max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
belphegor/utils/modding.py
nguuuquaaa/Belphegor
16
12777351
<reponame>nguuuquaaa/Belphegor<gh_stars>10-100 import discord from discord.ext import commands from . import checks, string_utils import multidict import functools from yarl import URL #================================================================================================================================================== class SupressAttributeError(str): @property def name(self): return self class BadValue(commands.CommandError): def __init__(self, key, value): self.key = key self.value = value #================================================================================================================================================== class MultiDict(multidict.MultiDict): def geteither(self, *keys, default=None): for key in keys: try: value = self.getone(key) except KeyError: continue else: return value else: return default def getalltext(self, key, *, default="", delimiter=" "): try: temp = self.getall(key) except KeyError: return default else: return delimiter.join((str(t) for t in temp)) def to_default_dict(self): ret = {} for key, value in self.items(): rv = ret.get(key, []) rv.append(value) ret[key] = rv return ret EMPTY = MultiDict() #================================================================================================================================================== _quotes = commands.view._quotes _all_quotes = set((*_quotes.keys(), *_quotes.values())) def _greater_than(number): try: return number.set_positive_sign(True) except AttributeError: raise commands.BadArgument("Input <{number}> cannot be compared.") def _less_than(number): try: return number.set_positive_sign(False) except AttributeError: raise commands.BadArgument("Input <{number}> cannot be compared.") def _equal(anything): return anything _standard_comparison = { ">": _greater_than, "<": _less_than, "=": _equal } _equality = { "=": _equal } _delimiters = _all_quotes | _standard_comparison.keys() def _check_char(c): return c.isspace() or c in _delimiters #================================================================================================================================================== class Equality: def __init__(self, number): self.number = number self.positive_sign = None def set_positive_sign(self, positive_sign): self.positive_sign = positive_sign return self def to_query(self): if self.positive_sign is True: return {"$gt": self.number} elif self.positive_sign is False: return {"$lt": self.number} else: return self.number class Comparison(commands.Converter): def __init__(self, type): self.type = type def get_comparison(self): return _standard_comparison async def convert(self, ctx, argument): value = await ctx.command._actual_conversion(ctx, self.type, argument, SupressAttributeError("type_conv")) return Equality(value) #================================================================================================================================================== class KeyValue(commands.Converter): def __init__(self, conversion={}, *, escape=False, clean=False, multiline=False): self.escape = escape if clean: self.clean = string_utils.clean_codeblock else: self.clean = str.strip self.multiline = multiline self.conversion = {} self.comparisons = {} for key, value in conversion.items(): try: c = value.get_comparison() except AttributeError: c = _equality if isinstance(key, tuple): for k in key: self.conversion[k] = value self.comparisons[k] = c else: self.conversion[key] = value self.comparisons[key] = c async def convert(self, ctx, argument): text = self.clean(argument) ret = MultiDict() empty = {} async def resolve(key, value, handle): key = key.lower() orig_value = value if self.escape: value = value.encode("raw_unicode_escape").decode("unicode_escape") conv = self.conversion.get(key) if conv: try: value = await ctx.command._actual_conversion(ctx, conv, value, SupressAttributeError(key)) value = handle(value) except commands.BadArgument: raise BadValue(key, orig_value) ret.add(key, value) if self.multiline: for line in text.splitlines(): line = line.strip() if line: value = "" for i, c in enumerate(line): comparison = self.comparisons.get(value, _equality) if c in comparison: handle = comparison[c] key = value value = line[i+1:] break else: value = value + c else: handle = _equal key = "" value = line key, value = key.strip(), value.strip() await resolve(key, value, handle) else: wi = string_utils.split_iter(text, check=_check_char) key = "" value = "" handle = _equal while True: try: word = next(wi) except StopIteration: break if key: comparison = empty else: comparison = self.comparisons.get(value, _equality) if word in comparison: key = value value = "" handle = comparison[word] elif word in _quotes: if value: raise commands.BadArgument("Quote character must be placed at the start.") quote_close = _quotes[word] quote_words = [] escape = False while True: try: w = next(wi) except StopIteration: raise commands.BadArgument("No closing quote.") else: if escape: quote_words.append(w) escape = False elif w == quote_close: value = "".join(quote_words) break else: if w == "\\": escape = True quote_words.append(w) elif not word.isspace(): value = value + word else: await resolve(key, value, handle) key = "" value = "" handle = _equal if key or value: await resolve(key, value, handle) return ret #================================================================================================================================================== class URLConverter(commands.Converter): def __init__(self, schemes=["http", "https"]): self.schemes = schemes self._accept_string = "/".join(schemes) async def convert(self, ctx, argument): argument = argument.lstrip("<").rstrip(">") url = URL(argument) if url.scheme in self.schemes: if url.scheme and url.host and url.path: return url else: raise checks.CustomError("Malformed URL.") else: raise checks.CustomError(f"This command accepts url with scheme {self._accept_string} only.") #================================================================================================================================================== def _transfer_modding(from_, to_): try: to_.category = from_.category except AttributeError: return else: to_.brief = from_.brief to_.field = from_.field to_.paragraph = from_.paragraph #modding.help hax, so new attributes are preserved when creating a commands.Cog instance def _wrap_transfer(func): @functools.wraps(func) def new_func(self): ret = func(self) _transfer_modding(self, ret) return ret return new_func commands.Command.copy = _wrap_transfer(commands.Command.copy) #end hax def help(**kwargs): def wrapper(command): command.brief = kwargs.pop("brief", None) command.category = kwargs.pop("category", None) command.field = kwargs.pop("field", "Commands") command.paragraph = kwargs.pop("paragraph", 0) return command return wrapper
2.578125
3
pavement.py
robotframework/HTMLChecker
9
12777352
import os from os.path import join as _join from subprocess import call from paver.easy import * from paver.setuputils import setup BASEDIR = os.path.dirname(__file__) VERSION = '0.3' setup( name='robotframework-htmlchecker', package_dir = {'': 'src'}, packages=['HTMLChecker', 'HTMLChecker.lib'], version=VERSION, url='https://github.com/robotframework/HTMLChecker', author='Robot Framework developers', author_email='<EMAIL>' ) @task @needs('generate_setup', 'minilib', 'setuptools.command.sdist') def sdist(): """Overrides sdist to make sure that our setup.py is generated.""" pass @task def robot(): testdir = _join(BASEDIR, 'test', 'robot') _sh(['pybot', '-d', _join(testdir, 'results'), testdir]) @task def version(): version_path = _join(BASEDIR, 'src', 'HTMLChecker', 'version.py') with open(version_path, 'w') as verfile: verfile.write('''"This file is updated by running `paver version`." VERSION="%s" ''' % VERSION) @task @needs('version') def doc(): libdoc = _join(BASEDIR, 'lib', 'libdoc.py') docdir = _get_dir('doc') _sh(['python', libdoc , '-o', '%s/HTMLChecker-%s.html' % (docdir, VERSION), 'HTMLChecker']) @task @needs('version', 'sdist', 'doc') def release(): _sh(['git', 'ci', '-a', '-m', 'updated version']) _sh(['git', 'tag', VERSION]) print 'Created git tag for %s' % VERSION print 'Windows installer has to be created with `paver bdist_wininst`' print 'Remember to `git push --tags` and upload sdist & doc to GitHub' def _sh(cmd): env = os.environ env.update({'PYTHONPATH': 'src'}) call(cmd, shell=(os.sep=='\\'), env=env) def _get_dir(name): dirname = _join(BASEDIR, name) if not os.path.exists(dirname): os.makedirs(dirname) return dirname
2.078125
2
dev/results/half_wing_swept_45_deg/machline_iterator.py
usuaero/MachLine
2
12777353
# This script is to run automate running machline for the Weber and Brebner results import numpy as np import json import subprocess import time import multiprocessing as mp import os # Record and print the time required to run MachLine start_time = time.time() def mach_iter(AoA, Node, formulation, freestream): if formulation == "source-free": formulation_adjusted = "source_free" else: formulation_adjusted = formulation # Modify freestream velocities based on angle of attack AoA_rad = float(AoA)*np.pi/180 x_flow = freestream * np.cos(AoA_rad) z_flow = freestream * np.sin(AoA_rad) # Identify filebases used throughout iterator filebase = "dev/results/half_wing_swept_45_deg/" output_filebase = filebase + "MachLine_Results/" + AoA + "_degrees_AoA/half_wing_A_" + Node + "_nodes_" + AoA + "_deg_AoA_" + formulation_adjusted # Rewrite the input files based on angle of attack and node densities dict1 = { "flow": { "freestream_velocity": [ x_flow, 0.0, z_flow ] }, "geometry": { "file": filebase + "half_wing_A_meshes/half_wing_A_" + Node + "_nodes.vtk", "mirror_about": "xz", "singularity_order": { "doublet": 1, "source": 0 }, "wake_model": { "wake_shedding_angle": 90.0, "trefftz_distance": 10000.0, "N_panels": 1 }, "reference": { "area": 1.0 } }, "solver": { "formulation": formulation, "control_point_offset": 1.1e-05 }, "post_processing" : { }, "output": { "body_file": output_filebase + "_formulation.vtk", "wake_file": output_filebase + "_formulation_wake.vtk", "control_point_file": output_filebase + "_control_points.vtk", "report_file": "../../report.txt" } } # Identify output file location filename = AoA + "_deg_angle_of_attack_input.json" inputfile = filebase + 'half_wing_A_swept_inputs/' + filename # file_location = "dev/results/half_wing_swept_45deg/test/" + AoA + "_degree_AoA_test_file_" + Node + "_nodes.json" with open(inputfile, "w") as output_file: json.dump(dict1, output_file, indent=4) print("\n***",Node, "node input file saved successfully ***\n") # Run machline with current input file # machline_command = "./machline.exe {0}".format(inputfile) subprocess.call(["./machline.exe", inputfile]) ## Main input_conditions = "Swept_half_wing_conditions_input.json" json_string = open(input_conditions).read() json_vals = json.loads(json_string) # Identify values to pass from input conditions file Nodes_input = json_vals["geometry"]["nodes"] AoA_list_input = json_vals["geometry"]["AoA list"] freestream_velocity = json_vals["flow conditions"]["freestream velocity"] formulation_input = json_vals["solver"]["formulation"] # Identify number of CPU available to work with # n_processors = mp.cpu_count() n_processors = 8 Arguments = [] # Change the working directory to the main MachLine directory for execution os.chdir("../../../") # Call the machline iterator with the desired inputs with mp.Pool(n_processors) as pool: for form in formulation_input: for AoA in AoA_list_input: for node in Nodes_input: Arguments.append((AoA, node, form, freestream_velocity)) pool.starmap(mach_iter, Arguments) pool.join() # mach_iter(AoA_list_input, Nodes_input, formulation_input, freestream_velocity) print("MachLine Iterator executed successfully in %s seconds" % "{:.4f}".format(time.time()-start_time))
2.3125
2
Lib/site-packages/hackedit/vendor/coloredlogs/tests.py
fochoao/cpython
0
12777354
# Automated tests for the `coloredlogs' package. # # Author: <NAME> <<EMAIL>> # Last Change: November 14, 2015 # URL: https://coloredlogs.readthedocs.org """Automated tests for the `coloredlogs` package.""" # Standard library modules. import logging import logging.handlers import os import random import re import string import sys import tempfile import unittest # External dependencies. from humanfriendly.terminal import ansi_wrap # The module we're testing. import coloredlogs import coloredlogs.cli from coloredlogs import ( CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree, ) from coloredlogs.syslog import SystemLogging from coloredlogs.converter import capture, convert # External test dependencies. from capturer import CaptureOutput from verboselogs import VerboseLogger from humanfriendly.compat import StringIO # Compiled regular expression that matches a single line of output produced by # the default log format (does not include matching of ANSI escape sequences). PLAIN_TEXT_PATTERN = re.compile(r''' (?P<date> \d{4}-\d{2}-\d{2} ) \s (?P<time> \d{2}:\d{2}:\d{2} ) \s (?P<hostname> \S+ ) \s (?P<logger_name> \w+ ) \[ (?P<process_id> \d+ ) \] \s (?P<severity> [A-Z]+ ) \s (?P<message> .* ) ''', re.VERBOSE) def setUpModule(): """Speed up the tests by disabling the demo's artificial delay.""" os.environ['COLOREDLOGS_DEMO_DELAY'] = '0' coloredlogs.demo.DEMO_DELAY = 0 class ColoredLogsTestCase(unittest.TestCase): """Container for the `coloredlogs` tests.""" def test_level_to_number(self): """Make sure :func:`level_to_number()` works as intended.""" # Make sure the default levels are translated as expected. assert level_to_number('debug') == logging.DEBUG assert level_to_number('info') == logging.INFO assert level_to_number('warn') == logging.WARNING assert level_to_number('error') == logging.ERROR assert level_to_number('fatal') == logging.FATAL # Make sure bogus level names don't blow up. assert level_to_number('bogus-level') == logging.INFO def test_find_hostname(self): """Make sure :func:`~find_hostname()` works correctly.""" assert find_hostname() # Create a temporary file as a placeholder for e.g. /etc/debian_chroot. fd, temporary_file = tempfile.mkstemp() try: with open(temporary_file, 'w') as handle: handle.write('first line\n') handle.write('second line\n') CHROOT_FILES.insert(0, temporary_file) # Make sure the chroot file is being read. assert find_hostname() == 'first line' finally: # Clean up. CHROOT_FILES.pop(0) os.unlink(temporary_file) # Test that unreadable chroot files don't break coloredlogs. try: CHROOT_FILES.insert(0, temporary_file) # Make sure that a usable value is still produced. assert find_hostname() finally: # Clean up. CHROOT_FILES.pop(0) def test_host_name_filter(self): """Make sure :func:`install()` integrates with :class:`~coloredlogs.HostNameFilter()`.""" install(fmt='%(hostname)s') with CaptureOutput() as capturer: logging.info("A truly insignificant message ..") output = capturer.get_text() assert find_hostname() in output def test_program_name_filter(self): """Make sure :func:`install()` integrates with :class:`~coloredlogs.ProgramNameFilter()`.""" install(fmt='%(programname)s') with CaptureOutput() as capturer: logging.info("A truly insignificant message ..") output = capturer.get_text() assert find_program_name() in output def test_system_logging(self): """Make sure the :mod:`coloredlogs.syslog` module works.""" expected_message = random_string(50) with SystemLogging(programname='coloredlogs-test-suite') as syslog: logging.info("%s", expected_message) if syslog and os.path.isfile('/var/log/syslog'): with open('/var/log/syslog') as handle: assert any(expected_message in line for line in handle) def test_name_normalization(self): """Make sure :class:`~coloredlogs.NameNormalizer` works as intended.""" nn = NameNormalizer() for canonical_name in ['debug', 'info', 'warning', 'error', 'critical']: assert nn.normalize_name(canonical_name) == canonical_name assert nn.normalize_name(canonical_name.upper()) == canonical_name assert nn.normalize_name('warn') == 'warning' assert nn.normalize_name('fatal') == 'critical' def test_style_parsing(self): """Make sure :func:`~coloredlogs.parse_encoded_styles()` works as intended.""" encoded_styles = 'debug=green;warning=yellow;error=red;critical=red,bold' decoded_styles = parse_encoded_styles(encoded_styles, normalize_key=lambda k: k.upper()) assert sorted(decoded_styles.keys()) == sorted(['debug', 'warning', 'error', 'critical']) assert decoded_styles['debug']['color'] == 'green' assert decoded_styles['warning']['color'] == 'yellow' assert decoded_styles['error']['color'] == 'red' assert decoded_styles['critical']['color'] == 'red' assert decoded_styles['critical']['bold'] is True def test_is_verbose(self): """Make sure is_verbose() does what it should :-).""" set_level(logging.INFO) assert not is_verbose() set_level(logging.DEBUG) assert is_verbose() set_level(logging.VERBOSE) assert is_verbose() def test_increase_verbosity(self): """Make sure increase_verbosity() respects default and custom levels.""" # Start from a known state. set_level(logging.INFO) assert get_level() == logging.INFO # INFO -> VERBOSE. increase_verbosity() assert get_level() == logging.VERBOSE # VERBOSE -> DEBUG. increase_verbosity() assert get_level() == logging.DEBUG # DEBUG -> NOTSET. increase_verbosity() assert get_level() == logging.NOTSET # NOTSET -> NOTSET. increase_verbosity() assert get_level() == logging.NOTSET def test_decrease_verbosity(self): """Make sure decrease_verbosity() respects default and custom levels.""" # Start from a known state. set_level(logging.INFO) assert get_level() == logging.INFO # INFO -> WARNING. decrease_verbosity() assert get_level() == logging.WARNING # WARNING -> ERROR. decrease_verbosity() assert get_level() == logging.ERROR # ERROR -> CRITICAL. decrease_verbosity() assert get_level() == logging.CRITICAL # CRITICAL -> CRITICAL. decrease_verbosity() assert get_level() == logging.CRITICAL def test_level_discovery(self): """Make sure find_defined_levels() always reports the levels defined in Python's standard library.""" defined_levels = find_defined_levels() level_values = defined_levels.values() for number in (0, 10, 20, 30, 40, 50): assert number in level_values def test_walk_propagation_tree(self): """Make sure walk_propagation_tree() properly walks the tree of loggers.""" root, parent, child, grand_child = self.get_logger_tree() # Check the default mode of operation. loggers = list(walk_propagation_tree(grand_child)) assert loggers == [grand_child, child, parent, root] # Now change the propagation (non-default mode of operation). child.propagate = False loggers = list(walk_propagation_tree(grand_child)) assert loggers == [grand_child, child] def test_find_handler(self): """Make sure find_handler() works as intended.""" root, parent, child, grand_child = self.get_logger_tree() # Add some handlers to the tree. stream_handler = logging.StreamHandler() syslog_handler = logging.handlers.SysLogHandler() child.addHandler(stream_handler) parent.addHandler(syslog_handler) # Make sure the first matching handler is returned. matched_handler, matched_logger = find_handler(grand_child, lambda h: isinstance(h, logging.Handler)) assert matched_handler is stream_handler # Make sure the first matching handler of the given type is returned. matched_handler, matched_logger = find_handler(child, lambda h: isinstance(h, logging.handlers.SysLogHandler)) assert matched_handler is syslog_handler def get_logger_tree(self): """Create and return a tree of loggers.""" # Get the root logger. root = logging.getLogger() # Create a top level logger for ourselves. parent_name = random_string() parent = logging.getLogger(parent_name) # Create a child logger. child_name = '%s.%s' % (parent_name, random_string()) child = logging.getLogger(child_name) # Create a grand child logger. grand_child_name = '%s.%s' % (child_name, random_string()) grand_child = logging.getLogger(grand_child_name) return root, parent, child, grand_child def test_plain_text_output_format(self): """Inspect the plain text output of coloredlogs.""" logger = VerboseLogger(random_string(25)) stream = StringIO() install(level=logging.NOTSET, logger=logger, stream=stream) # Test that filtering on severity works. logger.setLevel(logging.INFO) logger.debug("No one should see this message.") assert len(stream.getvalue().strip()) == 0 # Test that the default output format looks okay in plain text. logger.setLevel(logging.NOTSET) for method, severity in ((logger.debug, 'DEBUG'), (logger.info, 'INFO'), (logger.verbose, 'VERBOSE'), (logger.warning, 'WARN'), (logger.error, 'ERROR'), (logger.critical, 'CRITICAL')): # Prepare the text. text = "This is a message with severity %r." % severity.lower() # Log the message with the given severity. method(text) # Get the line of output generated by the handler. output = stream.getvalue() lines = output.splitlines() last_line = lines[-1] assert text in last_line assert severity in last_line assert PLAIN_TEXT_PATTERN.match(last_line) def test_html_conversion(self): """Check the conversion from ANSI escape sequences to HTML.""" ansi_encoded_text = 'I like %s - www.eelstheband.com' % ansi_wrap('birds', bold=True, color='blue') assert ansi_encoded_text == 'I like \x1b[1;34mbirds\x1b[0m - www.eelstheband.com' html_encoded_text = convert(ansi_encoded_text) assert html_encoded_text == ( 'I&nbsp;like&nbsp;<span style="font-weight: bold; color: blue;">birds</span>&nbsp;-&nbsp;' '<a href="http://www.eelstheband.com" style="color: inherit;">www.eelstheband.com</a>' ) def test_output_interception(self): """Test capturing of output from external commands.""" expected_output = 'testing, 1, 2, 3 ..' assert capture(['sh', '-c', 'echo -n %s' % expected_output]) == expected_output def test_cli_demo(self): """Test the command line colored logging demonstration.""" with CaptureOutput() as capturer: main('coloredlogs', '--demo') output = capturer.get_text() # Make sure the output contains all of the expected logging level names. for name in 'debug', 'info', 'warning', 'error', 'critical': assert name.upper() in output def test_cli_conversion(self): """Test the command line HTML conversion.""" output = main('coloredlogs', '--convert', 'coloredlogs', '--demo', capture=True) # Make sure the output is encoded as HTML. assert '<span' in output def test_implicit_usage_message(self): """Test that the usage message is shown when no actions are given.""" assert 'Usage:' in main('coloredlogs', capture=True) def test_explicit_usage_message(self): """Test that the usage message is shown when ``--help`` is given.""" assert 'Usage:' in main('coloredlogs', '--help', capture=True) def main(*arguments, **options): """Simple wrapper to run the command line interface.""" capture = options.get('capture', False) saved_argv = sys.argv saved_stdout = sys.stdout try: sys.argv = arguments if capture: sys.stdout = StringIO() coloredlogs.cli.main() if capture: return sys.stdout.getvalue() finally: sys.argv = saved_argv sys.stdout = saved_stdout def random_string(length=25): """Generate a random string.""" return ''.join(random.choice(string.ascii_letters) for i in range(25))
2.0625
2
nesi/devices/softbox/api/models/portprofile_models.py
inexio/NESi
30
12777355
# This file is part of the NESi software. # # Copyright (c) 2020 # Original Software Design by <NAME> <https://github.com/etingof>. # # Software adapted by inexio <https://github.com/inexio>. # - <NAME> <https://github.com/unkn0wn-user> # - <NAME> <https://github.com/Connyko65> # - <NAME> <https://github.com/Dinker1996> # # License: https://github.com/inexio/NESi/LICENSE.rst import uuid from nesi.devices.softbox.api import db class PortProfile(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(64)) description = db.Column(db.String()) box_id = db.Column(db.Integer, db.ForeignKey('box.id')) type = db.Column(db.Enum('service', 'spectrum', 'dpbo', 'rtx', 'vect', 'sos', 'ghs', 'qos', 'policer', 'vce', 'data-rate', 'noise-margin', 'inp-delay', 'mode-specific-psd')) # Alcatel Data up_policer = db.Column(db.String(), default=None, nullable=True) down_policer = db.Column(db.String(), default=None, nullable=True) committed_info_rate = db.Column(db.Integer(), default=0, nullable=False) committed_burst_size = db.Column(db.Integer(), default=0, nullable=False) logical_flow_type = db.Column(db.Enum('generic'), default='generic') # Huawei data maximum_bit_error_ratio = db.Column(db.Integer(), default=None) path_mode = db.Column(db.Integer(), default=None) rate = db.Column(db.String(), default=None) etr_max = db.Column(db.Integer(), default=None) etr_min = db.Column(db.Integer(), default=None) ndr_max = db.Column(db.Integer(), default=None) working_mode = db.Column(db.Integer(), default=None) eside_electrical_length = db.Column(db.String(), default=None) assumed_exchange_psd = db.Column(db.String(), default=None) eside_cable_model = db.Column(db.String(), default=None) min_usable_signal = db.Column(db.Integer(), default=None) span_frequency = db.Column(db.String(), default=None) dpbo_calculation = db.Column(db.Integer(), default=None) snr_margin = db.Column(db.String(), default=None) rate_adapt = db.Column(db.String(), default=None) snr_mode = db.Column(db.String(), default=None) inp_4khz = db.Column(db.String(), default=None) inp_8khz = db.Column(db.String(), default=None) interleaved_delay = db.Column(db.String(), default=None) delay_variation = db.Column(db.Integer(), default=None) channel_policy = db.Column(db.Integer(), default=None) nominal_transmit_PSD_ds = db.Column(db.Integer(), default=None) nominal_transmit_PSD_us = db.Column(db.Integer(), default=None) aggregate_transmit_power_ds = db.Column(db.Integer(), default=None) aggregate_transmit_power_us = db.Column(db.Integer(), default=None) aggregate_receive_power_us = db.Column(db.Integer(), default=None) upstream_psd_mask_selection = db.Column(db.Integer(), default=None) psd_class_mask = db.Column(db.Integer(), default=None) psd_limit_mask = db.Column(db.Integer(), default=None) l0_time = db.Column(db.Integer(), default=None) l2_time = db.Column(db.Integer(), default=None) l3_time = db.Column(db.Integer(), default=None) max_transmite_power_reduction = db.Column(db.Integer(), default=None) total_max_power_reduction = db.Column(db.Integer(), default=None) bit_swap_ds = db.Column(db.Integer(), default=None) bit_swap_us = db.Column(db.Integer(), default=None) overhead_datarate_us = db.Column(db.Integer(), default=None) overhead_datarate_ds = db.Column(db.Integer(), default=None) allow_transitions_to_idle = db.Column(db.Integer(), default=None) allow_transitions_to_lowpower = db.Column(db.Integer(), default=None) reference_clock = db.Column(db.String(), default=None) cyclic_extension_flag = db.Column(db.Integer(), default=None) force_inp_ds = db.Column(db.Integer(), default=None) force_inp_us = db.Column(db.Integer(), default=None) g_993_2_profile = db.Column(db.Integer(), default=None) mode_specific = db.Column(db.String(), default=None) transmode = db.Column(db.String(), default=None) T1_413 = db.Column(db.String(), default=None) G_992_1 = db.Column(db.String(), default=None) G_992_2 = db.Column(db.String(), default=None) G_992_3 = db.Column(db.String(), default=None) G_992_4 = db.Column(db.String(), default=None) G_992_5 = db.Column(db.String(), default=None) AnnexB_G_993_2 = db.Column(db.String(), default=None) ETSI = db.Column(db.String(), default=None) us0_psd_mask = db.Column(db.Integer(), default=None) vdsltoneblackout = db.Column(db.String(), default=None) internal_id = db.Column(db.Integer(), default=None) vmac_ipoe = db.Column(db.Enum('enable', 'disable'), default=None) vmac_pppoe = db.Column(db.Enum('enable', 'disable'), default=None) vmac_pppoa = db.Column(db.Enum('enable', 'disable'), default=None) vlan_mac = db.Column(db.Enum('forwarding', 'discard'), default=None) packet_policy_multicast = db.Column(db.Enum('forward', 'discard'), default=None) packet_policy_unicast = db.Column(db.Enum('forward', 'discard'), default=None) security_anti_ipspoofing = db.Column(db.Enum('enable', 'disable'), default=None) security_anti_macspoofing = db.Column(db.Enum('enable', 'disable'), default=None) igmp_mismatch = db.Column(db.Enum('transparent'), default=None) commit = db.Column(db.Boolean(), default=False) number = db.Column(db.Integer, default=None)
1.648438
2
train_softmax_clean.py
ad349/fashionmnist
0
12777356
<filename>train_softmax_clean.py #!/usr/bin env python from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import numpy as np import tensorflow as tf import argparse from utils import normalize, decode from model import graph def input_pipeline(trainpath, validationpath, buffer_size, batch_size): # Skip the header and filter any comments. training_dataset = tf.data.TextLineDataset(trainpath).skip(1).filter(lambda line: tf.not_equal(tf.substr(line, 0, 1), "#")) validation_dataset = tf.data.TextLineDataset(validationpath).skip(1).filter(lambda line: tf.not_equal(tf.substr(line, 0, 1), "#")) default_values = [[0.0] for _ in range(785)] # The dataset api reads the csv as text. # Using the below function we can split the text into labels and pixels. training_dataset = (training_dataset.cache().map(lambda x: decode(x, default_values))) validation_dataset = (validation_dataset.cache().map(lambda x: decode(x, default_values))) # Normalize the dataset to 0-1 range training_dataset = training_dataset.map(lambda label, pixel: tf.py_func(normalize, [label, pixel], [tf.float32, tf.float32])) validation_dataset = validation_dataset.map(lambda label, pixel: tf.py_func(normalize, [label, pixel], [tf.float32, tf.float32])) # Randomly shuffles the dataset training_dataset = training_dataset.shuffle(buffer_size=buffer_size) # Creating batchs here for training training_dataset = training_dataset.batch(batch_size) validation_dataset = validation_dataset.batch(batch_size) # A feedable iterator is defined by a handle placeholder and its structure. We # could use the `output_types` and `output_shapes` properties of either # `training_dataset` or `validation_dataset` here, because they have # identical structure. handle = tf.placeholder(tf.string, shape=[]) iterator = tf.data.Iterator.from_string_handle(handle, training_dataset.output_types, training_dataset.output_shapes) next_element = iterator.get_next() # You can use feedable iterators with a variety of different kinds of iterator # (such as one-shot and initializable iterators). training_iterator = training_dataset.make_initializable_iterator() validation_iterator = validation_dataset.make_initializable_iterator() return next_element, handle, training_iterator, validation_iterator def train(batch_size, learning_rate, x, y): logits = graph(x) _y = tf.one_hot(indices=tf.cast(y, tf.int32), depth=10) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=_y, logits=logits), axis=0) acc = tf.equal(tf.argmax(logits, 1), tf.argmax(_y, 1)) acc = tf.reduce_mean(tf.cast(acc, tf.float32)) global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step") optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step()) return loss, acc, train_op, global_step def print_results(iteration, losses, accuracy): print("Batch: {0:5d} loss: {1:0.3f} accuracy: {2:0.3f}" .format(iteration, np.mean(losses), np.mean(accuracy))) def print_results_epoch(iteration, losses, accuracy): print("Epoch: {0:5d} loss: {1:0.3f} accuracy {2:0.3f}" .format(iteration+1, np.mean(losses), np.mean(accuracy))) def print_results_val(losses, accuracy): print("Validation loss: {0:0.3f} accuracy {1:0.3f}" .format(np.mean(losses), np.mean(accuracy))) # def print_accuracy(iteration, acc): # print("Batch: {0:5d} Accuracy: {1:0.3f}" # .format(iteration, np.mean(acc))) # def print_accuracy_epoch(iteration, acc): # print("Epoch: {0:5d} Accuracy: {1:0.3f}" # .format(iteration+1, np.mean(acc))) def parser(argv): parser = argparse.ArgumentParser(description='Trains a Deep Neural Network on Fashion MNIST Data') parser.add_argument('--train_csv', default='training.csv', type=str, required=True, help='Path to the training csv.') parser.add_argument('--validation_csv', default='validation.csv', type=str, help='Path to the validation csv.') parser.add_argument('--batch_size', default=100, type=int, help='Batch Size of one iteration.') parser.add_argument('--buffer_size', default=10000, type=int, help='Buffer Size for random selection of images.') parser.add_argument('--lr', default=0.01, type=float, help='Learning Rate.') parser.add_argument('--nrof_epochs', default=20, type=int, help='Number of Epochs for training.') parser.add_argument('--log_dir', default='./log', type=str, help='Location of log.') parser.add_argument('--model_dir', default='./model', type=str, help='Location of saved model.') args = parser.parse_args() return args def main(args): trainpath = args.train_csv validationpath = args.validation_csv batch_size = args.batch_size buffer_size = args.buffer_size learning_rate = args.lr nepochs = args.nrof_epochs logdir = args.log_dir savepath = args.model_dir if not os.path.exists(trainpath): raise IOError('Training file does not exist') if not buffer_size or not batch_size: raise ValueError('Please provide valid value for buffer_size and batch_size') if not os.path.exists(savepath): os.makedirs(savepath) x = tf.placeholder('float32',shape=[batch_size,None]) y = tf.placeholder('int32',shape=[batch_size]) next_element, handle, training_iterator, validation_iterator = input_pipeline(trainpath, validationpath, buffer_size, batch_size) loss, acc, train_op, global_step = train(batch_size, learning_rate, x, y) tf.summary.scalar('loss', loss) tf.summary.scalar('accuracy', acc) merged = tf.summary.merge_all() training_loss = [] epoch_loss = [] train_acc = [] epoch_acc = [] val_loss = [] val_acc = [] saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())) if os.path.exists(os.path.join(savepath,"checkpoint")): print("="*30) print("Restoring existing model..") print("="*30) print() saver.restore(sess, os.path.join(savepath, "model.ckpt")) train_writer = tf.summary.FileWriter(logdir, graph=tf.get_default_graph()) # train_writer.add_graph(tf.get_default_graph()) # The `Iterator.string_handle()` method returns a tensor that can be evaluated # and used to feed the `handle` placeholder. training_handle = sess.run(training_iterator.string_handle()) validation_handle = sess.run(validation_iterator.string_handle()) for i in range(nepochs): sess.run(training_iterator.initializer) while True: try: label_batch, image_batch = sess.run(next_element, feed_dict={handle: training_handle}) summary, _loss, _acc, _, g = sess.run([merged, loss, acc, train_op, global_step], feed_dict = {x:image_batch, y:label_batch}) training_loss.append(_loss) epoch_loss.append(_loss) train_acc.append(_acc) epoch_acc.append(_acc) if tf.train.global_step(sess, global_step)%10==0: train_writer.add_summary(summary, g) print_results(g, training_loss, train_acc) training_loss = [] train_acc = [] except tf.errors.OutOfRangeError: print('='*60) print('Epoch {} Finished !'.format(i+1)) print_results_epoch(i, epoch_loss, epoch_acc) print('='*60) print() print('Running forward pass on validation set..') sess.run(validation_iterator.initializer) while True: try: val_label_batch, val_image_batch = sess.run(next_element, feed_dict={handle: validation_handle}) _val_loss, _val_acc = sess.run([loss, acc], feed_dict = {x:val_image_batch, y:val_label_batch}) val_loss.append(_val_loss) val_acc.append(_val_acc) except tf.errors.OutOfRangeError: break print('='*60) print_results_val(val_loss, val_acc) print('='*60) print() break # print_results_epoch(i, epoch_loss, epoch_acc) epoch_loss = [] epoch_acc = [] if int(nepochs - i) <= 2: saver.save(sess, os.path.join(savepath,"model.ckpt")) print("Model saved in %s" % (savepath)) print() return if __name__ == '__main__': main(parser(sys.argv[1:]))
2.859375
3
qord/core/shard.py
TheFarGG/qord
0
12777357
<filename>qord/core/shard.py<gh_stars>0 # MIT License # Copyright (c) 2022 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import annotations from qord.exceptions import MissingPrivilegedIntents, ShardCloseException import asyncio import zlib import json import sys import time import logging import typing if typing.TYPE_CHECKING: from qord.core.client import Client class GatewayOP: DISPATCH = 0 HEARTBEAT = 1 IDENTIFY = 2 PRESENCE_UPDATE = 3 VOICE_STATE_UPDATE = 4 RESUME = 6 RECONNECT = 7 REQUEST_GUILD_MEMBERS = 8 INVALID_SESSION = 9 HELLO = 10 HEARTBEAT_ACK = 11 _LOGGER = logging.getLogger(__name__) _ZLIB_SUFFIX = b'\x00\x00\xff\xff' _UNHANDLEABLE_CODES = (4004, 4010, 4012, 4013, 4014) class _SignalResume(Exception): def __init__(self, resume: bool = True, delay: float = None) -> None: self.resume = resume self.delay = delay class Shard: r"""Represents a shard that connects to Discord gateway. A shard is simply a separate websocket connection to Discord gateway. In bots that are in less then 1000 guilds, There is generally only one shard that maintains all the guilds. However when this limit is exceeded, Discord requires the bots to shard their connection to equally divide the workload of guilds in multiple shards. Sharding is handled transparently by the library automatically and requires no user interaction. This class mostly is documented for completeness and is not usually not relevant to a general use case. You should not instansiate this class yourself. Instead, Consider using one of the following ways to obtain it: - :attr:`Client.shards` - :attr:`Client.get_shard` """ if typing.TYPE_CHECKING: _worker_task: typing.Optional[asyncio.Task] _heartbeat_task: typing.Optional[asyncio.Task] _last_heartbeat: typing.Optional[float] _heartbeat_interval: typing.Optional[float] _session_id: typing.Optional[str] _sequence: typing.Optional[int] _latency: float def __init__(self, id: int, client: Client) -> None: self._id = id self._client = client # For faster attribute accessing self._rest = client._rest self._handle_dispatch = client._dispatch.handle self._running = False self._worker_task = None self._heartbeat_task = None self._inflator = None self._buffer = bytearray() self._identified = asyncio.Event() self._resume_on_connect = False self._clear_gateway_data() def _clear_gateway_data(self): self._last_heartbeat = None self._latency = float("inf") self._heartbeat_interval = None self._session_id = None self._sequence = None @property def id(self) -> int: r"""The ID of the shard. This starts from 0 and for each shard maintained by a client, This ID increments till :attr:`Client.shards_count`. In theory, If a client is running 5 shards for example. All shard IDs can be obtained by:: >>> shard_ids = list(range(client.shards_count)) # shards_count is 5 [0, 1, 2, 3, 4] Returns ------- :class:`builtins.int` """ return self._id @property def client(self) -> Client: r"""The client that instansiated the client. Returns ------- :class:`Client` """ return self._client @property def latency(self) -> float: r"""The latency of this shard. This is measured on the basis of delay between a heartbeat sent by the shard and it's acknowledgement sent by Discord gateway. Returns ------- :class:`builtins.float` """ return self._latency @property def heartbeat_interval(self) -> typing.Optional[float]: r"""The heartbeat interval for this shard. This is only available after shard has done the initial websocket handshake. Returns ------- :class:`builtins.float` """ return self._heartbeat_interval @property def session_id(self) -> typing.Optional[str]: r"""The current session ID for the shard. This is only available after shard has successfully connected to gateway. The session ID is not same for all shards. Furthermore, The session ID is not guaranteed to be same through the shard lifetime as shard may start new sessions for reconnection purposes. Returns ------- :class:`builtins.str` """ return self._session_id @property def sequence(self) -> typing.Optional[int]: r"""The current dispatch sequence number of the shard. This may be None. Returns ------- :class:`builtins.int` """ return self._sequence def _log(self, level: int, message: typing.Any, *args: typing.Any) -> None: _LOGGER.log(level, f"[Shard {self._id}] {message}", *args) def _decompress_message(self, message: bytes) -> typing.Any: self._buffer.extend(message) decomp = self._inflator.decompress(self._buffer) # type: ignore self._buffer = bytearray() return decomp.decode() def _notify_waiters(self): # This is a hack to prevent timeout error when initially # starting shards. self._identified.set() self._identified.clear() async def _receive(self) -> typing.Any: message = await self._websocket.receive() # type: ignore message = message.data if isinstance(message, bytes): if len(message) > 4 and message[-4:] != _ZLIB_SUFFIX: return message = self._decompress_message(message) if isinstance(message, int): # Close code more then likely. return message elif isinstance(message, str): try: ret = json.loads(message) except json.JSONDecodeError: # message is not a valid JSON? return message else: return ret return False async def _heartbeat_handler(self, interval: float): self._heartbeat_interval = interval self._log(logging.INFO, f"HEARTBEAT task started with interval of {interval} seconds.") while True: await self._send_heartbeat_packet() self._last_heartbeat = time.time() await asyncio.sleep(interval) async def _handle_recv(self) -> typing.Any: packet = await self._receive() if not packet: return if isinstance(packet, int): # Close code is sent. if not packet in _UNHANDLEABLE_CODES: raise _SignalResume(resume=True, delay=None) if packet == 4014: raise MissingPrivilegedIntents(shard=self) else: raise ShardCloseException( self, packet, f"Shard closed with unhandleable close code: {packet}" ) if packet is False: return False op = packet["op"] data = packet["d"] if op is GatewayOP.HELLO: if self._resume_on_connect: await self._send_resume_packet() self._resume_on_connect = False else: await self._send_identify_packet() interval = data["heartbeat_interval"] // 1000 self._heartbeat_task = asyncio.create_task( self._heartbeat_handler(interval), name=f"shard-heartbeat-worker:{self._id}" ) return True elif op is GatewayOP.HEARTBEAT_ACK: self._latency = time.time() - self._last_heartbeat # type: ignore elif op is GatewayOP.DISPATCH: self._sequence = packet["s"] event = packet["t"] if event == "READY": self._session_id = data["session_id"] self._identified.set() self._log(logging.INFO, "Established a new session with Discord gateway. (Session: %s)", self._session_id) elif event == "RESUMED": self._log(logging.INFO, "Resumed the session %s", self._session_id) await self._handle_dispatch(self, event, data) elif op is GatewayOP.HEARTBEAT: self._log(logging.DEBUG, "Gateway is requesting a HEARTBEAT.") await self._send_heartbeat_packet() elif op is GatewayOP.INVALID_SESSION: if self._session_id is None: # If we're here, We more then likely got identify ratelimited # this generally should never happen. self._notify_waiters() self._log(logging.INFO, "Session was prematurely invalidated.") raise _SignalResume(resume=False, delay=5.0) self._log(logging.INFO, "Session %s has been invalidated. Attempting to RESUME if possible.", self._session_id) # NOTE: inner payload (`data`) indicates whether the session is resumeable raise _SignalResume(resume=data, delay=5.0) elif op is GatewayOP.RECONNECT: self._log(logging.INFO, "Gateway has requested to reconnect the shard.") raise _SignalResume(resume=True) return True async def _launch(self, url: str) -> None: if self._running: raise RuntimeError("Shard is already running") self._running = True while self._running: session = self._rest._ensure_session() self._websocket = await session.ws_connect(url) self._inflator = zlib.decompressobj() while True: try: recv = await self._handle_recv() except _SignalResume as signal: if signal.delay: self._log(logging.INFO, "Delaying %s seconds before reconnecting.", signal.delay) await asyncio.sleep(signal.delay) self._resume_on_connect = signal.resume await self._close(code=4000) break else: if not recv: self._log(logging.INFO, "Shard is closing.") self._running = False return async def _wrapped_launch(self, url: str, future: asyncio.Future) -> None: try: await self._launch(url) except Exception as exc: self._running = False future.set_result(exc) async def _close(self, code: int = 1000, _clean: bool = False) -> None: if self._heartbeat_task: self._heartbeat_task.cancel() self._heartbeat_task = None if self._websocket: await self._websocket.close(code=code) self._websocket = None if _clean: self._clear_gateway_data() self._identified.clear() self._worker_task.cancel() self._running = False self._worker_task = None async def _send_data(self, data: typing.Dict[str, typing.Any]) -> None: await self._websocket.send_str(json.dumps(data)) # type: ignore async def _send_heartbeat_packet(self): await self._send_data({ "op": GatewayOP.HEARTBEAT, "d": self._sequence, }) self._log(logging.DEBUG, "Sent the HEARTBEAT packet.") async def _send_identify_packet(self): await self._send_data({ "op": GatewayOP.IDENTIFY, "d": { "properties": { "$browser": "Qord", "$device": "Qord", "$os": sys.platform, }, "intents": self._client.intents.value, "token": self._rest.token, "compress": True, "shard": [self._id, self._client.shards_count], }, }) self._log(logging.DEBUG, "Sent the IDENTIFY packet.") async def _send_resume_packet(self): await self._send_data({ "op": GatewayOP.RESUME, "d": { "session_id": self._session_id, "token": self._rest.token, "seq": self._sequence, }, }) self._log(logging.DEBUG, "Sent the RESUME packet.")
1.601563
2
example/states.py
BLeAm/trigger
0
12777358
from trigger_generator import * @trigger class MyTrigger: counter: int = 0 build()
1.335938
1
robot_manager/handler/irc/connection_handler.py
ES-TUDelft/interaction-design-tool-ir
1
12777359
#!/usr/bin/env python # -*- coding: utf-8 -*- # ** # # ================== # # CONNECTION_HANDLER # # ================== # # Handler class for controlling the connection to the robot # # @author ES # ** import logging import threading from autobahn.twisted.component import Component, run from twisted.internet.defer import inlineCallbacks import es_common.utils.config_helper as config_helper from es_common.model.observable import Observable class ConnectionHandler(object): def __init__(self): self.logger = logging.getLogger("Connection Handler") self.rie = None self.session_observers = Observable() self.session = None @inlineCallbacks def on_connect(self, session, details=None): self.logger.debug("Created session: {}".format(session)) self.session = session yield self.session_observers.notify_all(session) def start_rie_session(self, robot_name=None, robot_realm=None): try: if robot_realm is None: # get the realm from config name_key = "pepper" if robot_name is None else robot_name.lower() robot_realm = config_helper.get_robot_settings()["realm"][name_key] self.logger.info("{} REALM: {}".format(robot_name, robot_realm)) self.rie = Component( transports=[{ 'url': u"wss://wamp.robotsindeklas.nl", 'serializers': ['msgpack'], 'max_retries': 0 }], realm=robot_realm ) self.logger.info("** {}".format(threading.current_thread().name)) self.rie.on_join(self.on_connect) self.logger.info("Running the rie component") run([self.rie]) except Exception as e: self.logger.error("Unable to run the rie component | {}".format(e)) def stop_session(self): try: if self.session: self.session.leave() self.session_observers.notify_all(None) self.logger.info("Closed the robot session.") else: self.logger.info("There is no active session.") except Exception as e: self.logger.error("Error while closing rie session: {}".format(e))
1.726563
2
setup.py
theroggy/geofileops
1
12777360
<filename>setup.py import setuptools with open('README.md', 'r') as fh: long_description = fh.read() with open('version.txt', mode='r') as file: version = file.readline() setuptools.setup( name='geofileops', version=version, author='<NAME>', author_email='<EMAIL>', description='Package to do spatial operations on geo files.', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/theroggy/geofileops', include_package_data=True, packages=setuptools.find_packages(), install_requires=['geopandas>=0.9', 'pygeos', 'pyproj', 'psutil'], extras_require = { 'full': ['simplification'] }, classifiers=[ 'Programming Language :: Python :: 3', 'Operating System :: OS Independent', ], python_requires='>=3.8', )
1.585938
2
scripts/price_feed_scripts/read_price_feed.py
coozebra/chainlink-mix
9
12777361
#!/usr/bin/python3 from brownie import PriceFeed def main(): price_feed_contract = PriceFeed[len(PriceFeed) - 1] print("Reading data from {}".format(price_feed_contract.address)) print(price_feed_contract.getLatestPrice())
3.0625
3
src/024_train-probabilistic-svm.py
BirdVox/bv_context_adaptation
5
12777362
<reponame>BirdVox/bv_context_adaptation<filename>src/024_train-probabilistic-svm.py import csv import datetime import h5py from sklearn.externals import joblib import numpy as np import os import pandas as pd import pickle import sklearn.preprocessing import sklearn.svm import skm import sys import time sys.path.append("../src") import localmodule # Define constants. data_dir = localmodule.get_data_dir() dataset_name = localmodule.get_dataset_name() patch_width = 32 n_patches_per_clip = 1 aug_str = "original" instanced_aug_str = aug_str # Parse arguments. args = sys.argv[1:] test_unit_str = args[0] trial_id = int(args[1]) # Print header. start_time = int(time.time()) print(str(datetime.datetime.now()) + " Start.") print("Training probabilistic SVM for " + dataset_name + " clips.") print("Test unit: " + test_unit_str + ".") print("Trial ID: " + str(trial_id) + ".") print("") print("h5py version: {:s}".format(h5py.__version__)) print("numpy version: {:s}".format(np.__version__)) print("pandas version: {:s}".format(pd.__version__)) print("scikit-learn version: {:s}".format(sklearn.__version__)) print("skm version: {:s}".format(skm.__version__)) print("") # Retrieve fold such that test_unit_str is in the test set. folds = localmodule.fold_units() fold = [f for f in folds if test_unit_str in f[0]][0] test_units = fold[0] training_units = fold[1] validation_units = fold[2] # Define input folder. logmelspec_name = "_".join([dataset_name, "skm-logmelspec"]) logmelspec_dir = os.path.join(data_dir, logmelspec_name) aug_dir = os.path.join(logmelspec_dir, aug_str) # Initialize matrix of training data. X_train = [] y_train = [] # Loop over training units. for train_unit_str in training_units: # Load HDF5 container of logmelspecs. hdf5_name = "_".join([dataset_name, instanced_aug_str, train_unit_str]) in_path = os.path.join(aug_dir, hdf5_name + ".hdf5") in_file = h5py.File(in_path) # List clips. clip_names = list(in_file["logmelspec"].keys()) # Loop over clips. for clip_name in clip_names: # Read label. y_clip = int(clip_name.split("_")[3]) # Load logmelspec. logmelspec = in_file["logmelspec"][clip_name].value # Load time-frequency patches. logmelspec_width = logmelspec.shape[1] logmelspec_mid = np.round(logmelspec_width * 0.5).astype('int') logmelspec_start = logmelspec_mid -\ np.round(patch_width * n_patches_per_clip * 0.5).astype('int') # Extract patch. patch_start = logmelspec_start patch_stop = patch_start + patch_width patch = logmelspec[:, patch_start:patch_stop] # Ravel patch. X_train.append(np.ravel(patch)) # Append label. y_train.append(y_clip) # Concatenate raveled patches as rows. X_train = np.stack(X_train) # Load SKM model. models_dir = localmodule.get_models_dir() model_name = "skm-cv" model_dir = os.path.join(models_dir, model_name) unit_dir = os.path.join(model_dir, test_unit_str) trial_str = "trial-" + str(trial_id) trial_dir = os.path.join(unit_dir, trial_str) model_name = "_".join([ dataset_name, model_name, test_unit_str, trial_str, "model.pkl" ]) model_path = os.path.join(trial_dir, model_name) skm_model = skm.SKM(k=256) skm_model = skm_model.load(model_path) # Transform training set with SKM. X_train = skm_model.transform(X_train.T).T # Load standardizer. scaler_name = "_".join([ dataset_name, "skm-cv", test_unit_str, trial_str, "scaler.pkl" ]) scaler_path = os.path.join(trial_dir, scaler_name) scaler = joblib.load(scaler_path) # Standardize training set. X_train = scaler.transform(X_train) # Define CSV file for validation metrics. val_metrics_name = "_".join([ dataset_name, "skm-cv", test_unit_str, trial_str, "svm-model", "val-metrics.csv" ]) csv_header = [ "Dataset", "Test unit", "Trial ID", "log2(C)", "Validation accuracy (%)" ] val_metrics_path = os.path.join( trial_dir, val_metrics_name) # Open CSV file as Pandas DataFrame. val_metrics_df = pd.read_csv(val_metrics_path, header=None, names=csv_header) # Find C maximizing validation accuracy. max_val_acc = np.max(val_metrics_df["Validation accuracy (%)"]) best_log2C = val_metrics_df["log2(C)"][ np.argmax(val_metrics_df["Validation accuracy (%)"])] # Define SVM model. svc = sklearn.svm.SVC( C=2.0**best_log2C, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=True, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None) # Train SVM model. svc.fit(X_train, y_train) # Save SVM model. if np.sign(best_log2C) >= 0: best_log2C_str = "+" + str(abs(best_log2C)).zfill(2) else: best_log2C_str = "-" + str(abs(best_log2C)).zfill(2) svm_name = "_".join([ dataset_name, "skm-cv", test_unit_str, trial_str, "svm-proba-model", "log2C-(" + best_log2C_str + ").pkl" ]) svm_path = os.path.join(trial_dir, svm_name) joblib.dump(svc, svm_path) # Initialize matrix of test data. X_test = [] y_test_true = [] # Load HDF5 container of logmelspecs. hdf5_name = "_".join([dataset_name, instanced_aug_str, test_unit_str]) in_path = os.path.join(aug_dir, hdf5_name + ".hdf5") in_file = h5py.File(in_path) # List clips. clip_names = list(in_file["logmelspec"].keys()) # Loop over clips. for clip_name in clip_names: # Read label. y_clip = int(clip_name.split("_")[3]) # Load logmelspec. logmelspec = in_file["logmelspec"][clip_name].value # Load time-frequency patches. logmelspec_width = logmelspec.shape[1] logmelspec_mid = np.round(logmelspec_width * 0.5).astype('int') logmelspec_start = logmelspec_mid -\ np.round(patch_width * n_patches_per_clip * 0.5).astype('int') # Extract patch. patch_start = logmelspec_start patch_stop = patch_start + patch_width patch = logmelspec[:, patch_start:patch_stop] # Ravel patch. X_test.append(np.ravel(patch)) # Append label. y_test_true.append(y_clip) # Concatenate raveled patches as rows. X_test = np.stack(X_test) # Transform test set with SKM. X_test = skm_model.transform(X_test.T).T # Standardize test set. X_test = scaler.transform(X_test) # Predict. y_test_pred = svc.predict(X_test) # Create CSV file. model_name = "skm-proba" predict_unit_str = test_unit_str prediction_name = "_".join([dataset_name, model_name, "test-" + test_unit_str, trial_str, "predict-" + predict_unit_str, "clip-predictions"]) prediction_path = os.path.join(trial_dir, prediction_name + ".csv") csv_file = open(prediction_path, 'w') csv_writer = csv.writer(csv_file, delimiter=',') # Create CSV header. csv_header = ["Dataset", "Test unit", "Prediction unit", "Timestamp", "Key", "Predicted probability"] csv_writer.writerow(csv_header) # Loop over keys. for clip_id, key in enumerate(clip_names): # Store prediction as DataFrame row. key_split = key.split("_") timestamp_str = key_split[1] freq_str = key_split[2] ground_truth_str = key_split[3] aug_str = key_split[4] predicted_probability = y_test_pred[clip_id] predicted_probability_str = "{:.16f}".format(predicted_probability) row = [dataset_name, test_unit_str, predict_unit_str, timestamp_str, freq_str, aug_str, key, ground_truth_str, predicted_probability_str] csv_writer.writerow(row) # Close CSV file. csv_file.close() # Print score. print("Accuracy = {:5.2f}".format( 100 * sklearn.metrics.accuracy_score(y_test_pred, y_test_true))) print("") # Print elapsed time. print(str(datetime.datetime.now()) + " Finish.") elapsed_time = time.time() - int(start_time) elapsed_hours = int(elapsed_time / (60 * 60)) elapsed_minutes = int((elapsed_time % (60 * 60)) / 60) elapsed_seconds = elapsed_time % 60. elapsed_str = "{:>02}:{:>02}:{:>05.2f}".format(elapsed_hours, elapsed_minutes, elapsed_seconds) print("Total elapsed time: " + elapsed_str + ".")
