheir total health is now " f"<:heart:775889971931512842>{after}") elif msg.content.lower() == 'end': await ctx.send(f'{user} has ended the match. <:owner:730864906429136907>{auth}' f'<:owner:730864906429136907> is the winner!') await ctx.send(embed=discord.Embed(description=f'{auth}: <:heart:775889971931512842>' f'{auth_health}\n' f'{user}: <:heart:775889971931512842>' f'{user_health}', color=0x5643fd)) break if auth_health < 1: await asyncio.sleep(2) await ctx.send(f'{auth} has lost all of their health. <:owner:730864906429136907>' f'{user_mention.mention}<:owner:730864906429136907> wins!') await ctx.send(embed=discord.Embed(description=f'{auth}: <:heart:775889971931512842>' f'0\n' f'{user}: <:heart:775889971931512842>' f'{user_health}', color=0x5643fd)) break await asyncio.sleep(2) await ctx.send(f"{auth_mention} now it's your turn. Would you like to `attack`, `heal`, or" f" `end`?") msg = await self.client.wait_for('message', check=lambda m: m.author == ctx.message.author, timeout=15) if msg.content.lower() == 'attack': weapon = random.choice(weapon_list) damage = random.randint(25, 50) after = user_health - damage user_health -= damage await ctx.send(f"{auth_mention} did **{damage}** " f"damage to {user} with a " f"{weapon}.\n{user} has <:heart:775889971931512842>{after} health" f" remaining.") elif msg.content.lower() == 'heal': if auth_health > 99: await ctx.send("Well that did nothing, " "you can't heal if you already have full health.") else: heal = random.choice(healing_list) points = random.randint(25, 50) after = auth_health + points auth_health += points await ctx.send(f"After deciding to heal, {auth} gained **{points}** health by " f"using a {heal}. \nTheir total health is now " f"<:heart:775889971931512842>{after}") elif msg.content.lower() == 'end': await ctx.send(f'{auth} has ended the match. <:owner:730864906429136907>{user}' f'<:owner:730864906429136907> is the winner!') await ctx.send(embed=discord.Embed(description=f'{auth}: <:heart:775889971931512842>' f'{auth_health}\n' f'{user}: <:heart:775889971931512842>' f'{user_health}', color=0x5643fd)) break if user_health < 1: await asyncio.sleep(2) await ctx.send(f'{user} has lost all of their health. <:owner:730864906429136907>' f'{auth_mention}<:owner:730864906429136907> wins!') await ctx.send(embed=discord.Embed(description=f'{auth}: <:heart:775889971931512842>' f'{auth_health}\n' f'{user}: <:heart:775889971931512842>' f'0', color=0x5643fd)) break continue except asyncio.TimeoutError: await ctx.send('<:redx:732660210132451369> You took too long to respond! ' 'The fight was abandoned.') elif msg.content.lower() == 'no': return await ctx.send(f'**{user}** has declined the match. Better luck next time :/') else: return await ctx.send(f"<:redx:732660210132451369> {user_mention.mention}, " f"you didn't respond with yes or no so the match " f"was cancelled.") except asyncio.TimeoutError: await ctx.send('<:redx:732660210132451369> You took too long to respond! The fight was abandoned.') @commands.command() async def trivia(self, ctx, difficulty: str = None): """Test out your knowledge with trivia questions from nizcomix#7532""" difficulty = difficulty or random.choice(['easy', 'medium', 'hard']) try: question = await self.trivia.get_random_question(difficulty) except AiotriviaException: return await ctx.send(embed=discord.Embed(title='That is not a valid sort.', description='Valid sorts are ``easy``, ``medium``, and ``hard``.', color=0xFF0000)) answers = question.responses d = difficulty.capitalize() random.shuffle(answers) final_answers = '\n'.join([f"{index}. {value}" for index, value in enumerate(answers, 1)]) await ctx.send(embed=discord.Embed( title=f"{question.question}", description=f"\n{final_answers}\n\nQuestion about: **{question.category}" f"**\nDifficulty: **{d}**", color=0x5643fd)) answer = answers.index(question.answer) + 1 try: while True: msg = await self.client.wait_for('message', timeout=15, check=lambda m: m.author == ctx.message.author) if str(answer) in msg.content: return await ctx.send(embed=discord.Embed(description=f"{answer} was correct ({question.answer})", color=0x32CD32, title='Correct!')) if str(answer) not in msg.content: return await ctx.send(embed=discord.Embed(description=f"Unfortunately **{msg.content}** was wrong. " f"The " f"correct answer was ``{question.answer}``.", title='Incorrect', color=0xFF0000)) except asyncio.TimeoutError: