max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
hw-appium/page_object/testcase/test_self_choice.py
ZitherPeng/CodeRecord_Python
0
12777551
import pytest from page_object.page.MainPage import MainPage class TestSelfChoice(object): def test_price(self): main = MainPage() assert main.click_self_choice()
1.882813
2
question_bank/permutation-i-lcci/permutation-i-lcci.py
yatengLG/leetcode-python
9
12777552
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:288 ms, 在所有 Python3 提交中击败了5.29% 的用户 内存消耗:20.6 MB, 在所有 Python3 提交中击败了33.22% 的用户 解题思路: 回溯 通过一个列表记录已经使用过的字符下标 """ class Solution: def permutation(self, S: str) -> List[str]: n = len(S) result = [] def backtrack(current, used): if len(current) >= n: result.append(''.join(current[:])) for i in range(n): if i not in used: backtrack(current+[S[i]], used+[i]) backtrack([], []) return result """ 执行用时:152 ms, 在所有 Python3 提交中击败了71.82% 的用户 内存消耗:20.7 MB, 在所有 Python3 提交中击败了13.36% 的用户 解题思路: 回溯 更新当前字符串 """ class Solution: def permutation(self, S: str) -> List[str]: result = [] def backtrack(s, current): # 当前剩余字符串 if s == '': result.append(current) for i in range(len(s)): backtrack(s[:i]+s[i+1:], current+s[i]) backtrack(S, '') return result """ """
3.703125
4
wagtail_advanced_form_builder/forms/widgets/side_by_side_radio_select_widget.py
octavenz/wagtail-advanced-form-builder
11
12777553
from django.forms import RadioSelect class SideBySideRadioSelectWidget(RadioSelect): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.display_side_by_side = True
2.046875
2
stsdas/pkg/hst_calib/nicmos/runcalsaa.py
iraf-community/stsdas
1
12777554
#! /usr/bin/env python """ runcalsaa.py - Module to perform SAA correction in the CALNIC pipeline (After CALNICA, before CALNICB) by running the PEDSUB, BEP, and SAACLEAN tasks. PEDSUB is run only to improve the calculations of the SAA persistence and BEP signature; no pedestal correction is actually applied to the final output image. USAGE: runcalsaa.py [-d] ipppssoot_raw.fits Alternative USAGE: python import runcalsaa status=runcalsaa.run('ipppssoot_raw.fits') RETURN VALUES: It will return status codes to indicate completion status: 0 = successful completion with correction applied 4 = successful completion with no correction applied 1 = failed gracefully with exception 3 = aborted gracefully based on self-diagnostic REQUIRED INPUT FILES: Although these files are not specified on the command line, they must be available for the script to succeed. In the working directory: ipppssoot_cal.fits The association file specified in SAA_DARK The _raw files specified in that association file As specified in the _cal file header: SAACNTAB PEDSBTAB FLATFILE As specified in the post-SAA exposure file headers: MASKFILE SAADFILE OUTPUT FILES & EFFECTS: The ipppssoot_cal.fits file may be replaced. The SAADONE keyword in the ipppssoot_cal.fits file is updated. The BEPDONE keyword in the ipppssoot_cal.fits file is updated. The ipppssoot_trl.txt file is appended to. INTERIM FILES: A _psb.fits file is created temporarily, but removed by the script. A _ped2.fits file is created temporarily, but removed by the script. @author: <NAME>, <NAME> @version: 0.4 (3-Jul-2006) 0.5 (13-Aug-2008) 1.0 (26-Jan-2009) 1.1 (29-Jan-2009) 1.2 (25-Mar-2009) 1.3 (15-Jun-2010) 1.4.2 (5-NOv-2013) MLS: changed return codes for opus """ from __future__ import print_function import os,time,sys from pyraf import iraf from iraf import stsdas, hst_calib, nicmos,ctools from iraf import saaclean from nictools import nic_rem_persist from astropy.io import fits as pyfits import numpy as N __version__ = '1.4.2' __vdate__ = '25-Nov-2013' __trlmarker__ = '*** CALNIC RUNCALSAA Processing Version %s %s ***\n'%(__version__,__vdate__) """ These return codes have been changed as requested by opus so that they can detect a return value of 1 as a real error for the shell script, see #1078 """ _success = 0 _none = 4 _error = 1 _abort = 3 # Constants relevant to saaclean statdict_saaclean = {'none':_none,'low only':_success,'high only':_success, 'both':_success,'n/a':_none,'aborted':_abort} donestring = {_none:'OMITTED',_success:'PERFORMED',_abort:'SKIPPED', _error:'SKIPPED'} def run(rawname,debug=False): #............................................................ # Setup #............................................................ saadone = _none bepdone = _none if '_raw' not in rawname: print("""ERROR: this script takes ipppssoot_raw.fits file as input: you provided %s"""%rawname) return # Define file names calname = rawname.replace('_raw','_cal') pedname = rawname.replace('_raw','_ped') pedname2 = rawname.replace('_raw','_ped2') outname = rawname.replace('_raw','_scn_applied') saapername = rawname.replace('_raw','_spr') pedtrlname = rawname.replace('_raw.fits','_pedsb_trl.txt') F_A = calname F_B = pedname F_C = outname F_D = pedname2 # Establish connection to the trailer file trlname = rawname.replace('_raw.fits','_trl.txt') Trl = open( trlname,'a') Trl.write(_timestamp('RUNCALSAA starting')) Trl.write(__trlmarker__) # Open the calfile header and determine whether the script should run f = pyfits.open(calname) prihdr = f[0].header # Get some things from the calfile header saaparname = f[0].header['saacntab'] pedparname = f[0].header['pedsbtab'] camera = f[0].header['camera'] # Trap the case where no PEDSBTAB was provided, as this reference file is # required for running PEDSUB. if pedparname == 'N/A': # No PEDSUB reference file, so turn off all processing. dosaa=False saadone=_abort dobep=False bepdone=_abort else: if 'saacorr' in prihdr: dosaa = (prihdr['saacorr'] == 'PERFORM') else: dosaa = False saadone = _abort if 'bepcorr' in prihdr: dobep = (prihdr['bepcorr'] == 'PERFORM') else: dobep = False bepdone = _abort if ((dosaa or dobep) and (f[0].header['flatdone'] == 'PERFORMED') and (f[0].header['flatfile'] != 'N/A')): pass # keep running else: Trl.write(_timestamp('RUNCALSAA omitted')) Trl.close() set_keys_final( _abort, _abort, F_A, donestring, saapername) # No files to delete f.close() return _none f.close() try: # get pedsub pars for SAACLEAN, BEP, or both kwpars = get_pedsub_pars( camera, pedparname, Trl, F_A, saapername, debug=debug) except Exception as e: handle_exception(e, Trl, [], debug = debug) set_keys_final( _abort, _abort, F_A, donestring, saapername ) # no copy to final as it already is cal, no files to delete return _abort if (dosaa): if (f[0].header['saadone'] == 'PERFORMED'): saadone = _abort F_S1 = F_A # set file that is the final for 'stage 1' to file F_A else: # f[0].header['saadone'] != 'PERFORMED'): try: # for do_pedsub do_pedsub(pedparname, Trl, pedtrlname, F_A, F_B, kwpars, saapername) except Exception as e: handle_exception(e, Trl, [], debug = debug) set_keys_final( _abort, _abort, F_A, donestring,saapername ) # no copy to final as it already is cal, no files to delete return _abort saadone, F_S1 = do_saaclean(F_B, F_A, F_C, trlname, saaparname, camera, saapername, Trl, debug=debug) else: # dosaa is False F_S1 = F_A # set file that is the final for 'stage 1' to file F_A if (dobep): try: do_pedsub(pedparname, Trl, pedtrlname, F_S1, F_D, kwpars,saapername) except Exception as e: handle_exception(e, Trl, [], debug = debug) set_keys_final(_abort,_abort, F_A, donestring,saapername ) # no copy to final as it already is cal, no files to delete return _abort bepdone, F_Final = do_bright_ep( F_D, F_S1, Trl, donestring, debug=debug ) else: # dobep is False F_Final = F_S1 set_keys_final(saadone, bepdone, F_S1, donestring, saapername) os.rename( F_Final, calname) Trl.write(_timestamp('RUNCALSAA completed')) Trl.close() return _success def set_keys_final(saadone, bepdone, F_Final, donestring, saapername): """ Set values for saadone and bepdone in the final cal file @param saadone: value of key SAADONE @type saadone: string @param bepdone: value of key BEPDONE @type bepdone: string @param F_Final: name of final cal file @type F_Final: string @param donestring: mapping of strings for done keys @type donestring: dict @param saapername: name of persistence model created by SAACLEAN @type saapername: string """ fh = pyfits.open( F_Final, mode = 'update' ) fh[0].header.update('saadone',donestring[saadone]) fh[0].header.update('bepdone',donestring[bepdone]) if saapername != None: fh[0].header.update('SAACRMAP',saapername) fh.close() def get_pedsub_pars( camera, pedparname, Trl, pedsub_file, saapername, debug=False ): """ Get keyword parameter values for pedsub @param camera: camera number @type camera: int @param pedparname: parameter file name @type pedparname: string @param Trl: trailer file name @type Trl: string @param pedsub_file: name of file with pedsub pars @type pedsub_file: string @param saapername: name of file for SAA persistence image @type saapername: string @return: kwpars @rtype: dict """ # Get params from the pedsubtab try: kwpars = getkwpars(camera,iraf.osfn(pedparname)) except Exception as e: set_keys_final(_error,_error, pedsub_file, donestring,saapername) handle_exception(e, Trl, [], debug = debug) return _error return kwpars def do_pedsub( pedparname, Trl, pedtrlname, file_1, file_2, kwpars, saapername): """ Call pedsub @param pedparname: parameter file name @type pedparname: string @param Trl: trailer file name @type Trl: string @param pedtrlname: pedsub's trailer file name @type pedtrlname: string @param file_1: name of input cal file @type file_1: string @param file_2: name of output ped file @type file_2: string @param kwpars: keyword params for pedsub @type kwpars: dict @param saapername: name of file for SAA persistence image @type saapername: string """ pedsub_complete='=== PEDSUB finished' # Timestamp the trailer file Trl.write(_timestamp('PEDSUB starting with paramas from %s'%pedparname)) # Run pedsub with output directed to special file iraf.flprcache() iraf.pedsub.unlearn() iraf.pedsub(input = file_1, output = file_2, Stdout = pedtrlname, **kwpars) # Examine task output & append to trailer file pedout = open( pedtrlname ) for line in pedout: Trl.write( line ) pedout.close() os.remove(pedtrlname) if not line.startswith(pedsub_complete): raise PedsubError def do_saaclean( calcimage, targimage, output, trlname, saaparname, camera, saapername, Trl, debug=False): """ Call saaclean @param calcimage: calc file name @type calimage: string @param targimage: target file name @type targimage: string @param trlname: trailer file name @type trlname: string @param saaparname: file name for SAACLEAN pars @type saaparname: string @param camera: camera number @type camera: int @param saapername: file name for SAACLEAN persistence @type saapername: string @param Trl: trailer file @type Trl: string @return: saadone, stage 1 file @rtype: int, string """ Trl.write(_timestamp('SAACLEAN starting from pars in %s'%saaparname)) # Get the task parameters from the saacntab try: kwpars = getkwpars( camera,iraf.osfn(saaparname) ) except Exception as e: handle_exception( e, Trl, [calcimage], debug=debug ) saadone = _error return saadone, targimage # # Run the saaclean task try: iraf.saaclean.unlearn() iraf.saaclean(calcimage = calcimage, targimage = targimage, output = output, saaperfile = saapername, Stderr = Trl, **kwpars) retstat = statdict_saaclean[ iraf.saaclean.applied ] if not debug: if retstat == _abort: saadone = _abort F_S1 = targimage # set file that is the final for 'stage 1' to file targimage Trl.write(_timestamp('SAACLEAN aborted')) if os.path.exists(output): os.remove(output) elif retstat == _none: saadone = _none F_S1 = targimage # set file that is the final for 'stage 1' to file targimage Trl.write(_timestamp('SAACLEAN omitted')) if os.path.exists(output): os.remove(output) else: # retstat is SUCCESS saadone = _success F_S1 = output # set file that is the final for 'stage 1' Trl.write(_timestamp('SAACLEAN completed')) fh_targ = pyfits.open(targimage, mode='update') fh_targ[0].header.update(key = 'SAACRMAP', value = saapername ) fh_targ.close() else: saadone = retstat if retstat == _abort or retstat == _none: F_S1 = targimage else: F_S1 = output os.rename( targimage,targimage.replace('_cal.','_orig_cal.')) os.rename( output,targimage ) os.remove( calcimage) # remove ped file (calcimage) because 2nd pedsub will need to write to it # Return end of phase 1 final file return saadone, F_S1 except Exception as e: if os.path.exists( calcimage ): os.remove( calcimage) # remove ped file (calcimage) because 2nd pedsub will need to write to it handle_exception(e, Trl, [calcimage, output], debug = debug) saadone = _error F_S1 = targimage return saadone, targimage def do_bright_ep( calcimage, targimage, Trl, donestring, debug=False): """ Do bright earth persistence correction @param calcimage: calc file name @type calimage: string @param targimage: target file name @type targimage: string @param Trl: trailer file name @type Trl: string @return: bepdone, final cal file @rtype: int, string """ Trl.write(_timestamp('BEP starting' )) # Run the nic_rem_persist task try: # When nic_rem_persist reset sys.stdout, IPython did not pick up on the # change back when nrp.persist() completed, and shut down the entire IPython # session when Trl.close() was called. # We need to manage sys.stdout here to allow IPython to recognize that # we are resetting it back before closing the Trl file. sys.orig_stdout = sys.stdout sys.stdout = Trl nrp = nic_rem_persist.NicRemPersist( calcfile = calcimage, targfile = targimage, run_stdout = None) # set task's stdout to trailer file nrp_stat = nrp.persist() bepdone = nrp_stat if (donestring[nrp_stat] == 'OMITTED'): Trl.write(_timestamp('BEP aborted')) elif (donestring[nrp_stat] == 'PERFORMED'): Trl.write(_timestamp('BEP completed')) else: Trl.write(_timestamp('BEP skipped')) # Set sys.stdout back to normal now that all Trl messages have been written out sys.stdout = sys.orig_stdout if os.path.exists( calcimage ): os.remove( calcimage) # remove ped file (calcimage) return bepdone, targimage # If nic_rem_persist fails, we can't proceed. End with an error. except Exception as e: if os.path.exists( calcimage ): os.remove( calcimage) # remove ped file (calcimage) handle_exception(e, Trl, [calcimage], debug = debug) # Reset sys.stdout back to normal... sys.stdout = sys.orig_stdout bepdone = _none return bepdone, targimage #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class PedsubError(Exception): def __str__(self): return "PEDSUB ended with error" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Utility functions #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def handle_exception(e,trl,files_to_delete,debug=False): """ Print various useful information to various useful places """ print(str(e)) trl.write(_timestamp("Encountered exception")) trl.write(str(e)) if not debug: trl.write('\n Cleaning up interim files \n') #Clean up files for fname in files_to_delete: if os.path.isfile(fname): os.remove(fname) trl.write(_timestamp('RUNCALSAA completed with errors')) def getkwpars(camera,parname): """Extract the correct row of the parameter file based on the value of CAMERA. Parameters are returned as a keyword:value dictionary.""" d={} f=pyfits.open(parname) t=f[1].data cols=f[1].columns # Pick out the matching row of the "camera" column. cams = t.field('camera') idx = N.where(cams == camera)[0][0] #..........................^^^^^^ # (The ugly [0][0] syntax is because numarray.where returns # a tuple of arrays, and in this case we just want the # actual scalar value that can be used to index the other # columns in the table). for k in cols: d[k.name] = t.field(k.name)[idx] del d['camera'] f.close() return d def _timestamp(_process_name): """Create formatted time string recognizable by OPUS.""" _prefix = time.strftime("\n%Y%j%H%M%S-I-----",time.localtime()) _lenstr = 60 - len(_process_name) return _prefix+_process_name+(_lenstr*'-')+'\n' def _getTime(): # Format time values for keywords IRAF-TLM, and DATE _ltime = time.localtime(time.time()) time_str = time.strftime('%H:%M:%S (%d-%b-%Y)',_ltime) return time_str #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Run from the shell. if __name__ == '__main__': # Look for debug flag debug = " -d " in sys.argv # Handle arguments if len(sys.argv) > 3 or len(sys.argv) < 2: print("syntax: runcalsaa.py [-d] inputfilename") sys.exit(_error) rawname = sys.argv[-1] # Run script with error checking try: retstat = run(rawname,debug=debug) except Exception as e: print(str(e)) print("ERROR: RUNCALSAA failed on %s"%rawname) retstat = _error # Return status sys.exit(retstat)
1.859375
2
waves_gateway/storage/mongo_key_value_storage_impl.py
NeolithEra/WavesGatewayFramework
25
12777555
""" MongoKeyValueStorageImpl """ from waves_gateway.common import Injectable, KEY_VALUE_STORAGE_COLLECTION from waves_gateway.model import PollingState from waves_gateway.serializer import PollingStateSerializer from waves_gateway.storage.key_value_storage import KeyValueStorage from pymongo.collection import Collection # type: ignore from typing import Optional, Any from doc_inherit import method_doc_inherit # type: ignore @Injectable(deps=[KEY_VALUE_STORAGE_COLLECTION, PollingStateSerializer], provides=KeyValueStorage) class MongoKeyValueStorageImpl(KeyValueStorage): """ Implements a key value storage with a MongoDB collection. """ _COIN_BLOCK_HEIGHT_KEY = 'coin_block_height' _WAVES_BLOCK_HEIGHT_KEY = 'waves_block_height' _VALUE_PROPERTY_KEY = 'value' _KEY_PROPERTY_KEY = 'key' _COIN_POLLING_STATE_KEY = 'coin_polling_state' _WAVES_POLLING_STATE_KEY = 'waves_polling_state' def _set_value(self, key: str, value: Any) -> None: """ Inserts the key/value pair. Overwrites existing entries. """ query = dict() query[MongoKeyValueStorageImpl._KEY_PROPERTY_KEY] = key replacement = dict() replacement[MongoKeyValueStorageImpl._KEY_PROPERTY_KEY] = key replacement[MongoKeyValueStorageImpl._VALUE_PROPERTY_KEY] = value self._collection.replace_one(filter=query, replacement=replacement, upsert=True) def _get_value(self, key: str) -> Any: """ Returns the value or None if no value was found. """ query = dict() query[MongoKeyValueStorageImpl._KEY_PROPERTY_KEY] = key query_result = self._collection.find_one(filter=query) if query_result is None: return None else: return query_result[MongoKeyValueStorageImpl._VALUE_PROPERTY_KEY] @method_doc_inherit def set_last_checked_waves_block_height(self, block_height: int) -> None: self._set_value(MongoKeyValueStorageImpl._WAVES_BLOCK_HEIGHT_KEY, block_height) @method_doc_inherit def get_last_checked_waves_block_height(self) -> Optional[int]: return self._get_value(MongoKeyValueStorageImpl._WAVES_BLOCK_HEIGHT_KEY) def __init__(self, collection: Collection, polling_state_serializer: PollingStateSerializer) -> None: self._collection = collection self._polling_state_serializer = polling_state_serializer @method_doc_inherit def set_last_checked_coin_block_height(self, block_height: int) -> None: self._set_value(MongoKeyValueStorageImpl._COIN_BLOCK_HEIGHT_KEY, block_height) @method_doc_inherit def get_last_checked_coin_block_height(self) -> Optional[int]: return self._get_value(MongoKeyValueStorageImpl._COIN_BLOCK_HEIGHT_KEY) def set_waves_polling_state(self, polling_state: PollingState) -> None: self._set_value(MongoKeyValueStorageImpl._WAVES_POLLING_STATE_KEY, self._polling_state_serializer.as_dict(polling_state)) def get_coin_polling_state(self) -> Optional[PollingState]: data = self._get_value(MongoKeyValueStorageImpl._COIN_POLLING_STATE_KEY) if data is None: return None else: return self._polling_state_serializer.from_dict(data) def get_waves_polling_state(self) -> Optional[PollingState]: data = self._get_value(MongoKeyValueStorageImpl._WAVES_POLLING_STATE_KEY) if data is None: return None else: return self._polling_state_serializer.from_dict(data) def set_coin_polling_state(self, polling_state: PollingState) -> None: self._set_value(MongoKeyValueStorageImpl._COIN_POLLING_STATE_KEY, self._polling_state_serializer.as_dict(polling_state))
2.34375
2
tests/test_api.py
ignpelloz/fuji
25
12777556
# -*- coding: utf-8 -*- """ A collection of tests to test the reponses of a Fask tesk fuji client, i.e. if the app is working and there are no swagger problems. """ def test_ui(fujiclient): """Basic smoke test to see if app is buildable""" response = fujiclient.get('/fuji/api/v1/ui/') print(response.data) assert response.status_code == 200 def test_ui_break(fujiclient): """Basic test if a path not in the UI gives a 404""" response = fujiclient.get('/fuji/500api/v1/ui/') print(response.data) assert response.status_code == 404 def test_get_metrics(fujiclient): """Test if a client get returns the metric""" response = fujiclient.get('/fuji/api/v1/metrics', headers={ 'Authorization': 'Basic dXNlcm5hbWU6cGFzc3dvcmQ=', 'accept': 'application/json' }) print(response) assert response.status_code == 200 result = response.json assert result != {} ''' from swagger_tester import swagger_test def test_swagger_api(swagger_yaml): swagger_test(swagger_yaml) def test_swagger_api2(app_url): swagger_test(app_url=app_url) ''' ''' def test_login_logout(client): """Make sure login and logout works.""" username = flaskr.app.config["USERNAME"] password = <PASSWORD>.config["PASSWORD"] rv = login(client, username, password) assert b'You were logged in' in rv.data rv = logout(client) assert b'You were logged out' in rv.data rv = login(client, f"{username}x", password) assert b'Invalid username' in rv.data rv = login(client, username, f'{password}x') assert b'Invalid password' in rv.data '''
2.40625
2
toga/optimization_state/datadict.py
JPLMLIA/TOGA
0
12777557
""" Author: <NAME> Date : 12/4/19 Brief : Handles the pareto frontier dictionary updates and accessing Notes : Copyright 2019 California Institute of Technology. ALL RIGHTS RESERVED. U.S. Government Sponsorship acknowledged. """ import collections from collections import Mapping import copy import json import numpy from operator import add import os import threading import string import random import yaml class DataDict(object): _FLAG_FIRST = object() def __init__(self, fitness_metrics=[], maximize=True, amount_per_bin=1, history_log=""): self.fitness_metrics = fitness_metrics self.maximize = maximize self.amount_per_bin = amount_per_bin self.dictionary = self.create_initial() self.trial_count = 0 self.trial_count_lock = threading.Lock() self.track_history = history_log is not None and len(history_log) > 0 self.history_log = history_log def get_dictionary(self): """ :return: """ return self.dictionary def update_from_datadict(self, other): """ :param other: :return: """ self.deep_update(self.dictionary, other) def add_trials(self, trials): self.trial_count_lock.acquire() self.trial_count += trials self.trial_count_lock.release() def update_from_population(self, population=[]): """ :param population: :return: """ updated_individuals = [] def update(_dict={}, key_path=[], value=None): _sub = _dict for index, item in enumerate(key_path): if item in _sub: if index == len(key_path) - 1: items = _sub[item] if not items: _sub[item] = [value] else: items.append(value) items.sort(key=lambda x: x['metrics'][key_path[-1]], reverse=self.maximize) _sub[item] = items[:self.amount_per_bin] if any(x['uuid'] == value['uuid'] for x in _sub[item]): updated_individuals.append(value) else: _sub = _sub[item] return _dict for individual in population: if self.has_metrics(individual): key_path = self.get_corresponding_bin(individual) self.dictionary = update(_dict=self.dictionary, key_path=key_path, value=individual) if self.track_history and len(updated_individuals) > 0: for new_item in updated_individuals: with open(self.history_log, "a") as f: f.write(str(self.trial_count) + ": " + str(new_item['metrics']) + "\n") return self.dictionary, updated_individuals def has_metrics(self, individual): """ :param individual: :return: """ individual_metrics = individual.get('metrics') if not individual_metrics: return False for metrics in self.fitness_metrics: if individual_metrics.get(metrics.name) is None: return False return True def update_from_previous_run(self, files): """ :param files: :return: """ population = [] for file in files: population.append(yaml.safe_load(open(file))) self.update_from_population(population) def create_initial(self): """ name, fixed_axis, axis_range, index fitness_metrics = [Metric(name='banana', axis_range=[0, 1],index=0, partitions=10), Metric(name='sinc', axis_range=[0,100], index=1, partitions=20), Metric(name='foo', axis_range=[2.5, math.pi], index=2, partitions=20)] <-- last in list is free axis datadict = {'banana': {0:{'sinc':{ 0: {'foo': []}, 100: {'foo': []} } }, 1:{'sinc:{ 0: {'foo': []}, 100: {'foo': []}} } } """ input_arr = copy.deepcopy(self.fitness_metrics) if not input_arr: raise Exception("No metrics exist\nName metrics inside the Metrics: fitness: section in the run_config yml") def helper(dictionary, array): _dict = {} if not array: return dictionary _ = array[-1] if not _.fixed_axis: _dict[_.name] = [] return helper(_dict, array[:-1]) else: _range = _.axis_range partitions = array[-1].partitions #Solve fencepost problem here #We need N bins so we create N+1 evenly spaced fenceposts with numpy.linspace #Only need left endpoint of each bin, so throwaway the last one bin_labels = numpy.linspace(min(_range), max(_range), num=partitions+1)[:-1] _dict[_.name] = {round(el, 2): dictionary for el in bin_labels} return helper(_dict, array[:-1]) return json.loads(json.dumps(helper({}, input_arr))) def serialize(self, basedir): """ :param basedir: :return: """ population = [] def walk(node, best_dir): for key, item in node.items(): if isinstance(item, dict): walk(item, best_dir) else: if item: for i in item: population.append(i) walk(self.dictionary, basedir) return population def deep_update(self, source, overrides): """ :param source: :param overrides: :return: """ for key, value in overrides.items(): if isinstance(value, collections.Mapping) and value: returned = self.deep_update(source.get(key, {}), value) source[key] = returned else: items = [] if source.get(key): items = source[key] items.extend(overrides[key]) items = sorted(items, key=lambda x: x['metrics'][key], reverse=self.maximize) items = items[:self.amount_per_bin] source[key] = items return source def get_corresponding_bin(self, individual): """ :param individual: :return: """ key_path = [] _dict = self.dictionary for metric in self.fitness_metrics: _dict = _dict[metric.name] key_path.append(metric.name) if metric.fixed_axis: # get the bins for this value and sort by float if they're stored as strings for some reason bins = sorted([float(i) for i in list(_dict.keys())]) _bin = bins[0] for _ in bins: if individual['metrics'][metric.name] > _: _bin = _ _dict = _dict[str(_bin)] key_path.append(str(_bin)) else: return key_path def flatten_dict(self, d): """ :param d: :param join: :param lift: :return: """ results = [] def visit(subdict, results, partialKey): for k, v in subdict.items(): newKey = partialKey + (k,) if isinstance(v, Mapping): visit(v, results, newKey) else: results.append((newKey, v)) empty_key = () visit(d, results, empty_key) return results def get_non_empty_bins(self): """ :return: """ self._FLAG_FIRST = object() original = dict(self.flatten_dict(self.dictionary)) filtered = {k: v for k, v in original.items() if len(v) > 0} return filtered def _get_best_metric(self, trials): trials = sorted(trials, key=lambda x : x['metrics'][self.fitness_metrics[-1].name], reverse=self.maximize) best = trials[0] return best['metrics'][self.fitness_metrics[-1].name] def get_points(self): """ :return: """ self._FLAG_FIRST = object() flattened = self.flatten_dict(self.dictionary) points = [] for key, trials in flattened: if trials: i = self._get_best_metric(trials) else: i = None if len(key) > 1: points.append((key[-2], i)) else: points.append((key[-1], i)) return points
2.3125
2
metaworld/envs/gym_UR3/example/mujoco/ur3_gripper_test.py
dscho1234/metaworld
0
12777558
import gym import numpy as np from gym_UR3.envs.mujoco import MujocoUR3Env import time def main(): env = gym.make('UR3-v0') Da = env.action_space.shape[0] obs=env.reset() start = time.time() for i in range(100): env.reset() print('{}th episode'.format(i+1)) for j in range(100): env.render() # env.step(env.action_space.sample()) a = np.zeros(8) a[:6] = 0.01*np.random.uniform(size = 6) a[-1] = 1 a[-2] = 1 env.step(a) end = time.time() print('Done! {}'.format(end-start)) #action[0] : qpos[0] radian #action[4] : qpos[4] radian #action[5] : qpos[5] radian #action[6] : qpos[7] radian인가?? 여튼 밑에 finger #action[7] : qpos[11] radian인가?? 여튼 위에 finger #action[8] : qpos[15] radian인가?? 여튼 가운데 finger #action[9] : qpos[6] qpos[10] radian인가?? 여튼 밑, 위 finger 위아래로 벌어짐 if __name__=="__main__": main()
2.6875
3
eth2/beacon/types/blocks.py
hwwhww/trinity
2
12777559
<gh_stars>1-10 from abc import ( ABC, abstractmethod, ) from typing import ( Sequence, TYPE_CHECKING, ) from eth_typing import ( BLSSignature, Hash32, ) from eth_utils import ( encode_hex, ) import ssz from ssz.sedes import ( List, bytes32, bytes96, uint64, ) from eth._utils.datatypes import ( Configurable, ) from eth2.beacon._utils.hash import hash_eth2 from eth2.beacon.constants import EMPTY_SIGNATURE from eth2.beacon.typing import ( Slot, FromBlockParams, ) from .attestations import Attestation from .attester_slashings import AttesterSlashing from .deposits import Deposit from .eth1_data import Eth1Data from .transfers import Transfer from .voluntary_exits import VoluntaryExit from .proposer_slashings import ProposerSlashing if TYPE_CHECKING: from eth2.beacon.db.chain import BaseBeaconChainDB # noqa: F401 class BeaconBlockBody(ssz.Serializable): fields = [ ('proposer_slashings', List(ProposerSlashing)), ('attester_slashings', List(AttesterSlashing)), ('attestations', List(Attestation)), ('deposits', List(Deposit)), ('voluntary_exits', List(VoluntaryExit)), ('transfers', List(Transfer)), ] def __init__(self, proposer_slashings: Sequence[ProposerSlashing], attester_slashings: Sequence[AttesterSlashing], attestations: Sequence[Attestation], deposits: Sequence[Deposit], voluntary_exits: Sequence[VoluntaryExit], transfers: Sequence[Transfer])-> None: super().__init__( proposer_slashings=proposer_slashings, attester_slashings=attester_slashings, attestations=attestations, deposits=deposits, voluntary_exits=voluntary_exits, transfers=transfers, ) @classmethod def create_empty_body(cls) -> 'BeaconBlockBody': return cls( proposer_slashings=(), attester_slashings=(), attestations=(), deposits=(), voluntary_exits=(), transfers=(), ) @property def is_empty(self) -> bool: return ( self.proposer_slashings == () and self.attester_slashings == () and self.attestations == () and self.deposits == () and self.voluntary_exits == () and self.transfers == () ) @classmethod def cast_block_body(cls, body: 'BeaconBlockBody') -> 'BeaconBlockBody': return cls( proposer_slashings=body.proposer_slashings, attester_slashings=body.attester_slashings, attestations=body.attestations, deposits=body.deposits, voluntary_exits=body.voluntary_exits, transfers=body.transfers, ) class BaseBeaconBlock(ssz.Serializable, Configurable, ABC): fields = [ # # Header # ('slot', uint64), ('parent_root', bytes32), ('state_root', bytes32), ('randao_reveal', bytes96), ('eth1_data', Eth1Data), ('signature', bytes96), # # Body # ('body', BeaconBlockBody), ] def __init__(self, slot: Slot, parent_root: Hash32, state_root: Hash32, randao_reveal: BLSSignature, eth1_data: Eth1Data, body: BeaconBlockBody, signature: BLSSignature=EMPTY_SIGNATURE) -> None: super().__init__( slot=slot, parent_root=parent_root, state_root=state_root, randao_reveal=randao_reveal, eth1_data=eth1_data, signature=signature, body=body, ) def __repr__(self) -> str: return '<Block #{0} {1}>'.format( self.slot, encode_hex(self.root)[2:10], ) _hash = None @property def hash(self) -> Hash32: if self._hash is None: self._hash = hash_eth2(ssz.encode(self)) return self._hash @property def root(self) -> Hash32: # Alias of `hash`. # Using flat hash, might change to SSZ tree hash. return self.hash @property def num_attestations(self) -> int: return len(self.body.attestations) @property def block_without_signature_root(self) -> Hash32: return self.copy( signature=EMPTY_SIGNATURE ).root @classmethod @abstractmethod def from_root(cls, root: Hash32, chaindb: 'BaseBeaconChainDB') -> 'BaseBeaconBlock': """ Return the block denoted by the given block root. """ raise NotImplementedError("Must be implemented by subclasses") class BeaconBlock(BaseBeaconBlock): block_body_class = BeaconBlockBody @classmethod def from_root(cls, root: Hash32, chaindb: 'BaseBeaconChainDB') -> 'BeaconBlock': """ Return the block denoted by the given block ``root``. """ block = chaindb.get_block_by_root(root, cls) body = cls.block_body_class( proposer_slashings=block.body.proposer_slashings, attester_slashings=block.body.attester_slashings, attestations=block.body.attestations, deposits=block.body.deposits, voluntary_exits=block.body.voluntary_exits, transfers=block.body.transfer, ) return cls( slot=block.slot, parent_root=block.parent_root, state_root=block.state_root, randao_reveal=block.randao_reveal, eth1_data=block.eth1_data, signature=block.signature, body=body, ) @classmethod def from_parent(cls, parent_block: 'BaseBeaconBlock', block_params: FromBlockParams) -> 'BaseBeaconBlock': """ Initialize a new block with the `parent` block as the block's parent hash. """ if block_params.slot is None: slot = parent_block.slot + 1 else: slot = block_params.slot return cls( slot=slot, parent_root=parent_block.root, state_root=parent_block.state_root, randao_reveal=EMPTY_SIGNATURE, eth1_data=parent_block.eth1_data, signature=EMPTY_SIGNATURE, body=cls.block_body_class.create_empty_body(), ) @classmethod def convert_block(cls, block: 'BaseBeaconBlock') -> 'BeaconBlock': return cls( slot=block.slot, parent_root=block.parent_root, state_root=block.state_root, randao_reveal=block.randao_reveal, eth1_data=block.eth1_data, signature=block.signature, body=block.body, )
2.15625
2
astronet/astronet/data/generate_kepler_subset.py
ch8644760/models
2
12777560
# Written by <NAME> (GitHub: OneAndOnlySeabass) 15-10-2018 # This script generates a stratified random subset of n size from a Kepler TCE csv. import pandas as pd import numpy as np # Adjustable variables can be changed here read_loc = #r"tce csv location" pc_subset = 1000 fp_subset = 1000 # Both AFPs and NTPs write_loc = #r"desired output csv location" my_seed = 114639 # Reading the csv file from read_loc kepler_df = pd.read_csv(read_loc, index_col="rowid", comment="#") # Removing rows with av_training_set=='UNK' kepler_df = kepler_df[kepler_df.av_training_set != 'UNK'] # Dividing the dataset in PCs and FPs(AFPs & NTPs) PC_df = kepler_df[kepler_df.av_training_set == 'PC'] FP_df = kepler_df[kepler_df.av_training_set != 'PC'] # Random selection of 1000 PCs and 1000 NPs np.random.seed(my_seed) PC_random = PC_df.sample(n=pc_subset) FP_random = FP_df.sample(n=fp_subset) sample_df = pd.concat((PC_random, FP_random)) sample_df = sample_df.sample(frac=1) # Shuffles the data # Writing a new csv to write_loc sample_df.to_csv(write_loc, index=False)
2.796875
3
testMath.py
SLongofono/448_Project3
0
12777561
import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) import Variance import math def testVariance(): print ("1. Testing Variance") weighting = [2,2,2,2,2,2,2,2,2,2] test1 = [['artist1', 'artist2', 'artist3'],['genre1', 'genre2', 'genre3'],0,0,0,0,0,0,0,0] test2 = [['artist1'],['genre1', 'genre2'],1,2,3,4,5,6,7,8] test3 = [['artist1'],['genre1','genre2'],6,7,8,9,2,3,4,5] test4 = [] emptylist = -1 diffList1 = [] diffList2 = [] knownVal1 = [0,0,1,2,3,4,5,6,7,8] knownVal2 = [0,0,5,5,5,5,3,3,3,3] print "\t A. Variance between a populated list and a list of zeros ..." for i in range(len(test1)): diffList1.append(Variance.getVariance(test1,test2)[i] -knownVal1[i]) print "\t B. Variance between 2 populated lists ..." for i in range(len(test2)): diffList2.append(Variance.getVariance(test3,test2)[i] - knownVal2[i]) print "\t C. Variance calculated on an empty List ..." emptylistValue = Variance.getVariance(test3,test4) if emptylistValue == emptylist: for i in range (len(diffList1)): if ((diffList1[i] or diffList2[i]) > .0000001): return False return True def testWeightedDifference(): print "2. Testing Weighted Difference" weighting = [2,2,2,2,2,2,2,2,2,2] badWeighting = [] test1 = [['artist1', 'artist2', 'artist3'],['genre1', 'genre2', 'genre3'],0,0,0,0,0,0,0,0] test2 = [['artist1'],['genre1', 'genre2'],1,2,3,4,5,6,7,8] test3 = [['artist1'],['genre1', 'genre2'],6,7,8,9,2,3,4,5] test4 = [] diffList1 = [] diffList2 = [] diffList3 = [] knownVal1 = [0,0,2,4,6,8,10,12,14,16] knownVal2 = [0,0,10,10,10,10,6,6,6,6] emptylistValue = -1 print "\t A. Weighted Difference between a populated list and a list of zeros ..." for i in range(len(test1)): diffList1.append(Variance.getWeightedDifference(test2, test1, weighting)[i] - knownVal1[i]) print "\t B. Weighted Difference between 2 populated lists ..." for i in range(len(test1)): diffList2.append(Variance.getWeightedDifference(test3, test2, weighting)[i] - knownVal2[i]) print "\t C. Testing when Weighting is an empty list ..." diffList3 = Variance.getWeightedDifference(test3,test2,badWeighting) print "\t D.Testing when one of the lists is an empty list ..." emptylist = Variance.getWeightedDifference(test4,test2,weighting) if emptylist == emptylistValue: for i in range(len(diffList1)): if((diffList1[i] or diffList2[i])> .0000001): return False return True def testgetNewWeight(): print "3. Testing getNewWeight" badstddevs = [] stddevs = [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0] knownVal1 = [1, 1, 1, 0.5, 0.333, 0.25, 0.2, 0.167, 0.143, 0.125] emptylistValue = -1 diffList = [] print "\t A. getNewWeight when stddevs is empty ..." emptylist = Variance.getNewWeight(badstddevs) print "\t B. getNewWeight when stddevs is populated ..." for i in range(len(knownVal1)): diffList.append(Variance.getNewWeight(stddevs)[i] - knownVal1[i]) if emptylist == emptylistValue: for i in range(len(diffList)): if(diffList[i] > .0000001): return False return True def filter2sigmaTest(): print("4. Testing Filter2Sigma") averages = [[],[],10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0] stddevs = [2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0] knownVal = [1, 1, 1, 0, 0, 0, 0] testSongs = [ [[],[], 10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0], [[],[], 6.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0], [[],[], 10.0,10.0,10.0,10.0,10.0,10.0,10.0,14.0], [[],[], 5.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0], [[],[], 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0], [[],[], 15.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0], [[],[], 10.0,10.0,10.0,10.0,10.0,10.0,10.0,15.0], ] val = Variance.filter2Sigma(testSongs, averages, stddevs) return val == knownVal def teststdDev(): print("5. Testing Standard Deviation") stdDev = [] diffList = [] listWithRowsAsColumns = [[1,2,3,4,5,6,7,8], [6,1,9,0,5,7,3,4], [5,5,5,5,5,5,5,5], [23,100,1,0,8,9,5,6], [7,5,4,3,2,1,9,6] ] listofCalculatedStdDevs = [2.449,3.0,0.0,33.481,2.645] for column in listWithRowsAsColumns: vals = [x for x in column] Nval = len(vals) mean = sum(vals)/Nval stdDev.append((sum([(x-mean)**2 for x in vals])/(Nval-1))**0.5) for i in range(len(listofCalculatedStdDevs)): diffList.append(stdDev[i] - listofCalculatedStdDevs[i]) for i in range(len(diffList)): if(diffList[i] > .001): return False return True def go(): numTests = 0 numPassed = 0 print "**************************************" print "********MATH FUNCTION TESTING*********" print "**************************************" numTests +=1 if testVariance(): print "\t Variance test passed! \n\n" numPassed += 1 numTests +=1 if testWeightedDifference(): print "\tWeightedDifference test passed!\n\n" numPassed +=1 numTests +=1 if testgetNewWeight(): print "\t getNewWeight test passed!\n\n" numPassed +=1 numTests +=1 if (filter2sigmaTest()): print "\t f2sigma test passed!\n\n" numPassed+=1 numTests +=1 if(teststdDev()): print "\t Standard Deviation Test Passed!" numPassed +=1 print "Tests: %d\nTests passed: %d\nPercentage: %f\n\n" % (numTests,numPassed, (float(numPassed)/numTests)*100) return numTests,numPassed if __name__ == "__main__": x,y = go() print "Tests: %d\nTests passed: %d\nPercentage: %f\n\n" % (x,y, (float(y)/x)*100)