2.109375
2
app/app.py
rilder-almeida/projeto_case_enfase
0
12777363
""" Módulo da aplicação usando Streamlit para gerar a estrutura front-end """ # FIXME: Por algum motivo o streamlit não aceita importar as páginas # via __init__.py ou importação relativa # pylint: disable=import-error import streamlit as st from introducao import intro from questao_problema import case from analise_geografica import geografica from analise_prazos_x_atrasos import prazos_atrasos from report import report from solucoes import solucoes from consideracoes_finais import consideracoes_finais # pylint: enable=import-error PAGES = { "Introdução": intro, "Questão Problema": case, "Análise Geográfica das Vendas e Compras": geografica, "Análise dos Atrasos dos Pedidos": prazos_atrasos, "Pandas Profiling": report, "Relatório Final e Soluções Propostas": solucoes, "Considerações": consideracoes_finais, } st.sidebar.title("Índice") selection = st.sidebar.radio("", list(PAGES.keys())) page = PAGES[selection] page()
2.796875
3
customer/migrations/0002_auto_20210618_2044.py
Sukikiroi/Django-Smart-lms-backend
1
12777364
# Generated by Django 3.2.4 on 2021-06-18 19:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('customer', '0001_initial'), ] operations = [ migrations.CreateModel( name='Messages', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=240, verbose_name='Name')), ('message', models.CharField(max_length=240, verbose_name='Name')), ], ), migrations.RemoveField( model_name='customer', name='created', ), ]
1.820313
2
contrib/experimental/alert-ucs.py
MailOnline/alerta
0
12777365
<reponame>MailOnline/alerta<filename>contrib/experimental/alert-ucs.py import UcsSdk import time def EventHandler(mce): print 'Received a New Event with ClassId: ' + str(mce.mo.classId) print "ChangeList: ", mce.changeList print "EventId: ", mce.eventId def main(): ucs = UcsSdk.UcsHandle() ucs.UcsHandle.Login(username='', password='') ucs.UcsHandle.AddEventHandler(classId='', callBack=EventHandler) while True: print '.', time.sleep(5) ucs.UcsHandle.Logout() if __name__ == '__main__': main()
2.25
2
recipe_db/etl/loader.py
scheb/beer-analytics
21
12777366
<reponame>scheb/beer-analytics import abc from typing import Tuple, List from django.core.exceptions import ValidationError from django.db import transaction from recipe_db.etl.format.parser import FormatParser, ParserResult from recipe_db.models import Recipe, RecipeHop, RecipeFermentable, RecipeYeast class ResultPostProcessor: @abc.abstractmethod def process(self, result: ParserResult) -> None: raise NotImplementedError class RecipeLoader: @transaction.atomic def import_recipe(self, uid: str, result: ParserResult) -> None: result.recipe.uid = uid self.set_amount_percent(result.fermentables) self.set_amount_percent(result.hops) self.validate_and_fix_recipe(result.recipe) result.recipe.save() result.recipe.recipefermentable_set.add(*result.fermentables, bulk=False) for fermentable in result.fermentables: self.validate_and_fix_fermentable(fermentable) fermentable.save() result.recipe.recipehop_set.add(*result.hops, bulk=False) for hop in result.hops: self.validate_and_fix_hop(hop) hop.save() result.recipe.recipeyeast_set.add(*result.yeasts, bulk=False) for yeast in result.yeasts: self.validate_and_fix_yeast(yeast) yeast.save() def set_amount_percent(self, items: list) -> None: total_amount = 0 for item in items: if item.amount is not None: total_amount += item.amount if total_amount: for item in items: if item.amount is not None: item.amount_percent = item.amount / total_amount def validate_and_fix_recipe(self, recipe: Recipe): self.unset_bad_data(recipe) def validate_and_fix_fermentable(self, fermentable: RecipeFermentable): self.unset_bad_data(fermentable) def validate_and_fix_hop(self, hop: RecipeHop): # Remove odd alpha values if hop.alpha is not None and hop.alpha > 30: if hop.kind_raw is None: hop.alpha = None elif not ("extract" in hop.kind_raw.lower() or "oil" in hop.kind_raw.lower()): hop.alpha = None if hop.time is not None and hop.use is not None: if hop.use == RecipeHop.DRY_HOP: if hop.time > 43200: # Limit dry hop time to 30 days max hop.time = None else: if hop.time > 240: hop.time = None # Limit boil time to 4 hours max self.unset_bad_data(hop) def validate_and_fix_yeast(self, yeast: RecipeYeast): self.unset_bad_data(yeast) def unset_bad_data(self, item): last_err = None for i in range(0, len(item.__dict__.keys())): try: item.clean_fields() return except ValidationError as err: last_err = err for attribute_name in err.message_dict: setattr(item, attribute_name, None) if last_err is not None: raise last_err class RecipeFileProcessor: def __init__( self, importer: RecipeLoader, format_parsers: List[FormatParser], post_processors: List[ResultPostProcessor] = None, replace_existing=False ) -> None: self.importer = importer self.format_parsers = format_parsers self.post_processors = post_processors self.replace_existing = replace_existing def import_recipe_from_file(self, file_paths: List[str], uid: str) -> Tuple[Recipe, bool]: # Clear the existing recipe if necessary, otherwise skip existing_recipes = Recipe.objects.filter(pk=uid) if existing_recipes.count() > 0: if self.replace_existing: existing_recipes.delete() else: return Recipe.objects.get(pk=uid), False result = ParserResult() parsing_steps = zip(file_paths, self.format_parsers) for parsing_step in parsing_steps: (file_path, parser) = parsing_step if file_path is not None: parser.parse(result, file_path) if self.post_processors is not None: for post_processor in self.post_processors: post_processor.process(result) self.importer.import_recipe(uid, result) return result.recipe, True
2.09375
2
src/utils/setseed.py
seung-sss/model-optimization-level3-cv-04
1
12777367
<reponame>seung-sss/model-optimization-level3-cv-04 import numpy as np import random import torch def setSeed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # if use multi-GPU torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(seed) random.seed(seed)
2.171875
2
services/traction/api/endpoints/routes/v1/tenant/governance/schema_templates.py
bcgov/traction
12
12777368
import logging from uuid import UUID from fastapi import APIRouter, Depends from sqlalchemy.ext.asyncio import AsyncSession from starlette import status from starlette.requests import Request from api.core.config import settings from api.endpoints.dependencies.db import get_db from api.endpoints.dependencies.tenant_security import get_from_context from api.endpoints.routes.v1.link_utils import build_list_links from api.services.v1 import governance_service from api.endpoints.models.v1.governance import ( SchemaTemplateListResponse, SchemaTemplateListParameters, CreateSchemaTemplatePayload, CreateSchemaTemplateResponse, ImportSchemaTemplatePayload, ImportSchemaTemplateResponse, TemplateStatusType, ) from api.tasks import SendCredDefRequestTask, SendSchemaRequestTask router = APIRouter() logger = logging.getLogger(__name__) @router.get( "/", status_code=status.HTTP_200_OK, response_model=SchemaTemplateListResponse ) async def list_schema_templates( request: Request, page_num: int | None = 1, page_size: int | None = settings.DEFAULT_PAGE_SIZE, name: str | None = None, schema_id: str | None = None, schema_template_id: UUID | None = None, status: TemplateStatusType | None = None, tags: str | None = None, deleted: bool | None = False, db: AsyncSession = Depends(get_db), ) -> SchemaTemplateListResponse: wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") parameters = SchemaTemplateListParameters( url=str(request.url), page_num=page_num, page_size=page_size, name=name, deleted=deleted, schema_id=schema_id, schema_template_id=schema_template_id, status=status, tags=tags, ) items, total_count = await governance_service.list_schema_templates( db, tenant_id, wallet_id, parameters ) links = build_list_links(total_count, parameters) return SchemaTemplateListResponse( items=items, count=len(items), total=total_count, links=links ) @router.post("/", status_code=status.HTTP_200_OK) async def create_schema_template( payload: CreateSchemaTemplatePayload, db: AsyncSession = Depends(get_db), ) -> CreateSchemaTemplateResponse: """ Create a new schema and/or credential definition. "schema_definition", defines the new schema. If "credential_definition" is provided, create a credential definition. """ logger.info("> create_schema_template()") wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") logger.debug(f"wallet_id = {wallet_id}") logger.debug(f"tenant_id = {tenant_id}") item, c_t_item = await governance_service.create_schema_template( db, tenant_id, wallet_id, payload=payload ) links = [] # TODO # this will kick off the call to the ledger and then event listeners will finish # populating the schema (and cred def) data. logger.debug("> > SendSchemaRequestTask.assign()") await SendSchemaRequestTask.assign( tenant_id, wallet_id, payload.schema_definition, item.schema_template_id ) logger.debug("< < SendSchemaRequestTask.assign()") logger.debug(f"item = {item}") logger.debug(f"credential_template = {c_t_item}") logger.info("< create_schema_template()") return CreateSchemaTemplateResponse( item=item, credential_template=c_t_item, links=links ) @router.post("/import", status_code=status.HTTP_200_OK) async def import_schema_template( payload: ImportSchemaTemplatePayload, db: AsyncSession = Depends(get_db), ) -> ImportSchemaTemplateResponse: """ Import an existing public schema and optionally create a credential definition. "schema_id" is the ledger's schema id. If "credential_definition" is provided, create a credential definition. """ logger.info("> import_schema_template()") wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") logger.debug(f"wallet_id = {wallet_id}") logger.debug(f"tenant_id = {tenant_id}") item, c_t_item = await governance_service.import_schema_template( db, tenant_id, wallet_id, payload=payload ) links = [] # TODO # this will kick off the call to the ledger and then event listeners will finish # populating the cred def if c_t_item: logger.debug("> > SendCredDefRequestTask.assign()") await SendCredDefRequestTask.assign( tenant_id, wallet_id, c_t_item.credential_template_id ) logger.debug("< < SendCredDefRequestTask.assign()") logger.debug(f"item = {item}") logger.debug(f"credential_template = {c_t_item}") logger.info("< import_schema_template()") return ImportSchemaTemplateResponse( item=item, credential_template=c_t_item, links=links )
1.90625
2
pdf.py
isLinXu/AIToodlBox
3
12777369
<gh_stars>1-10 from PIL import Image import fitz # fitz: pip install PyMuPDF def pdf2images(doc, zoom=2, color='RGB'): """pdf to images example: doc = fitz.open(/path/to/pdf) images = pdf2images(doc) example: stream = open(/path/to/pdf, 'rb') doc = fitz.open(stream) images = pdf2images(doc) example: doc = fitz.open(stream=bytes, filetype='bytes') images = pdf2images(doc) """ mat = fitz.Matrix(zoom, zoom) images = [] # mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate) # for pg in range(doc.pageCount): # page = doc[pg] for page in doc: pix = page.getPixmap(matrix=mat, alpha=False) images.append(Image.frombytes(color, [pix.width, pix.height], pix.samples)) return images if __name__ == "__main__": import sys doc = fitz.open(sys.argv[1]) images = pdf2images(doc) print(len(images), images[0].size)
2.890625
3
local/lib/python3.6/site-packages/pgadmin4/pgadmin/tools/restore/tests/test_restore_create_job_unit_test.py
sahilsdei/django_ecommerce
0
12777370
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2018, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import sys import simplejson as json from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from pgadmin.utils import server_utils as server_utils from pgadmin.browser.server_groups.servers.databases.tests import utils as \ database_utils if sys.version_info < (3, 3): from mock import patch, MagicMock else: from unittest.mock import patch, MagicMock class RestoreCreateJobTest(BaseTestGenerator): """Test the RestoreCreateJob class""" scenarios = [ ('When restore object with default options', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', custom=False, verbose=True, blobs=True, schemas=[], tables=[], database='postgres' ), url='/restore/job/{0}', expected_cmd_opts=['--verbose'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with format directory', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='directory', custom=False, verbose=True, blobs=False, schemas=[], tables=[], database='postgres' ), url='/restore/job/{0}', expected_cmd_opts=['--verbose', '--format=d'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with the sections options', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', no_of_jobs='2', custom=False, verbose=True, schemas=[], tables=[], database='postgres', data=True, pre_data=True, post_data=True, only_data=True, only_schema=True ), url='/restore/job/{0}', expected_cmd_opts=['--verbose', '--jobs', '2', '--section=pre-data', '--section=data', '--section=post-data'], not_expected_cmd_opts=[], # Below options should be enabled once we fix the issue #3368 # not_expected_cmd_opts=['--data-only', '--schema-only'], expected_exit_code=[0, None], )), ('When restore the object with Type of objects', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', no_of_jobs='2', custom=False, verbose=True, schemas=[], tables=[], database='postgres', only_data=True, only_schema=True, dns_owner=True ), url='/restore/job/{0}', expected_cmd_opts=['--verbose', '--data-only'], not_expected_cmd_opts=[], # Below options should be enabled once we fix the issue #3368 # not_expected_cmd_opts=['--schema-only', '--no-owner'], expected_exit_code=[0, None], )), ('When restore object with option - Do not save', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', verbose=True, custom=False, schemas=[], tables=[], database='postgres', dns_owner=True, dns_privilege=True, dns_tablespace=True, only_data=False ), url='/restore/job/{0}', expected_cmd_opts=['--no-owner', '--no-tablespaces', '--no-privileges'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with option - Do not save comments', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', verbose=True, custom=False, schemas=[], tables=[], database='postgres', no_comments=True, only_data=False ), url='/restore/job/{0}', expected_cmd_opts=['--no-comments'], not_expected_cmd_opts=[], expected_exit_code=[0, None], server_min_version=110000, message='Restore object with --no-comments are not supported ' 'by EPAS/PG server less than 11.0' )), ('When restore object with option - Queries', dict( class_params=dict( sid=1, name='test_restore_file', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_backup_file', format='custom', verbose=True, schemas=[], tables=[], database='postgres', clean=True, include_create_database=True, single_transaction=True, ), url='/restore/job/{0}', expected_cmd_opts=['--create', '--clean', '--single-transaction'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with option - Disbale', dict( class_params=dict( sid=1, name='test_restore_file', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_backup_file', format='custom', verbose=True, schemas=[], tables=[], database='postgres', disable_trigger=True, no_data_fail_table=True, only_schema=False ), url='/restore/job/{0}', expected_cmd_opts=['--disable-triggers', '--no-data-for-failed-tables'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with option - Miscellaneous', dict( class_params=dict( sid=1, name='test_restore_file', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_backup_file', format='custom', verbose=True, schemas=[], tables=[], database='postgres', use_set_session_auth=True, exit_on_error=True, ), url='/restore/job/{0}', # Add '--use_set_session_auth' into # expected_cmd_opts once #3363 fixed expected_cmd_opts=['--exit-on-error'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ] def setUp(self): if self.server['default_binary_paths'] is None: self.skipTest( "default_binary_paths is not set for the server {0}".format( self.server['name'] ) ) @patch('pgadmin.tools.restore.Server') @patch('pgadmin.tools.restore.current_user') @patch('pgadmin.tools.restore.RestoreMessage') @patch('pgadmin.tools.restore.filename_with_file_manager_path') @patch('pgadmin.tools.restore.BatchProcess') @patch('pgadmin.utils.driver.psycopg2.server_manager.ServerManager.' 'export_password_env') def runTest(self, export_password_env_mock, batch_process_mock, filename_mock, restore_message_mock, current_user_mock, server_mock): class TestMockServer(): def __init__(self, name, host, port, id, username): self.name = name self.host = host self.port = port self.id = id self.username = username self.db_name = '' self.server_id = parent_node_dict["server"][-1]["server_id"] mock_obj = TestMockServer(self.class_params['name'], self.class_params['host'], self.class_params['port'], self.server_id, self.class_params['username'] ) mock_result = server_mock.query.filter_by.return_value mock_result.first.return_value = mock_obj filename_mock.return_value = self.params['file'] batch_process_mock.set_env_variables = MagicMock( return_value=True ) batch_process_mock.start = MagicMock( return_value=True ) export_password_env_mock.return_value = True server_response = server_utils.connect_server(self, self.server_id) if server_response["info"] == "Server connected.": db_owner = server_response['data']['user']['name'] self.data = database_utils.get_db_data(db_owner) self.db_name = self.data['name'] if hasattr(self, 'server_min_version') and \ server_response["data"]["version"] < \ self.server_min_version: self.skipTest(self.message) url = self.url.format(self.server_id) # Create the restore job response = self.tester.post(url, data=json.dumps(self.params), content_type='html/json') self.assertEqual(response.status_code, 200) self.assertTrue(restore_message_mock.called) self.assertTrue(batch_process_mock.called) if self.expected_cmd_opts: for opt in self.expected_cmd_opts: self.assertIn( opt, batch_process_mock.call_args_list[0][1]['args'] ) if self.not_expected_cmd_opts: for opt in self.not_expected_cmd_opts: self.assertNotIn( opt, batch_process_mock.call_args_list[0][1]['args'] )
1.851563
2
change_ab.py
ximury/python
0
12777371
<reponame>ximury/python a, b = 3, 4 print(a, b) a, b = b, a print(a, b) print('---------------------') a = 1 a += 1 print(a)
3.484375
3
openff/evaluator/protocols/utils.py
lilyminium/openff-evaluator
0
12777372
""" A set of utilities for setting up property estimation workflows. """ from dataclasses import astuple, dataclass from typing import Generic, Optional, Tuple, TypeVar from openff.evaluator import unit from openff.evaluator.attributes import PlaceholderValue from openff.evaluator.datasets import PropertyPhase from openff.evaluator.protocols import ( analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage, ) from openff.evaluator.protocols.groups import ConditionalGroup from openff.evaluator.storage.data import StoredSimulationData from openff.evaluator.thermodynamics import Ensemble from openff.evaluator.utils.observables import ObservableType from openff.evaluator.workflow import ProtocolGroup from openff.evaluator.workflow.schemas import ProtocolReplicator from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue S = TypeVar("S", bound=analysis.BaseAverageObservable) T = TypeVar("T", bound=reweighting.BaseMBARProtocol) @dataclass class SimulationProtocols(Generic[S]): """The common set of protocols which would be required to estimate an observable by running a new molecule simulation.""" build_coordinates: coordinates.BuildCoordinatesPackmol assign_parameters: forcefield.BaseBuildSystem energy_minimisation: openmm.OpenMMEnergyMinimisation equilibration_simulation: openmm.OpenMMSimulation production_simulation: openmm.OpenMMSimulation analysis_protocol: S converge_uncertainty: ProtocolGroup decorrelate_trajectory: analysis.DecorrelateTrajectory decorrelate_observables: analysis.DecorrelateObservables def __iter__(self): yield from astuple(self) @dataclass class ReweightingProtocols(Generic[S, T]): """The common set of protocols which would be required to re-weight an observable from cached simulation data.""" unpack_stored_data: storage.UnpackStoredSimulationData join_trajectories: reweighting.ConcatenateTrajectories join_observables: reweighting.ConcatenateObservables build_reference_system: forcefield.BaseBuildSystem evaluate_reference_potential: reweighting.BaseEvaluateEnergies build_target_system: forcefield.BaseBuildSystem evaluate_target_potential: reweighting.BaseEvaluateEnergies statistical_inefficiency: S replicate_statistics: miscellaneous.DummyProtocol decorrelate_reference_potential: analysis.DecorrelateObservables decorrelate_target_potential: analysis.DecorrelateObservables decorrelate_observable: analysis.DecorrelateObservables zero_gradients: Optional[gradients.ZeroGradients] reweight_observable: T def __iter__(self): yield from astuple(self) def generate_base_reweighting_protocols( statistical_inefficiency: S, reweight_observable: T, replicator_id: str = "data_replicator", id_suffix: str = "", ) -> Tuple[ReweightingProtocols[S, T], ProtocolReplicator]: """Constructs a set of protocols which, when combined in a workflow schema, may be executed to reweight a set of cached simulation data to estimate the average value of an observable. Parameters ---------- statistical_inefficiency The protocol which will be used to compute the statistical inefficiency and equilibration time of the observable of interest. This information will be used to decorrelate the cached data prior to reweighting. reweight_observable The MBAR reweighting protocol to use to reweight the observable to the target state. This method will automatically set the reduced potentials on the object. replicator_id: str The id to use for the cached data replicator. id_suffix: str A string suffix to append to each of the protocol ids. Returns ------- The protocols to add to the workflow, a reference to the average value of the estimated observable (an ``Observable`` object), and the replicator which will clone the workflow for each piece of cached simulation data. """ # Create the replicator which will apply these protocol once for each piece of # cached simulation data. data_replicator = ProtocolReplicator(replicator_id=replicator_id) data_replicator.template_values = ProtocolPath("full_system_data", "global") # Validate the inputs. assert isinstance(statistical_inefficiency, analysis.BaseAverageObservable) assert data_replicator.placeholder_id in statistical_inefficiency.id assert data_replicator.placeholder_id not in reweight_observable.id replicator_suffix = f"_{data_replicator.placeholder_id}{id_suffix}" # Unpack all the of the stored data. unpack_stored_data = storage.UnpackStoredSimulationData( "unpack_data{}".format(replicator_suffix) ) unpack_stored_data.simulation_data_path = ReplicatorValue(replicator_id) # Join the individual trajectories together. join_trajectories = reweighting.ConcatenateTrajectories( f"join_trajectories{id_suffix}" ) join_trajectories.input_coordinate_paths = ProtocolPath( "coordinate_file_path", unpack_stored_data.id ) join_trajectories.input_trajectory_paths = ProtocolPath( "trajectory_file_path", unpack_stored_data.id ) join_observables = reweighting.ConcatenateObservables( f"join_observables{id_suffix}" ) join_observables.input_observables = ProtocolPath( "observables", unpack_stored_data.id ) # Calculate the reduced potentials for each of the reference states. build_reference_system = forcefield.BaseBuildSystem( f"build_system{replicator_suffix}" ) build_reference_system.force_field_path = ProtocolPath( "force_field_path", unpack_stored_data.id ) build_reference_system.coordinate_file_path = ProtocolPath( "coordinate_file_path", unpack_stored_data.id ) build_reference_system.substance = ProtocolPath("substance", unpack_stored_data.id) reduced_reference_potential = openmm.OpenMMEvaluateEnergies( f"reduced_potential{replicator_suffix}" ) reduced_reference_potential.parameterized_system = ProtocolPath( "parameterized_system", build_reference_system.id ) reduced_reference_potential.thermodynamic_state = ProtocolPath( "thermodynamic_state", unpack_stored_data.id ) reduced_reference_potential.coordinate_file_path = ProtocolPath( "coordinate_file_path", unpack_stored_data.id ) reduced_reference_potential.trajectory_file_path = ProtocolPath( "output_trajectory_path", join_trajectories.id ) # Calculate the reduced potential of the target state. build_target_system = forcefield.BaseBuildSystem(f"build_system_target{id_suffix}") build_target_system.force_field_path = ProtocolPath("force_field_path", "global") build_target_system.substance = ProtocolPath("substance", "global") build_target_system.coordinate_file_path = ProtocolPath( "output_coordinate_path", join_trajectories.id ) reduced_target_potential = openmm.OpenMMEvaluateEnergies( f"reduced_potential_target{id_suffix}" ) reduced_target_potential.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) reduced_target_potential.parameterized_system = ProtocolPath( "parameterized_system", build_target_system.id ) reduced_target_potential.coordinate_file_path = ProtocolPath( "output_coordinate_path", join_trajectories.id ) reduced_target_potential.trajectory_file_path = ProtocolPath( "output_trajectory_path", join_trajectories.id ) reduced_target_potential.gradient_parameters = ProtocolPath( "parameter_gradient_keys", "global" ) # Compute the observable gradients. zero_gradients = gradients.ZeroGradients(f"zero_gradients{id_suffix}") zero_gradients.force_field_path = ProtocolPath("force_field_path", "global") zero_gradients.gradient_parameters = ProtocolPath( "parameter_gradient_keys", "global" ) # Decorrelate the target potentials and observables. if not isinstance(statistical_inefficiency, analysis.BaseAverageObservable): raise NotImplementedError() decorrelate_target_potential = analysis.DecorrelateObservables( f"decorrelate_target_potential{id_suffix}" ) decorrelate_target_potential.time_series_statistics = ProtocolPath( "time_series_statistics", statistical_inefficiency.id ) decorrelate_target_potential.input_observables = ProtocolPath( "output_observables", reduced_target_potential.id ) decorrelate_observable = analysis.DecorrelateObservables( f"decorrelate_observable{id_suffix}" ) decorrelate_observable.time_series_statistics = ProtocolPath( "time_series_statistics", statistical_inefficiency.id ) decorrelate_observable.input_observables = ProtocolPath( "output_observables", zero_gradients.id ) # Decorrelate the reference potentials. Due to a quirk of how workflow replicators # work the time series statistics need to be passed via a dummy protocol first. # # Because the `statistical_inefficiency` and `decorrelate_reference_potential` # protocols are replicated by the same replicator the `time_series_statistics` # input of `decorrelate_reference_potential_X` will take its value from # the `time_series_statistics` output of `statistical_inefficiency_X` rather than # as a list of of [statistical_inefficiency_0.time_series_statistics... # statistical_inefficiency_N.time_series_statistics]. Passing the statistics via # an un-replicated intermediate resolves this. replicate_statistics = miscellaneous.DummyProtocol( f"replicated_statistics{id_suffix}" ) replicate_statistics.input_value = ProtocolPath( "time_series_statistics", statistical_inefficiency.id ) decorrelate_reference_potential = analysis.DecorrelateObservables( f"decorrelate_reference_potential{replicator_suffix}" ) decorrelate_reference_potential.time_series_statistics = ProtocolPath( "output_value", replicate_statistics.id ) decorrelate_reference_potential.input_observables = ProtocolPath( "output_observables", reduced_reference_potential.id ) # Finally, apply MBAR to get the reweighted value. reweight_observable.reference_reduced_potentials = ProtocolPath( "output_observables[ReducedPotential]", decorrelate_reference_potential.id ) reweight_observable.target_reduced_potentials = ProtocolPath( "output_observables[ReducedPotential]", decorrelate_target_potential.id ) reweight_observable.observable = ProtocolPath( "output_observables", decorrelate_observable.id ) reweight_observable.frame_counts = ProtocolPath( "time_series_statistics.n_uncorrelated_points", statistical_inefficiency.id ) protocols = ReweightingProtocols( unpack_stored_data, # join_trajectories, join_observables, # build_reference_system, reduced_reference_potential, # build_target_system, reduced_target_potential, # statistical_inefficiency, replicate_statistics, # decorrelate_reference_potential, decorrelate_target_potential, # decorrelate_observable, zero_gradients, # reweight_observable, ) return protocols, data_replicator def generate_reweighting_protocols( observable_type: ObservableType, replicator_id: str = "data_replicator", id_suffix: str = "", ) -> Tuple[ ReweightingProtocols[analysis.AverageObservable, reweighting.ReweightObservable], ProtocolReplicator, ]: assert observable_type not in [ ObservableType.KineticEnergy, ObservableType.TotalEnergy, ObservableType.Enthalpy, ] statistical_inefficiency = analysis.AverageObservable( f"observable_inefficiency_$({replicator_id}){id_suffix}" ) statistical_inefficiency.bootstrap_iterations = 1 reweight_observable = reweighting.ReweightObservable( f"reweight_observable{id_suffix}" ) protocols, data_replicator = generate_base_reweighting_protocols( statistical_inefficiency, reweight_observable, replicator_id, id_suffix ) protocols.statistical_inefficiency.observable = ProtocolPath( f"observables[{observable_type.value}]", protocols.unpack_stored_data.id ) if ( observable_type != ObservableType.PotentialEnergy and observable_type != ObservableType.TotalEnergy and observable_type != ObservableType.Enthalpy and observable_type != ObservableType.ReducedPotential ): protocols.zero_gradients.input_observables = ProtocolPath( f"output_observables[{observable_type.value}]", protocols.join_observables.id, ) else: protocols.zero_gradients = None protocols.decorrelate_observable = protocols.decorrelate_target_potential protocols.reweight_observable.observable = ProtocolPath( f"output_observables[{observable_type.value}]", protocols.decorrelate_observable.id, ) return protocols, data_replicator def generate_simulation_protocols( analysis_protocol: S, use_target_uncertainty: bool, id_suffix: str = "", conditional_group: Optional[ConditionalGroup] = None, n_molecules: int = 1000, ) -> Tuple[SimulationProtocols[S], ProtocolPath, StoredSimulationData]: """Constructs a set of protocols which, when combined in a workflow schema, may be executed to run a single simulation to estimate the average value of an observable. The protocols returned will: 1) Build a set of liquid coordinates for the property substance using packmol. 2) Assign a set of smirnoff force field parameters to the system. 3) Perform an energy minimisation on the system. 4) Run a short NPT equilibration simulation for 100000 steps using a timestep of 2fs. 5) Within a conditional group (up to a maximum of 100 times): 5a) Run a longer NPT production simulation for 1000000 steps using a timestep of 2fs 5b) Extract the average value of an observable and it's uncertainty. 5c) If a convergence mode is set by the options, check if the target uncertainty has been met. If not, repeat steps 5a), 5b) and 5c). 6) Extract uncorrelated configurations from a generated production simulation. 7) Extract uncorrelated statistics from a generated production simulation. Parameters ---------- analysis_protocol The protocol which will extract the observable of interest from the generated simulation data. use_target_uncertainty Whether to run the simulation until the observable is estimated to within the target uncertainty. id_suffix: str A string suffix to append to each of the protocol ids. conditional_group: ProtocolGroup, optional A custom group to wrap the main simulation / extraction protocols within. It is up to the caller of this method to manually add the convergence conditions to this group. If `None`, a default group with uncertainty convergence conditions is automatically constructed. n_molecules: int The number of molecules to use in the workflow. Returns ------- The protocols to add to the workflow, a reference to the average value of the estimated observable (an ``Observable`` object), and an object which describes the default data from a simulation to store, such as the uncorrelated statistics and configurations. """ build_coordinates = coordinates.BuildCoordinatesPackmol( f"build_coordinates{id_suffix}" ) build_coordinates.substance = ProtocolPath("substance", "global") build_coordinates.max_molecules = n_molecules assign_parameters = forcefield.BaseBuildSystem(f"assign_parameters{id_suffix}") assign_parameters.force_field_path = ProtocolPath("force_field_path", "global") assign_parameters.coordinate_file_path = ProtocolPath( "coordinate_file_path", build_coordinates.id ) assign_parameters.substance = ProtocolPath("output_substance", build_coordinates.id) # Equilibration energy_minimisation = openmm.OpenMMEnergyMinimisation( f"energy_minimisation{id_suffix}" ) energy_minimisation.input_coordinate_file = ProtocolPath( "coordinate_file_path", build_coordinates.id ) energy_minimisation.parameterized_system = ProtocolPath( "parameterized_system", assign_parameters.id ) equilibration_simulation = openmm.OpenMMSimulation( f"equilibration_simulation{id_suffix}" ) equilibration_simulation.ensemble = Ensemble.NPT equilibration_simulation.steps_per_iteration = 100000 equilibration_simulation.output_frequency = 5000 equilibration_simulation.timestep = 2.0 * unit.femtosecond equilibration_simulation.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) equilibration_simulation.input_coordinate_file = ProtocolPath( "output_coordinate_file", energy_minimisation.id ) equilibration_simulation.parameterized_system = ProtocolPath( "parameterized_system", assign_parameters.id ) # Production production_simulation = openmm.OpenMMSimulation(f"production_simulation{id_suffix}") production_simulation.ensemble = Ensemble.NPT production_simulation.steps_per_iteration = 1000000 production_simulation.output_frequency = 2000 production_simulation.timestep = 2.0 * unit.femtosecond production_simulation.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) production_simulation.input_coordinate_file = ProtocolPath( "output_coordinate_file", equilibration_simulation.id ) production_simulation.parameterized_system = ProtocolPath( "parameterized_system", assign_parameters.id ) production_simulation.gradient_parameters = ProtocolPath( "parameter_gradient_keys", "global" ) # Set up a conditional group to ensure convergence of uncertainty if conditional_group is None: conditional_group = groups.ConditionalGroup(f"conditional_group{id_suffix}") conditional_group.max_iterations = 100 if use_target_uncertainty: condition = groups.ConditionalGroup.Condition() condition.right_hand_value = ProtocolPath("target_uncertainty", "global") condition.type = groups.ConditionalGroup.Condition.Type.LessThan condition.left_hand_value = ProtocolPath( "value.error", conditional_group.id, analysis_protocol.id ) conditional_group.add_condition(condition) # Make sure the simulation gets extended after each iteration. production_simulation.total_number_of_iterations = ProtocolPath( "current_iteration", conditional_group.id ) conditional_group.add_protocols(production_simulation, analysis_protocol) # Point the analyse protocol to the correct data sources if not isinstance(analysis_protocol, analysis.BaseAverageObservable): raise ValueError( "The analysis protocol must inherit from either the " "AverageTrajectoryObservable or BaseAverageObservable " "protocols." ) analysis_protocol.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) analysis_protocol.potential_energies = ProtocolPath( f"observables[{ObservableType.PotentialEnergy.value}]", production_simulation.id, ) # Finally, extract uncorrelated data time_series_statistics = ProtocolPath( "time_series_statistics", conditional_group.id, analysis_protocol.id ) coordinate_file = ProtocolPath( "output_coordinate_file", conditional_group.id, production_simulation.id ) trajectory_path = ProtocolPath( "trajectory_file_path", conditional_group.id, production_simulation.id ) observables = ProtocolPath( "observables", conditional_group.id, production_simulation.id ) decorrelate_trajectory = analysis.DecorrelateTrajectory( f"decorrelate_trajectory{id_suffix}" ) decorrelate_trajectory.time_series_statistics = time_series_statistics decorrelate_trajectory.input_coordinate_file = coordinate_file decorrelate_trajectory.input_trajectory_path = trajectory_path decorrelate_observables = analysis.DecorrelateObservables( f"decorrelate_observables{id_suffix}" ) decorrelate_observables.time_series_statistics = time_series_statistics decorrelate_observables.input_observables = observables # Build the object which defines which pieces of simulation data to store. output_to_store = StoredSimulationData() output_to_store.thermodynamic_state = ProtocolPath("thermodynamic_state", "global") output_to_store.property_phase = PropertyPhase.Liquid output_to_store.force_field_id = PlaceholderValue() output_to_store.number_of_molecules = ProtocolPath( "output_number_of_molecules", build_coordinates.id ) output_to_store.substance = ProtocolPath("output_substance", build_coordinates.id) output_to_store.statistical_inefficiency = ProtocolPath( "time_series_statistics.statistical_inefficiency", conditional_group.id, analysis_protocol.id, ) output_to_store.observables = ProtocolPath( "output_observables", decorrelate_observables.id ) output_to_store.trajectory_file_name = ProtocolPath( "output_trajectory_path", decorrelate_trajectory.id ) output_to_store.coordinate_file_name = coordinate_file output_to_store.source_calculation_id = PlaceholderValue() # Define where the final values come from. final_value_source = ProtocolPath( "value", conditional_group.id, analysis_protocol.id ) base_protocols = SimulationProtocols( build_coordinates, assign_parameters, energy_minimisation, equilibration_simulation, production_simulation, analysis_protocol, conditional_group, decorrelate_trajectory, decorrelate_observables, ) return base_protocols, final_value_source, output_to_store
2.140625
2
lib/solutions/CHK/checkout_solution.py
DPNT-Sourcecode/CHK-zxlf01
0
12777373
# noinspection PyUnusedLocal # skus = unicode string def checkout(skus): items = { "A": {"price": 50, "deals": [{"quantity": 5, "price": 200}, {"quantity": 3, "price": 130}]}, "B": {"price": 30, "deals": [{"quantity": 2, "price": 45}]}, "C": {"price": 20}, "D": {"price": 15}, "E": {"price": 40, "free_items": {"quantity": 2, "item": "B"}}, "F": {"price": 10, "free_items": {"quantity": 3, "item": "F"}}, "G": {"price": 20}, "H": {"price": 10, "deals": [{"quantity": 10, "price": 80}, {"quantity": 5, "price": 45}]}, "I": {"price": 35}, "J": {"price": 60}, "K": {"price": 70, "deals": [{"quantity": 2, "price": 120}]}, "L": {"price": 90}, "M": {"price": 15}, "N": {"price": 40, "free_items": {"quantity": 3, "item": "M"}}, "O": {"price": 10}, "P": {"price": 50, "deals": [{"quantity": 5, "price": 200}]}, "Q": {"price": 30, "deals": [{"quantity": 3, "price": 80}]}, "R": {"price": 50, "free_items": {"quantity": 3, "item": "Q"}}, "S": {"price": 20}, "T": {"price": 20}, "U": {"price": 40, "free_items": {"quantity": 4, "item": "U"}}, "V": {"price": 50, "deals": [{"quantity": 3, "price": 130}, {"quantity": 2, "price": 90}]}, "W": {"price": 20}, "X": {"price": 17}, "Y": {"price": 20}, "Z": {"price": 21} } special_offer = {"collection": ["S", "T", "X", "Y", "Z"], "cost": 45} total_cost = 0 all_items = dict.fromkeys(items, 0) for sku in skus: if sku in items: all_items[sku] += 1 else: return -1 # Applies special offer up front - allows for multiple instances and combinations. # Did not originally account for multiple instances of each item. offer_items_collection = special_offer["collection"] all_prices = [] offer_items_in_basket = [] for offer_item in offer_items_collection: tuple = (offer_item, items[offer_item]["price"]) all_prices.append(tuple) sorted_by_price = sorted(all_prices, key=lambda x: x[1]) for item, _ in sorted_by_price: for i in range(0, all_items[item]): offer_items_in_basket.append(item) checking_for_multi_discount = True while checking_for_multi_discount: if len(offer_items_in_basket) >= 3: for i in range(0, 3): item = offer_items_in_basket.pop() all_items[item] -= 1 total_cost += special_offer["cost"] else: checking_for_multi_discount = False # Checks for free items and removes from shopping list for item, item_details in items.items(): item_count = all_items[item] if item_details.get("free_items") and item_count: free_items = item_details["free_items"] quantity_required = item_details["free_items"]["quantity"] free_item = item_details["free_items"]["item"] complete_deals = item_count // quantity_required all_items[free_item] -= complete_deals if all_items[free_item] < 0: all_items[free_item] = 0 # Charges for items left in shopping cart (with deals) for item, item_details in items.items(): item_price = item_details["price"] item_deals = item_details.get("deals") item_count = all_items[item] available_deals = [] if item_details.get("deals"): for deal in item_deals: item_deal_quantity = deal["quantity"] item_deal_price = deal["price"] complete_deals = item_count//item_deal_quantity total_cost += (complete_deals * item_deal_price) item_count -= complete_deals * item_deal_quantity total_cost += (item_count*item_price) return total_cost
2.421875
2
todo-api/app/core/tests/test_middleware.py
rkkhub/todo
0
12777374
from django.contrib.auth import get_user_model from django.test import TestCase, override_settings from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient TASK_URL = reverse('todo:task-list') def sample_get_request(client): return client.get(TASK_URL) def sample_post_request(client): payload = {'title': 'Middleware POST test'} return client.post(TASK_URL, payload) class MiddlewareResponseTests(TestCase): """Tests the custom middleware""" def setUp(self): self.user = get_user_model().objects.create( email="<EMAIL>", password="<PASSWORD>") self.client = APIClient() self.client.force_authenticate(self.user) @override_settings(MAINTENANCE_MODE=True) def test_maintenance_mode_ON(self): """ Tests the response for all allowed methods when on maintenance mode enabled """ # Test GET method self.assertEqual(sample_get_request(self.client).status_code, status.HTTP_503_SERVICE_UNAVAILABLE) # Test POST method self.assertEqual(sample_post_request(self.client).status_code, status.HTTP_503_SERVICE_UNAVAILABLE) @override_settings(MAINTENANCE_MODE=False) def test_maintenance_mode_OFF(self): """ Test the response for all allowed methods when maintenance mode disabled """ # Test Get method self.assertEqual(sample_get_request(self.client).status_code, status.HTTP_200_OK) # Test POST method self.assertEqual(sample_post_request(self.client).status_code, status.HTTP_201_CREATED)
2.296875
2
backend/src/applications/session/create_session_request.py
Seina88/attendance-system
2
12777375
class CreateSessionRequest: def __init__(self, info: str, password: str) -> None: self.info = info self.password = password
2.046875
2
server/utils/__init__.py
lolimay/digit-recognition
6
12777376
<reponame>lolimay/digit-recognition<filename>server/utils/__init__.py """ Created by lolimay <<EMAIL>> Last Updated 2019-07-11 """
0.941406
1
packages/arb-compiler-evm/arbitrum/evm/types.py
pangxieshousi/arbitrum
1
12777377
# Copyright 2019, Offchain Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .. import std from .. import value contract_state = std.Struct( "contract_state", [("storage", std.keyvalue_int_int.typ), ("wallet", std.currency_store.typ)], ) message = std.Struct( "message", [ ("data", value.ValueType()), ("sender", value.IntType()), ("amount", value.IntType()), ("type", value.IntType()), ], ) message_blockchain_data = std.Struct( "message_blockchain_data", [ ("data", value.ValueType()), ("timestamp", value.IntType()), ("block_number", value.IntType()), ("txhash", value.IntType()), ], ) message_data = std.Struct( "message_data", [ ("data", value.ValueType()), ("contract_id", value.IntType()), ("sequence_num", value.IntType()), ], ) contract_store = std.make_keyvalue_type(value.IntType(), contract_state.typ) local_exec_state = std.Struct( "local_exec_state", [ ("data", value.ValueType()), ("sender", value.IntType()), ("amount", value.IntType()), ("type", value.IntType()), ], )
1.742188
2
turma1/favela_radical/favela_radical/favela_radical.py
Niyudi/favela-radical
0
12777378
<filename>turma1/favela_radical/favela_radical/favela_radical.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- #from -> de import -> importar from PyQt5.QtWidgets import QApplication # sys -> sistema from sys import argv, exit from interface import JanelaPrincipal class Aplicativo(QApplication): def __init__(self, argv): super().__init__(argv) self.window = JanelaPrincipal() def main(): app = Aplicativo(argv) exit(app.exec_()) if __name__ == "__main__": main()
2.46875
2
tests/unit_tests/test_session.py
slashsec-edu/cryton-core
0
12777379
from django.test import TestCase from mock import patch from cryton.lib.util import exceptions, logger from cryton.lib.models import session from cryton.cryton_rest_api.models import ( SessionModel, PlanExecutionModel, StepModel ) import os from model_bakery import baker TESTS_DIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) @patch('cryton.lib.util.logger.logger', logger.structlog.getLogger('cryton-debug')) class TestSession(TestCase): def setUp(self) -> None: self.plan_exec_obj = baker.make(PlanExecutionModel) self.named_session_obj = SessionModel.objects.create(plan_execution=self.plan_exec_obj, session_id='42', session_name='test-session', session_type=SessionModel.MSF_SHELL_TYPE ) self.step_model = baker.make(StepModel) pass def test_create_session(self): # Wrong plan execution ID with self.assertRaises(exceptions.PlanExecutionDoesNotExist): session.create_session(0, '0', 'test') sess_obj = session.create_session(self.plan_exec_obj.id, '0', 'test', SessionModel.MSF_SHELL_TYPE) self.assertEqual(sess_obj.session_name, 'test') self.assertEqual(sess_obj.session_type, SessionModel.MSF_SHELL_TYPE) def test_get_msf_session_id(self): session_id = session.get_msf_session_id('test-session', self.plan_exec_obj.id) self.assertEqual(session_id, '42') def test_get_msf_session_id_ex(self): with self.assertRaises(exceptions.SessionObjectDoesNotExist): session.get_msf_session_id('non-existent-session', self.plan_exec_obj.id) def test_set_msf_session_id(self): session.set_msf_session_id('test-session', '666', self.plan_exec_obj.id) self.assertEqual(session.get_msf_session_id('test-session', self.plan_exec_obj.id), '666') with self.assertRaises(exceptions.SessionObjectDoesNotExist): session.set_msf_session_id('test-session', '666', 666) # @patch('cryton.lib.session.get_session_ids') # def test_get_session_ids(self, mock_get_sess): # mock_stub = Mock() # mock_stub.sessions_list().sess_list = '["1", "2"]' # # self.step_model.use_any_session_to_target = '1.2.3.4' # session_list = session.get_session_ids('1.2.3.4', self.plan_exec_obj.id) # # self.assertEqual('2', session_list[-1])
2.109375
2
tests/integration/test_release_event.py
majamassarini/packit-service
20
12777380