embed = discord.Embed(title='Time expired', color=0xFF0000, description=f"The correct answer was {question.answer}") await ctx.send(embed=embed) @commands.command(aliases=['aki']) async def akinator(self, ctx): """Let NOVA guess a person of your choice.""" answers = ["y", "yes", "n", "no", "0", "1", "2", "3", "4", "i", "idk", "i dont know", "i don't know", "pn", "probably not", "probably", "p"] embed = discord.Embed(title="Welcome to Akinator", description="""Think of any character, they can be fictional or a real person. You will be asked questions about this character and it is your job to respond with one of the five acceptable answers:\n **• yes** **• no** **• idk** **• probably** **• probably not**\n Reply with **stop** to end the game.""", color=0x5643fd, timestamp=ctx.message.created_at) embed.set_thumbnail(url="https://imgur.com/Hkny5Fz.jpg") await ctx.send(embed=embed) try: self.aki.start_game() await ctx.send(self.aki.answer("idk")) questions = 0 while self.aki.progression <= 80: ms = await self.client.wait_for("message", check=lambda m: m.author == ctx.author, timeout=60) if ms.content.lower() in answers: ques = self.aki.answer(ms.content) await ctx.send(f"**{ctx.message.author.display_name}:**\n{ques}") questions += 1 continue elif ms.content.lower() == "stop": await ctx.send("The game has ended. Thanks for playing!") return else: continue self.aki.win() embed = discord.Embed(title=f"It's {self.aki.first_guess['name']}", color=0x5643fd, timestamp=ctx.message.created_at, description=f"**Description:** {self.aki.first_guess['description']}\n\n" f"I made this guess in **{questions}** tries.\n\n" f"**Was I correct?**\nyes/no") embed.set_image(url=self.aki.first_guess['absolute_picture_path']) await ctx.send(embed=embed) try: correct = await self.client.wait_for('message', check=lambda c: c.author == ctx.author, timeout=60) if correct.content.lower() == "yes" or correct.content.lower() == "y" or correct.content == ":flushed:": await ctx.send("<a:party:773063086109753365> Congratulations <a:party:773063086109753365>") elif correct.content.lower() == "no" or correct.content.lower() == "n": try: second_guess = self.aki.guesses[1] embed = discord.Embed(title=f"My second guess is {second_guess['name']}", color=0x5643fd, timestamp=ctx.message.created_at, description=f"**Description:** {second_guess['description']}\n\n" f"I made this guess in **{questions}** tries.\n\n" f"**Was I correct?**\nyes/no") embed.set_image(url=second_guess['absolute_picture_path']) await ctx.send(embed=embed) m = await self.client.wait_for('message', check=lambda c: c.author == ctx.author, timeout=60) if m.content.lower() == "yes" or m.content.lower() == "y" or m.content == ":flushed:": await ctx.send("<a:party:773063086109753365> Congratulations <a:party:773063086109753365>") else: await ctx.send("Welp, better luck next time.") except IndexError: await ctx.send("Welp, better luck next time.") except asyncio.TimeoutError: await ctx.send("You took too long to respond so the game was abandoned") except asyncio.TimeoutError: await ctx.send("You took too long to respond so the game was abandoned") @commands.command(aliases=['type']) async def typing(self, ctx): """Test your typing skills with this fun and interactive game.""" sentence = random.choice(sentences) word_count = len(sentence.split()) embed = discord.Embed(title="Welcome to Typing Test", color=0x5643fd, timestamp=ctx.message.created_at, description="The game will be starting in `5` seconds. Get ready!") embed.add_field(name="Directions", value="You will be sent a random sentence and it is yo" "ur duty to type back the " "sentence as quick as possible with as few mistakes as possible.", inline=False) embed.add_field(name="Rules", value="Be warned: punctuation, capitalization, and spelling DO matter.", inline=False) await ctx.send(embed=embed) await asyncio.sleep(5) await ctx.send("**3...**") await asyncio.sleep(1) await ctx.send("**2...**") await asyncio.sleep(1) await ctx.send("**1...