2.90625
3
skp_edu_docker/code/tfrest/celery.py
TensorMSA/hoyai_docker
8
12777562
<gh_stars>1-10 from __future__ import absolute_import, unicode_literals import os from celery import Celery import logging from django.conf import settings os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tfrest.settings') app = Celery('tfrest') app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS) CELERYD_HIJACK_ROOT_LOGGER = False
1.6875
2
variable_and_data_type/string_demo/string_concatenation.py
pysga1996/python-basic-programming
0
12777563
<gh_stars>0 # To concatenate, or combine, two strings you can use the + operators. a = "Hello" b = "World" c = a + b print(c) a = "Hello" b = "World" c = a + " " + b print(c)
3.921875
4
quickstart-jython/src/main/java/org/quickstart/jython/calculator_func.py
youngzil/quickstart-framework
6
12777564
<gh_stars>1-10 # coding=utf-8 import math # 面向函数式编程 def power(x, y): return math.pow(x, y)
2.28125
2
tests/test_portfolio_handler.py
ivanliu1989/qstrader
113
12777565
import datetime from decimal import Decimal import unittest from qstrader.event import FillEvent, OrderEvent, SignalEvent from qstrader.portfolio_handler import PortfolioHandler from qstrader.price_handler.base import AbstractTickPriceHandler from qstrader.compat import queue class PriceHandlerMock(AbstractTickPriceHandler): def __init__(self): pass def get_best_bid_ask(self, ticker): prices = { "MSFT": (Decimal("50.28"), Decimal("50.31")), "GOOG": (Decimal("705.46"), Decimal("705.46")), "AMZN": (Decimal("564.14"), Decimal("565.14")), } return prices[ticker] class PositionSizerMock(object): def __init__(self): pass def size_order(self, portfolio, initial_order): """ This PositionSizerMock object simply modifies the quantity to be 100 of any share transacted. """ initial_order.quantity = 100 return initial_order class RiskManagerMock(object): def __init__(self): pass def refine_orders(self, portfolio, sized_order): """ This RiskManagerMock object simply lets the sized order through, creates the corresponding OrderEvent object and adds it to a list. """ order_event = OrderEvent( sized_order.ticker, sized_order.action, sized_order.quantity ) return [order_event] class TestSimpleSignalOrderFillCycleForPortfolioHandler(unittest.TestCase): """ Tests a simple Signal, Order and Fill cycle for the PortfolioHandler. This is, in effect, a sanity check. """ def setUp(self): """ Set up the PortfolioHandler object supplying it with $500,000.00 USD in initial cash. """ initial_cash = Decimal("500000.00") events_queue = queue.Queue() price_handler = PriceHandlerMock() position_sizer = PositionSizerMock() risk_manager = RiskManagerMock() # Create the PortfolioHandler object from the rest self.portfolio_handler = PortfolioHandler( initial_cash, events_queue, price_handler, position_sizer, risk_manager ) def test_create_order_from_signal_basic_check(self): """ Tests the "_create_order_from_signal" method as a basic sanity check. """ signal_event = SignalEvent("MSFT", "BOT") order = self.portfolio_handler._create_order_from_signal(signal_event) self.assertEqual(order.ticker, "MSFT") self.assertEqual(order.action, "BOT") self.assertEqual(order.quantity, 0) def test_place_orders_onto_queue_basic_check(self): """ Tests the "_place_orders_onto_queue" method as a basic sanity check. """ order = OrderEvent("MSFT", "BOT", 100) order_list = [order] self.portfolio_handler._place_orders_onto_queue(order_list) ret_order = self.portfolio_handler.events_queue.get() self.assertEqual(ret_order.ticker, "MSFT") self.assertEqual(ret_order.action, "BOT") self.assertEqual(ret_order.quantity, 100) def test_convert_fill_to_portfolio_update_basic_check(self): """ Tests the "_convert_fill_to_portfolio_update" method as a basic sanity check. """ fill_event_buy = FillEvent( datetime.datetime.utcnow(), "MSFT", "BOT", 100, "ARCA", Decimal("50.25"), Decimal("1.00") ) self.portfolio_handler._convert_fill_to_portfolio_update(fill_event_buy) # Check the Portfolio values within the PortfolioHandler port = self.portfolio_handler.portfolio self.assertEqual(port.cur_cash, Decimal("494974.00")) # TODO: Finish this off and check it works via Interactive Brokers fill_event_sell = FillEvent( datetime.datetime.utcnow(), "MSFT", "SLD", 100, "ARCA", Decimal("50.25"), Decimal("1.00") ) self.portfolio_handler._convert_fill_to_portfolio_update(fill_event_sell) def test_on_signal_basic_check(self): """ Tests the "on_signal" method as a basic sanity check. """ signal_event = SignalEvent("MSFT", "BOT") self.portfolio_handler.on_signal(signal_event) ret_order = self.portfolio_handler.events_queue.get() self.assertEqual(ret_order.ticker, "MSFT") self.assertEqual(ret_order.action, "BOT") self.assertEqual(ret_order.quantity, 100) if __name__ == "__main__": unittest.main()
2.828125
3
tick_track/src/helpers/time.py
dmenezesgabriel/tick_track
0
12777566
<gh_stars>0 import datetime import pytz def now(): """ Returns UTC timestamp with time zone """ return pytz.UTC.localize(datetime.datetime.utcnow()) def now_br(): """ Returns America - São Paulo timestamp with time zone """ return now().astimezone(pytz.timezone("America/Sao_Paulo")) def timestamptz_to_unix(timestamptz): """ Converts timestamp with time zone to epoch """ return timestamptz.timestamp() def unix_to_timestamp_utc(unix): """ Converts epoch to timestamp with time zone """ return datetime.datetime.utcfromtimestamp(unix) def timestamptz_to_text(timestamptz): """ Converts timestamp with time zone to string """ return datetime.datetime.strftime(timestamptz, "%Y-%m-%d %H:%M:%S.%f%z") def timestamptz_text_to_date(text): """ Converts string date to date object """ return datetime.datetime.strptime(text, "%Y-%m-%d %H:%M:%S.%f%z") def date_trunc_day(timestamptz): """ Trunc timestamp at day """ return timestamptz.replace(hour=0, minute=0, second=0, microsecond=0)
3.125
3
systematicity.py
adamdotdev/font-systematicity
1
12777567
<reponame>adamdotdev/font-systematicity<filename>systematicity.py import io from itertools import combinations import json from typing import NamedTuple import numpy as np from scipy.stats.stats import pearsonr from peewee import DoesNotExist import data from data import Font, GlyphSet, Glyph, SoundDistance, ShapeDistance, Correlation import shapes """ Delete any glyph sets that match the specified criteria. All glyphs, shapedistances, and correlations will be deleted as well. """ def delete_glyph_set(chars, font, size, coords=None): coords_serial = json.dumps(coords) chars_serial = json.dumps(chars) with data.db.atomic(): glyph_sets = (GlyphSet .select() .where( GlyphSet.font_id == font.id, GlyphSet.size == size, GlyphSet.coords == coords_serial, GlyphSet.chars == chars_serial)) print("Found {0} matching glyph sets".format(len(glyph_sets))) for glyph_set in glyph_sets: print("Deleting glyph set {0}".format(glyph_set.id)) result = glyph_set.delete_instance(recursive=True) print(result, "glyph sets deleted") """ Gets or creates a set of glyphs using the specified criteria. If a glyph set for this criteria already exists, the glyphset id is loaded and returned. If a set does not exist, a new glyphset is created and glyphs are rendered and saved. """ def get_glyphs(chars, font, size, coords=None): coords_serial = None if (coords is None or len(coords) == 0) else json.dumps(coords) chars_serial = json.dumps(chars) # Check if glyphs already exist glyph_sets = (GlyphSet .select() .where( GlyphSet.font_id == font.id, GlyphSet.size == size, GlyphSet.coords == coords_serial, GlyphSet.chars == chars_serial) .execute()) if len(glyph_sets) > 0: return glyph_sets[0].id renderer = shapes.GlyphRenderer(io.BytesIO(font.font_file)) bitmaps = renderer.bitmaps(chars, size, coords) glyph_set = GlyphSet(font=font, size=size, coords=coords_serial, chars=chars_serial) glyph_set.save() glyphs = [] for i in range(len(chars)): glyph = Glyph( glyph_set_id = glyph_set.id, character = chars[i], bitmap = bitmaps[i] ) glyphs.append(glyph) with data.db.atomic(): Glyph.bulk_create(glyphs, batch_size=100) return glyph_set.id """ Calculate all visual distance measures between all possible combinations of glyphs belonging to the specified set. If the calculations already exist, the existing records are returned. """ def get_and_save_shape_distances(glyph_set_id): glyph_query = Glyph.select().where(Glyph.glyph_set_id == glyph_set_id) glyphs = [glyph for glyph in glyph_query] # Get existing glyph distances Glyph1 = Glyph.alias() Glyph2 = Glyph.alias() shape_query = (ShapeDistance .select() .join(Glyph1, on=ShapeDistance.glyph1) .switch(ShapeDistance) .join(Glyph2, on=ShapeDistance.glyph2) .where( (Glyph1.glyph_set_id == glyph_set_id) & (Glyph2.glyph_set_id == glyph_set_id))) if len(shape_query) > 0: # distances already calculated, return existing values return [s for s in shape_query] shape_distances = get_shape_distances(glyphs) with data.db.atomic(): ShapeDistance.bulk_create(shape_distances, batch_size=100) return shape_distances def get_shape_distances(glyphs): shape_distances = [] # Generate all pairs of chars and calculate distance pairs = list(combinations(range(len(glyphs)),2)) for pair in pairs: i = pair[0] j = pair[1] glyph_1 = glyphs[i] glyph_2 = glyphs[j] bitmap_1 = glyph_1.bitmap bitmap_2 = glyph_2.bitmap haus = shapes.hausdorff_distance(bitmap_1, bitmap_2) if haus is None: raise FailedRenderException("Unable to determine distance and correlation because at least one glyph failed to render.") contrib_points1 = json.dumps([haus[0][1], haus[1][2]]) contrib_points2 = json.dumps([haus[0][2], haus[1][1]]) s = ShapeDistance( glyph1 = glyph_1.id, glyph2 = glyph_2.id, metric = "hausdorff", distance = max(haus[0][0], haus[1][0]), points1 = contrib_points1, points2 = contrib_points2 ) shape_distances.append(s) return shape_distances """ Calculate correlation between the sound and shape distances for the specified glyph set, using the distance metric specified. If the correlation has already been calculated, the existing results are returned. """ def get_correlation(glyph_set_id, sound_metric, shape_metric): # Fetch from db if it's already calculated query = (Correlation .select() .where( (Correlation.glyph_set_id == glyph_set_id) & (Correlation.sound_metric == sound_metric) & (Correlation.shape_metric == shape_metric))) if len(query) > 0: return query.first() sound_query = (SoundDistance .select() .where(SoundDistance.metric == sound_metric) .order_by(SoundDistance.char1, SoundDistance.char2)) Glyph1 = Glyph.alias() Glyph2 = Glyph.alias() shape_query = (ShapeDistance .select() .join(Glyph1, on=ShapeDistance.glyph1) .switch(ShapeDistance) .join(Glyph2, on=ShapeDistance.glyph2) .where( (Glyph1.glyph_set_id == glyph_set_id) & (Glyph2.glyph_set_id == glyph_set_id) & (ShapeDistance.metric == shape_metric)) .order_by(Glyph1.character, Glyph2.character)) sound_distances = [s.distance for s in sound_query] shape_distances = [s.distance for s in shape_query] if (len(sound_distances) != len(shape_distances)): raise Exception("Numer of shape ({0}) and sound ({1}) distances are not equal for glyph set {2}, sound metric {3}, shape metric {4}".format( len(shape_distances), len(sound_distances), glyph_set_id, sound_metric, shape_metric)) if np.std(shape_distances) == 0: raise Exception("Unable to calculate correlation for glyph set {0}: standard deviation of shape distances is zero." .format(glyph_set_id)) corr_value = pearsonr(shape_distances, sound_distances) correlation = Correlation( glyph_set = glyph_set_id, shape_metric = shape_metric, sound_metric = sound_metric, r_value = corr_value[0], p_value = corr_value[1] ) correlation.save() return correlation """ Perform a complete measurement of systematiciy for the font, characters, size, and variation coordinates specified. Renders and saves a set of glyphs, measures their visual distances, and calculates the correlation between their visual (shape) and phonological (sound) distances, using a variety of measures. This method returns only the correlation using the Edit distance. """ def evaluate(chars, font, font_size, coords=None, overwrite=False): if (overwrite): delete_glyph_set(chars, font, font_size, coords) glyph_set_id = get_glyphs(chars, font, font_size, coords) get_and_save_shape_distances(glyph_set_id) euclidean_corr = get_correlation(glyph_set_id, "Euclidean", "hausdorff") edit_sum_corr = get_correlation(glyph_set_id, "Edit_Sum", "hausdorff") edit_corr = get_correlation(glyph_set_id, "Edit", "hausdorff") return SystematicityResult( glyph_set_id = glyph_set_id, edit_correlation = edit_corr.r_value, edit_sum_correlation = edit_sum_corr.r_value, euclidean_correlation = euclidean_corr.r_value ) class SystematicityResult(NamedTuple): """Class to represent the results of a systematiciy evaluation. """ glyph_set_id: int edit_correlation: float edit_sum_correlation: float euclidean_correlation: float class FailedRenderException(Exception): """Exception for when a glyph renders with no pixels""" pass
2.703125
3
taln2016/icsisumm-primary-sys34_v1/nltk/nltk-0.9.2/nltk/corpus/reader/string_category.py
hectormartinez/rougexstem
0
12777568
# Natural Language Toolkit: String Category Corpus Reader # # Copyright (C) 2001-2008 University of Pennsylvania # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # URL: <http://nltk.sf.net> # For license information, see LICENSE.TXT """ Read tuples from a corpus consisting of categorized strings. For example, from the question classification corpus: NUM:dist How far is it from Denver to Aspen ? LOC:city What county is Modesto , California in ? HUM:desc Who was Galileo ? DESC:def What is an atom ? NUM:date When did Hawaii become a state ? """ # based on PPAttachmentCorpusReader from util import * from api import * import os class StringCategoryCorpusReader(CorpusReader): def __init__(self, delimiter=' '): """ @param root: The root directory for this corpus. @param files: A list or regexp specifying the files in this corpus. @param delimiter: Field delimiter """ CorpusReader.__init__(self, root, files) self._delimiter = delimiter def tuples(self, files): return concat([StreamBackedCorpusView(filename, self._read_tuple_block) for filename in self.abspaths(files)]) def raw(self, files): return concat([open(filename).read() for filename in self.abspaths(files)]) def _read_tuple_block(self, stream): line = stream.readline().strip() if line: return [tuple(line.split(self._delimiter, 1))] else: return []
3.515625
4
tests/resource/test_uriquote.py
ekoka/halo
0
12777569
<reponame>ekoka/halo from halo.resource import URIEncode def test_can_encode_uri(): urq = URIEncode() decoded = 'foo and bar/{baz}' encoded = 'foo%20and%20bar/%7bbaz%7d' assert urq.enc(decoded).uri==encoded def test_can_accept_plain_strings(): ur = URIEncode('abc') assert ur.plain(': and :').uri =='abc: and :' def test_can_decode_uri(): urq = URIEncode() decoded = 'foo and bar/{baz}' encoded = 'foo%20and%20bar/%7bbaz%7d' assert urq.dec(encoded).uri==decoded def test_uri_normalized_to_lowercase(): encoded = 'FU/baR/baz%2A' decoded = 'FU/baR/baz*' assert URIEncode(encoded).uri==encoded.lower() assert URIEncode().dec(encoded).uri==decoded.lower() def test_can_encode_space_to_plus(): urq = URIEncode() decoded = 'foo and bar' encoded = 'foo+and+bar' assert urq.encp(decoded).uri==encoded def test_can_decode_plus_to_space(): urq = URIEncode() encoded = 'foo+and+bar' decoded = 'foo and bar' assert urq.decp(encoded).uri==decoded def test_URIEncode_chainable(): urq = URIEncode() result = 'foo/bar and baz%20' assert urq.enc('foo').enc('/bar').dec('%20').enc('and').dec('%20').enc('baz ').uri==result def test_URIEncode_uri_string_not_mutated(): urq1 = URIEncode('abc') urq2 = urq1.enc('/def') urq3 = urq2.enc('/ghi') urq4 = urq1.enc('/jkl') assert urq1.uri=='abc' assert urq2.uri=='abc/def' assert urq3.uri=='abc/def/ghi' assert urq4.uri=='abc/jkl'
2.4375
2
mod_custom.py
shariqmalik/seeker
1
12777570
<gh_stars>1-10 #!/usr/bin/env python3 R = '\033[31m' # red G = '\033[32m' # green C = '\033[36m' # cyan W = '\033[0m' # white old = input(G + '[+]' + C + ' Do you want to reuse previous configs? (Y/N) : ' + W) if old.lower() != 'y': redirect = input(G + '[+]' + C + ' Enter Target URL (YouTube,Blog etc) : ' + W) sitename = input(G + '[+]' + C + ' Site Name: ' + W) title = input(G + '[+]' + C + ' Title : ' + W) image_url = input(G + '[+]' + C + ' Image URL: ' + W) description = input(G + '[+]' + C + ' Description: ' + W) with open('template/custom/js/location_temp.js', 'r') as js: reader = js.read() update = reader.replace('REDIRECT_URL', redirect) with open('template/custom/js/location.js', 'w') as js_update: js_update.write(update) with open('template/custom/index_temp.html', 'r') as index_temp: code = index_temp.read() code = code.replace('$SITE_NAME$', sitename) code = code.replace('$TITLE$', title) code = code.replace('$IMG_URL$', image_url) code = code.replace('$DESCRIPTION$', description) with open('template/custom/index.html', 'w') as new_index: new_index.write(code)
2.390625
2
eazy/igm.py
albertfxwang/eazy-py
20
12777571
import os import numpy as np from . import __file__ as filepath __all__ = ["Inoue14"] class Inoue14(object): def __init__(self, scale_tau=1.): """ IGM absorption from Inoue et al. (2014) Parameters ---------- scale_tau : float Parameter multiplied to the IGM :math:`\tau` values (exponential in the linear absorption fraction). I.e., :math:`f_\mathrm{igm} = e^{-\mathrm{scale\_tau} \tau}`. """ self._load_data() self.scale_tau = scale_tau def _load_data(self): path = os.path.join(os.path.dirname(filepath),'data') #print path LAF_file = os.path.join(path, 'LAFcoeff.txt') DLA_file = os.path.join(path, 'DLAcoeff.txt') data = np.loadtxt(LAF_file, unpack=True) ix, lam, ALAF1, ALAF2, ALAF3 = data self.lam = lam[:,np.newaxis] self.ALAF1 = ALAF1[:,np.newaxis] self.ALAF2 = ALAF2[:,np.newaxis] self.ALAF3 = ALAF3[:,np.newaxis] data = np.loadtxt(DLA_file, unpack=True) ix, lam, ADLA1, ADLA2 = data self.ADLA1 = ADLA1[:,np.newaxis] self.ADLA2 = ADLA2[:,np.newaxis] return True @property def NA(self): """ Number of Lyman-series lines """ return self.lam.shape[0] def tLSLAF(self, zS, lobs): """ Lyman series, Lyman-alpha forest """ z1LAF = 1.2 z2LAF = 4.7 l2 = self.lam #[:, np.newaxis] tLSLAF_value = np.zeros_like(lobs*l2).T x0 = (lobs < l2*(1+zS)) x1 = x0 & (lobs < l2*(1+z1LAF)) x2 = x0 & ((lobs >= l2*(1+z1LAF)) & (lobs < l2*(1+z2LAF))) x3 = x0 & (lobs >= l2*(1+z2LAF)) tLSLAF_value = np.zeros_like(lobs*l2) tLSLAF_value[x1] += ((self.ALAF1/l2**1.2)*lobs**1.2)[x1] tLSLAF_value[x2] += ((self.ALAF2/l2**3.7)*lobs**3.7)[x2] tLSLAF_value[x3] += ((self.ALAF3/l2**5.5)*lobs**5.5)[x3] return tLSLAF_value.sum(axis=0) def tLSDLA(self, zS, lobs): """ Lyman Series, DLA """ z1DLA = 2.0 l2 = self.lam #[:, np.newaxis] tLSDLA_value = np.zeros_like(lobs*l2) x0 = (lobs < l2*(1+zS)) & (lobs < l2*(1.+z1DLA)) x1 = (lobs < l2*(1+zS)) & ~(lobs < l2*(1.+z1DLA)) tLSDLA_value[x0] += ((self.ADLA1/l2**2)*lobs**2)[x0] tLSDLA_value[x1] += ((self.ADLA2/l2**3)*lobs**3)[x1] return tLSDLA_value.sum(axis=0) def tLCDLA(self, zS, lobs): """ Lyman continuum, DLA """ z1DLA = 2.0 lamL = 911.8 tLCDLA_value = np.zeros_like(lobs) x0 = lobs < lamL*(1.+zS) if zS < z1DLA: tLCDLA_value[x0] = 0.2113 * _pow(1.0+zS, 2) - 0.07661 * _pow(1.0+zS, 2.3) * _pow(lobs[x0]/lamL, (-3e-1)) - 0.1347 * _pow(lobs[x0]/lamL, 2) else: x1 = lobs >= lamL*(1.+z1DLA) tLCDLA_value[x0 & x1] = 0.04696 * _pow(1.0+zS, 3) - 0.01779 * _pow(1.0+zS, 3.3) * _pow(lobs[x0 & x1]/lamL, (-3e-1)) - 0.02916 * _pow(lobs[x0 & x1]/lamL, 3) tLCDLA_value[x0 & ~x1] =0.6340 + 0.04696 * _pow(1.0+zS, 3) - 0.01779 * _pow(1.0+zS, 3.3) * _pow(lobs[x0 & ~x1]/lamL, (-3e-1)) - 0.1347 * _pow(lobs[x0 & ~x1]/lamL, 2) - 0.2905 * _pow(lobs[x0 & ~x1]/lamL, (-3e-1)) return tLCDLA_value def tLCLAF(self, zS, lobs): """ Lyman continuum, LAF """ z1LAF = 1.2 z2LAF = 4.7 lamL = 911.8 tLCLAF_value = np.zeros_like(lobs) x0 = lobs < lamL*(1.+zS) if zS < z1LAF: tLCLAF_value[x0] = 0.3248 * (_pow(lobs[x0]/lamL, 1.2) - _pow(1.0+zS, -9e-1) * _pow(lobs[x0]/lamL, 2.1)) elif zS < z2LAF: x1 = lobs >= lamL*(1+z1LAF) tLCLAF_value[x0 & x1] = 2.545e-2 * (_pow(1.0+zS, 1.6) * _pow(lobs[x0 & x1]/lamL, 2.1) - _pow(lobs[x0 & x1]/lamL, 3.7)) tLCLAF_value[x0 & ~x1] = 2.545e-2 * _pow(1.0+zS, 1.6) * _pow(lobs[x0 & ~x1]/lamL, 2.1) + 0.3248 * _pow(lobs[x0 & ~x1]/lamL, 1.2) - 0.2496 * _pow(lobs[x0 & ~x1]/lamL, 2.1) else: x1 = lobs > lamL*(1.+z2LAF) x2 = (lobs >= lamL*(1.+z1LAF)) & (lobs < lamL*(1.+z2LAF)) x3 = lobs < lamL*(1.+z1LAF) tLCLAF_value[x0 & x1] = 5.221e-4 * (_pow(1.0+zS, 3.4) * _pow(lobs[x0 & x1]/lamL, 2.1) - _pow(lobs[x0 & x1]/lamL, 5.5)) tLCLAF_value[x0 & x2] = 5.221e-4 * _pow(1.0+zS, 3.4) * _pow(lobs[x0 & x2]/lamL, 2.1) + 0.2182 * _pow(lobs[x0 & x2]/lamL, 2.1) - 2.545e-2 * _pow(lobs[x0 & x2]/lamL, 3.7) tLCLAF_value[x0 & x3] = 5.221e-4 * _pow(1.0+zS, 3.4) * _pow(lobs[x0 & x3]/lamL, 2.1) + 0.3248 * _pow(lobs[x0 & x3]/lamL, 1.2) - 3.140e-2 * _pow(lobs[x0 & x3]/lamL, 2.1) return tLCLAF_value def full_IGM(self, z, lobs): """Get full Inoue IGM absorption Parameters ---------- z : float Redshift to evaluate IGM absorption lobs : array Observed-frame wavelength(s) in Angstroms. Returns ------- abs : array IGM absorption """ tau_LS = self.tLSLAF(z, lobs) + self.tLSDLA(z, lobs) tau_LC = self.tLCLAF(z, lobs) + self.tLCDLA(z, lobs) ### Upturn at short wavelengths, low-z #k = 1./100 #l0 = 600-6/k #clip = lobs/(1+z) < 600. #tau_clip = 100*(1-1./(1+np.exp(-k*(lobs/(1+z)-l0)))) tau_clip = 0. return np.exp(-self.scale_tau*(tau_LC + tau_LS + tau_clip)) def build_grid(self, zgrid, lrest): """Build a spline interpolation object for fast IGM models Returns: self.interpolate """ from scipy.interpolate import CubicSpline igm_grid = np.zeros((len(zgrid), len(lrest))) for iz in range(len(zgrid)): igm_grid[iz,:] = self.full_IGM(zgrid[iz], lrest*(1+zgrid[iz])) self.interpolate = CubicSpline(zgrid, igm_grid) def _pow(a, b): """C-like power, a**b """ return a**b
2.5625
3
hex2file/hex2file.py
mattixtech/hex2file
0
12777572
<reponame>mattixtech/hex2file """ hex2file.py <NAME>, 2018 Utility for writing hex to a file. """ import argparse import binascii import deprecation import sys def _sanitize(hex_str, comment_strings=None, ignore_strings=None): """ Sanitize string input before attempting to write to file. :param hex_str: the string input to sanitize :param comment_strings: a tuple of strings identifying comment characters :param ignore_strings: a tuple of strings to ignore in the input :return: the sanitized string or None """ # Remove whitespace hex_str = hex_str.strip() if not hex_str: return None # Ignore lines beginning with a comment string and any content after a # comment string if comment_strings: for comment_string in comment_strings: if hex_str.startswith(comment_string): return None else: hex_str = hex_str.split(comment_string)[0] hex_id = "0x" # Ignore strings if ignore_strings: ignore_strings += (hex_id,) else: ignore_strings = (hex_id,) for string_to_remove in ignore_strings: hex_str = hex_str.replace(string_to_remove, "") return "".join(hex_str.split()) def _str2hexbin(hex_str): """ Converts a hex string to hex binary. :param hex_str: the string to convert :return: the string converted to hex or None if we were passed an empty string """ if hex_str: try: int(hex_str, 16) except (TypeError, ValueError): raise ValueError("Invalid hex input '{}'".format(hex_str)) return binascii.unhexlify(hex_str) def write(hex_input, file_path, append=False, comment_strings=None, ignore_strings=None, from_file=False): """ Write a hex string to a file as hex. :param hex_input: the string containing the hex or the file containing the hex if 'from_file' is set :param file_path: the path to the file to write :param append: whether to append or overwrite :param comment_strings: a tuple of strings identifying comment characters :param ignore_strings: a tuple of strings to ignore in the input :param from_file: specifies to read from the given file rather than a string :return: None """ if hex_input is not None: if append: mode = "a" else: mode = "w" mode += "b" if from_file: # TODO: Should we check for exceptions here? with open(hex_input, 'r') as input_file: hex_input = input_file.read() with open(file_path, mode) as f: for line in iter(hex_input.splitlines()): hexbin_line = _str2hexbin( _sanitize(line, comment_strings=comment_strings, ignore_strings=ignore_strings)) if hexbin_line: f.write(hexbin_line) @deprecation.deprecated(deprecated_in="1.1.0", details="Use the write() function instead") def write_str(hex_input, file_path, append=False): """ Write a hex string to a file as hex. :param hex_input: the string containing the hex or the file containing the hex if 'from_file' is set :param file_path: the path to the file to write :param append: whether to append or overwrite :return: None """ write(hex_input, file_path, append) @deprecation.deprecated(deprecated_in="1.1.0", details="Use the write() function instead and set" " 'from_file'") def write_from_file(text_file_path, file_path, append=False): """ Writes the hex (in ascii format) contained in the given file to the given output file path. :param text_file_path: the path to the input file :param file_path: the path to the file to write :param append: whether to append or overwrite :return: None """ with open(text_file_path, 'r') as input_file: write(input_file.read(), file_path, append=append) def _parse_arguments(): """ Parse the command line arguments. :return: the parsed arguments """ parser = argparse.ArgumentParser() parser.add_argument("-a", "--append", help="Append to the file rather than overwrite it.", action="store_true") parser.add_argument("-c", "--comments", help="Ignore lines starting with any of the supplied" " comment strings (space separated) and any" " content preceded by any of those strings") parser.add_argument("-f", "--file", help="Get the hex contents from the specified file") parser.add_argument("-i", "--ignore", help="Ignore any of the given strings (space separated)" " in the input") parser.add_argument("output_path", help="The path to the output file to write hex to.") return parser.parse_args() def _cmd_line(): """ Writes hex from a file or from stdin. :return: None """ append = False from_file = False parsed_args = _parse_arguments() # Check if we are copying from a file if parsed_args.file: hex_input = parsed_args.file from_file = True # Check if stdin has anything for us elif not sys.stdin.isatty(): hex_input = sys.stdin.read() else: sys.stderr.write("ERROR: No input provided via stdin\n") sys.exit(1) if parsed_args.append: append = True # Convert the comments strings into a tuple if parsed_args.comments: parsed_args.comments = tuple(parsed_args.comments.split()) # Convert the ignore strings into a tuple if parsed_args.ignore: parsed_args.ignore = tuple(parsed_args.ignore.split()) try: write(hex_input, parsed_args.output_path, append=append, comment_strings=parsed_args.comments, ignore_strings=parsed_args.ignore, from_file=from_file) except ValueError as e: sys.stderr.write("ERROR: {}\n".format(e)) sys.exit(1) except IOError as e: sys.stderr.write( "ERROR: {} '{}'\n".format("".join(e.args[1:]), e.filename)) sys.exit(1) sys.exit(0) if __name__ == "__main__": _cmd_line()
3.578125
4
main/config/management/commands/download_geolite.py
TunedMystic/url-shortener
0
12777573
<gh_stars>0 import gzip import os import shutil import urllib from django.conf import settings from django.core.management.base import BaseCommand class Command(BaseCommand): help = 'Download the geolite binaries and store in GEOIP_PATH' def download_and_extract_file(self, item): filename = item.get('filename') # Download file. urllib.request.urlretrieve(item.get('location'), filename) # Extract file. with gzip.open(filename, 'rb') as gzip_file: file_data = gzip_file.read() with open(item.get('extract_name'), 'wb') as f: f.write(file_data) self.stdout.write(self.style.SUCCESS('Downloaded and extracted \'{}\''.format(filename))) def handle(self, *args, **options): path = settings.GEOIP_PATH files = [ { 'location': 'http://geolite.maxmind.com/download/geoip/database/GeoLite2-Country.mmdb.gz', 'filename': os.path.join(path, 'GeoLite2-Country.mmdb.gz'), 'extract_name': os.path.join(path, 'GeoLite2-Country.mmdb'), }, { 'location': 'http://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz', 'filename': os.path.join(path, 'GeoLite2-City.mmdb.gz'), 'extract_name': os.path.join(path, 'GeoLite2-City.mmdb'), } ] # Create GeoIP directory if it doesn't exist. try: shutil.rmtree(path) os.makedirs(path) except FileNotFoundError: os.makedirs(path) # Download geolite binaries for item in files: self.download_and_extract_file(item) os.remove(item.get('filename'))
2.21875
2
lib/Utils/fitnessmatrixuploadUtilClient.py
OGalOz/poolfileupload
0
12777574
<gh_stars>0 import os import logging import re import shutil import datetime import pandas as pd from installed_clients.DataFileUtilClient import DataFileUtil from installed_clients.WorkspaceClient import Workspace class fitnessmatrixuploadUtil: def __init__(self, params): self.params = params self.callback_url = os.environ["SDK_CALLBACK_URL"] self.dfu = DataFileUtil(self.callback_url) self.data_folder = os.path.abspath("/kb/module/data/") # This is where files from staging area exist self.staging_folder = os.path.abspath("/staging/") self.shared_folder = params["shared_folder"] self.scratch_folder = os.path.join(params["shared_folder"], "scratch") def upload_fitnessmatrix(self): """ The upload method We perform a number of steps: Get name of fitnessmatrix as it is in staging. Find the fitnessmatrix in /staging/op_datatype_name Get the output name for the fitnessmatrix Get the column headers for the pool file for data and testing purposes. Should be len 12. Test if fitnessmatrix is well-formed. We send the file to shock using dfu. We get the handle and save the object with all the necessary information- including related genome. params should include: output_names, staging_file_names, ws_obj, workspace_id, """ print("params: ", self.params) self.validate_import_fitnessmatrix_from_staging_params() # Double checking number of files we want from staging strain_fit_bool = False stg_fs = self.params["staging_file_names"] if not len(stg_fs) in [2, 3]: raise Exception( "Expecting between 2/3 staging files, got a different number" f" of staging files: {len(stg_fs)}. Files: " + ", ".join(sgf_fs) ) else: staging_fitness_matrix_fp_name = stg_fs[0] staging_t_score_matrix_fp_name = stg_fs[1] logging.info( "Using this file for the fitness matrix: " + staging_fitness_matrix_fp_name + ". " ) logging.info( "Using this file for the t_score matrix: " + staging_t_score_matrix_fp_name + "." ) if len(stg_fs) == 3: strain_fit_bool = True staging_strain_fit_table_fp_name = stg_fs[2] logging.info( "Using this file for the strain fit matrix: " + strain_fit_table_fp_name + "." ) op_nms = self.params["output_names"] if len(op_nms) != 1: raise Exception( "Expecting a single output name, got a different number" f": {len(op_nms)}. Output Names: " + ", ".join(op_nms) ) else: op_datatype_name = op_nms[0] print("op_datatype_name: ", op_datatype_name) print("top dir /:", os.listdir("/")) print("/kb/module/:", os.listdir("/kb/module")) if not os.path.exists(self.staging_folder): raise Exception("Staging dir does not exist yet! Cannot continue.") else: print("Succesfully recognized staging directory") # This is the path to the pool file fitnessmatrix_fp = os.path.join( self.staging_folder, staging_fitness_matrix_fp_name ) t_scorematrix_fp = os.path.join( self.staging_folder, staging_t_score_matrix_fp_name ) if strain_fit_bool: strain_fitmatrix_fp = os.path.join( self.staging_folder, staging_strain_fit_table_fp_name ) # CHECK FILES: column_header_list, num_lines = self.check_matrix_files( fitnessmatrix_fp, t_scorematrix_fp, self.params["sep_type"] ) if strain_fit_bool: self.check_strain_fit_table(strain_fitmatrix_fp, self.params["sep_type"]) # We copy the files from staging to scratch new_fitness_matrix_fp = os.path.join( self.shared_folder, op_datatype_name + ".fit.tsv" ) new_t_score_fp = os.path.join( self.shared_folder, op_datatype_name + ".t_score.tsv" ) if strain_fit_bool: new_strain_fp = os.path.join( self.shared_folder, op_datatype_name + ".strain_fit.tsv" ) if self.params["sep_type"] == "TSV": shutil.copyfile(fitnessmatrix_fp, new_fitness_matrix_fp) shutil.copyfile(t_scorematrix_fp, new_t_score_fp) if strain_fit_bool: shutil.copyfile(strain_fitmatrix_fp, new_strain_fp) else: # sep type is comma (CSVs) fit_df = pd.read_table(fitnessmatrix_fp, sep=",", keep_default_na=False) t_score_df = pd.read_table(t_scorematrix_fp, sep=",", keep_default_na=False) fit_df.to_csv(new_fitness_matrix_fp, sep="\t", index=False) t_score_df.to_csv(new_t_score_fp, sep="\t", index=False) if strain_fit_bool: strain_df = pd.read_table( strain_fitmatrix_fp, sep=",", keep_default_na=False ) strain_df.to_csv(new_strain_fp, sep="\t", index=False) # We create the handles for the objects: fitness_file_to_shock_result = self.dfu.file_to_shock( {"file_path": new_fitness_matrix_fp, "make_handle": True, "pack": "gzip"} ) t_score_file_to_shock_result = self.dfu.file_to_shock( {"file_path": new_t_score_fp, "make_handle": True, "pack": "gzip"} ) fitness_res_handle = fitness_file_to_shock_result["handle"] t_score_res_handle = t_score_file_to_shock_result["handle"] if strain_fit_bool: strain_fit_file_to_shock_result = self.dfu.file_to_shock( {"file_path": new_strain_fp, "make_handle": True, "pack": "gzip"} ) strain_fit_res_handle = strain_fit_file_to_shock_result["handle"] # We create a better Description by adding date time and username date_time = datetime.datetime.utcnow() # We create the data for the object matrices_data = { "file_type": "KBaseRBTnSeq.RBTS_Gene_Fitness_T_Matrix", "fit_scores_handle": fitness_res_handle["hid"], "t_scores_handle": t_score_res_handle["hid"], # below should be shock "handle_type": fitness_res_handle["type"], "fitness_shock_url": fitness_res_handle["url"], "t_scores_shock_url": t_score_res_handle["url"], "fitness_shock_node_id": fitness_res_handle["id"], "t_scores_shock_node_id": t_score_res_handle["id"], "compression_type": "gzip", "fitness_file_name": fitness_res_handle["file_name"], "t_scores_file_name": t_score_res_handle["file_name"], "utc_created": str(date_time), "column_header_list": column_header_list, "num_cols": str(len(column_header_list)), "num_lines": str(num_lines), "related_genome_ref": self.params["genome_ref"], "poolcounts_used": [], "related_experiments_ref": self.params["experiments_ref"], "related_organism_scientific_name": self.get_genome_organism_name( self.params["genome_ref"] ), "description": "Manual Upload: " + self.params["description"], } if strain_fit_bool: matrices_data["strain_fit_handle"] = strain_fit_res_handle["hid"] matrices_data["strain_fit_shock_url"] = strain_fit_res_handle["url"] matrices_data["strain_fit_shock_node_id"] = strain_fit_res_handle["id"] matrices_data["strain_fit_file_name"] = strain_fit_res_handle["file_name"] # To get workspace id: ws_id = self.params["workspace_id"] save_object_params = { "id": ws_id, "objects": [ { "type": "KBaseRBTnSeq.RBTS_Gene_Fitness_T_Matrix", "data": matrices_data, "name": op_datatype_name, } ], } # save_objects returns a list of object_infos dfu_object_info = self.dfu.save_objects(save_object_params)[0] print("dfu_object_info: ") print(dfu_object_info) return { "Name": dfu_object_info[1], "Type": dfu_object_info[2], "Date": dfu_object_info[3], } def validate_import_fitnessmatrix_from_staging_params(self): prms = self.params # check for required parameters for p in [ "username", "staging_file_names", "genome_ref", "experiments_ref", "description", "output_names", ]: if p not in prms: raise ValueError( 'When uploading a fitness matrix, "{}" parameter is required, but missing'.format( p ) ) def check_matrix_files(self, fitness_matrix_fp, t_score_matrix_fp, separator): """ Args: fitness_matrix_fp (str): Path to fitness matrix file t_score_matrix_fp (str): Path to t score matrix file separator (str): "," or "\t" Returns: list<list<column_names (str)>, num_rows (int)> Description: We check the matrix files by initializing into dict format """ sep = "\t" if separator == "TSV" else "," """ dtypes = { "orgId", "locusId", "sysName", "geneName", "desc" All strings } """ req_cols = ["locusId", "sysName", "geneName", "desc"] fitness_df = pd.read_table(fitness_matrix_fp, sep=sep, keep_default_na=False) t_score_df = pd.read_table(t_score_matrix_fp, sep=sep, keep_default_na=False) for x in req_cols: if x not in fitness_df.columns: raise Exception( f"Required column name {x} not found in fitness file {fitness_matrix_fp}." ) if x not in t_score_df.columns: raise Exception( f"Required column name {x} not found in t score file {t_score_matrix_fp}." ) for i in range(len(fitness_df.columns)): if fitness_df.columns[i] != t_score_df.columns[i]: raise Exception( "Columns don't match up (fitness, t_score):" f"{fitness_df.columns[i]} != {t_score_df.columns[i]} at column {i}" ) # Making sure all non numerical values are the same for both files, and locusIds are unique. locusIds_dict = {} for ix, locusId in fitness_df["locusId"].iteritems(): if locusId != t_score_df["locusId"].iloc[ix]: raise Exception( f"locusIds not equal at index {ix} in fitness and t score files." f"{str(fitness_df['locusId'])} != {str(t_score_df['locusId'])}" ) if fitness_df["sysName"].iloc[ix] != t_score_df["sysName"].iloc[ix]: if not ( pd.isnull(fitness_df["sysName"].iloc[ix]) and pd.isnull(fitness_df["sysName"].iloc[ix]) ): raise Exception( f"sysNames not equal at index {ix} in fitness and t score files." f"{str(fitness_df['sysName'])} != {str(t_score_df['sysName'])}" ) if fitness_df["geneName"].iloc[ix] != t_score_df["geneName"].iloc[ix]: if not ( pd.isnull(fitness_df["geneName"].iloc[ix]) and pd.isnull(fitness_df["geneName"].iloc[ix]) ): raise Exception( f"geneNames not equal at index {ix} in fitness and t score files." f"{str(fitness_df['geneName'])} != {str(t_score_df['geneName'])}" ) if fitness_df["desc"].iloc[ix] != t_score_df["desc"].iloc[ix]: if not ( pd.isnull(fitness_df["desc"].iloc[ix]) and pd.isnull(fitness_df["desc"].iloc[ix]) ): raise Exception( f"descriptions not equal at index {ix} in fitness and t score files." f"{str(fitness_df['desc'])} != {str(t_score_df['desc'])}" ) if locusId in locusIds_dict: raise Exception(f"Duplicate locusIds at index {ix}") else: locusIds_dict[locusId] = 1 logging.info("Matrices columns are: " + ", ".join(fitness_df.columns)) return [list(fitness_df.columns), fitness_df.shape[0]] def get_genome_organism_name(self, genome_ref): # Getting the organism name using WorkspaceClient ws = self.params['ws_obj'] res = ws.get_objects2( { "objects": [ { "ref": genome_ref, "included": ["scientific_name"], } ] } ) scientific_name = res["data"][0]["data"]["scientific_name"] return scientific_name def get_genome_organism_name_from_genes_table(self, gene_table_ref): # Getting the organism name using WorkspaceClient ws = self.params['ws_obj'] res = ws.get_objects2( { "objects": [ { "ref": gene_table_ref, "included": ["related_organism_scientific_name"], } ] } ) scientific_name = res["data"][0]["data"]["related_organism_scientific_name"] return scientific_name