<gh_stars>10-100 # Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT import json import shutil import pytest from celery.app.task import Context, Task from celery.canvas import Signature from flexmock import flexmock from github import Github from rebasehelper.exceptions import RebaseHelperError from packit.api import PackitAPI from packit.config import JobConfigTriggerType from packit.config.aliases import get_branches from packit.distgit import DistGit from packit.local_project import LocalProject from packit.pkgtool import PkgTool from packit_service import sentry_integration from packit_service.config import ServiceConfig from packit_service.constants import TASK_ACCEPTED from packit_service.models import ( JobTriggerModelType, PipelineModel, ProjectReleaseModel, ProposeDownstreamModel, ProposeDownstreamStatus, ProposeDownstreamTargetModel, ProposeDownstreamTargetStatus, ) from packit_service.service.db_triggers import AddReleaseDbTrigger from packit_service.service.urls import get_propose_downstream_info_url from packit_service.worker.allowlist import Allowlist from packit_service.worker.jobs import SteveJobs from packit_service.worker.monitoring import Pushgateway from packit_service.worker.helpers.propose_downstream import ProposeDownstreamJobHelper from packit_service.worker.reporting import BaseCommitStatus from packit_service.worker.tasks import run_propose_downstream_handler from tests.spellbook import first_dict_value, get_parameters_from_results @pytest.fixture(scope="module") def fedora_branches(): return sorted(get_branches("fedora-all")) @pytest.fixture def mock_propose_downstream_functionality(): trigger = flexmock( job_trigger_model_type=JobTriggerModelType.release, id=12, job_config_trigger_type=JobConfigTriggerType.release, ) run_model = flexmock(PipelineModel) flexmock(ProjectReleaseModel).should_receive("get_or_create").with_args( tag_name="0.3.0", namespace="packit-service", repo_name="hello-world", project_url="https://github.com/packit-service/hello-world", commit_hash="123456", ).and_return(trigger).once() propose_downstream_model = flexmock(id=123, propose_downstream_targets=[]) flexmock(ProposeDownstreamModel).should_receive("create_with_new_run").with_args( status=ProposeDownstreamStatus.running, trigger_model=trigger, ).and_return(propose_downstream_model, run_model).once() model = flexmock(status="queued", id=1234) flexmock(ProposeDownstreamTargetModel).should_receive("create").with_args( status=ProposeDownstreamTargetStatus.queued ).and_return(model) flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_all" ).with_args( description=TASK_ACCEPTED, state=BaseCommitStatus.pending, url="", ).once() yield propose_downstream_model, model def test_dist_git_push_release_handle( github_release_webhook, mock_propose_downstream_functionality ): propose_downstream_model, model = mock_propose_downstream_functionality packit_yaml = ( "{'specfile_path': 'hello-world.spec', 'synced_files': []" ", jobs: [{trigger: release, job: propose_downstream, metadata: {targets:[]}}]}" ) flexmock(Github, get_repo=lambda full_name_or_id: None) project = flexmock( get_file_content=lambda path, ref: packit_yaml, full_repo_name="packit-service/hello-world", repo="hello-world", namespace="packit-service", get_files=lambda ref, filter_regex: [], get_sha_from_tag=lambda tag_name: "123456", get_web_url=lambda: "https://github.com/packit/hello-world", is_private=lambda: False, default_branch="main", ) lp = flexmock(LocalProject, refresh_the_arguments=lambda: None) lp.working_dir = "" lp.git_project = project flexmock(DistGit).should_receive("local_project").and_return(lp) # reset of the upstream repo flexmock(LocalProject).should_receive("git_repo").and_return( flexmock( head=flexmock() .should_receive("reset") .with_args("HEAD", index=True, working_tree=True) .once() .mock(), git=flexmock(clear_cache=lambda: None), ) ) flexmock(Allowlist, check_and_report=True) ServiceConfig().get_service_config().get_project = lambda url: project flexmock(PackitAPI).should_receive("sync_release").with_args( dist_git_branch="main", tag="0.3.0", create_pr=True ).and_return(flexmock(url="some_url")).once() flexmock(PackitAPI).should_receive("clean") flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.running ).once() flexmock(model).should_receive("set_branch").with_args(branch="main").once() flexmock(model).should_receive("set_downstream_pr_url").with_args( downstream_pr_url="some_url" ).once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.submitted ).once() flexmock(model).should_receive("set_start_time").once() flexmock(model).should_receive("set_finished_time").once() flexmock(model).should_receive("set_logs").once() flexmock(propose_downstream_model).should_receive("set_status").with_args( status=ProposeDownstreamStatus.finished ).once() flexmock(AddReleaseDbTrigger).should_receive("db_trigger").and_return( flexmock( job_config_trigger_type=JobConfigTriggerType.release, id=123, job_trigger_model_type=JobTriggerModelType.release, ) ) flexmock(Signature).should_receive("apply_async").once() flexmock(Pushgateway).should_receive("push").times(2).and_return() flexmock(shutil).should_receive("rmtree").with_args("") url = get_propose_downstream_info_url(model.id) flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch="main", description="Starting propose downstream...", state=BaseCommitStatus.running, url=url, ).once() flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch="main", description="Propose downstream finished successfully.", state=BaseCommitStatus.success, url=url, ).once() processing_results = SteveJobs().process_message(github_release_webhook) event_dict, job, job_config, package_config = get_parameters_from_results( processing_results ) assert json.dumps(event_dict) results = run_propose_downstream_handler( package_config=package_config, event=event_dict, job_config=job_config, ) assert first_dict_value(results["job"])["success"] def test_dist_git_push_release_handle_multiple_branches( github_release_webhook, fedora_branches, mock_propose_downstream_functionality ): propose_downstream_model, model = mock_propose_downstream_functionality packit_yaml = ( "{'specfile_path': 'hello-world.spec', 'synced_files': []" ", jobs: [{trigger: release, job: propose_downstream, " "metadata: {targets:[], dist-git-branch: fedora-all}}]}" ) flexmock(Github, get_repo=lambda full_name_or_id: None) project = flexmock( get_file_content=lambda path, ref: packit_yaml, full_repo_name="packit-service/hello-world", repo="hello-world", namespace="packit-service", get_files=lambda ref, filter_regex: [], get_sha_from_tag=lambda tag_name: "123456", get_web_url=lambda: "https://github.com/packit/hello-world", is_private=lambda: False, default_branch="main", ) flexmock(LocalProject, refresh_the_arguments=lambda: None) flexmock(LocalProject).should_receive("git_repo").and_return( flexmock( head=flexmock() .should_receive("reset") .with_args("HEAD", index=True, working_tree=True) .times(len(fedora_branches)) .mock(), git=flexmock(clear_cache=lambda: None), ) ) flexmock(Allowlist, check_and_report=True) ServiceConfig().get_service_config().get_project = lambda url: project for branch in fedora_branches: flexmock(PackitAPI).should_receive("sync_release").with_args( dist_git_branch=branch, tag="0.3.0", create_pr=True ).and_return(flexmock(url="some_url")).once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.running ).times(len(fedora_branches)) flexmock(model).should_receive("set_branch").times(len(fedora_branches)) flexmock(model).should_receive("set_downstream_pr_url").with_args( downstream_pr_url="some_url" ).times(len(fedora_branches)) flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.submitted ).times(len(fedora_branches)) flexmock(model).should_receive("set_start_time").times(len(fedora_branches)) flexmock(model).should_receive("set_finished_time").times(len(fedora_branches)) flexmock(model).should_receive("set_logs").times(len(fedora_branches)) flexmock(propose_downstream_model).should_receive("set_status").with_args( status=ProposeDownstreamStatus.finished ).once() flexmock(PkgTool).should_receive("clone").and_return(None) flexmock(AddReleaseDbTrigger).should_receive("db_trigger").and_return( flexmock( job_config_trigger_type=JobConfigTriggerType.release, id=123, job_trigger_model_type=JobTriggerModelType.release, ) ) flexmock(Signature).should_receive("apply_async").once() flexmock(Pushgateway).should_receive("push").times(2).and_return() url = get_propose_downstream_info_url(model.id) for branch in fedora_branches: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=branch, description="Starting propose downstream...", state=BaseCommitStatus.running, url=url, ).once() for branch in fedora_branches: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=branch, description="Propose downstream finished successfully.", state=BaseCommitStatus.success, url=url, ).once() processing_results = SteveJobs().process_message(github_release_webhook) event_dict, job, job_config, package_config = get_parameters_from_results( processing_results ) assert json.dumps(event_dict) results = run_propose_downstream_handler( package_config=package_config, event=event_dict, job_config=job_config, ) assert first_dict_value(results["job"])["success"] def test_dist_git_push_release_handle_one_failed( github_release_webhook, fedora_branches, mock_propose_downstream_functionality ): propose_downstream_model, model = mock_propose_downstream_functionality packit_yaml = ( "{'specfile_path': 'hello-world.spec', 'synced_files': []" ", jobs: [{trigger: release, job: propose_downstream, " "targets:[], dist_git_branches: [fedora-all,]}]}" ) flexmock(Github, get_repo=lambda full_name_or_id: None) project = ( flexmock( get_file_content=lambda path, ref: packit_yaml, full_repo_name="packit-service/hello-world", repo="hello-world", namespace="packit-service", get_files=lambda ref, filter_regex: [], get_sha_from_tag=lambda tag_name: "123456", get_web_url=lambda: "https://github.com/packit/hello-world", is_private=lambda: False, default_branch="main", ) .should_receive("create_issue") .once() .and_return(flexmock(id="1", url="an url")) .mock() ) project.should_receive("get_issue_list").and_return([]) flexmock(LocalProject, refresh_the_arguments=lambda: None) flexmock(LocalProject).should_receive("git_repo").and_return( flexmock( head=flexmock() .should_receive("reset") .with_args("HEAD", index=True, working_tree=True) .times(len(fedora_branches)) .mock(), git=flexmock(clear_cache=lambda: None), ) ) flexmock(Allowlist, check_and_report=True) ServiceConfig().get_service_config().get_project = lambda url: project for i, branch in enumerate(fedora_branches): if i == 1: flexmock(PackitAPI).should_receive("sync_release").with_args( dist_git_branch=branch, tag="0.3.0", create_pr=True ).and_raise(Exception, f"Failed {branch}").once() else: flexmock(PackitAPI).should_receive("sync_release").with_args( dist_git_branch=branch, tag="0.3.0", create_pr=True ).and_return(flexmock(url="some_url")).once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.running ).times(len(fedora_branches)) flexmock(model).should_receive("set_branch").times(len(fedora_branches)) flexmock(model).should_receive("set_start_time").times(len(fedora_branches)) flexmock(model).should_receive("set_finished_time").times(len(fedora_branches)) flexmock(model).should_receive("set_logs").times(len(fedora_branches)) flexmock(model).should_receive("set_downstream_pr_url").with_args( downstream_pr_url="some_url" ).times( len(fedora_branches) - 1 # one branch failed ) flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.submitted ).times( len(fedora_branches) - 1 ) # one branch failed flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.error ).once() # this is the failed branch flexmock(propose_downstream_model).should_receive("set_status").with_args( status=ProposeDownstreamStatus.error ).once() flexmock(PkgTool).should_receive("clone").and_return(None) flexmock(sentry_integration).should_receive("send_to_sentry").and_return().once() flexmock(AddReleaseDbTrigger).should_receive("db_trigger").and_return( flexmock( job_config_trigger_type=JobConfigTriggerType.release, id=123, job_trigger_model_type=JobTriggerModelType.release, ) ) flexmock(Signature).should_receive("apply_async").once() flexmock(Pushgateway).should_receive("push").times(2).and_return() url = get_propose_downstream_info_url(model.id) for branch in fedora_branches: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=branch, description="Starting propose downstream...", state=BaseCommitStatus.running, url=url, ).once() for i in range(len(fedora_branches)): if i == 1: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=fedora_branches[i], description=f"Propose downstream failed: Failed {fedora_branches[i]}", state=BaseCommitStatus.failure, url=url, ).once() else: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=fedora_branches[i], description="Propose downstream finished successfully.", state=BaseCommitStatus.success, url=url, ).once() processing_results = SteveJobs().process_message(github_release_webhook) event_dict, job, job_config, package_config = get_parameters_from_results( processing_results ) assert json.dumps(event_dict) results = run_propose_downstream_handler( package_config=package_config, event=event_dict, job_config=job_config, ) assert not first_dict_value(results["job"])["success"] def test_dist_git_push_release_handle_all_failed( github_release_webhook, fedora_branches, mock_propose_downstream_functionality ): propose_downstream_model, model = mock_propose_downstream_functionality packit_yaml = ( "{'specfile_path': 'hello-world.spec', 'synced_files': []" ", jobs: [{trigger: release, job: propose_downstream, " "metadata: {targets:[], dist-git-branch: fedora-all}}]}" ) flexmock(Github, get_repo=lambda full_name_or_id: None) table_content = "" for branch in fedora_branches: table_content += f"| `{branch}` | `Failed` |\n" project = ( flexmock( get_file_content=lambda path, ref: packit_yaml, full_repo_name="packit-service/hello-world", repo="hello-world", namespace="packit-service", get_files=lambda ref, filter_regex: [], get_sha_from_tag=lambda tag_name: "123456", get_web_url=lambda: "https://github.com/packit/hello-world", is_private=lambda: False, default_branch="main", ) .should_receive("create_issue") .with_args( title="[packit] Propose downstream failed for release 0.3.0", body="Packit failed on creating pull-requests in dist-git:\n\n" "| dist-git branch | error |\n" "| --------------- | ----- |\n" f"{table_content}\n\n" "You can retrigger the update by adding a comment (`/packit propose-downstream`)" " into this issue.\n", ) .once() .and_return(flexmock(id="1", url="an url")) .mock() ) project.should_receive("get_issue_list").and_return([]) lp = flexmock(LocalProject, refresh_the_arguments=lambda: None) lp.git_project = project lp.working_dir = "" flexmock(DistGit).should_receive("local_project").and_return(lp) # reset of the upstream repo flexmock(LocalProject).should_receive("git_repo").and_return( flexmock( head=flexmock() .should_receive("reset") .with_args("HEAD", index=True, working_tree=True) .times(len(fedora_branches)) .mock(), git=flexmock(clear_cache=lambda: None), ) ) flexmock(Allowlist, check_and_report=True) ServiceConfig().get_service_config().get_project = lambda url: project flexmock(PackitAPI).should_receive("sync_release").and_raise( Exception, "Failed" ).times(len(fedora_branches)) flexmock(AddReleaseDbTrigger).should_receive("db_trigger").and_return( flexmock( job_config_trigger_type=JobConfigTriggerType.release, id=123, job_trigger_model_type=JobTriggerModelType.release, ) ) flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.running ).times(len(fedora_branches)) flexmock(model).should_receive("set_branch").times(len(fedora_branches)) flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.error ).times(len(fedora_branches)) flexmock(model).should_receive("set_start_time").times(len(fedora_branches)) flexmock(model).should_receive("set_finished_time").times(len(fedora_branches)) flexmock(model).should_receive("set_logs").times(len(fedora_branches)) flexmock(propose_downstream_model).should_receive("set_status").with_args( status=ProposeDownstreamStatus.error ).once() flexmock(sentry_integration).should_receive("send_to_sentry").and_return().times( len(fedora_branches) ) flexmock(shutil).should_receive("rmtree").with_args("") flexmock(Signature).should_receive("apply_async").once() flexmock(Pushgateway).should_receive("push").times(2).and_return() url = get_propose_downstream_info_url(model.id) for branch in fedora_branches: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=branch, description="Starting propose downstream...", state=BaseCommitStatus.running, url=url, ).once() for branch in fedora_branches: flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch=branch, description="Propose downstream failed: Failed", state=BaseCommitStatus.failure, url=url, ).once() processing_results = SteveJobs().process_message(github_release_webhook) event_dict, job, job_config, package_config = get_parameters_from_results( processing_results ) assert json.dumps(event_dict) results = run_propose_downstream_handler( package_config=package_config, event=event_dict, job_config=job_config, ) assert not first_dict_value(results["job"])["success"] def test_retry_propose_downstream_task( github_release_webhook, mock_propose_downstream_functionality ): propose_downstream_model, model = mock_propose_downstream_functionality packit_yaml = ( "{'specfile_path': 'hello-world.spec', 'synced_files': []" ", jobs: [{trigger: release, job: propose_downstream, metadata: {targets:[]}}]}" ) flexmock(Github, get_repo=lambda full_name_or_id: None) project = flexmock( get_file_content=lambda path, ref: packit_yaml, full_repo_name="packit-service/hello-world", repo="hello-world", namespace="packit-service", get_files=lambda ref, filter_regex: [], get_sha_from_tag=lambda tag_name: "123456", get_web_url=lambda: "https://github.com/packit/hello-world", is_private=lambda: False, default_branch="main", ) lp = flexmock(LocalProject, refresh_the_arguments=lambda: None) lp.git_project = project lp.working_dir = "" flexmock(DistGit).should_receive("local_project").and_return(lp) # reset of the upstream repo flexmock(LocalProject).should_receive("git_repo").and_return( flexmock( head=flexmock() .should_receive("reset") .with_args("HEAD", index=True, working_tree=True) .once() .mock(), git=flexmock(clear_cache=lambda: None), ) ) flexmock(Allowlist, check_and_report=True) ServiceConfig().get_service_config().get_project = lambda url: project flexmock(AddReleaseDbTrigger).should_receive("db_trigger").and_return( flexmock( job_config_trigger_type=JobConfigTriggerType.release, id=123, job_trigger_model_type=JobTriggerModelType.release, ) ) flexmock(Signature).should_receive("apply_async").once() flexmock(PackitAPI).should_receive("sync_release").with_args( dist_git_branch="main", tag="0.3.0", create_pr=True ).and_raise( RebaseHelperError, "Failed to download file from URL example.com" ).once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.running ).once() flexmock(model).should_receive("set_branch").with_args(branch="main").once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.retry ).once() flexmock(model).should_receive("set_start_time").once() flexmock(model).should_receive("set_finished_time").once() flexmock(model).should_receive("set_logs").once() flexmock(shutil).should_receive("rmtree").with_args("") flexmock(Task).should_receive("retry").once().and_return() flexmock(Pushgateway).should_receive("push").times(2).and_return() url = get_propose_downstream_info_url(model.id) flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch="main", description="Starting propose downstream...", state=BaseCommitStatus.running, url=url, ).once() flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch="main", description="Propose downstream is being retried because " "we were not able yet to download the archive. ", state=BaseCommitStatus.pending, url=url, ).once() processing_results = SteveJobs().process_message(github_release_webhook) event_dict, job, job_config, package_config = get_parameters_from_results( processing_results ) assert json.dumps(event_dict) results = run_propose_downstream_handler(event_dict, package_config, job_config) assert first_dict_value(results["job"])["success"] # yes, success, see #1140 assert "Not able to download" in first_dict_value(results["job"])["details"]["msg"] def test_dont_retry_propose_downstream_task( github_release_webhook, mock_propose_downstream_functionality ): propose_downstream_model, model = mock_propose_downstream_functionality packit_yaml = ( "{'specfile_path': 'hello-world.spec', 'synced_files': []" ", jobs: [{trigger: release, job: propose_downstream, metadata: {targets:[]}}]}" ) flexmock(Github, get_repo=lambda full_name_or_id: None) project = ( flexmock( get_file_content=lambda path, ref: packit_yaml, full_repo_name="packit-service/hello-world", repo="hello-world", namespace="packit-service", get_files=lambda ref, filter_regex: [], get_sha_from_tag=lambda tag_name: "123456", get_web_url=lambda: "https://github.com/packit/hello-world", is_private=lambda: False, default_branch="main", ) .should_receive("create_issue") .once() .and_return(flexmock(id="1", url="an url")) .mock() ) project.should_receive("get_issue_list").and_return([]).once() lp = flexmock(LocalProject, refresh_the_arguments=lambda: None) lp.git_project = project lp.working_dir = "" flexmock(DistGit).should_receive("local_project").and_return(lp) flexmock(Allowlist, check_and_report=True) ServiceConfig().get_service_config().get_project = lambda url: project flexmock(AddReleaseDbTrigger).should_receive("db_trigger").and_return( flexmock( job_config_trigger_type=JobConfigTriggerType.release, id=123, job_trigger_model_type=JobTriggerModelType.release, ) ) flexmock(Signature).should_receive("apply_async").once() flexmock(PackitAPI).should_receive("sync_release").with_args( dist_git_branch="main", tag="0.3.0", create_pr=True ).and_raise( RebaseHelperError, "Failed to download file from URL example.com" ).once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.running ).once() flexmock(model).should_receive("set_branch").with_args(branch="main").once() flexmock(model).should_receive("set_status").with_args( status=ProposeDownstreamTargetStatus.error ).once() flexmock(model).should_receive("set_start_time").once() flexmock(model).should_receive("set_finished_time").once() flexmock(model).should_receive("set_logs").once() flexmock(propose_downstream_model).should_receive("set_status").with_args( status=ProposeDownstreamStatus.error ).once() flexmock(LocalProject).should_receive("git_repo").and_return( flexmock( head=flexmock() .should_receive("reset") .with_args("HEAD", index=True, working_tree=True) .once() .mock(), git=flexmock(clear_cache=lambda: None), ) ) flexmock(Context, retries=2) flexmock(shutil).should_receive("rmtree").with_args("") flexmock(Task).should_receive("retry").never() flexmock(Pushgateway).should_receive("push").times(2).and_return() url = get_propose_downstream_info_url(model.id) flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch="main", description="Starting propose downstream...", state=BaseCommitStatus.running, url=url, ).once() flexmock(ProposeDownstreamJobHelper).should_receive( "report_status_to_branch" ).with_args( branch="main", description="Propose downstream failed: Failed to download file from URL example.com", state=BaseCommitStatus.failure, url=url, ).once() processing_results = SteveJobs().process_message(github_release_webhook) event_dict, job, job_config, package_config = get_parameters_from_results( processing_results ) assert json.dumps(event_dict) results = run_propose_downstream_handler(event_dict, package_config, job_config) assert not first_dict_value(results["job"])["success"]
1.734375
2
sms_sender.py
sleekmike/Twilio-Rasa-Leads-Chatbot
0
12777381
<filename>sms_sender.py from twilio.rest import Client import requests import os # ===========================> Getting Environments Variables <================================ twilio_account_sid = os.getenv('TWILIO_ACCOUNT_SID') twilio_auth_token = os.getenv('TWILIO_AUTH_TOKEN') twilio_number = os.getenv('TWILIO_SMS_FROM') messaging_service_sid = os.getenv('MESSAGING_SERVICE_SID') print("twilio_account_sid: ", twilio_account_sid) print("twilio_auth_token: ", twilio_auth_token) print("twilio_number: ", twilio_number) print("messaging_service_sid: ", messaging_service_sid) # ===========================> First Engagement <================================ # def first_engagement(lead): """ Sends first engagement message to the new lead. """ # lead details lead_name = lead["lead_name"] number = lead["number"] #url = "localhost:5005" #linker = '192.168.3.11:5005' linker = '<YOU DOMAIN NAME HERE>:5005' #linker = 'b68a-165-232-137-196.ngrok.io' url = f"http://{linker}/conversations/{number}/trigger_intent?output_channel=latest" # lead payload payload = { "name": "send_first_SMS", "entities": { "lead_number": number, "lead_name": lead_name }, } # sending SMS request headers = {"Content-Type": "application/json"} response = requests.request("POST", url, headers=headers, json=payload) # result1 = response.json result = response return result # New Leads (ADD Lead Details Here) mike1 = {"number": "+2348035469768", "lead_name": "mike"} david = {"number": "+19167671669", "lead_name": "<NAME>"} abram = {"number": "+19163060375", "lead_name": "<NAME>"} mike2 = {"number": "+19162510635", "lead_name": "<NAME>"} mike3 = {"number": "+2348133120975", "lead_name": "<NAME>"} shailendra = {"number": "+19165181950", "lead_name": "<NAME>"} #result = first_engagement(mike3) result = first_engagement(david) print("result:", result)
2.484375
2
lib/innvestigate/src/innvestigate/utils/__init__.py
vwesselkamp/deepfake-fingerprint-atacks
0
12777382
<gh_stars>0 # Get Python six functionality: from __future__ import\ absolute_import, print_function, division, unicode_literals ############################################################################### ############################################################################### ############################################################################### import tensorflow.keras.backend as K import tensorflow.keras.utils as keras_utils import math __all__ = [ "model_wo_softmax", "to_list", "BatchSequence", "TargetAugmentedSequence", "preprocess_images", "postprocess_images", ] ############################################################################### ############################################################################### ############################################################################### def model_wo_softmax(*args, **kwargs): # Break cyclic import from .keras.graph import model_wo_softmax return model_wo_softmax(*args, **kwargs) ############################################################################### ############################################################################### ############################################################################### def to_list(l): """ If not list, wraps parameter into a list.""" if not isinstance(l, list): return [l, ] else: return l ############################################################################### ############################################################################### ############################################################################### class BatchSequence(keras_utils.Sequence): """Batch sequence generator. Take a (list of) input tensors and a batch size and creates a generators that creates a sequence of batches. :param Xs: One or a list of tensors. First axis needs to have same length. :param batch_size: Batch size. Default 32. """ def __init__(self, Xs, batch_size=32): self.Xs = to_list(Xs) self.single_tensor = len(Xs) == 1 self.batch_size = batch_size if not self.single_tensor: for X in self.Xs[1:]: assert X.shape[0] == self.Xs[0].shape[0] super(BatchSequence, self).__init__() def __len__(self): return int(math.ceil(float(len(self.Xs[0])) / self.batch_size)) def __getitem__(self, idx): ret = [X[idx*self.batch_size:(idx+1)*self.batch_size] for X in self.Xs] if self.single_tensor: return ret[0] else: return tuple(ret) class TargetAugmentedSequence(keras_utils.Sequence): """Augments a sequence with a target on the fly. Takes a sequence/generator and a function that creates on the fly for each batch a target. The generator takes a batch from that sequence, computes the target and returns both. :param sequence: A sequence or generator. :param augment_f: Takes a batch and returns a target. """ def __init__(self, sequence, augment_f): self.sequence = sequence self.augment_f = augment_f super(TargetAugmentedSequence, self).__init__() def __len__(self): return len(self.sequence) def __getitem__(self, idx): inputs = self.sequence[idx] if isinstance(inputs, tuple): assert len(inputs) == 1 inputs = inputs[0] targets = self.augment_f(to_list(inputs)) return inputs, targets ############################################################################### ############################################################################### ############################################################################### def preprocess_images(images, color_coding=None): """Image preprocessing Takes a batch of images and: * Adjust the color axis to the Keras format. * Fixes the color coding. :param images: Batch of images with 4 axes. :param color_coding: Determines the color coding. Can be None, 'RGBtoBGR' or 'BGRtoRGB'. :return: The preprocessed batch. """ ret = images image_data_format = K.image_data_format() # todo: not very general: channels_first = images.shape[1] in [1, 3] if image_data_format == "channels_first" and not channels_first: ret = ret.transpose(0, 3, 1, 2) if image_data_format == "channels_last" and channels_first: ret = ret.transpose(0, 2, 3, 1) assert color_coding in [None, "RGBtoBGR", "BGRtoRGB"] if color_coding in ["RGBtoBGR", "BGRtoRGB"]: if image_data_format == "channels_first": ret = ret[:, ::-1, :, :] if image_data_format == "channels_last": ret = ret[:, :, :, ::-1] return ret def postprocess_images(images, color_coding=None, channels_first=None): """Image postprocessing Takes a batch of images and reverts the preprocessing. :param images: A batch of images with 4 axes. :param color_coding: The initial color coding, see :func:`preprocess_images`. :param channels_first: The output channel format. :return: The postprocessed images. """ ret = images image_data_format = K.image_data_format() assert color_coding in [None, "RGBtoBGR", "BGRtoRGB"] if color_coding in ["RGBtoBGR", "BGRtoRGB"]: if image_data_format == "channels_first": ret = ret[:, ::-1, :, :] if image_data_format == "channels_last": ret = ret[:, :, :, ::-1] if image_data_format == "channels_first" and not channels_first: ret = ret.transpose(0, 2, 3, 1) if image_data_format == "channels_last" and channels_first: ret = ret.transpose(0, 3, 1, 2) return ret
1.96875
2
modules/2.79/bpy/types/ThemeUserPreferences.py
cmbasnett/fake-bpy-module
0
12777383
ThemeUserPreferences.space = None
1.132813
1
napari_browser_adv.py
sebi06/czi_demos
3
12777384
# -*- coding: utf-8 -*- ################################################################# # File : napari_browser_adv.py # Version : 0.0.1 # Author : czsrh # Date : 18.11.2020 # Institution : Carl Zeiss Microscopy GmbH # # Copyright (c) 2020 <NAME>, Germany. All Rights Reserved. ################################################################# from PyQt5.QtWidgets import ( # QPushButton, # QComboBox, QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox, # QDockWidget, # QSlider, ) from PyQt5.QtCore import Qt from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QFont import napari import numpy as np # from czitools import imgfileutils as imf import imgfileutils as imf from aicsimageio import AICSImage import dask.array as da import os from pathlib import Path def show_image_napari(array, metadata, blending='additive', gamma=0.75, rename_sliders=False): """Show the multidimensional array using the Napari viewer :param array: multidimensional NumPy.Array containing the pixeldata :type array: NumPy.Array :param metadata: dictionary with CZI or OME-TIFF metadata :type metadata: dict :param blending: NapariViewer option for blending, defaults to 'additive' :type blending: str, optional :param gamma: NapariViewer value for Gamma, defaults to 0.85 :type gamma: float, optional :param verbose: show additional output, defaults to True :type verbose: bool, optional :param rename_sliders: name slider with correct labels output, defaults to False :type verbose: bool, optional """ # create scalefcator with all ones scalefactors = [1.0] * len(array.shape) dimpos = imf.get_dimpositions(metadata['Axes_aics']) # get the scalefactors from the metadata scalef = imf.get_scalefactor(metadata) # modify the tuple for the scales for napari scalefactors[dimpos['Z']] = scalef['zx'] # remove C dimension from scalefactor scalefactors_ch = scalefactors.copy() del scalefactors_ch[dimpos['C']] if metadata['SizeC'] > 1: # add all channels as layers for ch in range(metadata['SizeC']): try: # get the channel name chname = metadata['Channels'][ch] except KeyError as e: print(e) # or use CH1 etc. as string for the name chname = 'CH' + str(ch + 1) # cut out channel # use dask if array is a dask.array if isinstance(array, da.Array): print('Extract Channel using Dask.Array') channel = array.compute().take(ch, axis=dimpos['C']) else: # use normal numpy if not print('Extract Channel NumPy.Array') channel = array.take(ch, axis=dimpos['C']) # actually show the image array print('Adding Channel : ', chname) print('Shape Channel : ', ch, channel.shape) print('Scaling Factors : ', scalefactors_ch) # get min-max values for initial scaling clim = imf.calc_scaling(channel, corr_min=1.0, offset_min=0, corr_max=0.85, offset_max=0) # add channel to napari viewer viewer.add_image(channel, name=chname, scale=scalefactors_ch, contrast_limits=clim, blending=blending, gamma=gamma) if metadata['SizeC'] == 1: # just add one channel as a layer try: # get the channel name chname = metadata['Channels'][0] except KeyError: # or use CH1 etc. as string for the name chname = 'CH' + str(ch + 1) # actually show the image array print('Adding Channel: ', chname) print('Scaling Factors: ', scalefactors) # use dask if array is a dask.array if isinstance(array, da.Array): print('Extract Channel using Dask.Array') array = array.compute() # get min-max values for initial scaling clim = imf.calc_scaling(array) viewer.add_image(array, name=chname, scale=scalefactors, contrast_limits=clim, blending=blending, gamma=gamma) if rename_sliders: print('Renaming the Sliders based on the Dimension String ....') if metadata['SizeC'] == 1: # get the position of dimension entries after removing C dimension dimpos_viewer = imf.get_dimpositions(metadata['Axes_aics']) # get the label of the sliders sliders = viewer.dims.axis_labels # update the labels with the correct dimension strings slidernames = ['B', 'S', 'T', 'Z', 'C'] if metadata['SizeC'] > 1: new_dimstring = metadata['Axes_aics'].replace('C', '') # get the position of dimension entries after removing C dimension dimpos_viewer = imf.get_dimpositions(new_dimstring) # get the label of the sliders sliders = viewer.dims.axis_labels # update the labels with the correct dimension strings slidernames = ['B', 'S', 'T', 'Z'] for s in slidernames: if dimpos_viewer[s] >= 0: sliders[dimpos_viewer[s]] = s # apply the new labels to the viewer viewer.dims.axis_labels = sliders class CheckBoxWidget(QWidget): def __init__(self): super(QWidget, self).__init__() self.layout = QHBoxLayout(self) self.cbox = QCheckBox("Use Dask Delayed ImageReader", self) self.layout.addWidget(self.cbox) self.cbox.setChecked(True) # adjust font fnt = QFont() fnt.setPointSize(12) fnt.setBold(True) fnt.setFamily("Arial") self.cbox.setFont(fnt) class TableWidget(QWidget): # def __init__(self, md): def __init__(self): super(QWidget, self).__init__() self.layout = QHBoxLayout(self) self.mdtable = QTableWidget() self.layout.addWidget(self.mdtable) self.mdtable.setShowGrid(True) self.mdtable.setHorizontalHeaderLabels(['Parameter', 'Value']) header = self.mdtable.horizontalHeader() header.setDefaultAlignment(Qt.AlignLeft) def update_metadata(self, md): row_count = len(md) col_count = 2 self.mdtable.setColumnCount(col_count) self.mdtable.setRowCount(row_count) row = 0 for key, value in md.items(): newkey = QTableWidgetItem(key) self.mdtable.setItem(row, 0, newkey) newvalue = QTableWidgetItem(str(value)) self.mdtable.setItem(row, 1, newvalue) row += 1 # fit columns to content self.mdtable.resizeColumnsToContents() def update_style(self): fnt = QFont() fnt.setPointSize(11) fnt.setBold(True) fnt.setFamily("Arial") item1 = QtWidgets.QTableWidgetItem('Parameter') item1.setForeground(QtGui.QColor(25, 25, 25)) item1.setFont(fnt) self.mdtable.setHorizontalHeaderItem(0, item1) item2 = QtWidgets.QTableWidgetItem('Value') item2.setForeground(QtGui.QColor(25, 25, 25)) item2.setFont(fnt) self.mdtable.setHorizontalHeaderItem(1, item2) class Open_files(QWidget): def __init__(self): super(QWidget, self).__init__() self.layout = QHBoxLayout(self) self.file_dialog = QFileDialog() self.file_dialog.setWindowFlags(Qt.Widget) self.file_dialog.setModal(False) self.file_dialog.setOption(QFileDialog.DontUseNativeDialog) # Remove open and cancel button from widget self.buttonBox = self.file_dialog.findChild(QDialogButtonBox, "buttonBox") self.buttonBox.clear() # Only open following file types self.file_dialog.setNameFilter("Images (*.czi *.ome.tiff *ome.tif *.tiff *.tif)") self.layout.addWidget(self.file_dialog) self.file_dialog.currentChanged.connect(self.open_path) def open_path(self, path): if os.path.isfile(path): # remove exitings layers from napari viewer.layers.select_all() viewer.layers.remove_selected() # get the metadata md, addmd = imf.get_metadata(path) # add the metadata and adapt the table display mdbrowser.update_metadata(md) mdbrowser.update_style() use_dask = checkbox.cbox.isChecked() print('Use Dask : ', use_dask) # get AICSImageIO object img = AICSImage(path) if use_dask: stack = img.dask_data if not use_dask: stack = img.get_image_data() # add the image stack to the napari viewer show_image_napari(stack, md, blending='additive', gamma=0.85, rename_sliders=True) # start the main application with napari.gui_qt(): filebrowser = Open_files() mdbrowser = TableWidget() checkbox = CheckBoxWidget() # create a viewer viewer = napari.Viewer() # add widgets viewer.window.add_dock_widget(filebrowser, name='filebrowser', area='right') viewer.window.add_dock_widget(checkbox, name='checkbox', area='right') viewer.window.add_dock_widget(mdbrowser, name='mdbrowser', area='right')
2.125
2
ez_utils/date_utils.py
darkripples/none-web-frame
2
12777385
#!/usr/bin/env python # coding:utf8 """ @Time : 2018/10/31 @Author : fls @Contact : <EMAIL> @Desc : fls易用性utils-日期相关utils @Modify Time @Author @Version @Desciption ------------ ------- -------- ----------- 2018/10/31 11:41 fls 1.0 create 2020/08/01 11:43 fls 1.1 新增函数get_current_week """ import datetime FMT_DATETIME = '%Y%m%d%H%M%S' FMT_DATETIME_SEPARATE = '%Y-%m-%d %H:%M:%S' FMT_DATE = '%Y%m%d' FMT_TIME = '%H%M%S' def fmt_date(date=None, fmt=FMT_DATETIME_SEPARATE): """格式化日期(date = datetime.datetime.now(), fmt = '%Y-%m-%d %H:%M:%S') \t\t@param: date 日期,为空则取当前日期 \t\t@param: fmt 格式化样式 """ if not date: date = datetime.datetime.now() n = date.strftime(fmt) return n def str2date(date=None, fmt=FMT_DATETIME_SEPARATE): """ 字符串转日期时间格式 :param date: :param fmt: :return: """ if not date: return fmt_date(date=None, fmt=fmt) return datetime.datetime.strptime(date, fmt) def get_day_n(date=None, day=1, fmt=FMT_DATETIME_SEPARATE): """获取n天后或-n天前的日期(date = datetime.datetime.now(), day = 1, fmt = '%Y-%m-%d %H:%M:%S') \t\t@param: date 日期,为空则取当前日期 \t\t@param: day n天后的日期,默认1天后,为负数则取n天前的日期 \t\t@param: fmt 格式化样式 """ if not date: date = datetime.datetime.now() return fmt_date(date=date + datetime.timedelta(days=day), fmt=fmt) def get_seconds_n(date=None, seconds=0, fmt=FMT_DATETIME_SEPARATE): """获取n秒后或-n秒前的日期(date = datetime.datetime.now(), seconds = 1, fmt = '%Y-%m-%d %H:%M:%S') \t\t@param: date 日期,为空则取当前日期 \t\t@param: seconds n秒后的时间,默认0秒后,为负数则取n秒前的时间 \t\t@param: fmt 格式化样式 """ if not date: date = datetime.datetime.now() return fmt_date(date=date + datetime.timedelta(seconds=seconds), fmt=fmt) def get_interval_day(start, end, fmt=FMT_DATE): """获取日期间的天数(start, end, fmt = '%Y%m%d') \t\t@param: start 开始日期 \t\t@param: end 结束日期 \t\t@param: fmt 格式化样式 """ def gen_dates(b_date, days): day = datetime.timedelta(days=1) for i in range(days): yield b_date + day * i if start is None: return [] start = datetime.datetime.strptime(start, fmt) if end is None: end = datetime.datetime.now() else: end = datetime.datetime.strptime(end, fmt) data = [] for d in gen_dates(start, (end - start).days + 1): data.append(d.strftime(fmt)) return data def reformat_date_str(rq1, fmt1, fmt2): """按目标格式,重新格式化日期(rq1, fmt1, fmt2) \t\t@param: rq1 开始日期 \t\t@param: fmt1 rq1的格式 \t\t@param: fmt2 目标格式 """ return datetime.datetime.strptime(rq1, fmt1).strftime(fmt2) def get_current_week(date=None, fmt=FMT_DATE): """ 返回日期所在周的日期字符串列表 :param date: :param fmt: :return: """ if not date: date = datetime.datetime.now() monday = date one_day = datetime.timedelta(days=1) while monday.weekday() != 0: monday -= one_day # 返回所在周的字符串列表 ret = [] for i in range(7): ret.append((monday + datetime.timedelta(days=i)).strftime(fmt)) return ret def help(num='①'): print(num + "关于日期时间") print("\tfmt_date(date = datetime.datetime.now(), fmt = '%Y-%m-%d %H:%M:%S')") print("\t" + fmt_date.__doc__) print("\tafter_date(date = datetime.datetime.now(), day = 1, fmt = '%Y-%m-%d %H:%M:%S)") print("\t" + get_day_n.__doc__) print("\tafterSeconds(date = datetime.datetime.now(), seconds = 0, fmt = '%Y-%m-%d %H:%M:%S)") print("\t" + get_seconds_n.__doc__) print("\tinterval_day(start, end, fmt = '%Y%m%d')") print("\t" + get_interval_day.__doc__) print("\treformat_date_str(rq1, fmt1, fmt2)") print("\t" + reformat_date_str.__doc__)
2.828125
3
src/encrypted_bigquery_client_test.py
datavirtualization/encrypted-bq-client
0
12777386
<reponame>datavirtualization/encrypted-bq-client #!/usr/bin/env python # Copyright 2013 Google Inc. All Rights Reserved. """Unit tests for Encrypted Bigquery Client module.""" from copy import deepcopy import random from google.apputils import app import gflags as flags from google.apputils import basetest as googletest import bigquery_client import common_util as util import ebq_crypto as ecrypto import encrypted_bigquery_client import test_util FLAGS = flags.FLAGS # TODO(user): Need to add unit tests for _DecryptRows. class EncryptedBigqueryClientTest(googletest.TestCase): def _EncryptTable(self, cipher, table, column_index): rewritten_table = deepcopy(table) for i in range(len(table)): rewritten_table[i][column_index] = cipher.Encrypt(table[i][column_index]) return rewritten_table def testComputeRows(self): # Query is 'SELECT 1 + 1, 1 * 1' # Testing no queried values. stack = [[1, 1, util.OperatorToken('+', 2)], [1, 1, util.OperatorToken('*', 2)]] query = {} real_result = [['2', '1']] result = encrypted_bigquery_client._ComputeRows(stack, query) self.assertEqual(result, real_result) # Query is 'SELECT 1 + a, 1 * b, "hello"' # There are two rows of values for a and b (shown in query). # Result becomes as below: # 1 + a | 1 * b | "hello" # 2 3 "hello" # 4 5 "hello" stack = [[1, util.FieldToken('a'), util.OperatorToken('+', 2)], [1, util.FieldToken('b'), util.OperatorToken('*', 2)], [util.StringLiteralToken('"hello"')]] query = {'a': [1, 3], 'b': [3, 5]} real_result = [['2', '3', 'hello'], ['4', '5', 'hello']] result = encrypted_bigquery_client._ComputeRows(stack, query) self.assertEqual(result, real_result) def testDecryptValues(self): cars_schema = test_util.GetCarsSchema() jobs_schema = test_util.GetJobsSchema() master_key = test_util.GetMasterKey() field = '%sInvoice_Price' % util.HOMOMORPHIC_INT_PREFIX table = [[1], [2], [3]] cipher = ecrypto.HomomorphicIntCipher(master_key) ciphers = {util.HOMOMORPHIC_INT_PREFIX: cipher} table = self._EncryptTable(cipher, table, 0) table.append([None]) column = encrypted_bigquery_client._DecryptValues( field, table, 0, ciphers, cars_schema, util.HOMOMORPHIC_INT_PREFIX) self.assertEqual(column, [1, 2, 3, util.LiteralToken('null', None)]) field = 'citiesLived.job.%sposition' % util.PSEUDONYM_PREFIX table = [[0, unicode('Hello')], [1, unicode('My')], [-1, unicode('job')]] cipher = ecrypto.PseudonymCipher(master_key) ciphers = {util.PSEUDONYM_PREFIX: cipher} table = self._EncryptTable(cipher, table, 1) table.insert(1, [100, None]) column = encrypted_bigquery_client._DecryptValues( field, table, 1, ciphers, jobs_schema, util.PSEUDONYM_PREFIX) self.assertEqual(column, [util.StringLiteralToken('"Hello"'), util.LiteralToken('null', None), util.StringLiteralToken('"My"'), util.StringLiteralToken('"job"')]) field = '%snonexistent_field' % util.HOMOMORPHIC_FLOAT_PREFIX self.assertRaises(ValueError, encrypted_bigquery_client._DecryptValues, field, table, 1, ciphers, cars_schema, util.HOMOMORPHIC_FLOAT_PREFIX) def testGetUnencryptedValues(self): table = [[1], [2], [3], [None]] column = encrypted_bigquery_client._GetUnencryptedValuesWithType( table, 0, 'integer') self.assertEqual(column, [1, 2, 3, util.LiteralToken('null', None)]) table = [[1, 'Hello'], [2, None], [None, 'Bye']] column = encrypted_bigquery_client._GetUnencryptedValuesWithType( table, 1, 'string') self.assertEqual(column, [util.StringLiteralToken('"Hello"'), util.LiteralToken('null', None), util.StringLiteralToken('"Bye"')]) self.assertRaises(ValueError, encrypted_bigquery_client._GetUnencryptedValuesWithType, table, 1, None) def testDecryptGroupConcatValues(self): cars_schema = test_util.GetCarsSchema() jobs_schema = test_util.GetJobsSchema() master_key = test_util.GetMasterKey() query = 'GROUP_CONCAT(%sModel)' % util.PROBABILISTIC_PREFIX cipher = ecrypto.ProbabilisticCipher(master_key) ciphers = {util.PROBABILISTIC_PREFIX: cipher} unencrypted_values = ( [['A', 'B', 'C', 'D'], ['1', '2', '3', '4'], ['Hello', 'Bye']]) table = [] for values in unencrypted_values: encrypted_values = [] for token in values: encrypted_values.append(cipher.Encrypt(unicode(token))) table.append([','.join(encrypted_values), random.random()]) table.insert(0, [None, None]) column = encrypted_bigquery_client._DecryptGroupConcatValues( query, table, 0, ciphers, cars_schema, util.PROBABILISTIC_PREFIX) self.assertEqual(column, [util.LiteralToken('null', None), util.StringLiteralToken('"A,B,C,D"'), util.StringLiteralToken('"1,2,3,4"'), util.StringLiteralToken('"Hello,Bye"')]) query = ('GROUP_CONCAT(citiesLived.job.%sposition) within citiesLived.job' % util.PSEUDONYM_PREFIX) cipher = ecrypto.PseudonymCipher(master_key) ciphers = {util.PSEUDONYM_PREFIX: cipher} table = [] for values in unencrypted_values: encrypted_values = [] for token in values: encrypted_values.append(cipher.Encrypt(unicode(token))) table.append([','.join(encrypted_values)]) column = encrypted_bigquery_client._DecryptGroupConcatValues( query, table, 0, ciphers, jobs_schema, util.PSEUDONYM_PREFIX) self.assertEqual(column, [util.StringLiteralToken('"A,B,C,D"'), util.StringLiteralToken('"1,2,3,4"'), util.StringLiteralToken('"Hello,Bye"')]) query = '%sModel' % util.PROBABILISTIC_PREFIX self.assertRaises(ValueError, encrypted_bigquery_client._DecryptGroupConcatValues, query, table, 0, ciphers, cars_schema, util.PROBABILISTIC_PREFIX) query = ('GROUP_CONCAT(citiesLived.%snumberOfYears) within citiesLived' % util.HOMOMORPHIC_FLOAT_PREFIX) self.assertRaises(bigquery_client.BigqueryInvalidQueryError, encrypted_bigquery_client._DecryptGroupConcatValues, query, table, 0, ciphers, jobs_schema, util.HOMOMORPHIC_FLOAT_PREFIX) def main(_): googletest.main() if __name__ == '__main__': app.run()
2.8125
3
server/sttp.py
S1ckret/stm32-esp8266-smart-house
2
12777387
<filename>server/sttp.py # S1ckret Team Transfer Protocol import constants dict_sensor_id_to_file = { 1 : "ledStatus.txt", 2 : "temperature.txt" } def handle_R_frame(msg): sensor_id = msg[1] payload_size = msg[2] payload = msg[3:] data = int.from_bytes(payload, byteorder="big") print(f"Got frame: sensor ID: {sensor_id}, payload size: {payload_size}, payload: {payload}\nConverted data: {data} ") file_name = dict_sensor_id_to_file[sensor_id] try: with open(constants.fileRoot + file_name, 'wb') as file: # TODO: add support for different payload size file.write(str(data).encode(constants.encoding)) except OSError as e: print("ERROR #{} while writing into {}".format(e.errno, constants.fileRoot + file_name)) return b"ERROR" return b"OK" def handle_sttp_msg(msg): response = b"" if (chr(msg[0]) == 'R'): response = handle_R_frame(msg) return response
2.71875
3
backend/api/migrations/0007_auto_20210930_1352.py
giacomooo/CASFEE_Project2
0
12777388
# Generated by Django 3.2.4 on 2021-09-30 11:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0006_reservation_iscanceled'), ] operations = [ migrations.AddField( model_name='reservation', name='Amount', field=models.DecimalField(decimal_places=2, default=10, max_digits=7), preserve_default=False, ), migrations.AddField( model_name='reservation', name='PricePerHour', field=models.DecimalField(decimal_places=2, default=3, max_digits=5), preserve_default=False, ), ]
1.703125
2
__init__.py
MattEvans16/TempController
0
12777389
<filename>__init__.py from flask import Flask, render_template, request, redirect, url_for, session, abort, make_response, g, Response, stream_with_context, jsonify, send_from_directory from temp_config import * from temp_control import * from random import randint app = Flask('temp_control') @app.teardown_appcontext def close_db(error): """closes db connection""" app.logger.debug("closing db") if hasattr(g, 'db'): app.logger.debug("actually closing db") g.db.close() @app.route('/', methods=['GET']) def Home(): return render_template('index.html') @app.route('/get/temp', methods=['GET','POST']) def getTemp(): '''returns all of the current sensor values. We should probably actually have this pulled from DB or something, not sure if we should really wait on I2C Comms during a web request....? ''' with open('tmp/fTemp') as fo: tempF = fo.read() with open('tmp/cTemp') as fo: tempC = fo.read() with open('tmp/humidity') as fo: humidity = fo.read() data = {'tempF':tempF, 'tempC':tempC, 'humidity':humidity} return jsonify(**data) @app.route('/set/power', methods=['POST','GET']) def setPower(): """ writers the value 1 or 0 to the tmp/servo_setting file """ formData = request.form.to_dict() powerValue = formData.get('powerValue',None)#str(randint(0,1)) if powerValue is None: data = {'err':1, 'powerValue':powerValue} else: app.logger.info("Recv'd setPower = {}".format(powerValue)) with open('tmp/servo_setting', 'w') as f: f.write(powerValue) data = {'err':0, 'powerValue':powerValue} return jsonify(**data) if __name__ == '__main__': with app.app_context(): setConfig() app.logger.debug("starting main flask app") app.run(threaded=False,host='0.0.0.0')
2.578125
3
WikiRecs-notebook.py
drsaunders/wikirecs
2
12777390
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.10.3 # kernelspec: # display_name: wikirecs # language: python # name: wikirecs # --- # # WikiRecs # A project to recommend the next Wikipedia article you might like to edit # + init_cell=true # %matplotlib inline # %load_ext autoreload # %autoreload 2 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import logging import wikipedia import requests import os import wikirecs as wr import implicit from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix from tqdm.auto import tqdm import umap import pickle import collections import recommenders import plotly.express as px from pyarrow import feather import itertools from itables import show import matplotlib from implicit.nearest_neighbours import ( bm25_weight) # - from itables.javascript import load_datatables load_datatables() # + init_cell=true pd.set_option('display.max_rows', 100) pd.set_option('display.min_rows', 100) # + init_cell=true logging.basicConfig() logging.getLogger().setLevel(logging.INFO) # - # # Assemble the complete histories import os all_histories = [] for fname in os.listdir('edit_histories_2021-05-28'): if 'feather' in fname: all_histories.append(feather.read_feather('edit_histories_2021-05-28/{}'.format(fname))) all_histories = pd.concat(all_histories, ignore_index=True) feather.write_feather(all_histories, "all_histories_2021-05-28.feather") # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") all_histories.columns len(all_histories.pageid.unique()) # # Load all_histories (raw data), transform and split # + # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") print("Length raw edit history data: {}".format(len(all_histories))) # + from pull_edit_histories import get_edit_history ## Add one particular user cols = ['userid', 'user', 'pageid', 'title', 'timestamp', 'sizediff'] with open("../username.txt", "r") as file: for username in file: oneuser = get_edit_history(user=username.strip(), latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] all_histories = pd.concat([all_histories, oneuser], ignore_index=True) print("Length after adding users: {}".format(len(all_histories))) # - # ## EDA on raw histories # Look at the distribution of edit counts edit_counts = all_histories.groupby('userid').userid.count().values plt.figure(figsize=(20,8)) plt.subplot(1,2,1) sns.distplot(edit_counts,kde=False,bins=np.arange(0,20000,200)) plt.xlabel('Number of edits by user') plt.subplot(1,2,2) sns.distplot(edit_counts,kde=False,bins=np.arange(0,200,1)) plt.xlim([0,200]) plt.xlabel('Number of edits by user') num_counts = len(edit_counts) print("Median edit counts: %d" % np.median(edit_counts)) thres = 5 over_thres = np.sum(edit_counts > thres) print("Number over threshold %d: %d (%.f%%)" % (thres, over_thres, 100*over_thres/num_counts)) # Most edits by user all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False) # Find the elbow in number of edits plt.plot(all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False).values) # plt.ylim([0,20000]) # + # What are the most popular pages (edited by the most users) page_popularity = all_histories.drop_duplicates(subset=['title','user']).groupby('title').count().user.sort_values() pd.set_option('display.max_rows', 1000) page_popularity.iloc[-1000:].iloc[::-1] # - # ## Clean data # ### Remove consecutive edits and summarize runs # + # %%time def remove_consecutive_edits(df): c = dict(zip(df.columns, range(len(df.columns)))) keyfunc = lambda x: (x[c['userid']],x[c['pageid']]) first_and_last = lambda run: [run[0][c['userid']], run[0][c['user']], run[0][c['pageid']], run[0][c['title']], run[-1][c['timestamp']], run[0][c['timestamp']], sum([abs(r[c['sizediff']]) for r in run]), len(run)] d = df.values.tolist() return pd.DataFrame([first_and_last(list(g)) for k,g in itertools.groupby(d, key=keyfunc)], columns=['userid', 'user', 'pageid', 'title', 'first_timestamp', 'last_timestamp','sum_sizediff','consecutive_edits']) clean_histories = remove_consecutive_edits(all_histories) # - # ### Remove top N most popular pages # + # Get the top most popular pages TOPN = 20 popularpages = all_histories.drop_duplicates(subset=['title','pageid','userid']).groupby(['title','pageid']).count().user.sort_values()[-TOPN:] before_count = len(all_histories) # - popularpages # Remove those popular pages popular_pageids = popularpages.index.get_level_values(level='pageid').values is_popular_page_edit = clean_histories.pageid.isin(popular_pageids) clean_histories = clean_histories.loc[~is_popular_page_edit].copy() all_histories = None after_count = len(clean_histories) print("%d edits (%.1f%%) were in top %d popular pages. Length after removing: %d" % (np.sum(is_popular_page_edit), 100* np.sum(is_popular_page_edit)/before_count, TOPN, after_count) ) print("Number of unique page ids: {}".format(len(clean_histories.pageid.unique()))) # ### Remove users with too many or too few edits MIN_EDITS = 5 MAX_EDITS = 10000 # Get user edit counts all_user_edit_counts = clean_histories.groupby(['userid','user']).userid.count() # + # Remove users with too few edits keep_user = all_user_edit_counts.values >= MIN_EDITS # Remove users with too many edits keep_user = keep_user & (all_user_edit_counts.values <= MAX_EDITS) # Remove users with "bot" in the name is_bot = ['bot' in username.lower() for username in all_user_edit_counts.index.get_level_values(1).values] keep_user = keep_user & ~np.array(is_bot) print("Keep %d users out of %d (%.1f%%)" % (np.sum(keep_user), len(all_user_edit_counts), 100*float(np.sum(keep_user))/len(all_user_edit_counts))) # + # Remove those users userids_to_keep = all_user_edit_counts.index.get_level_values(0).values[keep_user] clean_histories = clean_histories.loc[clean_histories.userid.isin(userids_to_keep)] clean_histories = clean_histories.reset_index(drop=True) # - print("Length after removing users: {}".format(len(clean_histories))) # %%time # Save cleaned histories feather.write_feather(clean_histories, '../clean_histories_2021-05-28.feather') # ## Build lookup tables # %%time clean_histories = feather.read_feather('../clean_histories_2021-05-28.feather') # + # Page id to title and back lookup = clean_histories.drop_duplicates(subset=['pageid']).loc[:,['pageid','title']] p2t = dict(zip(lookup.pageid, lookup.title)) t2p = dict(zip(lookup.title, lookup.pageid)) # User id to name and back lookup = clean_histories.drop_duplicates(subset=['userid']).loc[:,['userid','user']] u2n = dict(zip(lookup.userid, lookup.user)) n2u = dict(zip(lookup.user, lookup.userid)) # + # Page id and userid to index in cooccurence matrix and back pageids = np.sort(clean_histories.pageid.unique()) userids = np.sort(clean_histories.userid.unique()) p2i = {pageid:i for i, pageid in enumerate(pageids)} u2i = {userid:i for i, userid in enumerate(userids)} i2p = {v: k for k, v in p2i.items()} i2u = {v: k for k, v in u2i.items()} # + # User name and page title to index and back n2i = {k:u2i[v] for k, v in n2u.items() if v in u2i} t2i = {k:p2i[v] for k, v in t2p.items() if v in p2i} i2n = {v: k for k, v in n2i.items()} i2t = {v: k for k, v in t2i.items()} # - wr.save_pickle((p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t), '../lookup_tables_2021-05-28.pickle') wr.save_pickle((userids, pageids), '../users_and_pages_2021-05-28.pickle') # # ## Build test and training set p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') # Make a test set from the most recent edit by each user histories_test = clean_histories.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the training set histories_train = wr.dataframe_set_subtract(clean_histories, histories_test) histories_train.reset_index(drop=True, inplace=True) # Make a dev set from the second most recent edit by each user histories_dev = histories_train.