**") await asyncio.sleep(1) await ctx.send("**GO**") await asyncio.sleep(1) await ctx.send(sentence) try: start = perf_counter() msg = await self.client.wait_for('message', timeout=60, check=lambda x: x.author == ctx.author) user_characters = list(msg.content) characters = list(sentence) maximum = range(0, len(characters)) correct = 0 for indexer in maximum: try: if user_characters[indexer] == characters[indexer]: correct += 1 except IndexError: pass accuracy = correct / len(characters) * 100 stop = perf_counter() total = round(stop - start) part_of_minute = total / 60 await ctx.send(f"<:clock:738186842343735387> Time: `{total}` seconds\n" f"<:star:737736250718421032> Speed: `{round(word_count / part_of_minute)}` WPM\n" f"<:license:738176207895658507> Accuracy: `{round(accuracy)}`%") except asyncio.TimeoutError: await ctx.send("You took over a minute to send your sentence back so the process was abandoned.") except ZeroDivisionError: await ctx.send("Lmao you are so bad at typing that you got a zero percent accuracy.") @commands.command(aliases=['gr']) async def guessreddit(self, ctx, subreddit=None): """Look at two reddit posts and decide which one got more upvotes""" try: subreddit_list = ["holup", "dankmemes", "memes"] listed = ", ".join(str(sub) for sub in subreddit_list) if subreddit is None: await ctx.send(f"Here is the list of currently available subs you can choose to play from:\n\n" f"`{listed}`\n\nSend which subreddit you would like to use into chat.") msg = await self.client.wait_for("message", check=lambda x: x.author == ctx.message.author, timeout=60) if msg.content in subreddit_list: subreddit = msg.content else: return await ctx.send("That subreddit is not available for this game.\n" "Try again with a different sub.") if subreddit not in subreddit_list: return await ctx.send(f"That subreddit is not available for this game. " f"\nThe current available subreddits are `{listed}`.") ms = await ctx.send("<a:loading:743537226503421973> Please wait while the game is loading... " "<a:loading:743537226503421973>") posts = [] emojis = ["1️⃣", "2️⃣"] sub = await self.reddit.subreddit(subreddit, fetch=True) async for submission in sub.top("day", limit=50): if not submission.stickied: posts.append(str(submission.id)) random.shuffle(posts) final_ids = random.sample(posts, 2) post1 = await self.reddit.submission(id=final_ids[0]) post2 = await self.reddit.submission(id=final_ids[1]) await ms.delete() embed1 = discord.Embed(title="Image 1", color=0x5643fd) embed1.set_image(url=post1.url) embed1.set_footer(text=f"r/{subreddit}") await ctx.send(embed=embed1) embed2 = discord.Embed(title="Image 2", color=0x5643fd) embed2.set_image(url=post2.url) embed2.set_footer(text=f"r/{subreddit}") await ctx.send(embed=embed2) msg = await ctx.send("Can you figure out which post got more upvotes?\n" "React with 1️⃣ or 2️⃣ to make your guess.") await msg.add_reaction("1️⃣") await msg.add_reaction("2️⃣") score1 = "{:,}".format(post1.score) score2 = "{:,}".format(post2.score) reaction, user = await self.client.wait_for('reaction_add', check=lambda r, u: str( r.emoji) in emojis and u.id == ctx.author.id and r.message.id == msg.id, timeout=60) if int(post1.score) > int(post2.score) and str(reaction.emoji) == emojis[0]: await ctx.send(f"Congratulations! `1` was the correct answer with <:upvote:751314607808839803>" f" `{score1}` upvotes.\nImage 2 " f"only had <:upvote:751314607808839803> `{score2}` upvotes.") elif int(post1.score) < int(post2.score) and str(reaction.emoji) == emojis[1]: await ctx.send(f"Congratulations! `2` was the correct answer with <:upvote:751314607808839803> " f"`{score2}` upvotes.\nImage 1 " f"only had <:upvote:751314607808839803> `{score1}` upvotes.") elif int(post1.score) > int(post2.score) and str(reaction.emoji) == emojis[1]: await ctx.send(f"Unfortunately, `2` was the incorrect answer.\nImage 1 had <:upvote:751314607808839803>" f" `{score1}` upvotes " f"while Image 2 had <:upvote:751314607808839803> `{score2}` upvotes.") elif int(post1.score) < int(post2.score) and str(reaction.emoji) == emojis[0]: await ctx.send(f"Unfortunately, `1` was the incorrect answer.\n" f"Image 2 had <:upvote:751314607808839803> `{score2}` upvotes " f"while Image 1 only had <:upvote:751314607808839803> `{score1}` upvotes.") else: await ctx.send("You did not react with the correct emojis so the game was cancelled.") except asyncio.TimeoutError: await ctx.send("You never reacted with a guess so the game was cancelled.") @commands.command() async def captionary(self, ctx): """A fun game based on captioning different gifs.""" game_master = ctx.message.author.id random.shuffle(gif_links) random.shuffle(inspiration) gifs = gif_links[:20] embed = discord.Embed(title="Captionary", color=0x5643fd, timestamp=ctx.message.created_at, description="Captionary is a fun game