2.390625
2
main.py
mthompson-lab/xray_thermometer
0
12777575
<gh_stars>0 import subprocess directory = "/reg/d/psdm/mfx/mfxo1916/scratch/tmp_training/results/r0020/000_rg001/out/debug" print set(line.strip() for line in subprocess.check_output("sh generate_hitlist.sh {}".format(directory), shell=True).split()) log_direct = '/reg/d/psdm/mfx/mfxo1916/scratch/tmp_training/results/r0020/010_rg001/stdout' from glob import glob def logfiles(directory): log_list = glob(directory+"/*log*") return log_list # print(logfiles(log_direct))
2.203125
2
tests/timstamp.py
zibous/ha-miscale2
25
12777576
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys sys.path.append("..") try: from datetime import datetime, timezone import pytz except Exception as e: print('Import error {}, check requirements.txt'.format(e)) sys.exit(1) DATEFORMAT_MISCAN = '%Y-%m-%d %H:%M:%S' DATEFORMAT_UTC = '%Y-%m-%dT%H:%M:%SZ' LAST_TIMESTAMP = str(datetime.today().strftime(DATEFORMAT_UTC)) mi_timestamp = "{}-{}-{} {}:{}:{}".format( 2000 + 20, 9, 23, 12, 10, 5) # current timestamp from the mi scale mi_datetime = datetime.strptime(mi_timestamp,DATEFORMAT_MISCAN) print(mi_datetime) # convert this to utc time utc = pytz.utc mytz = pytz.timezone('Europe/Vaduz') utc_dt = mytz.localize(mi_datetime) print (utc_dt.astimezone(utc).strftime(DATEFORMAT_UTC))
2.765625
3
mayan/apps/sources/handlers.py
garrans/mayan-edms
0
12777577
from __future__ import unicode_literals from django.utils.translation import ugettext_lazy as _ from converter.models import Transformation from .literals import SOURCE_UNCOMPRESS_CHOICE_ASK from .models import POP3Email, IMAPEmail, WatchFolderSource, WebFormSource def create_default_document_source(sender, **kwargs): if not WebFormSource.objects.count(): WebFormSource.objects.create( label=_('Default'), uncompress=SOURCE_UNCOMPRESS_CHOICE_ASK ) def copy_transformations_to_version(sender, **kwargs): instance = kwargs['instance'] # TODO: Fix this, source should be previous version # TODO: Fix this, shouldn't this be at the documents app Transformation.objects.copy( source=instance.document, targets=instance.pages.all() ) def initialize_periodic_tasks(**kwargs): for source in POP3Email.objects.filter(enabled=True): source.save() for source in IMAPEmail.objects.filter(enabled=True): source.save() for source in WatchFolderSource.objects.filter(enabled=True): source.save()
1.664063
2
day7.py
seblars/AdventOfCode2020
1
12777578
import fileinput import re data = ''.join(fileinput.input()).split('\n') def searchData(target): return [d for d in data if re.search(target, d) is not None] # part 1 targets = ['shiny gold'] searched = [] all_bags = [] converged = False while not converged: new_targets = [] for t in targets: if t not in searched: # search data bags = searchData(t) bags = [" ".join(b.split()[:2]) for b in bags] # remove target while t in bags: bags.remove(t) searched.append(t) if len(bags) > 0: new_targets.extend(bags) all_bags.extend(bags) targets = new_targets if len(targets) == 0: converged = True print(len(set(all_bags))) # part 2 pattern1 = ' bags contain' pattern2 = r'([0-9]+)\s([a-z]+\s[a-z]+)\sbag' targets = [(1, 'shiny gold')] n_bags = 0 converged = False d_bags = {} while not converged: new_targets = [] for t in targets: for d in searchData(t[1] + pattern1): bags = d.split("contain ")[1].split(', ') for b in bags: m = re.match(pattern2, b) if m: n_bag, type_bag = m.groups() n_bags += t[0]*int(n_bag) new_targets.append((t[0]*int(n_bag), type_bag)) if len(new_targets) == 0: converged = True else: targets = new_targets print(n_bags)
3.171875
3
prodcal_ics.py
ffix/prodcal_ics
26
12777579
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from icalendar import Calendar, Event from datetime import datetime, timedelta from lxml import html import requests import argparse import logging import secrets def get_holidays_grouped_by_months(year): page = requests.get( "http://www.consultant.ru/law/ref/calendar/proizvodstvennye/{0}/".format(year) ) if "404 Ресурс не найден!" in page.text: return None tree = html.fromstring(page.content) months = tree.xpath("//th[@class='month']/../../..") if len(months) != 12: logging.warning(f"Number of months in {year} don't equal to 12") holidays = [] for m in months: holidays_in_month = m.xpath( ".//td[@class='holiday weekend' or @class='weekend' or @class='nowork']/text()" ) holidays.append([int(day) for day in holidays_in_month]) return holidays def create_dayoff_event(year, month, day_start, day_end): event = Event() event.add("summary", "Выходной") event.add("dtstart", datetime(year, month, day_start, 0, 0, 0).date()) event.add( "dtend", datetime(year, month, day_end, 0, 0, 0).date() + timedelta(days=1) ) # UID is REQUIRED https://tools.ietf.org/html/rfc5545#section-3.6.1 uid = secrets.token_hex(64) event.add("uid", uid) return event def generate_events(year, holidays_by_months): import more_itertools as mit events = [] for month, holidays in enumerate(holidays_by_months, start=1): holidays_groups = [list(group) for group in mit.consecutive_groups(holidays)] for g in holidays_groups: e = create_dayoff_event(year, month, g[0], g[-1]) events.append(e) return events def parse_args(): parser = argparse.ArgumentParser( description="This script fetches data about production calendar and generates .ics file with it." ) default_output_file = "test.ics" parser.add_argument( "-o", dest="output_file", metavar="out", default=default_output_file, help="output file (default: {0})".format(default_output_file), ) parser.add_argument( "--start-year", metavar="yyyy", type=int, default=datetime.today().year, help="year calendar starts (default: current year)", ) parser.add_argument( "--end-year", metavar="yyyy", type=int, default=(datetime.today().year + 1), help="year calendar ends (default: next year)", ) parser.add_argument("--log-level", metavar="level", default="INFO") return parser.parse_args() def generate_calendar(events): cal = Calendar() cal.add("prodid", "-//My calendar product//mxm.dk//") cal.add("version", "2.0") cal.add("NAME", "Производственный календарь") cal.add("X-WR-CALNAME", "Производственный календарь") for e in events: cal.add_component(e) return cal def setup_logging(log_level): logging_level = getattr(logging, log_level.upper(), None) if not isinstance(logging_level, int): raise ValueError("Invalid log level: {0}".format(log_level)) logging.basicConfig( level=logging_level, format="%(asctime)s [%(levelname)s] %(message)s", datefmt="[%d/%m/%Y:%H:%M:%S %z]", ) if __name__ == "__main__": args = parse_args() setup_logging(args.log_level) events = [] # (args.end_year + 1) because range() function doesn't include right margin for year in range(args.start_year, args.end_year + 1, 1): holidays_by_months = get_holidays_grouped_by_months(year) if not holidays_by_months: break events += generate_events(year, holidays_by_months) cal = generate_calendar(events) with open(args.output_file, "w") as f: f.write(cal.to_ical().decode("utf-8"))
2.828125
3
AItest.py
owattenmaker/PythonFighter
0
12777580
<gh_stars>0 import pygame import random from pygame.locals import * pygame.init() screen=pygame.display.set_mode((640,480)) clock=pygame.time.Clock() px=35 py=35 prect=pygame.Rect(px-10,py-10,20,20) class Enemy(object): def __init__(self,x,y): self.x=x self.y=y self.rad=random.randint(5,10) self.rect=pygame.Rect(0,0,0,0) self.x_dir = random.choice(('left','right')) self.y_dir = random.choice(('up','down')) def move(self, mode='chase'): if mode=='chase': if self.x>px: self.x-=1 elif self.x<px: self.x+=1 if self.y<py: self.y+=1 elif self.y>py: self.y-=1 else: # roam around # Move for x direction if self.x_dir == 'left': if self.x > 1: self.x -= 1 else: self.x_dir = 'right' self.x += 1 else: if self.x < px - 1: self.x += 1 else: self.x_dir = 'left' self.x -= 1 # Now move for y direction if self.y_dir == 'up': if self.y > 1: self.y -= 1 else: self.y_dir = 'down' self.y += 1 else: if self.y < py - 1: self.y += 1 else: self.y_dir = 'up' self.y -= 1 enemies=[Enemy(50,60),Enemy(200,100), Enemy(200,400), Enemy(200,200), Enemy(200,400), Enemy(200,200)] roam = {} # Dict to track relative roam/chase roam_count = {} # Dict to track time for which roaming max_roam = {} max_chasing = len(enemies) // 3 cur_chasing = 0 for i, enmy in enumerate(enemies): if cur_chasing < max_chasing: roam[i] = 'chase' cur_chasing += 1 else: roam[i] = 'roam' roam_count[i] = 0 max_roam[i] = random.randint(100, 500) while True: screen.fill((200,230,200)) key=pygame.key.get_pressed() if key[K_UP]: py-=2 if key[K_DOWN]: py+=2 if key[K_RIGHT]: px+=2 if key[K_LEFT]: px-=2 for e in pygame.event.get(): if e.type==QUIT: exit() prect=pygame.Rect(px-20,py-20,20,20) for e_1, enmy in enumerate(enemies): pygame.draw.circle(screen, (255,0,0), (enmy.x-enmy.rad,enmy.y-enmy.rad), enmy.rad, 0) moved_once = False for e_2, enmy2 in enumerate(enemies): if enmy2 is not enmy: if enmy.rect.colliderect(enmy2.rect): if roam[e_2] == roam[e_1] == 'roam': if cur_chasing < max_chasing: roam[e_1] = 'chase' elif roam[e_2] == roam[e_1] == 'chase': roam[e_2] = 'roam' cur_chasing -= 1 if roam[e_1] == 'roam': roam_count[e_1] += 1 enmy.move('roam') if roam_count[e_1] > max_roam[e_1]: roam_count[e_1] = 0 if cur_chasing < max_chasing: roam[e_1] = 'chase' else: enmy.move('chase') else: if not moved_once: if roam[e_1] == 'roam': roam_count[e_1] += 1 enmy.move('roam') if roam_count[e_1] > max_roam[e_1]: roam_count[e_1] = 0 if cur_chasing < max_chasing: roam[e_1] = 'chase' else: enmy.move('chase') moved_once = True enmy.rect=pygame.Rect(enmy.x-enmy.rad*2,enmy.y-enmy.rad*2,enmy.rad*2,enmy.rad*2) pygame.draw.rect(screen, (0,0,255), enmy.rect, 2) pygame.draw.circle(screen, (0,0,255), (px-10,py-10), 10, 0) pygame.draw.rect(screen, (255,0,0), prect, 2) clock.tick(80) pygame.display.flip()
3.28125
3
tests/geometry/test_utm.py
jhonykaesemodel/av2-api
26
12777581
<filename>tests/geometry/test_utm.py # <Copyright 2022, Argo AI, LLC. Released under the MIT license.> """Unit tests on utilities for converting AV2 city coordinates to UTM or WGS84 coordinate systems.""" import numpy as np import av2.geometry.utm as geo_utils from av2.geometry.utm import CityName from av2.utils.typing import NDArrayFloat def test_convert_city_coords_to_wgs84_atx() -> None: """Convert city coordinates from Austin, TX to GPS coordinates.""" points_city: NDArrayFloat = np.array( [ [1745.37, -1421.37], [1738.54, -1415.03], [1731.53, -1410.81], ] ) wgs84_coords = geo_utils.convert_city_coords_to_wgs84(points_city, city_name=CityName.ATX) expected_wgs84_coords: NDArrayFloat = np.array( [ [30.261642967615092, -97.72246957081633], [30.26170086362131, -97.72253982250783], [30.261739638233472, -97.72261222631731], ] ) assert np.allclose(wgs84_coords, expected_wgs84_coords, atol=1e-4) def test_convert_city_coords_to_wgs84_wdc() -> None: """Convert city coordinates from Washington, DC to GPS coordinates.""" points_city: NDArrayFloat = np.array( [ [1716.85, 4470.38], [2139.70, 4606.14], ] ) wgs84_coords = geo_utils.convert_city_coords_to_wgs84(points_city, city_name=CityName.WDC) expected_wgs84_coords: NDArrayFloat = np.array( [ [38.9299801515994, -77.0168603173312], [38.931286945069985, -77.0120195048271], ] ) assert np.allclose(wgs84_coords, expected_wgs84_coords, atol=1e-4) def test_convert_gps_to_utm() -> None: """Convert Pittsburgh city origin (given in WGS84) to UTM coordinates.""" lat, long = 40.44177902989321, -80.01294377242584 utm_coords = geo_utils.convert_gps_to_utm(lat, long, city_name=CityName.PIT) expected_utm_coords = 583710, 4477260 assert np.allclose(utm_coords, expected_utm_coords, atol=0.01)
2.5625
3
Lessons/source/strings.py
jayceazua/CS-1.3-Core-Data-Structures
0
12777582
<reponame>jayceazua/CS-1.3-Core-Data-Structures #!python def contains(text, pattern): """Return a boolean indicating whether pattern occurs in text.""" assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) # TODO: Implement contains here (iteratively and/or recursively) # Base Case if pattern == '': return True # Edge Case if text == '': return False # return true if there was an index found if find_index_recursive(text, pattern) != None: return True return False def find_index(text, pattern): """Return the starting index of the first occurrence of pattern in text, or None if not found.""" assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) # TODO: Implement find_index here (iteratively and/or recursively) if pattern == '': return 0 if text == '': return None # preset indexes to zero text_index = 0 # index position to return that stays when a pattern is detected pattern_index = 0 # iterator of the pattern to check if the pattern is being met ghost_index = 0 # iterator of the text to match the pattern # make sure we are within range while text_index < (len(text)): # if there is a match move on to the next index of the pattern if text[ghost_index] == pattern[pattern_index]: ghost_index += 1 pattern_index += 1 # return the start of the index pattern only if the pattern is fully met if pattern_index == len(pattern): return text_index else: # move on to the next and restart from zero but with the start indexes plus one pattern_index = 0 text_index += 1 ghost_index = text_index return None def find_index_recursive(text, pattern, text_index=None, pattern_index=None, ghost_index=None): # if text_index is None and pattern_index is None and ghost_index is None: text_index = 0 pattern_index = 0 ghost_index = 0 # make sure the indexes are within range if text_index < len(text) and ghost_index <= (len(text) -1): # check that there is pattern starting if text[ghost_index] == pattern[pattern_index]: # return the index once we found the entire pattern if pattern_index == (len(pattern) - 1): return text_index # check the following indexes of the pattern ghost_index += 1 pattern_index += 1 return find_index_recursive(text, pattern, text_index, pattern_index, ghost_index) else: # move the text index from its current index plus one and start the pattern from 0 pattern_index = 0 text_index += 1 ghost_index = text_index return find_index_recursive(text, pattern, text_index, pattern_index, ghost_index) return None def find_all_indexes(text, pattern): """Return a list of starting indexes of all occurrences of pattern in text, or an empty list if not found.""" assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) # TODO: Implement find_all_indexes here (iteratively and/or recursively) # Base Case returns a value without making any subsequent recursive calls. # It does this for one or more special input values for which the function can be evaluated without recursion. if pattern == '': return [x for x in range(0, len(text))] # an empty array to store indexes found indexes = [] # get the initial index of the pattern result = find_index_recursive(text, pattern) while result != None: indexes.append(result) # move the indexes over by one to make sure we are not starting from its previous index start_index = result + 1 result = find_index_recursive(text, pattern, start_index, 0, start_index) return indexes def test_string_algorithms(text, pattern): found = contains(text, pattern) print('contains({!r}, {!r}) => {}'.format(text, pattern, found)) # TODO: Uncomment these lines after you implement find_index index = find_index(text, pattern) print('find_index({!r}, {!r}) => {}'.format(text, pattern, index)) # TODO: Uncomment these lines after you implement find_all_indexes indexes = find_all_indexes(text, pattern) print('find_all_indexes({!r}, {!r}) => {}'.format(text, pattern, indexes)) def main(): """Read command-line arguments and test string searching algorithms.""" import sys args = sys.argv[1:] # Ignore script file name if len(args) == 2: text = args[0] pattern = args[1] test_string_algorithms(text, pattern) else: script = sys.argv[0] print('Usage: {} text pattern'.format(script)) print('Searches for occurrences of pattern in text') print("\nExample: {} 'abra cadabra' 'abra'".format(script)) print("contains('abra cadabra', 'abra') => True") print("find_index('abra cadabra', 'abra') => 0") print("find_all_indexes('abra cadabra', 'abra') => [0, 8]") if __name__ == '__main__': main()
4.03125
4
plugins/sed.py
martinkirch/tofbot
1
12777583
<reponame>martinkirch/tofbot<filename>plugins/sed.py<gh_stars>1-10 # This file is part of tofbot, a friendly IRC bot. # You may redistribute it under the Simplified BSD License. # If we meet some day, and you think this stuff is worth it, # you can buy us a beer in return. # # Copyright (c) 2011 <NAME> <<EMAIL>> "See PluginSed" from toflib import Plugin import re import sre_constants class PluginSed(Plugin): "That's what she sed" def __init__(self, bot): Plugin.__init__(self, bot) self.msg = None def handle_msg(self, msg_text, chan, nick): r = 's/(.*?)/(.*?)/?$' m = re.match(r, msg_text) if m is not None and self.msg is not None: regexp = m.group(1) to = m.group(2) msg_who = self.msg[0] msg_what = self.msg[1] try: new_msg = re.sub(regexp, to, msg_what) if new_msg != msg_what: self.say("<%s> : %s" % (msg_who, new_msg)) self.msg = (nick, new_msg) except sre_constants.error: pass else: self.msg = (nick, msg_text)
2.359375
2
yahoo_finance_pynterface/__init__.py
mellon85/yahoo-finance-pynterface
15
12777584
<filename>yahoo_finance_pynterface/__init__.py #!/usr/bin/env python # # Yahoo Finance Python Interface # https://github.com/andrea-dm/yahoo-finance-pynterface # # Copyright (c) 2018 <NAME> # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. __name__ = "yahoo_finance_pynterface"; __version__ = "1.0.3"; __author__ = "<NAME>"; __all__ = ['Get']; from . import api from . import core import requests import datetime as dt import concurrent.futures as cf import pandas as pd from typing import Tuple, Dict, List, Union, ClassVar, Any, Optional, Type TickerType = Union[str, List[str]]; PeriodType = Optional[Union[str,List[Union[str,dt.datetime]]]]; AccessModeType = Type[api.AccessModeInQuery]; QueryType = Type[api.Query]; class Get(): """ Class container that exposes the methods available to interact with the Yahoo Finance API. Such methods are: - With(...) : to enable/disable parallel calculations; - CurrentProcessingMode() : to get the current processing mode; - Info(...) : to retrieve basic informations about the ticker such as trading periods, base currency, ...; - Prices(...) : to get the time series of OHLC prices together with Volumes (and adjusted close prices, when available); - Dividends(...) : to get the time series of dividends; - Splits(...) : to get the time series of splits; The above methods should be sufficient for any standard usage. To gain much more control over the data sent back by Yahoo, the following method is implemented: - Data(...) : the basic method that is actually pushing the request for data. All the other methods are somewhat relying on it. """ __processing_mode__:Type[core.ProcessingMode] = core.ProcessingMode.AUTO; @classmethod def With(cls, mode:Type[core.ProcessingMode]) -> None: if not isinstance(mode,core.ProcessingMode): raise TypeError(f"invalid type for the argument 'mode'! <class 'core.ProcessingMode'> expected; got '{type(mode)}'"); else: cls.__processing_mode__ = mode; @classmethod def CurrentProcessingMode(cls) -> str: return str(cls.__processing_mode__); @classmethod def Info(cls, tickers:TickerType) -> Dict[str,Any]: r= cls.Data(tickers, "1d", "1y", using_api=api.AccessModeInQuery.CHART); return { ticker:core.parser({k:v for k,v in data['meta'].items() if k not in ['dataGranularity', 'validRanges']}) for ticker,data in r.items()}; @classmethod def Prices(cls, tickers:TickerType, interval:str="1d", period:PeriodType=None, using_api:AccessModeType=api.AccessModeInQuery.CHART) -> Optional[Union[Dict[str,Any],pd.DataFrame]]: r = cls.Data(tickers, interval, period, events=api.EventsInQuery.HISTORY, using_api=using_api); k = 'quotes' if using_api is api.AccessModeInQuery.CHART else 'data'; return {ticker:data[k] for ticker,data in r.items()} if isinstance(tickers,list) else r[tickers][k]; @classmethod def Dividends(cls, tickers:TickerType, interval:str="1d", period:PeriodType=None, using_api:AccessModeType=api.AccessModeInQuery.CHART) -> Optional[Union[Dict[str,Any],pd.DataFrame]]: r = cls.Data(tickers, interval, period, events=api.EventsInQuery.DIVIDENDS, using_api=using_api); k = 'events' if using_api is api.AccessModeInQuery.CHART else 'data'; return {ticker:data[k] for ticker,data in r.items()} if isinstance(tickers,list) else r[tickers][k]; @classmethod def Splits(cls, tickers:TickerType, interval:str="1d", period:PeriodType=None, using_api:AccessModeType=api.AccessModeInQuery.CHART) -> Optional[Union[Dict[str,Any],pd.DataFrame]]: r = cls.Data(tickers, interval, period, events=api.EventsInQuery.SPLITS, using_api=using_api); k = 'events' if using_api is api.AccessModeInQuery.CHART else 'data'; return {ticker:data[k] for ticker,data in r.items()} if isinstance(tickers,list) else r[tickers][k] @classmethod def Data(cls, tickers:TickerType, interval:str="1d", period:Optional[Union[str,dt.datetime,List[Union[str,dt.datetime]]]]=None, events:Type[api.EventsInQuery]=api.EventsInQuery.HISTORY, using_api:AccessModeType=api.AccessModeInQuery.DEFAULT) -> Dict[str,Any]: if isinstance(tickers,str) or (isinstance(tickers,list) and all(isinstance(ticker,str) for ticker in tickers)): tickers = tickers if isinstance(tickers, list) else list([tickers]); tickers = [x.upper() for x in tickers]; else: raise TypeError(f"invalid type for the argument 'tickers'! {type(str)} or a list of {type(str)} expected; got {type(tickers)}"); if period is None: t = dt.datetime.now(); period = [t-dt.timedelta(weeks=52),t] if using_api is api.AccessModeInQuery.DOWNLOAD else "1y"; params = api.Query(using_api); params.SetPeriod(period); params.SetInterval(interval); params.SetEvents(events); if not isinstance(using_api,api.AccessModeInQuery): raise TypeError(f"invalid type for the argument 'using_api'! <class 'api.AccessModeInQuery'> expected; got {type(api)}"); else: if cls.__processing_mode__ is core.ProcessingMode.PARALLEL: get = cls.__parallel__; elif cls.__processing_mode__ is core.ProcessingMode.SERIAL: get = cls.__serial__; else: get = cls.__serial__ if len(tickers)==1 else cls.__parallel__; return get(tickers, params, using_api); @classmethod def __serial__(cls, tickers:list, params:QueryType, using_api:AccessModeType) -> Dict[str,Any]: data = dict(); for ticker in tickers: response = cls.__get__(ticker, params, using_api, timeout=2); data[ticker] = response if response else None; return data; @classmethod def __parallel__(cls, tickers:list, params:QueryType, using_api:AccessModeType) -> Dict[str,Any]: data = dict(); with cf.ProcessPoolExecutor(max_workers=len(tickers)) as executor: results = { executor.submit(cls.__get__, ticker, params, using_api, timeout=2) : ticker for ticker in tickers}; for result in cf.as_completed(results): data[results[result]] = result.result() if result.result() else None; return data; @staticmethod def __get__(ticker:str, params:QueryType, this_api:AccessModeType, timeout:int=5) -> Optional[dict]: err, res = api.Session.With(this_api).Get(ticker, params, timeout=timeout); if err: err_msg = "*ERROR: {0:s}.\n{1:s}"; if res['code']=='Unprocessable Entity': print(err_msg.format(res['code'], res['description'])); print("please, check whether the parameters you have set are correct!"); elif res['code']=="-1": print(err_msg.format("A request exception occured", res['description'])); elif res['code']=="-2": print(err_msg.format(res['description'], "Aborting the task...")); else: print(err_msg.format(res['code'], res['description'])); return None; else: return res;
1.609375
2
Easy/392. Is Subsequence/solution (3).py
czs108/LeetCode-Solutions
3
12777585
# 392. Is Subsequence # Runtime: 28 ms, faster than 90.94% of Python3 online submissions for Is Subsequence. # Memory Usage: 14.2 MB, less than 74.36% of Python3 online submissions for Is Subsequence. class Solution: # Two Pointers def isSubsequence(self, s: str, t: str) -> bool: left, right = 0, 0 while left < len(s) and right < len(t): if s[left] == t[right]: left += 1 right += 1 return left == len(s)
3.671875
4
sarpy/io/complex/other_nitf.py
ngageoint/SarPy
0
12777586
""" Work in progress for reading some other kind of complex NITF. """ __classification__ = "UNCLASSIFIED" __author__ = "<NAME>" import logging from typing import Union, Tuple, List, Optional, Callable, Sequence import copy from datetime import datetime import numpy from scipy.constants import foot from sarpy.geometry.geocoords import geodetic_to_ecf, ned_to_ecf from sarpy.geometry.latlon import num as lat_lon_parser from sarpy.io.general.base import SarpyIOError from sarpy.io.general.data_segment import DataSegment, SubsetSegment from sarpy.io.general.format_function import FormatFunction, ComplexFormatFunction from sarpy.io.general.nitf import extract_image_corners, NITFDetails, NITFReader from sarpy.io.general.nitf_elements.security import NITFSecurityTags from sarpy.io.general.nitf_elements.image import ImageSegmentHeader, ImageSegmentHeader0 from sarpy.io.general.nitf_elements.nitf_head import NITFHeader, NITFHeader0 from sarpy.io.general.nitf_elements.base import TREList from sarpy.io.general.nitf_elements.tres.unclass.CMETAA import CMETAA from sarpy.io.general.utils import is_file_like from sarpy.io.complex.base import SICDTypeReader from sarpy.io.complex.sicd_elements.SICD import SICDType from sarpy.io.complex.sicd_elements.CollectionInfo import CollectionInfoType from sarpy.io.complex.sicd_elements.ImageData import ImageDataType from sarpy.io.complex.sicd_elements.GeoData import GeoDataType, SCPType from sarpy.io.complex.sicd_elements.Grid import GridType, DirParamType, WgtTypeType from sarpy.io.complex.sicd_elements.Timeline import TimelineType, IPPSetType from sarpy.io.complex.sicd_elements.RadarCollection import RadarCollectionType, \ TxFrequencyType, WaveformParametersType, ChanParametersType from sarpy.io.complex.sicd_elements.SCPCOA import SCPCOAType from sarpy.io.complex.sicd_elements.ImageFormation import ImageFormationType, TxFrequencyProcType from sarpy.io.complex.sicd_elements.ImageCreation import ImageCreationType from sarpy.io.complex.sicd_elements.PFA import PFAType logger = logging.getLogger(__name__) _iso_date_format = '{}-{}-{}T{}:{}:{}' # NB: DO NOT implement is_a() here. # This will explicitly happen after other readers ######## # Define sicd structure from image sub-header information def extract_sicd( img_header: Union[ImageSegmentHeader, ImageSegmentHeader0], transpose: True, nitf_header: Optional[Union[NITFHeader, NITFHeader0]] = None) -> SICDType: """ Extract the best available SICD structure from relevant nitf header structures. Parameters ---------- img_header : ImageSegmentHeader|ImageSegmentHeader0 transpose : bool nitf_header : None|NITFHeader|NITFHeader0 Returns ------- SICDType """ def get_collection_info() -> CollectionInfoType: isorce = img_header.ISORCE.strip() collector_name = None if len(isorce) < 1 else isorce iid2 = img_header.IID2.strip() core_name = img_header.IID1.strip() if len(iid2) < 1 else iid2 class_str = img_header.Security.CLAS if class_str == 'T': classification = 'TOPSECRET' elif class_str == 'S': classification = 'SECRET' elif class_str == 'C': classification = 'CONFIDENTIAL' elif class_str == 'U': classification = 'UNCLASSIFIED' else: classification = '' ctlh = img_header.Security.CTLH.strip() if len(ctlh) < 1: classification += '//' + ctlh code = img_header.Security.CODE.strip() if len(code) < 1: classification += '//' + code return CollectionInfoType( CollectorName=collector_name, CoreName=core_name, Classification=classification) def get_image_data() -> ImageDataType: pvtype = img_header.PVTYPE if pvtype == 'C': if img_header.NBPP != 64: logger.warning( 'This NITF has complex bands that are not 64-bit.\n\t' 'This is not currently supported.') pixel_type = 'RE32F_IM32F' elif pvtype == 'R': if img_header.NBPP == 64: logger.warning( 'The real/imaginary data in the NITF are stored as 64-bit floating point.\n\t' 'The closest Pixel Type, RE32F_IM32F, will be used,\n\t' 'but there may be overflow issues if converting this file.') pixel_type = 'RE32F_IM32F' elif pvtype == 'SI': pixel_type = 'RE16I_IM16I' else: raise ValueError('Got unhandled PVTYPE {}'.format(pvtype)) if transpose: rows = img_header.NCOLS cols = img_header.NROWS else: rows = img_header.NROWS cols = img_header.NCOLS return ImageDataType( PixelType=pixel_type, NumRows=rows, NumCols=cols, FirstRow=0, FirstCol=0, FullImage=(rows, cols), SCPPixel=(0.5 * rows, 0.5 * cols)) def append_country_code(cc) -> None: if len(cc) > 0: if the_sicd.CollectionInfo is None: the_sicd.CollectionInfo = CollectionInfoType(CountryCodes=[cc, ]) elif the_sicd.CollectionInfo.CountryCodes is None: the_sicd.CollectionInfo.CountryCodes = [cc, ] elif cc not in the_sicd.CollectionInfo.CountryCodes: the_sicd.CollectionInfo.CountryCodes.append(cc) def set_image_corners(icps: numpy.ndarray, override: bool = False) -> None: if the_sicd.GeoData is None: the_sicd.GeoData = GeoDataType(ImageCorners=icps) elif the_sicd.GeoData.ImageCorners is None or override: the_sicd.GeoData.ImageCorners = icps def set_arp_position(arp_ecf: numpy.ndarray, override: bool = False) -> None: if the_sicd.SCPCOA is None: the_sicd.SCPCOA = SCPCOAType(ARPPos=arp_ecf) elif override: # prioritize this information first - it should be more reliable than other sources the_sicd.SCPCOA.ARPPos = arp_ecf def set_scp(scp_ecf: numpy.ndarray, scp_pixel: Union[numpy.ndarray, list, tuple], override: bool = False) -> None: def set_scppixel(): if the_sicd.ImageData is None: the_sicd.ImageData = ImageDataType(SCPPixel=scp_pixel) else: the_sicd.ImageData.SCPPixel = scp_pixel if the_sicd.GeoData is None: the_sicd.GeoData = GeoDataType(SCP=SCPType(ECF=scp_ecf)) set_scppixel() elif the_sicd.GeoData.SCP is None or override: the_sicd.GeoData.SCP = SCPType(ECF=scp_ecf) set_scppixel() def set_collect_start( collect_start: Union[str, datetime, numpy.datetime64], override: bool = False) -> None: if the_sicd.Timeline is None: the_sicd.Timeline = TimelineType(CollectStart=collect_start) elif the_sicd.Timeline.CollectStart is None or override: the_sicd.Timeline.CollectStart = collect_start def set_uvects(row_unit: numpy.ndarray, col_unit: numpy.ndarray) -> None: if the_sicd.Grid is None: the_sicd.Grid = GridType( Row=DirParamType(UVectECF=row_unit), Col=DirParamType(UVectECF=col_unit)) return if the_sicd.Grid.Row is None: the_sicd.Grid.Row = DirParamType(UVectECF=row_unit) elif the_sicd.Grid.Row.UVectECF is None: the_sicd.Grid.Row.UVectECF = row_unit if the_sicd.Grid.Col is None: the_sicd.Grid.Col = DirParamType(UVectECF=col_unit) elif the_sicd.Grid.Col.UVectECF is None: the_sicd.Grid.Col.UVectECF = col_unit def try_CMETAA() -> None: # noinspection PyTypeChecker tre = None if tres is None else tres['CMETAA'] # type: CMETAA if tre is None: return cmetaa = tre.DATA if the_sicd.GeoData is None: the_sicd.GeoData = GeoDataType() if the_sicd.SCPCOA is None: the_sicd.SCPCOA = SCPCOAType() if the_sicd.Grid is None: the_sicd.Grid = GridType() if the_sicd.Timeline is None: the_sicd.Timeline = TimelineType() if the_sicd.RadarCollection is None: the_sicd.RadarCollection = RadarCollectionType() if the_sicd.ImageFormation is None: the_sicd.ImageFormation = ImageFormationType() the_sicd.SCPCOA.SCPTime = 0.5*float(cmetaa.WF_CDP) the_sicd.GeoData.SCP = SCPType(ECF=tre.get_scp()) the_sicd.SCPCOA.ARPPos = tre.get_arp() the_sicd.SCPCOA.SideOfTrack = cmetaa.CG_LD.strip().upper() the_sicd.SCPCOA.SlantRange = float(cmetaa.CG_SRAC) the_sicd.SCPCOA.DopplerConeAng = float(cmetaa.CG_CAAC) the_sicd.SCPCOA.GrazeAng = float(cmetaa.CG_GAAC) the_sicd.SCPCOA.IncidenceAng = 90 - float(cmetaa.CG_GAAC) if hasattr(cmetaa, 'CG_TILT'): the_sicd.SCPCOA.TwistAng = float(cmetaa.CG_TILT) if hasattr(cmetaa, 'CG_SLOPE'): the_sicd.SCPCOA.SlopeAng = float(cmetaa.CG_SLOPE) the_sicd.ImageData.SCPPixel = [int(cmetaa.IF_DC_IS_COL), int(cmetaa.IF_DC_IS_ROW)] img_corners = tre.get_image_corners() if img_corners is not None: the_sicd.GeoData.ImageCorners = img_corners if cmetaa.CMPLX_SIGNAL_PLANE.upper() == 'S': the_sicd.Grid.ImagePlane = 'SLANT' elif cmetaa.CMPLX_SIGNAL_PLANE.upper() == 'G': the_sicd.Grid.ImagePlane = 'GROUND' else: logger.warning( 'Got unexpected CMPLX_SIGNAL_PLANE value {},\n\t' 'setting ImagePlane to SLANT'.format(cmetaa.CMPLX_SIGNAL_PLANE)) the_sicd.Grid.Row = DirParamType( SS=float(cmetaa.IF_RSS), ImpRespWid=float(cmetaa.IF_RGRES), Sgn=1 if cmetaa.IF_RFFTS.strip() == '-' else -1, # opposite sign convention ImpRespBW=float(cmetaa.IF_RFFT_SAMP)/(float(cmetaa.IF_RSS)*float(cmetaa.IF_RFFT_TOT))) the_sicd.Grid.Col = DirParamType( SS=float(cmetaa.IF_AZSS), ImpRespWid=float(cmetaa.IF_AZRES), Sgn=1 if cmetaa.IF_AFFTS.strip() == '-' else -1, # opposite sign convention ImpRespBW=float(cmetaa.IF_AZFFT_SAMP)/(float(cmetaa.IF_AZSS)*float(cmetaa.IF_AZFFT_TOT))) cmplx_weight = cmetaa.CMPLX_WEIGHT.strip().upper() if cmplx_weight == 'UWT': the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='UNIFORM') the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='UNIFORM') elif cmplx_weight == 'HMW': the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HAMMING') the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HAMMING') elif cmplx_weight == 'HNW': the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HANNING') the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HANNING') elif cmplx_weight == 'TAY': the_sicd.Grid.Row.WgtType = WgtTypeType( WindowName='TAYLOR', Parameters={ 'SLL': '-{0:d}'.format(int(cmetaa.CMPLX_RNG_SLL)), 'NBAR': '{0:d}'.format(int(cmetaa.CMPLX_RNG_TAY_NBAR))}) the_sicd.Grid.Col.WgtType = WgtTypeType( WindowName='TAYLOR', Parameters={ 'SLL': '-{0:d}'.format(int(cmetaa.CMPLX_AZ_SLL)), 'NBAR': '{0:d}'.format(int(cmetaa.CMPLX_AZ_TAY_NBAR))}) else: logger.warning( 'Got unsupported CMPLX_WEIGHT value {}.