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the final training set histories_train = wr.dataframe_set_subtract(histories_train, histories_dev) histories_train.reset_index(drop=True, inplace=True) print("Length of test set: {}".format(len(histories_test))) print("Length of dev set: {}".format(len(histories_dev))) print("Length of training after removal of test: {}".format(len(histories_train))) print("Number of pages in training set: {}".format(len(histories_train.pageid.unique()))) print("Number of users in training set: {}".format(len(histories_train.userid.unique()))) print("Number of pages with > 1 user editing: {}".format(np.sum(histories_train.drop_duplicates(subset=['title','user']).groupby('title').count().user > 1))) feather.write_feather(histories_train, '../histories_train_2021-05-28.feather') feather.write_feather(histories_dev, '../histories_dev_2021-05-28.feather') feather.write_feather(histories_test, '../histories_test_2021-05-28.feather') # + resurface_userids, discovery_userids = wr.get_resurface_discovery(histories_train, histories_dev) print("%d out of %d userids are resurfaced (%.1f%%)" % (len(resurface_userids), len(userids), 100*float(len(resurface_userids))/len(userids))) print("%d out of %d userids are discovered (%.1f%%)" % (len(discovery_userids), len(userids), 100*float(len(discovery_userids))/len(userids))) # - wr.save_pickle((resurface_userids, discovery_userids), '../resurface_discovery_users_2021-05-28.pickle') # # FIG Rama and other examples print("Number of edits by Rama in a year: {}".format(len(all_histories.loc[all_histories.user == 'Rama']))) print("Number of pages edited: {}".format(len(all_histories.loc[all_histories.user == 'Rama'].drop_duplicates(subset=['pageid'])))) # + from pull_edit_histories import get_edit_history oneuser = get_edit_history(user="Thornstrom", latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] # - wr.print_user_history(all_histories, user="Rama") wr.print_user_history(all_histories, user="Meow") # # Build matrix for implicit collaborative filtering # + # %%time # Get the user/page edit counts for_implicit = histories_train.groupby(["userid","pageid"]).count().first_timestamp.reset_index().rename(columns={'first_timestamp':'edits'}) for_implicit.loc[:,'edits'] = for_implicit.edits.astype(np.int32) # + row = np.array([p2i[p] for p in for_implicit.pageid.values]) col = np.array([u2i[u] for u in for_implicit.userid.values]) implicit_matrix_coo = coo_matrix((for_implicit.edits.values, (row, col))) implicit_matrix = csc_matrix(implicit_matrix_coo) # - # %%time wr.save_pickle(implicit_matrix,'../implicit_matrix_2021-05-28.pickle') # ### Test the matrix and indices implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') # + # Crude item to item recs by looking for items edited by the same editors (count how many editors overlap) veditors = np.flatnonzero(implicit_matrix[t2i['Hamburger'],:].toarray()) indices = np.flatnonzero(np.sum(implicit_matrix[:,veditors] > 0,axis=1)) totals = np.asarray(np.sum(implicit_matrix[:,veditors] > 0 ,axis=1)[indices]) sorted_order = np.argsort(totals.squeeze()) [i2t.get(i, "") + " " + str(total[0]) for i,total in zip(indices[sorted_order],totals[sorted_order])][::-1] # - # Histories of editors who had that item for ved in veditors: print("\n\n\n" + i2n[ved]) wr.print_user_history(all_histories, user=i2n[ved]) # # Implicit recommendation implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') bm25_matrix = bm25_weight(implicit_matrix, K1=100, B=0.25) num_factors =200 regularization = 0.01 os.environ["OPENBLAS_NUM_THREADS"] = "1" model = implicit.als.AlternatingLeastSquares( factors=num_factors, regularization=regularization ) model.fit(bm25_matrix) wr.save_pickle(model,'../als%d_bm25_model.pickle' % num_factors) model = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], bm25_matrix.tocsc(), N=1000, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) + ' %d' % (implicit_matrix[ind,:]>0).sum() for ind, score in recommendations] # ## Grid search results grid_search_results = wr.load_pickle("../implicit_grid_search.pickle") pd.DataFrame(grid_search_results) pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results], columns = ['num_factors','regularization'] + list(grid_search_results[0]['metrics'].keys())) grid_search_results_bm25 = wr.load_pickle("../implicit_grid_search_bm25.pickle") pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results_bm25], columns = ['num_factors','regularization'] + list(grid_search_results_bm25[0]['metrics'].keys())) # # B25 Recommendation from implicit.nearest_neighbours import BM25Recommender # + bm25_matrix = bm25_weight(implicit_matrix, K1=20, B=1) bm25_matrix = bm25_matrix.tocsc() sns.distplot(implicit_matrix[implicit_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) sns.distplot(bm25_matrix[bm25_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) # - K1 = 100 B = 0.25 model = BM25Recommender(K1, B) model.fit(implicit_matrix) wr.save_pickle(model, '../bm25_model_2021-05-28.pkl') results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] a = ['Steven Universe 429.4746', 'List of Steven Universe episodes 178.4544', 'Demon Bear 128.7237', 'Legion of Super Heroes (TV series) 128.7237', 'The Amazing World of Gumball 126.3522', 'Steven Universe Future 123.9198'] results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['Hamburger'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], implicit_matrix.astype(np.float32), N=1000, filter_already_liked_items=True) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] plt.plot([ score for i,(ind, score) in enumerate(recommendations) if implicit_matrix[ind,u2i[u]]==0]) wr.save_pickle(model, "b25_model.pickle") model = wr.load_pickle("b25_model.pickle") # # Evaluate models # ## Item to item recommendation results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] # ## User to item recommendations # + # Check out a specific example u = n2u["HyprMarc"] wr.print_user_history(clean_histories, userid=u) # - u = n2u["HyprMarc"] recommendations = model.recommend(u2i[u], implicit_matrix, N=100, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] # # Visualize implicit embeddings model = wr.load_pickle('../als150_model.pickle') # + # Only plot the ones with over 3 entries indices = np.squeeze(np.asarray(np.sum(implicit_matrix[nonzero,:],axis=1))) > 3 indices = nonzero[indices] # - len(indices) # Visualize the collaborative filtering item vectors, embedding into 2D space with UMAP # nonzero = np.flatnonzero(implicit_matrix.sum(axis=1)) # indices = nonzero[::100] embedding = umap.UMAP().fit_transform(model.item_factors[indices,:]) plt.figure(figsize=(10,10)) plt.plot(embedding[:,0], embedding[:,1],'.') # _ = plt.axis('square') # ## Visualize actors in the embeddings space # + edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1)))) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) # - actors = ['<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME> (actor)', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>'] actor_indices = [t2i[a] for a in actors] edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1)))) embedding = umap.UMAP().fit_transform(model.item_factors[actor_indices,:]) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in actor_indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) key = np.zeros(len(actors)) key[:8] = 1 fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color=key, hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # + # Full embedding plotly interactive visualization emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color='log_edit_count', hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # - # # Evaluate on test set # + # Load the edit histories in the training set and the test set histories_train = feather.read_feather('../histories_train_2021-05-28.feather') histories_test = feather.read_feather('../histories_test_2021-05-28.feather') histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') resurface_userids, discovery_userids = wr.load_pickle('../resurface_discovery_users_2021-05-28.pickle') results = {} # - wr.display_recs_with_history( recs, userids[:100], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # ## Most popular # + # %%time K=20 rec_name = "Popularity" prec = recommenders.PopularityRecommender(histories_train) precs = prec.recommend_all(userids, K) wr.save_pickle(precs, "../" + rec_name +"_recs.pickle") # + results[rec_name] = wr.get_recs_metrics( histories_dev, precs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # - # ## Most recent # %%time # Most recent K=20 rrec = recommenders.MostRecentRecommender(histories_train) rrecs = rrec.recommend_all(userids, K, interactions=histories_train) rec_name = "Recent" wr.save_pickle(rrecs, "../" + rec_name +"_recs.pickle") len(resurface_userids) results ={} results[rec_name] = wr.get_recs_metrics( histories_dev, rrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## Most frequent # %%time # Sorted by frequency of edits K=20 frec = recommenders.MostFrequentRecommender(histories_train) frecs = frec.recommend_all(userids, K, interactions=histories_train) rec_name = "Frequent" wr.save_pickle(frecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, frecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## BM25 # %%time K=20 brec = recommenders.MyBM25Recommender(model, implicit_matrix) brecs = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=False) rec_name = "bm25" wr.save_pickle(brecs, "../" + rec_name +"_recs.pickle") # filter_already_liked_items = False results[rec_name] = wr.get_recs_metrics( histories_dev, brecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # filter_already_liked_items = True rec_name = "bm25_filtered" brecs_filtered = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=True) wr.save_pickle(brecs_filtered, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## ALS Implicit collaborative filtering model_als = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') # %%time rec_name = "als" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=False) wr.save_pickle(irecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, irecs, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] rec_name = "als_filtered" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs_filtered = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=True) results[rec_name] = wr.get_recs_metrics( histories_dev, irecs_filtered, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] wr.save_pickle(irecs_filtered, "../" + rec_name +"_recs.pickle") show(pd.DataFrame(results).T) # ## Jaccard # %%time # Sorted by Jaccard K=20 rrec = recommenders.MostRecentRecommender(histories_train) recent_pages_dict = rrec.all_recent_only(K, userids, interactions=histories_train) jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids, K, num_lookpage_pages=1, recent_pages_dict=recent_pages_dict, interactions=histories_train) wr.save_pickle(jrecs,"jaccard-1_recs.pickle") rec_name = "Jaccard" results[rec_name] = wr.get_recs_metrics( histories_dev, jrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] wr.display_recs_with_history( jrecs, userids[:30], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # %%time # Sorted by Jaccard K=5 jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids[:1000], 10, num_lookpage_pages=50, recent_pages_dict=recent_pages_dict, interactions=histories_train) print("Jaccard") print("Recall @ %d: %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K))) print("Prop resurfaced: %.1f%%" % (100*wr.prop_resurface(jrecs, K, implicit_matrix, i2p, u2i))) print("Recall @ %d (discovery): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=discovery_userids))) print("Recall @ %d (resurface): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=resurface_userids))) # ## Interleaved recs.keys() # + # Interleaved jaccard and recent K=20 rec_name = "Interleaved" print(rec_name) intrec = recommenders.InterleaveRecommender() intrecs = intrec.recommend_all(K, [recs['Recent'], recs['bm25_filtered']]) wr.save_pickle(intrecs, "../" + rec_name +"_recs.pickle") # - results[rec_name] = wr.get_recs_metrics( histories_dev, intrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # # Report on evaluations results # ## Hard coded metrics # + results = {} results["Popularity"] = {'recall': 0.16187274312040842, 'ndcg': 0.0005356797596941751, 'resurfaced': 0.6213422985929523, 'recall_discover': 0.11947959996459864, 'recall_resurface': 0.2624396388830569, 'ndcg_discover': 0.000410354483750028, 'ndcg_resurface': 0.0008329819416998272} results["Recent"] = {'recall': 22.618602913709378, 'ndcg': 0.14306080818547054, 'resurfaced': 71.13808990163118, 'recall_discover': 0.03982653332153288, 'recall_resurface': 76.18097837497375, 'ndcg_discover': 0.00011494775493754298, 'ndcg_resurface': 0.4821633227780786} results["Frequent"] = {'recall': 20.834889802017184, 'ndcg': 0.11356953338215306, 'resurfaced': 76.10353629684971, 'recall_discover': 0.035401362952473675, 'recall_resurface': 70.17635943732941, 'ndcg_discover': 9.90570471847343e-05, 'ndcg_resurface': 0.38274923359395385} results["ALS"] = {'recall': 5.488108579255385, 'ndcg': 0.026193145556306998, 'resurfaced': 16.251556468683848, 'recall_discover': 1.146119125586335, 'recall_resurface': 15.788368675204703, 'ndcg_discover': 0.004817135435898367, 'ndcg_resurface': 0.0769022655123215} results["ALS_filtered"] = {'recall': 0.9027518366330469, 'ndcg': 0.003856703716094881, 'resurfaced': 0.0, 'recall_discover': 1.2832994070271706, 'recall_resurface': 0.0, 'ndcg_discover': 0.005482465270193466, 'ndcg_resurface': 0.0} results["BM25"] = {'recall': 18.945336819823186, 'ndcg': 0.1015175508656068, 'resurfaced': 74.0469742248786, 'recall_discover': 1.3939286662536507, 'recall_resurface': 60.581566239764854, 'ndcg_discover': 0.004204510293040833, 'ndcg_resurface': 0.332367864833573} results["BM25_filtered"] = {'recall': 1.8148424853691942, 'ndcg': 0.008622285155255174, 'resurfaced': 0.14848711243929774, 'recall_discover': 2.522347110363749, 'recall_resurface': 0.1364686122191896, 'ndcg_discover': 0.011740495141426633, 'ndcg_resurface': 0.0012251290280766518} results["Interleaved"] = {'recall': 21.382766778732414, 'ndcg': 0.12924273396038563, 'resurfaced': 42.478676379031256, 'recall_discover': 1.8364457031595716, 'recall_resurface': 67.75141717404996, 'ndcg_discover': 0.006943981897312752, 'ndcg_resurface': 0.4193652616867473} results_df = pd.DataFrame(results).T results_df.reset_index(inplace=True) # - # ## Table of results results_df # ### FIG Table for post # + def scatter_text(x, y, text_column, data, title, xlabel, ylabel): """Scatter plot with country codes on the x y coordinates Based on this answer: https://stackoverflow.com/a/54789170/2641825""" # Create the scatter plot p1 = sns.scatterplot(x, y, data=data, size = 8, legend=False) # Add text besides each point for line in range(0,data.shape[0]): p1.text(data[x][line]+0.01, data[y][line], data[text_column][line], horizontalalignment='left', size='medium', color='black', weight='semibold') # Set title and axis labels plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) return p1 def highlight_max(s): ''' highlight the maximum in a Series yellow. ''' is_max = s == s.max() return ['background-color: yellow' if v else '' for v in is_max] results_df.sort_values("recall", ascending=False).style.apply(highlight_max, subset=["recall", "ndcg", "resurfaced", "recall_discover", "recall_resurface", "ndcg_discover", "ndcg_resurface",]).format({"recall": "{:.1f}%", "ndcg": "{:.3f}", "resurfaced": "{:.1f}%", "recall_discover": "{:.1f}%", "recall_resurface": "{:.1f}%", "ndcg_discover": "{:.3f}", "ndcg_resurface": "{:.3f}", }) # - colnames = ["Recommender", "Recall@20", "nDCG@20","Resurfaced","Recall@20 discovery","Recall@20 resurface","nDCG@20 discovery","nDCG@20 resurface"] #apply(highlight_max, subset=colnames[1:]). results_df.columns = colnames results_df.sort_values("Recall@20", ascending=False).style.\ format({"Recall@20": "{:.1f}%", "nDCG@20": "{:.3f}", "Resurfaced": "{:.1f}%", "Recall@20 discovery": "{:.1f}%", "Recall@20 resurface": "{:.1f}%", "nDCG@20 discovery": "{:.3f}", "nDCG@20 resurface": "{:.3f}", }) # ## Scatter plots (resurface vs discover) fig = px.scatter(data_frame=results_df, x='ndcg_discover', y='ndcg_resurface', hover_name='index') # hover_name='title',) fig.show() fig = px.scatter(data_frame=results_df, x='recall_discover', y='recall_resurface', hover_name='index') # hover_name='title',) fig.show() # ### FIG Scatterplot for post x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] y = [0, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] # + sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 48, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(12,7)) A = results_df.loc[:,'Recall@20 discovery'] B = results_df.loc[:,'Recall@20 resurface'] x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] y = [-1, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] plt.plot(x,y,":k") x[0] = 0 y[0] = y[1] # plt.rcParams.update({'font.size': 48}) plt.rc('xtick', labelsize=3) font = {'family' : 'normal', 'weight' : 'normal', 'size' : 22} matplotlib.rc('font', **font) plt.plot(x,y,":k") plt.plot(A,B,'.', MarkerSize=15) for xyz in zip(results_df.Recommender, A, B): # <-- plt.gca().annotate('%s' % xyz[0], xy=np.array(xyz[1:])+(0.05,0), textcoords='data', fontsize=18) # <-- for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) plt.xlabel("Recall@20 discovery (%)",fontsize=20) plt.ylabel("Recall@20 resurface (%)",fontsize=20) plt.xlim([0,3]) plt.ylim([-2,85]) axes = plt.gca() # - # ## Read recs in from files recommender_names = ['Popularity', 'Recent', 'Frequent', 'ALS', 'ALS_filtered', 'BM25', 'BM25_filtered', 'Interleaved'] recs = {rname:wr.load_pickle("../" + rname + "_recs.pickle") for rname in recommender_names} # ## Recall curves histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20) # print(recall_curve[-1]) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, resurface_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) # ### FIG Implicit vs BM25 figure sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 18, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(10,6)) for rname in ["ALS","BM25"]: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(np.array(recall_curve)*100,'.-',markersize=12) plt.legend( ["ALS","BM25"],title="Algorithm", fontsize=16, title_fontsize=16, facecolor="w") plt.xlabel("@N",fontsize=20) plt.ylabel("Discovery recall (%)",fontsize=20) _ = plt.xticks(np.arange(0,20,2),np.arange(0,20,2)+1) # plt.gca().legend(prop=dict(size=20)) for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) # # User recommendation comparison recs_subset = ["Recent","Frequent","Popularity","Implicit","bm25","interleaved"] print("Next edit: " + histories_dev.loc[histories_dev.userid == userid].title.values[0]) # ## FIG Rama table # + def bold_viewed(val, viewed_pages): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ weight = 'bold' if val in viewed_pages else 'normal' return 'font-weight: %s' % weight def color_target(val, target_page): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = 'red' if val == target_page else 'black' return 'color: %s' % color def display_user_recs_comparison(user_name, recs, recs_subset, train_set, test_set, N=20): userid = n2u[user_name] recs_table = pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for rec_name in recs_subset}) recs_table = recs_table.reset_index() recs_table.loc[:,"index"] = recs_table.loc[:,"index"]+1 recs_table = recs_table.rename(columns={"index":""}) viewed_pages = train_set.loc[train_set.userid == userid,["title"]].drop_duplicates(subset=["title"]).values.squeeze() target_page = test_set.loc[test_set.userid == userid].title.values[0] # print("Next edit: " + target_page) s = recs_table.style.applymap(bold_viewed, viewed_pages=viewed_pages).applymap(color_target, target_page=target_page) display(s) # + recs_subset = ["Recent","Frequent","Popularity","ALS","ALS_filtered","BM25","BM25_filtered"] display_user_recs_comparison('Rama', recs, recs_subset, histories_train, histories_dev, N=10) # - # ## Other individuals tables display_user_recs_comparison('Meow', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('KingArti', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('Tulietto', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('Thornstrom', recs, recs_subset, histories_train, histories_dev, N=10) # ## FIG Interleaved display_user_recs_comparison('Rama', recs,['Interleaved'], histories_train, histories_dev, N=10) display_user_recs_comparison('KingArti', recs,['Interleaved'], histories_train, histories_dev, N=10) N = 20 display(pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][:N] for rec_name in recs_subset})) persons_of_interest = [ "DoctorWho42", "AxelSjögren", "<NAME>", "Tulietto", "LipaCityPH", "<NAME>", "Thornstrom", "Meow", "HyprMarc", "Jampilot", "Rama" ] N=10 irec_500 = recommenders.ImplicitCollaborativeRecommender(model, implicit_matrix) irecs_poi = irec_500.recommend_all([n2u[user_name] for user_name in persons_of_interest], N, u2i=u2i, n2i=n2i, i2p=i2p) # # Find interesting users # + edited_pages = clean_histories.drop_duplicates(subset=['title','user']).groupby('user').userid.count() edited_pages = edited_pages[edited_pages > 50] edited_pages = edited_pages[edited_pages < 300] # - clean_histories.columns display_user_recs_comparison("Rama", recs, recs_subset, histories_train, histories_dev, N=20) # + index = list(range(len(edited_pages))) np.random.shuffle(index) for i in index[:10]: user_name = edited_pages.index[i] print(user_name) display_user_recs_comparison(user_name, recs, recs_subset, histories_train, histories_dev, N=20) print("\n\n\n") # + index = list(range(len(edited_pages))) np.random.shuffle(index) for i in index[:10]: print(edited_pages.index[i]) display_user_recs_comparison wr.print_user_history(user=edited_pages.index[i],all_histories=clean_histories) print("\n\n\n") # - sns.distplot(edited_pages,kde=False,bins=np.arange(0,2000,20)) # # Repetition analysis import itertools clean_histories.head() clean_histories.iloc[:1000].values.tolist() df = clean_histories dict(zip(df.columns, range(len(df.columns)))) def identify_runs(df): d = df.loc[:,['userid','pageid']].values.tolist() return [(k, len(list(g))) for k,g in itertools.groupby(d)] # %%time runs = identify_runs(clean_histories) # + lens = np.array([r[1] for r in runs]) single_edits = np.sum(lens==1) total_edits = len(clean_histories) print("Percent of edits that are part of a run: %.1f%%" % (100*(1-(float(single_edits)/total_edits)))) print("Percent of edits that are repetitions: %.1f%%" % (100*(1-len(runs)/total_edits)))
2.546875
3
SaveTheGalaxy.py
ObradovicNikola/SaveTheGalaxy
3
12777391
import random import os.path import pygame import sys from pygame.locals import * WIDTH = 800 HEIGHT = 640 FPS = 60 POWERUP_TIME = 4000 RELOAD = 300 NUMSTARS = 30 TYPING_SPEED = 300 PLAYER_MAX_HEALTH = 100 BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) YELLOW = (255, 211, 0) LIGHT_GREEN = (185, 235, 98) FONT = 'MyFont.ttf' pygame.mixer.pre_init(44100, -16, 1, 512) # Decreasing the size of the buffer will reduce the latency pygame.mixer.init() # handles sound pygame.init() screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption('Save The Galaxy') clock = pygame.time.Clock() if hasattr(sys, '_MEIPASS'): main_dir = sys._MEIPASS else: main_dir = os.path.split(os.path.abspath(__file__))[0] + '\\data' textfile_dir = os.path.split(os.path.abspath(__file__))[0] FONT = main_dir + '\\' + FONT def loadImage(file): file = os.path.join(main_dir, file) img = pygame.image.load(file) return img.convert_alpha() iconImg = pygame.transform.scale(loadImage('icon.png'), (30, 30)) pygame.display.set_icon(iconImg) loadingScreenImg = pygame.transform.scale(loadImage('loadingscreen.png'), (WIDTH, HEIGHT)) loadingScreenImgRect = loadingScreenImg.get_rect() screen.blit(loadingScreenImg, loadingScreenImgRect) pygame.display.update() def loadSound(file): file = os.path.join(main_dir, file) sound = pygame.mixer.Sound(file) return sound def printText(surface, text, size, x, y, color, center = 0): font = pygame.font.Font(FONT, size) font.set_bold(True) textSurface = font.render(text, True, color) text_rect = textSurface.get_rect() if center == 0: text_rect.bottomleft = (x, y) else: text_rect.center = center surface.blit(textSurface, text_rect) def slowType(s, y): global TYPING_SPEED typeFPS = 60 k = len(s) i = 0 x = 30 lastLetter = pygame.time.get_ticks() while i < k: clock.tick(typeFPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == K_KP_ENTER or event.key == K_ESCAPE: typeFPS = 0 if (pygame.time.get_ticks() - lastLetter) > (random.random()*TYPING_SPEED): printText(screen, s[i], 16, x, y, YELLOW) keyPress_sound.play() pygame.display.update() x += 16 i += 1 lastLetter = pygame.time.get_ticks() def showStory(): screen.blit(storyImg, storyImgRect) pygame.display.update() story_music.play(-1) slowType('GREETINGS BRAVE WARRIOR,', 20) slowType('YOUR GALAXY IS IN GREAT DANGER', 40) slowType('OF RUTHLESS ALIEN INVASION', 60) slowType('YOU HAVE BEEN CHOSEN', 80) slowType('TO FACE AGAINST THIS TYRANNY', 100) slowType('YOU GOT MOST ADVANCED SPACE SHIP', 120) slowType('YOU HAVE ASSIGNMENT TO DESTROY ENEMY ARMY', 140) slowType('AND DEFEAT CAPTAIN, GENERAL AND LEADER.', 160) slowType('IF YOU ACCOMPLISH THIS MISSION SUCCESSFULLY,', 180) slowType('WHOLE GALAXY WILL BE ETERNALLY GRATEFUL AND', 200) slowType('MAY THE FORCE ALWAYS BE ON YOUR SIDE', 220) slowType('PRESS ANY KEY TO CONTINUE...', 260) while True: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: story_music.stop() showGameStartScreen() def drawHealthBar(surface, x, y, health, healthColor, maxhealth, barLength): if health < 0: health = 0 barHeight = 25 fill = (health / maxhealth) * barLength outlineRect = pygame.Rect(x, y, barLength, barHeight) fillRect = pygame.Rect(x, y, fill, barHeight) pygame.draw.rect(surface, healthColor, fillRect) pygame.draw.rect(surface, WHITE, outlineRect, 2) def drawLives(surface, x, y, lives, img): for i in range(lives): imgRect = img.get_rect() imgRect.x = x + 35*i imgRect.y = y surface.blit(img, imgRect) class Player(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) self.image = playerImg self.rect = self.image.get_rect() self.radius = 22 self.rect.bottom = HEIGHT - 30 self.rect.centerx = WIDTH / 2 self.speedx = 5 self.speedy = 3 self.lives = 3 self.health = PLAYER_MAX_HEALTH self.hidden = False self.hide_timer = pygame.time.get_ticks() self.immune = False self.immune_timer = pygame.time.get_ticks() self.powerLvl = 1 self.power_timer = pygame.time.get_ticks() self.shoot_timer = pygame.time.get_ticks() self.score = 0 def update(self): if self.immune: self.image = playerImg_immune else: self.image = playerImg if player.lives < 1: pygame.mixer.music.stop() boss_fight_music.stop() pygame.mixer.music.play(-1) showGameOverScreen() if self.powerLvl > 1: if pygame.time.get_ticks() - self.power_timer > POWERUP_TIME: self.powerLvl = 1 self.power_timer = pygame.time.get_ticks() if self.hidden and pygame.time.get_ticks() - self.hide_timer > 1200: self.hidden = False self.rect.bottom = HEIGHT - 30 self.rect.centerx = WIDTH / 2 self.immune = True self.immune_timer = pygame.time.get_ticks() if self.immune and pygame.time.get_ticks() - self.immune_timer > 1500: self.immune = False keystate = pygame.key.get_pressed() if keystate[K_LEFT]: self.rect.x -= self.speedx if keystate[K_RIGHT]: self.rect.x += self.speedx if keystate[K_UP]: self.rect.y -= self.speedy if keystate[K_DOWN]: self.rect.y += self.speedy if self.rect.right > WIDTH + 20: self.rect.right = WIDTH + 20 if self.rect.left < -20 and self.rect.left > -200: self.rect.left = -20 if self.rect.top <= 0 and self.rect.top > -200: self.rect.top = 0 if self.rect.bottom >= HEIGHT - 30: self.rect.bottom = HEIGHT - 30 def shoot(self): if not self.hidden: self.shoot_timer = pygame.time.get_ticks() if self.powerLvl == 1: bullet = Bullet(self.rect.centerx, self.rect.top) allSprites.add(bullet) bullets.add(bullet) shoot_sound.play() elif self.powerLvl == 2: bullet1 = Bullet(self.rect.left+5, self.rect.centery) bullet2 = Bullet(self.rect.right-5, self.rect.centery) allSprites.add(bullet1, bullet2) bullets.add(bullet1, bullet2) shoot_sound.play() else: bullet = Bullet(self.rect.centerx, self.rect.top) bullet1 = Bullet(self.rect.left + 5, self.rect.centery) bullet2 = Bullet(self.rect.right - 5, self.rect.centery) allSprites.add(bullet, bullet1, bullet2) bullets.add(bullet, bullet1, bullet2) shoot_sound.play() def hide(self): self.hidden = True self.hide_timer = pygame.time.get_ticks() self.rect.center = (-500, -500) def powerup(self): self.powerLvl += 1 self.power_timer = pygame.time.get_ticks() def reset(self): self.rect.bottom = HEIGHT - 30 self.rect.centerx = WIDTH / 2 self.lives = 3 self.health = PLAYER_MAX_HEALTH self.hidden = False self.powerLvl = 1 self.score = 0 class Alien(pygame.sprite.Sprite): def __init__(self, x, y, img1, img2, smartShoot, fly): pygame.sprite.Sprite.__init__(self) self.img1 = img1 self.img2 = img2 self.image = self.img1 self.rect = self.image.get_rect() self.radius = 20 self.rect.x = x self.rect.y = y self.speedy = 0 self.speedx = random.randrange(1, 3) self.direction = 1 self.lastUpdate = pygame.time.get_ticks() self.lastBomb = pygame.time.get_ticks() self.smartShoot = smartShoot self.canFly = fly self.fly = False self.fly_timer = pygame.time.get_ticks() self.starty = self.rect.y self.hitbottom = False self.flyTime = random.randrange(5000, 30000) def move(self, direction, y = 0): if self.rect.y < self.starty: self.rect.y = self.starty self.fly = False if y == 0: self.rect.x += self.speedx * self.direction else: self.rect.y += 4 * direction if self.rect.bottom > player.rect.bottom: self.rect.bottom = player.rect.bottom self.hitbottom = True if self.rect.y == self.starty: self.fly = False alliens.remove(self) hits = pygame.sprite.spritecollide(self, alliens, False) if hits: self.direction *= -1 alliens.add(self) def update(self): now = pygame.time.get_ticks() if now - self.lastUpdate > 80: self.lastUpdate = now if self.image == self.img1: self.image = self.img2 else: self.image = self.img1 x = self.rect.x y = self.rect.y self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y if self.canFly: if now - self.fly_timer > self.flyTime: self.fly_timer = now self.fly = True if self.fly == False: self.hitbottom = False if self.rect.left <=0: self.rect.left = 0 self.direction *= -1 if self.rect.right >= WIDTH: self.rect.right = WIDTH self.direction *= -1 self.move(self.direction) if now - self.lastBomb > random.randrange(800, 1000000): self.lastBomb = now if self.smartShoot: if self.rect.x < player.rect.x: bomba = Bomb(self.rect.centerx, self.rect.bottom, 1) else: bomba = Bomb(self.rect.centerx, self.rect.bottom, -1) else: bomba = Bomb(self.rect.centerx, self.rect.bottom, random.randrange(4)) allSprites.add(bomba) bombs.add(bomba) elif self.fly == True: if self.hitbottom: self.move(-1, 5) else: self.move(1, 5) class Boss(pygame.sprite.Sprite): def __init__(self, bosstype): pygame.sprite.Sprite.__init__(self) self.image = bossImg[bosstype-1] self.rect = self.image.get_rect() self.rect.centerx = screen.get_rect().centerx self.rect.y = 5 self.speedy = random.randrange(5*bosstype, 10*bosstype) self.speedx = random.randrange(5*bosstype, 10*bosstype) self.directionx = random.choice([-1, 1]) self.directiony = random.choice([-1, 1]) self.lastUpdate = pygame.time.get_ticks() self.lastDirection = pygame.time.get_ticks() self.lastBomb = pygame.time.get_ticks() self.bosstype = bosstype self.health = 1000 * bosstype def move(self): if self.rect.y < 5: self.rect.y = 5 if self.rect.bottom > HEIGHT - 200: self.rect.bottom = HEIGHT - 200 if self.rect.x >= 5 and self.rect.y <= HEIGHT - 200: self.rect.y += self.speedy * self.directiony if self.rect.x < 5: self.rect.x = 5 if self.rect.right > WIDTH - 5: self.rect.right = WIDTH - 5 if self.rect.x >= 5 and self.rect.x <= WIDTH - 5: self.rect.x += self.speedx * self.directionx def update(self): now = pygame.time.get_ticks() if now - self.lastDirection > random.randrange(1300,10000): self.lastDirection = now self.directionx = random.choice([-1, 1]) self.directiony = random.choice([-1, 1]) if now - self.lastUpdate > random.randrange(80, 200): self.lastUpdate = now self.move() if now - self.lastBomb > random.randrange(100, round(100000/self.bosstype)): self.lastBomb = now if self.bosstype > 1: if self.rect.x < player.rect.x: bomba1 = Bomb(self.rect.centerx, self.rect.bottom, 1) bomba2 = Bomb(self.rect.centerx - 20, self.rect.bottom, 1) bomba3 = Bomb(self.rect.centerx + 20, self.rect.bottom, 1) if self.bosstype == 3: bomba4 = Bomb(self.rect.centerx - 40, self.rect.bottom, 1) bomba5 = Bomb(self.rect.centerx + 40, self.rect.bottom, 1) allSprites.add(bomba4) bombs.add(bomba4) allSprites.add(bomba5) bombs.add(bomba5) else: bomba1 = Bomb(self.rect.centerx, self.rect.bottom, -1) bomba2 = Bomb(self.rect.centerx - 20, self.rect.bottom, -1) bomba3 = Bomb(self.rect.centerx + 20, self.rect.bottom, -1) if self.bosstype == 3: bomba4 = Bomb(self.rect.centerx - 40, self.rect.bottom, -1) bomba5 = Bomb(self.rect.centerx + 40, self.rect.bottom, -1) allSprites.add(bomba4) bombs.add(bomba4) allSprites.add(bomba5) bombs.add(bomba5) else: bomba1 = Bomb(self.rect.centerx, self.rect.bottom) bomba2 = Bomb(self.rect.centerx - 20, self.rect.bottom) bomba3 = Bomb(self.rect.centerx + 20, self.rect.bottom) allSprites.add(bomba1) bombs.add(bomba1) allSprites.add(bomba2) bombs.add(bomba2) allSprites.add(bomba3) bombs.add(bomba3) class Bomb(pygame.sprite.Sprite): def __init__(self, x, y, direction = random.choice([-1, 1])): pygame.sprite.Sprite.__init__(self) self.image = pygame.transform.scale(bombImg, (10, 20)) self.rect = self.image.get_rect() self.rect.midtop = (x, y) self.speedy = random.randrange(2, 6) self.speedx = random.randrange(3) self.direction = direction bomb_sound.play() def update(self): self.rect.y += self.speedy self.rect.x += self.speedx * self.direction if self.rect.top > HEIGHT or self.rect.left > WIDTH or self.rect.right < 0: self.kill() class Bullet(pygame.sprite.Sprite): def __init__(self, x, y): pygame.sprite.Sprite.__init__(self) self.image = pygame.transform.scale(bulletImg, (10, 25)) self.rect = self.image.get_rect() self.rect.bottom = y self.rect.centerx = x self.speedy = -7 def update(self): self.rect.y += self.speedy if self.rect.bottom < 0: self.kill() class PowerUp(pygame.sprite.Sprite): def __init__(self, center): pygame.sprite.Sprite.__init__(self) self.type = random.choice(['health', 'fire']) if random.random() > 0.9: self.type = 'life' self.image = powerupImgs[self.type] self.rect = self.image.get_rect() self.rect.center = center self.speedy = random.randrange(3, 6) def update(self): self.rect.y += self.speedy if self.rect.top > HEIGHT: self.kill() class Explosion(pygame.sprite.Sprite): def __init__(self, center, size): pygame.sprite.Sprite.__init__(self) self.size = size self.image = explosion[self.size][0] self.rect = self.image.get_rect() self.rect.center = center self.frame = 0 self.lastUpdate = pygame.time.get_ticks() self.frameRate = 50 def update(self): now = pygame.time.get_ticks() if now - self.lastUpdate > self.frameRate: self.lastUpdate = now self.frame += 1 if self.frame == len(explosion[self.size]): self.kill() else: center = self.rect.center self.image = explosion[self.size][self.frame] self.rect = self.image.get_rect() self.rect.center = center class Meteor(pygame.sprite.Sprite): def __init__(self, speedCap, timeCap = 0): pygame.sprite.Sprite.__init__(self) self.startImage = random.choice(meteorImg) self.image = self.startImage.copy() self.rect = self.image.get_rect() self.radius = int(self.rect.width / 2) self.rect.x = random.randrange(WIDTH - self.rect.width) self.rect.y = random.randrange(-150, -100) self.speedCap = speedCap self.speedx = random.randrange(3) self.speedy = random.randrange(self.speedCap) self.direction = random.choice([-1, 1]) self.timeCap = timeCap self.timeStart = pygame.time.get_ticks() self.rotationAngle = 0 self.rotationSpeed = random.randrange(-9, 9) self.lastRotation = pygame.time.get_ticks() def update(self): if self.timeCap > 0: if pygame.time.get_ticks() - self.timeStart > self.timeCap: if self.rect.y < 0: self.kill() now = pygame.time.get_ticks() if now - self.lastRotation > 50: self.lastRotation = now self.rotationAngle = (self.rotationAngle + self.rotationSpeed) % 360 oldCenter = self.rect.center self.image = pygame.transform.rotate(self.startImage, self.rotationAngle) self.rect = self.image.get_rect() self.rect.center = oldCenter self.rect.x += self.speedx * self.direction self.rect.y += self.speedy if self.rect.y > HEIGHT or self.rect.right < 0 or self.rect.width > WIDTH: self.rect.x = random.randrange(WIDTH - self.rect.width) self.rect.y = random.randrange(-150, -100) self.speedx = random.randrange(3) self.speedy = random.randrange(self.speedCap) class Star(pygame.sprite.Sprite): def __init__(self, x): pygame.sprite.Sprite.__init__(self) self.startImage = pygame.transform.scale(random.choice(starImg), (random.randrange(10,20),random.randrange(10,20))) self.image = self.startImage.copy() self.rect = self.image.get_rect() self.rect.x = x self.startx = x self.rect.y = -30 self.speedx = random.randrange(2, 5) self.speedy = random.randrange(2, 6) self.direction = random.choice([-1, 1]) self.timeStart = pygame.time.get_ticks() self.rotationAngle = 0 self.rotationSpeed = random.randrange(-7, 7) self.lastRotation = pygame.time.get_ticks() def update(self): self.rect.x += self.speedx * self.direction self.rect.y += self.speedy if self.rect.y > HEIGHT+25 or self.rect.x < 0-15 or self.rect.x > WIDTH+15: self.rect.y = -25 self.rect.x = self.startx now = pygame.time.get_ticks() if now - self.lastRotation > 50: self.lastRotation = now self.rotationAngle = (self.rotationAngle + self.rotationSpeed) % 360 oldCenter = self.rect.center self.image = pygame.transform.rotate(self.startImage, self.rotationAngle) self.rect = self.image.get_rect() self.rect.center = oldCenter def destroy(self): if self.rect.y > HEIGHT or self.rect.y < 0 or self.rect.x < 0 or self.rect.x > WIDTH: self.kill() class Button(pygame.sprite.Sprite): def __init__(self, x, y, type): pygame.sprite.Sprite.__init__(self) self.type = type self.image = buttonImg self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y self.clicked = pygame.mouse.get_pressed() def update(self): mouse = pygame.mouse.get_pos() self.clicked = pygame.mouse.get_pressed() if mouse[0] >= self.rect.x and mouse[0] <= self.rect.right and mouse[1] >= self.rect.y and mouse[1] <= self.rect.bottom: self.image = buttonLitImg if self.clicked[0] == 1: self.action() else: self.image = buttonImg printText(screen, self.type, 42, self.rect.x + 22, self.rect.y + 55, LIGHT_GREEN, self.rect.center) def action(self): if self.type == 'PLAY': runGame() elif self.type == 'EXIT': pygame.quit() playerImg = loadImage('avion.png') playerImg_immune = loadImage('avion_immune.png') playerLifeImg = pygame.transform.scale(loadImage('life.png'), (25, 20)) bulletImg = loadImage('raketa.png') bombImg = loadImage('bomba.png') allienImg = [loadImage('vanzemaljaca0.png'), loadImage('vanzemaljaca1.png'), loadImage('vanzemaljacb0.png'), loadImage('vanzemaljacb1.png'), loadImage('vanzemaljacc0.png'), loadImage('vanzemaljacc1.png'), ] bossImg = [pygame.transform.scale(loadImage('boss1.png'), (200, 200)), pygame.transform.scale(loadImage('boss2.png'), (200, 200)), pygame.transform.scale(loadImage('boss3.png'), (200, 200))] meteorImg = [pygame.transform.scale(loadImage('meteor1.png'), (100, 100)), pygame.transform.scale(loadImage('meteor2.png'), (70, 70)), pygame.transform.scale(loadImage('meteor3.png'), (50, 50)), pygame.transform.scale(loadImage('meteor4.png'), (30, 30)), pygame.transform.scale(loadImage('meteor5.png'), (20, 20))] starImg = [loadImage('star1.png'), loadImage('star2.png'), loadImage('star3.png'), loadImage('star4.png'), loadImage('star5.png')] buttonImg = pygame.transform.scale(loadImage('button.png'), (170, 70)) buttonLitImg = pygame.transform.scale(loadImage('buttonLit.png'), (170, 70)) backgroundImg = pygame.transform.scale(loadImage('starfield.png'), (WIDTH, HEIGHT)) backgroundRect = backgroundImg.get_rect() startImg = pygame.transform.scale(loadImage('startscreen.png'), (WIDTH, HEIGHT)) startImgRect = startImg.get_rect() storyImg = pygame.transform.scale(loadImage('storyImg.png'), (WIDTH, HEIGHT)) storyImgRect = storyImg.get_rect() pauseScreen = pygame.Surface((WIDTH, HEIGHT)).convert_alpha() pauseScreen.fill((0, 0, 0, 190)) explosion = {} explosion['large'] = [] explosion['small'] = [] powerupImgs = {} powerupImgs['health'] = pygame.transform.scale(loadImage('health.png'), (30, 30)) powerupImgs['fire'] = pygame.transform.scale(loadImage('fire.png'), (30, 30)) powerupImgs['life'] = pygame.transform.scale(loadImage('life.png'), (30, 30)) for i in range(10): file = 'explosion{}.png'.format(i) img = loadImage(file) imgLarge = pygame.transform.scale(img, (70, 70)) explosion['large'].append(imgLarge) imgSmall = pygame.transform.scale(img, (30, 30)) explosion['small'].append(imgSmall) background_music = loadSound('RoundtableRival.ogg') pygame.mixer.music = background_music pygame.mixer.music.set_volume(0.2) boss_fight_music = loadSound('DBZ_BOSS_FIGHT.ogg') story_music = loadSound('STAR_WARS.ogg') shoot_sound = loadSound('shoot.wav') pygame.mixer.Sound.set_volume(shoot_sound, 0.4) bomb_sound = loadSound('bomb.wav') pygame.mixer.Sound.set_volume(bomb_sound, 0.3) powerup_sound = loadSound('powerup.wav') pygame.mixer.Sound.set_volume(powerup_sound, 0.6) playerExplosion_sound = loadSound('playerExplosion.wav') meteorExplosion_sound = loadSound('meteorExplosion.wav') pygame.mixer.Sound.set_volume(meteorExplosion_sound, 0.6) allienExplosion_sound = loadSound('allienExplosion.wav') pygame.mixer.Sound.set_volume(allienExplosion_sound, 0.5) keyPress_sound = loadSound('keypress.wav') pygame.mixer.Sound.set_volume(keyPress_sound, 0.5) # LOADING HIGH SCORE try: with open(os.path.join(textfile_dir, 'highscore.txt'), 'r') as f: # automatic file close after loop try: highscore = int(f.read()) except: highscore = 0 except: with open(os.path.join(textfile_dir, 'highscore.txt'), 'w') as f: # automatic file close after loop highscore = 0 allSprites = pygame.sprite.Group() alliens = pygame.sprite.Group() meteors = pygame.sprite.Group() bullets = pygame.sprite.Group() bombs = pygame.sprite.Group() bosses = pygame.sprite.Group() stars = pygame.sprite.Group() powerups = pygame.sprite.Group() buttons = pygame.sprite.Group() player = Player() allSprites.add(player) paused = False level = 1 def initializeGame(): global paused alliens.empty() meteors.empty() bullets.empty() bombs.empty() powerups.empty() bosses.empty() stars.empty() player.reset() allSprites.empty() allSprites.add(player) paused = False def showGameStartScreen(): pygame.mixer.music.play(-1) buttons.empty() btn = Button(280, 300, 'PLAY') buttons.add(btn) btn = Button(600, 550, 'EXIT') buttons.add(btn) while True: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() screen.blit(startImg, startImgRect) buttons.draw(screen) printText(screen, 'HIGH SCORE:' + str(highscore), 30, WIDTH/2 - 165, HEIGHT-30, LIGHT_GREEN) buttons.update() # PRINTING TEXT ON BUTTONS pygame.display.update() def showTransitionScreen(text): global paused, level running = True timer = pygame.time.get_ticks() #add stars for i in range(NUMSTARS): x = random.randrange(WIDTH) z = Star(x) stars.add(z) stars.update() while stars: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == K_SPACE and not paused and (pygame.time.get_ticks() - player.shoot_timer > RELOAD): player.shoot() if event.key == K_p: paused = not paused hits = pygame.sprite.spritecollide(player, powerups, True) for hit in hits: powerup_sound.play() if hit.type == 'health': player.health += 20 if player.health > PLAYER_MAX_HEALTH: player.health = PLAYER_MAX_HEALTH elif hit.type == 'life': player.lives += 1 if player.lives > 3: player.lives = 3 else: player.powerup() if not paused: stars.update() allSprites.update() # DRAW screen.fill(BLACK) screen.blit(backgroundImg, backgroundRect) stars.draw(screen) printText(screen, 'Level: ' + str(level), 25, 9, HEIGHT - 29, LIGHT_GREEN) printText(screen, 'SCORE:' + str(player.score), 25, WIDTH - 185, HEIGHT - 3, LIGHT_GREEN) allSprites.draw(screen) now = pygame.time.get_ticks() if now - timer > 3000 and now - timer < 6000: if (pygame.time.get_ticks() - timer) % 120 <= 100: printText(screen, text, 70, 0, 0, LIGHT_GREEN, (WIDTH/2, 100)) drawHealthBar(screen, 10, HEIGHT - 30, player.health, GREEN, PLAYER_MAX_HEALTH, 200) drawLives(screen, 15, HEIGHT - 29, player.lives, playerLifeImg) if paused: printText(screen, text, 70, 0, 0, LIGHT_GREEN, (WIDTH / 2, 100)) screen.blit(pauseScreen, (0, 0)) printText(screen, 'PAUSE', 100, 0, 0, LIGHT_GREEN, screen.get_rect().center) pygame.display.update() if now - timer > 5000 and not paused: for z in stars: Star.destroy(z) def startLevel(allienRows, smartShoot, suicide): for k in range(allienRows): for i in range(11): tmp = random.choice([0, 2, 4]) a = Alien(70 * i, k * 70, allienImg[tmp], allienImg[tmp + 1], smartShoot, suicide) allSprites.add(a) alliens.add(a) def startMeteorRain(k, speedCap, time): for i in range(k): m = Meteor(speedCap, time) meteors.add(m) allSprites.add(m) def spawnBoss(x): boss = Boss(x) bosses.add(boss) allSprites.add(boss) runLvl() boss_fight_music.stop() pygame.mixer.music.play(-1) def checkCollision(): hits = pygame.sprite.spritecollide(player, powerups, True) for hit in hits: powerup_sound.play() if hit.type == 'health': player.health += 20 if player.health > PLAYER_MAX_HEALTH: player.health = PLAYER_MAX_HEALTH elif hit.type == 'life': player.lives += 1 if player.lives > 3: player.lives = 3 else: player.powerup() hits = pygame.sprite.groupcollide(alliens, bullets, True, True) for hit in hits: player.score += 7 * hit.speedx allienExplosion_sound.play() expl = Explosion(hit.rect.center, 'large') allSprites.add(expl) if random.random() > 0.8: pow = PowerUp(hit.rect.center) powerups.add(pow) allSprites.add(pow) hits = pygame.sprite.groupcollide(bullets, bosses, True, False) for hit in hits: allienExplosion_sound.play() expl = Explosion(hit.rect.midtop, 'large') allSprites.add(expl) for boss in bosses: player.score += 5 * (boss.speedx + 1) boss.health -= 99 if boss.health <= 0: bosses.remove() hits = pygame.sprite.spritecollide(player, bombs, True) for hit in hits: if not player.immune: player.health -= 13 * hit.speedy if player.health <= 0: expl = Explosion(player.rect.center, 'large') player.lives -= 1 player.hide() allSprites.add(expl) playerExplosion_sound.play() if player.lives > 0: player.health = PLAYER_MAX_HEALTH else: expl = Explosion(hit.rect.center, 'small') allSprites.add(expl) playerExplosion_sound.play() hits = pygame.sprite.groupcollide(meteors, bullets, True, True) for hit in hits: player.score += 60 - hit.radius meteorExplosion_sound.play() expl = Explosion(hit.rect.center, 'large') allSprites.add(expl) hits = pygame.sprite.spritecollide(player, meteors, True, pygame.sprite.collide_circle) for hit in hits: if not player.immune: player.health -= 2 * hit.radius if player.health <= 0: expl = Explosion(hit.rect.center, 'large') player.lives -= 1 player.hide() allSprites.add(expl) expl = Explosion(player.rect.center, 'large') allSprites.add(expl) playerExplosion_sound.play() meteorExplosion_sound.play() if player.lives > 0: player.health = PLAYER_MAX_HEALTH else: expl = Explosion(hit.rect.center, 'small') allSprites.add(expl) playerExplosion_sound.play() hits = pygame.sprite.spritecollide(player, alliens, True) for hit in hits: if not player.immune: player.lives -= 1 if player.lives > 0: player.health = PLAYER_MAX_HEALTH expl = Explosion(player.rect.center, 'large') player.hide() allSprites.add(expl) playerExplosion_sound.play() expl = Explosion(hit.rect.center, 'large') allienExplosion_sound.play() allSprites.add(expl) hits = pygame.sprite.spritecollide(player, bosses, False) for hit in hits: if not player.immune: player.lives -= 1 if player.lives > 0: player.health = PLAYER_MAX_HEALTH expl = Explosion(player.rect.center, 'large') player.hide() allSprites.add(expl) playerExplosion_sound.play() def showGameOverScreen(): global highscore buttons.empty() btn = Button(280, 550, 'PLAY') buttons.add(btn) btn = Button(600, 550, 'EXIT') buttons.add(btn) if player.score > highscore: highscore = player.score with open(os.path.join(textfile_dir, 'highscore.txt'), 'w') as f: # automatic file close after loop f.write(str(highscore)) while True: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() screen.fill(BLACK) screen.blit(backgroundImg, backgroundRect) if player.lives > 0: printText(screen, 'VICTORY', 100, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2-120)) else: printText(screen, 'DEFEAT', 100, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2-120)) if player.score == highscore: printText(screen, 'NEW HIGH SCORE!', 70, 0, 0, LIGHT_GREEN, (WIDTH / 2, HEIGHT / 2)) printText(screen, str(highscore), 70, 0, 0, LIGHT_GREEN, (WIDTH / 2, HEIGHT / 2 + 90)) else: printText(screen, 'SCORE: ' + str(player.score), 65, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2)) printText(screen, 'HIGH SCORE: ' + str(highscore), 65, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2 + 90)) buttons.draw(screen) buttons.update() # PRINTING TEXT ON BUTTONS pygame.display.update() def runLvl(): global paused, player while alliens or meteors or bosses: clock.tick(FPS) # PROCESS for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == K_SPACE and not paused and (pygame.time.get_ticks() - player.shoot_timer > RELOAD): player.shoot() if event.key == K_p: paused = not paused checkCollision() # UPDATE if not paused: allSprites.update() # DRAW screen.fill(BLACK) screen.blit(backgroundImg, backgroundRect) printText(screen, 'Level: ' + str(level), 25, 9, HEIGHT - 29, LIGHT_GREEN) printText(screen, 'SCORE:' + str(player.score), 25, WIDTH - 185, HEIGHT - 3, LIGHT_GREEN) allSprites.draw(screen) for boss in bosses: drawHealthBar(screen, 240, HEIGHT - 30, boss.health, RED, 1000*boss.bosstype, 350) if boss.health <= 0: player.score += 300*boss.bosstype bosses.remove(boss) allSprites.remove(boss) drawHealthBar(screen, 10, HEIGHT - 30, player.health, GREEN, PLAYER_MAX_HEALTH, 200) drawLives(screen, 15, HEIGHT - 29, player.lives, playerLifeImg) if paused: screen.blit(pauseScreen, (0, 0)) printText(screen, 'PAUSE', 100, 0, 0, LIGHT_GREEN, screen.get_rect().center) pygame.display.update() def runGame(): initializeGame() global level showTransitionScreen('ARMY ATTACKS') startLevel(3, False, False) runLvl() showTransitionScreen('METEOR RAIN') startMeteorRain(30, 6, 2500) runLvl() pygame.mixer.music.stop() boss_fight_music.play(-1) showTransitionScreen('CAPTAIN ATTACKS') spawnBoss(1) level += 1 showTransitionScreen('ARMY ATTACKS') startLevel(4, True, False) runLvl() showTransitionScreen('METEOR RAIN') startMeteorRain(45, 8, 5000) runLvl() pygame.mixer.music.stop() boss_fight_music.play(-1) showTransitionScreen('GENERAL ATTACKS') spawnBoss(2) level += 1 showTransitionScreen('ARMY ATTACKS') startLevel(5, True, True) runLvl() showTransitionScreen('METEOR RAIN') startMeteorRain(50, 8, 5500) runLvl() pygame.mixer.music.stop() boss_fight_music.play(-1) showTransitionScreen('LEADER ATTACKS') spawnBoss(3) if (not alliens) and (not bosses): showTransitionScreen('ALIENS DEFEATED') showGameOverScreen() # MAIN showStory() pygame.quit()
2.59375
3
app/urls.py
RegilioSpee/k_sec-filecify
0
12777392
<reponame>RegilioSpee/k_sec-filecify from django.urls import path,include from . import views urlpatterns = [ path('registration/', views.registration), path('login/',views.user_login,name="login") ]
1.820313
2
geetools/ui/ipytools.py
guy1ziv2/gee_tools
0
12777393