based on submitting captions for different gifs." "There are anywhere between 5 and 20 rounds and players submit their best" "captions to be voted on.") embed.add_field(name='**Commands**', value='➤ `caption` - submit your caption\n' '➤ `!inspire` - get a free caption idea\n' '➤ `!stop` - used by the game master to end the game', inline=False) embed.add_field(name='**Game Master**', value=f'{ctx.message.author.mention} is the game master for this match! ' f'This user holds the power to end the game at any time using the `!stop` command.') embed.set_image(url='https://imgur.com/qUPbXKI.jpg') await ctx.send(embed=embed) await ctx.send(f"{ctx.message.author.mention} as the game master, you get to choose the round length." f"\nYou can choose any number between **30** and **120**.") try: waiter = await self.client.wait_for("message", check=lambda x: x.author.id == game_master, timeout=30) if 29 < int(waiter.content) < 121: round_time = int(waiter.content) await ctx.send(f"Round time has been set at **{round_time}**") elif 30 > int(waiter.content) or 120 < int(waiter.content): round_time = 60 await ctx.send( f"That is not a number between 30 and 120 so the round time has been set at `60`.") else: round_time = 60 await ctx.send(f"That is not a number between 30 and 120 so the round time has been set at `60`.") except asyncio.TimeoutError: round_time = 60 await ctx.send(f"{ctx.message.author.display_name} never responded so the round time has been set at `60`.") pass except ValueError: round_time = 60 await ctx.send(f"You did not respond with a number so the round " f"time has been set at `60`.") pass await ctx.send(f"{ctx.message.author.mention} additionally, you get to choose how many rounds will be played.\n" f"You may choose any number between **5** and **20**.") try: waiter = await self.client.wait_for("message", check=lambda x: x.author.id == game_master, timeout=30) if 4 < int(waiter.content) < 20: total_rounds = int(waiter.content) + 1 await ctx.send(f"The number of rounds has been set at **{total_rounds}**") elif 5 > int(waiter.content) or 20 < int(waiter.content): total_rounds = 11 await ctx.send(f"That is not a number between **5** and **20** so the number of rounds " f"has been set at `10`.") else: total_rounds = 11 await ctx.send(f"That is not a number between **5** and **20** so the number of rounds " f"has been set at `10`.") except asyncio.TimeoutError: total_rounds = 11 await ctx.send(f"{ctx.message.author.display_name}" f" never responded so the number of rounds has been set at `10`.") pass await asyncio.sleep(2) await ctx.send("Get Ready! The game will start in **15 seconds**.") await asyncio.sleep(15) rounds = 1 gif_index = 0 players = [] # game loop while rounds < total_rounds: end_time = time.time() + round_time await ctx.send(f"**ROUND {rounds}/{total_rounds}**") gif_link = await ctx.send(gifs[gif_index]) if rounds == 1: pass elif len(players) == 0 and rounds != 1: await ctx.send("There were no players for this round so the game has ended.") break else: await ctx.send(" ".join(player.mention for player in players)) try: round_players = [] round_answers = [] # round loop while time.time() < end_time: msg = await self.client.wait_for("message", check=lambda x: x.author != ctx.bot, timeout=120) if "!caption" in msg.content: if msg.author.id in round_players: await ctx.send("You've already given a caption for this round!") if msg.author not in players: players.append(msg.author) if msg.author.id not in round_players: await msg.add_reaction('<:tickgreen:732660186560462958>') round_players.append(msg.author) round_answers.append(msg.content) else: continue elif "!inspire" in msg.content: await ctx.send(random.choice(inspiration)) continue elif "!stop" == msg.content and msg.author.id == game_master: return await ctx.send("Thanks for playing, this game has ended!") except asyncio.TimeoutError: pass # end loop here rounds += 1 gif_index += 1 await ctx.send("Thanks for playing!") @commands.command() async def race(self, ctx, member: discord.Member = None): """See who can be the fastest in this quick-paced game.""" progress = "<:loading_filled:730823516059992204>" if member is None: return await ctx.send('<:redx:732660210132451369> You must mention someone to play against!') player_1 = "🐕 | " player_2 = "🐈 | " accept_or_decline = ["<:tickgreen:732660186560462958>", "<:redx:732660210132451369>"] emojis = ["🐕", "🐈"] msg = await ctx.send(f"{member.mention}\n\n{ctx.message.author.display_name} wants to race!