\n\tThe resulting SICD will ' 'not have valid weight array populated'.format(cmplx_weight)) the_sicd.Grid.Row.define_weight_function() the_sicd.Grid.Col.define_weight_function() # noinspection PyBroadException try: date_str = cmetaa.T_UTC_YYYYMMMDD time_str = cmetaa.T_HHMMSSUTC date_time = _iso_date_format.format( date_str[:4], date_str[4:6], date_str[6:8], time_str[:2], time_str[2:4], time_str[4:6]) the_sicd.Timeline.CollectStart = numpy.datetime64(date_time, 'us') except Exception: logger.info('Failed extracting start time from CMETAA') pass the_sicd.Timeline.CollectDuration = float(cmetaa.WF_CDP) the_sicd.Timeline.IPP = [ IPPSetType(TStart=0, TEnd=float(cmetaa.WF_CDP), IPPStart=0, IPPEnd=numpy.floor(float(cmetaa.WF_CDP)*float(cmetaa.WF_PRF)), IPPPoly=[0, float(cmetaa.WF_PRF)])] the_sicd.RadarCollection.TxFrequency = TxFrequencyType( Min=float(cmetaa.WF_SRTFR), Max=float(cmetaa.WF_ENDFR)) the_sicd.RadarCollection.TxPolarization = cmetaa.POL_TR.upper() the_sicd.RadarCollection.Waveform = [WaveformParametersType( TxPulseLength=float(cmetaa.WF_WIDTH), TxRFBandwidth=float(cmetaa.WF_BW), TxFreqStart=float(cmetaa.WF_SRTFR), TxFMRate=float(cmetaa.WF_CHRPRT)*1e12)] tx_rcv_pol = '{}:{}'.format(cmetaa.POL_TR.upper(), cmetaa.POL_RE.upper()) the_sicd.RadarCollection.RcvChannels = [ ChanParametersType(TxRcvPolarization=tx_rcv_pol)] the_sicd.ImageFormation.TxRcvPolarizationProc = tx_rcv_pol if_process = cmetaa.IF_PROCESS.strip().upper() if if_process == 'PF': the_sicd.ImageFormation.ImageFormAlgo = 'PFA' scp_ecf = tre.get_scp() fpn_ned = numpy.array( [float(cmetaa.CG_FPNUV_X), float(cmetaa.CG_FPNUV_Y), float(cmetaa.CG_FPNUV_Z)], dtype='float64') ipn_ned = numpy.array( [float(cmetaa.CG_IDPNUVX), float(cmetaa.CG_IDPNUVY), float(cmetaa.CG_IDPNUVZ)], dtype='float64') fpn_ecf = ned_to_ecf(fpn_ned, scp_ecf, absolute_coords=False) ipn_ecf = ned_to_ecf(ipn_ned, scp_ecf, absolute_coords=False) the_sicd.PFA = PFAType(FPN=fpn_ecf, IPN=ipn_ecf) elif if_process in ['RM', 'CD']: the_sicd.ImageFormation.ImageFormAlgo = 'RMA' # the remainder of this is guesswork to define required fields the_sicd.ImageFormation.TStartProc = 0 # guess work the_sicd.ImageFormation.TEndProc = float(cmetaa.WF_CDP) the_sicd.ImageFormation.TxFrequencyProc = TxFrequencyProcType( MinProc=float(cmetaa.WF_SRTFR), MaxProc=float(cmetaa.WF_ENDFR)) # all remaining guess work the_sicd.ImageFormation.STBeamComp = 'NO' the_sicd.ImageFormation.ImageBeamComp = 'SV' if cmetaa.IF_BEAM_COMP[0] == 'Y' else 'NO' the_sicd.ImageFormation.AzAutofocus = 'NO' if cmetaa.AF_TYPE[0] == 'N' else 'SV' the_sicd.ImageFormation.RgAutofocus = 'NO' def try_AIMIDA() -> None: tre = None if tres is None else tres['AIMIDA'] if tre is None: return aimida = tre.DATA append_country_code(aimida.COUNTRY.strip()) create_time = datetime.strptime(aimida.CREATION_DATE, '%d%b%y') if the_sicd.ImageCreation is None: the_sicd.ImageCreation = ImageCreationType(DateTime=create_time) elif the_sicd.ImageCreation.DateTime is None: the_sicd.ImageCreation.DateTime = create_time collect_start = datetime.strptime(aimida.MISSION_DATE+aimida.TIME, '%d%b%y%H%M') set_collect_start(collect_start, override=False) def try_AIMIDB() -> None: tre = None if tres is None else tres['AIMIDB'] if tre is None: return aimidb = tre.DATA append_country_code(aimidb.COUNTRY.strip()) if the_sicd.ImageFormation is not None and the_sicd.ImageFormation.SegmentIdentifier is None: the_sicd.ImageFormation.SegmentIdentifier = aimidb.CURRENT_SEGMENT.strip() date_str = aimidb.ACQUISITION_DATE collect_start = numpy.datetime64(_iso_date_format.format( date_str[:4], date_str[4:6], date_str[6:8], date_str[8:10], date_str[10:12], date_str[12:14]), 'us') set_collect_start(collect_start, override=False) def try_ACFT() -> None: if tres is None: return tre = tres['ACFTA'] if tre is None: tre = tres['ACFTB'] if tre is None: return acft = tre.DATA sensor_id = acft.SENSOR_ID.strip() if len(sensor_id) > 1: if the_sicd.CollectionInfo is None: the_sicd.CollectionInfo = CollectionInfoType(CollectorName=sensor_id) elif the_sicd.CollectionInfo.CollectorName is None: the_sicd.CollectionInfo.CollectorName = sensor_id row_ss = float(acft.ROW_SPACING) col_ss = float(acft.COL_SPACING) if hasattr(acft, 'ROW_SPACING_UNITS') and acft.ROW_SPACING_UNITS.strip().lower() == 'f': row_ss *= foot if hasattr(acft, 'COL_SPACING_UNITS') and acft.COL_SPACING_UNITS.strip().lower() == 'f': col_ss *= foot # NB: these values are actually ground plane values, and should be # corrected to slant plane if possible if the_sicd.SCPCOA is not None: if the_sicd.SCPCOA.GrazeAng is not None: col_ss *= numpy.cos(numpy.deg2rad(the_sicd.SCPCOA.GrazeAng)) if the_sicd.SCPCOA.TwistAng is not None: row_ss *= numpy.cos(numpy.deg2rad(the_sicd.SCPCOA.TwistAng)) if the_sicd.Grid is None: the_sicd.Grid = GridType(Row=DirParamType(SS=row_ss), Col=DirParamType(SS=col_ss)) return if the_sicd.Grid.Row is None: the_sicd.Grid.Row = DirParamType(SS=row_ss) elif the_sicd.Grid.Row.SS is None: the_sicd.Grid.Row.SS = row_ss if the_sicd.Grid.Col is None: the_sicd.Grid.Col = DirParamType(SS=col_ss) elif the_sicd.Grid.Col.SS is None: the_sicd.Grid.Col.SS = col_ss def try_BLOCKA() -> None: tre = None if tres is None else tres['BLOCKA'] if tre is None: return blocka = tre.DATA icps = [] for fld_name in ['FRFC_LOC', 'FRLC_LOC', 'LRLC_LOC', 'LRFC_LOC']: value = getattr(blocka, fld_name) # noinspection PyBroadException try: lat_val = float(value[:10]) lon_val = float(value[10:21]) except ValueError: lat_val = lat_lon_parser(value[:10]) lon_val = lat_lon_parser(value[10:21]) icps.append([lat_val, lon_val]) set_image_corners(icps, override=False) def try_MPDSRA() -> None: def valid_array(arr): return numpy.all(numpy.isfinite(arr)) and numpy.any(arr != 0) tre = None if tres is None else tres['MPDSRA'] if tre is None: return mpdsra = tre.DATA scp_ecf = foot*numpy.array( [float(mpdsra.ORO_X), float(mpdsra.ORO_Y), float(mpdsra.ORO_Z)], dtype='float64') if valid_array(scp_ecf): set_scp(scp_ecf, (int(mpdsra.ORP_COLUMN) - 1, int(mpdsra.ORP_ROW) - 1), override=False) arp_pos_ned = foot*numpy.array( [float(mpdsra.ARP_POS_N), float(mpdsra.ARP_POS_E), float(mpdsra.ARP_POS_D)], dtype='float64') arp_vel_ned = foot*numpy.array( [float(mpdsra.ARP_VEL_N), float(mpdsra.ARP_VEL_E), float(mpdsra.ARP_VEL_D)], dtype='float64') arp_acc_ned = foot*numpy.array( [float(mpdsra.ARP_ACC_N), float(mpdsra.ARP_ACC_E), float(mpdsra.ARP_ACC_D)], dtype='float64') arp_pos = ned_to_ecf(arp_pos_ned, scp_ecf, absolute_coords=True) if valid_array(arp_pos_ned) else None set_arp_position(arp_pos, override=False) arp_vel = ned_to_ecf(arp_vel_ned, scp_ecf, absolute_coords=False) if valid_array(arp_vel_ned) else None if the_sicd.SCPCOA.ARPVel is None: the_sicd.SCPCOA.ARPVel = arp_vel arp_acc = ned_to_ecf(arp_acc_ned, scp_ecf, absolute_coords=False) if valid_array(arp_acc_ned) else None if the_sicd.SCPCOA.ARPAcc is None: the_sicd.SCPCOA.ARPAcc = arp_acc if the_sicd.PFA is not None and the_sicd.PFA.FPN is None: # TODO: is this already in meters? fpn_ecf = numpy.array( [float(mpdsra.FOC_X), float(mpdsra.FOC_Y), float(mpdsra.FOC_Z)], dtype='float64') # *foot if valid_array(fpn_ecf): the_sicd.PFA.FPN = fpn_ecf def try_MENSRB() -> None: tre = None if tres is None else tres['MENSRB'] if tre is None: return mensrb = tre.DATA arp_llh = numpy.array( [lat_lon_parser(mensrb.ACFT_LOC[:12]), lat_lon_parser(mensrb.ACFT_LOC[12:25]), foot*float(mensrb.ACFT_ALT)], dtype='float64') scp_llh = numpy.array( [lat_lon_parser(mensrb.RP_LOC[:12]), lat_lon_parser(mensrb.RP_LOC[12:25]), foot*float(mensrb.RP_ELV)], dtype='float64') # TODO: handle the conversion from msl to hae arp_ecf = geodetic_to_ecf(arp_llh) scp_ecf = geodetic_to_ecf(scp_llh) set_arp_position(arp_ecf, override=True) set_scp(scp_ecf, (int(mensrb.RP_COL)-1, int(mensrb.RP_ROW)-1), override=False) row_unit_ned = numpy.array( [float(mensrb.C_R_NC), float(mensrb.C_R_EC), float(mensrb.C_R_DC)], dtype='float64') col_unit_ned = numpy.array( [float(mensrb.C_AZ_NC), float(mensrb.C_AZ_EC), float(mensrb.C_AZ_DC)], dtype='float64') set_uvects(ned_to_ecf(row_unit_ned, scp_ecf, absolute_coords=False), ned_to_ecf(col_unit_ned, scp_ecf, absolute_coords=False)) def try_MENSRA() -> None: tre = None if tres is None else tres['MENSRA'] if tre is None: return mensra = tre.DATA arp_llh = numpy.array( [lat_lon_parser(mensra.ACFT_LOC[:10]), lat_lon_parser(mensra.ACFT_LOC[10:21]), foot*float(mensra.ACFT_ALT)], dtype='float64') scp_llh = numpy.array( [lat_lon_parser(mensra.CP_LOC[:10]), lat_lon_parser(mensra.CP_LOC[10:21]), foot*float(mensra.CP_ALT)], dtype='float64') # TODO: handle the conversion from msl to hae arp_ecf = geodetic_to_ecf(arp_llh) scp_ecf = geodetic_to_ecf(scp_llh) set_arp_position(arp_ecf, override=True) # TODO: is this already zero based? set_scp(geodetic_to_ecf(scp_llh), (int(mensra.CCRP_COL), int(mensra.CCRP_ROW)), override=False) row_unit_ned = numpy.array( [float(mensra.C_R_NC), float(mensra.C_R_EC), float(mensra.C_R_DC)], dtype='float64') col_unit_ned = numpy.array( [float(mensra.C_AZ_NC), float(mensra.C_AZ_EC), float(mensra.C_AZ_DC)], dtype='float64') set_uvects(ned_to_ecf(row_unit_ned, scp_ecf, absolute_coords=False), ned_to_ecf(col_unit_ned, scp_ecf, absolute_coords=False)) def extract_corners() -> None: icps = extract_image_corners(img_header) if icps is None: return # TODO: include symmetry transform issue set_image_corners(icps, override=False) def extract_start() -> None: # noinspection PyBroadException try: date_str = img_header.IDATIM collect_start = numpy.datetime64( _iso_date_format.format( date_str[:4], date_str[4:6], date_str[6:8], date_str[8:10], date_str[10:12], date_str[12:14]), 'us') except Exception: logger.info('failed extracting start time from IDATIM tre') return set_collect_start(collect_start, override=False) # noinspection PyUnresolvedReferences tres = None if img_header.ExtendedHeader.data is None \ else img_header.ExtendedHeader.data # type: Union[None, TREList] collection_info = get_collection_info() image_data = get_image_data() the_sicd = SICDType( CollectionInfo=collection_info, ImageData=image_data) # apply the various tres and associated logic # NB: this should generally be in order of preference try_CMETAA() try_AIMIDB() try_AIMIDA() try_ACFT() try_BLOCKA() try_MPDSRA() try_MENSRA() try_MENSRB() extract_corners() extract_start() return the_sicd # Helper methods for transforming data def get_linear_magnitude_scaling(scale_factor: float): """ Get a linear magnitude scaling function, to correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. Returns ------- callable """ def scaler(data): return data/scale_factor return scaler def get_linear_power_scaling(scale_factor): """ Get a linear power scaling function, to derive correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. Returns ------- callable """ def scaler(data): return numpy.sqrt(data/scale_factor) return scaler def get_log_magnitude_scaling(scale_factor, db_per_step): """ Gets the log magnitude scaling function, to derive correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. db_per_step : float The db_per_step factor, according to the definiton given in STDI-0002 Returns ------- callable """ lin_scaler = get_linear_magnitude_scaling(scale_factor) def scaler(data): return lin_scaler(numpy.exp(0.05*numpy.log(10)*db_per_step*data)) return scaler def get_log_power_scaling(scale_factor, db_per_step): """ Gets the log power scaling function, to derive correct magnitude. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. db_per_step : float The db_per_step factor, according to the definiton given in STDI-0002 Returns ------- callable """ power_scaler = get_linear_power_scaling(scale_factor) def scaler(data): return power_scaler(numpy.exp(0.1*numpy.log(10)*db_per_step*data)) return scaler def get_linlog_magnitude_scaling(scale_factor, tipping_point): """ Gets the magnitude scaling function for the model which is initially linear, and then switches to logarithmic beyond a fixed tipping point. Parameters ---------- scale_factor : float The scale factor, according to the definition given in STDI-0002. tipping_point : float The tipping point between the two models. Returns ------- callable """ db_per_step = 20*numpy.log10(tipping_point)/tipping_point log_scaler = get_log_magnitude_scaling(scale_factor, db_per_step) def scaler(data): out = data/scale_factor above_tipping = (out > tipping_point) out[above_tipping] = log_scaler(data[above_tipping]) return out return scaler class ApplyAmplitudeScalingFunction(ComplexFormatFunction): __slots__ = ('_scaling_function', ) _allowed_ordering = ('MP', 'PM') has_inverse = False def __init__( self, raw_dtype: Union[str, numpy.dtype], order: str, scaling_function: Optional[Callable] = None, raw_shape: Optional[Tuple[int, ...]] = None, formatted_shape: Optional[Tuple[int, ...]] = None, reverse_axes: Optional[Tuple[int, ...]] = None, transpose_axes: Optional[Tuple[int, ...]] = None, band_dimension: int = -1): """ Parameters ---------- raw_dtype : str|numpy.dtype The raw datatype. Valid options dependent on the value of order. order : str One of `('MP', 'PM')`, with allowable raw_dtype `('uint8', 'uint16', 'uint32', 'float32', 'float64')`. scaling_function : Optional[Callable] raw_shape : None|Tuple[int, ...] formatted_shape : None|Tuple[int, ...] reverse_axes : None|Tuple[int, ...] transpose_axes : None|Tuple[int, ...] band_dimension : int Which band is the complex dimension, **after** the transpose operation. """ self._scaling_function = None ComplexFormatFunction.__init__( self, raw_dtype, order, raw_shape=raw_shape, formatted_shape=formatted_shape, reverse_axes=reverse_axes, transpose_axes=transpose_axes, band_dimension=band_dimension) self._set_scaling_function(scaling_function) @property def scaling_function(self) -> Optional[Callable]: """ The magnitude scaling function. Returns ------- None|Callable """ return self._scaling_function def _set_scaling_function(self, value: Optional[Callable]): if value is None: self._scaling_function = None return if not isinstance(value, Callable): raise TypeError('scaling_function must be callable') self._scaling_function = value def _forward_magnitude_theta( self, data: numpy.ndarray, out: numpy.ndarray, magnitude: numpy.ndarray, theta: numpy.ndarray, subscript: Tuple[slice, ...]) -> None: if self._scaling_function is not None: magnitude = self._scaling_function(magnitude) ComplexFormatFunction._forward_magnitude_theta( self, data, out, magnitude, theta, subscript) def _extract_transform_data( image_header: Union[ImageSegmentHeader, ImageSegmentHeader0], band_dimension: int): """ Helper function for defining necessary transform_data definition for interpreting image segment data. Parameters ---------- image_header : ImageSegmentHeader|ImageSegmentHeader0 Returns ------- None|str|callable """ if len(image_header.Bands) != 2: raise ValueError('Got unhandled case of {} image bands'.format(len(image_header.Bands))) complex_order = image_header.Bands[0].ISUBCAT+image_header.Bands[1].ISUBCAT if complex_order not in ['IQ', 'QI', 'MP', 'PM']: raise ValueError('Got unhandled complex order `{}`'.format(complex_order)) bpp = int(image_header.NBPP/8) pv_type = image_header.PVTYPE if pv_type == 'INT': raw_dtype = '>u{}'.format(bpp) elif pv_type == 'SI': raw_dtype = '>i{}'.format(bpp) elif pv_type == 'R': raw_dtype = '>f{}'.format(bpp) else: raise ValueError('Got unhandled PVTYPE {}'.format(pv_type)) # noinspection PyUnresolvedReferences tre = None if img_header.ExtendedHeader.data is None else \ img_header.ExtendedHeader.data['CMETAA'] # type: Optional[CMETAA] if tre is None: return ComplexFormatFunction(raw_dtype, complex_order, band_dimension=band_dimension) cmetaa = tre.DATA if cmetaa.CMPLX_PHASE_SCALING_TYPE.strip() != 'NS': raise ValueError( 'Got unsupported CMPLX_PHASE_SCALING_TYPE {}'.format( cmetaa.CMPLX_PHASE_SCALING_TYPE)) remap_type = cmetaa.CMPLX_MAG_REMAP_TYPE.strip() if remap_type == 'NS': if complex_order in ['IQ', 'QI']: return ComplexFormatFunction(raw_dtype, complex_order, band_dimension=band_dimension) else: raise ValueError( 'Got unexpected state where cmetaa.CMPLX_MAG_REMAP_TYPE is "NS",\n\t ' 'but Band[0].ISUBCAT/Band[1].ISUBCAT = `{}`'.format(complex_order)) elif remap_type not in ['LINM', 'LINP', 'LOGM', 'LOGP', 'LLM']: raise ValueError('Got unsupported CMETAA.CMPLX_MAG_REMAP_TYPE {}'.format(remap_type)) if complex_order not in ['MP', 'PM']: raise ValueError( 'Got unexpected state where cmetaa.CMPLX_MAG_REMAP_TYPE is `{}`,\n\t' 'but Band[0].ISUBCAT/Band[1].ISUBCAT = `{}`'.format( remap_type, complex_order)) scale_factor = float(cmetaa.CMPLX_LIN_SCALE) if remap_type == 'LINM': scaling_function = get_linear_magnitude_scaling(scale_factor) elif remap_type == 'LINP': scaling_function = get_linear_power_scaling(scale_factor) elif remap_type == 'LOGM': # NB: there is nowhere in the CMETAA structure to define # the db_per_step value. Strangely, the use of this value is laid # out in the STDI-0002 standards document, which defines CMETAA # structure. We will generically use a value which maps the # max uint8 value to the max int16 value. db_per_step = 300*numpy.log(2)/255.0 scaling_function = get_log_magnitude_scaling(scale_factor, db_per_step) elif remap_type == 'LOGP': db_per_step = 300*numpy.log(2)/255.0 scaling_function = get_log_power_scaling(scale_factor, db_per_step) elif remap_type == 'LLM': scaling_function = get_linlog_magnitude_scaling( scale_factor, int(cmetaa.CMPLX_LINLOG_TP)) else: raise ValueError('Got unhandled CMETAA.CMPLX_MAG_REMAP_TYPE {}'.format(remap_type)) return ApplyAmplitudeScalingFunction(raw_dtype, complex_order, scaling_function, band_dimension=band_dimension) ###### # The interpreter and reader objects class ComplexNITFDetails(NITFDetails): """ Details object for NITF file containing complex data. """ __slots__ = ( '_segment_status', '_segment_bands', '_sicd_meta', '_reverse_axes', '_transpose_axes') def __init__( self, file_name: str, reverse_axes: Union[None, int, Sequence[int]] = None, transpose_axes: Optional[Tuple[int, ...]] = None): """ Parameters ---------- file_name : str file name for a NITF file containing a complex SICD reverse_axes : None|Sequence[int] Any entries should be restricted to `{0, 1}`. The presence of `0` means to reverse the rows (in the raw sense), and the presence of `1` means to reverse the columns (in the raw sense). transpose_axes : None|Tuple[int, ...] If presented this should be only `(1, 0)`. """ self._reverse_axes = reverse_axes self._transpose_axes = transpose_axes self._segment_status = None self._sicd_meta = None self._segment_bands = None NITFDetails.__init__(self, file_name) self._find_complex_image_segments() if len(self.sicd_meta) == 0: raise SarpyIOError( 'No complex valued image segments found in file {}'.format(file_name)) @property def reverse_axes(self) -> Union[None, int, Sequence[int]]: return self._reverse_axes @property def transpose_axes(self) -> Optional[Tuple[int, ...]]: return self._transpose_axes @property def segment_status(self) -> Tuple[bool, ...]: """ Tuple[bool, ...]: Where each image segment is viable for use. """ return self._segment_status @property def sicd_meta(self) -> Tuple[SICDType, ...]: """ Tuple[SICDType, ...]: The best inferred sicd structures. """ return self._sicd_meta @property def segment_bands(self) -> Tuple[Tuple[int, Optional[int]], ...]: """ This describes the structure for the output data segments from the NITF, with each entry of the form `(image_segment, output_band)`, where `output_band` will be `None` if the image segment has exactly one complex band. Returns ------- Tuple[Tuple[int, Optional[int]], ...] The band details for use. """ return self._segment_bands def _check_band_details( self, index: int, sicd_meta: List, segment_status: List, segment_bands: List): if len(segment_status) != index: raise ValueError('Inconsistent status checking state') image_header = self.img_headers[index] if image_header.ICAT.strip() not in ['SAR', 'SARIQ']: segment_status.append(False) return # construct a preliminary sicd sicd = extract_sicd(image_header, self._transpose_axes is not None) bands = image_header.Bands pvtype = image_header.PVTYPE # handle odd bands if (len(bands) % 2) == 1: if image_header.PVTYPE != 'C': # it's not complex, so we're done segment_status.append(False) return segment_status.append(True) sicd_meta.append(sicd) segment_bands.append((index, len(bands))) return # we have an even number of bands - ensure that the bands are marked # IQ/QI/MP/PM order = bands[0].ISUBCAT + bands[1].ISUBCAT if order not in ['IQ', 'QI', 'MP', 'PM']: segment_status.append(False) return if len(bands) == 2: # this should be the most common by far segment_status.append(True) sicd_meta.append(sicd) segment_bands.append((index, 1)) return for i in range(2, len(bands), 2): if order != bands[i].ISUBCAT + bands[i+1].ISUBCAT: logging.error( 'Image segment appears to multiband with switch complex ordering') segment_status.append(False) return if order in ['IQ', 'QI']: if pvtype not in ['SI', 'R']: logging.error( 'Image segment appears to be complex of order `{}`, \n\t' 'but PVTYPE is `{}`'.format(order, pvtype)) segment_status.append(False) if order in ['MP', 'PM']: if pvtype not in ['INT', 'R']: logging.error( 'Image segment appears to be complex of order `{}`, \n\t' 'but PVTYPE is `{}`'.format(order, pvtype)) segment_status.append(False) segment_status.append(True) sicd_meta.append(sicd) segment_bands.append((index, int(len(bands)/2))) def _find_complex_image_segments(self): """ Find complex image segments. Returns ------- None """ sicd_meta = [] segment_status = [] segment_bands = [] for index in range(len(self.img_headers)): self._check_band_details(index, sicd_meta, segment_status, segment_bands) self._segment_status = tuple(segment_status) use_sicd_meta = [] use_segment_bands = [] for (the_index, out_bands), sicd in zip(segment_bands, sicd_meta): if out_bands == 1: use_sicd_meta.append(sicd) use_segment_bands.append((the_index, None)) else: for j in range(out_bands): use_sicd_meta.append(sicd.copy()) use_segment_bands.append((the_index, j)) self._sicd_meta = tuple(use_sicd_meta) self._segment_bands = tuple(use_segment_bands) class ComplexNITFReader(NITFReader, SICDTypeReader): """ A reader for complex valued NITF elements, this should be explicitly tried AFTER the SICDReader. """ def __init__( self, nitf_details: Union[str, ComplexNITFDetails], reverse_axes: Union[None, int, Sequence[int]] = None, transpose_axes: Optional[Tuple[int, ...]] = None): """ Parameters ---------- nitf_details : str|ComplexNITFDetails reverse_axes : None|Sequence[int] Any entries should be restricted to `{0, 1}`. The presence of `0` means to reverse the rows (in the raw sense), and the presence of `1` means to reverse the columns (in the raw sense). transpose_axes : None|Tuple[int, ...] If presented this should be only `(1, 0)`. """ if isinstance(nitf_details, str): nitf_details = ComplexNITFDetails( nitf_details, reverse_axes=reverse_axes, transpose_axes=transpose_axes) if not isinstance(nitf_details, ComplexNITFDetails): raise TypeError('The input argument for ComplexNITFReader must be a filename or ' 'ComplexNITFDetails object.') SICDTypeReader.__init__(self, None, nitf_details.sicd_meta) NITFReader.__init__( self, nitf_details, reader_type="SICD", reverse_axes=nitf_details.reverse_axes, transpose_axes=nitf_details.transpose_axes) self._check_sizes() @property def nitf_details(self) -> ComplexNITFDetails: """ ComplexNITFDetails: The NITF details object. """ # noinspection PyTypeChecker return self._nitf_details def get_nitf_dict(self): """ Populate a dictionary with the pertinent NITF header information. This is for use in more faithful preservation of NITF header information in copying or rewriting sicd files. Returns ------- dict """ out = {} security = {} security_obj = self.nitf_details.nitf_header.Security # noinspection PyProtectedMember for field in NITFSecurityTags._ordering: value = getattr(security_obj, field).strip() if value != '': security[field] = value if len(security) > 0: out['Security'] = security out['OSTAID'] = self.nitf_details.nitf_header.OSTAID out['FTITLE'] = self.nitf_details.nitf_header.FTITLE return out def populate_nitf_information_into_sicd(self): """ Populate some pertinent NITF header information into the SICD structure. This provides more faithful copying or rewriting options. """ nitf_dict = self.get_nitf_dict() for sicd_meta in self._sicd_meta: sicd_meta.NITF = copy.deepcopy(nitf_dict) def depopulate_nitf_information(self): """ Eliminates the NITF information dict from the SICD structure. """ for sicd_meta in self._sicd_meta: sicd_meta.NITF = {} def get_format_function( self, raw_dtype: numpy.dtype, complex_order: Optional[str], lut: Optional[numpy.ndarray], band_dimension: int, image_segment_index: Optional[int] = None, **kwargs) -> Optional[FormatFunction]: image_header = self.nitf_details.img_headers[image_segment_index] bands = len(image_header.Bands) if complex_order is not None and bands == 2: return _extract_transform_data(image_header, band_dimension) # TODO: strange nonstandard float16 handling? return NITFReader.get_format_function( self, raw_dtype, complex_order, lut, band_dimension, image_segment_index, **kwargs) def _check_image_segment_for_compliance( self, index: int, img_header: Union[ImageSegmentHeader, ImageSegmentHeader0]) -> bool: return self.nitf_details.segment_status[index] def find_image_segment_collections(self) -> Tuple[Tuple[int, ...]]: return tuple((entry[0], ) for entry in self.nitf_details.segment_bands) def create_data_segment_for_collection_element(self, collection_index: int) -> DataSegment: the_index, the_band = self.nitf_details.segment_bands[collection_index] if the_index not in self._image_segment_data_segments: data_segment = self.create_data_segment_for_image_segment(the_index, apply_format=True) else: data_segment = self._image_segment_data_segments[the_index] if the_band is None: return data_segment else: return SubsetSegment(data_segment, (slice(None, None, 1), slice(None, None, 1), slice(the_band, the_band+1, 1)), 'formatted', close_parent=True) def final_attempt(file_name: str) -> Optional[ComplexNITFReader]: """ Contingency check to open for some other complex NITF type file. Returns a reader instance, if so. Parameters ---------- file_name : str|BinaryIO the file_name to check Returns ------- ComplexNITFReader|None """ if is_file_like(file_name): return None try: nitf_details = ComplexNITFDetails(file_name) logger.info('File {} is determined to be some other format complex NITF.') return ComplexNITFReader(nitf_details) except (SarpyIOError, ValueError): return None
1.773438
2
babble/__init__.py
billchenxi/babble
130
12777587
from .explanation import Explanation from .parsing import Rule, Grammar, Parse, SemanticParser from .filter_bank import FilterBank from .utils import ExplanationIO, link_explanation_candidates from .babbler import Babbler, BabbleStream
0.980469
1
medium/129_sum_root_to_leaf_nodes.py
Sukhrobjon/leetcode
0
12777588
# Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def sumNumbers(self, root): """ :type root: TreeNode :rtype: int """ all_path = [] n_sum = 0 path_sum = self.root_to_leaf(root, n_sum, all_path.append) print(f"all_paths:", all_path, n_sum) print(sum(all_path)) return 1026 def root_to_leaf(self, node, curr_sum, all_path, path=None): """ Helper function to traverse the tree and calculate the path sum """ if path is None: path = [] if node is None: # sum of all print(f"when it hit the none: allpath: {(all_path)}, sum: {curr_sum}, path: {path}") return all_path path.append(node.val) # go the left if node.left is None and node.right is None: # calculate the sum path_val = int("".join(str(num) for num in path)) all_path(path_val) print('curr path:', path_val) curr_sum += path_val print("curr_sum:", curr_sum) self.root_to_leaf(node.left, curr_sum, all_path, path) self.root_to_leaf(node.right, curr_sum, all_path, path) path.pop() if __name__ == "__main__": root = TreeNode(4) root.left = TreeNode(9) root.right = TreeNode(0) root.left.left = TreeNode(5) root.left.right = TreeNode(1) tree = Solution() result = tree.sumNumbers(root) print(result)
3.984375
4
airobot/ee_tool/simple_gripper_mimic_pybullet.py
rhett-chen/airobot
51
12777589
import threading import time import airobot.utils.common as arutil from airobot.ee_tool.simple_gripper_pybullet import SimpleGripperPybullet from airobot.utils.arm_util import wait_to_reach_jnt_goal class SimpleGripperMimicPybullet(SimpleGripperPybullet): """ A base class for gripper with mimic joints in pybullet. Args: cfgs (YACS CfgNode): configurations for the gripper. pb_client (BulletClient): pybullet client. Attributes: cfgs (YACS CfgNode): configurations for the gripper. gripper_close_angle (float): position value corresponding to the fully closed position of the gripper. gripper_open_angle (float): position value corresponding to the fully open position of the gripper. jnt_names (list): names of the gripper joints. gripper_jnt_ids (list): pybullet joint ids of the gripper joints. robot_id (int): robot id in Pybullet. jnt_to_id (dict): mapping from the joint name to joint id. """ def __init__(self, cfgs, pb_client): super(SimpleGripperMimicPybullet, self).__init__(cfgs=cfgs, pb_client=pb_client) self._gripper_mimic_coeff = self.cfgs.EETOOL.MIMIC_COEFF self._mthread_started = False def feed_robot_info(self, robot_id, jnt_to_id): """ Setup the gripper, pass the robot info from the arm to the gripper. Args: robot_id (int): robot id in Pybullet. jnt_to_id (dict): mapping from the joint name to joint id. """ super().feed_robot_info(robot_id, jnt_to_id) # if the gripper has been activated once, # the following code is used to prevent starting # a new thread after the arm reset if a thread has been started if not self._mthread_started: self._mthread_started = True # gripper thread self._th_gripper = threading.Thread(target=self._th_mimic_gripper) self._th_gripper.daemon = True self._th_gripper.start() else: return def set_jpos(self, pos, wait=True, ignore_physics=False): """ Set the gripper position. Args: pos (float): joint position. wait (bool): wait until the joint position is set to the target position. Returns: bool: A boolean variable representing if the action is successful at the moment when the function exits. """ joint_name = self.jnt_names[0] tgt_pos = arutil.clamp( pos, min(self.gripper_open_angle, self.gripper_close_angle), max(self.gripper_open_angle, self.gripper_close_angle)) jnt_id = self.jnt_to_id[joint_name] if ignore_physics: self._zero_vel_mode() mic_pos = self._mimic_gripper(pos) self._hard_reset(mic_pos) success = True else: self._pb.setJointMotorControl2(self.robot_id, jnt_id, self._pb.POSITION_CONTROL, targetPosition=tgt_pos, force=self._max_torque) if not self._pb.in_realtime_mode(): self._set_rest_joints(tgt_pos) success = False if self._pb.in_realtime_mode() and wait: success = wait_to_reach_jnt_goal( tgt_pos, get_func=self.get_jpos, joint_name=joint_name, get_func_derv=self.get_jvel, timeout=self.cfgs.ARM.TIMEOUT_LIMIT, max_error=self.cfgs.ARM.MAX_JOINT_ERROR ) return success def get_jpos(self): """ Return the joint position(s) of the gripper. Returns: float: joint position. """ if not self._is_activated: raise RuntimeError('Call activate function first!') jnt_id = self.jnt_to_id[self.jnt_names[0]] pos = self._pb.getJointState(self.robot_id, jnt_id)[0] return pos def get_jvel(self): """ Return the joint velocity of the gripper. Returns: float: joint velocity. """ if not self._is_activated: raise RuntimeError('Call activate function first!') jnt_id = self.jnt_to_id[self.jnt_names[0]] vel = self._pb.getJointState(self.robot_id, jnt_id)[1] return vel def _mimic_gripper(self, joint_val): """ Given the value for the first joint, mimic the joint values for the rest joints. """ jnt_vals = [joint_val] for i in range(1, len(self.jnt_names)): jnt_vals.append(joint_val * self._gripper_mimic_coeff[i]) return jnt_vals def _th_mimic_gripper(self): """ Make all the other joints of the gripper follow the motion of the first joint of the gripper. """ while True: if self._is_activated and self._pb.in_realtime_mode(): self._set_rest_joints() time.sleep(0.005) def _set_rest_joints(self, gripper_pos=None): max_torq = self._max_torque max_torques = [max_torq] * (len(self.jnt_names) - 1) if gripper_pos is None: gripper_pos = self.get_jpos() gripper_poss = self._mimic_gripper(gripper_pos)[1:] gripper_vels = [0.0] * len(max_torques) self._pb.setJointMotorControlArray(self.robot_id, self.gripper_jnt_ids[1:], self._pb.POSITION_CONTROL, targetPositions=gripper_poss, targetVelocities=gripper_vels, forces=max_torques)
2.375
2
old/Agent.py
Leonard1904/reinforcement-learning
0
12777590
<filename>old/Agent.py import threading import gym import time import cv2 import numpy as np from Network import Network from scipy.misc import imresize from scipy.signal import lfilter class Memory: def __init__(self): self.states = [] self.actions = [] self.rewards = [] def store(self, state, action, reward): self.states.append(state) self.actions.append(action) self.rewards.append(reward) def clear(self): self.states.clear() self.actions.clear() self.rewards.clear() def size(self): return len(self.actions) class Agent(threading.Thread): save_lock = threading.Lock() global_episode = 0 global_step = 0 global_max = -21 global_moving_average = -21 global_moving_update = 0 def __init__(self, name, game, state_size, action_size, global_net, _sess, args, feature_layers=None, critic_layers=None, actor_layers=None ): super(Agent, self).__init__() self.args = args self.phi_length = 4 self.name = name self.state_size = state_size self.action_size = action_size self.sess = _sess self.global_net = global_net self.env = gym.make(game) self.local = Network(name, state_size, action_size, global_net.optimizer, feature_layers, critic_layers, actor_layers) self.copy_to_local_op = self.local.transfer_weights('global') self.mem = Memory() def _discounted_reward(self, rewards): return lfilter([1], [1, -self.args.gamma], x=rewards[::-1])[::-1] def act_post_func(self, action): return action + 1 def _preprocess(self, image, height_range=(35, 193), bg=(144, 72, 17)): image = image[height_range[0]:height_range[1], ...] image = imresize(image, (self.state_size[0], self.state_size[1]), interp="nearest") H, W, _ = image.shape R = image[..., 0] G = image[..., 1] B = image[..., 2] cond = (R == bg[0]) & (G == bg[1]) & (B == bg[2]) image = np.zeros((H, W)) image[~cond] = 1 image = np.expand_dims(image, axis=2) return image def play_episode(self): env, local, mem, args, global_net, sess = self.env, self.local, self.mem, self.args, self.global_net, self.sess s, done, step, counting_step, ep_reward, update_count = env.reset(), False, 0, 0, 0, 0 s = self._preprocess(s) state_diff = s mem.clear() start = time.time() self.sess.run(self.copy_to_local_op) while not done: # a = local.get_action(np.array(mem.states + [s])[-4:], sess) a = self.local.get_action(state_diff, self.sess) s_, r, done, _ = env.step(a + 1) s_ = self._preprocess(s_) ep_reward, step, counting_step = ep_reward + r, step + 1, counting_step + 1 mem.store(state_diff, a, r) state_diff = s_ - s s = s_ # if counting_step >= args.update_freq or done: # if counting_step >= args.update_freq or r != 0 or done: if r == -1 or r == 1 or done: # states = np.array(mem.states + [s]) # obs = [mem.states[i:i + 4] for i in range(mem.size())] values = np.squeeze(self.local.get_values(mem.states, self.sess)) discounted_reward = self._discounted_reward(mem.rewards) discounted_reward -= np.mean(discounted_reward) discounted_reward /= np.std(discounted_reward) # A(s_t) = R_t = gamma ** t * V(s') - V(s) # advantages = discounted_reward + (1 - np.array(mem.rewards) ** 2) * self.args.gamma * values[1:] - values[:-1] advantages = discounted_reward - values advantages -= np.mean(advantages) advantages /= np.std(advantages) + 1e-8 gradients = self.sess.run( self.local.gradients, feed_dict={ self.local.state: np.array(mem.states), self.local.selected_action: np.array(mem.actions), self.local.discounted_reward: discounted_reward, self.local.advantages: advantages } ) feed = [] for (grad, _), (placeholder, _) in zip(gradients, self.global_net.gradients_placeholders): feed.append((placeholder, grad)) feed = dict(feed) self.sess.run(self.global_net.apply_gradients, feed) self.sess.run(self.copy_to_local_op) update_count, counting_step = update_count + 1, 0 mem.clear() # mem.states.extend([s, s, s]) if done: episode_time = update_count / (time.time() - start) with Agent.save_lock: Agent.global_moving_average = Agent.global_moving_average * .99 + ep_reward * .01 Agent.global_moving_update = Agent.global_moving_update * .99 + episode_time * .01 \ if Agent.global_moving_update != 0 else episode_time print( # f'{Agent.global_episode}|{Agent.global_step:,}/{int(self.args.max_steps):,}|' f'{Agent.global_episode}|{Agent.global_step:,}|' f' Average: {int(Agent.global_moving_average)}|{(self.args.num_agents * Agent.global_moving_update):.2f} up/sec. ' f'{self.name} gets {ep_reward} in {step} steps. ' ) self.global_net.summary(sess, Agent.global_moving_average, Agent.global_episode) Agent.global_episode += 1 Agent.global_step += step if Agent.global_max < ep_reward: Agent.global_max = ep_reward return ep_reward, step, update_count, time.time() - start def run(self): while True: # while Agent.global_step < self.args.max_steps: self.play_episode() print(Agent.global_max) class AgentPong(Agent): def __init__(self, name, game, state_size, action_size, global_net, _sess, args, feature_layers=None, critic_layers=None, actor_layers=None): super().__init__(name, game, state_size, action_size, global_net, _sess, args, feature_layers, critic_layers, actor_layers) def act_post_func(self, a): return a + 1 def _discounted_reward(self, rewards): return lfilter([1], [1, -self.args.gamma], x=rewards[::-1])[::-1] def _preprocess(self, image, height_range=(84, 84)): image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) image = cv2.resize(image, (height_range[0], height_range[1]), interpolation=cv2.INTER_LINEAR) return image / 255. # def _preprocess(self, image, height_range=(35, 193), bg=(144, 72, 17)): # image = image[height_range[0]:height_range[1], ...] # image = imresize(image, (80, 80), interp="nearest") # # H, W, _ = image.shape # # R = image[..., 0] # G = image[..., 1] # B = image[..., 2] # # cond = (R == bg[0]) & (G == bg[1]) & (B == bg[2]) # # image = np.zeros((H, W)) # image[~cond] = 1 # # image = np.expand_dims(image, axis=2) # # return image