# coding=utf-8 """ General tools for the Jupyter Notebook and Lab """ from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, \ VBox, Button, Box, ToggleButton, IntSlider, FloatText from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float from .. import batch # imports for async widgets from multiprocessing import Pool import time # import EE import ee if not ee.data._initialized: ee.Initialize() def create_accordion(dictionary): """ Create an Accordion output from a dict object """ widlist = [] ini = 0 widget = Accordion() widget.selected_index = None # this will unselect all for key, val in dictionary.items(): if isinstance(val, dict): newwidget = create_accordion(val) widlist.append(newwidget) elif isinstance(val, list): # tranform list to a dictionary dictval = {k: v for k, v in enumerate(val)} newwidget = create_accordion(dictval) widlist.append(newwidget) else: value = HTML(str(val)) widlist.append(value) widget.set_title(ini, key) ini += 1 widget.children = widlist return widget def create_object_output(object): ''' Create a output Widget for Images, Geometries and Features ''' ty = object.__class__.__name__ if ty == 'Image': info = object.getInfo() image_id = info['id'] if 'id' in info else 'No Image ID' prop = info['properties'] bands = info['bands'] bands_names = [band['id'] for band in bands] bands_types = [band['data_type']['precision'] for band in bands] bands_crs = [band['crs'] for band in bands] new_band_names = ['<li>{} - {} - {}</li>'.format(name, ty, epsg) for name, ty, epsg in zip(bands_names, bands_types, bands_crs)] new_properties = ['<li><b>{}</b>: {}</li>'.format(key, val) for key, val in prop.items()] header = HTML('<b>Image id:</b> {id} </br>'.format(id=image_id)) bands_wid = HTML('<ul>'+''.join(new_band_names)+'</ul>') prop_wid = HTML('<ul>'+''.join(new_properties)+'</ul>') acc = Accordion([bands_wid, prop_wid]) acc.set_title(0, 'Bands') acc.set_title(1, 'Properties') acc.selected_index = None # this will unselect all return VBox([header, acc]) elif ty == 'FeatureCollection': try: info = object.getInfo() except: print('FeatureCollection limited to 4000 features') info = object.limit(4000) return create_accordion(info) else: info = object.getInfo() return create_accordion(info) def create_async_output(object, widget): child = create_object_output(object) widget.children = [child] # def recrusive_delete_asset_to_widget(assetId, widget): def recrusive_delete_asset_to_widget(args): ''' adapted version to print streaming results in a widget ''' assetId = args[0] widget = args[1] try: content = ee.data.getList({'id':assetId}) except Exception as e: widget.value = str(e) return if content == 0: # delete empty colletion and/or folder ee.data.deleteAsset(assetId) else: for asset in content: path = asset['id'] ty = asset['type'] if ty == 'Image': ee.data.deleteAsset(path) widget.value += 'deleting {} ({})</br>'.format(path, ty) else: # clear output widget.value = '' recrusive_delete_asset_to_widget(path, widget) # delete empty colletion and/or folder ee.data.deleteAsset(assetId) class CheckRow(HBox): checkbox = Instance(Checkbox) widget = Instance(Widget) def __init__(self, widget, **kwargs): self.checkbox = Checkbox(indent=False, layout=Layout(flex='1 1 20', width='auto')) self.widget = widget super(CheckRow, self).__init__(children=(self.checkbox, self.widget), **kwargs) self.layout = Layout(display='flex', flex_flow='row', align_content='flex-start') @observe('widget') def _ob_wid(self, change): new = change['new'] self.children = (self.checkbox, new) def observe_checkbox(self, handler, extra_params={}, **kwargs): """ set handler for the checkbox widget. Use the property 'widget' of change to get the corresponding widget :param handler: callback function :type handler: function :param extra_params: extra parameters that can be passed to the handler :type extra_params: dict :param kwargs: parameters from traitlets.observe :type kwargs: dict """ # by default only observe value name = kwargs.get('names', 'value') def proxy_handler(handler): def wrap(change): change['widget'] = self.widget for key, val in extra_params.items(): change[key] = val return handler(change) return wrap self.checkbox.observe(proxy_handler(handler), names=name, **kwargs) def observe_widget(self, handler, extra_params={}, **kwargs): """ set handler for the widget alongside de checkbox :param handler: callback function :type handler: function :param extra_params: extra parameters that can be passed to the handler :type extra_params: dict :param kwargs: parameters from traitlets.observe :type kwargs: dict """ def proxy_handler(handler): def wrap(change): change['checkbox'] = self.checkbox for key, val in extra_params.items(): change[key] = val return handler(change) return wrap self.widget.observe(proxy_handler(handler), **kwargs) class CheckAccordion(VBox): widgets = Tuple() def __init__(self, widgets, **kwargs): # self.widgets = widgets super(CheckAccordion, self).__init__(**kwargs) self.widgets = widgets @observe('widgets') def _on_child(self, change): new = change['new'] # list of any widget newwidgets = [] for widget in new: # constract the widget acc = Accordion(children=(widget,)) acc.selected_index = None # this will unselect all # create a CheckRow checkrow = CheckRow(acc) newwidgets.append(checkrow) newchildren = tuple(newwidgets) self.children = newchildren def set_title(self, index, title): ''' set the title of the widget at indicated index''' checkrow = self.children[index] acc = checkrow.widget acc.set_title(0, title) def get_title(self, index): ''' get the title of the widget at indicated index''' checkrow = self.children[index] acc = checkrow.widget return acc.get_title(0) def get_check(self, index): ''' get the state of checkbox in index ''' checkrow = self.children[index] return checkrow.checkbox.value def set_check(self, index, state): ''' set the state of checkbox in index ''' checkrow = self.children[index] checkrow.checkbox.value = state def checked_rows(self): ''' return a list of indexes of checked rows ''' checked = [] for i, checkrow in enumerate(self.children): state = checkrow.checkbox.value if state: checked.append(i) return checked def get_widget(self, index): ''' get the widget in index ''' checkrow = self.children[index] return checkrow.widget def set_widget(self, index, widget): ''' set the widget for index ''' checkrow = self.children[index] checkrow.widget.children = (widget,) # Accordion has 1 child def set_row(self, index, title, widget): ''' set values for the row ''' self.set_title(index, title) self.set_widget(index, widget) def set_accordion_handler(self, index, handler, **kwargs): ''' set the handler for Accordion in index ''' checkrow = self.children[index] checkrow.observe_widget(handler, names=['selected_index'], **kwargs) def set_checkbox_handler(self, index, handler, **kwargs): ''' set the handler for CheckBox in index ''' checkrow = self.children[index] checkrow.observe_checkbox(handler, **kwargs) class AssetManager(VBox): """ Asset Manager Widget """ POOL_SIZE = 5 def __init__(self, map=None, **kwargs): super(AssetManager, self).__init__(**kwargs) # Thumb height self.thumb_height = kwargs.get('thumb_height', 300) self.root_path = ee.data.getAssetRoots()[0]['id'] # Map self.map = map # Header self.reload_button = Button(description='Reload') self.add2map = Button(description='Add to Map') self.delete = Button(description='Delete Selected') header_children = [self.reload_button, self.delete] # Add2map only if a Map has been passed if self.map: header_children.append(self.add2map) self.header = HBox(header_children) # Reload handler def reload_handler(button): new_accordion = self.core(self.root_path) # Set VBox children self.children = [self.header, new_accordion] # add2map handler def add2map_handler(themap): def wrap(button): selected_rows = self.get_selected() for asset, ty in selected_rows.items(): if ty == 'Image': im = ee.Image(asset) themap.addLayer(im, {}, asset) elif ty == 'ImageCollection': col = ee.ImageCollection(asset) themap.addLayer(col) return wrap # Set reload handler # self.reload_button.on_click(reload_handler) self.reload_button.on_click(self.reload) # Set reload handler self.add2map.on_click(add2map_handler(self.map)) # Set delete selected handler self.delete.on_click(self.delete_selected) # First Accordion self.root_acc = self.core(self.root_path) # Set VBox children self.children = [self.header, self.root_acc] def delete_selected(self, button=None): ''' function to delete selected assets ''' selected = self.get_selected() # Output widget output = HTML('') def handle_yes(button): self.children = [self.header, output] pool = Pool(self.POOL_SIZE) # pool = pp.ProcessPool(self.POOL_SIZE) if selected: ''' OLD for asset, ty in selected.items(): recrusive_delete_asset_to_widget(asset, output) args = [] for asset, ty in selected.items(): args.append((asset, output)) # pool.map(recrusive_delete_asset_to_widget, args) # pool.map(test2, args) # pool.close() # pool.join() ''' assets = [ass for ass in selected.keys()] pool.map(batch.recrusive_delete_asset, assets) # TODO: cant map recrusive_delete_asset_to_widget because the passed widget is not pickable pool.close() pool.join() # when deleting end, reload self.reload() def handle_no(button): self.reload() def handle_cancel(button): self.reload() assets_str = ['{} ({})'.format(ass, ty) for ass, ty in selected.items()] assets_str = '</br>'.join(assets_str) confirm = ConfirmationWidget('<h2>Delete {} assets</h2>'.format(len(selected.keys())), 'The following assets are going to be deleted: </br> {} </br> Are you sure?'.format(assets_str), handle_yes=handle_yes, handle_no=handle_no, handle_cancel=handle_cancel) self.children = [self.header, confirm, output] def reload(self, button=None): new_accordion = self.core(self.root_path) # Set VBox children self.children = [self.header, new_accordion] def get_selected(self): ''' get the selected assets :return: a dictionary with the type as key and asset root as value :rtype: dict ''' def wrap(checkacc, assets={}, root=self.root_path): children = checkacc.children # list of CheckRow for child in children: checkbox = child.children[0] # checkbox of the CheckRow widget = child.children[1] # widget of the CheckRow (Accordion) state = checkbox.value if isinstance(widget.children[0], CheckAccordion): title = widget.get_title(0).split(' ')[0] new_root = '{}/{}'.format(root, title) newselection = wrap(widget.children[0], assets, new_root) assets = newselection else: if state: title = child.children[1].get_title(0) # remove type that is between () ass = title.split(' ')[0] ty = title.split(' ')[1][1:-1] # append root ass = '{}/{}'.format(root, ass) # append title to selected list # assets.append(title) assets[ass] = ty return assets # get selection on root begin = self.children[1] # CheckAccordion of root return wrap(begin) def core(self, path): # Get Assets data root_list = ee.data.getList({'id': path}) # empty lists to fill with ids, types, widgets and paths ids = [] types = [] widgets = [] paths = [] # iterate over the list of the root for content in root_list: # get data id = content['id'] ty = content['type'] # append data to lists paths.append(id) ids.append(id.replace(path+'/', '')) types.append(ty) wid = HTML('Loading..') widgets.append(wid) # super(AssetManager, self).__init__(widgets=widgets, **kwargs) # self.widgets = widgets asset_acc = CheckAccordion(widgets=widgets) # TODO: set handler for title's checkbox: select all checkboxes # set titles for i, (title, ty) in enumerate(zip(ids, types)): final_title = '{title} ({type})'.format(title=title, type=ty) asset_acc.set_title(i, final_title) def handle_new_accordion(change): path = change['path'] index = change['index'] ty = change['type'] if ty == 'Folder' or ty == 'ImageCollection': wid = self.core(path) else: image = ee.Image(path) info = image.getInfo() width = int(info['bands'][0]['dimensions'][0]) height = int(info['bands'][0]['dimensions'][1]) new_width = int(self.thumb_height)/height*width thumb = image.getThumbURL({'dimensions':[new_width, self.thumb_height]}) # wid = ImageWid(value=thumb) wid_i = HTML('<img src={}>'.format(thumb)) wid_info = create_accordion(info) wid = HBox(children=[wid_i, wid_info]) asset_acc.set_widget(index, wid) def handle_checkbox(change): path = change['path'] widget = change['widget'] # Accordion wid_children = widget.children[0] # can be a HTML or CheckAccordion new = change['new'] if isinstance(wid_children, CheckAccordion): # set all checkboxes to True for child in wid_children.children: check = child.children[0] check.value = new # set handlers for i, (path, ty) in enumerate(zip(paths, types)): asset_acc.set_accordion_handler( i, handle_new_accordion, extra_params={'path':path, 'index':i, 'type': ty} ) asset_acc.set_checkbox_handler( i, handle_checkbox, extra_params={'path':path, 'index':i, 'type': ty} ) return asset_acc class TaskManager(VBox): def __init__(self, **kwargs): super(TaskManager, self).__init__(**kwargs) # Header self.checkbox = Checkbox(indent=False, layout=Layout(flex='1 1 20', width='auto')) self.cancel_selected = Button(description='Cancel Selected', tooltip='Cancel all selected tasks') self.cancel_all = Button(description='Cancell All', tooltip='Cancel all tasks') self.refresh = Button(description='Refresh', tooltip='Refresh Tasks List') self.autorefresh = ToggleButton(description='auto-refresh', tooltip='click to enable/disable autorefresh') self.slider = IntSlider(min=1, max=10, step=1, value=5) self.hbox = HBox([self.checkbox, self.refresh, self.cancel_selected, self.cancel_all, self.autorefresh, self.slider]) # Tabs for COMPLETED, FAILED, etc self.tabs = Tab() # Tabs index self.tab_index = {0: 'RUNNING', 1: 'COMPLETED', 2: 'FAILED', 3: 'CANCELED', 4: 'UNKNOWN'} self.taskVBox = VBox() self.runningVBox = VBox() self.completedVBox = VBox() self.failedVBox = VBox() self.canceledVBox = VBox() self.unknownVBox = VBox() self.tab_widgets_rel = {'RUNNING': self.runningVBox, 'COMPLETED': self.completedVBox, 'FAILED': self.failedVBox, 'CANCELED': self.canceledVBox, 'UNKNOWN': self.unknownVBox} # Create Tabs self.tab_widgets = [] for key, val in self.tab_index.items(): widget = self.tab_widgets_rel[val] self.tab_widgets.append(widget) self.tabs.children = self.tab_widgets self.tabs.set_title(key, val) ''' autorefresh def update_task_list(widget): # widget is a VBox tasklist = ee.data.getTaskList() widlist = [] for task in tasklist: accordion = create_accordion(task) if task.has_key('description'): name = '{} ({})'.format(task['description'], task['state']) else: name = '{} ({})'.format(task['output_url'][0].split('/')[-1], task['state']) mainacc = Accordion(children=(accordion, )) mainacc.set_title(0, name) mainacc.selected_index = None wid = CheckRow(mainacc) #wid = CheckRow(accordion) widlist.append(wid) widget.children = tuple(widlist) ''' def loop(widget): while True: self.update_task_list()(self.refresh) time.sleep(self.slider.value) # First widget self.update_task_list(vbox=self.runningVBox)(self.refresh) # self.children = (self.hbox, self.taskVBox) self.children = (self.hbox, self.tabs) # Set on_click for refresh button self.refresh.on_click(self.update_task_list(vbox=self.selected_tab())) ''' autorefresh thread = threading.Thread(target=loop, args=(self.taskVBox,)) thread.start() ''' # Set on_clicks self.cancel_all.on_click(self.cancel_all_click) self.cancel_selected.on_click(self.cancel_selected_click) # self.autorefresh def autorefresh_loop(self): pass def tab_handler(self, change): if change['name'] == 'selected_index': self.update_task_list()(self.refresh) def selected_tab(self): ''' get the selected tab ''' index = self.tabs.selected_index tab_name = self.tab_index[index] return self.tab_widgets_rel[tab_name] def update_task_list(self, **kwargs): def wrap(button): self.selected_tab().children = (HTML('Loading...'),) try: tasklist = ee.data.getTaskList() # empty lists running_list = [] completed_list = [] failed_list = [] canceled_list = [] unknown_list = [] all_list = {'RUNNING': running_list, 'COMPLETED': completed_list, 'FAILED': failed_list, 'CANCELED': canceled_list, 'UNKNOWN': unknown_list} for task in tasklist: state = task['state'] accordion = create_accordion(task) if task['state'] == 'COMPLETED': start = int(task['start_timestamp_ms']) end = int(task['creation_timestamp_ms']) seconds = float((start-end))/1000 name = '{} ({} sec)'.format(task['output_url'][0].split('/')[-1], seconds) else: name = '{}'.format(task['description']) # Accordion for CheckRow widget mainacc = Accordion(children=(accordion, )) mainacc.set_title(0, name) mainacc.selected_index = None # CheckRow wid = CheckRow(mainacc) # Append widget to the CORRECT list all_list[state].append(wid) # Assign Children self.runningVBox.children = tuple(running_list) self.completedVBox.children = tuple(completed_list) self.failedVBox.children = tuple(failed_list) self.canceledVBox.children = tuple(canceled_list) self.unknownVBox.children = tuple(unknown_list) except Exception as e: self.selected_tab().children = (HTML(str(e)),) return wrap def get_selected(self): """ Get selected Tasks :return: a list of the selected indexes """ selected = [] children = self.selected_tab().children for i, child in enumerate(children): # checkrow = child.children[0] # child is an accordion state = child.checkbox.value if state: selected.append(i) return selected def get_taskid(self, index): # Get selected Tab selected_wid = self.selected_tab() # VBox # Children of the Tab's VBox children = selected_wid.children # Get CheckRow that corresponds to the passed index checkrow = children[index] # Get main accordion mainacc = checkrow.widget # Get details accordion selectedacc = mainacc.children[0] for n, child in enumerate(selectedacc.children): title = selectedacc.get_title(n) if title == 'id': return child.value def get_selected_taskid(self): selected = self.get_selected() selected_wid = self.selected_tab() # VBox children = selected_wid.children taskid_list = [] for select in selected: ''' checkrow = children[select] mainacc = checkrow.widget selectedacc = mainacc.children[0] for n, child in enumerate(selectedacc.children): title = selectedacc.get_title(n) if title == 'id': taskid_list.append(child.value) ''' taskid = self.get_taskid(select) taskid_list.append(taskid) return taskid_list def cancel_selected_click(self, button): selected = self.get_selected_taskid() for taskid in selected: try: ee.data.cancelTask(taskid) except: continue self.update_task_list()(self.refresh) def cancel_all_click(self, button): selected_wid = self.selected_tab() # VBox children = selected_wid.children for n, child in enumerate(children): taskid = self.get_taskid(n) try: ee.data.cancelTask(taskid) except: continue self.update_task_list()(self.refresh) class ConfirmationWidget(VBox): def __init__(self, title='Confirmation', legend='Are you sure?', handle_yes=None, handle_no=None, handle_cancel=None, **kwargs): super(ConfirmationWidget, self).__init__(**kwargs) # Title Widget self.title = title self.title_widget = HTML(self.title) # Legend Widget self.legend = legend self.legend_widget = HTML(self.legend) # Buttons self.yes = Button(description='Yes') handler_yes = handle_yes if handle_yes else lambda x: x self.yes.on_click(handler_yes) self.no = Button(description='No') handler_no = handle_no if handle_no else lambda x: x self.no.on_click(handler_no) self.cancel = Button(description='Cancel') handler_cancel = handle_cancel if handle_cancel else lambda x: x self.cancel.on_click(handler_cancel) self.buttons = HBox([self.yes, self.no, self.cancel]) self.children = [self.title_widget, self.legend_widget, self.buttons] class RealBox(Box): """ Real Box Layout items: [[widget1, widget2], [widget3, widget4]] """ items = List() width = Int() border_inside = Unicode() border_outside = Unicode() def __init__(self, **kwargs): super(RealBox, self).__init__(**kwargs) self.layout = Layout(display='flex', flex_flow='column', border=self.border_outside) def max_row_elements(self): maxn = 0 for el in self.items: n = len(el) if n>maxn: maxn = n return maxn @observe('items') def _ob_items(self, change): layout_columns = Layout(display='flex', flex_flow='row') new = change['new'] children = [] # recompute size maxn = self.max_row_elements() width = 100/maxn for el in new: for wid in el: if not wid.layout.width: if self.width: wid.layout = Layout(width='{}px'.format(self.width), border=self.border_inside) else: wid.layout = Layout(width='{}%'.format(width), border=self.border_inside) hbox = Box(el, layout=layout_columns) children.append(hbox) self.children = children class FloatBandWidget(HBox): min = Float(0) max = Float(1) def __init__(self, **kwargs): super(FloatBandWidget, self).__init__(**kwargs) self.minWid = FloatText(value=self.min, description='min') self.maxWid = FloatText(value=self.max, description='max') self.children = [self.minWid, self.maxWid] self.observe(self._ob_min, names=['min']) self.observe(self._ob_max, names=['max']) def _ob_min(self, change): new = change['new'] self.minWid.value = new def _ob_max(self, change): new = change['new'] self.maxWid.value = new
2.34375
2
models.py
dahe-cvl/isvc2020_overscan_detection
0
12777394
<reponame>dahe-cvl/isvc2020_overscan_detection<filename>models.py from torchvision import models from torchvision.models.segmentation.deeplabv3 import DeepLabHead from torchvision.models.segmentation.fcn import FCNHead from metrics import * from datasets import * from collections import OrderedDict class CNN(nn.Module): """CNN.""" def __init__(self, model_arch="resnet50", n_classes=2, include_top=False, pretrained=False, lower_features=False): """CNN Builder.""" super(CNN, self).__init__() self.include_top = include_top self.pretrained = pretrained self.lower_features = lower_features self.gradients = None self.classifier = None if (model_arch == "resnet50"): self.model = models.resnet50(pretrained=True) for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.fc.in_features self.model.fc = torch.nn.Linear(num_ftrs, n_classes) self.features = nn.Sequential(*list(self.model.children())[:-1]) #print(self.features) self.features_dict = OrderedDict() elif (model_arch == "resnet101"): self.model = models.resnet101(pretrained=True) #print(self.model) for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.fc.in_features self.model.fc = torch.nn.Linear(num_ftrs, n_classes) self.features_dict = OrderedDict() if (lower_features == True): self.model = nn.Sequential(*list(self.model.children())[:5]) else: self.model = nn.Sequential(*list(self.model.children())[:-2]) elif (model_arch == "squeezenet"): self.model = models.squeezenet1_1(pretrained=True) #print(self.model) #self.classifier = self.model.classifier for params in self.model.parameters(): params.requires_grad = self.pretrained #num_ftrs = self.model.fc.in_features #self.model.fc = torch.nn.Linear(num_ftrs, n_classes) #num_ftrs = 512 #self.model.classifier[-1] = torch.nn.Linear(num_ftrs, n_classes) self.features_dict = OrderedDict() if (lower_features == True): self.model = nn.Sequential(self.model.features[:6]) else: self.model = nn.Sequential(self.model.features) #print(self.model) #exit() elif (model_arch == "densenet121"): self.model = models.densenet121(pretrained=True) for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.classifier.in_features self.model.classifier = torch.nn.Linear(num_ftrs, n_classes) self.features = nn.Sequential(*list(self.model.children())[:-1]) print(self.model) elif (model_arch == "vgg19"): self.model = models.vgg19(pretrained=True) for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.classifier[0].in_features self.model.classifier[-1] = torch.nn.Linear(num_ftrs, n_classes) self.features = nn.Sequential(*list(self.model.children())[:-1]) #print(self.features) print(self.model) elif (model_arch == "vgg16"): self.model = models.vgg16(pretrained=True); for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.classifier[0].in_features self.model.classifier[-1] = torch.nn.Linear(num_ftrs, n_classes) if(lower_features == True): self.model = nn.Sequential(self.model.features[:5]) else: self.model = nn.Sequential(*list(self.model.children())[:-2]) #print(self.features) #print(self.model) #exit() print(self.model) self.features_dict = OrderedDict() elif (model_arch == "mobilenet"): self.model = models.mobilenet_v2(pretrained=True); for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.classifier[1].in_features self.model.classifier[-1] = torch.nn.Linear(num_ftrs, n_classes) if(lower_features == True): #self.model = nn.Sequential(self.model.features[:5]) self.model = nn.Sequential(*list(self.model.features)[:5]) else: #self.model = nn.Sequential(*list(self.model.children())[:-1]) self.model = nn.Sequential(*list(self.model.features)) self.features_dict = OrderedDict() elif (model_arch == "alexnet"): self.model = models.alexnet(pretrained=True) for params in self.model.parameters(): params.requires_grad = self.pretrained num_ftrs = self.model.classifier[0].in_features self.model.classifier[-1] = torch.nn.Linear(num_ftrs, n_classes) self.features = nn.Sequential(*list(self.model.children())[:-1]) #print(self.features) print(self.model) else: self.model_arch = None print("No valid backbone cnn network selected!") def activations_hook(self, grad): self.gradients = grad def get_activations_gradient(self): return self.gradients def forward(self, x): """Perform forward.""" if(self.include_top == False): # extract features x = self.model(x) self.features_dict['out'] = x self.features_dict['aux'] = x return self.features_dict elif(self.include_top == True): #print(x.size()) x = self.model(x) # flatten x = x.view(x.size(0), -1) x = self.classifier(x) self.features_dict['out'] = x return self.features_dict return x def loadModel(model_arch="", classes=None, pre_trained_path=None, expType=None, trainable_backbone_flag=False, lower_features=False): print("Load model architecture ... ") if (model_arch == "deeplabv3_resnet101_orig"): print("deeplab_resnet architecture selected ...") model = models.segmentation.deeplabv3_resnet101(pretrained=True, progress=True) for params in model.parameters(): params.requires_grad = trainable_backbone_flag model.classifier[-1] = torch.nn.Conv2d(256, len(classes), kernel_size=(1, 1)) model.aux_classifier[-1] = torch.nn.Conv2d(256, len(classes), kernel_size=(1, 1)) features = model.backbone if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path) # + "/best_model.pth") model.load_state_dict(model_dict_state['net']) return model, features elif (model_arch == "fcn_resnet101_orig"): print("deeplab_resnet architecture selected ...") model = models.segmentation.fcn_resnet101(pretrained=True, progress=True) for params in model.parameters(): params.requires_grad = trainable_backbone_flag model.classifier[-1] = torch.nn.Conv2d(512, len(classes), kernel_size=(1, 1)) model.aux_classifier[-1] = torch.nn.Conv2d(256, len(classes), kernel_size=(1, 1)) features = model.backbone if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path)# + "/best_model.pth") model.load_state_dict(model_dict_state['net']) return model, features elif (model_arch == "deeplabv3_resnet101"): print("deeplabv3_resnet101 architecture selected ...") backbone_net = CNN(model_arch="resnet101", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( DeepLabHead(256, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( DeepLabHead(2048, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.DeepLabV3(backbone=backbone_net, classifier=classifier, aux_classifier=None) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path)# + "/best_model.pth") model.load_state_dict(model_dict_state['net']) return model, features elif (model_arch == "deeplabv3_vgg16"): print("deeplabv3_vgg architecture selected ...") # backbone_net = CNN(model_arch="resnet101", n_classes=len(classes), include_top=False) backbone_net = CNN(model_arch="vgg16", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( DeepLabHead(64, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( DeepLabHead(512, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.DeepLabV3(backbone=backbone_net, classifier=classifier, aux_classifier=None) #print(model) #exit() if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path) # + "/best_model.pth") model.load_state_dict(model_dict_state['net']) # Find total parameters and trainable parameters total_params = sum(p.numel() for p in model.parameters()) print("total_params:" + str(total_params)) total_trainable_params = sum( p.numel() for p in model.parameters() if p.requires_grad) print("total_trainable_params: " + str(total_trainable_params)) #exit() return model, features elif (model_arch == "deeplabv3_mobilenet"): print("deeplabv3_mobilenet architecture selected ...") backbone_net = CNN(model_arch="mobilenet", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( DeepLabHead(32, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( DeepLabHead(1280, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.DeepLabV3(backbone=backbone_net, classifier=classifier, aux_classifier=None) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path) model.load_state_dict(model_dict_state['net']) return model, features elif (model_arch == "deeplabv3_squeezenet"): print("deeplabv3_mobilenet architecture selected ...") backbone_net = CNN(model_arch="squeezenet", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( DeepLabHead(128, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( DeepLabHead(512, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.DeepLabV3(backbone=backbone_net, classifier=classifier, aux_classifier=None) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path)# + "/best_model.pth") model.load_state_dict(model_dict_state['net']) return model, features elif (model_arch == "fcn_vgg16"): print("fcn_vgg16 architecture selected ...") backbone_net = CNN(model_arch="vgg16", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if(lower_features == True): classifier = nn.Sequential( FCNHead(64, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( FCNHead(512, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.FCN(backbone=backbone_net, classifier=classifier, aux_classifier=None) # print(model) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path)# + "/best_model.pth") model.load_state_dict(model_dict_state['net']) return model, features elif (model_arch == "fcn_resnet101"): print("fcn_resnet101 architecture selected ...") backbone_net = CNN(model_arch="resnet101", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( FCNHead(256, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( FCNHead(2048, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.FCN(backbone=backbone_net, classifier=classifier, aux_classifier=None) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path) # + "/best_model.pth") model.load_state_dict(model_dict_state['net']) # Find total parameters and trainable parameters total_params = sum(p.numel() for p in model.parameters()) print("total_params:" + str(total_params)) total_trainable_params = sum( p.numel() for p in model.parameters() if p.requires_grad) print("total_trainable_params: " + str(total_trainable_params)) #exit() return model, features elif (model_arch == "fcn_squeezenet"): print("deeplabv3_squeezenet architecture selected ...") backbone_net = CNN(model_arch="squeezenet", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( FCNHead(128, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( FCNHead(512, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.FCN(backbone=backbone_net, classifier=classifier, aux_classifier=None) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path)# + "/best_model.pth") model.load_state_dict(model_dict_state['net']) # Find total parameters and trainable parameters total_params = sum(p.numel() for p in model.parameters()) print("total_params:" + str(total_params)) total_trainable_params = sum( p.numel() for p in model.parameters() if p.requires_grad) print("total_trainable_params: " + str(total_trainable_params)) # exit() return model, features elif (model_arch == "fcn_mobilenet"): print("deeplabv3_mobilenet architecture selected ...") backbone_net = CNN(model_arch="mobilenet", n_classes=len(classes), include_top=False, pretrained=trainable_backbone_flag, lower_features=lower_features) if (lower_features == True): classifier = nn.Sequential( FCNHead(32, len(classes)), # nn.Softmax() ) else: classifier = nn.Sequential( FCNHead(1280, len(classes)), # nn.Softmax() ) features = backbone_net model = models.segmentation.FCN(backbone=backbone_net, classifier=classifier, aux_classifier=None) if (pre_trained_path != None): print("load pre-trained-weights ... ") model_dict_state = torch.load(pre_trained_path)# + "/best_model.pth") model.load_state_dict(model_dict_state['net']) # Find total parameters and trainable parameters total_params = sum(p.numel() for p in model.parameters()) print("total_params:" + str(total_params)) total_trainable_params = sum( p.numel() for p in model.parameters() if p.requires_grad) print("total_trainable_params: " + str(total_trainable_params)) # exit() return model, features else: print("ERROR: select valid model architecture!") exit()
2.203125
2
hexFileParser.py
rdaforno/hexfilepatcher
4
12777395
<gh_stars>1-10 #!/usr/bin/python3 ###################################################################################### # # Intel HEX file parser # # 2020, rdaforno # ###################################################################################### import binascii # Intel HEX file parser class HexFileParser: lines = [] def __init__(self, filename): self.lines.clear() self.load(filename) def load(self, filename): self.lines.clear() with open(filename) as fp: for line in fp: if line[0] != ':': print("line '%s' skipped.." % line) continue line = line[1:].strip() l = int(line[0:2], 16) addr = int(line[2:6], 16) t = int(line[6:8], 16) data = line[8:-2] if len(data) != (l * 2): print("invalid data length! line '%s' skipped.." % line) continue crc = int(line[-2:], 16) if self.calc_line_crc(line[:-2]) != crc: print("invalid hex file, CRC doesn't match!") break self.lines.append({ 'len':l, 'addr':addr, 'type':t, 'data':data, 'crc':crc }) print("%u lines loaded from %s" % (len(self.lines), filename)) def print_lines(self): for line in self.lines: print("length: %u, address: 0x%02x, type: %u, data: %s, crc: %02x" % (line['len'], line['addr'], line['type'], line['data'], line['crc'])) def save(self, filename): fp = open(filename, "w") if fp: for line in self.lines: fp.write(":%02X%04X%02X%s%02X\n" % (line['len'], line['addr'], line['type'], line['data'], line['crc'])) fp.close() print("hex file saved as %s" % filename) def save_as_c_var(self, filename): fp = open(filename, "w") if fp: fp.write("const char hex_image[] = {\n \"") fp.write("\"\n \"".join(self.serialize_data())) fp.write("\"\n};\n") fp.close() print("hex file saved as %s" % filename) def save_as_binary(self, filename): fp = open(filename, "wb") if fp: fp.write(bytes.fromhex("".join(self.serialize_data()))) fp.close() print("binary file saved as %s" % filename) def calc_crc32(self): return "0x%x" % binascii.crc32(bytes.fromhex("".join(self.serialize_data()))) def serialize_data(self, start_addr=0, line_width=64): serialized_data = [] curr_ofs = 0 for line in self.lines: if line['type'] == 0: curr_addr = curr_ofs + line['addr'] if curr_addr > start_addr: serialized_data.append('00'*(curr_addr - start_addr)) # fill gap with zeros print("added %d padding bytes at address 0x%x" % (curr_addr - start_addr, curr_addr)) serialized_data.append(line['data']) start_addr = curr_addr + line['len'] elif line['type'] == 4 or line['type'] == 2: if line['type'] == 4: curr_ofs = int(line['data'][0:4], 16) * 65536 else: curr_ofs = int(line['data'][0:4], 16) << 4 if start_addr == 0: # if this is the first line and start_addr is not given, then use this offset as the start address start_addr = curr_ofs print("start address set to 0x%x" % start_addr) else: print("address offset found: 0x%x" % curr_ofs) if curr_ofs < start_addr: print("invalid address offset") return None elif line['type'] == 1: pass # marks the EOF elif line['type'] == 3: # defines the start address pass else: print("skipping line of type %u" % line['type']) serialized_str = "".join(serialized_data) print("binary size is %u bytes" % (len(serialized_str) / 2)) if line_width == 0: return serialized_str else: return [serialized_str[i:i+line_width] for i in range(0, len(serialized_str), line_width)] # returns a tuple of line index and line address def addr_to_lineno(self, addr): addr_ofs = 0 for i in range(len(self.lines)): if self.lines[i]['type'] == 4: # extended linear address record addr_ofs = int(self.lines[i]['data'][0:4], 16) * 65536 elif self.lines[i]['type'] == 2: # extended segment address record (bits 4–19) addr_ofs = int(self.lines[i]['data'][0:4], 16) << 4 elif self.lines[i]['type'] == 0: if (addr_ofs + self.lines[i]['addr']) <= addr and (addr_ofs + self.lines[i]['addr'] + self.lines[i]['len']) > addr: return (i, addr_ofs + self.lines[i]['addr']) return (-1, -1) def replace_data(self, addr, size, data): if size != 1 and size != 2 and size != 4: print("size %d is not supported" % size) return False (i, line_addr) = self.addr_to_lineno(addr) if i >= 0: ofs = (addr - line_addr) if (addr + size) > (line_addr + self.lines[i]['len']): # data stretches over 2 lines # make sure there is no jump in address to the next line if (i+1) == len(self.lines) or self.lines[i]['type'] != 6 or ((self.lines[i+1]['addr'] - self.lines[i]['addr']) > self.lines[i]['len']): print("out of bound error") # trying to overwrite an address that is not present in the hex file return False self.lines[i]['data'] = self.insert_data(self.lines[i]['data'], ofs, self.lines[i]['len'] - ofs, data) self.lines[i+1]['data'] = self.insert_data(self.lines[i+1]['data'], 0, size - (self.lines[i]['len'] - ofs), data) self.update_line_crc(i+1) else: self.lines[i]['data'] = self.insert_data(self.lines[i]['data'], (addr - line_addr), size, data) self.update_line_crc(i) return True return False def insert_data(self, line, ofs, size, data): # inserts 'data' of length 'size' into 'line' at offset 'ofs' if size == 1: return line[:ofs*2] + ("%02X" % (data % 256)) + line[(ofs+size)*2:] elif size == 2: return line[:ofs*2] + ("%02X%02X" % (data % 256, (data >> 8) % 256)) + line[(ofs+size)*2:] # little endian! elif size == 4: return line[:ofs*2] + ("%02X%02X%02X%02X" % (data % 256, (data >> 8) % 256, (data >> 16) % 256, (data >> 24) % 256)) + line[(ofs+size)*2:] # little endian! def update_line_crc(self, idx): if idx < len(self.lines): self.lines[idx]['crc'] = self.calc_line_crc("%02X%04X%02X%s" % (self.lines[idx]['len'], self.lines[idx]['addr'], self.lines[idx]['type'], self.lines[idx]['data'])) def calc_line_crc(self, line): crc = 0 l = 0 while l < len(line) - 1: crc = crc + int(line[l:l+2], 16) l = l + 2 crc = (~crc + 1) % 256 return crc
3.125
3
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_alarmgr_server_oper.py
tkamata-test/ydk-py
0
12777396
<reponame>tkamata-test/ydk-py import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'TimingBucketEnum' : _MetaInfoEnum('TimingBucketEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'not-specified':'not_specified', 'fifteen-min':'fifteen_min', 'one-day':'one_day', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmSeverityEnum' : _MetaInfoEnum('AlarmSeverityEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'unknown':'unknown', 'not-reported':'not_reported', 'not-alarmed':'not_alarmed', 'minor':'minor', 'major':'major', 'critical':'critical', 'severity-last':'severity_last', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmDirectionEnum' : _MetaInfoEnum('AlarmDirectionEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'not-specified':'not_specified', 'send':'send', 'receive':'receive', 'send-receive':'send_receive', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmStatusEnum' : _MetaInfoEnum('AlarmStatusEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'unknown':'unknown', 'set':'set', 'clear':'clear', 'suppress':'suppress', 'last':'last', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmServiceAffectingEnum' : _MetaInfoEnum('AlarmServiceAffectingEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'unknown':'unknown', 'not-service-affecting':'not_service_affecting', 'service-affecting':'service_affecting', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmNotificationSrcEnum' : _MetaInfoEnum('AlarmNotificationSrcEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'not-specified':'not_specified', 'near-end':'near_end', 'far-end':'far_end', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmEventEnum' : _MetaInfoEnum('AlarmEventEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'default':'default', 'notification':'notification', 'last':'last', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmClientEnum' : _MetaInfoEnum('AlarmClientEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'unknown':'unknown', 'producer':'producer', 'consumer':'consumer', 'subscriber':'subscriber', 'client-last':'client_last', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmClientStateEnum' : _MetaInfoEnum('AlarmClientStateEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'start':'start', 'init':'init', 'connecting':'connecting', 'connected':'connected', 'registered':'registered', 'disconnected':'disconnected', 'ready':'ready', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'AlarmGroupsEnum' : _MetaInfoEnum('AlarmGroupsEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', { 'unknown':'unknown', 'environ':'environ', 'ethernet':'ethernet', 'fabric':'fabric', 'power':'power', 'software':'software', 'slice':'slice', 'cpu':'cpu', 'controller':'controller', 'sonet':'sonet', 'otn':'otn', 'sdh-controller':'sdh_controller', 'asic':'asic', 'fpd-infra':'fpd_infra', 'shelf':'shelf', 'mpa':'mpa', 'ots':'ots', 'last':'last', }, 'Cisco-IOS-XR-alarmgr-server-oper', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper']), 'Alarms.Detail.DetailSystem.Active.AlarmInfo.Otn' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Active.AlarmInfo.Otn', False, [ _MetaInfoClassMember('direction', REFERENCE_ENUM_CLASS, 'AlarmDirectionEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmDirectionEnum', [], [], ''' Alarm direction ''', 'direction', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('notification-source', REFERENCE_ENUM_CLASS, 'AlarmNotificationSrcEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmNotificationSrcEnum', [], [], ''' Source of Alarm ''', 'notification_source', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'otn', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Active.AlarmInfo.Tca' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Active.AlarmInfo.Tca', False, [ _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'TimingBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'TimingBucketEnum', [], [], ''' Timing Bucket ''', 'bucket_type', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('current-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'current_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('threshold-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'threshold_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'tca', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Active.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Active.AlarmInfo', False, [ _MetaInfoClassMember('aid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm aid ''', 'aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('alarm-name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm name ''', 'alarm_name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('eid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm eid ''', 'eid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('interface', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm interface name ''', 'interface', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('module', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm module description ''', 'module', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('otn', REFERENCE_CLASS, 'Otn' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Active.AlarmInfo.Otn', [], [], ''' OTN feature specific alarm attributes ''', 'otn', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('pending-sync', ATTRIBUTE, 'bool' , None, None, [], [], ''' Pending async flag ''', 'pending_sync', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reporting-agent-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Reporting agent id ''', 'reporting_agent_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('service-affecting', REFERENCE_ENUM_CLASS, 'AlarmServiceAffectingEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmServiceAffectingEnum', [], [], ''' Alarm service affecting ''', 'service_affecting', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('status', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' Alarm status ''', 'status', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tag', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm tag description ''', 'tag', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tca', REFERENCE_CLASS, 'Tca' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Active.AlarmInfo.Tca', [], [], ''' TCA feature specific alarm attributes ''', 'tca', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'AlarmEventEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmEventEnum', [], [], ''' alarm event type ''', 'type', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Active' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Active', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Active.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'active', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.History.AlarmInfo.Otn' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.History.AlarmInfo.Otn', False, [ _MetaInfoClassMember('direction', REFERENCE_ENUM_CLASS, 'AlarmDirectionEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmDirectionEnum', [], [], ''' Alarm direction ''', 'direction', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('notification-source', REFERENCE_ENUM_CLASS, 'AlarmNotificationSrcEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmNotificationSrcEnum', [], [], ''' Source of Alarm ''', 'notification_source', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'otn', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.History.AlarmInfo.Tca' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.History.AlarmInfo.Tca', False, [ _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'TimingBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'TimingBucketEnum', [], [], ''' Timing Bucket ''', 'bucket_type', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('current-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'current_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('threshold-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'threshold_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'tca', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.History.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.History.AlarmInfo', False, [ _MetaInfoClassMember('aid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm aid ''', 'aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('alarm-name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm name ''', 'alarm_name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('eid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm eid ''', 'eid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('interface', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm interface name ''', 'interface', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('module', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm module description ''', 'module', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('otn', REFERENCE_CLASS, 'Otn' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.History.AlarmInfo.Otn', [], [], ''' OTN feature specific alarm attributes ''', 'otn', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('pending-sync', ATTRIBUTE, 'bool' , None, None, [], [], ''' Pending async flag ''', 'pending_sync', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reporting-agent-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Reporting agent id ''', 'reporting_agent_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('service-affecting', REFERENCE_ENUM_CLASS, 'AlarmServiceAffectingEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmServiceAffectingEnum', [], [], ''' Alarm service affecting ''', 'service_affecting', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('status', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' Alarm status ''', 'status', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tag', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm tag description ''', 'tag', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tca', REFERENCE_CLASS, 'Tca' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.History.AlarmInfo.Tca', [], [], ''' TCA feature specific alarm attributes ''', 'tca', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'AlarmEventEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmEventEnum', [], [], ''' alarm event type ''', 'type', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.History' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.History', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.History.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'history', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo.Otn' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo.Otn', False, [ _MetaInfoClassMember('direction', REFERENCE_ENUM_CLASS, 'AlarmDirectionEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmDirectionEnum', [], [], ''' Alarm direction ''', 'direction', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('notification-source', REFERENCE_ENUM_CLASS, 'AlarmNotificationSrcEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmNotificationSrcEnum', [], [], ''' Source of Alarm ''', 'notification_source', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'otn', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo', False, [ _MetaInfoClassMember('aid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm aid ''', 'aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('alarm-name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm name ''', 'alarm_name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('eid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm eid ''', 'eid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('interface', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm interface name ''', 'interface', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('module', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm module description ''', 'module', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('otn', REFERENCE_CLASS, 'Otn' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo.Otn', [], [], ''' OTN feature specific alarm attributes ''', 'otn', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('pending-sync', ATTRIBUTE, 'bool' , None, None, [], [], ''' Pending async flag ''', 'pending_sync', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reporting-agent-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Reporting agent id ''', 'reporting_agent_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('service-affecting', REFERENCE_ENUM_CLASS, 'AlarmServiceAffectingEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmServiceAffectingEnum', [], [], ''' Alarm service affecting ''', 'service_affecting', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('status', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' Alarm status ''', 'status', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm suppressed time ''', 'suppressed_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm suppressed time(timestamp format) ''', 'suppressed_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tag', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm tag description ''', 'tag', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Suppressed' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Suppressed', False, [ _MetaInfoClassMember('suppressed-info', REFERENCE_LIST, 'SuppressedInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo', [], [], ''' Suppressed Alarm List ''', 'suppressed_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Stats' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Stats', False, [ _MetaInfoClassMember('active', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are currently in the active state ''', 'active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('cache-hit', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Total alarms which had the cache hit ''', 'cache_hit', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('cache-miss', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Total alarms which had the cache miss ''', 'cache_miss', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that we couldn't keep track due to some error or other ''', 'dropped', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-clear-without-set', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped clear without set ''', 'dropped_clear_without_set', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-db-error', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped due to db error ''', 'dropped_db_error', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-duplicate', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped which were duplicate ''', 'dropped_duplicate', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-insuff-mem', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped due to insufficient memory ''', 'dropped_insuff_mem', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-invalid-aid', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped due to invalid aid ''', 'dropped_invalid_aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('history', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are cleared. This one is counted over a long period of time ''', 'history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reported', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that were in all reported to this Alarm Mgr ''', 'reported', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are in suppressed state ''', 'suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('sysadmin-active', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are currently in the active state(sysadmin plane) ''', 'sysadmin_active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('sysadmin-history', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are cleared in sysadmin plane. This one is counted over a long period of time ''', 'sysadmin_history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('sysadmin-suppressed', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are suppressed in sysadmin plane. ''', 'sysadmin_suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'stats', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Clients.ClientInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Clients.ClientInfo', False, [ _MetaInfoClassMember('connect-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent connected to the alarm mgr ''', 'connect_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('connect-timestamp', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Agent connect timestamp ''', 'connect_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-disp', ATTRIBUTE, 'bool' , None, None, [], [], ''' The current subscription status of the client ''', 'filter_disp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' The filter used for alarm group ''', 'filter_group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' The filter used for alarm severity ''', 'filter_severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-state', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' The filter used for alarm bi-state state+ ''', 'filter_state', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('get-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent queried for alarms ''', 'get_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('handle', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' The client handle through which interface ''', 'handle', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms agent id of the client ''', 'id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' The location of this client ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm client ''', 'name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('report-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent reported alarms ''', 'report_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('state', REFERENCE_ENUM_CLASS, 'AlarmClientStateEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmClientStateEnum', [], [], ''' The current state of the client ''', 'state', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('subscribe-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent subscribed for alarms ''', 'subscribe_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('subscriber-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms agent subscriber id of the client ''', 'subscriber_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'AlarmClientEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmClientEnum', [], [], ''' The type of the client ''', 'type', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'client-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem.Clients' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem.Clients', False, [ _MetaInfoClassMember('client-info', REFERENCE_LIST, 'ClientInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Clients.ClientInfo', [], [], ''' Client List ''', 'client_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'clients', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailSystem' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailSystem', False, [ _MetaInfoClassMember('active', REFERENCE_CLASS, 'Active' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Active', [], [], ''' Show the active alarms at this scope. ''', 'active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clients', REFERENCE_CLASS, 'Clients' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Clients', [], [], ''' Show the clients associated with this service. ''', 'clients', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('history', REFERENCE_CLASS, 'History' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.History', [], [], ''' Show the history alarms at this scope. ''', 'history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('stats', REFERENCE_CLASS, 'Stats' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Stats', [], [], ''' Show the service statistics. ''', 'stats', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed', REFERENCE_CLASS, 'Suppressed' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem.Suppressed', [], [], ''' Show the suppressed alarms at this scope. ''', 'suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'detail-system', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Otn' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Otn', False, [ _MetaInfoClassMember('direction', REFERENCE_ENUM_CLASS, 'AlarmDirectionEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmDirectionEnum', [], [], ''' Alarm direction ''', 'direction', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('notification-source', REFERENCE_ENUM_CLASS, 'AlarmNotificationSrcEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmNotificationSrcEnum', [], [], ''' Source of Alarm ''', 'notification_source', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'otn', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Tca' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Tca', False, [ _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'TimingBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'TimingBucketEnum', [], [], ''' Timing Bucket ''', 'bucket_type', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('current-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'current_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('threshold-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'threshold_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'tca', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo', False, [ _MetaInfoClassMember('aid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm aid ''', 'aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('alarm-name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm name ''', 'alarm_name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('eid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm eid ''', 'eid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('interface', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm interface name ''', 'interface', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('module', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm module description ''', 'module', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('otn', REFERENCE_CLASS, 'Otn' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Otn', [], [], ''' OTN feature specific alarm attributes ''', 'otn', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('pending-sync', ATTRIBUTE, 'bool' , None, None, [], [], ''' Pending async flag ''', 