\n" f"React with <:tickgreen:732660186560462958> or <:redx:732660210132451369>" f"to accept or decline.") await msg.add_reaction("<:tickgreen:732660186560462958>") await msg.add_reaction("<:redx:732660210132451369>") try: reaction, user = await self.client.wait_for("reaction_add", timeout=60, check=lambda r, u: str(r.emoji) in accept_or_decline and u.id == member.id and r.message.id == msg.id) if str(reaction.emoji) == accept_or_decline[0]: delete_dis = await ctx.send(f"{member.mention} has accepted! The game will begin in **5** seconds.") await asyncio.sleep(5) await msg.delete() await delete_dis.delete() await ctx.send(f"**Player 1 - {ctx.message.author.display_name}**") player_1_progression = await ctx.send(player_1) await ctx.send(f"**Player 2 - {member.display_name}**") player_2_progression = await ctx.send(player_2) msg2 = await ctx.send("GO! React with your animal to win.") await msg2.add_reaction("🐕") await msg2.add_reaction("🐈") while len(player_1) < 156 and len(player_2) < 156: reaction, user = await self.client.wait_for("reaction_add", timeout=60, check=lambda r, u: str( r.emoji) in emojis and u.id == ctx.message.author.id or member.id and r.message.id == msg.id) if str(reaction.emoji) == emojis[0] and user.id == ctx.message.author.id: player_1 += progress await player_1_progression.edit(content=player_1) await asyncio.sleep(1) elif str(reaction.emoji) == emojis[1] and user.id == member.id: player_2 += progress await player_2_progression.edit(content=player_2) await asyncio.sleep(1) if len(player_1) > len(player_2): return await ctx.send(f"<:owner:730864906429136907>{ctx.message.author.display_name} " f"is the winner!\n" f"Thanks to {member.display_name} for playing.") if len(player_1) < len(player_2): return await ctx.send(f"<:owner:730864906429136907>{member.display_name} is the winner!\n" f"Thanks to {ctx.message.author.display_name} for playing.") elif str(reaction.emoji) == accept_or_decline[1]: return await ctx.send(f"{member.mention} has declined. Better luck next time!") except asyncio.TimeoutError: return await ctx.send(f"The game has timed out due to inactivity.") def setup(client): client.add_cog(games(client, reddit=asyncpraw.Reddit(client_id=reddit_client_id, client_secret=reddit_client_secret, username=reddit_username, password=<PASSWORD>, user_agent=reddit_user_agent)))
2.921875
3
bci_framework/default_extensions/Neuropathic_pain_Neurofeedback/main.py
UN-GCPDS/bci-framework-
0
12778250
""" ================================ Neuropathic pain - Neurofeedback ================================ """ import logging from typing import Literal, TypeVar from bci_framework.extensions.stimuli_delivery import StimuliAPI, Feedback, DeliveryInstance from bci_framework.extensions.stimuli_delivery.utils import Widgets as w from bci_framework.extensions import properties as prop from browser import document, html, timer Ts = TypeVar('Time in seconds') Tm = TypeVar('Time in milliseconds') TM = TypeVar('Time in minutes') bands = { 'alpha': [[1, 5], 'increase'], 'beta': [[5, 10], 'decrease'], 'teta': [[10, 15], 'decrease'], } ######################################################################## class NPNeurofeedback(StimuliAPI): """""" # ---------------------------------------------------------------------- def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.add_stylesheet('styles.css') self.show_cross() self.show_synchronizer() self.feedback = Feedback(self, 'PowerBandNeuroFeedback') self.feedback.on_feedback(self.on_input_feedback) self.bci_stimuli <= html.DIV(id='stimuli') self.dashboard <= w.label( 'NeuropathicPain - Neurofeedback', 'headline4' ) self.dashboard <= html.BR() self.dashboard <= w.subject_information( paradigm='NeuropathicPain - Neurofeedback' ) self.dashboard <= w.slider( label='Baseline acquisition:', min=0, value=0.1, max=5, step=0.1, unit='m', id='baseline_duration', ) self.dashboard <= w.slider( label='Sesion duration:', min=5, value=10, max=30, step=0.1, unit='m', id='sesion_duration', ) self.dashboard <= w.slider( label='Window analysis:', min=0.5, max=2, value=1, step=0.1, unit='s', id='window_analysis', ) self.dashboard <= w.slider( label='Sliding data:', min=0.1, max=2, value=1, unit='s', step=0.1, id='sliding_data', ) self.dashboard <= w.select( 'Analysis Function', [['Fourier', 'fourier'], ['Welch', 