2.3125
2
tools/accuracy_checker/accuracy_checker/representation/segmentation_representation.py
zhoub/dldt
0
12777591
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from enum import Enum import numpy as np from .base_representation import BaseRepresentation from ..data_readers import BaseReader class GTMaskLoader(Enum): PILLOW = 0 OPENCV = 1 SCIPY = 2 NIFTI = 3 class SegmentationRepresentation(BaseRepresentation): pass class SegmentationAnnotation(SegmentationRepresentation): LOADERS = { GTMaskLoader.PILLOW: 'pillow_imread', GTMaskLoader.OPENCV: 'opencv_imread', GTMaskLoader.SCIPY: 'scipy_imread', GTMaskLoader.NIFTI: 'nifti_reader' } def __init__(self, identifier, path_to_mask, mask_loader=GTMaskLoader.PILLOW): """ Args: identifier: object identifier (e.g. image name). path_to_mask: path where segmentation mask should be loaded from. The path is relative to data source. mask_loader: back-end, used to load segmentation masks. """ super().__init__(identifier) self._mask_path = path_to_mask self._mask_loader = mask_loader self._mask = None @property def mask(self): return self._mask if self._mask is not None else self._load_mask() @mask.setter def mask(self, value): self._mask = value def _load_mask(self): if self._mask is None: loader = BaseReader.provide(self.LOADERS.get(self._mask_loader), self.metadata['data_source']) if self._mask_loader == GTMaskLoader.PILLOW: loader.convert_to_rgb = False mask = loader.read(self._mask_path) return mask.astype(np.uint8) return self._mask class SegmentationPrediction(SegmentationRepresentation): def __init__(self, identifiers, mask): """ Args: identifiers: object identifier (e.g. image name). mask: array with shape (n_classes, height, width) of probabilities at each location. """ super().__init__(identifiers) self.mask = mask class BrainTumorSegmentationAnnotation(SegmentationAnnotation): def __init__(self, identifier, path_to_mask): super().__init__(identifier, path_to_mask, GTMaskLoader.NIFTI) class BrainTumorSegmentationPrediction(SegmentationPrediction): pass
2.171875
2
Website/forms.py
Astatine404/spiritus
1
12777592
<filename>Website/forms.py<gh_stars>1-10 from django import forms from django.forms import ModelForm from .models import Music class MusicForm(forms.ModelForm): video = forms.FileField(label='Video file') class Meta: model = Music fields = {'video'}
2.125
2
noxfile.py
larryturner/diamondback
4
12777593
<reponame>larryturner/diamondback<gh_stars>1-10 """ **Description** Nox project management. **Example** :: nox --list nox --sessions clean dist docs image notebook push status tag tests **License** © 2020 - 2021 Schneider Electric Industries SAS. All rights reserved. **Author** <NAME>, Schneider Electric, Analytics & AI, 2020-10-12. """ import glob import nox import os import requests import shutil import time repository = os.getcwd( ).split( os.path.sep )[ -1 ] @nox.session( venv_backend = 'none' ) def clean( session ) -> None : """ Clean repository. """ for x in ( '.mypy_cache', '.nox', '.pytest_cache', 'build', 'dist', 'docs' ) : shutil.rmtree( x, ignore_errors = True ) for x in [ x for x in glob.glob( '**/', recursive = True ) if ( '__pycache__' in x ) ] : shutil.rmtree( x, ignore_errors = True ) @nox.session( venv_backend = 'none' ) def dist( session ) -> None : """ Build distribution. """ if ( os.path.exists( 'setup.py' ) ) : shutil.rmtree( 'dist', ignore_errors = True ) session.run( 'python', 'setup.py', 'sdist', 'bdist_wheel', 'build' ) if ( os.path.exists( 'service' ) ) : session.install( glob.glob( 'dist/*.whl' )[ 0 ] ) session.run( 'git', 'add', './dist/*' ) @nox.session( venv_backend = 'none' ) def docs( session ) -> None : """ Build documentation. """ if ( os.path.exists( 'sphinx' ) ) : dist( session ) shutil.rmtree( 'docs', ignore_errors = True ) os.makedirs( 'docs' ) session.run( 'sphinx-apidoc', '--force', '--output', './sphinx', '.', 'tests' ) session.run( 'sphinx-build', './sphinx', './docs' ) session.run( 'git', 'add', './docs/*' ) session.run( 'git', 'add', './sphinx/*' ) @nox.session( venv_backend = 'none' ) def image( session ) -> None : """ Build image. """ if ( os.path.exists( 'dockerfile' ) ) : dist( session ) try : session.run( 'az', 'acr', 'login', '--name', 'ecaregistry' ) except Exception : pass session.run( 'docker', 'build', '--tag', repository, '--build-arg', 'FEED_LOGIN', '--build-arg', 'FEED_PASSWORD', '.' ) @nox.session( venv_backend = 'none' ) def notebook( session ) -> None : """ Run jupyter notebook. """ if ( os.path.exists( 'jupyter' ) ) : os.chdir( 'jupyter' ) value = [ x for x in glob.glob( '*.ipynb', recursive = True ) ] if ( value ) : session.run( 'jupyter', 'notebook', value[ 0 ] ) @nox.session( venv_backend = 'none' ) def push( session ) -> None : """ Push repository. """ if ( os.path.exists( '.git' ) ) : package = repository.split( '-' ) package = package[ max( len( package ) - 2, 0 ) ] if ( os.path.exists( package ) ) : session.run( 'git', 'add', './' + package + '/*' ) if ( os.path.exists( 'service' ) ) : session.run( 'git', 'add', './service/*' ) if ( os.path.exists( 'tests' ) ) : session.run( 'git', 'add', './tests/*' ) status( session ) value = input( '[ ' + repository + ' ] message : ' ) if ( value ) : try : if ( session.run( 'git', 'commit', '--all', '--message', value ) ) : session.run( 'git', 'push', 'origin', 'master' ) except Exception : pass try : url = 'https://github.schneider-electric.com' requests.request( method = 'head', url = url, timeout = 2 ) value = input( '[ ' + repository + ' ] mirror : ' ) if ( value ) : session.run( 'git', 'push', '--mirror', url + '/' + value + '/' + repository + '.git' ) except Exception : pass @nox.session( venv_backend = 'none' ) def status( session ) -> None : """ Check status. """ if ( os.path.exists( '.git' ) ) : print( '[ ' + repository + ' ]' ) session.run( 'git', 'status', '--short' ) @nox.session( venv_backend = 'none' ) def tag( session ) -> None : """ Push tag. """ if ( os.path.exists( '.git' ) ) : session.run( 'git', 'tag', '--list' ) value = input( '[ ' + repository + ' ] annotate : ' ) if ( value ) : session.run( 'git', 'tag', '--annotate', value, '--force', '--message', '.' ) try : session.run( 'git', 'push', '--force', '--tags' ) except Exception : pass @nox.session( venv_backend = 'none' ) def tests( session ) -> None : """ Run tests. """ if ( os.path.exists( 'tests' ) ) : if ( os.listdir( 'tests' ) ) : if ( os.path.exists( 'docker-compose.yml' ) ) : try : session.run( 'az', 'acr', 'login', '--name', 'ecaregistry' ) except Exception : pass try : session.run( 'docker', 'compose', 'up', '--detach' ) time.sleep( 10.0 ) except Exception : pass try : session.run( 'pytest', '--capture=no', '--verbose' ) shutil.rmtree( '.pytest_cache', ignore_errors = True ) except Exception : pass if ( os.path.exists( 'docker-compose.yml' ) ) : try : session.run( 'docker', 'compose', 'down' ) except Exception : pass
1.96875
2
Others/[TCS CodeVita] - Perry the Platypus.py
yashbhatt99/HackerRank-Problems
10
12777594
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 01:52:02 2020 @author: Ravi """ def PerryThisIsForYouMyFriend(arr,n): index = [] prev = n*n-n+1 index.append(prev) counter = 1 for i in range(n-1): if counter < n//2+1 : prev = prev - 2*n + 1 index.append(prev) counter+=1 else: counter+=1 prev = prev + 2*n +1 index.append(prev) finalLi = [] for i in index: finalLi.append(arr[i-1]) encrypted_msg = '' for i in finalLi: encrypted_msg += chr(96+(i%26)) print(encrypted_msg) t = int(input()) for i in range(t): arr = list(map(int,input().split(" "))) PerryThisIsForYouMyFriend(arr[2:],arr[0])
3.0625
3
src/bkl/interpreter/__init__.py
johnwbyrd/brakefile
118
12777595
# # This file is part of Bakefile (http://bakefile.org) # # Copyright (C) 2008-2013 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # """ This module contains the very core of Bakefile -- the interpreter, :class:`bkl.interpreter.Interpreter`, and its supporting classes. """ import logging import bkl.parser import bkl.model import bkl.api import bkl.expr import passes from builder import Builder from bkl.error import Error, warning from bkl.parser import parse_file logger = logging.getLogger("bkl.interpreter") class Interpreter(object): """ The interpreter is responsible for doing everything necessary to "translate" input ``.bkl`` files into generated native makefiles. This includes building a project model from the input, checking it for correctness, optimizing it and creating outputs for all enabled toolsets. :class:`Interpreter` provides both high-level interface for single-call usage (see :meth:`process`) and other methods with finer granularity that allows you to inspect individual steps (most useful for the test suite). .. attribute:: model Model of the project, as :class:`bkl.model.Project`. It's state always reflects current state of processing. .. attribute:: toolsets_to_use Set of toolsets to generate for. This list may contain only a subset of toolsets the bakefile is written for and may even contain toolsets not specified in the bakefile. If :const:`None` (the default), then the toolsets listed in the bakefile are used. """ def __init__(self): self.model = bkl.model.Project() self.toolsets_to_use = None def limit_toolsets(self, toolsets): """Sets :attr:`toolsets_to_use`.""" self.toolsets_to_use = set(toolsets) def process(self, ast): """ Interprets input file and generates the outputs. :param ast: AST of the input file, as returned by :func:`bkl.parser.parse_file`. Processing is done in several phases: 1. Basic model is built (see :class:`bkl.interpreter.builder.Builder`). No optimizations or checks are performed at this point. 2. Several generic optimization and checking passes are run on the model. Among other things, types correctness and other constraints are checked, variables are substituted and evaluated. 3. The model is split into several copies, one per output toolset. 4. Further optimization passes are done. 5. Output files are generated. Step 1 is done by :meth:`add_module`. Steps 2-4 are done by :meth:`finalize` and step 5 is implemented in :meth:`generate`. """ self.add_module(ast, self.model) self.finalize() self.generate() def process_file(self, filename): """Like :meth:`process()`, but takes filename as its argument.""" self.process(parse_file(filename)) def add_module(self, ast, parent): """ Adds parsed AST to the model, without doing any optimizations. May be called more than once, with different parsed files. :param ast: AST of the input file, as returned by :func:`bkl.parser.parse_file`. """ logger.info("processing %s", ast.filename) submodules = [] b = Builder(on_submodule=lambda fn, pos: submodules.append((fn,pos))) module = b.create_model(ast, parent) while submodules: sub_filename, sub_pos = submodules[0] submodules.pop(0) try: sub_ast = parse_file(sub_filename) except IOError as e: if e.filename: msg = "%s: %s" % (e.strerror, e.filename) else: msg = e.strerror raise Error(msg, pos=sub_pos) self.add_module(sub_ast, module) def _call_custom_steps(self, model, func): for step in bkl.api.CustomStep.all(): logger.debug("invoking custom step %s.%s()", step.name, func) getattr(step, func)(model) def finalize(self): """ Finalizes the model, i.e. checks it for validity, optimizes, creates per-toolset models etc. """ logger.debug("finalizing the model") # call any custom steps first: self._call_custom_steps(self.model, "finalize") # then apply standard processing: passes.detect_potential_problems(self.model) passes.normalize_and_validate_bool_subexpressions(self.model) passes.normalize_vars(self.model) passes.validate_vars(self.model) passes.normalize_paths_in_model(self.model, toolset=None) passes.simplify_exprs(self.model) def finalize_for_toolset(self, toolset_model, toolset): """ Finalizes after "toolset" variable was set. """ passes.remove_disabled_model_parts(toolset_model, toolset) # TODO: do this in finalize() instead passes.make_variables_for_missing_props(toolset_model, toolset) passes.eliminate_superfluous_conditionals(toolset_model) # This is done second time here (in addition to finalize()) to deal # with paths added by make_variables_for_missing_props() and paths with # @builddir (which is toolset specific and couldn't be resolved # earlier). Ideally we wouldn't do it, but hopefully it's not all that # inefficient, as no real work is done for paths that are already # normalized: passes.normalize_paths_in_model(toolset_model, toolset) def make_toolset_specific_model(self, toolset, skip_making_copy=False): """ Returns toolset-specific model, i.e. one that works only with *toolset*, has the ``toolset`` property set to it. The caller still needs to call finalize_for_toolset() on it. """ if skip_making_copy: model = self.model else: model = self.model.clone() # don't use Variable.from_property(), because it's read-only model.add_variable(bkl.model.Variable.from_property( model.get_prop("toolset"), bkl.expr.LiteralExpr(toolset))) return model def generate(self): """ Generates output files. """ # collect all requested toolsets: toolsets = set() for module in self.model.modules: module_toolsets = module.get_variable("toolsets") if module_toolsets: toolsets.update(module_toolsets.value.as_py()) if self.toolsets_to_use: for t in self.toolsets_to_use: if t not in toolsets: try: bkl.api.Toolset.get(t) except KeyError: raise Error("unknown toolset \"%s\" given on command line" % t) warning("toolset \"%s\" is not supported by the project, there may be issues", t) # Add the forced toolset to all submodules: for module in self.model.modules: module_toolsets = module.get_variable("toolsets") if module_toolsets: module_toolsets.value.items.append(bkl.expr.LiteralExpr(t)) toolsets = self.toolsets_to_use toolsets = list(toolsets) logger.debug("toolsets to generate for: %s", toolsets) if not toolsets: raise Error("nothing to generate, \"toolsets\" property is empty") # call any custom steps first: self._call_custom_steps(self.model, "generate") # and generate the outputs (notice that we can avoid making a # (expensive!) deepcopy of the model for one of the toolsets and can # reuse the current model): for toolset in toolsets[:-1]: self.generate_for_toolset(toolset) self.generate_for_toolset(toolsets[-1], skip_making_copy=True) def generate_for_toolset(self, toolset, skip_making_copy=False): """ Generates output for given *toolset*. """ logger.debug("****** preparing model for toolset %s ******", toolset) model = self.make_toolset_specific_model(toolset, skip_making_copy) self.finalize_for_toolset(model, toolset) logger.debug("****** generating for toolset %s ********", toolset) bkl.api.Toolset.get(toolset).generate(model)
1.757813
2
connections/rs232Connection.py
IKKUengine/EtaNetPythonClients
2
12777596
import time import threading import serial import parameter class Rs232Connection(threading.Thread): exit = True stop = True try: __ser = serial.Serial( port='/dev/ttyS0', # Open RPI buit-in serial port baudrate=9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1 ) except: print ("RS232-Port could not be opened!") def __init__(self): threading.Thread.__init__(self) if parameter.printMessages: print("init rs232") threading.Thread.start(self) def run(self): #self.lock.acquire() while self.exit:#threat wird erst beendet wenn aus while schleife herausgeganen wird if self.stop: self.request() time.sleep(parameter.timeTriggerPowerAnalayser) #self.lock.release() def request(self): pass def getSerialPort(self): return self.__ser def setStop(self): self.stop = False def setStart(self): self.stop = True def setExit(self): self.exit = False self.__ser.close def __exit__(self): pass
2.859375
3
setup.py
dcramer/jinja1-djangosupport
2
12777597
<filename>setup.py # -*- coding: utf-8 -*- """ jinja ~~~~~ Jinja is a `sandboxed`_ template engine written in pure Python. It provides a `Django`_ like non-XML syntax and compiles templates into executable python code. It's basically a combination of Django templates and python code. Nutshell -------- Here a small example of a Jinja template:: {% extends 'base.html' %} {% block title %}Memberlist{% endblock %} {% block content %} <ul> {% for user in users %} <li><a href="{{ user.url|e }}">{{ user.username|e }}</a></li> {% endfor %} </ul> {% endblock %} Philosophy ---------- Application logic is for the controller but don't try to make the life for the template designer too hard by giving him too few functionality. For more informations visit the new `jinja webpage`_ and `documentation`_. Note ---- This is the Jinja 1.0 release which is completely incompatible with the old "pre 1.0" branch. The old branch will still receive security updates and bugfixes but the 1.0 branch will be the only version that receives support. If you have an application that uses Jinja 0.9 and won't be updated in the near future the best idea is to ship a Jinja 0.9 checkout together with the application. The `Jinja tip`_ is installable via `easy_install` with ``easy_install Jinja==dev``. .. _sandboxed: http://en.wikipedia.org/wiki/Sandbox_(computer_security) .. _Django: http://www.djangoproject.com/ .. _jinja webpage: http://jinja.pocoo.org/ .. _documentation: http://jinja.pocoo.org/documentation/index.html .. _Jinja tip: http://dev.pocoo.org/hg/jinja-main/archive/tip.tar.gz#egg=Jinja-dev """ import os import sys import ez_setup ez_setup.use_setuptools() from distutils.command.build_ext import build_ext from distutils.errors import CCompilerError, DistutilsError from setuptools import setup, Extension, Feature def list_files(path): for fn in os.listdir(path): if fn.startswith('.'): continue fn = os.path.join(path, fn) if os.path.isfile(fn): yield fn class optional_build_ext(build_ext): def run(self): try: build_ext.run(self) except DistutilsError, e: self.compiler = None self._setup_error = e def build_extension(self, ext): try: if self.compiler is None: raise self._setup_error build_ext.build_extension(self, ext) except CCompilerError, e: print '=' * 79 print 'INFORMATION' print ' the speedup extension could not be compiled, Jinja will' print ' fall back to the native python classes.' print '=' * 79 except: e = sys.exc_info()[1] print '=' * 79 print 'WARNING' print ' could not compile optional speedup extension. This is' print ' is not a real problem because Jinja provides a native' print ' implementation of those classes but for best performance' print ' you could try to reinstall Jinja after fixing this' print ' problem: %s' % e print '=' * 79 setup( name='Jinja', version='1.33373907', url='http://jinja.pocoo.org/', license='BSD', author='<NAME>', author_email='<EMAIL>', description='A small but fast and easy to use stand-alone template ' 'engine written in pure python.', long_description = __doc__, # jinja is egg safe. But because we distribute the documentation # in form of html and txt files it's a better idea to extract the files zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Text Processing :: Markup :: HTML' ], keywords=['python.templating.engines'], packages=['jinja', 'jinja.translators', 'jinja.contrib'], data_files=[ ('docs/html', list(list_files('docs/html'))), ('docs/txt', list(list_files('docs/src'))) ], entry_points=''' [python.templating.engines] jinja = jinja.plugin:BuffetPlugin ''', extras_require={'plugin': ['setuptools>=0.6a2']}, features={ 'speedups': Feature( 'optional C-speed enhancements', standard=True, ext_modules=[ Extension('jinja._speedups', ['jinja/_speedups.c']) ] ), 'extended-debugger': Feature( 'extended debugger', standard=True, ext_modules=[ Extension('jinja._debugger', ['jinja/_debugger.c']) ] ) }, cmdclass={'build_ext': optional_build_ext} )
2.328125
2
examples/get_fact_simulations.py
mbrner/funfolding
1
12777598
<filename>examples/get_fact_simulations.py<gh_stars>1-10 import os import requests URL = 'http://www.blog.pythonlibrary.org/wp-content/uploads/2012/06/wxDbViewer.zip' script_dir = os.path.dirname(os.path.abspath(__file__)) def download(url=URL): path = os.path.join(script_dir, "fact_simulations.hdf") r = requests.get(url) with open(path, "wb") as f: f.write(r.content)
2.828125
3
app/core/views.py
ariksidney/Webleaf
5
12777599
from flask import render_template, session, redirect, url_for from flask_login import login_required from . import core @core.route('/', methods=['GET', 'POST']) @login_required def index(): return redirect(url_for('aurora.aurora_overview')) @core.route('/offline.html') def offline(): return core.send_static_file('offline.html') @core.route('/service-worker.js') def sw(): return core.send_static_file('service-worker.js')
2.15625
2
16/16b.py
jamOne-/adventofcode2018
0
12777600
<filename>16/16b.py import re import sys OPERATIONS = { 'addr': lambda a, b, c, registers: registers[a] + registers[b], 'addi': lambda a, b, c, registers: registers[a] + b, 'mulr': lambda a, b, c, registers: registers[a] * registers[b], 'muli': lambda a, b, c, registers: registers[a] * b, 'banr': lambda a, b, c, registers: registers[a] & registers[b], 'bani': lambda a, b, c, registers: registers[a] & b, 'borr': lambda a, b, c, registers: registers[a] | registers[b], 'bori': lambda a, b, c, registers: registers[a] | b, 'setr': lambda a, b, c, registers: registers[a], 'seti': lambda a, b, c, registers: a, 'grir': lambda a, b, c, registers: 1 if a > registers[b] else 0, 'gtri': lambda a, b, c, registers: 1 if registers[a] > b else 0, 'gtrr': lambda a, b, c, registers: 1 if registers[a] > registers[b] else 0, 'eqir': lambda a, b, c, registers: 1 if a == registers[b] else 0, 'eqri': lambda a, b, c, registers: 1 if registers[a] == b else 0, 'eqrr': lambda a, b, c, registers: 1 if registers[a] == registers[b] else 0 } def find_numbers(line): return list(map(int, re.findall('\d+', line))) def perform_operation(operation, instruction, registers): op_code, a, b, c = instruction registers[c] = operation(a, b, c, registers) def matching_operations(before, instruction, after): matching = [] for key, operation in OPERATIONS.items(): registers = list(before) perform_operation(operation, instruction, registers) if registers == after: matching.append(key) return matching def reduce_codes(codes): calculated_codes = dict() while len(calculated_codes) < 16: for code, ops in codes.items(): rest = ops.difference(set(calculated_codes.values())) if len(rest) == 1: op = list(rest)[0] calculated_codes[code] = op return calculated_codes def solve(puzzle_input): lines = list(puzzle_input) line_i = 0 codes = { code: set(OPERATIONS.keys()) for code in range(16) } while lines[line_i].startswith('Before'): before = find_numbers(lines[line_i]) instruction = find_numbers(lines[line_i + 1]) after = find_numbers(lines[line_i + 2]) line_i += 4 matching_keys = matching_operations(before, instruction, after) codes[instruction[0]].intersection_update(set(matching_keys)) codes = reduce_codes(codes) line_i += 2 registers = [0, 0, 0, 0] while line_i < len(lines): instruction = find_numbers(lines[line_i]) op_code = instruction[0] perform_operation(OPERATIONS[codes[op_code]], instruction, registers) line_i += 1 return registers[0] print(solve(sys.stdin))
3.3125
3
captcha_predict.py
junryan/pytorch-captcha-recognition
0
12777601
# -*- coding: UTF-8 -*- import numpy as np import pandas as pd import torch import time from torch.autograd import Variable import captcha_setting import my_dataset from captcha_cnn_model import CNN def main(): print('开始对图片进行预测') cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load('model.pkl')) print("加载神经网络训练的模型.") result = [] predict_dataloader = my_dataset.get_predict_data_loader() for i, (image_name, images, labels) in enumerate(predict_dataloader): start = time.time() image = images vimage = Variable(image) predict_label = cnn(vimage) c0 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 0:captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c1 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, captcha_setting.ALL_CHAR_SET_LEN:2 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c2 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 2 * captcha_setting.ALL_CHAR_SET_LEN:3 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] c3 = captcha_setting.ALL_CHAR_SET[np.argmax( predict_label[0, 3 * captcha_setting.ALL_CHAR_SET_LEN:4 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())] res = '%s%s%s%s' % (c0, c1, c2, c3) cost = '%.2f ms' % ((time.time() - start) * 1000) result.append([image_name[0],res, cost]) print('经过训练后的神经网络预测图片的结果为:') data = np.hstack([result]) res = pd.DataFrame(data, columns=['图片名称', '预测结果', '耗费时间']) print(res) if __name__ == '__main__': main()
2.8125
3
example/issues/449_django_lazy_path/pulpsettings.py
sephiartlist/dynaconf
2,293
12777602
REST_FRAMEWORK__DEFAULT_AUTHENTICATION_CLASSES = ( "rest_framework.authentication.SessionAuthentication", "pulpcore.app.authentication.PulpRemoteUserAuthentication", "foo_bar1", )
1.070313
1
dianhua/worker/crawler/china_mobile/heilongjiang/main.py
Svolcano/python_exercise
6
12777603
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- import base64 import json import random import re import sys import time import traceback import datetime import hashlib import urllib from dateutil.parser import * from dateutil.relativedelta import relativedelta from pwd_change import des_encode, pw_query reload(sys) sys.setdefaultencoding("utf8") if __name__ == '__main__': sys.path.append('../..') sys.path.append('../../..') sys.path.append('../../../..') from crawler.base_crawler import BaseCrawler else: from worker.crawler.base_crawler import BaseCrawler class Crawler(BaseCrawler): def __init__(self, **kwargs): super(Crawler, self).__init__(**kwargs) def need_parameters(self, **kwargs): return ['pin_pwd'] def get_login_verify_type(self, **kwargs): return '' def send_login_verify_request(self, **kwargs): # get cookies url = "http://hl.10086.cn/apps/login/unifylogin.html" code, key, resp = self.get(url) if code != 0: return code, key, '' # check tel url = "http://hl.10086.cn/rest/common/validate/validateHLPhone/?phone_no={}".format(kwargs['tel']) headers = { "X-Requested-With": "XMLHttpRequest", "Content-Type": "application/json; charset=utf-8", "Referer": "http://hl.10086.cn/apps/login/unifylogin.html" } code, key, resp = self.get(url, headers=headers) if code != 0: return code, key, '' if u"校验成功" not in resp.text: self.log("user", u"手机号码校验失败", resp) return 1, "invalid_tel", "" st_captcha_time = time.time() for i in range(1,6): capture_url = 'http://hl.10086.cn/rest/authImg?type=0&rand=' + str(random.random()) headers = { "Accept": "image/webp,image/apng,image/*,*/*;q=0.8", "Referer": "http://hl.10086.cn/apps/login/unifylogin.html" } code, key, resp = self.get(capture_url, headers=headers) if code != 0: continue # 云打码 codetype = 3004 key, result, cid = self._dama(resp.content, codetype) self.cid = cid if key == "success" and result != "": captcha_code = str(result) else: self.log("website", "website_busy_error: 云打码失败{}".format(result), '') code, key = 9, "auto_captcha_code_error" continue # 验证图片 url = "http://hl.10086.cn/rest/common/vali/valiImage?imgCode={}&_={}".format(captcha_code, int(time.time()*1000)) headers = { "X-Requested-With": "XMLHttpRequest", "Referer": "http://hl.10086.cn/apps/login/unifylogin.html" } code, key, resp = self.get(url, headers=headers) if code != 0: continue try: result = resp.json() retCode = result.get("retCode") if retCode not in ["000000", "0"]: self._dama_report(self.cid) end_captcha_time = time.time() - st_captcha_time self.log("crawler", "验证图片第 {} 次,{} 错误 用时:'{}'s cid:'{}'".format(i,captcha_code,end_captcha_time,self.cid), resp) code, key = 9, "auto_captcha_code_error" continue return 0, "success", captcha_code except: error = traceback.format_exc() self.log("crawler", "解析结果错误{}".format(error), "") continue else: return code, key, "" def get_info(self, serviceName, channelId="12034"): tim = str(time.time()) l_tim, r_tim = tim.split('.') r_tim = r_tim.ljust(3, '0') dd = l_tim + r_tim[:4] en_str = base64.b64encode(hashlib.md5(dd + 'CM_201606').hexdigest()) ymd_hms_m = time.strftime("%Y%m%d%H%M%S", time.localtime(int(l_tim))) + r_tim[:4] ran = str(random.randint(100, 999)) + str(random.randint(100, 999)) info = """{"serviceName":"%s","header":{"version":"1.0","timestamp":%s,"digest":"%s","conversationId":"%s"},"data":{"channelId":"%s"}}""" % ( serviceName, dd, en_str, ymd_hms_m + ran, channelId) return urllib.quote(info) def login(self, **kwargs): code, key, captcha_code = self.send_login_verify_request(tel=kwargs['tel']) if code != 0: return code, key url = "http://hl.10086.cn/rest/login/sso/doUnifyLogin/" headers = { "X-Requested-With": "XMLHttpRequest", "Content-Type": "application/json; charset=UTF-8", "Referer": "http://hl.10086.cn/apps/login/unifylogin.html" } # key_url = 'http://hl.10086.cn/rest/rsa/new-key?_={}'.format(str(time.time()).replace('.', '')) key_url = 'http://hl.10086.cn/rest/rsa/aes-key?_={}'.format(str(time.time()).replace('.', '')) code, key, resp = self.get(key_url) if code != 0: return code, key try: json_data = resp.json() exponent = json_data['data']['exponent'] modulus = json_data['data']['modulus'] pass_word = <PASSWORD>(kwargs['pin_pwd'], modulus=modulus, exponent=exponent) except: error = traceback.format_exc() self.log("crawler", "加密密码失败{}".format(error), resp) return 9, "crawl_error" data = { "userName": kwargs['tel'], "passWord": <PASSWORD>, "pwdType": "01", "clientIP": captcha_code } code, key, resp = self.post(url, headers=headers, data=json.dumps(data)) if code != 0: return code, key try: js = resp.json() code = js.get('retCode') msg = js.get('retMsg') if code == '2036' or code == "400000" or code == "9006": # 400000 输入的请求不合法 # 9006 认证请求报文格式错误 self.log("user", "账户密码不匹配", resp) return 9, "pin_pwd_error" elif code == '2046': self.log("user", "账户被锁定", resp) return 9, "account_locked" # "retCode":"800000","retMsg":"统一认证中心返回信息为null" elif code == '8014' or code == '800000' or code == "9008" or code == "5001" or code =='100000': # 9008 签名验证错误 不知道具体的原因是什么 # 5001 ,100000 系统繁忙,请您稍后再试 self.log("website", "系统繁忙", resp) return 9, "website_busy_error" elif code == "4005": self.log("user", "invalid_tel", resp) return 9, "invalid_tel" elif code == "000001": #前一步已经进行图片验证,不排除官网异常 self.log("crawler", "运营商提示:{}".format(msg), resp) self._dama_report(self.cid) return 2, "verify_error" elif code != "000000": self.log("crawler", "未知原因错误", resp) return 9, "unknown_error" artifact = js.get('data') except: error = traceback.format_exc() self.log("crawler", "获取artifact信息失败{}".format(error), resp) return 9, "crawl_error" url = "http://hl.10086.cn/rest/login/unified/callBack/" params = { "artifact": artifact, "backUrl": "" # 这个就是空的 } headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Referer": "http://hl.10086.cn/apps/login/unifylogin.html" } code, key, resp = self.get(url, headers=headers, params=params) if code != 0: return code, key if u"账号当前可用余额" not in resp.text: if u"没有访问权限,您尚未登录" in resp.text: self.log("website", "官网偶发异常", resp) return 9, "website_busy_error" self.log("crawler", "未知原因导致异常", resp) return 9, "unknown_error" # 再次登录 url = "https://login.10086.cn/SSOCheck.action" params = { "channelID": "12034", "backUrl": "http://hl.10086.cn/apps/login/my.html" } headers= { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Referer": "http://hl.10086.cn/apps/login/my.html" } code, key, resp_login = self.get(url, headers=headers, params=params) if code != 0: return code, key url = "http://www1.10086.cn/web-Center/authCenter/assertionQuery.do" headers = { "Origin": "http://hl.10086.cn", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html" } data = "requestJson=" + self.get_info("if008_query_user_assertion") code, key, resp_test = self.post(url, headers=headers, data=data) if code != 0: return code, key url = "http://www1.10086.cn/web-Center/authCenter/assertionQuery.do" data = "requestJson=" + self.get_info("if008_query_user_assertion") headers = { "Accept": "*/*", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html" } code, key, resp = self.post(url, headers=headers, data=data) if code != 0: return code, key if u"用户已登录" in resp.text: return 0, "success" elif u'8101' in resp.text or u'Artifact无效' in resp.text or u'无效的artifact' in resp.text or u'9999' in resp.text \ or '"response_code":"0000"' in resp.text: self.log('website', 'website_busy_error', resp) self.log('website', '为什么会出现这种情况?', resp_login) self.log('website', '为什么会出现这种情况????', resp_test) return 9, 'website_busy_error' elif '"response_code":"-100"' in resp.text or u"连接超时" in resp.text: # "response_code":"-100" 连接超时 self.log("crawler", u"连接超时", resp) return 9, 'website_busy_error' else: self.log("crawler", u"未知异常", resp) return 9, "unknown_error" def get_verify_type(self, **kwargs): return 'SMS' def send_verify_request(self, **kwargs): today = datetime.datetime.now() year_month = "{}{:0>2}".format(today.year, today.month) url = "http://hl.10086.cn/rest/qry/billdetailquery/s1526_1" params = { "select_type": "72", "cxfs": "1", "timeStr1": "", "timeStr2": "", "time_string": year_month, "_": "{}".format(int(time.time())) } headers = { "X-Requested-With": "XMLHttpRequest", "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html" } code, key, resp = self.get(url, headers=headers, params=params) if code != 0: return code, key, "" url = "http://hl.10086.cn/rest/sms/sendSmsMsg" headers = { "X-Requested-With": "XMLHttpRequest", "Content-Type": "application/json; charset=UTF-8", "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html" } data = { "func_code": "000004", "sms_type": "2", "phone_no": kwargs['tel'], "sms_params": "" } code, key, resp = self.post(url, headers=headers, data=json.dumps(data)) if code != 0: return code, key, "" if u"发送成功" in resp.text: return 0, "success", '' elif u'尊敬的用户,请勿在1分钟内重复下发短信' in resp.text: self.log("user", 'send_sms_too_quick_error', resp) return 9, 'send_sms_too_quick_error', '' elif u'短信下发失败,手机号码为空' in resp.text or '100001' in resp.text: self.log("user", 'invalid_tel', resp) return 9, 'invalid_tel', '' else: self.log("crawler", 'request_error', resp) return 9, 'request_error', '' def verify(self, **kwargs): url = "http://hl.10086.cn/rest/sms/checkSmsCode" headers = { "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html", "X-Requested-With": "XMLHttpRequest" } params = { 'func_code': '000004', 'sms_type': '2', 'phone_no': '', 'sms_code': kwargs['sms_code'], '_': "{}".format(int(time.time())) } code, key, resp = self.get(url, headers=headers, params=params) if code != 0: return code, key if u"输入正确" in resp.text: return 0, "success" elif u"输入错误" in resp.text: self.log("user", u"验证码输入错误", resp) return 9, "verify_error" elif u"获取短信验证码" in resp.text: self.log("crawler", u"尊敬的用户,请您获取短信验证码", resp) return 9, "website_busy_error" else: self.log("crawler", u"未知异常", resp) return 9, "unknown_error" def crawl_call_log(self, **kwargs): call_logs, miss_list, pos_miss_list = [], [], [] error_num = 0 # def getPscToken(): # getPscToken_url = "http://hl.10086.cn/rest/session/getPscToken/?_={}".format(int(time.time())) # headers = { # "X-Requested-With": "XMLHttpRequest", # "Content-Type": "application/json; charset=utf-8", # "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html" # } # code, key, resp = self.get(getPscToken_url, headers=headers) # if code != 0: # return False, key, resp # try: # res_json = json.loads(resp.text) # except: # error = traceback.format_exc() # self.log("crawler", error, resp) # return False, error, resp # if "000000" == res_json['retCode']: # return True, res_json['data'], resp # return True, "成功", resp aes_key_url = 'http://hl.10086.cn/rest/rsa/aes-key?_={}'.format(str(time.time()).replace("."," ")) code,key,resp = self.get(aes_key_url) if code!= 0: return code ,key try: resp_json = resp.json() exponent = resp_json['data']['exponent'] modulus = resp_json['data']['modulus'] xuser_word = des_encode(kwargs['pin_pwd'],modulus=modulus,exponent=exponent) except: error = traceback.format_exc() self.log("crawler","加密密码2失败{}".format(error),resp) return 9 ,"crawl_error" message, response = "", "" month_retry_list = [(x, self.max_retry) for x in self.monthly_period(6, strf='%Y%m')] # for month in self.monthly_period(6, strf='%Y%m'): full_time = 60.0 retrys_limit = 4 st_time = time.time() time_fee = 0 rand_time = random.randint(20, 40)/ 10.0 log_for_retrys = [] while month_retry_list: month, retrys = month_retry_list.pop(0) retrys -= 1 if retrys < -retrys_limit: self.log("crawler", "重试次数完毕", "") miss_list.append(month) continue log_for_retrys.append((month, retrys, time_fee)) # result, pscToken, r = getPscToken() # if not result: # if retrys >= 0: # time_fee += time.time() - st_time # month_retry_list.append((month, retrys)) # elif time_fee < full_time: # time.sleep(rand_time) # time_fee += time.time() - st_time # month_retry_list.append((month, retrys)) # else: # self.log("crawler", u"获取信息错误", r) # miss_list.append(month) # continue # xuser_word = pw_query(kwargs['pin_pwd'], pscToken).encode('utf8') re_url = "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query-attr.