'pending_sync', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reporting-agent-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Reporting agent id ''', 'reporting_agent_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('service-affecting', REFERENCE_ENUM_CLASS, 'AlarmServiceAffectingEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmServiceAffectingEnum', [], [], ''' Alarm service affecting ''', 'service_affecting', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('status', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' Alarm status ''', 'status', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tag', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm tag description ''', 'tag', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tca', REFERENCE_CLASS, 'Tca' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Tca', [], [], ''' TCA feature specific alarm attributes ''', 'tca', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'AlarmEventEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmEventEnum', [], [], ''' alarm event type ''', 'type', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'active', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Otn' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Otn', False, [ _MetaInfoClassMember('direction', REFERENCE_ENUM_CLASS, 'AlarmDirectionEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmDirectionEnum', [], [], ''' Alarm direction ''', 'direction', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('notification-source', REFERENCE_ENUM_CLASS, 'AlarmNotificationSrcEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmNotificationSrcEnum', [], [], ''' Source of Alarm ''', 'notification_source', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'otn', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Tca' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Tca', False, [ _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'TimingBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'TimingBucketEnum', [], [], ''' Timing Bucket ''', 'bucket_type', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('current-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'current_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('threshold-value', ATTRIBUTE, 'str' , None, None, [(0, 20)], [], ''' Alarm Threshold ''', 'threshold_value', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'tca', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo', False, [ _MetaInfoClassMember('aid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm aid ''', 'aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('alarm-name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm name ''', 'alarm_name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('eid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm eid ''', 'eid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('interface', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm interface name ''', 'interface', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('module', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm module description ''', 'module', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('otn', REFERENCE_CLASS, 'Otn' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Otn', [], [], ''' OTN feature specific alarm attributes ''', 'otn', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('pending-sync', ATTRIBUTE, 'bool' , None, None, [], [], ''' Pending async flag ''', 'pending_sync', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reporting-agent-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Reporting agent id ''', 'reporting_agent_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('service-affecting', REFERENCE_ENUM_CLASS, 'AlarmServiceAffectingEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmServiceAffectingEnum', [], [], ''' Alarm service affecting ''', 'service_affecting', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('status', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' Alarm status ''', 'status', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tag', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm tag description ''', 'tag', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tca', REFERENCE_CLASS, 'Tca' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Tca', [], [], ''' TCA feature specific alarm attributes ''', 'tca', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'AlarmEventEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmEventEnum', [], [], ''' alarm event type ''', 'type', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'history', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo.Otn' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo.Otn', False, [ _MetaInfoClassMember('direction', REFERENCE_ENUM_CLASS, 'AlarmDirectionEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmDirectionEnum', [], [], ''' Alarm direction ''', 'direction', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('notification-source', REFERENCE_ENUM_CLASS, 'AlarmNotificationSrcEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmNotificationSrcEnum', [], [], ''' Source of Alarm ''', 'notification_source', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'otn', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo', False, [ _MetaInfoClassMember('aid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm aid ''', 'aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('alarm-name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm name ''', 'alarm_name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('eid', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm eid ''', 'eid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('interface', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm interface name ''', 'interface', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('module', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm module description ''', 'module', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('otn', REFERENCE_CLASS, 'Otn' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo.Otn', [], [], ''' OTN feature specific alarm attributes ''', 'otn', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('pending-sync', ATTRIBUTE, 'bool' , None, None, [], [], ''' Pending async flag ''', 'pending_sync', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reporting-agent-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Reporting agent id ''', 'reporting_agent_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('service-affecting', REFERENCE_ENUM_CLASS, 'AlarmServiceAffectingEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmServiceAffectingEnum', [], [], ''' Alarm service affecting ''', 'service_affecting', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('status', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' Alarm status ''', 'status', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm suppressed time ''', 'suppressed_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm suppressed time(timestamp format) ''', 'suppressed_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('tag', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm tag description ''', 'tag', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed', False, [ _MetaInfoClassMember('suppressed-info', REFERENCE_LIST, 'SuppressedInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo', [], [], ''' Suppressed Alarm List ''', 'suppressed_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Stats' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Stats', False, [ _MetaInfoClassMember('active', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are currently in the active state ''', 'active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('cache-hit', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Total alarms which had the cache hit ''', 'cache_hit', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('cache-miss', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Total alarms which had the cache miss ''', 'cache_miss', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that we couldn't keep track due to some error or other ''', 'dropped', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-clear-without-set', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped clear without set ''', 'dropped_clear_without_set', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-db-error', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped due to db error ''', 'dropped_db_error', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-duplicate', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped which were duplicate ''', 'dropped_duplicate', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-insuff-mem', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped due to insufficient memory ''', 'dropped_insuff_mem', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('dropped-invalid-aid', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms dropped due to invalid aid ''', 'dropped_invalid_aid', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('history', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are cleared. This one is counted over a long period of time ''', 'history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('reported', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that were in all reported to this Alarm Mgr ''', 'reported', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are in suppressed state ''', 'suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('sysadmin-active', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are currently in the active state(sysadmin plane) ''', 'sysadmin_active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('sysadmin-history', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are cleared in sysadmin plane. This one is counted over a long period of time ''', 'sysadmin_history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('sysadmin-suppressed', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarms that are suppressed in sysadmin plane. ''', 'sysadmin_suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'stats', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients.ClientInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients.ClientInfo', False, [ _MetaInfoClassMember('connect-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent connected to the alarm mgr ''', 'connect_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('connect-timestamp', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Agent connect timestamp ''', 'connect_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-disp', ATTRIBUTE, 'bool' , None, None, [], [], ''' The current subscription status of the client ''', 'filter_disp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' The filter used for alarm group ''', 'filter_group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' The filter used for alarm severity ''', 'filter_severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('filter-state', REFERENCE_ENUM_CLASS, 'AlarmStatusEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmStatusEnum', [], [], ''' The filter used for alarm bi-state state+ ''', 'filter_state', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('get-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent queried for alarms ''', 'get_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('handle', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' The client handle through which interface ''', 'handle', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms agent id of the client ''', 'id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' The location of this client ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm client ''', 'name', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('report-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent reported alarms ''', 'report_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('state', REFERENCE_ENUM_CLASS, 'AlarmClientStateEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmClientStateEnum', [], [], ''' The current state of the client ''', 'state', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('subscribe-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of times the agent subscribed for alarms ''', 'subscribe_count', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('subscriber-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Alarms agent subscriber id of the client ''', 'subscriber_id', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'AlarmClientEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmClientEnum', [], [], ''' The type of the client ''', 'type', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'client-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients', False, [ _MetaInfoClassMember('client-info', REFERENCE_LIST, 'ClientInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients.ClientInfo', [], [], ''' Client List ''', 'client_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'clients', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations.DetailLocation', False, [ _MetaInfoClassMember('node-id', ATTRIBUTE, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' NodeID of the Location ''', 'node_id', 'Cisco-IOS-XR-alarmgr-server-oper', True), _MetaInfoClassMember('active', REFERENCE_CLASS, 'Active' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active', [], [], ''' Show the active alarms at this scope. ''', 'active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clients', REFERENCE_CLASS, 'Clients' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients', [], [], ''' Show the clients associated with this service. ''', 'clients', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('history', REFERENCE_CLASS, 'History' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History', [], [], ''' Show the history alarms at this scope. ''', 'history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('stats', REFERENCE_CLASS, 'Stats' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Stats', [], [], ''' Show the service statistics. ''', 'stats', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed', REFERENCE_CLASS, 'Suppressed' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed', [], [], ''' Show the suppressed alarms at this scope. ''', 'suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'detail-location', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard.DetailLocations' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard.DetailLocations', False, [ _MetaInfoClassMember('detail-location', REFERENCE_LIST, 'DetailLocation' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations.DetailLocation', [], [], ''' Specify a card location for alarms. ''', 'detail_location', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'detail-locations', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail.DetailCard' : { 'meta_info' : _MetaInfoClass('Alarms.Detail.DetailCard', False, [ _MetaInfoClassMember('detail-locations', REFERENCE_CLASS, 'DetailLocations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard.DetailLocations', [], [], ''' Table of DetailLocation ''', 'detail_locations', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'detail-card', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Detail' : { 'meta_info' : _MetaInfoClass('Alarms.Detail', False, [ _MetaInfoClassMember('detail-card', REFERENCE_CLASS, 'DetailCard' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailCard', [], [], ''' Show detail card scope alarm related data. ''', 'detail_card', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('detail-system', REFERENCE_CLASS, 'DetailSystem' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail.DetailSystem', [], [], ''' show detail system scope alarm related data. ''', 'detail_system', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'detail', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active.AlarmInfo', False, [ _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'active', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History.AlarmInfo', False, [ _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'history', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed.SuppressedInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed.SuppressedInfo', False, [ _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm suppressed time ''', 'suppressed_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm suppressed time(timestamp format) ''', 'suppressed_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed', False, [ _MetaInfoClassMember('suppressed-info', REFERENCE_LIST, 'SuppressedInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed.SuppressedInfo', [], [], ''' Suppressed Alarm List ''', 'suppressed_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations.BriefLocation', False, [ _MetaInfoClassMember('node-id', ATTRIBUTE, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' NodeID of the Location ''', 'node_id', 'Cisco-IOS-XR-alarmgr-server-oper', True), _MetaInfoClassMember('active', REFERENCE_CLASS, 'Active' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active', [], [], ''' Show the active alarms at this scope. ''', 'active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('history', REFERENCE_CLASS, 'History' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History', [], [], ''' Show the history alarms at this scope. ''', 'history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed', REFERENCE_CLASS, 'Suppressed' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed', [], [], ''' Show the suppressed alarms at this scope. ''', 'suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'brief-location', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard.BriefLocations' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard.BriefLocations', False, [ _MetaInfoClassMember('brief-location', REFERENCE_LIST, 'BriefLocation' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations.BriefLocation', [], [], ''' Specify a card location for alarms. ''', 'brief_location', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'brief-locations', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefCard' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefCard', False, [ _MetaInfoClassMember('brief-locations', REFERENCE_CLASS, 'BriefLocations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard.BriefLocations', [], [], ''' Table of BriefLocation ''', 'brief_locations', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'brief-card', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem.Active.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem.Active.AlarmInfo', False, [ _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem.Active' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem.Active', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem.Active.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'active', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem.History.AlarmInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem.History.AlarmInfo', False, [ _MetaInfoClassMember('clear-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm clear time ''', 'clear_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('clear-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm clear time(timestamp format) ''', 'clear_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarm-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem.History' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem.History', False, [ _MetaInfoClassMember('alarm-info', REFERENCE_LIST, 'AlarmInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem.History.AlarmInfo', [], [], ''' Alarm List ''', 'alarm_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'history', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem.Suppressed.SuppressedInfo' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem.Suppressed.SuppressedInfo', False, [ _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [(0, 256)], [], ''' Alarm description ''', 'description', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('group', REFERENCE_ENUM_CLASS, 'AlarmGroupsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmGroupsEnum', [], [], ''' Alarm group ''', 'group', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [(0, 128)], [], ''' Alarm location ''', 'location', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm set time ''', 'set_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('set-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm set time(timestamp format) ''', 'set_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'AlarmSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'AlarmSeverityEnum', [], [], ''' Alarm severity ''', 'severity', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-time', ATTRIBUTE, 'str' , None, None, [(0, 64)], [], ''' Alarm suppressed time ''', 'suppressed_time', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed-timestamp', ATTRIBUTE, 'int' , None, None, [('0', '18446744073709551615')], [], ''' Alarm suppressed time(timestamp format) ''', 'suppressed_timestamp', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed-info', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem.Suppressed' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem.Suppressed', False, [ _MetaInfoClassMember('suppressed-info', REFERENCE_LIST, 'SuppressedInfo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem.Suppressed.SuppressedInfo', [], [], ''' Suppressed Alarm List ''', 'suppressed_info', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'suppressed', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief.BriefSystem' : { 'meta_info' : _MetaInfoClass('Alarms.Brief.BriefSystem', False, [ _MetaInfoClassMember('active', REFERENCE_CLASS, 'Active' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem.Active', [], [], ''' Show the active alarms at this scope. ''', 'active', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('history', REFERENCE_CLASS, 'History' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem.History', [], [], ''' Show the history alarms at this scope. ''', 'history', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('suppressed', REFERENCE_CLASS, 'Suppressed' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem.Suppressed', [], [], ''' Show the suppressed alarms at this scope. ''', 'suppressed', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'brief-system', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms.Brief' : { 'meta_info' : _MetaInfoClass('Alarms.Brief', False, [ _MetaInfoClassMember('brief-card', REFERENCE_CLASS, 'BriefCard' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefCard', [], [], ''' Show brief card scope alarm related data. ''', 'brief_card', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('brief-system', REFERENCE_CLASS, 'BriefSystem' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief.BriefSystem', [], [], ''' Show brief system scope alarm related data. ''', 'brief_system', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'brief', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, 'Alarms' : { 'meta_info' : _MetaInfoClass('Alarms', False, [ _MetaInfoClassMember('brief', REFERENCE_CLASS, 'Brief' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Brief', [], [], ''' A set of brief alarm commands. ''', 'brief', 'Cisco-IOS-XR-alarmgr-server-oper', False), _MetaInfoClassMember('detail', REFERENCE_CLASS, 'Detail' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper', 'Alarms.Detail', [], [], ''' A set of detail alarm commands. ''', 'detail', 'Cisco-IOS-XR-alarmgr-server-oper', False), ], 'Cisco-IOS-XR-alarmgr-server-oper', 'alarms', _yang_ns._namespaces['Cisco-IOS-XR-alarmgr-server-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_alarmgr_server_oper' ), }, } _meta_table['Alarms.Detail.DetailSystem.Active.AlarmInfo.Otn']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.Active.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Active.AlarmInfo.Tca']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.Active.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Active.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.Active']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.History.AlarmInfo.Otn']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.History.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.History.AlarmInfo.Tca']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.History.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.History.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.History']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo.Otn']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Suppressed.SuppressedInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.Suppressed']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Clients.ClientInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem.Clients']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Active']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.History']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Suppressed']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Stats']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem']['meta_info'] _meta_table['Alarms.Detail.DetailSystem.Clients']['meta_info'].parent =_meta_table['Alarms.Detail.DetailSystem']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Otn']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo.Tca']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Otn']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo.Tca']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo.Otn']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed.SuppressedInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients.ClientInfo']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Active']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.History']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Suppressed']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Stats']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation.Clients']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations.DetailLocation']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard.DetailLocations']['meta_info'] _meta_table['Alarms.Detail.DetailCard.DetailLocations']['meta_info'].parent =_meta_table['Alarms.Detail.DetailCard']['meta_info'] _meta_table['Alarms.Detail.DetailSystem']['meta_info'].parent =_meta_table['Alarms.Detail']['meta_info'] _meta_table['Alarms.Detail.DetailCard']['meta_info'].parent =_meta_table['Alarms.Detail']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed.SuppressedInfo']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Active']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.History']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation.Suppressed']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations.BriefLocation']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard.BriefLocations']['meta_info'] _meta_table['Alarms.Brief.BriefCard.BriefLocations']['meta_info'].parent =_meta_table['Alarms.Brief.BriefCard']['meta_info'] _meta_table['Alarms.Brief.BriefSystem.Active.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Brief.BriefSystem.Active']['meta_info'] _meta_table['Alarms.Brief.BriefSystem.History.AlarmInfo']['meta_info'].parent =_meta_table['Alarms.Brief.BriefSystem.History']['meta_info'] _meta_table['Alarms.Brief.BriefSystem.Suppressed.SuppressedInfo']['meta_info'].parent =_meta_table['Alarms.Brief.BriefSystem.Suppressed']['meta_info'] _meta_table['Alarms.Brief.BriefSystem.Active']['meta_info'].parent =_meta_table['Alarms.Brief.BriefSystem']['meta_info'] _meta_table['Alarms.Brief.BriefSystem.History']['meta_info'].parent =_meta_table['Alarms.Brief.BriefSystem']['meta_info'] _meta_table['Alarms.Brief.BriefSystem.Suppressed']['meta_info'].parent =_meta_table['Alarms.Brief.BriefSystem']['meta_info'] _meta_table['Alarms.Brief.BriefCard']['meta_info'].parent =_meta_table['Alarms.Brief']['meta_info'] _meta_table['Alarms.Brief.BriefSystem']['meta_info'].parent =_meta_table['Alarms.Brief']['meta_info'] _meta_table['Alarms.Detail']['meta_info'].parent =_meta_table['Alarms']['meta_info'] _meta_table['Alarms.Brief']['meta_info'].parent =_meta_table['Alarms']['meta_info']
1.59375
2
2020/day5.py
Hofei90/Hofei_AdventofCode
1
12777397
<gh_stars>1-10 import os SKRIPTPFAD = os.path.abspath(os.path.dirname(__file__)) class BinaryBoarding: def __init__(self, max_row, max_column, seat): self.rows = [value for value in range(0, max_row)] self.columns = [value for value in range(0, max_column)] self.seat = seat self.seat_id = None def analyze_seat_id(self): for spell in self.seat: if spell == "F": self.change_row(False) elif spell == "B": self.change_row(True) elif spell == "R": self.change_column(True) elif spell == "L": self.change_column(False) self.seat_id = self.rows[0] * 8 + self.columns[0] def change_row(self, lower_upper): if lower_upper: self.rows = get_upper_half(self.rows) else: self.rows = get_lower_half(self.rows) def change_column(self, lower_upper): if lower_upper: self.columns = get_upper_half(self.columns) else: self.columns = get_lower_half(self.columns) def read_input(datei): with open(datei) as file: inhalt = file.readlines() return inhalt def get_upper_half(plaetze): half = get_half(plaetze) return plaetze[half:] def get_lower_half(plaetze): half = get_half(plaetze) return plaetze[:half] def get_half(plaetze): return int(len(plaetze) / 2) def main(): max_row = 128 max_column = 8 inhalt = read_input(os.path.join(SKRIPTPFAD, "input_5_1")) max_seat_id = 0 seat_ids = [] for seat in inhalt: boarding = BinaryBoarding(max_row, max_column, seat) boarding.analyze_seat_id() max_seat_id = max(boarding.seat_id, max_seat_id) seat_ids.append(boarding.seat_id) print(max_seat_id) # Tag 5 #2 min_seat_id = min(seat_ids) max_seat_id = max(seat_ids) ids = [id_ for id_ in range(min_seat_id, max_seat_id + 1)] my_id = set(ids) - set(seat_ids) print(my_id) if __name__ == "__main__": main()
3.015625
3
rubiksnet/shiftlib/rubiks3d/primitive.py
javierlorenzod/RubiksNet
86
12777398
<gh_stars>10-100 import torch # this line is necessary for CUDAExtension to load import rubiksnet_cuda from rubiksnet.utils import * __all__ = [ "rubiks_shift_3d_forward", "rubiks_shift_3d_backward", "rubiks_shift_3d", ] def _make_tuple(elem, repeats): """ expand 3 into (3, 3) for strides/paddings """ if isinstance(elem, int): return [elem] * repeats else: assert len(elem) == repeats return [int(x) for x in elem] def _get_output_dim(orig, stride, padding): return (orig + 2 * padding - 1) / stride + 1 def compute_output_shape(x, stride, padding, shift_dim): batch, T_in, C_in, H_in, W_in = x.size() T_out, H_out, W_out = T_in, H_in, W_in strides = _make_tuple(stride, shift_dim) paddings = _make_tuple(padding, shift_dim) if shift_dim == 1: T_out = _get_output_dim(T_in, strides[0], paddings[0]) elif shift_dim == 2: H_out = _get_output_dim(H_in, strides[0], paddings[0]) W_out = _get_output_dim(W_in, strides[1], paddings[1]) elif shift_dim == 3: T_out = _get_output_dim(T_in, strides[0], paddings[0]) H_out = _get_output_dim(H_in, strides[1], paddings[1]) W_out = _get_output_dim(W_in, strides[2], paddings[2]) else: raise NotImplementedError("only 1D, 2D, 3D shifts supported") return batch, int(T_out), C_in, int(H_out), int(W_out) # ======================================================== # ===== CUDA forward primitive ===== # ======================================================== def make_rubiks_forward(forward_float, forward_double, dim): def _rubiks_forward(x, shift, stride, padding, quantize=False, output=None): """ Pure forward pass primitive, no gradient computation """ strides = _make_tuple(stride, repeats=dim) paddings = _make_tuple(padding, repeats=dim) # x: (N, T, C, H, W), shift: (DIM, C) assert x.is_cuda, "rubiks shift only works on CUDA tensors" assert x.size(2) == shift.size( 1 ), "x tensor channel dim[2] must match shift channel dim[1]" assert x.dtype == shift.dtype, "x and shift must have the same dtype" if x.dtype == torch.float32: shift_func = forward_float elif x.dtype == torch.float64: shift_func = forward_double else: raise ValueError( "rubiks_shift_{}d only supports float32 and float64 (double) dtypes.".format( dim ) ) output_shape = compute_output_shape(x, strides, paddings, shift_dim=dim) output = allocate_output(output, x, output_shape) ret = shift_func(x, shift, strides, paddings, quantize, output) assert ret == 0, "CUDA kernel return code {} != 0, error".format(ret) return output _rubiks_forward.__name__ = "rubiks_shift_{}d_forward".format(dim) return _rubiks_forward # ======================================================== # ===== CUDA backward primitive ===== # ======================================================== def make_rubiks_backward(backward_float, backward_double, dim): def _rubiks_backward( upstream_grad, x, shift, stride, padding, normalize_grad, normalize_t_factor=1.0, quantize=False, x_grad_output=None, shift_grad_output=None, ): """ Pure backward pass primitive. Args: upstream_grad: Receives gradient w.r.t output from upstream. x: original input tensor shift: original shift tensor """ strides = _make_tuple(stride, repeats=dim) paddings = _make_tuple(padding, repeats=dim) assert ( x.is_cuda and upstream_grad.is_cuda ), "rubiks shift only works on CUDA tensors" if x.dtype == torch.float32: grad_func = backward_float elif x.dtype == torch.float64: grad_func = backward_double else: raise ValueError( "rubiks_shift_{}d only supports float32 and float64 (double) dtypes.".format( dim ) ) x_grad = allocate_output(x_grad_output, x, x.size()) shift_grad = allocate_output(shift_grad_output, shift, shift.size()) ret = grad_func( x, shift, upstream_grad, strides, paddings, x_grad, shift_grad, normalize_grad, normalize_t_factor, quantize, ) assert ret == 0, "CUDA return code {} != 0, error".format(ret) return x_grad, shift_grad _rubiks_backward.__name__ = "rubiks_shift_{}d_backward".format(dim) return _rubiks_backward def make_rubiks_functional(forward_method, backward_method, dim): # make primitive autograd.Function class class _RubiksShiftFunc(torch.autograd.Function): @staticmethod def forward( ctx, x, shift, stride, padding, normalize_grad, normalize_t_factor, quantize ): assert isinstance(normalize_grad, bool) ctx.stride = stride ctx.padding = padding ctx.normalize_grad = normalize_grad ctx.normalize_t_factor = normalize_t_factor ctx.quantize = quantize ctx.save_for_backward(x, shift) return forward_method(x, shift, stride, padding, quantize=quantize) @staticmethod def backward(ctx, grad_output): """ Refer to https://pytorch.org/docs/stable/notes/extending.html """ x, shift = ctx.saved_tensors x_grad = shift_grad = None # compute grad only if either X or shift needs gradient if any(ctx.needs_input_grad): _x_grad, _shift_grad = backward_method( grad_output, x, shift, stride=ctx.stride, padding=ctx.padding, normalize_grad=ctx.normalize_grad, normalize_t_factor=ctx.normalize_t_factor, quantize=ctx.quantize, ) if ctx.needs_input_grad[0]: x_grad = _x_grad if ctx.needs_input_grad[1]: shift_grad = _shift_grad # must match the number of input args return x_grad, shift_grad, None, None, None, None, None _RubiksShiftFunc.__name__ = "RubiksShift{}DFunc".format(dim) # user facing functional def _rubiks_shift( x, shift, stride=1, padding=0, normalize_grad=True, normalize_t_factor=1.0, quantize=False, ): """ Also supports grouped shift """ assert len(x.size()) == 5, "x must be [N, T, C, H, W]" H, T, C, H, W = x.size() shift_channel = shift.size(1) assert C == shift_channel, "group shift is deprecated. Now C dim must match." if normalize_t_factor == "auto": normalize_t_factor = T / H else: assert isinstance(normalize_t_factor, (int, float)) return _RubiksShiftFunc.apply( x, shift, stride, padding, normalize_grad, normalize_t_factor, quantize ) _rubiks_shift.__name__ = "rubiks_shift_{}d".format(dim) return _rubiks_shift rubiks_shift_3d_forward = make_rubiks_forward( rubiksnet_cuda.rubiks_shift_3d_forward_float, rubiksnet_cuda.rubiks_shift_3d_forward_double, dim=3, ) rubiks_shift_3d_backward = make_rubiks_backward( rubiksnet_cuda.rubiks_shift_3d_backward_float, rubiksnet_cuda.rubiks_shift_3d_backward_double, dim=3, ) rubiks_shift_3d = make_rubiks_functional( rubiks_shift_3d_forward, rubiks_shift_3d_backward, 3 )
2.28125
2
ietf/meeting/migrations/0026_cancel_107_sessions.py
hassanakbar4/ietfdb
25
12777399
# Copyright The IETF Trust 2020, All Rights Reserved # -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2020-03-18 16:18 from __future__ import unicode_literals from django.db import migrations def cancel_sessions(apps, schema_editor): Session = apps.get_model('meeting', 'Session') SchedulingEvent = apps.get_model('meeting', 'SchedulingEvent') SessionStatusName = apps.get_model('name', 'SessionStatusName') Person = apps.get_model('person', 'Person') excludes = ['txauth','dispatch','add','raw','masque','wpack','drip','gendispatch','privacypass', 'ript', 'secdispatch', 'webtrans'] canceled = SessionStatusName.objects.get(slug='canceled') person = Person.objects.get(name='<NAME>') sessions = Session.objects.filter(meeting__number=107,group__type__in=['wg','rg','ag']).exclude(group__acronym__in=excludes) for session in sessions: SchedulingEvent.objects.create( session = session, status = canceled, by = person) def reverse(apps, schema_editor): SchedulingEvent = apps.get_model('meeting', 'SchedulingEvent') Person = apps.get_model('person', 'Person') person = Person.objects.get(name='<NAME>') SchedulingEvent.objects.filter(session__meeting__number=107, by=person).delete() class Migration(migrations.Migration): dependencies = [ ('meeting', '0025_rename_type_session_to_regular'), ] operations = [ migrations.RunPython(cancel_sessions, reverse), ]
1.710938
2
ibalert/asgi.py
ItsMilann/channels-alert
0
12777400
<reponame>ItsMilann/channels-alert import imp from channels.routing import ProtocolTypeRouter, URLRouter from channels.auth import AuthMiddlewareStack from django.urls import path from ibalert.consumers import NotificationConsumer application = ProtocolTypeRouter( { "websocket": AuthMiddlewareStack( URLRouter( [ path("notifications/", NotificationConsumer().as_asgi()), ] ) ) } )
1.859375
2
tests/conftest.py
lumapps/changelog-generator
0
12777401
<filename>tests/conftest.py import os import tempfile from pathlib import Path import pytest from git import Repo @pytest.fixture(scope="session", autouse=True) def core_repo() -> Repo: tempdir = Path(tempfile.gettempdir()) / "changelog_generator" / "core" try: os.makedirs(tempdir) repo = Repo.clone_from("<EMAIL>:lumapps/core.git", tempdir) except OSError: repo = Repo(tempdir) return repo @pytest.fixture(scope="session", autouse=True) def organization_repo() -> Repo: tempdir = Path(tempfile.gettempdir()) / "changelog_generator" / "organization" try: os.makedirs(tempdir) repo = Repo.clone_from("<EMAIL>:lumapps/organization.git", tempdir) except OSError: repo = Repo(tempdir) return repo
1.875
2
pycatia/knowledge_interfaces/relations.py
evereux/catia_python
90
12777402
<reponame>evereux/catia_python<filename>pycatia/knowledge_interfaces/relations.py #! usr/bin/python3.6 """ Module initially auto generated using V5Automation files from CATIA V5 R28 on 2020-06-11 12:40:47.360445 .. warning:: The notes denoted "CAA V5 Visual Basic Help" are to be used as reference only. They are there as a guide as to how the visual basic / catscript functions work and thus help debugging in pycatia. """ from typing import Iterator from pathlib import Path from pycatia.exception_handling.exceptions import CATIAApplicationException from pycatia.knowledge_interfaces.check import Check from pycatia.knowledge_interfaces.design_table import DesignTable from pycatia.knowledge_interfaces.formula import Formula from pycatia.knowledge_interfaces.law import Law from pycatia.knowledge_interfaces.optimizations import Optimizations from pycatia.knowledge_interfaces.relation import Relation from pycatia.knowledge_interfaces.rule import Rule from pycatia.knowledge_interfaces.set_of_equation import SetOfEquation from pycatia.system_interfaces.any_object import AnyObject from pycatia.system_interfaces.collection import Collection from pycatia.types.general import cat_variant class Relations(Collection): """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | System.IUnknown | System.IDispatch | System.CATBaseUnknown | System.CATBaseDispatch | System.Collection | Relations | | Represents the collection of relations of the part or the | product. | | A relation computes values. A relation can belong to one of the following | types: | | Formula | It combines parameters to compute the value of one output parameter only. | For example, the mass of a cuboid can be the output parameter of a formula, | while the value is computed using the following | parameters: | | | FormulaBody = (height*width*depth)*density | | | Program | It combines conditions and actions on parameters to compute one or several | output parameter values. For example, the following is a | program: | | ProgramBody = if (mass>2kg) { depth=2mm length=10mm } else { depth=1mm length=5mm } | | | Check | It only contains conditions on parameter values. For example, the following | is a check: | | CheckBody = mass<10kg | | | The parameters should be defined previously. | | The following example shows how to retrieve the collection of relations from a | newly created part document: | | Dim CATDocs As Documents | Set CATDocs = CATIA.Documents | Dim part As Document | Set part = CATDocs.Add("CATPart") | Dim relations As Relations | Set relations = part.Relations | | | See also: | Formula, Rule, Check, DesignTable """ def __init__(self, com_object): super().__init__(com_object, child_object=Relation) self.relations = com_object @property def optimizations(self) -> Optimizations: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445) | o Property Optimizations() As Optimizations (Read Only) | | Returns the optimization collection. | It can be empty if no optimization is defined in the | document. | This property is available only when the Product Engineering Optimizer | license is available. :return: Optimizations :rtype: Optimizations """ return Optimizations(self.relations.Optimizations) def create_check(self, i_name: str, i_comment: str, i_check_body: str) -> Check: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateCheck(CATBSTR iName, | CATBSTR iComment, | CATBSTR iCheckBody) As Check | | Creates a check relation and adds it to the part's collection of | relations. | | Parameters: | | iName | The check name | iComment | A description of the check | iCheckBody | The check definition | | Returns: | The created check | Example: | This example creates the maximummass check relation and adds it to the | newly created part: | | Dim CATDocs As Documents | Set CATDocs = CATIA.Documents | Dim partdoc As Document | Set partdoc = CATDocs.Add("CATPart") | Dim part As Part | Set part = partdoc.Part | Dim massCheck As Check | Set massCheck = part.Relations.CreateCheck | ("maximummass", | "Ensures that the mass is less than 10 | kg", | "mass<10kg") :param str i_name: :param str i_comment: :param str i_check_body: :return: Check :rtype: Check """ return Check(self.relations.CreateCheck(i_name, i_comment, i_check_body)) def create_design_table(self, i_name: str, i_comment: str, i_copy_mode: bool, i_sheet_path: Path) -> DesignTable: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateDesignTable(CATBSTR iName, | CATBSTR iComment, | boolean iCopyMode, | CATBSTR iSheetPath) As DesignTable | | Creates a design table based on a file organized in an vertical way and | adds it to the part's collection of relations. | | Parameters: | | iName | The design table name | iComment | A description of the design table | iCopyMode | | Returns: | The created design table | Example: | This example creates the dt design table and adds it to the newly | created part: | | Dim CATDocs As Documents | Set CATDocs = CATIA.Documents | Dim partdoc As Document | Set partdoc = CATDocs.Add("CATPart") | Dim part As Part | Set part = partdoc.Part | Dim designtable As DesignTable | Set designtable = part.Relations.CreateDesignTable | ("dt", | "Ensures that the mass is less than 10 | kg", | TRUE, | | "/u/users/client/data/sheet.txt") :param str i_name: :param str i_comment: :param bool i_copy_mode: :param Path i_sheet_path: :return: DesignTable :rtype: DesignTable """ if not i_sheet_path.exists(): raise CATIAApplicationException(f'Could not find design table "{i_sheet_path}".') return DesignTable(self.relations.CreateDesignTable(i_name, i_comment, i_copy_mode, i_sheet_path)) def create_formula(self, i_name, i_comment, i_output_parameter, i_formula_body): """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateFormula(CATBSTR iName, | CATBSTR iComment, | Parameter iOutputParameter, | CATBSTR iFormulaBody) As Formula | | Creates a formula relation and adds it to the part's collection of | relations. | | Parameters: | | iName | The formula name | iComment | A description of the formula | iOutputParameter | The parameter which stores the result of the formula | | iFormulaBody | The formula definition | | Returns: | The created formula | Example: | This example creates the computemass formula relation and adds it to | the newly created part: | | Dim CATDocs As Documents | Set CATDocs = CATIA.Documents | Dim partdoc As Document | Set partdoc = CATDocs.Add("CATPart") | Dim part As Part | Set part = partdoc.Part | Dim massFormula As Formula | Set massFormula = part.Relations.CreateFormula | ("computemass", | "Computes the cuboid mass", | mass, | "(height*width*depth)*density") :param str i_name: :param str i_comment: :param Parameter i_output_parameter: :param str i_formula_body: :return: Formula :rtype: Formula """ return Formula(self.relations.CreateFormula(i_name, i_comment, i_output_parameter.com_object, i_formula_body)) def create_horizontal_design_table(self, i_name: str, i_comment: str, i_copy_mode: bool, i_sheet_path: str) -> DesignTable: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateHorizontalDesignTable(CATBSTR iName, | CATBSTR iComment, | boolean iCopyMode, | CATBSTR iSheetPath) As DesignTable | | Creates a design table based on a file organized in an horizontal way and | adds it to the part's collection of relations. | | Parameters: | | iName | The design table name | iComment | A description of the design table | iCopyMode | | Returns: | The created design table | Example: | This example creates the dt design table and adds it to the newly | created part: | | Dim CATDocs As Documents | Set CATDocs = CATIA.Documents | Dim partdoc As Document | Set partdoc = CATDocs.Add("CATPart") | Dim part As Part | Set part = partdoc.Part | Dim designtable As DesignTable | Set designtable = part.Relations.CreateHorizontalDesignTable | ("dt", | "Ensures that the mass is less than 10 | kg", | TRUE, | "/u/users/client/data/horizontalsheet.txt") :param str i_name: :param str i_comment: :param bool i_copy_mode: :param str i_sheet_path: :return: DesignTable :rtype: DesignTable """ return DesignTable(self.relations.CreateHorizontalDesignTable(i_name, i_comment, i_copy_mode, i_sheet_path)) def create_law(self, i_name: str, i_comment: str, i_law_body: str) -> Law: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateLaw(CATBSTR iName, | CATBSTR iComment, | CATBSTR iLawBody) As Law | | Creates a law relation and adds it to the part's collection of | relations. | | Parameters: | | iName | The law name | iComment | A description of the law | iLawBody | The law definition | | Returns: | The created law :param str i_name: :param str i_comment: :param str i_law_body: :return: Law :rtype: Law """ return Law(self.relations.CreateLaw(i_name, i_comment, i_law_body)) def create_program(self, i_name: str, i_comment: str, i_program_body: str) -> Rule: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateProgram(CATBSTR iName, | CATBSTR iComment, | CATBSTR iProgramBody) As Rule | | Creates a program relation and adds it to the part's collection of | relations. | | Parameters: | | iName | The program name | iComment | A description of the program | iProgramBody | The program definition | | Returns: | The created program | Example: | This example creates the selectdepth program relation and adds it to | the newly created part: | | Dim CATDocs As Documents | Set CATDocs = CATIA.Documents | Dim partdoc As Document | Set partdoc = CATDocs.Add("CATPart") | Dim part As Part | Set part = partdoc.Part | Dim depthProgram As Program | Set depthProgram = part.Relations.CreateProgram | ("selectdepth", | "Select depth with respect to | mass", | "if (mass>2kg) { depth=2mm } else { depth=1 mm | }") :param str i_name: :param str i_comment: :param str i_program_body: :return: Rule :rtype: Rule """ return Rule(self.relations.CreateProgram(i_name, i_comment, i_program_body)) def create_rule_base(self, i_name: str) -> Relation: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateRuleBase(CATBSTR iName) As Relation | | Creates a rulebase. | | Parameters: | | iName | The name of the rulebase. | | Returns: | The created rulebase. | See also: | ExpertRuleBase :param str i_name: :return: Relation :rtype: Relation """ return Relation(self.relations.CreateRuleBase(i_name)) def create_set_of_equations(self, i_name: str, i_comment: str, i_formula_body: str) -> SetOfEquation: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func CreateSetOfEquations(CATBSTR iName, | CATBSTR iComment, | CATBSTR iFormulaBody) As SetOfEquation | | Creates a set of equations. | | Parameters: | | iName | The name of the set of equation. | iComment | The comment of the set of equation. | iFormulaBody | The body of the set of equation " a==b+4; c ≤ 90". | | | Returns: | The created set of equations :param str i_name: :param str i_comment: :param str i_formula_body: :return: SetOfEquation :rtype: SetOfEquation """ return SetOfEquation(self.relations.CreateSetOfEquations(i_name, i_comment, i_formula_body)) def create_set_of_relations(self, i_parent: AnyObject) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Sub CreateSetOfRelations(AnyObject iParent) | | Creates a set of relations and appends it to a parent | object. | | Parameters: | | iParent | The object to which the set is appended :param AnyObject i_parent: :return: None :rtype: None """ return self.relations.CreateSetOfRelations(i_parent.com_object) def generate_xml_report_for_checks(self, i_name: str) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Sub GenerateXMLReportForChecks(CATBSTR iName) | | Generates an XML Report on all checks in the current | document. | | Parameters: | | iName | The name of the XML file :param str i_name: :return: None :rtype: None """ return self.relations.GenerateXMLReportForChecks(i_name) def item(self, i_index: cat_variant) -> Relation: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func Item(CATVariant iIndex) As Relation | | Retrieves a relation using its index or its name from the Relations | collection. | | Parameters: | | iIndex | The index or the name of the relation to retrieve from the | collection of relations. As a numerics, this index is the rank of the relation | in the collection. The index of the first relation in the collection is 1, and | the index of the last relation is Count. As a string, it is the name you | assigned to the relation using the | | AnyObject.Name property or when creating the relation. | | Returns: | The retrieved relation | Example: | This example retrieves the last relation in the relations | collection. | | Dim lastRelation As Relation | Set lastRelation = relations.Item(relations.Count) :param cat_variant i_index: :return: Relation :rtype: Relation """ return Relation(self.relations.Item(i_index)) def remove(self, i_index: cat_variant) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Sub Remove(CATVariant iIndex) | | Removes a relation from the Relations collection. | | Parameters: | | iIndex | The index or the name of the relation to remove from the collection | of relations. As a numerics, this index is the rank of the relation in the | collection. The index of the first relation in the collection is 1, and the | index of the last relation is Count. As a string, it is the name you assigned | to the relation using the | | AnyObject.Name property or when creating the relation. | | | Example: | This example removes the relation named density from the relations | collection. | | relations.Remove("density") :param cat_variant i_index: :return: None :rtype: None """ return self.relations.Remove(i_index) def sub_list(self, i_feature: AnyObject, i_recursively: bool) -> 'Relations': """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-06-11 12:40:47.360445)) | o Func SubList(AnyObject iFeature, | boolean iRecursively) As Relations | | Returns a sub-collection of relations aggregated to an | object. | | Parameters: | | iFeature | The object used to filter the the whole relation collection to get | the resulting sub-collection. | iRecursively | A flag to specify if children parameters are to be searched for in | the returned collection | | Returns: | The resulting sub-collection | Example: | This example shows how to get a collection of relations that are under | a Pad | | Dim Relations1 As Relations | Set Relations1 = CATIA.ActiveDocument.Part.Relations' gets the collection of relations in the | part | Dim Body0 As AnyObject | Set Body0 = CATIA.ActiveDocument.Part.Bodies.Item ( "MechanicalTool.1" ) | Dim Pad1 As AnyObject | Set Pad1 = Body0.Shapes.Item ( "Pad.1" ) ' gets the pad Pad.1 | Dim Relations2 As Relations | Set Relations2 = Relations1.SubList(Pad1, TRUE) ' gets the collection of relations that are | under the pad Pad.1 :param AnyObject i_feature: :param bool i_recursively: :return: Relations :rtype: Relations """ return Relations(self.relations.SubList(i_feature.com_object, i_recursively)) def __getitem__(self, n: int) -> Relation: if (n + 1) > self.count: raise StopIteration return Relation(self.relations.item(n + 1)) def __iter__(self) -> Iterator[Relation]: for i in range(self.count): yield self.child_object(self.com_object.item(i + 1)) def __repr__(self): return f'Relations(name="{self.name}")'
1.929688
2
src/semantic_parsing_with_constrained_lm/configs/qdmr_break_emnlp_camera_ready.py
microsoft/semantic_parsing_with_constrained_lm
17
12777403