'welch']], value='fourier', id='method', ) self.dashboard <= w.switch( label='Record EEG', checked=False, id='record', ) self.dashboard <= w.toggle_button( [ ('Start session', self.start), ('Stop session', self.stop_session), ], id='run', ) # self.dashboard <= w.slider( # label='Test feedback:', # min=-1, # max=1, # value=0, # step=0.1, # id='test', # on_change=self.test_feedback, # ) # # ---------------------------------------------------------------------- # @DeliveryInstance.both # def test_feedback(self, value): # """Test the feedback stimuli.""" # self.on_input_feedback( # **{ # 'feedback': value, # } # ) # ---------------------------------------------------------------------- def on_input_feedback(self, **feedback: dict[str, [str, int]]) -> None: """Asynchronous method to receive the feedback process value. `feedback` is a dictionary with the keys: * `feedback`: The feedback value, an `int` between -1 and 1. * `baseline`: The baseline value freezed. """ f = feedback['feedback'] # logging.warning(f'FEEDBACK: {f}') plot = self.BandFeedback.neurofeedback(f) # document.select_one('#stimuli').clear() # self.update_plot(plot) # @DeliveryInstance.remote # def update_plot(self, plot): document.select_one('#stimuli').style = { 'background-image': f'url(data:image/png;base64,{plot})', } # ---------------------------------------------------------------------- def start(self) -> None: """Start the session. A session comprises a baseline calculation and a neurofeedback trial. """ if w.get_value('record'): self.start_record() self.build_trials() self.show_counter(5) timer.set_timeout(self.start_session, 5000) # ---------------------------------------------------------------------- def start_session(self) -> None: """Execute the session pipeline.""" logging.warning('START_SESSION') self.run_pipeline( self.pipeline_trial, self.trials, callback='stop_session' ) # ---------------------------------------------------------------------- def stop_session(self) -> None: """Stop pipeline execution.""" document.select_one('#stimuli').style = {'display': 'none'} self.stop_analyser() w.get_value('run').off() if w.get_value('record'): timer.set_timeout(self.stop_record, 2000) # ---------------------------------------------------------------------- def build_trials(self) -> None: """Define the session and single session pipeline.""" baseline_duration = w.get_value('baseline_duration') * 60 sesion_duration = w.get_value('sesion_duration') * 60 baseline_packages = baseline_duration // w.get_value('sliding_data') logging.warning(f'BP: {baseline_packages}') self.trials = [ { 'method': w.get_value('method'), 'window_analysis': w.get_value('window_analysis'), 'sliding_data': w.get_value('sliding_data') * prop.SAMPLE_RATE, 'baseline_packages': baseline_packages, }, ] self.pipeline_trial = [ ['stop_analyser', 100], ['configure_analyser', 1000], ['baseline', baseline_duration * 1000], ['session', sesion_duration * 1000], ['stop_analyser', 1000], ] # ---------------------------------------------------------------------- def configure_analyser( self, method, window_analysis: Ts, sliding_data: int, baseline_packages: int, ) -> None: """Send the configuration values to the generator.""" data = { 'status': 'on', 'method': method, 'window_analysis': window_analysis, 'sliding_data': sliding_data, 'baseline_packages': baseline_packages, 'channels': list(prop.CHANNELS.values()), 'target_channels': list(prop.CHANNELS.values()), 'sample_rate': int(prop.SAMPLE_RATE), 'bands': bands, } logging.warning(f'CONFIG: {data}') self.feedback.write(data) # ---------------------------------------------------------------------- def baseline(self) -> None: """Acquire data to use in the zero location.""" self.show_cross() self.send_marker('Start baseline') document.select_one('#stimuli').style = {'display': 'none'} # ---------------------------------------------------------------------- def session(self) -> None: """Neurofeedback activity.""" self.hide_cross() self.send_marker('End baseline') self.feedback.write({'command': 'freeze_baseline'}) # zero location document.select_one('#stimuli').style = {'display': 'block'} # ---------------------------------------------------------------------- def stop_analyser(self) -> None: """Stop feedback values generation.""" self.feedback.write( { 'status': 'off', } ) if __name__ == '__main__': NPNeurofeedback(python=('feedback.py', 'BandFeedback'))
2.359375
2