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Referer": "http://hl.10086.cn/apps/qry/bill-detail-query/bill-detail-query.html" } params = { "select_type": "72", "time_string": month, "feny_flag": "N", # "xuser_word": kwargs['pin_pwd'], "xuser_word": xuser_word, "recordPass":"", "{}".format(random.random()): "" } code, key, resp = self.get(re_url, headers=headers, params=params) if code != 0: if retrys >= 0: time_fee = time.time() - st_time month_retry_list.append((month, retrys)) elif time_fee < full_time: time.sleep(rand_time) time_fee = time.time() - st_time month_retry_list.append((month, retrys)) else: self.log("crawler", u"获取前置url失败{}".format(key), resp) miss_list.append(month) continue url = "http://hl.10086.cn/rest/qry/billdetailquery/channelQuery" params = { "select_type": "72", "time_string": month, "xuser_word": xuser_word, "recordPass":"", "_": "{}".format(int(time.time())) } headers = { "Accept": "application/json, text/javascript, */*; q=0.01", "X-Requested-With": "XMLHttpRequest", "Referer": re_url } code, key, resp = self.get(url, headers=headers, params=params) if code != 0: if retrys >= 0: time_fee = time.time() - st_time month_retry_list.append((month, retrys)) elif time_fee < full_time: time.sleep(rand_time) time_fee = time.time() - st_time month_retry_list.append((month, retrys)) else: self.log("crawler", u"获取详单失败{}".format(key), resp) miss_list.append(month) continue code, key, msg, result = self.call_log_get(resp.text, month) if code == 0: if result: call_logs.extend(result) else: if retrys >= 0: time_fee = time.time() - st_time month_retry_list.append((month, retrys)) elif time_fee < full_time: time.sleep(rand_time) time_fee = time.time() - st_time month_retry_list.append((month, retrys)) else: self.log("crawler", u"详单或许缺失", resp) pos_miss_list.append(month) continue else: message, response = key, resp if retrys >= 0: time_fee = time.time() - st_time month_retry_list.append((month, retrys)) elif time_fee < full_time: time.sleep(rand_time) time_fee = time.time() - st_time month_retry_list.append((month, retrys)) else: self.log("crawler", u"获取详单失败{}".format(key), resp) miss_list.append(month) if message == "html_error": self.log("crawler", message, response) error_num += 1 self.log("crawler", "重试记录{}".format(log_for_retrys), "") self.log("crawler", "缺失: {}, 可能缺失: {}, 部分缺失: {}".format(miss_list, pos_miss_list, []), "") if len(pos_miss_list) + len(miss_list) == 6: if error_num > 0: return 9, "crawl_error", [], [], [] else: return 9, "website_busy_error", [], [], [] return 0, "success", call_logs, miss_list, pos_miss_list def call_log_get(self, text_resp, month): call_log = [] if "errCode:10111109814220003" in text_resp: self.log("user", "不允许查询开户前的详单", "") return 0, "success", "", [] try: js = json.loads(text_resp) if "java.lang.NullPointerException" in text_resp: return 9, "website_busy_error", "", [] text_list = js.get("data").get("detailList")[0].get("DETAIL_LINES") for text in text_list: single_call_log = {} info_list = text if len(info_list) < 4: continue # '2017/11/01 03:39:48', '北京', '主叫', '10086', '1分58秒', '国内异地主叫', '标准资费', '0.00', '2G网络', '' # 0 1 2 3 4 5 6 7 8 9 single_call_log['call_tel'] = info_list[3] single_call_log['call_cost'] = info_list[7] call_time = info_list[0] result, call_time = self.time_stamp(call_time) if not result: self.log("crawler", "转换时间失败{}{}".format(call_time, text_resp), "") return 9, 'html_error', 'html_error when transform call_time to time_stamp : %s' % call_time, [] single_call_log['call_time'] = call_time single_call_log['month'] = month single_call_log['call_method'] = info_list[2] single_call_log['call_type'] = info_list[5] raw_call_from = info_list[1] call_from, error = self.formatarea(raw_call_from) if not call_from: call_from = raw_call_from single_call_log['call_from'] = call_from single_call_log['call_to'] = '' single_call_log['call_duration'] = self.time_format(info_list[4]) call_log.append(single_call_log) except: error = traceback.format_exc() return 9, 'html_error', 'html_error when parse call log : %s' % error, [] return 0, 'success', '成功', call_log def time_format(self, time_str, **kwargs): exec_type = 1 time_str = time_str.encode('utf-8') if 'exec_type' in kwargs: exec_type = kwargs['exec_type'] if (exec_type == 1): xx = re.match(r'(.*时)?(.*分)?(.*秒)?', time_str) h, m, s = 0, 0, 0 if xx.group(1): hh = re.findall('\d+', xx.group(1))[0] h = int(hh) if xx.group(2): mm = re.findall('\d+', xx.group(2))[0] m = int(mm) if xx.group(3): ss = re.findall('\d+', xx.group(3))[0] s = int(ss) real_time = h * 60 * 60 + m * 60 + s if (exec_type == 2): xx = re.findall(r'\d*', time_str) h, m, s = map(int, xx[::2]) real_time = h * 60 * 60 + m * 60 + s return str(real_time) def time_stamp(self, time_str): try: timeArray = time.strptime(time_str, "%Y/%m/%d %H:%M:%S") timeStamp = int(time.mktime(timeArray)) return True, str(timeStamp) except: error = traceback.format_exc() return False, error def crawl_info(self, **kwargs): tel_info = {} url = "http://www1.10086.cn/web-Center/interfaceService/custInfoQry.do" headers = { "Accept": "*/*", "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8" } data = "requestJson=" + self.get_info("if007_query_user_info", "0001") code, key, resp = self.post(url, headers=headers, data=data) if code != 0: return code, key, {} try: js = resp.json() code = js.get("result").get("response_code") if code == "0000": info = js.get("result").get("data").get("userInfo") tel_info['address'] = info.get("userAddr") # 20170207143512 open_date_str = info.get("userBegin") open_date = self.time_stamp(open_date_str[:4]+'/'+open_date_str[4:6]+'/'+open_date_str[6:8]+' '+open_date_str[8:10]+":"+open_date_str[10:12]+":"+open_date_str[12:]) if open_date[0]: tel_info['open_date'] = open_date[1] else: tel_info['open_date'] = "" tel_info['id_card'] = '' tel_info['full_name'] = info.get("userName") else: self.log("crawler", "未知原因导致获取个人信息失败", resp) return 9, "html_error", {} except: error = traceback.format_exc() self.log("crawler", u"解析用户信息失败{}".format(error), resp) return 9, "html_error", {} return 0, "success", tel_info def crawl_phone_bill(self, **kwargs): miss_list = [] data_list = [] error_num = 0 message = "" for month in list(self.monthly_period())[1:]: for i in range(self.max_retry): url = "http://hl.10086.cn/rest/qry/billquery/qryBillHome?user_seq=000003&yearMonth={}&_={}".format(month, int(time.time())) code, key, resp = self.get(url) if code != 0: message = "network_error" continue try: js = resp.json() dd = js.get("data").get("ROOT").get("BODY").get("OUT_DATA").get("PCAS_03") data = {} data['bill_month'] = month data['bill_amount'] = str(float(dd.get("PCAS_03_12").get("REAL_FEE", "0.0"))/100) data['bill_package'] = str(float(dd.get("PCAS_03_01").get("REAL_FEE", "0.0"))/100) data['bill_ext_calls'] = str(float(dd.get("PCAS_03_02").get("REAL_FEE", "0.0"))/100) data['bill_ext_data'] = str(float(dd.get("PCAS_03_04").get("REAL_FEE", "0.0"))/100) data['bill_ext_sms'] = str(float(dd.get("PCAS_03_05").get("REAL_FEE", "0.0"))/100) data['bill_zengzhifei'] = str(float(dd.get("PCAS_03_06").get("REAL_FEE", "0.0"))/100) data['bill_daishoufei'] = str(float(dd.get("PCAS_03_09").get("REAL_FEE", "0.0"))/100) data['bill_qita'] = str(float(dd.get("PCAS_03_10").get("REAL_FEE", "0.0"))/100) data_list.append(data) break except: error = traceback.format_exc() message = u"解析账单数据失败{}".format(error) continue else: if message != "network_error": error_num += 1 miss_list.append(month) if len(miss_list) == 5: if error_num > 0: return 9, "crawl_error", [], [] else: return 9, "website_busy_error", [], [] return 0, "success", data_list, miss_list def monthly_period(self, length=6, strf='%Y%m'): current_time = datetime.datetime.now() monthly_period_list = [] for month_offset in range(0, length): monthly_period_list.append((current_time - relativedelta(months=month_offset)).strftime(strf)) return monthly_period_list if __name__ == "__main__": c = Crawler() USER_ID = "13846194712" USER_PASSWORD = "<PASSWORD>" c.self_test(tel=USER_ID, pin_pwd=<PASSWORD>_PASSWORD)
2.328125
2
job_server/src/job_server/app.py
jessicalucci/EB-Worker-RDS-VPC
3
12777604
import os import yaml import tornado.ioloop import tornado.gen import tornado.web from job_server.context import JobServerContext from job_server.routes import PostJobHandler, RunJobHandler from job_server.db import init_db def job_server(context): return tornado.web.Application([ (r'/job/run', RunJobHandler, dict( context=context )), (r'/job/post/([A-z]+)', PostJobHandler, dict( context=context )) ]) if __name__ == "__main__": context = JobServerContext(yaml.load(file(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'config.yaml'), 'r'))) init_db(context) app = job_server(context) app.listen(8080) tornado.ioloop.IOLoop.current().start()
2.171875
2
tests/test_util.py
mongodb-labs/mongo-web-shell
22
12777605
<gh_stars>10-100 # Copyright 2013 10gen Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import StringIO from bson.json_util import dumps import mock from werkzeug.exceptions import NotFound, InternalServerError from webapps.lib.db import get_db from webapps.lib.util import UseResId, get_collection_names from webapps.lib import CLIENTS_COLLECTION from webapps.lib.MWSServerError import MWSServerError from tests import MongoWSTestCase class UseResIdTestCase(MongoWSTestCase): def test_mangles_collection_names_automatically(self): with self.real_app.app_context(): with UseResId('myresid.') as db: coll = db.foo self.assertEqual(coll.name, 'myresid.foo') def test_updates_collection_list(self): with self.real_app.app_context(): db = get_db() res_id = 'myresid.' # Setup resource id record clients_collection = db[CLIENTS_COLLECTION] clients_collection.remove({'res_id': res_id}) clients_collection.insert({ 'res_id': res_id, 'collections': [] }) with UseResId(res_id) as db: self.assertItemsEqual(get_collection_names(res_id), []) db.foo.insert({'message': 'test'}) self.assertItemsEqual(get_collection_names(res_id), ['foo']) self.assertItemsEqual(list(db.foo.find({}, {'_id': 0})), [{'message': 'test'}]) db.bar.update({}, {'message': 'test'}, upsert=True) self.assertItemsEqual(get_collection_names(res_id), ['foo', 'bar']) self.assertItemsEqual(list(db.bar.find({}, {'_id': 0})), [{'message': 'test'}]) db.foo.drop() self.assertItemsEqual(get_collection_names(res_id), ['bar']) self.assertNotIn(res_id + 'foo', get_collection_names(res_id)) class QuotaCollectionsTestCase(UseResIdTestCase): def setUp(self): super(QuotaCollectionsTestCase, self).setUp() self.old_quota = self.real_app.config['QUOTA_NUM_COLLECTIONS'] self.res_id = 'myresid.' with self.real_app.app_context(): collections = get_collection_names(self.res_id) with UseResId(self.res_id) as db: for c in collections: db.drop_collection(c) def tearDown(self): self.real_app.config['QUOTA_NUM_COLLECTIONS'] = self.old_quota def test_quota_collections(self): self.real_app.config['QUOTA_NUM_COLLECTIONS'] = 2 with self.real_app.app_context(): with UseResId(self.res_id) as db: db.a.insert({'a': 1}) db.b.insert({'b': 1}) with self.assertRaises(MWSServerError) as cm: db.c.insert({'c': 1}) self.assertEqual(cm.exception.error, 429) for c in ['a', 'b']: db.drop_collection(c) def test_quota_collections_zero(self): self.real_app.config['QUOTA_NUM_COLLECTIONS'] = 0 with self.real_app.app_context(): with UseResId(self.res_id) as db: with self.assertRaises(MWSServerError) as cm: db.a.insert({'a': 1}) self.assertEqual(cm.exception.error, 429) db.drop_collection('a')
1.929688
2
products/tests/test_views.py
Kaique425/ecommerce
0
12777606
<filename>products/tests/test_views.py from pytest_django.asserts import assertTemplateUsed, assertQuerysetEqual from products.tests.factories import ProductFactory from django.urls import resolve, reverse from ..models import Product import pytest pytestmark = pytest.mark.django_db @pytest.fixture def list_response(client): return client.get(reverse('product:list')) class TestProductList(): def test_status_code(self, list_response): assert list_response.status_code == 200 def test_reverse_resolve(self): assert reverse('product:list') == '/' assert resolve('/').view_name == ('product:list') def test_template(self, list_response): assertTemplateUsed(list_response, 'products/product_list.html') @pytest.fixture def detail_response(client, product): return client.get(reverse('product:detail', kwargs={'slug':product.slug})) class TestProductDetail(): def test_status_code(self, client): product = ProductFactory(is_available=True) url = reverse('product:detail', kwargs={'slug': product.slug}) response = client.get(url) assert response.status_code == 200 def test_reverse_resolve(self, product): assert reverse('product:detail', kwargs={'slug':product.slug}) == f"/product/{product.slug}" assert resolve(f'/product/{product.slug}').view_name == "product:detail" def test_template(self, detail_response): assertTemplateUsed(detail_response, "products/product_detail.html")
2.21875
2
python/ex039.py
deniseicorrea/Aulas-de-Python
0
12777607
<reponame>deniseicorrea/Aulas-de-Python<filename>python/ex039.py from datetime import date atual = date.today().year nasc = int(input('Qual o ano do seu nascimento? ')) idade = atual- nasc print(f'Voce tem {idade} anos') if idade == 18: print('Você tem que se alistar Imediatamente') elif idade < 18: saldo = 18 - idade ano = atual + saldo print(f'Você ainda não precisa se alistar, ainda faltam {saldo} anos.') print(f'Você se alistará no ano {ano}') elif idade > 18: saldo = idade - 18 ano = atual - saldo print(f'Você já deveria ter se alistado a {saldo} anos.') print(f'Você deveria ter se alistado no ano {ano}')
3.859375
4
moving_message_g009dh/examples/dict_test.py
Kurocon/moving_message_g009dh
0
12777608
<reponame>Kurocon/moving_message_g009dh<filename>moving_message_g009dh/examples/dict_test.py from moving_message_g009dh.ledbar import * if __name__ == "__main__": bar = LEDBar() bar.data_from_dict(data={ 'files': [{ 'number': 1, 'lines': [{ 'fade': 'pacman', 'speed': 'speed_8', 'texts': [{ 'color': 'bright_red', 'font': 'extra_wide', 'text': 'X', }, { 'color': 'bright_orange', 'font': 'extra_wide', 'text': 'T', }, { 'color': 'bright_yellow', 'font': 'extra_wide', 'text': 'R', }, { 'color': 'bright_green', 'font': 'extra_wide', 'text': 'A', }, ] }, { 'fade': 'open_from_center', 'texts': [{ 'color': 'bright_layer_mix_rainbow', 'font': 'small', 'text': 'smol', }] }] }] }, clear=True) print(" ".join(["0x{:02x}".format(x) for x in bar._data_buffer])) bar.send_data()
1.976563
2
configuration-client/configurator/thriftgen/ConfigurationService/__init__.py
manimaul/xio
40
12777609
__all__ = ['ttypes', 'constants', 'ConfigurationService']
1.070313
1
o365harvest.py
jmpalk/o365harvest
3
12777610
#!/usr/bin/env python3 import requests import sys import argparse import uuid from time import sleep from string import Template def Spray(domain, users, target_url, output_file, wait, verbose, more_verbose, debug): i = 0 results = [] if verbose or more_verbose: print("Targeting: " + target_url + "\n") for user in users: if more_verbose: print("\ntesting " + user) body = '{"Username": "%s@%s"}' % (user, domain) r = requests.post(target_url, data=body) #print(target_url) if debug: print("Time elapsed: " + str(r.elapsed) + "\n") if more_verbose: print("Status: " + str(r.status_code)) print(r.headers) print(r.text) if 'ThrottleStatus' in r.headers.keys(): print("Throttling detected => ThrottleStatus: " + r.headers('ThrottleStatus')) if '"IfExistsResult":0' in r.content.decode('UTF-8'): output_file.write(user + "@" + domain +" - VALID\n") if verbose or more_verbose: print("Found " + user + "@" + domain) continue sleep(wait) i = i + 1 if i % 50 == 0: print("Tested " + str(i) + " possible users") return results def main(): parser = argparse.ArgumentParser(description="Enumerate users against Office365") target_group = parser.add_argument_group(title="Attack Target") target_group.add_argument('-d', dest='domain', type=str, help='Target domain - required') target_group.add_argument('-l', dest='user_list', type=argparse.FileType('r'), help='File with list of target usernames (without domain)') target_group.add_argument('-u', '--url', type=str, dest='url', help='Target URL if using something like fireprox; otherwise will directly call the O365 login endpoint') target_group.add_argument('-w', '--wait', type=int, dest='wait', help='Number of seconds to sleep between individual user attempts', default=0) parser.add_argument('-v', '--verbose', action='store_true', dest='verbose', default=False) parser.add_argument('-vv', '--more-verbose', action='store_true', dest='more_verbose', default=False) parser.add_argument('-D', '--debug', action='store_true', dest='debug', default=False) parser.add_argument('-o', '--output', type=argparse.FileType('w'), dest='output_file', default='spray_results.txt', help='Output file for results (txt). Default is spray_results.txt') args = parser.parse_args() if not args.domain: parser.print_help() print('\nNo target domain provided') sys.exit() if not args.user_list: parser.print_help() print('\nNo list of target users provided') sys.exit() if not args.url: target_url = 'https://login.microsoftonline.com/common/GetCredentialType' else: target_url = args.url + 'common/GetCredentialType' if args.debug: print("*** DEBUG MESSAGING ENABLED ***") users = [] for line in args.user_list: users.append(line.split('@')[0].strip()) results = Spray(args.domain, users, target_url, args.output_file, args.wait, args.verbose, args.more_verbose, args.debug) if __name__ == '__main__': main()
2.546875
3
Src/DockerMMODES/data_gen.py
beatrizgj/MDPbiomeGEM
0
12777611
#!/usr/bin/python3 # Script to shape the desired output to be processed (MMODES) # the datatable way # @author: <NAME> # Creation: 09/06/2019 import os import re import numpy as np import datatable as dt from datatable import f def log(cons, media): ''' Writes information of consortium object to file ''' logf = 'simulations.txt' p = re.compile(r'#+ SIMULATION (\d+) #+') if os.path.isfile(logf): # parse last simulation number with open(logf) as l: for line in l.readlines(): num_sim = p.search(line) if num_sim: head = " SIMULATION "+str(int(num_sim.group(1))+1)+" " else: head = " SIMULATION 1 " lines = '{:{fill}{align}{width}}'.format(head, fill = '#', align = '^', width = 30) + "\n" lines += cons.__str__() pers = ', '.join([per["PERTURBATION"] for per in media]) lines += "\nPERTURBATIONS: " + pers + "\n\n" with open(logf, "a") as l: l.write(lines) return def equidistant(df, n): sample = np.linspace(df.nrows-1,1,n).astype('int') sample.sort() return df[sample, :] def tsv_filter(medium = "", flux = "", txpers = {}, inplace = False, v = 0, equif = True, bin = False): ''' Function that filters medium and fluxes TSV files based on perturbation times. INPUTS -> medium: string, path to medium file; flux: string, path to medium file; txpers: dictionary, time : perturbation; inplace: bool, whether overwrite input paths (default False); v: float, volume magnitude to obtain medium concentrations; equif: bool, whether write an additional fluxes filtered file, with 100 equidistant points (default True) OUTPUT -> it returns None, writes 2(3) TSV files ''' dfs = [] if not medium: print("Medium parameter wasn't supplied, it won't be generated.") else: dfs.append([dt.fread(medium), medium, 0]) if v != 0: for i in range(1,dfs[0][0].ncols): dfs[0][0][:,i] = dfs[0][0][:,f[i]/v] if not flux: print("Medium parameter wasn't supplied, it won't be generated.") else: dfs.append([dt.fread(flux), flux, 1]) if not medium: print("You must supply a txpers parameter. Exitting function...") return for log, path, n in dfs: log[:,'Perturbations'] = "FALSE" # now last column (-1) log[-1,-1] = "END" if len(txpers) > 1: for tp, per in txpers.items(): if tp == 0: log[0,-1] = per else: # take last time that matches <= perturbation time log[f.time == log[f.time < tp, f.time][-1,-1], -1] = per # if per == 'START': # log[0,-1] = 'START' # else: # # take last index that matches <= perturbation time # log[f.time == log[f.time <= tp, f.time][-1,-1], -1] = per else: log[0, -1] = 'START' if n != 0 and equif: log_equif = equidistant(log,100) # take 100 equidistant rows log_equif.to_csv(path[:-4] + '_equi' + '.tsv') del(log_equif) # TODO: I don't know how to implement a condroll with datatable # We aren't currentyly using it, anyway log = log[f.Perturbations != "FALSE", :] if inplace: log.to_csv(path) else: log.to_csv(path[:-4] + '_filtered' + '.tsv')
2.546875
3
secret_breakout/breakout.py
LaRiffle/private-RL
4
12777612
<filename>secret_breakout/breakout.py from gym import logger class Rect(object): def __init__(self, left, top, width, height): self.left = left self.top = top self.width = width self.height = height self.right = left + self.width self.bottom = top + self.height def move(self, x): return Rect(self.left+x, self.top, self.width, self.height) def destroyed(self): self.left = -1 self.top = -1 self.width = -1 self.height = -1 self.right = -1 self.bottom = -1 def __repr__(self): return 'Rect({}, {}, {}, {})'.format( self.left, self.top, self.width, self.height) class Blocks(object): """Implements blocks as a collection instead of as individual block objects """ def __init__(self, args): self.args = args self.width = 100 self.height = 20 self.blocks = self.make_blocks() self.num_blocks_start = len(self.blocks) self.num_blocks_destroyed = 0 def make_blocks(self): rects = [] rows = 5 self.rows_height = self.args.env_height // rows for i in range(0, self.args.env_width, self.width): for j in range(0, self.rows_height, self.height): rects.append(Rect(i, j, self.width, self.height)) return rects # removes single block from blocks list when it is hit by ball # ball being the ball object def collided(self, ball_object): collided = False for block in self.blocks: if ball_object.collided(block, 'block'): # set the block to destroyed if collision occured block.destroyed() collided = True self.num_blocks_destroyed += 1 return collided def block_locations(self): block_locs = [-1] * (2*self.num_blocks_start) for i,block in enumerate(self.blocks): block_locs[2*i] = block.left block_locs[(2*i)+1] = block.top return block_locs class Paddle(Rect): def __init__(self, args): self.args = args # TODO(korymath): what is the correct size for the paddle self.width = self.args.env_width // 3 self.height = 20 self.initial_x = (self.args.env_width // 2) - (self.width // 2) self.initial_y = self.args.env_height - 50 self.rect = Rect(self.initial_x, self.initial_y, self.width, self.height) def move(self, speed): # check if the move would collide paddle with edge if ((self.rect.right + speed > self.args.env_width) or (self.rect.left + speed < 0)): # out of bounds, do not update the paddle position # TODO[jason] handle reward corruption return True self.rect = self.rect.move(speed) return False class Ball(object): """Ball object that takes initial speed in x direction (speedx) and initial speed in y direction(speedy)""" def __init__(self, args, speedx, speedy): self.args = args self.radius = 10 self.x = self.args.env_width//2 self.y = self.args.env_height - 70 self.speed_magnitude = 5 self.speedx = speedx self.speedy = speedy def move(self): # check for collision with the right side of the game screen if self.x + self.radius + self.speedx >= self.args.env_width: logger.debug('ball collide with right side of screen') self.speedx = -self.speed_magnitude # check for collision with the left hand side of the game screen elif self.x + self.speedx <= 0: logger.debug('ball collide with left side of screen') self.speedx = self.speed_magnitude # check for collision with the bottom of the game screen if self.y + self.radius + self.speedy >= self.args.env_height: logger.debug('ball collide with bottom of screen') self.speedy = -self.speed_magnitude return True # check for collision with the top of the game screen elif self.y + self.radius + self.speedy <= 0: logger.debug('ball collide with top of screen') self.speedy = self.speed_magnitude # update the ball position self.x += self.speedx self.y += self.speedy return False # checks if ball has collided with the rect_obj # which may block or paddle def collided(self, rect, collider): if collider == 'paddle': left_temp = rect.rect.left right_temp = rect.rect.right bottom_temp = rect.rect.bottom top_temp = rect.rect.top else: left_temp = rect.left right_temp =rect.right bottom_temp = rect.bottom top_temp = rect.top if ((left_temp <= self.x + self.radius) and (self.x - self.radius <= right_temp)): if top_temp < self.y + self.radius < bottom_temp: logger.debug('ball collide with {}'.format(collider)) self.speedy = -self.speedy # add an extra displacement to avoid double collision self.y += self.speedy return True
3.59375
4
pydatamailbox/__init__.py
optimdata/pydatamailbox
1
12777613
<reponame>optimdata/pydatamailbox from .client import * # NOQA from .exceptions import * # NOQA
0.929688
1
products/migrations/0011_product_products_pr_name_9ff0a3_idx.py
MattiMatt8/ship-o-cereal
1
12777614
<reponame>MattiMatt8/ship-o-cereal<gh_stars>1-10 # Generated by Django 3.2 on 2021-05-10 16:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0010_alter_brand_options'), ] operations = [ migrations.AddIndex( model_name='product', index=models.Index(fields=['name'], name='products_pr_name_9ff0a3_idx'), ), ]
1.617188
2
tensorflow/python/autograph/pyct/static_analysis/type_inference.py
grasskin/tensorflow
2
12777615
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Type inference. This analysis annotates all symbols nodes of an AST with type information extracted from static sources: * type annotations * global and local symbols visible to the function at analysis time * literals Requires reaching function definitions analysis. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Any, Tuple import gast from tensorflow.python.autograph.pyct import anno from tensorflow.python.autograph.pyct import cfg from tensorflow.python.autograph.pyct import qual_names from tensorflow.python.autograph.pyct import transformer from tensorflow.python.autograph.pyct.static_analysis import annos class Resolver(object): """Resolver objects handle the process of looking up actual names and types. All resolve_* methods: * have a first namespace argument, mapping string to actual values * specify names as QN objects * specify types as a Set of inferred types All resolve_* methods must return either: * a set of `type` objects * None """ def res_name(self, ns, name): """Resolves the type an external (e.g. closure, global) variable.""" raise NotImplementedError('subclasses must implement') def res_value(self, ns, value): """Resolves the type a literal value.""" raise NotImplementedError('subclasses must implement') # TODO(mdan): Allow caller to model side effects. def res_call(self, ns, name, target, args, keywords, starargs, kwargs): """Resolves the return type an external function or method call. Args: ns: namespace name: str, the function name target: if this is a method call, the types of the method target, None otherwise args: list or argument types keywords: dict of name to argument types starargs: list of types of the *args arguments (should be at most one) kwargs: list of types of the **kwargs arguments (in order of appearance) """ raise NotImplementedError('subclasses must implement') def res_arg(self, ns, f_name, arg_name, type_anno): """Resolves the type of a (possibly annotated) function argument.""" raise NotImplementedError('subclasses must implement') class _SymbolTable(object): """Abstraction for the state of the CFG walk for type inference. This is a value type. Only implements the strictly necessary operators. Attributes: value: Dict[qual_names.QN, Set[Type]], mapping symbols to the set of possible types. """ def __init__(self, init_from=None): if init_from: assert isinstance(init_from, _SymbolTable) self.value = { s: set(other_types) for s, other_types in init_from.value.items() } else: self.value = {} def __eq__(self, other): if frozenset(self.value.keys()) != frozenset(other.value.keys()): return False ret = all(self.value[s] == other.value[s] for s in self.value) return ret def __ne__(self, other): return not self.__eq__(other) def __or__(self, other): assert isinstance(other, _SymbolTable) result = _SymbolTable(self) for s, other_types in other.value.items(): if s not in result.value: self_types = set() result.value[s] = self_types else: self_types = result.value[s] self_types.update(other_types) return result def __repr__(self): return 'SymbolTable {}'.format(self.value) _GETITEM = qual_names.QN('__getitem__') _HANDLERS = { gast.Eq: qual_names.QN('__eq__'), gast.NotEq: qual_names.QN('__ne__'), gast.Lt: qual_names.QN('__lt__'), gast.LtE: qual_names.QN('__le__'), gast.Gt: qual_names.QN('__gt__'), gast.GtE: qual_names.QN('__ge__'), gast.In: qual_names.QN('__contains__'), # TODO(mdan): Is this actually correct? # NotIn(*) = Not(In(*)) gast.NotIn: qual_names.QN('__not__'), gast.Add: qual_names.QN('__add__'), gast.Sub: qual_names.QN('__sub__'), gast.Mult: qual_names.QN('__mul__'), gast.Div: qual_names.QN('__div__'), gast.FloorDiv: qual_names.QN('__floordiv__'), gast.Mod: qual_names.QN('__mod__'), gast.Pow: qual_names.QN('__pow__'), gast.LShift: qual_names.QN('__lshift__'), gast.RShift: qual_names.QN('__rshift__'), gast.BitOr: qual_names.QN('__or__'), gast.BitXor: qual_names.QN('__xor__'), gast.BitAnd: qual_names.QN('__and__'), gast.MatMult: qual_names.QN('__matmul__'), } _FIXED_RETTYPES = { gast.Is: bool, gast.IsNot: bool, } class StmtInferrer(gast.NodeVisitor): """Runs type inference on a single AST statement. This visitor annotates most nodes with type information. It also sets types for the symbols modified by this statement in its types_out property. """ def __init__(self, resolver, scope, namespace, closure_types, types_in): self.resolver = resolver self.scope = scope self.namespace = namespace self.closure_types = closure_types self.types_in = types_in self.new_symbols = {} def visit(self, node): types = super().visit(node) if types is not None: # TODO(mdan): Normalize by removing subtypes. anno.setanno(node, anno.Static.TYPES, tuple(types)) return types def visit_FunctionDef(self, node): # Skip local function definitions. They are analyzed separately. return None def visit_Constant(self, node): return self.resolver.res_value(self.namespace, node.value) def visit_Tuple(self, node): if isinstance(node.ctx, gast.Load): for elt in node.elts: self.visit(elt) # TODO(mdan): Parameterize it. return {Tuple} assert isinstance(node.ctx, gast.Store) # TODO(mdan): Implement tuple unpacking. return None def visit_List(self, node): if isinstance(node.ctx, gast.Load): el_types = [] for elt in node.elts: el_types.append(self.visit(elt)) return {list} raise NotImplementedError('list unpacking') def visit_Set(self, node): raise NotImplementedError() def visit_Name(self, node): name = anno.getanno(node, anno.Basic.QN) if isinstance(node.ctx, gast.Load): types = self.types_in.value.get(name, None) if (types is None) and (name not in self.scope.bound): if name in self.closure_types: types = self.closure_types[name] else: types = self.resolver.res_name(self.namespace, name) return types elif isinstance(node.ctx, gast.Param): type_name = anno.getanno(node.annotation, anno.Basic.QN, None) types = self.resolver.res_arg(self.namespace, self.scope.function_name, name, type_name) if types is not None: self.new_symbols[name] = types return types elif isinstance(node.ctx, gast.Store): if self.rvalue is not None: self.new_symbols[name] = self.rvalue else: # No type information, assume Any. self.new_symbols[name] = {Any} return self.rvalue assert False, 'unknown ctx' def visit_Call(self, node): f_name = anno.getanno(node.func, anno.Basic.QN) kwargs = [self.visit(kw.value) for kw in node.keywords if kw.arg is None] keywords = { kw.arg: self.visit(kw.value) for kw in node.keywords if kw.arg is not None } is_starred = [isinstance(a, gast.Starred) for a in node.args] args = [ self.visit(a) for a, starred in zip(node.args, is_starred) if not starred ] starargs = [ self.visit(a.value) for a, starred in zip(node.args, is_starred) if starred ] if f_name in self.scope.bound: # Don't attempt external resolution of local functions. # TODO(mdan): Use type annotations of the local definition. return None return self.resolver.res_call( self.namespace, f_name, None, args, keywords, starargs, kwargs) def visit_Index(self, node): return self.visit(node.value) def visit_Assign(self, node): self.rvalue = self.visit(node.value) for t in node.targets: self.visit(t) self.rvalue = None def visit_Subscript(self, node): val_type = self.visit(node.value) slice_type = self.visit(node.slice) if val_type is None or slice_type is None: return None return self.resolver.res_call(self.namespace, _GETITEM, val_type, (slice_type,), {}, (), ()) def visit_Compare(self, node): right_types = [self.visit(c) for c in node.comparators] op_types = [type(o) for o in node.ops] if len(op_types) > 1: raise NotImplementedError('chained comparisons') assert len(right_types) == 1 left_type = self.visit(node.left) right_type, = right_types op_type, = op_types if left_type is None or right_type is None: return None f_name = _HANDLERS.get(op_type, None) if f_name is None: # Python doesn't allow overriding these operators. Their return types are # fixed. return {_FIXED_RETTYPES[op_type]} return self.resolver.res_call(self.namespace, _HANDLERS[op_type], left_type, (right_type,), {}, (), ()) def visit_BinOp(self, node): left_type = self.visit(node.left) right_type = self.visit(node.right) if left_type is None or right_type is None: return None # TODO(mdan): This does not fully follow Python operator semantics. # For example, in `a + b` Python will try `a.__add__`, but also `b.__radd__` return self.resolver.res_call(self.namespace, _HANDLERS[type(node.op)], left_type, (right_type,), {}, (), ()) class Analyzer(cfg.GraphVisitor): """CFG visitor that propagates type information across statements.""" def __init__(self, graph, resolver, namespace, scope, closure_types): """Creates a new analyzer. Args: graph: cfg.Graph resolver: Resolver namespace: Dict[str, Any] scope: activity.Scope closure_types: Dict[QN, Set] """ super(Analyzer, self).__init__(graph) self.resolver = resolver self.namespace = namespace self.scope = scope self.closure_types = closure_types def init_state(self, _): return _SymbolTable() def _update_closure_types(self, ast_node, types): existing_types = anno.getanno(ast_node, anno.Static.CLOSURE_TYPES, None) if existing_types is None: existing_types = {} anno.setanno(ast_node, anno.Static.CLOSURE_TYPES, existing_types) for k, v in types.value.items(): if k in existing_types: existing_types[k].update(v) else: existing_types[k] = set(v) def visit_node(self, node): prev_types_out = self.out[node] types_in = _SymbolTable() for n in node.prev: types_in |= self.out[n] types_out = _SymbolTable(types_in) ast_node = node.ast_node inferrer = StmtInferrer( self.resolver, self.scope, self.namespace, self.closure_types, types_in) inferrer.visit(ast_node) types_out.value.update(inferrer.new_symbols) reaching_fndefs = anno.getanno(ast_node, anno.Static.DEFINED_FNS_IN) node_scope = anno.getanno(ast_node, anno.Static.SCOPE, None) if node_scope is not None: # TODO(mdan): Check that it's actually safe to skip nodes without scope. reads = {str(qn) for qn in node_scope.read} for def_node in reaching_fndefs: if def_node.name in reads: self._update_closure_types(def_node, types_out) self.in_[node] = types_in self.out[node] = types_out return prev_types_out != types_out class FunctionVisitor(transformer.Base): """AST visitor that applies type inference to each function separately.""" def __init__(self, source_info, graphs, resolver): super(FunctionVisitor, self).__init__(source_info) self.graphs = graphs self.resolver = resolver def visit_FunctionDef(self, node): subgraph = self.graphs[node] scope = anno.getanno(node, annos.NodeAnno.ARGS_AND_BODY_SCOPE) closure_types = anno.getanno(node, anno.Static.CLOSURE_TYPES, {}) analyzer = Analyzer( subgraph, self.resolver, self.ctx.info.namespace, scope, closure_types) analyzer.visit_forward() # Recursively process any remaining subfunctions. node.body = self.visit_block(node.body) return node def resolve(node, source_info, graphs, resolver): """Performs type inference. Args: node: ast.AST source_info: transformer.SourceInfo graphs: Dict[ast.FunctionDef, cfg.Graph] resolver: Resolver Returns: ast.AST """ visitor = FunctionVisitor(source_info, graphs, resolver) node = visitor.visit(node) return node
1.945313
2
ERAutomation/steps/manager_login_steps.py
dboudreau4/ReimbursementSystemAutomation
0
12777616
<filename>ERAutomation/steps/manager_login_steps.py from behave import given, when, then from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC @given('The Manager is on the Manager Login Page') def open_manager_login(context): context.driver.get("C:\\Users\\david\\Documents\\ExpenseReimbursementFrontend\\managerlogin.html") @when('The Manager types {username} into the username bar') def type_m_username(context, username: str): context.manager_login.username().send_keys(username) @when('The Manager types {password} into the password bar') def type_m_password(context, password: str): context.manager_login.password().send_keys(password) @when('The Manager clicks the login button') def m_login(context): context.manager_login.login_button().click() @then('The page title should be {title}') def verify_on_manager_page(context, title: str): WebDriverWait(context.driver, 3).until( EC.title_is(title)) assert context.driver.title == title
2.53125
3
third_party/maya/lib/usdMaya/testenv/testUsdMayaAdaptorGeom.py
YuqiaoZhang/USD
88
12777617