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """This config file is for running experiments needed for the EMNLP camera ready. It will generate the following experiments (depending on the value of eval_split and model): - 100 dev examples - GPT-3 Constrained Canonical, n = 1000 - GPT-3 Constrained Canonical, n = 100 - GPT-3 Constrained Canonical, n = 25 - GPT-3 Constrained Canonical, n = 200 - GPT-3 Constrained Meaning, n = 200 - GPT-3 Unconstrained Canonical, n = 200 - GPT-3 Unconstrained Meaning, n = 200 - All dev examples - GPT-3 Constrained Meaning, n = 200 - BART Constrained Canonical - BART Constrained Meaning - BART Unconstrained Canonical - BART Unconstrained Meaning - GPT-2 Constrained Canonical - GPT-2 Constrained Meaning - GPT-2 Unconstrained Canonical - GPT-2 Unconstrained Meaning """ from typing import Any, Callable, Dict import torch from typing_extensions import Literal from semantic_parsing_with_constrained_lm.configs.lib.common import PromptOrder, make_semantic_parser from semantic_parsing_with_constrained_lm.datum import Datum from semantic_parsing_with_constrained_lm.domains.qdmr_break import ( BreakDataType, BreakDatum, BreakMetrics, BreakPieces, BreakSamplingType, ) from semantic_parsing_with_constrained_lm.fit_max_steps import compute_and_print_fit from semantic_parsing_with_constrained_lm.lm import TRAINED_MODEL_DIR, AutoregressiveModel, ClientType from semantic_parsing_with_constrained_lm.lm_bart import Seq2SeqBart from semantic_parsing_with_constrained_lm.lm_openai_gpt3 import IncrementalOpenAIGPT3 from semantic_parsing_with_constrained_lm.run_exp import EvalSplit, Experiment from semantic_parsing_with_constrained_lm.search import PartialParse, StartsWithSpacePartialParse def build_config( log_dir, # pylint: disable=unused-argument eval_split: EvalSplit, model: ClientType, rank: int, **kwargs: Any, # pylint: disable=unused-argument ) -> Dict[str, Callable[[], Experiment]]: BEAM_SIZE = 10 DEV_SUBSET_SIZE = 100 MAX_STEPS_FOR_COMPLETION = 145 use_gpt3 = model == ClientType.GPT3 def create_exp( problem_type: Literal[ "constrained", "unconstrained-beam", "unconstrained-greedy" ], output_type: BreakDataType, train_size: int, exp_name: str, ): lm: AutoregressiveModel if model == ClientType.GPT3: lm = IncrementalOpenAIGPT3() elif model == ClientType.BART: lm = Seq2SeqBart( # Part after / is set to match lm_finetune.py f"{TRAINED_MODEL_DIR}/20000/break_{output_type}/", device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"), ) else: raise ValueError(model) piece = BreakPieces.build( tokenizer=lm.tokenizer, data_type=output_type, train_sampling_type=BreakSamplingType.proportional, test_sampling_type=BreakSamplingType.random, train_total=train_size, test_total=DEV_SUBSET_SIZE, seed=0, ) train_data = piece.train_data test_data = piece.test_data if eval_split == EvalSplit.TrainSubset: piece = BreakPieces.build( tokenizer=lm.tokenizer, data_type=output_type, train_sampling_type=BreakSamplingType.proportional, test_sampling_type=BreakSamplingType.random, train_total=100000, test_total=1, seed=0, ) test_data = piece.train_data[-100:] elif eval_split == EvalSplit.DevFull: piece = BreakPieces.build( tokenizer=lm.tokenizer, data_type=output_type, train_sampling_type=BreakSamplingType.proportional, test_sampling_type=BreakSamplingType.random, train_total=train_size, test_total=1000000, seed=0, skip_if_needed=False, ) test_data = piece.test_data elif eval_split == EvalSplit.DevSubset: # train_data and test_data were already set outside of this if block pass else: raise ValueError(f"{eval_split} not supported currently") partial_parse_builder: Callable[[BreakDatum], PartialParse] if problem_type == "constrained": partial_parse_builder = piece.partial_parse_builder # type: ignore beam_size = BEAM_SIZE elif problem_type.startswith("unconstrained"): # TODO: Only impose this if we are using a GPT-2-style tokenizer partial_parse = StartsWithSpacePartialParse(lm.tokenizer) partial_parse_builder = lambda _: partial_parse if problem_type == "unconstrained-beam": beam_size = BEAM_SIZE elif problem_type == "unconstrained-greedy": beam_size = 1 else: raise ValueError(problem_type) else: raise ValueError(f"{problem_type} not allowed") # Compute max_steps_fn pairs = [] for d in train_data: num_input_tokens = len(lm.tokenizer.tokenize(d.natural)) num_output_tokens = len(lm.tokenizer.tokenize(d.canonical)) + 1 pairs.append((num_input_tokens, num_output_tokens)) max_steps_intercept, max_steps_slope = compute_and_print_fit(pairs, 10, 3) def max_steps_fn(datum: Datum) -> int: return min( int( len(lm.tokenizer.tokenize(datum.natural)) * max_steps_slope + max_steps_intercept ), MAX_STEPS_FOR_COMPLETION, ) parser = make_semantic_parser( train_data, lm, use_gpt3, MAX_STEPS_FOR_COMPLETION, beam_size, partial_parse_builder, max_steps_fn, PromptOrder.BestLast, ) return Experiment( # type: ignore model=parser, metrics={ "break_metrics": BreakMetrics( log_dir=log_dir / exp_name / str(rank), data_type=piece.data_type, num_results=BEAM_SIZE, ), }, test_data=test_data, client=lm, ) def add_exp_to_dict( exps_dict: Dict[str, Callable[[], Experiment]], problem_type: Literal[ "constrained", "unconstrained-beam", "unconstrained-greedy" ], output_type: BreakDataType, train_size: int, ): exp_name = ( f"break_{model}_{eval_split}_{problem_type}_{output_type}_train{train_size}" ) exps_dict[exp_name] = lambda: create_exp( problem_type, output_type, train_size, exp_name ) result: Dict[str, Callable[[], Experiment]] = {} if eval_split == EvalSplit.DevFull: if use_gpt3: # - GPT-3 Constrained Meaning, n = 200 add_exp_to_dict(result, "constrained", BreakDataType.nested, train_size=200) else: # - BART Constrained Canonical # - BART Constrained Meaning # - BART Unconstrained Canonical # - BART Unconstrained Meaning # - GPT-2 Constrained Canonical # - GPT-2 Constrained Meaning # - GPT-2 Unconstrained Canonical # - GPT-2 Unconstrained Meaning add_exp_to_dict(result, "constrained", BreakDataType.nested, train_size=200) add_exp_to_dict(result, "constrained", BreakDataType.qdmr, train_size=200) add_exp_to_dict( result, "unconstrained-greedy", BreakDataType.nested, train_size=200 ) add_exp_to_dict( result, "unconstrained-greedy", BreakDataType.qdmr, train_size=200 ) elif eval_split == EvalSplit.DevSubset: if use_gpt3: # - GPT-3 Constrained Canonical, n = 1000 # - GPT-3 Constrained Canonical, n = 100 # - GPT-3 Constrained Canonical, n = 25 add_exp_to_dict( result, "constrained", BreakDataType.nested, train_size=1000 ) add_exp_to_dict(result, "constrained", BreakDataType.nested, train_size=100) add_exp_to_dict(result, "constrained", BreakDataType.nested, train_size=25) # - GPT-3 Constrained Canonical, n = 200 # - GPT-3 Constrained Meaning, n = 200 # - GPT-3 Unconstrained Canonical, n = 200 # - GPT-3 Unconstrained Meaning, n = 200 add_exp_to_dict(result, "constrained", BreakDataType.nested, train_size=200) add_exp_to_dict(result, "constrained", BreakDataType.qdmr, train_size=200) add_exp_to_dict( result, "unconstrained-greedy", BreakDataType.nested, train_size=200 ) add_exp_to_dict( result, "unconstrained-greedy", BreakDataType.qdmr, train_size=200 ) else: # No subset experiments for BART and GPT-2 pass elif eval_split == EvalSplit.TrainSubset: add_exp_to_dict(result, "constrained", BreakDataType.nested, train_size=200) add_exp_to_dict(result, "constrained", BreakDataType.qdmr, train_size=200) add_exp_to_dict( result, "unconstrained-greedy", BreakDataType.nested, train_size=200 ) add_exp_to_dict( result, "unconstrained-greedy", BreakDataType.qdmr, train_size=200 ) return result
1.929688
2
egret/model_library/transmission/bus.py
breldridge/Egret
0
12777404
# ___________________________________________________________________________ # # EGRET: Electrical Grid Research and Engineering Tools # Copyright 2019 National Technology & Engineering Solutions of Sandia, LLC # (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. # Government retains certain rights in this software. # This software is distributed under the Revised BSD License. # ___________________________________________________________________________ """ This module contains the declarations for the modeling components typically used for buses (including loads and shunts) """ import pyomo.environ as pe import egret.model_library.decl as decl from pyomo.core.util import quicksum from pyomo.core.expr.numeric_expr import LinearExpression from egret.model_library.defn import FlowType, CoordinateType, ApproximationType from math import tan, radians def declare_var_vr(model, index_set, **kwargs): """ Create variable for the real component of the voltage at a bus """ decl.declare_var('vr', model=model, index_set=index_set, **kwargs) def declare_var_vj(model, index_set, **kwargs): """ Create variable for the imaginary component of the voltage at a bus """ decl.declare_var('vj', model=model, index_set=index_set, **kwargs) def declare_var_vm(model, index_set, **kwargs): """ Create variable for the voltage magnitude of the voltage at a bus """ decl.declare_var('vm', model=model, index_set=index_set, **kwargs) def declare_var_va(model, index_set, **kwargs): """ Create variable for the phase angle of the voltage at a bus """ decl.declare_var('va', model=model, index_set=index_set, **kwargs) def declare_expr_vmsq(model, index_set, coordinate_type=CoordinateType.POLAR): """ Create an expression for the voltage magnitude squared at a bus """ m = model expr_set = decl.declare_set('_expr_vmsq', model, index_set) m.vmsq = pe.Expression(expr_set) if coordinate_type == CoordinateType.RECTANGULAR: for bus in expr_set: m.vmsq[bus] = m.vr[bus] ** 2 + m.vj[bus] ** 2 elif coordinate_type == CoordinateType.POLAR: for bus in expr_set: m.vmsq[bus] = m.vm[bus] ** 2 def declare_var_vmsq(model, index_set, **kwargs): """ Create auxiliary variable for the voltage magnitude squared at a bus """ decl.declare_var('vmsq', model=model, index_set=index_set, **kwargs) def declare_eq_vmsq(model, index_set, coordinate_type=CoordinateType.POLAR): """ Create a constraint relating vmsq to the voltages """ m = model con_set = decl.declare_set('_con_eq_vmsq', model, index_set) m.eq_vmsq = pe.Constraint(con_set) if coordinate_type == CoordinateType.POLAR: for bus in con_set: m.eq_vmsq[bus] = m.vmsq[bus] == m.vm[bus] ** 2 elif coordinate_type == CoordinateType.RECTANGULAR: for bus in con_set: m.eq_vmsq[bus] = m.vmsq[bus] == m.vr[bus]**2 + m.vj[bus]**2 else: raise ValueError('unexpected coordinate_type: {0}'.format(str(coordinate_type))) def declare_var_ir_aggregation_at_bus(model, index_set, **kwargs): """ Create a variable for the aggregated real current at a bus """ decl.declare_var('ir_aggregation_at_bus', model=model, index_set=index_set, **kwargs) def declare_var_ij_aggregation_at_bus(model, index_set, **kwargs): """ Create a variable for the aggregated imaginary current at a bus """ decl.declare_var('ij_aggregation_at_bus', model=model, index_set=index_set, **kwargs) def declare_var_pl(model, index_set, **kwargs): """ Create variable for the real power load at a bus """ decl.declare_var('pl', model=model, index_set=index_set, **kwargs) def declare_var_ql(model, index_set, **kwargs): """ Create variable for the reactive power load at a bus """ decl.declare_var('ql', model=model, index_set=index_set, **kwargs) def declare_var_p_nw(model, index_set, **kwargs): """ Create variable for the net real power withdrawals at a bus """ decl.declare_var('p_nw', model=model, index_set=index_set, **kwargs) def declare_var_q_nw(model, index_set, **kwargs): """ Create variable for the net reactive power withdrawals at a bus """ decl.declare_var('q_nw', model=model, index_set=index_set, **kwargs) def declare_expr_shunt_power_at_bus(model, index_set, shunt_attrs, coordinate_type=CoordinateType.POLAR): """ Create the expression for the shunt power at the bus """ m = model expr_set = decl.declare_set('_expr_shunt_at_bus_set', model, index_set) m.shunt_p = pe.Expression(expr_set, initialize=0.0) m.shunt_q = pe.Expression(expr_set, initialize=0.0) if coordinate_type == CoordinateType.POLAR: for bus_name in expr_set: if bus_name in shunt_attrs['bus']: vmsq = m.vm[bus_name]**2 m.shunt_p[bus_name] = shunt_attrs['gs'][bus_name]*vmsq m.shunt_q[bus_name] = -shunt_attrs['bs'][bus_name]*vmsq elif coordinate_type == CoordinateType.RECTANGULAR: for bus_name in expr_set: if bus_name in shunt_attrs['bus']: vmsq = m.vr[bus_name]**2 + m.vj[bus_name]**2 m.shunt_p[bus_name] = shunt_attrs['gs'][bus_name]*vmsq m.shunt_q[bus_name] = -shunt_attrs['bs'][bus_name]*vmsq def _get_dc_dicts(dc_inlet_branches_by_bus, dc_outlet_branches_by_bus, con_set): if dc_inlet_branches_by_bus is None: assert dc_outlet_branches_by_bus is None dc_inlet_branches_by_bus = {bn:() for bn in con_set} if dc_outlet_branches_by_bus is None: dc_outlet_branches_by_bus = dc_inlet_branches_by_bus return dc_inlet_branches_by_bus, dc_outlet_branches_by_bus def declare_expr_p_net_withdraw_at_bus(model, index_set, bus_p_loads, gens_by_bus, bus_gs_fixed_shunts, dc_inlet_branches_by_bus=None, dc_outlet_branches_by_bus=None, vm_by_bus=None, **kwargs): """ Create a named pyomo expression for bus net withdraw """ m = model decl.declare_expr('p_nw', model, index_set) dc_inlet_branches_by_bus, dc_outlet_branches_by_bus = _get_dc_dicts(dc_inlet_branches_by_bus, dc_outlet_branches_by_bus, index_set) if kwargs and vm_by_bus is not None: for idx,val in kwargs.items(): if idx=='linearize_shunts' and val==True: for b in index_set: m.p_nw[b] = ( bus_gs_fixed_shunts[b] * (2 * vm_by_bus[b] * m.vm[b] - vm_by_bus[b] ** 2) + (m.pl[b] if bus_p_loads[b] != 0.0 else 0.0) - sum(m.pg[g] for g in gens_by_bus[b]) + sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[b]) - sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[b]) ) return if idx=='linearize_shunts' and val==False: for b in index_set: m.p_nw[b] = ( bus_gs_fixed_shunts[b] * vm_by_bus[b] ** 2 + (m.pl[b] if bus_p_loads[b] != 0.0 else 0.0) - sum(m.pg[g] for g in gens_by_bus[b]) + sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[b]) - sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[b]) ) return for b in index_set: m.p_nw[b] = ( bus_gs_fixed_shunts[b] + ( m.pl[b] if bus_p_loads[b] != 0.0 else 0.0 ) - sum( m.pg[g] for g in gens_by_bus[b] ) + sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[b]) - sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[b]) ) def declare_eq_p_net_withdraw_at_bus(model, index_set, bus_p_loads, gens_by_bus, bus_gs_fixed_shunts, dc_inlet_branches_by_bus=None, dc_outlet_branches_by_bus=None, vm_by_bus=None, **kwargs): """ Create a named pyomo constraint for bus net withdraw """ m = model con_set = decl.declare_set('_con_eq_p_net_withdraw_at_bus', model, index_set) dc_inlet_branches_by_bus, dc_outlet_branches_by_bus = _get_dc_dicts(dc_inlet_branches_by_bus, dc_outlet_branches_by_bus, index_set) m.eq_p_net_withdraw_at_bus = pe.Constraint(con_set) constr = m.eq_p_net_withdraw_at_bus if kwargs and vm_by_bus is not None: for idx,val in kwargs.items(): if idx=='linearize_shunts' and val==True: for b in index_set: constr[b] = m.p_nw[b] == ( bus_gs_fixed_shunts[b] * (2 * vm_by_bus[b] * m.vm[b] - vm_by_bus[b] ** 2) + (m.pl[b] if bus_p_loads[b] != 0.0 else 0.0) - sum(m.pg[g] for g in gens_by_bus[b]) + sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[b]) - sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[b]) ) return if idx=='linearize_shunts' and val==False: for b in index_set: constr[b] = m.p_nw[b] == ( bus_gs_fixed_shunts[b] * vm_by_bus[b] ** 2 + (m.pl[b] if bus_p_loads[b] != 0.0 else 0.0) - sum(m.pg[g] for g in gens_by_bus[b]) + sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[b]) - sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[b]) ) return else: for b in index_set: constr[b] = m.p_nw[b] == ( bus_gs_fixed_shunts[b] + ( m.pl[b] if bus_p_loads[b] != 0.0 else 0.0 ) - sum( m.pg[g] for g in gens_by_bus[b] ) + sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[b]) - sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[b]) ) def declare_expr_q_net_withdraw_at_bus(model, index_set, bus_q_loads, gens_by_bus, bus_bs_fixed_shunts, vm_by_bus=None, **kwargs): """ Create a named pyomo expression for bus net withdraw """ m = model decl.declare_expr('q_nw', model, index_set) if kwargs and vm_by_bus is not None: for idx,val in kwargs.items(): if idx=='linearize_shunts' and val==True: for b in index_set: m.q_nw[b] = (-bus_bs_fixed_shunts[b] * (2 * vm_by_bus[b] * m.vm[b] - vm_by_bus[b] ** 2) + (m.ql[b] if bus_q_loads[b] != 0.0 else 0.0) - sum(m.qg[g] for g in gens_by_bus[b]) ) return if idx=='linearize_shunts' and val==False: for b in index_set: m.q_nw[b] = (-bus_bs_fixed_shunts[b] * vm_by_bus[b] ** 2 + (m.ql[b] if bus_q_loads[b] != 0.0 else 0.0) - sum(m.qg[g] for g in gens_by_bus[b]) ) return for b in index_set: m.q_nw[b] = (-bus_bs_fixed_shunts[b] + ( m.ql[b] if bus_q_loads[b] != 0.0 else 0.0 ) - sum( m.qg[g] for g in gens_by_bus[b] ) ) def declare_eq_q_net_withdraw_at_bus(model, index_set, bus_q_loads, gens_by_bus, bus_bs_fixed_shunts, vm_by_bus=None, **kwargs): """ Create a named pyomo constraint for bus net withdraw """ m = model con_set = decl.declare_set('_con_eq_q_net_withdraw_at_bus', model, index_set) m.eq_q_net_withdraw_at_bus = pe.Constraint(con_set) constr = m.eq_q_net_withdraw_at_bus if kwargs and vm_by_bus is not None: for idx,val in kwargs.items(): if idx=='linearize_shunts' and val==True: for b in index_set: constr[b] = m.q_nw[b] == (-bus_bs_fixed_shunts[b] * (2 * vm_by_bus[b] * m.vm[b] - vm_by_bus[b] ** 2) + (m.ql[b] if bus_q_loads[b] != 0.0 else 0.0) - sum(m.qg[g] for g in gens_by_bus[b]) ) return if idx=='linearize_shunts' and val==False: for b in index_set: constr[b] = m.q_nw[b] == (-bus_bs_fixed_shunts[b] * vm_by_bus[b] ** 2 + (m.ql[b] if bus_q_loads[b] != 0.0 else 0.0) - sum(m.qg[g] for g in gens_by_bus[b]) ) return for b in index_set: constr[b] = m.q_nw[b] == (-bus_bs_fixed_shunts[b] + ( m.ql[b] if bus_q_loads[b] != 0.0 else 0.0 ) - sum( m.qg[g] for g in gens_by_bus[b] ) ) def declare_eq_ref_bus_nonzero(model, ref_angle, ref_bus): """ Create an equality constraint to enforce tan(\theta) = vj/vr at the reference bus """ m = model m.eq_ref_bus_nonzero = pe.Constraint(expr = tan(radians(ref_angle)) * m.vr[ref_bus] == m.vj[ref_bus]) def declare_eq_i_aggregation_at_bus(model, index_set, bus_bs_fixed_shunts, bus_gs_fixed_shunts, inlet_branches_by_bus, outlet_branches_by_bus): """ Create the equality constraints for the aggregated real and imaginary currents at the bus """ m = model con_set = decl.declare_set('_con_eq_i_aggregation_at_bus_set', model, index_set) m.eq_ir_aggregation_at_bus = pe.Constraint(con_set) m.eq_ij_aggregation_at_bus = pe.Constraint(con_set) for bus_name in con_set: ir_expr = sum([m.ifr[branch_name] for branch_name in outlet_branches_by_bus[bus_name]]) ir_expr += sum([m.itr[branch_name] for branch_name in inlet_branches_by_bus[bus_name]]) ij_expr = sum([m.ifj[branch_name] for branch_name in outlet_branches_by_bus[bus_name]]) ij_expr += sum([m.itj[branch_name] for branch_name in inlet_branches_by_bus[bus_name]]) if bus_bs_fixed_shunts[bus_name] != 0.0: ir_expr -= bus_bs_fixed_shunts[bus_name] * m.vj[bus_name] ij_expr += bus_bs_fixed_shunts[bus_name] * m.vr[bus_name] if bus_gs_fixed_shunts[bus_name] != 0.0: ir_expr += bus_gs_fixed_shunts[bus_name] * m.vr[bus_name] ij_expr += bus_gs_fixed_shunts[bus_name] * m.vj[bus_name] ir_expr -= m.ir_aggregation_at_bus[bus_name] ij_expr -= m.ij_aggregation_at_bus[bus_name] m.eq_ir_aggregation_at_bus[bus_name] = ir_expr == 0 m.eq_ij_aggregation_at_bus[bus_name] = ij_expr == 0 def declare_eq_p_balance_ed(model, index_set, bus_p_loads, gens_by_bus, bus_gs_fixed_shunts, **rhs_kwargs): """ Create the equality constraints for the system-wide real power balance. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model p_expr = sum(m.pg[gen_name] for bus_name in index_set for gen_name in gens_by_bus[bus_name]) p_expr -= sum(m.pl[bus_name] for bus_name in index_set if bus_p_loads[bus_name] is not None) p_expr -= sum(bus_gs_fixed_shunts[bus_name] for bus_name in index_set if bus_gs_fixed_shunts[bus_name] != 0.0) relaxed_balance = False if rhs_kwargs: for idx, val in rhs_kwargs.items(): if idx == 'include_feasibility_load_shed': p_expr += eval("m." + val) if idx == 'include_feasibility_over_generation': p_expr -= eval("m." + val) if idx == 'include_losses': p_expr -= sum(m.pfl[branch_name] for branch_name in val) if idx == 'relax_balance': relaxed_balance = True if relaxed_balance: m.eq_p_balance = pe.Constraint(expr=p_expr >= 0.0) else: m.eq_p_balance = pe.Constraint(expr=p_expr == 0.0) def declare_eq_p_balance_lopf(model, index_set, bus_p_loads, gens_by_bus, bus_gs_fixed_shunts, vm_by_bus, **rhs_kwargs): """ Create the equality constraints for the system-wide real power balance. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model p_expr = sum(m.pg[gen_name] for bus_name in index_set for gen_name in gens_by_bus[bus_name]) p_expr -= sum(m.pl[bus_name] for bus_name in index_set if bus_p_loads[bus_name] is not None) relaxed_balance = False if rhs_kwargs: for idx,val in rhs_kwargs.items(): if idx == 'include_feasibility_load_shed': p_expr += eval("m." + val) if idx == 'include_feasibility_over_generation': p_expr -= eval("m." + val) if idx == 'include_branch_losses': pass # branch losses are added to the constraint after updating pfl constraints if idx == 'include_system_losses': p_expr -= m.ploss if idx == 'relax_balance': relaxed_balance = True if idx == 'linearize_shunts': if val == True: p_expr -= sum( bus_gs_fixed_shunts[b] * (2 * vm_by_bus[b] * m.vm[b] - vm_by_bus[b] ** 2) \ for b in index_set if bus_gs_fixed_shunts[b] != 0.0) elif val == False: p_expr -= sum( bus_gs_fixed_shunts[b] * vm_by_bus[b] ** 2 \ for b in index_set if bus_gs_fixed_shunts[b] != 0.0) else: raise Exception('linearize_shunts option is invalid.') if relaxed_balance: m.eq_p_balance = pe.Constraint(expr = p_expr >= 0.0) else: m.eq_p_balance = pe.Constraint(expr = p_expr == 0.0) def declare_eq_q_balance_lopf(model, index_set, bus_q_loads, gens_by_bus, bus_bs_fixed_shunts, vm_by_bus, **rhs_kwargs): """ Create the equality constraints for the system-wide real power balance. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model q_expr = sum(m.qg[gen_name] for bus_name in index_set for gen_name in gens_by_bus[bus_name]) q_expr -= sum(m.ql[bus_name] for bus_name in index_set if bus_q_loads[bus_name] is not None) relaxed_balance = False if rhs_kwargs: for idx,val in rhs_kwargs.items(): if idx == 'include_reactive_load_shed': q_expr += eval("m." + val) if idx == 'include_reactive_over_generation': q_expr -= eval("m." + val) if idx == 'include_branch_losses': pass # branch losses are added to the constraint after updating qfl constraints if idx == 'include_system_losses': q_expr -= m.qloss if idx == 'relax_balance': relaxed_balance = True if idx == 'linearize_shunts': if val == True: q_expr -= sum( bus_bs_fixed_shunts[b] * (2 * vm_by_bus[b] * m.vm[b] - vm_by_bus[b] ** 2) \ for b in index_set if bus_bs_fixed_shunts[b] != 0.0) elif val == False: q_expr -= sum( bus_bs_fixed_shunts[b] * vm_by_bus[b] ** 2 \ for b in index_set if bus_bs_fixed_shunts[b] != 0.0) else: raise Exception('linearize_shunts option is invalid.') if relaxed_balance: m.eq_q_balance = pe.Constraint(expr = q_expr >= 0.0) else: m.eq_q_balance = pe.Constraint(expr = q_expr == 0.0) def declare_eq_ploss_sum_of_pfl(model, index_set): """ Create the equality constraint or expression for total real power losses (from PTDF approximation) """ m=model ploss_is_var = isinstance(m.ploss, pe.Var) if ploss_is_var: m.eq_ploss = pe.Constraint() else: if not isinstance(m.ploss, pe.Expression): raise Exception("Unrecognized type for m.ploss", m.ploss.pprint()) expr = sum(m.pfl[bn] for bn in index_set) if ploss_is_var: m.eq_ploss = m.ploss == expr else: m.ploss = expr def declare_eq_qloss_sum_of_qfl(model, index_set): """ Create the equality constraint or expression for total real power losses (from PTDF approximation) """ m=model qloss_is_var = isinstance(m.qloss, pe.Var) if qloss_is_var: m.eq_qloss = pe.Constraint() else: if not isinstance(m.qloss, pe.Expression): raise Exception("Unrecognized type for m.qloss", m.qloss.pprint()) expr = sum(m.qfl[bn] for bn in index_set) if qloss_is_var: m.eq_qloss = m.qloss == expr else: m.qloss = expr def declare_eq_ploss_ptdf_approx(model, PTDF, rel_ptdf_tol=None, abs_ptdf_tol=None, use_residuals=False): """ Create the equality constraint or expression for total real power losses (from PTDF approximation) """ m = model ploss_is_var = isinstance(m.ploss, pe.Var) if ploss_is_var: m.eq_ploss = pe.Constraint() else: if not isinstance(m.ploss, pe.Expression): raise Exception("Unrecognized type for m.ploss", m.ploss.pprint()) if rel_ptdf_tol is None: rel_ptdf_tol = 0. if abs_ptdf_tol is None: abs_ptdf_tol = 0. expr = get_ploss_expr_ptdf_approx(m, PTDF, abs_ptdf_tol=abs_ptdf_tol, rel_ptdf_tol=rel_ptdf_tol, use_residuals=use_residuals) if ploss_is_var: m.eq_ploss = m.ploss == expr else: m.ploss = expr def get_ploss_expr_ptdf_approx(m, PTDF, abs_ptdf_tol=None, rel_ptdf_tol=None, use_residuals=False): if not use_residuals: const = PTDF.get_lossoffset() iterator = PTDF.get_lossfactor_iterator() else: const = PTDF.get_lossoffset_resid() iterator = PTDF.get_lossfactor_resid_iterator() max_coef = PTDF.get_lossfactor_abs_max() ptdf_tol = max(abs_ptdf_tol, rel_ptdf_tol*max_coef) m_p_nw = m.p_nw ## if model.p_nw is Var, we can use LinearExpression ## to build these dense constraints much faster coef_list = [] var_list = [] for bus_name, coef in iterator: if abs(coef) >= ptdf_tol: coef_list.append(coef) var_list.append(m_p_nw[bus_name]) if use_residuals: for i in m._idx_monitored: bn = PTDF.branches_keys_masked[i] coef_list.append(1) var_list.append(m.pfl[bn]) if isinstance(m_p_nw, pe.Var): expr = LinearExpression(linear_vars=var_list, linear_coefs=coef_list, constant=const) else: expr = quicksum( (coef*var for coef, var in zip(coef_list, var_list)), start=const, linear=True) return expr def declare_eq_qloss_ptdf_approx(model, PTDF, rel_ptdf_tol=None, abs_ptdf_tol=None, use_residuals=False): """ Create the equality constraint or expression for total real power losses (from PTDF approximation) """ m = model qloss_is_var = isinstance(m.qloss, pe.Var) if qloss_is_var: m.eq_qloss = pe.Constraint() else: if not isinstance(m.qloss, pe.Expression): raise Exception("Unrecognized type for m.qloss", m.qloss.pprint()) if rel_ptdf_tol is None: rel_ptdf_tol = 0. if abs_ptdf_tol is None: abs_ptdf_tol = 0. expr = get_qloss_expr_ptdf_approx(m, PTDF, abs_ptdf_tol=abs_ptdf_tol, rel_ptdf_tol=rel_ptdf_tol, use_residuals=use_residuals) if qloss_is_var: m.eq_qloss = m.qloss == expr else: m.qloss = expr def get_qloss_expr_ptdf_approx(m, PTDF, abs_ptdf_tol=None, rel_ptdf_tol=None, use_residuals=False): if not use_residuals: const = PTDF.get_qlossoffset() iterator = PTDF.get_qlossfactor_iterator() else: const = PTDF.get_qlossoffset_resid() iterator = PTDF.get_qlossfactor_resid_iterator() max_coef = PTDF.get_qlossfactor_abs_max() ptdf_tol = max(abs_ptdf_tol, rel_ptdf_tol*max_coef) m_q_nw = m.q_nw ## if model.q_nw is Var, we can use LinearExpression ## to build these dense constraints much faster coef_list = [] var_list = [] for bus_name, coef in iterator: if abs(coef) >= ptdf_tol: coef_list.append(coef) var_list.append(m_q_nw[bus_name]) if use_residuals: for i in m._idx_monitored: bn = PTDF.branches_keys[i] coef_list.append(1) var_list.append(m.qfl[bn]) if isinstance(m_q_nw, pe.Var): expr = LinearExpression(linear_vars=var_list, linear_coefs=coef_list, constant=const) else: expr = quicksum( (coef*var for coef, var in zip(coef_list, var_list)), start=const, linear=True) return expr def declare_eq_bus_vm_approx(model, index_set, PTDF=None, rel_ptdf_tol=None, abs_ptdf_tol=None): """ Create the equality constraints or expressions for voltage magnitude (from PTDF approximation) at the bus """ m = model con_set = decl.declare_set("_con_eq_bus_vm_approx_set", model, index_set) vm_is_var = isinstance(m.vm, pe.Var) if vm_is_var: m.eq_vm_bus = pe.Constraint(con_set) else: if not isinstance(m.vm, pe.Expression): raise Exception("Unrecognized type for m.vm", m.vm.pprint()) if PTDF is None: return for bus_name in con_set: expr = \ get_vm_expr_ptdf_approx(m, bus_name, PTDF, rel_ptdf_tol=rel_ptdf_tol, abs_ptdf_tol=abs_ptdf_tol) if vm_is_var: m.eq_vm_bus[bus_name] = \ m.vm[bus_name] == expr else: m.vm[bus_name] = expr def get_vm_expr_ptdf_approx(model, bus_name, PTDF, rel_ptdf_tol=None, abs_ptdf_tol=None): """ Create a pyomo reactive power flow expression from PTDF matrix """ if rel_ptdf_tol is None: rel_ptdf_tol = 0. if abs_ptdf_tol is None: abs_ptdf_tol = 0. const = PTDF.get_bus_vdf_const(bus_name) max_coef = PTDF.get_bus_vdf_abs_max(bus_name) ptdf_tol = max(abs_ptdf_tol, rel_ptdf_tol*max_coef) ## NOTE: It would be easy to hold on to the 'ptdf' dictionary here, if we wanted to m_q_nw = model.q_nw qnw_is_var = isinstance(m_q_nw, pe.Var) ## if model.q_nw is Var, we can use LinearExpression ## to build these dense constraints much faster coef_list = [] var_list = [] for bn, coef in PTDF.get_bus_vdf_iterator(bus_name): if abs(coef) >= ptdf_tol: coef_list.append(coef) var_list.append(m_q_nw[bn]) elif qnw_is_var: const += coef * m_q_nw[bn].value else: const += coef * m_q_nw[bn].expr() if qnw_is_var: expr = LinearExpression(linear_vars=var_list, linear_coefs=coef_list, constant=const) else: expr = quicksum( (coef*var for coef, var in zip(coef_list, var_list)), start=const, linear=True) return expr def declare_eq_p_balance_dc_approx(model, index_set, bus_p_loads, gens_by_bus, bus_gs_fixed_shunts, inlet_branches_by_bus, outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA, dc_inlet_branches_by_bus=None, dc_outlet_branches_by_bus=None, **rhs_kwargs): """ Create the equality constraints for the real power balance at a bus using the variables for real power flows, respectively. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model con_set = decl.declare_set('_con_eq_p_balance', model, index_set) m.eq_p_balance = pe.Constraint(con_set) for bus_name in con_set: if approximation_type == ApproximationType.BTHETA: p_expr = -sum(m.pf[branch_name] for branch_name in outlet_branches_by_bus[bus_name]) p_expr += sum(m.pf[branch_name] for branch_name in inlet_branches_by_bus[bus_name]) elif approximation_type == ApproximationType.BTHETA_LOSSES: p_expr = -0.5*sum(m.pfl[branch_name] for branch_name in inlet_branches_by_bus[bus_name]) p_expr -= 0.5*sum(m.pfl[branch_name] for branch_name in outlet_branches_by_bus[bus_name]) p_expr -= sum(m.pf[branch_name] for branch_name in outlet_branches_by_bus[bus_name]) p_expr += sum(m.pf[branch_name] for branch_name in inlet_branches_by_bus[bus_name]) if dc_inlet_branches_by_bus is not None: p_expr -= sum(m.dcpf[branch_name] for branch_name in dc_outlet_branches_by_bus[bus_name]) p_expr += sum(m.dcpf[branch_name] for branch_name in dc_inlet_branches_by_bus[bus_name]) if bus_gs_fixed_shunts[bus_name] != 0.0: p_expr -= bus_gs_fixed_shunts[bus_name] if bus_p_loads[bus_name] != 0.0: # only applies to fixed loads, otherwise may cause an error p_expr -= m.pl[bus_name] if rhs_kwargs: k = bus_name for idx, val in rhs_kwargs.items(): if isinstance(val, tuple): val,key = val k = (key,bus_name) if not k in eval("m." + val).index_set(): continue if idx == 'include_feasibility_load_shed': p_expr += eval("m." + val)[k] if idx == 'include_feasibility_over_generation': p_expr -= eval("m." + val)[k] for gen_name in gens_by_bus[bus_name]: p_expr += m.pg[gen_name] m.eq_p_balance[bus_name] = \ p_expr == 0.0 def declare_eq_p_balance(model, index_set, bus_p_loads, gens_by_bus, bus_gs_fixed_shunts, inlet_branches_by_bus, outlet_branches_by_bus, **rhs_kwargs): """ Create the equality constraints for the real power balance at a bus using the variables for real power flows, respectively. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model con_set = decl.declare_set('_con_eq_p_balance', model, index_set) m.eq_p_balance = pe.Constraint(con_set) for bus_name in con_set: p_expr = -sum([m.pf[branch_name] for branch_name in outlet_branches_by_bus[bus_name]]) p_expr -= sum([m.pt[branch_name] for branch_name in inlet_branches_by_bus[bus_name]]) if bus_gs_fixed_shunts[bus_name] != 0.0: vmsq = m.vmsq[bus_name] p_expr -= bus_gs_fixed_shunts[bus_name] * vmsq if bus_p_loads[bus_name] != 0.0: # only applies to fixed loads, otherwise may cause an error p_expr -= m.pl[bus_name] if rhs_kwargs: for idx, val in rhs_kwargs.items(): if idx == 'include_feasibility_load_shed': p_expr += eval("m." + val)[bus_name] if idx == 'include_feasibility_over_generation': p_expr -= eval("m." + val)[bus_name] for gen_name in gens_by_bus[bus_name]: p_expr += m.pg[gen_name] m.eq_p_balance[bus_name] = \ p_expr == 0.0 def declare_eq_p_balance_with_i_aggregation(model, index_set, bus_p_loads, gens_by_bus, **rhs_kwargs): """ Create the equality constraints for the real power balance at a bus using the variables for real power flows, respectively. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model con_set = decl.declare_set('_con_eq_p_balance', model, index_set) m.eq_p_balance = pe.Constraint(con_set) for bus_name in con_set: p_expr = -m.vr[bus_name] * m.ir_aggregation_at_bus[bus_name] + \ -m.vj[bus_name] * m.ij_aggregation_at_bus[bus_name] if bus_p_loads[bus_name] != 0.0: # only applies to fixed loads, otherwise may cause an error p_expr -= m.pl[bus_name] if rhs_kwargs: for idx, val in rhs_kwargs.items(): if idx == 'include_feasibility_load_shed': p_expr += eval("m." + val)[bus_name] if idx == 'include_feasibility_over_generation': p_expr -= eval("m." + val)[bus_name] for gen_name in gens_by_bus[bus_name]: p_expr += m.pg[gen_name] m.eq_p_balance[bus_name] = \ p_expr == 0.0 def declare_eq_q_balance(model, index_set, bus_q_loads, gens_by_bus, bus_bs_fixed_shunts, inlet_branches_by_bus, outlet_branches_by_bus, **rhs_kwargs): """ Create the equality constraints for the reactive power balance at a bus using the variables for reactive power flows, respectively. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model con_set = decl.declare_set('_con_eq_q_balance', model, index_set) m.eq_q_balance = pe.Constraint(con_set) for bus_name in con_set: q_expr = -sum([m.qf[branch_name] for branch_name in outlet_branches_by_bus[bus_name]]) q_expr -= sum([m.qt[branch_name] for branch_name in inlet_branches_by_bus[bus_name]]) if bus_bs_fixed_shunts[bus_name] != 0.0: vmsq = m.vmsq[bus_name] q_expr += bus_bs_fixed_shunts[bus_name] * vmsq if bus_q_loads[bus_name] != 0.0: # only applies to fixed loads, otherwise may cause an error q_expr -= m.ql[bus_name] if rhs_kwargs: for idx, val in rhs_kwargs.items(): if idx == 'include_feasibility_load_shed': q_expr += eval("m." + val)[bus_name] if idx == 'include_feasibility_over_generation': q_expr -= eval("m." + val)[bus_name] for gen_name in gens_by_bus[bus_name]: q_expr += m.qg[gen_name] m.eq_q_balance[bus_name] = \ q_expr == 0.0 def declare_eq_q_balance_with_i_aggregation(model, index_set, bus_q_loads, gens_by_bus, **rhs_kwargs): """ Create the equality constraints for the reactive power balance at a bus using the variables for reactive power flows, respectively. NOTE: Equation build orientates constants to the RHS in order to compute the correct dual variable sign """ m = model con_set = decl.declare_set('_con_eq_q_balance', model, index_set) m.eq_q_balance = pe.Constraint(con_set) for bus_name in con_set: q_expr = m.vr[bus_name] * m.ij_aggregation_at_bus[bus_name] + \ -m.vj[bus_name] * m.ir_aggregation_at_bus[bus_name] if bus_q_loads[bus_name] != 0.0: # only applies to fixed loads, otherwise may cause an error q_expr -= m.ql[bus_name] if rhs_kwargs: for idx, val in rhs_kwargs.items(): if idx == 'include_feasibility_load_shed': q_expr += eval("m." + val)[bus_name] if idx == 'include_feasibility_over_generation': q_expr -= eval("m." + val)[bus_name] for gen_name in gens_by_bus[bus_name]: q_expr += m.qg[gen_name] m.eq_q_balance[bus_name] = \ q_expr == 0.0 def declare_ineq_vm_bus_lbub(model, index_set, buses, coordinate_type=CoordinateType.POLAR): """ Create the inequalities for the voltage magnitudes from the voltage variables """ m = model con_set = decl.declare_set('_con_ineq_vm_bus_lbub', model=model, index_set=index_set) m.ineq_vm_bus_lb = pe.Constraint(con_set) m.ineq_vm_bus_ub = pe.Constraint(con_set) if coordinate_type == CoordinateType.POLAR: for bus_name in con_set: m.ineq_vm_bus_lb[bus_name] = \ buses[bus_name]['v_min'] <= m.vm[bus_name] m.ineq_vm_bus_ub[bus_name] = \ m.vm[bus_name] <= buses[bus_name]['v_max'] elif coordinate_type == CoordinateType.RECTANGULAR: for bus_name in con_set: m.ineq_vm_bus_lb[bus_name] = \ buses[bus_name]['v_min']**2 <= m.vr[bus_name]**2 + m.vj[bus_name]**2 m.ineq_vm_bus_ub[bus_name] = \ m.vr[bus_name]**2 + m.vj[bus_name]**2 <= buses[bus_name]['v_max']**2
2.515625
3
tests/integration/test_with_rabbitmq.py
thiagopena/python-mcollective
1
12777405
import os from pymco.test import ctxt from . import base class RabbitMQTestCase(base.IntegrationTestCase): '''RabbitMQ integration test case.''' CTXT = { 'connector': 'rabbitmq', 'plugin.rabbitmq.vhost': '/mcollective', 'plugin.rabbitmq.pool.size': '1', 'plugin.rabbitmq.pool.1.host': 'localhost', 'plugin.rabbitmq.pool.1.port': '61613', 'plugin.rabbitmq.pool.1.user': 'mcollective', 'plugin.rabbitmq.pool.1.password': '<PASSWORD>', } class TestWithRabbitMQMCo22x(base.MCollective22x, RabbitMQTestCase): '''MCollective integration test case.''' class TestWithRabbitMQMCo23x(base.MCollective23x, RabbitMQTestCase): '''MCollective integration test case.''' class TestWithRabbitMQMCo24x(base.MCollective24x, RabbitMQTestCase): '''MCollective integration test case.''' class TestWithRabbitMQSSLMCo23x(base.MCollective23x, RabbitMQTestCase): """MCollective integration test case.""" CTXT = { 'connector': 'rabbitmq', 'plugin.rabbitmq.vhost': '/mcollective', 'plugin.rabbitmq.pool.size': '1', 'plugin.rabbitmq.pool.1.host': 'localhost', 'plugin.rabbitmq.pool.1.port': 61612, 'plugin.rabbitmq.pool.1.user': 'mcollective', 'plugin.rabbitmq.pool.1.password': '<PASSWORD>', 'plugin.rabbitmq.pool.1.ssl': 'true', 'plugin.rabbitmq.pool.1.ssl.ca': os.path.join(ctxt.ROOT, 'fixtures/ca.pem'), 'plugin.rabbitmq.pool.1.ssl.key': os.path.join( ctxt.ROOT, 'fixtures/activemq_private.pem'), 'plugin.rabbitmq.pool.1.ssl.cert': os.path.join( ctxt.ROOT, 'fixtures/activemq_cert.pem', ), }
2.015625
2
Modules/Discord/Helix/utils/config/i18n.py
SinLess-Games/Helix
3
12777406
import contextlib import functools import io import os from pathlib import Path from typing import Callable, Union, Dict, Optional import babel.localedata from babel.core import Locale __all__ = [ "get_locale", "set_locale", "reload_locales", "cog_i18n", "Translator", "get_babel_locale", ] _current_locale = "en-US" WAITING_FOR_MSGID = 1 IN_MSGID = 2 WAITING_FOR_MSGSTR = 3 IN_MSGSTR = 4 MSGID = 'msgid "' MSGSTR = 'msgstr "' _translators = [] def get_locale(): return _current_locale def set_locale(locale): global _current_locale _current_locale = locale reload_locales() def reload_locales(): for translator in _translators: translator.load_translations() def _parse(translation_file: io.TextIOWrapper) -> Dict[str, str]: """ Custom gettext parsing of translation files. Parameters ---------- translation_file : io.TextIOWrapper An open text file containing translations. Returns ------- Dict[str, str] A dict mapping the original strings to their translations. Empty translated strings are omitted. """ step = None untranslated = "" translated = "" translations = {} for line in translation_file: line = line.strip() if line.startswith(MSGID): # New msgid if step is IN_MSGSTR and translated: # Store the last translation translations[_unescape(untranslated)] = _unescape(translated) step = IN_MSGID untranslated = line[len(MSGID): -1] elif line.startswith('"') and line.endswith('"'): if step is IN_MSGID: # Line continuing on from msgid untranslated += line[1:-1] elif step is IN_MSGSTR: # Line continuing on from msgstr translated += line[1:-1] elif line.startswith(MSGSTR): # New msgstr step = IN_MSGSTR translated = line[len(MSGSTR): -1] if step is IN_MSGSTR and translated: # Store the final translation translations[_unescape(untranslated)] = _unescape(translated) return translations def _unescape(string): string = string.replace(r"\\", "\\") string = string.replace(r"\t", "\t") string = string.replace(r"\r", "\r") string = string.replace(r"\n", "\n") string = string.replace(r"\"", '"') return string def get_locale_path(cog_folder: Path, extension: str) -> Path: """ Gets the folder path containing localization files. :param Path cog_folder: The cog folder that we want localizations for. :param str extension: Extension of localization files. :return: Path of possible localization file, it may not exist. """ return cog_folder / "locales" / "{}.{}".format(get_locale(), extension) class Translator(Callable[[str], str]): """Function to get translated strings at runtime.""" def __init__(self, name: str, file_location: Union[str, Path, os.PathLike]): """ Initializes an internationalization object. Parameters ---------- name : str Your cog name. file_location : `str` or `pathlib.Path` This should always be ``__file__`` otherwise your localizations will not load. """ self.cog_folder = Path(file_location).resolve().parent self.cog_name = name self.translations = {} _translators.append(self) self.load_translations() def __call__(self, untranslated: str) -> str: """Translate the given string. This will look for the string in the translator's :code:`.pot` file, with respect to the current locale. """ try: return self.translations[untranslated] except KeyError: return untranslated def load_translations(self): """ Loads the current translations. """ self.translations = {} locale_path = get_locale_path(self.cog_folder, "po") with contextlib.suppress(IOError, FileNotFoundError): with locale_path.open(encoding="utf-8") as file: self._parse(file) def _parse(self, translation_file): self.translations.update(_parse(translation_file)) def _add_translation(self, untranslated, translated): untranslated = _unescape(untranslated) translated = _unescape(translated) if translated: self.translations[untranslated] = translated @functools.lru_cache() def _get_babel_locale(red_locale: str) -> babel.core.Locale: supported_locales = babel.localedata.locale_identifiers() try: # Handles cases where red_locale is already Babel supported babel_locale = Locale(*babel.parse_locale(red_locale)) except (ValueError, babel.core.UnknownLocaleError): try: babel_locale = Locale(*babel.parse_locale(red_locale, sep="-")) except (ValueError, babel.core.UnknownLocaleError): # ValueError is Raised by `parse_locale` when an invalid Locale is given to it # Lets handle it silently and default to "en_US" try: # Try to find a babel locale that's close to the one used by red babel_locale = Locale(Locale.negotiate([red_locale], supported_locales, sep="-")) except (ValueError, TypeError, babel.core.UnknownLocaleError): # If we fail to get a close match we will then default to "en_US" babel_locale = Locale("en", "US") return babel_locale def get_babel_locale(locale: Optional[str] = None) -> babel.core.Locale: """Function to convert a locale to a ``babel.core.Locale``. Parameters ---------- locale : Optional[str] The locale to convert, if not specified it defaults to the bot's locale. Returns ------- babel.core.Locale The babel locale object. """ if locale is None: locale = get_locale() return _get_babel_locale(locale) # This import to be down here to avoid circular import issues. # This will be cleaned up at a later date # noinspection PyPep8 from Helix.utils import commands def cog_i18n(translator: Translator): """Get a class decorator to link the translator to this cog.""" def decorator(cog_class: type): cog_class.__translator__ = translator for name, attr in cog_class.__dict__.items(): if isinstance(attr, (commands.Group, commands.Command)): attr.translator = translator setattr(cog_class, name, attr) return cog_class return decorator
2.921875
3
src/dfi/fs.py
slyphon/dfinstall
0
12777407
<reponame>slyphon/dfinstall from typing import List, Optional, Union, cast, Dict, Callable import sys import os import os.path as osp from stat import * from pathlib import Path import json import logging import arrow from .dotfile import LinkData from .config import Settings, TFileStrategy, TSymlinkStrategy, file_strategy_validator, symlink_strategy_validator from .exceptions import (BackupFailed, TooManySymbolicLinks, FatalConflict, FilesystemConflictError) log = logging.getLogger(__name__) _DATE_FORMAT_STR = 'YYYYMMDDHHmmss' class _skipConflictingEntry(Exception): pass def skip_it() -> None: raise _skipConflictingEntry() def timestamp() -> str: return cast(str, arrow.utcnow().format(_DATE_FORMAT_STR)) def backup(p: Path) -> Optional[Path]: log.debug(f"handle rename for p: {p}, p.exists: {p.exists()}") if p.exists(): for n in range(0, 100): newp = p.with_suffix(f".dfi_{timestamp()}_{n:03}") if newp.exists(): log.debug(f"backup path {newp!s} existed, retrying") continue else: p.rename(newp) return newp else: raise BackupFailed(p) else: return None def is_link(p: Path) -> Optional[bool]: try: s = os.lstat(p) return S_ISLNK(s.st_mode) except FileNotFoundError: return None def chase_links(link: Path) -> Path: cur = link depth = 0 while depth <= 50: depth += 1 if not is_link(cur): return cur cur = Path(osp.normpath(osp.join(cur.parent, os.readlink(cur)))) else: raise TooManySymbolicLinks(link, depth) def link_points_to(link: Path, target: Path) -> Optional[bool]: try: data = os.readlink(link) return osp.samefile(chase_links(link), target) except FileNotFoundError: return None def backup_file_strategy(p: Path) -> None: """when a link_path exists and is a file, this method moves it to a unique location""" log.debug(f"backup_file_strategy: {p}") backup(p) def delete_strategy(p: Path) -> None: """when a link_path exists and is a file, this method removes it""" log.debug(f"delete_strategy: {p}") p.unlink() def warn_strategy(p: Path) -> None: log.warning(f"File location {str(p)!r} already exists and 'warn' strategy selected, continuing.") skip_it() def fail_strategy(p: Path) -> None: raise FatalConflict(p) StrategyFn = Callable[[Path], None] _FILE_STRATEGY_MAP: Dict[TFileStrategy, StrategyFn] = { 'backup': backup_file_strategy, 'delete': delete_strategy, 'warn': warn_strategy, 'fail': fail_strategy, } _SYMLINK_STRATEGY_MAP: Dict[TSymlinkStrategy, StrategyFn] = { 'replace': delete_strategy, 'warn': warn_strategy, 'fail': fail_strategy, } def _apply_link_data( ld: LinkData, create_missing: bool, file_stgy: StrategyFn, link_stgy: StrategyFn ) -> None: target, link_data, link_path = ld.vpath, ld.link_data, ld.link_path # TODO: make this a setting if not link_path.parent.exists(): link_path.parent.mkdir(mode=0o755, parents=True, exist_ok=True) def fn() -> None: # os.path.exists reports false for a broken symlink if not os.path.exists(link_path) or is_link(link_path): if not is_link(link_path): link_path.symlink_to(link_data) # ok, we're clear, do it return log.debug(f"{link_path} is symlink") if link_points_to(link_path, target): log.debug(f"{link_path} resolves to {target}") return # ok, we already did this, so skip it else: log.debug(f"{link_path} points to {os.readlink(link_path)}") link_stgy(link_path) return fn() # recurse elif link_path.is_file() or link_path.is_dir(): file_stgy(link_path) return fn() # and recurse else: # what the what? raise FilesystemConflictError(link_path, os.stat(link_path)) try: fn() except _skipConflictingEntry as e: return None def apply_link_data( link_datas: List[LinkData], create_missing: bool, fs: StrategyFn, ls: StrategyFn ) -> None: for ld in link_datas: _apply_link_data(ld, create_missing, fs, ls) def apply_settings(settings: Settings) -> None: apply_link_data( settings.link_data, settings.create_missing_target_dirs, # revalidating here is silly, but it appeases mypy, because declaring # these as literal types on the Settings object messes up serialization _FILE_STRATEGY_MAP[file_strategy_validator(settings.conflicting_file_strategy)], _SYMLINK_STRATEGY_MAP[symlink_strategy_validator(settings.conflicting_symlink_strategy)] )
1.953125
2
tests/mocklogin_duo.py
cloudposse/duo_unix
1
12777408
#!/usr/bin/env python import os import pexpect import paths PROMPT = '.* or option \(1-4\): $' def _login_duo(): p = pexpect.spawn(paths.login_duo + ' -d -c confs/mockduo.conf ' + \ '-f foobar echo SUCCESS') p.expect(PROMPT, timeout=2) print '===> %r' % p.match.group(0) return p def main(): p = _login_duo() # 3 failures in a row p.sendline('123456') p.expect(PROMPT) print '===> %r' % p.match.group(0) p.sendline('wefawefgoiagj3rj') p.expect(PROMPT) print '===> %r' % p.match.group(0) p.sendline('A' * 500) p.expect(pexpect.EOF) print '===> %r' % p.before # menu options p = _login_duo() p.sendline('3') p.expect(PROMPT) print '===> %r' % p.match.group(0) p.sendline('4') p.expect(PROMPT) print '===> %r' % p.match.group(0) p.sendline('1') p.expect(pexpect.EOF) print '===> %r' % p.before p = _login_duo() p.sendline('2') p.expect(pexpect.EOF) print '===> %r' % p.before if __name__ == '__main__': main()
2.5
2
src/cambiopy/azure.py
CNuge/CamBioPy
0
12777409
#!/bin/env/python3 import sys import os import argparse #location = '.' #suffix = '.py' def get_filelist(location, suffix = None, recursive = False): """ Get a list of files in a directory and optionally its subdirs, with optional suffix matching requirement.""" if recursive == False: if suffix is None: filelist = [location+x for x in os.listdir(location)] else: filelist = [location+x for x in os.listdir(location) if x[-len(suffix):] == suffix] elif recursive == True: filelist = [] for path, subdirs, files in os.walk(location): for x in files: if suffix is None or x[-len(suffix):] == suffix: rpath = os.path.join(path, x) filelist.append(rpath) return filelist def build_to_azure_calls(files, local_location, azure_location, keep_structure = True, relative_paths = False, trim_local_paths = None): """ Take a list of local relative filepaths and build azure transfer calls If keep_structure == true, the subfolders will be added to the azure calls. Note for the retention of structure, only subfolders of the current working directory will be valid (no higher levels in file heirarchy permitted) """ outlist = [] for f in files: if keep_structure == False: outstr = f'azcopy copy "{f}" "{azure_location}"\n' else: if relative_paths == True: if f[:2] != './': raise ValueError("The keep_structure argument requires relative imports (leading dotslash ('./')") parts = f[2:].split("/") else: parts = f.split("/") add_path = "/".join(parts[:-1]) add_path+="/" #second bit of logic here is to avoid the double end slash when not #including any subfolders if trim_local_paths is None and add_path != "/": outstr = f'azcopy copy "{f}" "{azure_location}{add_path}"\n' else: az_path = add_path.replace(local_location, '') outstr = f'azcopy copy "{f}" "{azure_location}{az_path}"\n' outlist.append(outstr) return outlist def build_from_azure_calls(files, azure_location, local_location = "."): """ Take a list of files and their location on azure and build transfer calls to move them to a specified local location.""" outlist = [] for f in files: outstr = f'azcopy copy "{azure_location}{f}" "{local_location}"\n' outlist.append(outstr) return outlist def read_filelist(file): """ Read in a list of files for transfer FROM azure to local.""" dat = [] with open(file, "r") as f: for line in f: line = line.rstrip() dat.append(line) return dat def write_calls_file(calls, outfile): """ Take the produced azcopy file-by-file calls and write the output script """ f=open(outfile, 'w') for line in calls: f.write(line) f.close()
3.109375
3
chapter6.py
rpmva/Python1
0
12777410
#Chapter 6 Notes #List = ['a', 'b', 'c']; #Character at a certain index: List[0] = 'a'; #len(List) = 3; #Count how often something appears in a list: List.count('a') = 1; List.count('d') = 0; #Where an index occurs: List.index('b') = 1 #Checking if a character or string is in a list: 'd' in List = False #Adding items to a list: x = []; x.append('one'); x.append('two'); x = ['one','two'] #Making a list longer: x1 = [1,2,3]; x2 = [4,5,6]; x1.extend(x2); #Removing items from a list: numbers = [1,2,3,4,5,6]; numbers.remove(6); numbers = [1,2,3,4,5] #Inserting items at specific indices: list = ['a','c','d']; list.insert(1,'b') #Adding a list: a = [1,2,3]; b = [4,5,6]; a + b = [1,2,3,4,5,6] #reverse() puts list in reverse order #sort() puts numbers in numerical or alphabetical order #Chapter 6 Exercise stock = ['pepperoni', 'sausage', 'cheese', 'peppers'] x = raw_input("Please give me a topping: ") toppings = []; if x in stock: toppings.append(x) print "We have " + x + "!" else: print "Sorry, we don't have " + x + "." y = raw_input("Please give me one more topping: ") if y in stock: toppings.append(y) print "We have " + y + "!" else: print " Sorry, we don't have " + y + "." print "Here are toppings: {}".format(toppings)
4.40625
4
tests/molecular/functional_groups/functional_group/generic_functional_group/test_get_bonder_ids.py
stevenbennett96/stk
21
12777411
import itertools as it def test_get_bonder_ids(generic_case_data): """ Test :meth:`.GenericFunctionalGroup.get_bonder_ids`. Parameters ---------- generic_case_data : :class:`.GenericCaseData` The test case. Holds the functional group to test and the atoms holding the correct bonder ids. Returns ------- None : :class:`NoneType` """ _test_get_bonder_ids( functional_group=generic_case_data.functional_group, bonders=generic_case_data.bonders, ) def _test_get_bonder_ids(functional_group, bonders): """ Test :meth:`.GenericFunctionalGroup.get_bonder_ids`. Parameters ---------- functional_group : :class:`.GenericFunctionalGroup` The functional group to test. bonders : :class:`tuple` of :class:`.Atom` The atoms holding the correct bonder ids. Returns ------- None : :class:`NoneType` """ for id_, atom in it.zip_longest( functional_group.get_bonder_ids(), bonders, ): assert id_ == atom.get_id()
2.421875
2
SoftLayer/tests/CLI/modules/vs_tests.py
briancline/softlayer-python
0
12777412