#!/pxrpythonsubst # # Copyright 2018 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from maya import cmds from maya import standalone import os import unittest from pxr import Usd, UsdGeom class testUsdMayaAdaptorGeom(unittest.TestCase): @classmethod def tearDownClass(cls): standalone.uninitialize() @classmethod def setUpClass(cls): standalone.initialize('usd') cmds.loadPlugin('pxrUsd') usdFile = os.path.abspath('UsdAttrs.usda') cmds.usdImport(file=usdFile, shadingMode='none') def testImportImageable(self): """ Tests that UsdGeomImageable.purpose is properly imported. """ # Testing for the different purpose attributes self.assertEqual(cmds.getAttr('pCube1.USD_ATTR_purpose'), 'default') self.assertEqual(cmds.getAttr('pCube2.USD_ATTR_purpose'), 'render') self.assertEqual(cmds.getAttr('pCube3.USD_ATTR_purpose'), 'proxy') # pCube4 does not have a purpose attribute self.assertFalse(cmds.objExists('pCube4.USD_ATTR_purpose')) self.assertFalse(cmds.objExists('pCube4.USD_purpose')) # alias def testExportImageable(self): """ Test that UsdGeomImageable.purpose is properly exported. """ newUsdFilePath = os.path.abspath('UsdAttrsNew.usda') cmds.usdExport(file=newUsdFilePath, shadingMode='none') newUsdStage = Usd.Stage.Open(newUsdFilePath) # Testing the exported purpose attributes geom1 = UsdGeom.Imageable(newUsdStage.GetPrimAtPath('/World/pCube1')) self.assertEqual(geom1.GetPurposeAttr().Get(), 'default') geom2 = UsdGeom.Imageable(newUsdStage.GetPrimAtPath('/World/pCube2')) self.assertEqual(geom2.GetPurposeAttr().Get(), 'render') geom3 = UsdGeom.Imageable(newUsdStage.GetPrimAtPath('/World/pCube3')) self.assertEqual(geom3.GetPurposeAttr().Get(), 'proxy') # Testing that there is no authored attribute geom4 = UsdGeom.Imageable(newUsdStage.GetPrimAtPath('/World/pCube4')) self.assertFalse(geom4.GetPurposeAttr().HasAuthoredValue()) if __name__ == '__main__': unittest.main(verbosity=2)
2.015625
2
examples/QuantosDataService/runService.py
hzypage/TestPy
18
12777618
# encoding: UTF-8 """ 定时服务,可无人值守运行,实现每日自动下载更新历史行情数据到数据库中。 """ import datetime as ddt from dataService import * if __name__ == '__main__': taskCompletedDate = None # 生成一个随机的任务下载时间,用于避免所有用户在同一时间访问数据服务器 taskTime = ddt.time(hour=17, minute=0) # 进入主循环 while True: t = ddt.datetime.now() # 每天到达任务下载时间后,执行数据下载的操作 if t.time() > taskTime and (taskCompletedDate is None or t.date() != taskCompletedDate): # 创建API对象 api = DataApi(DATA_SERVER) info, msg = api.login(USERNAME, TOKEN) if not info: print u'数据服务器登录失败,原因:%s' %msg # 下载数据 downloadAllMinuteBar(api) # 更新任务完成的日期 taskCompletedDate = t.date() else: print u'当前时间%s,任务定时%s' %(t, taskTime) sleep(60)
2.453125
2
python/image_processing/closing.py
SayanGhoshBDA/code-backup
16
12777619
<filename>python/image_processing/closing.py import cv2 import numpy as np img = cv2.imread('closing.png',0) kernel = np.ones((5,5),np.uint8) closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel) gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel) tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel) cv2.imshow('blackhat',blackhat) cv2.imshow('image cv2',img) cv2.imshow('closing',closing) cv2.imshow('image erosion',tophat) cv2.imshow('tophat',gradient) cv2.waitKey(0) # to save the image # cv2.imwrite('image1.png',img) cv2.destroyAllWindows()
3.0625
3
seq_utils/construct_graph/construct_graph_v2.py
PTYin/ESRT
0
12777620
<filename>seq_utils/construct_graph/construct_graph_v2.py import dgl import pygraphviz as pyg import torch import pandas as pd from argparse import ArgumentParser import os def construct_graph(df: pd.DataFrame): users = df['userID'].unique() items = df['asin'].unique() item_map = dict(zip(items, range(len(users), len(users) + len(items)))) current_review_id = 0 current_query_id = 0 tier1_src_r, tier1_des_r, = [], [] tier1_src_q, tier1_des_q = [], [] tier2_src, tier2_des = [], [] tier3_u, tier3_i = [], [] e_data = [] # words, reviews, users, items = [], [], [], [] for index, series in df.iterrows(): if index == 3: break if series['filter'] == 'Train': # ------------------------Tier 1------------------------ # ********word->query******** current_words = eval(series['queryWords']) tier1_src_q += current_words tier1_des_q += [current_query_id] * len(current_words) if len(eval(series['reviewText'])) != 0: # ********word->review******** current_words = eval(series['reviewWords']) tier1_src_r += current_words tier1_des_r += [current_review_id] * len(current_words) # ------------------------Tier 2------------------------ # ********review->entity******** tier2_src += [current_review_id, current_review_id] tier2_des += [series['userID'], item_map[series['asin']]] current_review_id += 1 # ------------------------Tier 3------------------------ # ********user<->item******** tier3_u.append(series['userID']) tier3_i.append(item_map[series['asin']]) e_data.append(current_query_id) current_query_id += 1 graph_data = {('word', 'composes', 'review'): (tier1_src_r, tier1_des_r), ('word', 'composes', 'query'): (tier1_src_q, tier1_des_q), ('review', 'profiles', 'entity'): (tier2_src, tier2_des), ('entity', 'purchased', 'entity'): (tier3_u, tier3_i), ('entity', 'purchased_by', 'entity'): (tier3_i, tier3_u)} # num_nodes_dict = {'word': word_num, 'review': current_review_id, 'entity': len(users) + len(items)} # graph: dgl.DGLHeteroGraph = dgl.heterograph(graph_data, num_nodes_dict) graph: dgl.DGLHeteroGraph = dgl.heterograph(graph_data) graph.edges['purchased'].data['q_id'] = torch.tensor(e_data, dtype=torch.long) plot_meta(graph) plot(graph) return users, item_map, graph def plot(graph: dgl.DGLHeteroGraph): ag = pyg.AGraph(strict=False, directed=True) for etype in [('word', 'composes', 'review'), ('word', 'composes', 'query'), ('review', 'profiles', 'entity'), ('entity', 'purchased', 'entity'), ('entity', 'purchased_by', 'entity')]: src, des = graph.edges(etype=etype) for i in range(len(src)): ag.add_edge(etype[0] + repr(src[i]), etype[2] + repr(des[i]), label=etype[1]) ag.layout('dot') ag.draw('graph.png', prog='dot') def plot_meta(graph: dgl.DGLHeteroGraph): meta_graph = graph.metagraph() ag = pyg.AGraph(strict=False, directed=True) for u, v, k in meta_graph.edges(keys=True): ag.add_edge(u, v, label=k) ag.layout('dot') ag.draw('meta.png', prog='dot') if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--dataset', default='Musical_Instruments', help='name of the dataset') parser.add_argument('--processed_path', default='/disk/yxk/processed/test/', help="preprocessed path of the raw data") config = parser.parse_args() full_path = os.path.join(config.processed_path, "{}_full.csv".format(config.dataset)) full_df = pd.read_csv(full_path) construct_graph(full_df)
2.609375
3
minpy/numpy/random.py
yuhonghong66/minpy
1,271
12777621
<reponame>yuhonghong66/minpy #!/usr/bin/env python # -*- coding: utf-8 -*- """ Mock numpy random module """ #pylint: disable= invalid-name from __future__ import absolute_import import sys from minpy.numpy.mocking import Module _old = { '__name__' : __name__, } sys.modules[__name__] = Module(_old, 'random')
1.945313
2
maxentropy/maxentutils.py
bluerobe25/maxentropy
0
12777622
""" Utility routines for the maximum entropy module. Most of them are either Python replacements for the corresponding Fortran routines or wrappers around matrices to allow the maxent module to manipulate ndarrays, scipy sparse matrices, and PySparse matrices a common interface. Perhaps the logsumexp() function belongs under the utils/ branch where other modules can access it more easily. Copyright: <NAME>, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory) """ # Future imports must come before any code in 2.5 from __future__ import division from __future__ import print_function from builtins import range __author__ = "<NAME>" __version__ = '2.0' import random import math import cmath import numpy as np #from numpy import log, exp, asarray, ndarray, empty import scipy.sparse from scipy.misc import logsumexp def feature_sampler(vec_f, auxiliary_sampler): """ A generator function for tuples (F, log_q_xs, xs) Parameters ---------- vec_f : function Pass `vec_f` as a (vectorized) function that operates on a vector of samples xs = {x1,...,xn} and returns a feature matrix (m x n), where m is some number of feature components. auxiliary_sampler : function Pass `auxiliary_sampler` as a function that returns a tuple (xs, log_q_xs) representing a sample to use for sampling (e.g. importance sampling) on the sample space of the model. xs : list, 1d ndarray, or 2d matrix (n x d) We require len(xs) == n. Yields ------ tuples (F, log_q_xs, xs) F : matrix (m x n) log_q_xs : as returned by auxiliary_sampler xs : as returned by auxiliary_sampler """ while True: xs, log_q_xs = auxiliary_sampler() F = vec_f(xs) # compute feature matrix from points yield F, log_q_xs, xs def dictsample(freq, size=None, return_probs=None): """ Create a sample of the given size from the specified discrete distribution. Parameters ---------- freq : a dictionary A mapping from values x_j in the sample space to probabilities (or unnormalized frequencies). size : a NumPy size parameter (like a shape tuple) Something passable to NumPy as a size argument to np.random.choice(...) return_probs : int, optional (default 0) None: don't return pmf values at each sample point 'prob': return pmf values at each sample point 'logprob': return log pmf values at each sample point Returns ------- Returns a sample of the given size from the keys of the given dictionary `freq` with probabilities given according to the values (normalized to 1). Optionally returns the probabilities under the distribution of each observation. Example ------- >>> freq = {'a': 10, 'b': 15, 'c': 20} >>> dictsample(freq, size=1) array([c, b, b, b, b, b, c, b, b, b], dtype=object) """ n = len(freq) probs = np.fromiter(freq.values(), float) probs /= probs.sum() indices = np.random.choice(np.arange(n), size=size, p=probs) labels = np.empty(n, dtype=object) for i, label in enumerate(freq.keys()): labels[i] = label sample = labels[indices] if return_probs is None: return sample sampleprobs = probs[indices] if return_probs == 'prob': return sample, sampleprobs elif return_probs == 'logprob': return sample, np.log(sampleprobs) else: raise ValueError('return_probs must be "prob", "logprob", or None') def dictsampler(freq, size=None, return_probs=None): """ A generator of samples of the given size from the specified discrete distribution. Parameters ---------- freq : a dictionary A mapping from values x_j in the sample space to probabilities (or unnormalized frequencies). size : a NumPy size parameter (like a shape tuple) Something passable to NumPy as a size argument to np.random.choice(...) return_probs : int, optional (default 0) None: don't return pmf values at each sample point 'prob': return pmf values at each sample point 'logprob': return log pmf values at each sample point Returns ------- Returns a sample of the given size from the keys of the given dictionary `freq` with probabilities given according to the values (normalized to 1). Optionally returns the probabilities under the distribution of each observation. Example ------- >>> freq = {'a': 10, 'b': 15, 'c': 20} >>> g = dictsample_gen(freq, size=1) >>> next(g) array([c, b, b, b, b, b, c, b, b, b], dtype=object) """ while True: yield dictsample(freq, size=size, return_probs=return_probs) def auxiliary_sampler_scipy(auxiliary, dimensions=1, n=10**5): """ Sample (once) from the given scipy.stats distribution Parameters ---------- auxiliary : a scipy.stats distribution object (rv_frozen) Returns ------- sampler : function sampler(), when called with no parameters, returns a tuple (xs, log_q_xs), where: xs : matrix (n x d): [x_1, ..., x_n]: a sample log_q_xs: log pdf values under the auxiliary sampler for each x_j """ def sampler(): xs = auxiliary.rvs(size=(n, dimensions)) log_q_xs = np.log(auxiliary.pdf(xs.T)).sum(axis=0) return (xs, log_q_xs) return sampler def _logsumexpcomplex(values): """A version of logsumexp that should work if the values passed are complex-numbered, such as the output of robustarraylog(). So we expect: cmath.exp(logsumexpcomplex(robustarraylog(values))) ~= sum(values,axis=0) except for a small rounding error in both real and imag components. The output is complex. (To recover just the real component, use A.real, where A is the complex return value.) """ if len(values) == 0: return 0.0 iterator = iter(values) # Get the first element while True: # Loop until we have a value greater than -inf try: b_i = next(iterator) + 0j except StopIteration: # empty return float('-inf') if b_i.real != float('-inf'): break # Now the rest for a_i in iterator: a_i += 0j if b_i.real > a_i.real: increment = robustlog(1.+cmath.exp(a_i - b_i)) # print "Increment is " + str(increment) b_i = b_i + increment else: increment = robustlog(1.+cmath.exp(b_i - a_i)) # print "Increment is " + str(increment) b_i = a_i + increment return b_i def logsumexp_naive(values): """For testing logsumexp(). Subject to numerical overflow for large values (e.g. 720). """ s = 0.0 for x in values: s += math.exp(x) return math.log(s) def robustlog(x): """Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0, or float('-inf') if x == 0. """ if x == 0.: return float('-inf') elif type(x) is complex or (type(x) is float and x < 0): return cmath.log(x) else: return math.log(x) def _robustarraylog(x): """ An array version of robustlog. Operates on a real array x. """ arraylog = empty(len(x), np.complex64) for i in range(len(x)): xi = x[i] if xi > 0: arraylog[i] = math.log(xi) elif xi == 0.: arraylog[i] = float('-inf') else: arraylog[i] = cmath.log(xi) return arraylog # def arrayexp(x): # """ # OBSOLETE? # # Returns the elementwise antilog of the real array x. # # We try to exponentiate with np.exp() and, if that fails, with # python's math.exp(). np.exp() is about 10 times faster but throws # an OverflowError exception for numerical underflow (e.g. exp(-800), # whereas python's math.exp() just returns zero, which is much more # helpful. # """ # try: # ex = np.exp(x) # except OverflowError: # print("Warning: OverflowError using np.exp(). Using slower Python"\ # " routines instead!") # ex = np.empty(len(x), float) # for j in range(len(x)): # ex[j] = math.exp(x[j]) # return ex # # def arrayexpcomplex(x): # """ # OBSOLETE? # # Returns the elementwise antilog of the vector x. # # We try to exponentiate with np.exp() and, if that fails, with python's # math.exp(). np.exp() is about 10 times faster but throws an # OverflowError exception for numerical underflow (e.g. exp(-800), # whereas python's math.exp() just returns zero, which is much more # helpful. # # """ # try: # ex = np.exp(x).real # except OverflowError: # ex = np.empty(len(x), float) # try: # for j in range(len(x)): # ex[j] = math.exp(x[j]) # except TypeError: # # Perhaps x[j] is complex. If so, try using the complex # # exponential and returning the real part. # for j in range(len(x)): # ex[j] = cmath.exp(x[j]).real # return ex def sample_wr(population, k): """Chooses k random elements (with replacement) from a population. (From the Python Cookbook). """ n = len(population) _random, _int = random.random, int # speed hack return [population[_int(_random() * n)] for i in range(k)] def evaluate_feature_matrix(feature_functions, xs, vectorized=True, format='csc_matrix', dtype=float, verbose=False): """Evaluate a (m x n) matrix of features `F` of the sample `xs` as: F[i, :] = f_i(xs[:]) if xs is 1D, or as: F[i, j] = f_i(xs[:, j]) if xs is 2D, for each feature function `f_i` in `feature_functions`. Parameters ---------- feature_functions : a list of m feature functions f_i. xs : either: 1. a (n x d) matrix representing n d-dimensional observations xs[j, :] for j=1,...,n. 2. a 1d array or sequence (e.g list) of observations xs[j] for j=1,...,n. vectorized : bool (default True) If True, the feature functions f_i are assumed to be vectorized; then these will be passed all observations xs at once, in turn. If False, the feature functions f_i will be evaluated one at a time. format : str (default 'csc_matrix') Options: 'ndarray', 'csc_matrix', 'csr_matrix', 'dok_matrix'. If you have enough memory, it may be faster to create a dense ndarray and then construct a e.g. CSC matrix from this. Returns ------- F : (m x n) matrix (in the given format: ndarray / csc_matrix / etc.) Matrix of evaluated features. """ m = len(feature_functions) if isinstance(xs, np.ndarray) and xs.ndim == 2: n, d = xs.shape if d == 1 and vectorized: # xs may be a column vector, i.e. (n x 1) array. # In this case, reshape it to a 1d array. This # makes it easier to define functions that # operate on only one variable (the usual case) # given that sklearn's interface now forces 2D # arrays X when calling .transform(X) and .fit(X). xs = np.reshape(xs, n) else: n, d = len(xs), 1 if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): F = scipy.sparse.dok_matrix((m, n), dtype=dtype) elif format == 'ndarray': F = np.empty((m, n), dtype=dtype) else: raise ValueError('matrix format not recognized') for i, f_i in enumerate(feature_functions): if verbose: print('Computing feature {i} of {m} ...'.format(i=i, m=m)) if vectorized: F[i::m, :] = f_i(xs) else: for j in range(n): f_i_x = f_i(xs[j]) if f_i_x != 0: F[i,j] = f_i_x if format == 'csc_matrix': return F.tocsc() elif format == 'csr_matrix': return F.tocsr() else: return F # def densefeatures(f, x): # """Returns a dense array of non-zero evaluations of the vector # functions fi in the list f at the point x. # """ # # return np.array([fi(x) for fi in f]) # def densefeaturematrix(f, sample, verbose=False): # """Compute an (m x n) dense array of non-zero evaluations of the # scalar functions fi in the list f at the points x_1,...,x_n in the # list sample. # """ # # # Was: return np.array([[fi(x) for fi in f] for x in sample]) # # m = len(f) # n = len(sample) # # F = np.empty((m, n), float) # for i in range(m): # f_i = f[i] # for j in range(n): # x = sample[j] # F[i,j] = f_i(x) # return F # def sparsefeatures(f, x, format='csc_matrix'): # """Compute an mx1 sparse matrix of non-zero evaluations of the # scalar functions f_1,...,f_m in the list f at the point x. # # """ # m = len(f) # if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): # sparsef = scipy.sparse.dok_matrix((m, 1)) # else: # raise ValueError("sparse matrix format not recognized") # # for i in range(m): # f_i_x = f[i](x) # if f_i_x != 0: # sparsef[i, 0] = f_i_x # # if format == 'csc_matrix': # print("Converting to CSC matrix ...") # return sparsef.tocsc() # elif format == 'csr_matrix': # print("Converting to CSR matrix ...") # return sparsef.tocsr() # else: # return sparsef # def sparsefeaturematrix(f, sample, format='csc_matrix', verbose=False): # """Compute an (m x n) sparse matrix of non-zero evaluations of the # scalar functions f_1,...,f_m in the list f at the points x_1,...,x_n # in the sequence 'sample'. # # """ # m = len(f) # n = len(sample) # if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): # sparseF = scipy.sparse.dok_matrix((m, n)) # else: # raise ValueError("sparse matrix format not recognized") # # for i in range(m): # if verbose: # print('Computing feature {i} of {m}'.format(i=i, m=m)) # f_i = f[i] # for j in range(n): # x = sample[j] # f_i_x = f_i(x) # if f_i_x != 0: # sparseF[i,j] = f_i_x # # if format == 'csc_matrix': # return sparseF.tocsc() # elif format == 'csr_matrix': # return sparseF.tocsr() # else: # return sparseF # def sparsefeaturematrix_vectorized(feature_functions, xs, format='csc_matrix'): # """ # Evaluate a (m x n) matrix of features `F` of the sample `xs` as: # # F[i, j] = f_i(xs[:, j]) # # Parameters # ---------- # feature_functions : a list of feature functions f_i. # # xs : either: # 1. a (d x n) matrix representing n d-dimensional # observations xs[: ,j] for j=1,...,n. # 2. a 1d array or sequence (e.g list) of observations xs[j] # for j=1,...,n. # # The feature functions f_i are assumed to be vectorized. These will be # passed all observations xs at once, in turn. # # Note: some samples may be more efficient / practical to compute # features one sample observation at a time (e.g. generated). For these # cases, use sparsefeaturematrix(). # # Only pass sparse=True if you need the memory savings. If you want a # sparse matrix but have enough memory, it may be faster to # pass dense=True and then construct a CSC matrix from the dense NumPy # array. # # """ # m = len(feature_functions) # # if isinstance(xs, np.ndarray) and xs.ndim == 2: # d, n = xs.shape # else: # n = len(xs) # if not sparse: # F = np.empty((m, n), float) # else: # import scipy.sparse # F = scipy.sparse.lil_matrix((m, n), dtype=float) # # for i, f_i in enumerate(feature_functions): # F[i::m, :] = f_i(xs) # # if format == 'csc_matrix': # return F.tocsc() # elif format == 'csr_matrix': # return F.tocsr() # else: # return F def old_vec_feature_function(feature_functions, sparse=False): """ Create and return a vectorized function `features(xs)` that evaluates an (n x m) matrix of features `F` of the sample `xs` as: F[j, i] = f_i(xs[:, j]) Parameters ---------- feature_functions : a list of feature functions f_i. `xs` will be passed to these functions as either: 1. an (n x d) matrix representing n d-dimensional observations xs[j, :] for j=1,...,n. 2. a 1d array or sequence (e.g list) of observations xs[j] for j=1,...,n. The feature functions f_i are assumed to be vectorized. These will be passed all observations xs at once, in turn. Note: some samples may be more efficient / practical to compute features of one sample observation at a time (e.g. generated). Only pass sparse=True if you need the memory savings. If you want a sparse matrix but have enough memory, it may be faster to pass sparse=False and then construct a CSC matrix from the dense NumPy array. """ if sparse: import scipy.sparse m = len(feature_functions) def vectorized_features(xs): if isinstance(xs, np.ndarray) and xs.ndim == 2: n, d = xs.shape else: n = len(xs) if not sparse: F = np.empty((n, m), float) else: F = scipy.sparse.lil_matrix((n, m), dtype=float) # Equivalent: # for i, f_i in enumerate(feature_functions): # for k in range(len(xs)): # F[len(feature_functions)*k+i, :] = f_i(xs[k]) for i, f_i in enumerate(feature_functions): F[:, i::m] = f_i(xs) if not sparse: return F else: return scipy.sparse.csc_matrix(F) return vectorized_features def dotprod(u,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns the dot product of the (1 x m) sparse array u with the (m x 1) (dense) numpy array v. """ #print "Taking the dot product u.v, where" #print "u has shape " + str(u.shape) #print "v = " + str(v) try: dotprod = np.array([0.0]) # a 1x1 array. Required by spmatrix. u.matvec(v, dotprod) return dotprod[0] # extract the scalar except AttributeError: # Assume u is a dense array. return np.dot(u,v) def innerprod(A,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns the inner product of the (m x n) dense or sparse matrix A with the n-element dense array v. This is a wrapper for A.dot(v) for dense arrays and spmatrix objects, and for A.matvec(v, result) for PySparse matrices. """ # We assume A is sparse. (m, n) = A.shape vshape = v.shape try: (p,) = vshape except ValueError: (p, q) = vshape if n != p: raise TypeError("matrix dimensions are incompatible") if isinstance(v, np.ndarray): try: # See if A is sparse A.matvec except AttributeError: # It looks like A is dense return np.dot(A, v) else: # Assume A is sparse if scipy.sparse.isspmatrix(A): innerprod = A.matvec(v) # This returns a float32 type. Why??? return innerprod else: # Assume PySparse format innerprod = np.empty(m, float) A.matvec(v, innerprod) return innerprod elif scipy.sparse.isspmatrix(v): return A * v else: raise TypeError("unsupported types for inner product") def innerprodtranspose(A,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Computes A^T V, where A is a dense or sparse matrix and V is a numpy array. If A is sparse, V must be a rank-1 array, not a matrix. This function is efficient for large matrices A. This is a wrapper for A.T.dot(v) for dense arrays and spmatrix objects, and for A.matvec_transp(v, result) for pysparse matrices. """ (m, n) = A.shape #pdb.set_trace() if hasattr(A, 'matvec_transp'): # A looks like a PySparse matrix if len(v.shape) == 1: innerprod = np.empty(n, float) A.matvec_transp(v, innerprod) else: raise TypeError("innerprodtranspose(A,v) requires that v be " "a vector (rank-1 dense array) if A is sparse.") return innerprod elif scipy.sparse.isspmatrix(A): return (A.conj().transpose() * v).transpose() else: # Assume A is dense if isinstance(v, np.ndarray): # v is also dense if len(v.shape) == 1: # We can't transpose a rank-1 matrix into a row vector, so # we reshape it. vm = v.shape[0] vcolumn = np.reshape(v, (1, vm)) x = np.dot(vcolumn, A) return np.reshape(x, (n,)) else: #(vm, vn) = v.shape # Assume vm == m x = np.dot(np.transpose(v), A) return np.transpose(x) else: raise TypeError("unsupported types for inner product") def rowmeans(A): """ This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (m x 1) vector representing the mean of the rows of A, which be an (m x n) sparse or dense matrix. >>> a = np.array([[1,2],[3,4]], float) >>> rowmeans(a) array([ 1.5, 3.5]) """ if type(A) is np.ndarray: return A.mean(1) else: # Assume it's sparse try: n = A.shape[1] except AttributeError: raise TypeError("rowmeans() only works with sparse and dense " "arrays") rowsum = innerprod(A, np.ones(n, float)) return rowsum / float(n) def columnmeans(A): """ This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (1 x n) vector with the column averages of A, which can be an (m x n) sparse or dense matrix. >>> a = np.array([[1,2],[3,4]],'d') >>> columnmeans(a) array([ 2., 3.]) """ if type(A) is np.ndarray: return A.mean(0) else: # Assume it's sparse try: m = A.shape[0] except AttributeError: raise TypeError("columnmeans() only works with sparse and dense " "arrays") columnsum = innerprodtranspose(A, np.ones(m, float)) return columnsum / float(m) def columnvariances(A): """ This is a wrapper for general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (1 x n) vector with unbiased estimators for the column variances for each column of the (m x n) sparse or dense matrix A. (The normalization is by (m - 1).) >>> a = np.array([[1,2], [3,4]], 'd') >>> columnvariances(a) array([ 2., 2.]) """ if type(A) is np.ndarray: return np.std(A,0)**2 else: try: m = A.shape[0] except AttributeError: raise TypeError("columnvariances() only works with sparse " "and dense arrays") means = columnmeans(A) return columnmeans((A-means)**2) * (m/(m-1.0)) def flatten(a): """Flattens the sparse matrix or dense array/matrix 'a' into a 1-dimensional array """ if scipy.sparse.isspmatrix(a): return a.A.flatten() else: return np.asarray(a).flatten() class DivergenceError(Exception): """Exception raised if the entropy dual has no finite minimum. """ def __init__(self, message): self.message = message Exception.__init__(self) def __str__(self): return repr(self.message) def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
2.71875
3
tests/persistence/test_persistence.py
daniel-thom/ditto
44
12777623
import six if six.PY2: from backports import tempfile else: import tempfile import pytest as pt import os from ditto.readers.opendss.read import Reader as Reader_opendss from ditto.readers.cyme.read import Reader as Reader_cyme from ditto.writers.json.write import Writer from ditto.store import Store import logging import json_tricks logger = logging.getLogger(__name__) test_list = os.walk('data') for (dirpath, dirname, files) in test_list: if files !=[]: reader_type = dirpath.split('\\')[2] m = Store() if reader_type == 'opendss': reader = Reader_opendss(master_file = os.path.join('..',dirpath,'master.dss'), buscoordinates_file = os.path.join('..',dirpath,'buscoord.dss')) elif reader_type == 'cyme': reader = Reader_cyme(data_folder_path=os.path.join('..',dirpath)) else: #Update with other tests if they get added to the persistence tests continue reader.parse(m) m.set_names() output_path = tempfile.TemporaryDirectory() w = Writer(output_path=output_path.name, log_path=output_path) w.write(m) original = json_tricks.load(open(os.path.join(dirpath,files[0]),'r')) update = json_tricks.load(open(os.path.join(output_path.name,'Model.json'),'r')) try: assert update["model"] == original["model"] except AssertionError as e: logger.error("Model differs for usecase {loc}".format(loc = dirpath)) e.args += ("Model differs for usecase {loc}".format(loc = dirpath),) raise
1.976563
2
2522.py
BACCHUS-S/Baekjoon
0
12777624
<filename>2522.py i = int(input()) for j in range(1,i+1): print(" "*(i-j) + "*"*j) for k in range(1,i): print(" "*k + "*"*(i-k))
3.25
3
Utils/process_valencic04.py
karllark/fuv_mir_rv_relationship
0
12777625
<filename>Utils/process_valencic04.py import glob # import numpy as np from measure_extinction.extdata import ExtData if __name__ == "__main__": fpath = "data/valencic04/" files = glob.glob(f"{fpath}*bin.fits") for fname in files: ifile = fname ext = ExtData(ifile) # get A(V) values ext.calc_AV() if "AV" in ext.columns.keys(): ext.calc_RV() ext.type = "elx" ext.type_rel_band = "V" ofile = ifile.replace("valencic04/", "val04_") ext.save(ofile)
2.125
2
pyfitterbap/entry_points/crc.py
jetperch/fitterbap
21
12777626
<filename>pyfitterbap/entry_points/crc.py<gh_stars>10-100 # Copyright 2020-2021 Jetperch LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from pyfitterbap import crc def parser_config(p): """compute CRC.""" p.add_argument('--data', help='The CRC data.') return on_cmd def on_cmd(args): if args.data is not None: x = np.array([int(x, 0) for x in args.data.split(',')], dtype=np.uint8) y = crc.crc32(0, x) print(f'0x{y:08x}') return 0 return 1
2.609375
3
pyatlas/unit_tests/test_identifier_converters.py
yazad3/atlas
188
12777627
import unittest from pyatlas import identifier_converters class IdentifierConvertersTest(unittest.TestCase): def setUp(self): pass def test_osm_conversion(self): atlas_id = 222222000000 osm_id = 222222 self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id)) atlas_id = 123001002 osm_id = 123 self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id)) atlas_id = 3101220 osm_id = 3 self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id)) atlas_id = -222222000001 osm_id = 222222 self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id)) def test_country_code_conversion(self): atlas_id = 222222000000 country_code = 0 self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id)) atlas_id = 123001002 country_code = 1 self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id)) atlas_id = 3101220 country_code = 101 self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id)) atlas_id = -222222002001 country_code = 2 self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id)) def test_way_section_conversion(self): atlas_id = 222222000000 way_section = 0 self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id)) atlas_id = 123001002 way_section = 2 self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id)) atlas_id = 3101220 way_section = 220 self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id)) atlas_id = -222222002001 way_section = 1 self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id))
2.71875
3
bkcore/strdistlib.py
accidental-bebop/BkStringMatch
1
12777628
""" String distance algorithm implementations """ # --- Imports # --- String Distance Algorithms def calculate_levenshtein_distance(string1, string2): """ Compute the minimum number of substitutions, deletions, and additions needed to change string1 into string2. Parameters ---------- string1 : str string to calculate distance from string2 : str string to calculate distance to Return value ------------ prev[-1] : int levenshtein distance """ if len(string1) < len(string2): return calculate_levenshtein_distance(string2, string1) if not string2: return len(string1) prev = list(range(len(string2) + 1)) for i, curr1 in enumerate(string1): curr = [i + 1] for j, curr2 in enumerate(string2): insertions = prev[j + 1] + 1 deletions = curr[j] + 1 substitutions = prev[j] + (curr1 != curr2) curr.append(min(insertions, deletions, substitutions)) prev = curr return prev[-1] def calculate_lc_substring_length(string1, string2): """ Calculate the number of maximum consecutive symbols shared between two input strings. Parameters ---------- string1 : str string to calculate distance from string2 : str string to calculate distance to Return value ------------ lcsd : int longest common substring length """ matrix = [[0] * (1 + len(string2)) for i in range(1 + len(string1))] lcsd = 0 for cursor1 in range(1, 1 + len(string1)): for cursor2 in range(1, 1 + len(string2)): if string1[cursor1 - 1] == string2[cursor2 - 1]: matrix[cursor1][cursor2] = matrix[cursor1 - 1][cursor2 - 1] + 1 if matrix[cursor1][cursor2] > lcsd: lcsd = matrix[cursor1][cursor2] else: matrix[cursor1][cursor2] = 0 return lcsd def calculate_hamming_distance(string1, string2): """ Calculate the inverse of the minimum number of substitutions required to change string1 into string2. Parameters ---------- string1 : str string to calculate distance from string2 : str string to calculate distance to Return value ------------ hamming : int hamming distance Exceptions ---------- std::invalid_argument - length of string1 and string2 differ """ hamming = 0 s1len = len(string1) s2len = len(string2) if s1len == s2len: for i in range(0, s1len): if string1[i] == string2[i]: hamming = hamming + 1 else: return 'Error: different string lengths' return hamming def generate_q_gram_matrix(string1, string2, q_value): """ Generate a vector of q-gram occurences in two strings given a window size of q. Parameters ---------- string1 : str string to calculate distance from string2 : str string to calculate distance to q_value : int size of q-gram window Return values ------------- q_gram_matrix1, q_gram_matrix2 : array q-gram matrices of respective input strings Exceptions ---------- std::invalid_argument - q_value greater than length of string1 std::invalid_argument - q_value greater than length of string2 """ s1len = len(string1) s2len = len(string2) i = 0 j = 0 q_gram_matrix1 = [] q_gram_matrix2 = [] if q_value > s1len or q_value > s1len: return 'Error: q_value larger than string length' for i in range(s1len - q_value + 1): q_gram_matrix1.append(string1[i:i + q_value]) for j in range(s2len - q_value + 1): q_gram_matrix2.append(string2[j:j + q_value]) return q_gram_matrix1, q_gram_matrix2 def calculate_q_gram_distance(string1, string2, q_value): """ Calculate the sum of the absolute differences between two q-gram matricies from strings. Parameters ---------- string1 : str string to calculate distance from string2 : str string to calculate distance to q_value : int size of q-gram window Return value ------------ q_gram_distance : int q-gram distance """ s1len = len(string1) s2len = len(string2) q_gram_count = 0 q_gram_matricies = generate_q_gram_matrix(string1, string2, q_value) q_gram_matrix1 = q_gram_matricies[0] q_gram_matrix2 = q_gram_matricies[1] for qgram1, qgram1 in enumerate(q_gram_matrix1): for qgram2, qgram2 in enumerate(q_gram_matrix2): if qgram1 == qgram2: q_gram_count = q_gram_count + 1 q_gram_distance = ((s1len - q_value + 1) + (s2len - q_value + 1)) - (2 * q_gram_count) return q_gram_distance def calculate_jaccard_distance(string1, string2, q_value): """ Calculate Jaccard distance, where distance is one minues the quotient of the number of shared q-grams to the total number of unique q-grams between two strings. Parameters ---------- string1 : str string to calculate distance from string2 : str string to calculate distance to q_value : int size of q-gram window Return value ------------ jaccard_distace : float jaccard distance """ s1len = len(string1) s2len = len(string2) q_gram_count = 0 q_gram_matricies = generate_q_gram_matrix(string1, string2, q_value) q_gram_matrix1 = q_gram_matricies[0] q_gram_matrix2 = q_gram_matricies[1] for qgram1, qgram1 in enumerate(q_gram_matrix1): for qgram2, qgram2 in enumerate(q_gram_matrix2): if qgram1 == qgram2: q_gram_count = q_gram_count + 1 observed_q_gram = ((s1len - q_value + 1) + (s2len - q_value + 1)) - (q_gram_count) jaccard_distance = (1 - (float(q_gram_count)) / observed_q_gram) return jaccard_distance
3.921875
4
util_func/math_utils.py
ltoppyl/Zissen_team1_AGE
1
12777629
import numpy as np def softmax(x, axis=None): max = np.max(x,axis=axis,keepdims=True) e_x = np.exp(x - max) sum = np.sum(e_x,axis=axis,keepdims=True) f_x = e_x / sum return f_x
3.015625
3
braillingo-demo/obr.py
code-coffee-ufcg/braillingo-backend
1
12777630
import cv2 import numpy as np import statistics as stat class optical_braille_recognition(): def __init__(self) -> None: pass def make_histogram_y(self, img): ''' Organiza os dados da projeção horizontal na imagem Entrada: img -> Array da imagem Saída: hist -> Array com os valores do histograma de projeção horizontal ''' height, width = img.shape hist = np.zeros(height) for x in range(height): for y in range(width): if (img[x][y] == 1): hist[x] += 1 return hist def make_histogram_x(self, img): ''' Organiza os dados da projeção vertical na imagem, essa projeção só pode ser feita se a imagem de entrada possuir apenas uma única linha de caracteres braiile Entrada: img -> Array da imagem Saída: hist -> Array com os valores do histograma de projeção vertical ''' height, width = img.shape hist = np.zeros(width) for x in range(height): for y in range(width): if (img[x][y] == 1): hist[y] += 1 return hist def get_delimiters(self, hist): ''' Encontra os delimitadores verticais e horizontais da posição onde se encontram os pontos dos caracteres braille por meio do histograma Entrada: hist --> Array com os valores do histograma Saída: delimiters --> Array com os delimitadores de posição dos pontos ''' delimiters = list() for i in range(1, len(hist)-1): if (hist[i] > 0) and (hist[i-1] == 0) and (hist[i+1] > 0): delimiters.append(i-1) if (hist[i] > 0) and (hist[i-1] > 0) and (hist[i+1] == 0): delimiters.append(i+1) return delimiters def get_line_delimiters(self, delimiters): ''' Encontra os delimitadores que determinam onde começam e onde terminam as linhas de texto braille da imagem Entrada: delimiters --> Array com os delimitadores de posição dos pontos Saída: line_delimiters --> Array com os delimitadores de linha ''' distances = list() for i in range(len(delimiters)-1): distances.append(delimiters[i+1] - delimiters[i]) # print(f"{delimiters[i+1]} - {delimiters[i]}", end='\n') distances = np.array(distances) # print(distances) min = distances.min() # Distância entre linhas de pontos de um mesmo caractere mode = stat.mode(distances) # Diâmetro dos pontos # print(mode) if (mode - min) > 2: limiar = min+2 else: limiar = min+1 line_delimiters = list() for i in range(1, len(delimiters)-2): if (distances[i] > mode and distances[i+1] > limiar and distances[i-1] > limiar): line_delimiters.append(delimiters[i]) line_delimiters.append(delimiters[i+1]) if i-1 == 0: line_delimiters.append(delimiters[i-1]) if i+1 == len(delimiters)-2: line_delimiters.append(delimiters[i+2]) return line_delimiters def get_character_delimiters(self, delimiters): ''' Utiliza os delimitadores de posição para determinar os delimitadores dos caracteres braille por meio do cálculo de suas distâncias Entrada: delimiters --> Array com os delimitadores de posição dos pontos Saída: character_delimiters --> Array com os delimitadores dos caracteres ''' distances = list() for i in range(len(delimiters)-1): distances.append(delimiters[i+1] - delimiters[i]) # print(f"{delimiters[i+1]} - {delimiters[i]}", end='\n') distances = np.array(distances) min = distances.min() mode=stat.mode(distances) if (mode - min) > 2: limiar = min+2 else: limiar = min+1 # print(limiar) # print(distances) character_delimiters = list() for i in range(len(delimiters)-1): # Delimitando os caracters que possuem pontos nas duas colunas diameter = mode if (distances[i] <= limiar and distances[i] != mode-1 ): if i != 0: diameter = delimiters[i] - delimiters[i-1] character_delimiters.append(delimiters[i] - diameter) character_delimiters.append(delimiters[i+1] + diameter) #Delimitando os caracteres de início e final de linha elif i == 0 and distances[i+1] > limiar: # Caso em que o caractere possui pontos apenas na coluna da esquerda if (distances[i+1] > mode+limiar): character_delimiters.append(delimiters[i+1] + min + mode) character_delimiters.append(delimiters[i]) # Caso em que o caractere possui pontos apenas na coluna da direita else: character_delimiters.append(delimiters[i] - min - mode) character_delimiters.append(delimiters[i+1]) elif (i == len(distances)-1) and distances[i-1] > limiar: # Caso em que o caractere possui pontos apenas na coluna da direita if (distances[i-1] > mode+limiar and distances[i-3] > limiar): character_delimiters.append(delimiters[i-1] - min - mode) character_delimiters.append(delimiters[i]) # Caso em que o caractere possui pontos apenas na coluna da esquerda else: character_delimiters.append(delimiters[i+1] + min + mode) character_delimiters.append(delimiters[i]) # Delimitando os caracteres que possuem pontos apenas na coluna da esquerda if (distances[i] > 1.5*mode+min): if i > 1 and distances[i-2] > limiar: character_delimiters.append(delimiters[i] + min + mode) character_delimiters.append(delimiters[i-1]) # Delimitando os caracteres que possuem pontos apenas na coluna da direita elif ((distances[i] > 1.5*mode+min) and (i < len(delimiters)-3) and (distances[i+2] > limiar)): # if (i < len(delimiters_x)-3) and distances[i+2] > min+1: character_delimiters.append(delimiters[i+2]) character_delimiters.append(delimiters[i+1] - min - mode) # elif i == len(delimiters)-2: # character_delimiters.append(delimiters[i+2]) # character_delimiters.append(delimiters[i+1] - min - mode) # Delimitando os caracteres de espaço em branco if (distances[i] >= 3*mode+min): character_delimiters.append(delimiters[i] + mode) character_delimiters.append(delimiters[i+1] - mode) return character_delimiters def get_line_subimages(self, img, line_delimiters): ''' Utiliza os delimitadores de linha para recortar a imagem em subimagens, cada uma com uma linha de carateres braille Entrada: img -> Array da imagem que será recortada line_delimiters --> Array com os delimitadores de linha Saída: line_subimages --> Array com subimagens das linhas recortadas ''' line_delimiters = sorted(line_delimiters) line_subimages = list() for i in range(len(line_delimiters)//2): line_subimages.append(img[line_delimiters[2*i]:line_delimiters[2*i+1],:]) return line_subimages def get_character_subimages(self, img, char_delimiters): ''' Recorta a imagem que contém uma linha de caracteres braille em subimagens contendo os caracteres, que por sua vez são armazenadas em um array na ordem de leitura Entrada: img --> Array da imagem contendo um linha de caracteres char_delimiters --> Array com os delimitadores dos caracteres Saída: subimages --> Array com as subimagens dos caracteres ''' char_delimiters = sorted(char_delimiters) for i in range(len(char_delimiters)): if char_delimiters[i] < 0: char_delimiters[i] = 0 char_subimages = list() for i in range(len(char_delimiters)//2): char_subimages.append(img[:,char_delimiters[2*i]:char_delimiters[2*i+1]]) return char_subimages def optical_braille_recognition(self, img): ''' Recebe uma imagem pré-processada contendo um texto em braille, detecta a posição desses caracters na imagem e apartir disso obtem uma matriz de subimagens contendo uma palavra do texto em cada linha Entrada: img --> Array da imagem pré-processada Saída: subimages --> matriz de subimagens, onde cada linha possui os caracteres de uma palavra ''' hist_y = self.make_histogram_y(img) delimiters_y = self.get_delimiters(hist_y) line_delimiters = self.get_line_delimiters(delimiters_y) line_subimages = self.get_line_subimages(img, line_delimiters) subimages = list() for i in range(len(line_subimages)): hist_x = self.make_histogram_x(line_subimages[i]) delimiters_x = self.get_delimiters(hist_x) char_delimiters = self.get_character_delimiters(delimiters_x) char_subimages = self.get_character_subimages(line_subimages[i], char_delimiters) word_subimages = list() for j in range(len(char_subimages)): hist_x = self.make_histogram_x(char_subimages[j]) if np.max(hist_x) != 0: word_subimages.append(char_subimages[j]) else: subimages.append(word_subimages) word_subimages = list() if np.max(hist_x) != 0 and j == len(char_subimages)-1: subimages.append(word_subimages) word_subimages = list() return subimages def tilt_correction(self, img): max = 0 rows, cols = img.shape for theta in np.arange(-6, 6, 0.1): Mr = cv2.getRotationMatrix2D( (cols/2, rows/2), theta , 1) aux_img = cv2.warpAffine(img, Mr, (cols, rows)) hist_y = self.make_histogram_y(aux_img) delimiters_y = self.get_delimiters(hist_y) if len(delimiters_y) > max: max = len(delimiters_y) dst_img = aux_img return dst_img
3.390625
3
app/tasks/forms.py
3dnygm4/titanium
1
12777631
<reponame>3dnygm4/titanium #forms.py - help forms handing and data validation #/app/tasks/forms.py from wtforms import Form, TextField, DateField, IntegerField, \ SelectField, PasswordField, validators, RadioField class AddTask(Form): task_id = IntegerField('Priority') name = TextField('Task Name', [validators.Required()]) due_date = DateField('Date Due (mm/dd/yyyy)', [validators.Required()], format = '%m/%d/%Y') priority = SelectField('Priority', [validators.Required()],choices=[('1','1'), ('2','2'),('3','3'),('4','4'),('5','5'),('6','6'), ('7','7'),('8','8'),('9','9'),('10','10')]) posted_date = DateField('Posted Date (mm/dd/yyyy)', [validators.Required()], format='%m/%d/%Y') status = IntegerField('Status')
2.234375
2
open_fmri/apps/dataset/migrations/0018_auto_20151021_2215.py
rwblair/open_fmri
5
12777632
<reponame>rwblair/open_fmri # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.core.validators class Migration(migrations.Migration): dependencies = [ ('dataset', '0017_auto_20151020_2027'), ] operations = [ migrations.AddField( model_name='revision', name='aws_link_title', field=models.CharField(max_length=255, blank=True), ), migrations.AddField( model_name='revision', name='aws_link_url', field=models.TextField(validators=[django.core.validators.URLValidator()], blank=True), ), ]
1.734375
2
bluetoothctl.py
ArcanoxDragon/SwitchProConProxy
0
12777633
import time import pexpect import re import subprocess from pexpect_strip_ansi import StripAnsiSpawn class BluetoothctlError(Exception): """This exception is raised when bluetoothctl fails to start.""" pass class Bluetoothctl: """A wrapper for bluetoothctl utility.""" def __init__(self, log=False): out = subprocess.check_output("rfkill unblock bluetooth", shell = True) logfile = open("bluetoothctl.log", "w") if log else None self.child = StripAnsiSpawn("bluetoothctl", echo = False, encoding="utf-8", logfile=logfile) def get_output(self, command, pause = 0): """Run a command in bluetoothctl prompt, return output as a list of lines.""" self.child.send(command + "\n") time.sleep(pause) start_failed = self.child.expect([r"\[[^\]]+\]#", pexpect.EOF]) if start_failed: raise BluetoothctlError("Bluetoothctl failed after running " + command) return self.child.before.split("\r\n") def start_scan(self): """Start bluetooth scanning process.""" try: out = self.get_output("scan on") except BluetoothctlError as e: print(e) return None def make_discoverable(self): """Make device discoverable.""" try: out = self.get_output("discoverable on") except BluetoothctlError as e: print(e) return None def parse_device_info(self, info_string): """Parse a string corresponding to a device.""" device = {} block_list = ["[\x1b[0;", "removed"] string_valid = not any(keyword in info_string for keyword in block_list) if string_valid: try: device_position = info_string.index("Device") except ValueError: pass else: if device_position > -1: attribute_list = info_string[device_position:].split(" ", 2) device = { "mac_address": attribute_list[1], "name": attribute_list[2] } return device def get_available_devices(self): """Return a list of tuples of paired and discoverable devices.""" try: out = self.get_output("devices") except BluetoothctlError as e: print(e) return None else: available_devices = [] for line in out: device = self.parse_device_info(line) if device: available_devices.append(device) return available_devices def get_paired_devices(self): """Return a list of tuples of paired devices.""" try: out = self.get_output("paired-devices") except BluetoothctlError as e: print(e) return None else: paired_devices = [] for line in out: device = self.parse_device_info(line) if device: paired_devices.append(device) return paired_devices def get_discoverable_devices(self): """Filter paired devices out of available.""" available = self.get_available_devices() paired = self.get_paired_devices() return [d for d in available if d not in paired] def get_device_info(self, mac_address): """Get device info by mac address.""" try: out = self.get_output("info " + mac_address) except BluetoothctlError as e: print(e) return None else: info_lines: list[str] = [line for line in out if not re.match(r"^\s*Device", line)] info = {} for line in info_lines: try: attr_name, attr_value = [part.strip() for part in line.split(":", maxsplit=1)] info[attr_name] = attr_value except: pass return info def pair(self, mac_address): """Try to pair with a device by mac address.""" try: out = self.get_output("pair " + mac_address, 4) except BluetoothctlError as e: print(e) return None else: res = self.child.expect(["Failed to pair", "Pairing successful", pexpect.EOF]) success = True if res == 1 else False return success def remove(self, mac_address): """Remove paired device by mac address, return success of the operation.""" try: out = self.get_output("remove " + mac_address, 3) except BluetoothctlError as e: print(e) return None else: res = self.child.expect(["not available", "Device has been removed", pexpect.EOF]) success = True if res == 1 else False return success def connect(self, mac_address): """Try to connect to a device by mac address.""" try: out = self.get_output("connect " + mac_address, 2) except BluetoothctlError as e: print(e) return None else: res = self.child.expect(["Failed to connect", r".*Connection successful", pexpect.EOF]) success = True if res == 1 else False return success def disconnect(self, mac_address): """Try to disconnect to a device by mac address.""" try: out = self.get_output("disconnect " + mac_address, 2) except BluetoothctlError as e: print(e) return None else: res = self.child.expect(["Failed to disconnect", "Successful disconnected", pexpect.EOF]) success = True if res == 1 else False return success def trust(self, mac_address): """Try to trust a device by mac address.""" try: out = self.get_output("trust " + mac_address, 2) except BluetoothctlError as e: print(e) return None else: res = self.child.expect(["not available", r"Changing ([A-Z0-9:]+) trust succeeded", pexpect.EOF]) success = True if res == 1 else False return success def untrust(self, mac_address): """Try to untrust a device by mac address.""" try: out = self.get_output("untrust " + mac_address, 2) except BluetoothctlError as e: print(e) return None else: res = self.child.expect(["not available", r"Changing ([A-Z0-9:]+) untrust succeeded", pexpect.EOF]) success = True if res == 1 else False return success
2.875
3
webapp/__init__.py
PASTAplus/dex-deprecated
0
12777634
<filename>webapp/__init__.py #!/usr/bin/env python # -*- coding: utf-8 -*- """ :Mod: __init__ :Synopsis: Initialize webapp, including working directories (see Config.ROOT_DIR). :Author: servilla :Created: 4/12/20 """ import os import daiquiri from webapp.config import Config logger = daiquiri.getLogger(__name__) path = Config.ROOT_DIR + "/static" os.makedirs(path, exist_ok=True) logger.info(f"Created root working directories: {Config.ROOT_DIR} and {path} ")
1.960938
2
clumioapi/models/ebs_restore_target_v1.py
clumio-code/clumio-python-sdk
0
12777635
<filename>clumioapi/models/ebs_restore_target_v1.py<gh_stars>0 # # Copyright 2021. Clumio, Inc. # from typing import Any, Dict, Mapping, Optional, Sequence, Type, TypeVar from clumioapi.models import aws_tag_common_model T = TypeVar('T', bound='EBSRestoreTargetV1') class EBSRestoreTargetV1: """Implementation of the 'EBSRestoreTargetV1' model. The configuration of the EBS volume to be restored. Attributes: aws_az: The availability zone into which the EBS volume is restored. For example, `us- west-2a`. Use the [GET /datasources/aws/environments](#operation/list-aws-environments) endpoint to fetch valid values. environment_id: The Clumio-assigned ID of the AWS environment to be used as the restore destination. Use the [GET /datasources/aws/environments](#operation/list-aws- environments) endpoint to fetch valid values. kms_key_native_id: The KMS encryption key ID used to encrypt the EBS volume data. The KMS encryption key ID is stored in the AWS cloud as part of your AWS account. tags: The AWS tags to be applied to the restored volume. The tags are stored in the AWS cloud as part of your AWS account. An EBS volume can be have multiple tags. The target volume will not inherit any tags that were applied to the original volume. To find the tags that were applied to the original volume, use the [GET /backups/aws/ebs-volumes](#operation/list-aws-ebs-volumes) endpoint to display the original volume's tag keys (`tags.key`) and tag values (`tags.value`). """ # Create a mapping from Model property names to API property names _names = { 'aws_az': 'aws_az', 'environment_id': 'environment_id', 'kms_key_native_id': 'kms_key_native_id', 'tags': 'tags', } def __init__( self, aws_az: str = None, environment_id: str = None, kms_key_native_id: str = None, tags: Sequence[aws_tag_common_model.AwsTagCommonModel] = None, ) -> None: """Constructor for the EBSRestoreTargetV1 class.""" # Initialize members of the class self.aws_az: str = aws_az self.environment_id: str = environment_id self.kms_key_native_id: str = kms_key_native_id self.tags: Sequence[aws_tag_common_model.AwsTagCommonModel] = tags @classmethod def from_dictionary(cls: Type, dictionary: Mapping[str, Any]) -> Optional[T]: """Creates an instance of this model from a dictionary Args: dictionary: A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if not dictionary: return None # Extract variables from the dictionary aws_az = dictionary.get('aws_az') environment_id = dictionary.get('environment_id') kms_key_native_id = dictionary.get('kms_key_native_id') tags = None if dictionary.get('tags'): tags = list() for value in dictionary.get('tags'): tags.append(aws_tag_common_model.AwsTagCommonModel.from_dictionary(value)) # Return an object of this model return cls(aws_az, environment_id, kms_key_native_id, tags)
2.125
2
planning/path_generator/astar.py
HybridRobotics/cbf
9
12777636
import heapq as hq import math import numpy as np from models.geometry_utils import * # TODO: Generalize to 3D? class Node: def __init__(self, pos, parent=None, g_cost=math.inf, f_cost=math.inf): self.pos = pos self.parent = parent self.g_cost = g_cost self.f_cost = f_cost def __eq__(self, other): return all(self.pos == other.pos) def __le__(self, other): if self.pos[0] == other.pos[0]: return self.pos[1] <= other.pos[1] else: return self.pos[0] <= other.pos[0] def __lt__(self, other): if self.pos[0] == other.pos[0]: return self.pos[1] < other.pos[1] else: return self.pos[0] < other.pos[0] # TODO: Generalize to 3D class GridMap: # cell_size > 0; don't make cell_size too small def __init__(self, bounds=((0.0, 0.0), (10.0, 10.0)), cell_size=0.1, quad=True): self.bounds = bounds self.cell_size = cell_size self.quad = quad self.Nx = math.ceil((bounds[1][0] - bounds[0][0]) / cell_size) self.Ny = math.ceil((bounds[1][1] - bounds[0][1]) / cell_size) pos = lambda i, j: np.array([bounds[0][0] + (i + 0.5) * cell_size, bounds[0][1] + (j + 0.5) * cell_size]) self.grid = [[Node(pos(i, j)) for j in range(self.Ny)] for i in range(self.Nx)] # pos should be within bounds def set_node(self, pos, parent, g_cost, f_cost): i_x = math.floor((pos[0] - self.bounds[0][0]) / self.cell_size) i_y = math.floor((pos[1] - self.bounds[0][1]) / self.cell_size) self.grid[i_x][i_y].parent = parent self.grid[i_x][i_y].g_cost = g_cost self.grid[i_x][i_y].f_cost = f_cost return self.grid[i_x][i_y] # pos should be within bounds def get_node(self, pos): i_x = math.floor((pos[0] - self.bounds[0][0]) / self.cell_size) i_y = math.floor((pos[1] - self.bounds[0][1]) / self.cell_size) return self.grid[i_x][i_y] def get_neighbours(self, node): i_x = math.floor((node.pos[0] - self.bounds[0][0]) / self.cell_size) i_y = math.floor((node.pos[1] - self.bounds[0][1]) / self.cell_size) neighbours = [] for i in range(i_x - 1, i_x + 2): for j in range(i_y - 1, i_y + 2): if i == i_x and j == i_y: continue if self.quad: if 0 <= i <= self.Nx - 1 and 0 <= j <= self.Ny - 1 and abs(i - i_x) + abs(j - i_y) <= 1: neighbours.append(self.grid[i][j]) else: if 0 <= i <= self.Nx - 1 and 0 <= j <= self.Ny - 1: neighbours.append(self.grid[i][j]) return neighbours class GraphSearch: def __init__(self, graph, obstacles, margin): self.graph = graph self.obstacles = obstacles self.margin = margin def a_star(self, start_pos, goal_pos): h_cost = lambda pos: np.linalg.norm(goal_pos - pos) edge_cost = lambda n1, n2: np.linalg.norm(n1.pos - n2.pos) openSet = [] start = self.graph.set_node(start_pos, None, 0.0, h_cost(start_pos)) goal = self.graph.get_node(goal_pos) hq.heappush(openSet, (start.f_cost, start)) while len(openSet) > 0: current = openSet[0][1] if current == goal: return self.reconstruct_path(current) hq.heappop(openSet) for n in self.graph.get_neighbours(current): if self.check_collision(n.pos): continue g_score = current.g_cost + edge_cost(current, n) if g_score < n.g_cost: n_ = self.graph.set_node(n.pos, current, g_score, g_score + h_cost(n.pos)) if not n in (x[1] for x in openSet): hq.heappush(openSet, (n_.f_cost, n_)) return [] def theta_star(self, start_pos, goal_pos): h_cost = lambda pos: np.linalg.norm(goal_pos - pos) edge_cost = lambda n1, n2: np.linalg.norm(n1.pos - n2.pos) openSet = [] start = self.graph.set_node(start_pos, None, 0.0, h_cost(start_pos)) goal = self.graph.get_node(goal_pos) hq.heappush(openSet, (start.f_cost, start)) while len(openSet) > 0: current = openSet[0][1] if current == goal: return self.reconstruct_path(current) hq.heappop(openSet) for n in self.graph.get_neighbours(current): if self.check_collision(n.pos): continue if (not current.parent is None) and self.line_of_sight(current.parent, n): g_score = current.parent.g_cost + edge_cost(current.parent, n) if g_score < n.g_cost: n_ = self.graph.set_node(n.pos, current.parent, g_score, g_score + h_cost(n.pos)) # delete n from min-heap for i in range(len(openSet)): if openSet[i][1] == n: openSet[i] = openSet[-1] openSet.pop() if i < len(openSet): hq._siftup(openSet, i) hq._siftdown(openSet, 0, i) break hq.heappush(openSet, (n_.f_cost, n_)) else: g_score = current.g_cost + edge_cost(current, n) if g_score < n.g_cost: n_ = self.graph.set_node(n.pos, current, g_score, g_score + h_cost(n.pos)) # delete n from min-heap for i in range(len(openSet)): if openSet[i][1] == n: openSet[i] = openSet[-1] openSet.pop() if i < len(openSet): hq._siftup(openSet, i) hq._siftdown(openSet, 0, i) break hq.heappush(openSet, (n_.f_cost, n_)) return [] # TODO: optimize def line_of_sight(self, n1, n2): e = self.graph.cell_size div = np.linalg.norm(n2.pos - n1.pos) / e for i in range(1, math.floor(div) + 1): if self.check_collision((n2.pos * i + n1.pos * (div - i)) / div): return False return True def check_collision(self, pos): for o in self.obstacles: A, b = o.get_convex_rep() b = b.reshape((len(b),)) if all(A @ pos - b - self.margin * np.linalg.norm(A, axis=1) <= 0): return True return False def reconstruct_path(self, node): path = [node] while not node.parent is None: node = node.parent path.append(node) return [path[len(path) - i - 1] for i in range(len(path))] def reduce_path(self, path): red_path = [] if len(path) > 1: for i in range(1, len(path)): if (not path[i].parent.parent is None) and self.line_of_sight(path[i], path[i].parent.parent): path[i].parent = path[i].parent.parent else: red_path.append(path[i].parent) red_path.append(path[-1]) return red_path
2.8125
3
main.py
Seokky/avito-flats-parser
0
12777637
<reponame>Seokky/avito-flats-parser import requests from bs4 import BeautifulSoup from constants import BASE_URL, AD_ITEM_CLASS, RESULT_FNAME from helpers import getAdContent, writeAdContentToFile req = requests.get(BASE_URL) soup = BeautifulSoup(req.text, features="lxml") ads = soup.findAll('div', AD_ITEM_CLASS) last_floor_apartments = [] def print_ad_content(data): text, address, url = data print(f'{text}, {address}\n{url}\n') def print_regular_apartments(): for ad in ads: text, address, url, last_floor = getAdContent(ad) if (last_floor == True): last_floor_apartments.append(ad) def print_last_floor_apartments(): for ad in last_floor_apartments: text, address, url, last_floor = getAdContent(ad) print_ad_content([text, address, url]) writeAdContentToFile(f, [text, address, url]) with open(RESULT_FNAME, encoding='utf-8', mode="w") as f: f.write(f'Fetching from: {BASE_URL}\n\n') print_regular_apartments() print_last_floor_apartments()
2.703125
3
examples/pyqtgraph_plot_block.py
Sout/pyrf
0
12777638
#!/usr/bin/env python # import required libraries from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg import sys import numpy as np from pyrf.devices.thinkrf import WSA from pyrf.util import read_data_and_context from pyrf.numpy_util import compute_fft # plot constants CENTER_FREQ = 2450 * 1e6 SAMPLE_SIZE = 1024 ATTENUATOR = 1 DECIMATION = 1 RFE_MODE = 'ZIF' # connect to WSA device dut = WSA() ip = sys.argv[1] dut.connect(ip) class MainApplication(pg.GraphicsWindow): def __init__(self, dut): super(MainApplication, self).__init__() self.dut = dut def keyPressEvent(self, event): if event.text() == ';': cmd, ok = QtGui.QInputDialog.getText(win, 'Enter SCPI Command', 'Enter SCPI Command:') if ok: if '?' not in cmd: dut.scpiset(cmd) win = MainApplication(dut) win.resize(1000,600) win.setWindowTitle("PYRF FFT Plot Example") # initialize WSA configurations dut.reset() dut.request_read_perm() dut.freq(CENTER_FREQ) dut.decimation(DECIMATION) dut.attenuator(ATTENUATOR) dut.rfe_mode(RFE_MODE) BANDWIDTH = dut.properties.FULL_BW[RFE_MODE] # initialize plot fft_plot = win.addPlot(title="Power Vs. Frequency") # initialize x-axes limits plot_xmin = (CENTER_FREQ) - (BANDWIDTH / 2) plot_xmax = (CENTER_FREQ) + (BANDWIDTH / 2) fft_plot.setLabel('left', text= 'Power', units = 'dBm', unitPrefix=None) # initialize the y-axis of the plot plot_ymin = -130 plot_ymax = 20 fft_plot.setYRange(plot_ymin ,plot_ymax) fft_plot.setLabel('left', text= 'Power', units = 'dBm', unitPrefix=None) # disable auto size of the x-y axis fft_plot.enableAutoRange('xy', False) # initialize a curve for the plot curve = fft_plot.plot(pen='g') def update(): global dut, curve, fft_plot, plot_xmin, plot_xmax # read data data, context = read_data_and_context(dut, SAMPLE_SIZE) # compute the fft and plot the data pow_data = compute_fft(dut, data, context) # update the frequency range (Hz) freq_range = np.linspace(plot_xmin , plot_xmax, len(pow_data)) # initialize the x-axis of the plot fft_plot.setXRange(plot_xmin,plot_xmax) fft_plot.setLabel('bottom', text= 'Frequency', units = 'Hz', unitPrefix=None) curve.setData(freq_range,pow_data, pen = 'g') timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(0) ## Start Qt event loop unless running in interactive mode or using pyside. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
2.453125
2
tests/test_util.py
D-PLACE/pydplace
1
12777639
from pydplace.util import * def test_remove_subdirs(tmpdir): tmpdir.join('a').mkdir() tmpdir.join('a', 'b').mkdir() assert tmpdir.join('a', 'b').check() remove_subdirs(str(tmpdir)) assert not tmpdir.join('a').check()
2.671875
3
setup.py
amehtaSF/QualtricsData
0
12777640
<gh_stars>0 import setuptools import os with open(f"{os.path.dirname(os.path.realpath(__file__))}/README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="QualtricsData", version="0.0.1", author="<NAME>", author_email="<EMAIL>", description="A package to read and preprocess Qualtrics Data", long_description=long_description, url="https://github.com/amehtaSF/QualtricsData", packages=setuptools.find_packages(), license = "License :: OSI Approved :: MIT License", classifiers=[ "Development Status :: 2 - Pre-Alpha", "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
1.367188
1
jauth/repository/token_base.py
pjongy/jauth
1
12777641
<filename>jauth/repository/token_base.py<gh_stars>1-10 import abc from jauth.model.token import Token from jauth.repository import BaseRepository class TokenRepository(BaseRepository, abc.ABC): @abc.abstractmethod async def find_token_by_id(self, _id: str) -> Token: pass @abc.abstractmethod async def create_token(self, user_id: str) -> Token: pass @abc.abstractmethod async def delete_token(self, token_id: str) -> int: pass
2.265625
2
UnitTest/RPi_CameraTest/Camera+View.py
kullken/Pet-Mk-IV
1
12777642
import picamera from time import sleep import os # Xlib: extension "RANDR" missing on display ":10.0". #(gpicview:2869): # GLib-GObject-WARNING **: # Attempt to add property GtkSettings: # :gtk-scrolled-window-placement after class was initialised camera = picamera.PiCamera() camera.rotation = 180 print ('klick1.py: Take picture') camera.capture('python-camera.jpg') print ('klick1.py: Launch Viewer') os.system('gpicview python-camera.jpg &amp;') print ('klick1.py: Wait 1') sleep(2) print ('klick1.py: Wait 2') sleep(2) print ('klick1.py: Wait 3') sleep(2) print ('klick1.py: Close') os.system('killall gpicview') #camera.start_preview() #sleep(5) #camera.stop_preview()
2.765625
3
dev/scripts/process-starter.py
kohkimakimoto/hq
62
12777643
#!/usr/bin/env python from __future__ import division, print_function, absolute_import, unicode_literals import argparse, os, sys, re, fcntl, time, subprocess, textwrap, threading, signal # utilities for compatibility. PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 if PY2: input = raw_input def as_bytes(s, encoding='utf-8'): if isinstance(s, str): return s else: return s.encode(encoding) def as_string(s, encoding='utf-8'): if isinstance(s, unicode): return s else: return s.decode(encoding) else: input = input def as_bytes(s, encoding='utf8'): if isinstance(s, bytes): return s else: return s.encode(encoding) def as_string(s, encoding='utf8'): if isinstance(s, str): return s else: return s.decode(encoding) def shell_escape(s): return "'" + s.replace("'", "'\"'\"'") + "'" def run(cmd): try: subprocess.check_call(cmd, shell=True) except subprocess.CalledProcessError as e: print(e, file=sys.stderr) def sig_handler(signum, frame): sys.exit(0) def start(args): run_commands = args.run pre_commands = args.pre post_commands = args.post # handing signal to execute finally code. signal.signal(signal.SIGTERM, sig_handler) signal.signal(signal.SIGINT, sig_handler) try: # run pre command for cmd in pre_commands: run(cmd) # start run commands threads = [] for cmd in run_commands: t = threading.Thread(target=run, args=(cmd,)) threads.append(t) t.start() # wait for all run command threads finish for t in threads: t.join() finally: # run post command for cmd in post_commands: run(cmd) def main(): parser = argparse.ArgumentParser( description="process-starter.py is a utility to start multiple processes", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent('''\ description: A utility to start multiple processes example: process-starter.py --run "your-file-watcher-command" "your-dev-server-start-command" process-starter.py --pre "your-build-command" --run "your-dev-server-start-command" Copyright (c) <NAME> <<EMAIL>> The MIT License (MIT) ''')) parser.add_argument("--pre", dest="pre", metavar="COMMAND", nargs='*', help="Set commands that are executed before run commands", default=[]) parser.add_argument("--post", dest="post", metavar="COMMAND", nargs='*',help="Set commands that are executed after run commands", default=[]) parser.add_argument("--run", "-r", dest="run", metavar="COMMAND", nargs='*', help="Set commands to run concurrently", default=[]) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() start(args) if __name__ == '__main__': main()
2.421875
2
tree.py
SIshikawa1106/planner
0
12777644
<gh_stars>0 import kdtree from collections import deque import numpy as np DEBUG_VIEW = True class Tree(object): def __init__(self, node): self.root = node self.node_list = node[np.newaxis, :] self._tree = kdtree.create([node], dimensions=node.size) def get_root(self): return self.root def add_node(self, node): self._tree.add(node) self.node_list = np.append(self.node_list, node[np.newaxis,:], axis=0) def find_nearest_node(self, target_node): nearest_node = self._tree.search_nn(target_node) if DEBUG_VIEW: print(nearest_node) return nearest_node[0].data def get_node_list(self): return self.node_list if __name__ == "__main__": import numpy as np import sys, os sys.path.append("../") import Plot3DViewer print("TEST") node_tree = None for n in range(100): node = np.random.rand(3) if node_tree is None: node_tree = Tree(node) else: node_tree.add_node(node=node) points = node_tree.get_node_list() Plot3DViewer.Plot_3D(node_tree.get_node_list(), pause_time=0.1)
2.859375
3
frappe/website/template.py
cadencewatches/frappe
0
12777645
<reponame>cadencewatches/frappe # Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe from frappe.utils import strip_html from frappe.website.utils import scrub_relative_urls from jinja2.utils import concat from jinja2 import meta import re def render_blocks(context): """returns a dict of block name and its rendered content""" out = {} env = frappe.get_jenv() def _render_blocks(template_path): source = frappe.local.jloader.get_source(frappe.local.jenv, template_path)[0] for referenced_template_path in meta.find_referenced_templates(env.parse(source)): if referenced_template_path: _render_blocks(referenced_template_path) template = frappe.get_template(template_path) for block, render in template.blocks.items(): out[block] = scrub_relative_urls(concat(render(template.new_context(context)))) _render_blocks(context["template_path"]) # default blocks if not found if "title" not in out and out.get("header"): out["title"] = out["header"] if "title" not in out: out["title"] = context.get("title") if "header" not in out and out.get("title"): out["header"] = out["title"] if not out["header"].startswith("<h"): out["header"] = "<h2>" + out["header"] + "</h2>" if "breadcrumbs" not in out: out["breadcrumbs"] = scrub_relative_urls( frappe.get_template("templates/includes/breadcrumbs.html").render(context)) if "<!-- no-sidebar -->" in out.get("content", ""): out["no_sidebar"] = 1 if "sidebar" not in out and not out.get("no_sidebar"): out["sidebar"] = scrub_relative_urls( frappe.get_template("templates/includes/sidebar.html").render(context)) out["title"] = strip_html(out.get("title") or "") # remove style and script tags from blocks out["style"] = re.sub("</?style[^<>]*>", "", out.get("style") or "") out["script"] = re.sub("</?script[^<>]*>", "", out.get("script") or "") return out
1.882813
2
gym_game_nim/envs/__init__.py
hfwittmann/gym_game_nim
1
12777646
<reponame>hfwittmann/gym_game_nim<filename>gym_game_nim/envs/__init__.py from gym_game_nim.envs.game_nim_env import GameNimEnv
1.203125
1
data/test_drawing_box.py
vuanh96/Thesis
0
12777647
import cv2 import os import sys if sys.version_info[0] == 2: import xml.etree.cElementTree as ET else: import xml.etree.ElementTree as ET if __name__ == "__main__": for line in open("MOT17/train/ImageSets/Main/trainval.txt", "r"): line = line.rstrip() img_path = os.path.join("MOT17/train/JPEGImages", line + ".jpg") anno_path = os.path.join("MOT17/train/Annotations", line + ".xml") img = cv2.imread(img_path) anno = ET.parse(anno_path).getroot() file_name = anno.find('filename').text.lower().strip() pts = ['xmin', 'ymin', 'xmax', 'ymax'] for obj in anno.iter('object'): bbox = obj.find('bndbox') box = [] for i, pt in enumerate(pts): cur_pt = int(bbox.find(pt).text) - 1 box.append(cur_pt) cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 2) cv2.imshow("MOT17", img) if cv2.waitKey(1) & 0xFF == ord('q'): cv2.destroyAllWindows() break
2.625
3
MAIN/LOGIC/board.py
SI-Jeson-Mor-NineHorses/NineHorses
0
12777648
from MAIN.LOGIC.pieces import * class Board: # Plansza reprezentowana za pomocą tablicy 9x9. 'None' oznacza pusty kwadrat. def __init__(self): self.recently_highlighted = [] self.empty = [[None for x in range(9)] for y in range(9)] self.array = [ [Knight("b", 0, i) for i in range(9)], [Empty("_", 1, x) for x in range(9)], [Empty("_", 2, x) for x in range(9)], [Empty("_", 3, x) for x in range(9)], [Empty("_", 4, x) for x in range(9)], [Empty("_", 5, x) for x in range(9)], [Empty("_", 6, x) for x in range(9)], [Empty("_", 7, x) for x in range(9)], [Knight("w", 8, i) for i in range(9)], ] def get_all_legal_moves(self, color): moves_list = [] for i in self.array: for j in i: if j.color == color: for move in j.gen_legal_moves(self): moves_list.append({color: {'from': (j.y, j.x), 'to': move}}) return moves_list def move_piece(self, piece, y, x): oldx = piece.x oldy = piece.y piece.x = x piece.y = y piece.rect.x = x * 60 piece.rect.y = y * 60 self.array[oldy][oldx] = Empty('_', oldy, oldx) self.array[y][x] = piece piece.unhighlight() def get_piece(self, x, y): return self.array[y][x] # Wypisanie tablicy planszy do konsoli def print_to_terminal(self): for j in range(9): arr = [] for piece in self.array[j]: if piece != None: arr.append(piece.color + piece.symbol) else: arr.append("--") print(arr) # podświetlenie opcjonalnych ruchów def highlight_optional_moves(self, moves): self.recently_highlighted = moves for x in moves: self.array[x[0]][x[1]].highlight() # usunięcie podświetlenia opcjonalnych ruchów def unhighlight_optional_moves(self): for x in self.recently_highlighted: self.array[x[0]][x[1]].unhighlight()
3.15625
3
src/spaceone/inventory/model/region_model.py
whdalsrnt/inventory
9
12777649
<gh_stars>1-10 from mongoengine import * from spaceone.core.model.mongo_model import MongoModel class RegionTag(EmbeddedDocument): key = StringField(max_length=255) value = StringField(max_length=255) class Region(MongoModel): region_id = StringField(max_length=40, generate_id='region', unique=True) name = StringField(max_length=255) region_key = StringField(max_length=255) region_code = StringField(max_length=255, unique_with=['provider', 'domain_id']) provider = StringField(max_length=255) ref_region = StringField(max_length=255) tags = ListField(EmbeddedDocumentField(RegionTag)) domain_id = StringField(max_length=255) updated_by = StringField(default=None, null=True) created_at = DateTimeField(auto_now_add=True) updated_at = DateTimeField(auto_now=True) meta = { 'updatable_fields': [ 'name', 'region_key', 'tags', 'updated_by', 'updated_at' ], 'minimal_fields': [ 'region_id', 'name', 'region_code', 'provider' ], 'ordering': [ 'name' ], 'indexes': [ 'region_id', 'region_key', 'region_code', 'provider', 'ref_region', 'domain_id', ('tags.key', 'tags.value') ] }
2.25
2
src/passpredict/satellites/__init__.py
samtx/pass-predictor
0
12777650
from .base import LLH from .sgp4 import SGP4Propagator from .kepler import KeplerPropagator __all__ = [ 'LLH', 'SGP4Propagator', 'KeplerPropagator', ]
1.007813
1