<gh_stars>0 """ SoftLayer.tests.CLI.modules.vs_tests ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :license: MIT, see LICENSE for more details. """ import mock from SoftLayer import testing import json class VirtTests(testing.TestCase): def test_list_vs(self): result = self.run_command(['vs', 'list', '--tag=tag']) self.assertEqual(result.exit_code, 0) self.assertEqual(json.loads(result.output), [{'datacenter': 'TEST00', 'primary_ip': '172.16.240.2', 'hostname': 'vs-test1', 'action': None, 'id': 100, 'backend_ip': '10.45.19.37'}, {'datacenter': 'TEST00', 'primary_ip': '172.16.240.7', 'hostname': 'vs-test2', 'action': None, 'id': 104, 'backend_ip': '10.45.19.35'}]) def test_detail_vs(self): result = self.run_command(['vs', 'detail', '100', '--passwords', '--price']) self.assertEqual(result.exit_code, 0) self.assertEqual(json.loads(result.output), {'active_transaction': None, 'cores': 2, 'created': '2013-08-01 15:23:45', 'datacenter': 'TEST00', 'hostname': 'vs-test1', 'domain': 'test.sftlyr.ws', 'fqdn': 'vs-test1.test.sftlyr.ws', 'id': 100, 'guid': '1a2b3c-1701', 'memory': 1024, 'modified': {}, 'os': '12.04-64 Minimal for VSI', 'os_version': '12.04-64 Minimal for VSI', 'notes': 'notes', 'price rate': 1.54, 'tags': ['production'], 'private_cpu': {}, 'private_ip': '10.45.19.37', 'private_only': {}, 'ptr': 'test.softlayer.com.', 'public_ip': '172.16.240.2', 'state': 'RUNNING', 'status': 'ACTIVE', 'users': [{'password': '<PASSWORD>', 'username': 'user'}], 'vlans': [{'type': 'PUBLIC', 'number': 23, 'id': 1}], 'owner': 'chechu'}) def test_detail_vs_empty_tag(self): mock = self.set_mock('SoftLayer_Virtual_Guest', 'getObject') mock.return_value = { 'id': 100, 'maxCpu': 2, 'maxMemory': 1024, 'tagReferences': [ {'tag': {'name': 'example-tag'}}, {}, ], } result = self.run_command(['vs', 'detail', '100']) self.assertEqual(result.exit_code, 0) self.assertEqual( json.loads(result.output)['tags'], ['example-tag'], ) def test_create_options(self): result = self.run_command(['vs', 'create-options']) self.assertEqual(result.exit_code, 0) self.assertEqual(json.loads(result.output), {'cpus (private)': [], 'cpus (standard)': ['1', '2', '3', '4'], 'datacenter': ['ams01', 'dal05'], 'local disk(0)': ['25', '100'], 'memory': ['1024', '2048', '3072', '4096'], 'nic': ['10', '100', '1000'], 'os (CENTOS)': 'CENTOS_6_64', 'os (DEBIAN)': 'DEBIAN_7_64', 'os (UBUNTU)': 'UBUNTU_12_64'}) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_create(self, confirm_mock): confirm_mock.return_value = True result = self.run_command(['vs', 'create', '--cpu=2', '--domain=example.com', '--hostname=host', '--os=UBUNTU_LATEST', '--memory=1', '--network=100', '--billing=hourly', '--datacenter=dal05', '--tag=dev', '--tag=green']) self.assertEqual(result.exit_code, 0) self.assertEqual(json.loads(result.output), {'guid': '1a2b3c-1701', 'id': 100, 'created': '2013-08-01 15:23:45'}) args = ({'datacenter': {'name': 'dal05'}, 'domain': 'example.com', 'hourlyBillingFlag': True, 'localDiskFlag': True, 'maxMemory': 1024, 'hostname': 'host', 'startCpus': 2, 'operatingSystemReferenceCode': 'UBUNTU_LATEST', 'networkComponents': [{'maxSpeed': '100'}]},) self.assert_called_with('SoftLayer_Virtual_Guest', 'createObject', args=args)
1.945313
2
tests/test_obspack_surface_collection_recipes.py
dkauf42/gdess
2
12777413
<reponame>dkauf42/gdess import os import pytest import xarray as xr from co2_diag import load_stations_dict from co2_diag.data_source.observations.gvplus_surface import Collection @pytest.fixture def newEmptySurfaceStation(): mySurfaceInstance = Collection() return mySurfaceInstance def test_station_MLO_is_present(newEmptySurfaceStation): station_dict = load_stations_dict() assert 'mlo' in station_dict def test_simplest_preprocessed_type(rootdir, newEmptySurfaceStation): test_path = os.path.join(rootdir, 'test_data', 'globalview') newEmptySurfaceStation.preprocess(datadir=test_path, station_name='mlo') assert isinstance(newEmptySurfaceStation.stepA_original_datasets['mlo'], xr.Dataset) def test_recipe_input_year_error(rootdir, newEmptySurfaceStation): test_path = os.path.join(rootdir, 'test_data', 'globalview') recipe_options = { 'ref_data': test_path, 'start_yr': "198012", 'end_yr': "201042", 'station_code': 'mlo'} with pytest.raises(SystemExit): newEmptySurfaceStation.run_recipe_for_timeseries(verbose='DEBUG', options=recipe_options) def test_recipe_input_stationcode_error(rootdir, newEmptySurfaceStation): test_path = os.path.join(rootdir, 'test_data', 'globalview') recipe_options = { 'ref_data': test_path, 'start_yr': "1980", 'end_yr': "2010", 'station_code': 'asdkjhfasg'} with pytest.raises(SystemExit): newEmptySurfaceStation.run_recipe_for_timeseries(verbose='DEBUG', options=recipe_options) def test_timeseries_recipe_completes_with_no_errors(rootdir, newEmptySurfaceStation): test_path = os.path.join(rootdir, 'test_data', 'globalview') recipe_options = { 'ref_data': test_path, 'start_yr': "1980", 'end_yr': "2010", 'station_code': 'mlo'} try: newEmptySurfaceStation.run_recipe_for_timeseries(verbose='DEBUG', options=recipe_options) except Exception as exc: assert False, f"'run_recipe_for_timeseries' raised an exception {exc}"
1.9375
2
sidekick/management/commands/import_members.py
cybera/netbox_sidekick
1
12777414
import csv from django.core.management.base import BaseCommand from django.utils.text import slugify from dcim.models import Site from tenancy.models import Tenant from sidekick.utils import MEMBER_TYPES class Command(BaseCommand): help = "Import existing members" def add_arguments(self, parser): parser.add_argument( '--file', required=True, help='The path to the CSV file') parser.add_argument( '--quiet', required=False, action='store_true', help='Suppress messages') parser.add_argument( '--dry-run', required=False, action='store_true', help='Perform a dry-run and make no changes') def handle(self, *args, **options): quiet = options['quiet'] dry_run = options['dry_run'] f = options['file'] rows = [] with open(f) as csvfile: r = csv.reader(csvfile) for row in r: rows.append(row) for row in rows: (name, description, member_type, comments, latitude, longitude) = row name = name.strip() if member_type not in MEMBER_TYPES: self.stdout.write(f"ERROR: Incorrect member type for {name}: {member_type}. Skipping.") continue # See if there is an existing tenant/member. # If there is, compare values and update as needed. # If there isn't, create one. try: changed = False tenant = Tenant.objects.get(name=name) if tenant.description != description: changed = True tenant.description = description if dry_run or not quiet: self.stdout.write(f"Changing description of {name} to {description}") if tenant.comments != comments: changed = True tenant.comments = comments if dry_run or not quiet: self.stdout.write(f"Changing comments of {name} to {comments}") if 'member_type' not in tenant.cf or tenant.cf['member_type'] != member_type: changed = True tenant.cf['member_type'] = member_type if dry_run or not quiet: self.stdout.write(f"Changing member_type of {name} to {member_type}") if not dry_run and changed: self.stdout.write(f"Updated Tenant: {name}") tenant.save() except Tenant.MultipleObjectsReturned: self.stdout.write(f"WARNING: Multiple results found for {name}. Skipping.") continue except Tenant.DoesNotExist: if options['dry_run']: self.stdout.write(f"Would have created Tenant: {name}") continue tenant = Tenant.objects.create( name=name, slug=slugify(name), description=description, comments=comments, ) tenant.cf['member_type'] = member_type tenant.save() self.stdout.write(f"Created Tenant: {name}") # See if there is an existing site. # If there is, compare values and update as needed. # If there isn't, create one. try: changed = False site = Site.objects.get(name=name) if site.latitude != latitude: changed = True site.latitude = latitude if dry_run or not quiet: self.stdout.write(f"Changing latitude of Site {name} to {latitude}") if site.longitude != longitude: changed = True site.longitude = longitude if dry_run or not quiet: self.stdout.write(f"Changing longitude of Site {name} to {longitude}") if not dry_run and changed: self.stdout.write(f"Updated Site: {name}") site.save() except Site.MultipleObjectsReturned: self.stdout.write(f"WARNING: Multiple sites found for {name}. Skipping.") continue except Site.DoesNotExist: if options['dry_run']: self.stdout.write(f"Would have created Site: {name}") continue site = Site.objects.create( name=name, tenant=tenant, slug=slugify(name), latitude=latitude, longitude=longitude, ) site.save() self.stdout.write(f"Created Site: {name}")
2.140625
2
parsers/app/base.py
vintage/moba_quiz
5
12777415
import json import os import shutil import functools import re import requests from unidecode import unidecode as udecode from PIL import Image from slugify import slugify class ImageNotFound(Exception): pass def parse_string(string): if string is None: return None return string.strip() class Champion(object): def __init__(self, pk, name, image, title=None, is_range=None, nation=None): self.pk = pk self.name = name self.image = image self.title = title self.is_range = is_range self.nation = nation self.skills = [] self.translations = {} def add_skill(self, skill): self.skills.append(skill) def add_translation(self, field, value): self.translations[field] = value def to_dict(self): data = { 'id': parse_string(self.pk), 'name': parse_string(self.name), 'nation': parse_string(self.nation), 'image': parse_string(self.image), 'title': parse_string(self.title), 'is_range': self.is_range, 'skills': [s.to_dict() for s in self.skills] } for i18n_key, i18n_value in self.translations.items(): data['{}_i18n'.format(i18n_key)] = i18n_value return data class Skill(object): def __init__(self, pk, name, image): self.pk = pk self.name = name self.image = image self.translations = {} def add_translation(self, field, value): self.translations[field] = value def to_dict(self): data = { 'id': parse_string(self.pk), 'name': parse_string(self.name), 'image': parse_string(self.image), } for i18n_key, i18n_value in self.translations.items(): data['{}_i18n'.format(i18n_key)] = i18n_value return data class Item(object): def __init__(self, pk, name, image, into, _from, price): self.pk = pk self.name = name self.image = image self.into = into self._from = _from self.price = int(price) if price else None self.translations = {} def add_translation(self, field, value): self.translations[field] = value def to_dict(self): data = { 'id': parse_string(self.pk), 'name': parse_string(self.name), 'image': parse_string(self.image), 'into': self.into, 'from': self._from, 'price': self.price, } for i18n_key, i18n_value in self.translations.items(): data['{}_i18n'.format(i18n_key)] = i18n_value return data class Importer(object): export_path = './data/champions.json' image_path = './data/images/champions/' def run(self): os.makedirs(self.image_path, exist_ok=True) objects = self.get_objects() try: is_valid = self.validate(objects) except Exception as e: import ipdb; ipdb.set_trace() is_valid = False if not is_valid: raise Exception('Something went wrong in the validate method.') self.export(objects) return objects def get_objects(self): return [] def export(self, objects): with open(self.export_path, 'w') as outfile: json.dump([o.to_dict() for o in objects], outfile, ensure_ascii=False) return outfile def slugify(self, value): return slugify(value) def clean_filename(self, filename): filename = udecode(''.join(filename.split()).lower()) extension_dot = filename.rindex('.') left_part = filename[:extension_dot] right_part = filename[extension_dot:] # Characters after last . can be [a-z] only right_part = " ".join(re.findall("[a-zA-Z]+", right_part)) return "{}.{}".format(left_part, right_part) def download_image(self, url, filename): response = requests.get(url, stream=True) if response.status_code != 200: msg = 'Image at {} not found'.format(url) print(msg) raise ImageNotFound(msg) filename = self.clean_filename(filename) full_path = os.path.join(self.image_path, filename) with open(full_path, 'wb') as outfile: shutil.copyfileobj(response.raw, outfile) # compress image image = Image.open(full_path) image.save(full_path, quality=95, optimize=True) del response return filename def validate(self, objects): return True class ChampionImporter(Importer): export_path = './data/champions.json' image_path = './data/images/champions/' def validate(self, objects): for obj in objects: # Validate basic fields if not all([obj.pk, obj.name, obj.image]): raise Exception('Champion {} missing fields.'.format(obj.pk)) # Validate skills skills = obj.skills if not skills: raise Exception('Champion {} missing skills.'.format(obj.pk)) for skill in skills: if not all([skill.pk, skill.name, skill.image]): raise Exception('Champion {} skill {} missing fields'.format( obj.pk, skill.pk )) return True class ItemImporter(Importer): export_path = './data/items.json' image_path = './data/images/items/' def get_objects(self): return [] def validate(self, objects): flat_ids = set([i.pk for i in objects]) for obj in objects: # Validate basic fields if not all([obj.pk, obj.name, obj.image]): raise Exception('Item {} missing fields.'.format(obj.pk)) # Validate recipe components = obj._from if not components: continue if not set(components).issubset(flat_ids): raise Exception('Item {} contains invalid recipe: {}'.format( obj.pk, components )) return True class SettingsImporter(Importer): export_path = './data/settings.json' def export(self, objects): with open(self.export_path, 'w') as outfile: json.dump(objects, outfile) return outfile def get_objects(self): return { 'ios': { 'ad_small': 'ca-app-pub-4764697513834958/5120930069', 'ad_big': 'ca-app-pub-4764697513834958/7934795665', 'tracking': 'UA-77793311-8', 'store': 'itms-apps://itunes.apple.com/app/id1121065896', 'store_premium': 'com.puppybox.quizpokemon.premium_version', }, 'android': { 'ad_small': 'ca-app-pub-4764697513834958/5480856869', 'ad_big': 'ca-app-pub-4764697513834958/5062054468', 'tracking': 'UA-77793311-9', 'store': 'market://details?id=com.puppybox.quizpokemon', 'store_premium': 'com.puppybox.quizpokemon.premium_version', }, 'windows': { 'ad_small': 'ca-app-pub-4764697513834958/7883646863', 'ad_big': 'ca-app-pub-4764697513834958/7744046068', 'tracking': '', 'store': '', 'store_premium': '', }, 'legal_disclaimer': 'This application is not created, sponsored or endorsed by Niantic and doesn’t reflect the views or opinions of Niantic or anyone officially involved in producing or managing Pokemon GO. Pokemon GO is a registered trademark of Niantic. All in-game characters, locations, imagery and videos of game content are copyright and are trademarked to their respective owners. Usage for this game falls within fair use guidelines.', 'highscore_url': 'http://mobascore-puppybox.rhcloud.com/api/v1/leaderboards/pokemon/scores/', 'source_name': 'Pokemon GO', 'source_url': 'http://www.pokemongo.com/', } class AchievementImporter(Importer): export_path = './data/achievements.json' def __init__(self, items, champions): self.items = items self.champions = champions def export(self, objects): with open(self.export_path, 'w') as outfile: json.dump(objects, outfile) return outfile def get_objects(self): items = self.items champions = self.champions item_count = len(list(filter(lambda x: len(x._from) > 0, items))) champion_count = len(champions) skill_count = functools.reduce( lambda x, y: x + len(y.skills), champions, 0 ) objects = [ { "id": "seen_all_skills", "name": "Watching your every move", "description": "Open all skill levels", "type": "array", "goal": skill_count, }, { "id": "seen_all_items", "name": "Recipe observer", "description": "Open all recipe levels", "type": "array", "goal": item_count, }, { "id": "seen_all_champions", "name": "High Five Everybody", "description": "Open all champion levels", "type": "array", "goal": champion_count, }, { "id": "solved_all_skills", "name": "Every move is mine", "description": "Solve all skill levels", "type": "array", "goal": skill_count, }, { "id": "solved_all_items", "name": "<NAME> blacksmith", "description": "Solve all recipe levels", "type": "array", "goal": item_count, }, { "id": "solved_all_champions", "name": "I know all of them", "description": "Solve all champion levels", "type": "array", "goal": champion_count, }, { "id": "gameplay_small_strike", "name": "<NAME>", "description": "Make a 10x strike", "type": "number", "goal": 10 }, { "id": "gameplay_medium_strike", "name": "Unstoppable", "description": "Make a 50x strike", "type": "number", "goal": 50 }, { "id": "gameplay_big_strike", "name": "Godlike", "description": "Make a 150x strike", "type": "number", "goal": 150 }, { "id": "gameplay_small_play_count", "name": "Gamer", "description": "Play the game 100 times", "type": "increment", "goal": 100 }, { "id": "gameplay_medium_play_count", "name": "<NAME>", "description": "Play the game 250 times", "type": "increment", "goal": 250 }, { "id": "gameplay_big_play_count", "name": "<NAME>", "description": "Play the game 1000 times", "type": "increment", "goal": 1000 }, ] return objects
2.625
3
getTopics.py
mitliagkas/pyliakmon
3
12777416
import numpy as np import json with open('db/cpt.json', 'rb') as outfile: procHier = json.load(outfile) outfile.close() with open('db/icd.json', 'rb') as outfile: icdHier = json.load(outfile) outfile.close() icdMap=dict([(icdHier[x]['level2'],{'desc':icdHier[x]['desc'],'code':x}) for x in icdHier.keys()]) procMap=dict([(procHier[x]['level2'],{'desc':procHier[x]['desc'],'code':x}) for x in procHier.keys()]) pcs=np.loadtxt('results/cmsQOrder2.txt') p,k=pcs.shape # Get the l=5 print print for c in range(k): print print "[Component", c+1, "]" comp=pcs[:,c] #comp=pcs[:,c] #ind=abs(comp).argsort()[-l:] if c>0: print "Positive Pole" ind=comp.argsort()[-l:] ind=ind.tolist() ind.reverse() for id,magnitude in [(x,comp[x]) for x in ind]: if id < 132: # ICD print " ICD9", icdMap[id]['desc'].ljust(70), magnitude else: # Procedure id-=132 print " Proc", procMap[id]['desc'].ljust(70), magnitude if c>0: print "Negative Pole" ind=comp.argsort()[:l] ind=ind.tolist() for id,magnitude in [(x,comp[x]) for x in ind]: if id < 132: # ICD print " ICD9", icdMap[id]['desc'].ljust(70), magnitude else: # Procedure id-=132 print " Proc", procMap[id]['desc'].ljust(70), magnitude pcs=np.loadtxt('results/cmsCompOrder3.txt') pcs=np.loadtxt('results/cmsQOrder2.txt') p,k=pcs.shape l=5 print print for c in range(k): print print "[Component", c+1, "]" comp=pcs[:,c] #comp=pcs[:,c] #ind=abs(comp).argsort()[-l:] if c>0: print "Positive Pole" ind=comp.argsort()[-l:] ind=ind.tolist() ind.reverse() for id,magnitude in [(x,comp[x]) for x in ind]: if id < 132: # ICD print " ICD9", icdMap[id]['desc'].ljust(70), magnitude else: # Procedure id-=132 print " Proc", procMap[id]['desc'].ljust(70), magnitude if c>0: print "Negative Pole" ind=comp.argsort()[:l] ind=ind.tolist() for id,magnitude in [(x,comp[x]) for x in ind]: if id < 132: # ICD print " ICD9", icdMap[id]['desc'].ljust(70), magnitude else: # Procedure id-=132 print " Proc", procMap[id]['desc'].ljust(70), magnitude
2.59375
3
generator_lesson/map_lesson.py
farooq-teqniqly/pakt-complete-python-course
0
12777417
<filename>generator_lesson/map_lesson.py class Vehicle: def __init__(self, make: str, model: str): self.make = make self.model = model def __repr__(self): return f"{self.make}, {self.model}" @classmethod def create(cls, **properties): return cls(**properties) if __name__ == "__main__": makes = ["BMW", "Ford", "Dodge", "Mercedes-Benz", "Mercury"] starts_with_mer = (make for make in makes if make.startswith("Mer")) upper_case = (make.upper() for make in starts_with_mer) print(list(upper_case)) vehicle = Vehicle.create(model="Mustang", make="Ford") print(vehicle)
4.0625
4
compiler/custom/write_driver.py
lekez2005/OpenRAM
0
12777418
<reponame>lekez2005/OpenRAM # See LICENSE for licensing information. # # Copyright (c) 2016-2019 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import debug import design from tech import cell_properties as props class write_driver(design.design): """ Tristate write driver to be active during write operations only. This module implements the write driver cell used in the design. It is a hand-made cell, so the layout and netlist should be available in the technology library. """ def __init__(self, name): super().__init__(name, prop=props.write_driver) debug.info(2, "Create write_driver") def get_bl_names(self): return "bl" def get_br_names(self): return "br" @property def din_name(self): return "din" @property def en_name(self): return "en" def get_w_en_cin(self): """Get the relative capacitance of a single input""" # This is approximated from SCMOS. It has roughly 5 3x transistor gates. return 5 * 3 def build_graph(self, graph, inst_name, port_nets): """Adds edges based on inputs/outputs. Overrides base class function.""" self.add_graph_edges(graph, port_nets)
2.5625
3
create_db.py
ayushsingh-07/mailer
0
12777419
<filename>create_db.py # -*- encoding: utf-8 -*- """Create all Data-Base""" import os # setting the environment from dotenv import load_dotenv # Python 3.6+ from app.main import ( db, # SQLAlchemy Connector dB Object create_app ) from app.main.models import * # noqa: F401, F403 load_dotenv(verbose=True) app = create_app(os.getenv("PROJECT_ENV_NAME") or "demo") with app.app_context(): db.init_app(app) db.create_all()
2.3125
2
deprecated_examples/affect/humor_late_fusion.py
TianhaoFu/MultiBench
0
12777420
<filename>deprecated_examples/affect/humor_late_fusion.py import sys import os sys.path.append(os.getcwd()) import torch from training_structures.Supervised_Learning import train, test from fusions.common_fusions import Concat from datasets.affect.get_data import get_dataloader from unimodals.common_models import GRU, MLP # Support mosi/mosi_unaligned/mosei/mosei_unaligned traindata, validdata, testdata = get_dataloader('/home/pliang/multibench/affect/processed/humor_data.pkl') # humor 371 81 300 encoders = GRU(752, 1128, dropout=True, has_padding=True).cuda() head = MLP(1128, 512, 1).cuda() # encoders=[GRU(35,70,dropout=True,has_padding=True).cuda(), \ # GRU(74,150,dropout=True,has_padding=True).cuda(),\ # GRU(300,600,dropout=True,has_padding=True).cuda()] # head=MLP(820,400,1).cuda() fusion = Concat().cuda() # Support simple late_fusion and late_fusion with removing bias train(encoders, fusion, head, traindata, validdata, 1000, is_packed=True, early_stop=True, \ task="classification", optimtype=torch.optim.AdamW, lr=1e-5, save='humor_lf_best.pt', \ weight_decay=0.01, objective=torch.nn.MSELoss()) print("Testing:") model=torch.load('humor_lf_best.pt').cuda() test(model, testdata, True, torch.nn.L1Loss(), "regression") # test(model,testdata,True,)
1.914063
2
Climate_Shocks/__init__.py
Komanawa-Solutions-Ltd/SLMACC-2020-CSRA
0
12777421
""" Author: <NAME> Created: 14/10/2020 10:47 AM """
0.632813
1
demo/users/urls.py
physili/django_test
1
12777422
<reponame>physili/django_test<gh_stars>1-10 from django.conf.urls import re_path from . import views app_name = 'user' urlpatterns = [ re_path(r'^index/$', views.index, name='index'), re_path(r'^haha/$', views.haha, name='haha'), re_path(r'^jump/$', views.jump, name='jump'), ]
1.59375
2
plate_yolov4.py
conspicio-ai/alpr
1
12777423
import sys, os sys.path.append('yolov3_detector') from yolov3_custom_helper import yolo_detector from darknet import Darknet sys.path.append('pytorch-YOLOv4') from tool.darknet2pytorch import Darknet as DarknetYolov4 import argparse import cv2,time import numpy as np from tool.plateprocessing import find_coordinates, plate_to_string, padder, get_color from tool.utils import alphanumeric_segemntor,plot_boxes_cv2 from tool.torch_utils import * import time from utility_codes.tsv_converter import ConverterTSV use_cuda = True #################### PLATE #################### cfg_v4 = 'pytorch-YOLOv4/cfg/yolo-obj.cfg' weight_v4 = 'weights/plate.weights' m = DarknetYolov4(cfg_v4) m.load_weights(weight_v4) num_classes = m.num_classes class_names = ['plate'] print('Loading weights from %s... Done!' % (weight_v4)) if use_cuda: m.cuda() # m_alpha.cuda() # yolo_vehicle.cuda() vehicle_save_filename = 'tsv_files/plate_tester.tsv' vehicle_writer = ConverterTSV(vehicle_save_filename,file_type='vehicle') image_dir = 'SIH_hackathon/Detection_Day3/Day3' image_files = os.listdir(image_dir) image_files.sort() OUTPUT_SIZE = (1280, 720) for img_name in image_files: frame = cv2.imread(os.path.join(image_dir, img_name)) h, w = frame.shape[0:2] sized = cv2.resize(frame, (m.width, m.height)) sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB) confidence = 0.2 boxes = do_detect(m, sized, confidence , 0.6, use_cuda) result_img, cls_conf_plate, coordinates_all, labels = plot_boxes_cv2(frame, boxes[0],classes_to_detect=class_names,fontScale=0.5,thick=2, savename=False, class_names=class_names) cls_conf_plate = float(cls_conf_plate) for i,co in enumerate(coordinates_all): print(co) data = [img_name, co, labels[i]] vehicle_writer.put_vehicle(img_name, co, 'plate') # vehicle_writer.put_vehicle(img_loc, c, 'plate') cv2.imshow('Image', result_img) if cv2.waitKey(1) & 0xff == ord('q'): break # cv2.waitKey(0) cv2.destroyAllWindows() import pandas as pd def merge_and_save(fp1, fp2, outfile_path): tsv_file1 = pd.read_csv(fp1, sep='\t', header=0) tsv_file2 = pd.read_csv(fp2, sep='\t', header=0) merged = pd.concat([tsv_file1, tsv_file2]) outfile = merged.sort_values(by='Image').reset_index(drop=True) outfile.to_csv(outfile_path, sep='\t', index=False) merge_and_save('tsv_files/plate_tester.tsv', 'tsv_files/vehicle_tester.tsv', 'tsv_files/IvLabs_Detection_Day3.tsv')
2.21875
2
src/enginemonitor.py
BennyCarbajal/enginemonitor
0
12777424
#! /usr/bin/env python __author__ = "<NAME>" __copyright__ = "Copyright 2021, ningh" __credits__ = [ "<NAME>" ] __license__ = "MIT" __version__ = "1.0.0" __maintainer__ = [ "<NAME>" ] __email__ = [ "<EMAIL>" ] __status__ = "Beta" import subprocess, json, socket, psutil, os, wmi from pymongo import MongoClient class Engine( object ) : """docstring for Info""" def __init__( self ): self.client = MongoClient( 'mongodb://127.0.0.1:27017' ) self.db = self.client[ 'machine' ] self.conn = wmi.WMI() def getSize( self, bytes, suffix = 'B' ) : """ Return the bytes unit and suffix. """ factor = 1024 for unit in [ '', 'K', 'M', 'G', 'T', 'P' ]: if bytes < factor: return "{0} {1}{2}".format( bytes, unit, suffix ) bytes /= factor def getIp( self ) : """ Return IP address. """ return socket.gethostbyname( socket.gethostname() ) def getUser( self ) : """ Return the current username. """ return os.environ.get( 'USERNAME' ) def getComputer( self ) : """ Return the current computername. """ return os.environ.get( 'COMPUTERNAME' ) def getCpu( self ) : """ Return the name of Processor. """ for pr in self.conn.Win32_Processor(): return pr.Name def getCores( self ) : """ Return the physical cores and total cores. """ out = { 'PhysicalCores': psutil.cpu_count( logical=False ), 'TotalCores': psutil.cpu_count( logical=True ), } return out def getRam( self ): """ Return the size of Ram Memory. """ mem = psutil.virtual_memory() return self.getSize(mem.total) def getBoard( self ): """ Return the motherboard name. """ cs = self.conn.Win32_ComputerSystem()[0] return cs.Model def getGpu( self ): """ Return a list of GPUs. """ out = [] for vc in self.conn.Win32_VideoController(): out.append(vc.Name) return out def getDisks( self ): """ Return a list of dictionaries. """ out = [] for ld in self.conn.Win32_logicaldisk() : if ld.DriveType == 3 : kind = 'Local Disk' elif ld.DriveType == 4 : kind = 'Network Drive' inside = { 'device': ld.DeviceID, 'type': kind, 'provider': ld.ProviderName } try: inside[ 'size' ] = self.getSize( int( ld.Size ) ) inside[ 'free' ] = self.getSize( int( ld.FreeSpace ) ) except Exception as e: pass out.append( inside ) return out ################################################ # By SubProcess # ################################################ def getSensorBySpecs( self, hwType, snsrType, filename='bySpecs' ) : """ By subprocess returns sensor information from the requested hardware. """ subprocess.check_output( os.path.abspath( os.path.dirname( __file__ ) ) + "\\monitor\\GarboMonitor {0} {1} {2}".format( hwType, snsrType, filename ), shell = True ) with open( "C:/bin/garbo/log/{}.json".format( filename ) ) as json_file: data = json.load(json_file) return data def getSensorsByHardware( self, hwType, filename='byHardware' ) : """ By subprocess returns the information of all sensors of the requested hardware """ subprocess.check_output( os.path.abspath( os.path.dirname( __file__ ) ) + "\\monitor\\GarboMonitor {0} {1}".format( hwType, filename ), shell = True ) with open( "C:/bin/garbo/log/{}.json".format( filename ) ) as json_file: data = json.load(json_file) return data def getSensors( self, filename='sensors' ) : """ By subprocess returns the information of all sensors of each important hardware """ subprocess.check_output( os.path.abspath( os.path.dirname( __file__ ) ) + "\\monitor\\GarboMonitor {}".format( filename ), shell = True ) with open( "C:/bin/garbo/log/{}.json".format( filename ) ) as json_file: data = json.load( json_file ) return data ################################################ # By Service # ################################################ def getMonitorServiceBySpecs( self, hwType, snsrType ) : """ By service returns sensor information from the requested hardware. """ out = { 'name': '', 'type': '', 'sensors': [] } try : data = list( self.db.hardware.find( { 'type': hwType }, { '_id': 0 } ) ) for item in data : out[ 'name' ] = item[ 'name' ] out[ 'type' ] = item[ 'type' ] for sensor in item['sensors'] : if sensor['type'] == snsrType : out['sensors'].append(sensor) return out except Exception as e : return e def getMonitorServiceByHardware( self, hwType ) : """ By service returns the information of all sensors of the requested hardware """ try : byHw = list( self.db.hardware.find( { 'type': hwType }, { '_id': 0 } ) ) return byHw except Exception as e : return e def getMonitorService( self ) : """ By service returns the information of all sensors of each important hardware """ try : byHw = list( self.db.hardware.find( {}, { '_id': 0 } ) ) return byHw except Exception as e : return e
2.296875
2
algo/mappo2/elements/agent.py
xlnwel/g2rl
1
12777425
from core.elements.agent import create_agent
1.070313
1
dag_executor/Extensions/AWS/__init__.py
GennadiiTurutin/dag_executor
0
12777426
from .SNS import SNS from .SQS import SQS from .S3 import S3
1.085938
1
nii/mapcore_api.py
tsukaeru/RDM-osf.io
11
12777427
# -*- coding: utf-8 -*- # # MAPCore class: mAP Core API handling # # @COPYRIGHT@ # import sys import time import json import logging import hashlib import requests from urllib.parse import urlencode from django.utils import timezone from django.db import transaction from osf.models.user import OSFUser from website.settings import (MAPCORE_HOSTNAME, MAPCORE_REFRESH_PATH, MAPCORE_API_PATH, MAPCORE_CLIENTID, MAPCORE_SECRET) # # Global settings. # VERIFY = True # for requests.{get,post}(verify=VERIFY) MAPCORE_API_MEMBER_LIST_BUG_WORKAROUND = False # 2019/5/24 fixed MAPCORE_DEBUG = False # unicode to utf-8 def utf8(s): return s.encode('utf-8') class MAPCoreLogger(object): def __init__(self, logger): self.logger = logger def error(self, msg, *args, **kwargs): self.logger.error('MAPCORE: ' + msg, *args, **kwargs) def warning(self, msg, *args, **kwargs): self.logger.warning('MAPCORE: ' + msg, *args, **kwargs) def info(self, msg, *args, **kwargs): self.logger.info('MAPCORE:' + msg, *args, **kwargs) def debug(self, msg, *args, **kwargs): self.logger.debug('MAPCORE: ' + msg, *args, **kwargs) def setLevel(self, level=logging.INFO): self.logger.setLevel(level=level) class MAPCoreLoggerDebug(object): def __init__(self, logger): self.logger = logger def error(self, msg, *args, **kwargs): self.logger.error('MAPCORE_ERROR: ' + msg, *args, **kwargs) def warning(self, msg, *args, **kwargs): self.logger.error('MAPCORE_WARNING: ' + msg, *args, **kwargs) def info(self, msg, *args, **kwargs): self.logger.error('MAPCORE_INFO:' + msg, *args, **kwargs) def debug(self, msg, *args, **kwargs): self.logger.error('MAPCORE_DEBUG: ' + msg, *args, **kwargs) def setLevel(self, level=logging.INFO): self.logger.setLevel(level=level) def mapcore_logger(logger): if MAPCORE_DEBUG: logger = MAPCoreLoggerDebug(logger) else: logger = MAPCoreLogger(logger) return logger def mapcore_api_disable_log(level=logging.CRITICAL): logger.setLevel(level=level) logger = mapcore_logger(logging.getLogger(__name__)) class MAPCoreException(Exception): def __init__(self, mapcore, ext_message): self.mapcore = mapcore if ext_message is not None and mapcore is None: super(MAPCoreException, self).__init__( 'ext_message={}'.format(ext_message)) else: super(MAPCoreException, self).__init__( 'http_status_code={}, api_error_code={}, message={}, ext_message={}'.format( mapcore.http_status_code, mapcore.api_error_code, mapcore.error_message, ext_message)) def listing_group_member_is_not_permitted(self): if self.mapcore.api_error_code == 206 and \ self.mapcore.error_message == 'Listing group member is not permitted': return True return False def group_does_not_exist(self): if self.mapcore.api_error_code == 208 and \ self.mapcore.error_message == 'You do not have access permission': return True return False class MAPCoreTokenExpired(MAPCoreException): def __init__(self, mapcore, ext_message): self.caller = mapcore.user super(MAPCoreTokenExpired, self).__init__(mapcore, ext_message) def __str__(self): if self.caller: username = self.caller.username else: username = 'UNKNOWN USER' return 'mAP Core Access Token (for {}) is expired'.format(username) if MAPCORE_API_MEMBER_LIST_BUG_WORKAROUND: OPEN_MEMBER_PRIVATE = 1 OPEN_MEMBER_PUBLIC = 0 OPEN_MEMBER_MEMBER_ONLY = 2 OPEN_MEMBER_DEFAULT = OPEN_MEMBER_MEMBER_ONLY else: OPEN_MEMBER_PRIVATE = 0 OPEN_MEMBER_PUBLIC = 1 OPEN_MEMBER_MEMBER_ONLY = 2 OPEN_MEMBER_DEFAULT = OPEN_MEMBER_PUBLIC def mapcore_group_member_is_private(group_info): return group_info['open_member'] == OPEN_MEMBER_PRIVATE def mapcore_group_member_is_public(group_info): return group_info['open_member'] == OPEN_MEMBER_PUBLIC def mapcore_group_member_is_member_only(group_info): return group_info['open_member'] == OPEN_MEMBER_MEMBER_ONLY class MAPCore(object): MODE_MEMBER = 0 # Ordinary member MODE_ADMIN = 2 # Administrator member user = False http_status_code = None api_error_code = None error_message = None # # Constructor. # def __init__(self, user): self.user = user # # Refresh access token. # def refresh_token0(self): #logger.debug('MAPCore::refresh_token:') url = MAPCORE_HOSTNAME + MAPCORE_REFRESH_PATH basic_auth = (MAPCORE_CLIENTID, MAPCORE_SECRET) headers = { 'Content-Type': 'application/x-www-form-urlencoded; charset=utf-8' } params = { 'grant_type': 'refresh_token', 'refresh_token': self.user.map_profile.oauth_refresh_token } params = urlencode(params) logger.debug('MAPCore::refresh_token: params=' + params) r = requests.post(url, auth=basic_auth, headers=headers, data=params, verify=VERIFY) if r.status_code != requests.codes.ok: logger.info('MAPCore::refresh_token: Refreshing token failed: status_code=' + str(r.status_code) + ', user=' + str(self.user) + ', text=' + r.text) return False j = json.loads(r.content) if 'error' in j: logger.info('MAPCore::refresh_token: Refreshing token failed: ' + j['error'] + ', user=' + str(self.user)) if 'error_description' in j: logger.info('MAPCore::refresh_token: Refreshing token failed: ' + j['error_description'] + ', user=' + str(self.user)) return False logger.debug('MAPCore::refresh_token: SUCCESS: user=' + str(self.user)) #logger.debug(' New access_token: ' + j['access_token']) #logger.debug(' New refresh_token: ' + j['refresh_token']) self.user.map_profile.oauth_access_token = j['access_token'] self.user.map_profile.oauth_refresh_token = j['refresh_token'] # # Update database. # self.user.map_profile.oauth_refresh_time = timezone.now() self.user.map_profile.save() self.user.save() return True def refresh_token(self): try: self.lock_refresh() return self.refresh_token0() finally: self.unlock_refresh() # # Lock refresh process. # def lock_refresh(self): while True: #print('before transaction.atomic') with transaction.atomic(): #print('transaction.atomic start') u = OSFUser.objects.select_for_update().get(username=self.user.username) if not u.mapcore_refresh_locked: #print('before lock') #time.sleep(5) # for debug u.mapcore_refresh_locked = True u.save() logger.debug('OSFUser(' + u.username + ').mapcore_refresh_locked=True') return #print('cannot get lock, sleep 1') time.sleep(1) # # Unlock refresh process. # def unlock_refresh(self): with transaction.atomic(): u = OSFUser.objects.select_for_update().get(username=self.user.username) u.mapcore_refresh_locked = False u.save() logger.debug('OSFUser(' + u.username + ').mapcore_refresh_locked=False') # # GET|POST|DELETE for methods. # def req_api(self, method_name, args, requests_method, path, parameters): logger.debug('MAPCore(user={}).{}{}'.format(self.user.username, method_name, str(args))) if self.user.map_profile is None: # Access token is not issued yet. raise self.get_token_expired() url = MAPCORE_HOSTNAME + MAPCORE_API_PATH + path count = 0 while count < 2: # retry once time_stamp, signature = self.calc_signature() if requests_method == requests.get or \ requests_method == requests.delete: payload = {'time_stamp': time_stamp, 'signature': signature} if parameters: for k, v in parameters.items(): payload[k] = v headers = {'Authorization': 'Bearer ' + self.user.map_profile.oauth_access_token} r = requests_method(url, headers=headers, params=payload, verify=VERIFY) elif requests_method == requests.post: params = {} params['request'] = { 'time_stamp': time_stamp, 'signature': signature } params['parameter'] = parameters params = json.dumps(params).encode('utf-8') headers = { 'Authorization': 'Bearer ' + self.user.map_profile.oauth_access_token, 'Content-Type': 'application/json; charset=utf-8', 'Content-Length': str(len(params)) } r = requests_method(url, headers=headers, data=params, verify=VERIFY) else: raise Exception('unknown requests_method') j = self.check_result(r, method_name, args) if j is not False: # Function succeeded. return j if self.is_token_expired(r, method_name, args): if self.refresh_token() is False: # Automatic refreshing token failed. raise self.get_token_expired() else: # Any other API error. raise self.get_exception() count += 1 # Could not refresh token after retries (may not occur). raise self.get_token_expired() # # Get API version. # def get_api_version(self): method_name = sys._getframe().f_code.co_name return self.req_api(method_name, (), requests.get, '/version', None) # # Get group information by group name. (unused by mapcore.py) # def get_group_by_name(self, group_name): method_name = sys._getframe().f_code.co_name parameters = {'searchWord': group_name.encode('utf-8')} path = '/mygroup' j = self.req_api(method_name, (group_name,), requests.get, path, parameters) if len(j['result']['groups']) == 0: self.error_message = 'Group not found' logger.debug(' {}'.format(self.error_message)) # Group not found. raise self.get_exception() return j # # Get group information by group key. # def get_group_by_key(self, group_key): method_name = sys._getframe().f_code.co_name path = '/group/' + group_key j = self.req_api(method_name, (group_key,), requests.get, path, None) if len(j['result']['groups']) == 0: self.error_message = 'Group not found' logger.debug(' {}'.format(self.error_message)) raise self.get_exception() return j # # delete group by group key. # def delete_group(self, group_key): method_name = sys._getframe().f_code.co_name path = '/group/' + group_key j = self.req_api(method_name, (group_key,), requests.delete, path, None) return j # # Create new group, and make it public, active and open_member. # def create_group(self, group_name): method_name = sys._getframe().f_code.co_name path = '/group' parameters = { 'group_name': group_name, 'group_name_en': group_name } j = self.req_api(method_name, (group_name,), requests.post, path, parameters) group_key = j['result']['groups'][0]['group_key'] logger.debug(' New group has been created (group_key=' + group_key + ')') # to set description (Empty description is invalid on CG) j = self.edit_group(group_key, group_name, group_name) return j # # Change group properties. # def edit_group(self, group_key, group_name, introduction): method_name = sys._getframe().f_code.co_name path = '/group/' + group_key parameters = { 'group_name': group_name, 'group_name_en': '', 'introduction': introduction, 'introduction_en': '', 'public': 1, 'active': 1, 'open_member': OPEN_MEMBER_DEFAULT } j = self.req_api(method_name, (group_key, group_name, introduction), requests.post, path, parameters) return j # # Get member of group. # def get_group_members(self, group_key): method_name = sys._getframe().f_code.co_name path = '/member/' + group_key parameters = None j = self.req_api(method_name, (group_key,), requests.get, path, parameters) return j # # Get joined group list. # def get_my_groups(self): method_name = sys._getframe().f_code.co_name path = '/mygroup' parameters = None j = self.req_api(method_name, (), requests.get, path, parameters) return j # # Add to group. # def add_to_group(self, group_key, eppn, admin): method_name = sys._getframe().f_code.co_name path = '/member/' + group_key + '/' + eppn parameters = { 'admin': admin } j = self.req_api(method_name, (group_key, eppn, admin), requests.post, path, parameters) return j # # Remove from group. # def remove_from_group(self, group_key, eppn): method_name = sys._getframe().f_code.co_name path = '/member/' + group_key + '/' + eppn parameters = None j = self.req_api(method_name, (group_key, eppn), requests.delete, path, parameters) return j # # Edit member. # def edit_member(self, group_key, eppn, admin): #logger.debug('MAPCore::edit_member (group_key=' + group_key + ', eppn=' + eppn + ', admin=' + str(admin) + ')') # NOTE: If error occurs, an exception will be thrown. j = self.remove_from_group(group_key, eppn) j = self.add_to_group(group_key, eppn, admin) return j # # Get MAPCoreException. # def get_exception(self): return MAPCoreException(self, None) # # Get MAPCoreTokenExpired. # def get_token_expired(self): return MAPCoreTokenExpired(self, None) # # Calculate API signature. # def calc_signature(self): time_stamp = str(int(time.time())) s = MAPCORE_SECRET + self.user.map_profile.oauth_access_token + time_stamp digest = hashlib.sha256(s.encode('utf-8')).hexdigest() return time_stamp, digest WWW_AUTHENTICATE = 'WWW-Authenticate' MSG_ACCESS_TOKEN_EXPIRED = 'Access token expired' MSG_INVALID_ACCESS_TOKEN = 'Invalid access token' # # Check API result status. # If any error occurs, a False will be returned. # def check_result(self, result, method_name, args): self.http_status_code = result.status_code self.api_error_code = None self.error_message = '' if result.status_code != requests.codes.ok: if self.is_token_expired(result, method_name, args): self.error_message = self.MSG_ACCESS_TOKEN_EXPIRED else: self.error_message = result.headers.get(self.WWW_AUTHENTICATE) if not self.error_message: self.error_message = result.text logger.info('MAPCore(user={},eppn={}).{}{}:check_result: status_code={}, error_msg={}'.format(self.user.username, self.user.eppn, method_name, args, result.status_code, self.error_message)) return False #logger.debug('result.encoding={}'.format(result.encoding)) j = json.loads(result.content) if j['status']['error_code'] != 0: self.api_error_code = j['status']['error_code'] self.error_message = j['status']['error_msg'] logger.info('MAPCore(user={},eppn={}).{}{}:check_result: error_code={}, error_msg={}'.format(self.user.username, self.user.eppn, method_name, args, self.api_error_code, self.error_message)) return False return j def is_token_expired(self, result, method_name, args): if result.status_code != requests.codes.ok: s = result.headers.get(self.WWW_AUTHENTICATE) if s is None: return False #if s.find(self.MSG_ACCESS_TOKEN_EXPIRED) != -1 \ # or s.find(self.MSG_INVALID_ACCESS_TOKEN) != -1: if result.status_code == 401: # Unauthorized logger.debug('MAPCore(user={},eppn={}).{}{}:is_token_expired: status_code={}, {}={}'.format(self.user.username, self.user.eppn, method_name, args, result.status_code, self.WWW_AUTHENTICATE, self.error_message)) return True else: return False return False def encode_recursive(o, encoding='utf-8'): if isinstance(o, dict): return {encode_recursive(key): encode_recursive(val) for key, val in o.iteritems()} elif isinstance(o, list): return [encode_recursive(elem) for elem in o] elif isinstance(o, str): return o.encode(encoding) else: return o
2.015625
2
fileReader.py
EthanCota/ScholarshipRipper
1
12777428
#Used to initialize the list of scholarship codes from a text file. f = open('TheUltimateScholarshipBook2019.txt','r') g = open('ScholarshipCodes.txt','w') while True: x = f.readline() if not x: break if x.startswith("Exclusive:"): print >> g, x print("Printed" + x)
3.75
4
tests/template_backends/test_django.py
spapas/django
0
12777429
<gh_stars>0 from django.template.backends.django import DjangoTemplates from django.test import RequestFactory from template_tests.test_response import test_processor_name from .test_dummy import TemplateStringsTests class DjangoTemplatesTests(TemplateStringsTests): engine_class = DjangoTemplates backend_name = 'django' def test_context_has_priority_over_template_context_processors(self): # See ticket #23789. engine = DjangoTemplates({ 'DIRS': [], 'APP_DIRS': False, 'NAME': 'django', 'OPTIONS': { 'context_processors': [test_processor_name], }, }) template = engine.from_string('{{ processors }}') request = RequestFactory().get('/') # Check that context processors run content = template.render({}, request) self.assertEqual(content, 'yes') # Check that context overrides context processors content = template.render({'processors': 'no'}, request) self.assertEqual(content, 'no')
2.09375
2
octant/common/base.py
Orange-OpenSource/octant
4
12777430
# Copyright 2018 Orange # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """General purpose datastructures used by octant""" class Z3ParseError(Exception): """Raised on syntax errors at end of parsing.""" def __init__(self, *args, **kwargs): super(Z3ParseError, self).__init__(self, *args, **kwargs) class Z3TypeError(Exception): """Raised for a theory that is not well typed""" def __init__(self, *args, **kwargs): super(Z3TypeError, self).__init__(self, *args, **kwargs) class Z3SourceError(Exception): """Raised when a source or its description is wrong""" def __init__(self, *args, **kwargs): super(Z3SourceError, self).__init__(self, *args, **kwargs) class Z3NotWellFormed(Exception): """Raised for a theory that do not respect well-formedness rules""" def __init__(self, *args, **kwargs): super(Z3NotWellFormed, self).__init__(self, *args, **kwargs)
2.171875
2
plugins/dokuwiki.py
antoniotrento/wig
3
12777431
<filename>plugins/dokuwiki.py<gh_stars>1-10 from classes.specializedRequesters import CMSReqMD5, CMSReqString, CMSReqRegex class DokuWikiMD5(CMSReqMD5): def __init__(self, host, cache, results): super().__init__(host, cache, results) self.name = "DokuWiki" self.prefix = ["/dokuwiki", ""] self.data_file = "data/cms/md5/dokuwiki.json" class DokuWikiString(CMSReqString): def __init__(self, host, cache, results): super().__init__(host, cache, results) self.name = "DokuWiki" self.prefix = ["/dokuwiki", ""] self.data_file = "data/cms/string/dokuwiki.json" class DokuWikiRegex(CMSReqRegex): def __init__(self, host, cache, results): super().__init__(host, cache, results) self.name = "DokuWiki" self.prefix = ["/dokuwiki", ""] self.data_file = "data/cms/regex/dokuwiki.json" def get_instances(host, cache, results): return [ DokuWikiMD5(host, cache, results), DokuWikiString(host, cache, results), DokuWikiRegex(host, cache, results), ]
2.390625
2
arekit/contrib/experiment_rusentrel/labels/formatters/rusentiframes.py
nicolay-r/AREk
18
12777432
from arekit.contrib.experiment_rusentrel.labels.types import ExperimentPositiveLabel, ExperimentNegativeLabel from arekit.contrib.source.rusentiframes.labels_fmt import \ RuSentiFramesEffectLabelsFormatter, \ RuSentiFramesLabelsFormatter class ExperimentRuSentiFramesLabelsFormatter(RuSentiFramesLabelsFormatter): @classmethod def _positive_label_type(cls): return ExperimentPositiveLabel @classmethod def _negative_label_type(cls): return ExperimentNegativeLabel class ExperimentRuSentiFramesEffectLabelsFormatter(RuSentiFramesEffectLabelsFormatter): @classmethod def _positive_label_type(cls): return ExperimentPositiveLabel @classmethod def _negative_label_type(cls): return ExperimentNegativeLabel
1.8125
2
demo/graph_tutorial/tutorial/views.py
dschien/msgraph-django-app
0
12777433
import openpyxl from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect from django.urls import reverse from datetime import datetime, timedelta from dateutil import tz, parser from tutorial.auth_helper import get_sign_in_flow, get_token_from_code, store_user, remove_user_and_token, get_token from tutorial.graph_helper import * import dateutil.parser # <HomeViewSnippet> def home(request): context = initialize_context(request) return render(request, 'tutorial/home.html', context) # </HomeViewSnippet> # <InitializeContextSnippet> def initialize_context(request): context = {} # Check for any errors in the session error = request.session.pop('flash_error', None) if error != None: context['errors'] = [] context['errors'].append(error) # Check for user in the session context['user'] = request.session.get('user', {'is_authenticated': False}) return context # </InitializeContextSnippet> # <SignInViewSnippet> def sign_in(request): # Get the sign-in flow flow = get_sign_in_flow() # Save the expected flow so we can use it in the callback try: request.session['auth_flow'] = flow except Exception as e: print(e) # Redirect to the Azure sign-in page return HttpResponseRedirect(flow['auth_uri']) # </SignInViewSnippet> # <SignOutViewSnippet> def sign_out(request): # Clear out the user and token remove_user_and_token(request) return HttpResponseRedirect(reverse('home')) # </SignOutViewSnippet> # <CallbackViewSnippet> def callback(request): # Make the token request result = get_token_from_code(request) # Get the user's profile # user = get_user(result['code']) user = get_user(result['access_token']) # Store user store_user(request, user) return HttpResponseRedirect(reverse('home')) # </CallbackViewSnippet> # <CalendarViewSnippet> def calendar(request): context = initialize_context(request) user = context['user'] # Load the user's time zone # Microsoft Graph can return the user's time zone as either # a Windows time zone name or an IANA time zone identifier # Python datetime requires IANA, so convert Windows to IANA time_zone = get_iana_from_windows(user['timeZone']) tz_info = tz.gettz(time_zone) # Get midnight today in user's time zone today = datetime.now(tz_info).replace( hour=0, minute=0, second=0, microsecond=0) # Based on today, get the start of the week (Sunday) if (today.weekday() != 6): start = today - timedelta(days=today.isoweekday()) else: start = today end = start + timedelta(days=7) token = get_token(request) events = get_calendar_events( token, start.isoformat(timespec='seconds'), end.isoformat(timespec='seconds'), user['timeZone']) if events: # Convert the ISO 8601 date times to a datetime object # This allows the Django template to format the value nicely for event in events['value']: event['start']['dateTime'] = parser.parse(event['start']['dateTime']) event['end']['dateTime'] = parser.parse(event['end']['dateTime']) context['events'] = events['value'] return render(request, 'tutorial/calendar.html', context) # </CalendarViewSnippet> # <NewEventViewSnippet> def newevent(request): context = initialize_context(request) user = context['user'] if request.method == 'POST': # Validate the form values # Required values if (not request.POST['ev-subject']) or \ (not request.POST['ev-start']) or \ (not request.POST['ev-end']): context['errors'] = [ {'message': 'Invalid values', 'debug': 'The subject, start, and end fields are required.'} ] return render(request, 'tutorial/newevent.html', context) attendees = None if request.POST['ev-attendees']: attendees = request.POST['ev-attendees'].split(';') body = request.POST['ev-body'] # Create the event token = get_token(request) create_event( token, request.POST['ev-subject'], request.POST['ev-start'], request.POST['ev-end'], attendees, request.POST['ev-body'], user['timeZone']) # Redirect back to calendar view return HttpResponseRedirect(reverse('calendar')) else: # Render the form return render(request, 'tutorial/newevent.html', context) # print('hello') # </NewEventViewSnippet> def bulkevent(request): context = initialize_context(request) user = context['user'] if request.method == 'POST': body = request.POST['ev-body'] if not request.POST['ev-subject']: context['errors'] = [ {'message': 'Invalid values', 'debug': 'The subject, start, and end fields are required.'} ] return render(request, 'tutorial/bulkevent.html', context) excel_file = request.FILES["excel_file"] # you may put validations here to check extension or file size try: data = read_excel(excel_file) except Exception as e: context['errors'] = [ {'message': 'Excel parsing failed', 'debug': 'Check the format of your file.'} ] return render(request, 'tutorial/bulkevent.html', context) results = [] for row in data: start_date = row[1] start_time = row[2] group = row[3] attendees = row[4:] # '2021-05-08T11:56' start_time = datetime.combine(dateutil.parser.parse(start_date).date(), dateutil.parser.parse(start_time).time() ) end_time = start_time + timedelta(minutes=int(request.POST['ev-duration'])) # Create the event token = get_token(request) res = create_event( token, request.POST['ev-subject'] + " " + group, start_time.isoformat(), end_time.isoformat(), attendees, request.POST['ev-body'], user['timeZone']) results.append({'result':res,'group': group}) # Redirect back to calendar view context['messages'] = [ {'message': f'Group {res["group"]}', 'detail': res["result"].status_code} for res in results ] return render(request, 'tutorial/bulkevent.html', context) # return HttpResponseRedirect(reverse('calendar')) else: # Render the form return render(request, 'tutorial/bulkevent.html', context) # print('hello') def read_excel(excel_file): wb = openpyxl.load_workbook(excel_file) # getting a particular sheet by name out of many sheets worksheet = wb["schedule"] # print(worksheet) excel_data = list() # iterating over the rows and # getting value from each cell in row for row in worksheet.iter_rows(): row_data = list() for cell in row: row_data.append(str(cell.value)) excel_data.append(row_data) return excel_data
2.25
2
Beans 1.0/clear.py
Washiii/beans
1
12777434
<filename>Beans 1.0/clear.py import platform import os sistem = platform.system() def clear(): if sistem == "Linux" or "Darwin" and sistem != "Windows": os.system('clear') elif sistem == "Windows" and sistem != "Linux" or "Darwin": os.system('cls') else: print('The OS detection has failed. Exiting...') exit()
3
3
libs/plugin_loader.py
gradiuscypher/newsbot-py
0
12777435
import os import json import logging import traceback from importlib import import_module class PluginLoader: def __init__(self): self.logger = logging.getLogger('newsbot.py') self.actions = [] self.parsers = [] self.action_dir = 'actions' self.parser_dir = 'parsers' self.config = None self.action_config = None self.parser_config = None def load_plugins(self, config): self.config = config self.action_config = json.loads(self.config.get('newsbot', 'action_plugins')) self.parser_config = json.loads(self.config.get('newsbot', 'parser_plugins')) # Load the action plugins try: count = 0 for plugin in self.action_config: plugin_file = plugin + '.py' location = os.path.join(self.action_dir, plugin_file) if not os.path.isdir(location): self.actions.append(import_module(self.action_dir + '.' + plugin)) count += 1 self.logger.info("Loaded {} actions.".format(count)) except: self.logger.error(traceback.format_exc()) # Load the parser plugins try: count = 0 for plugin in self.parser_config: plugin_file = plugin + '.py' location = os.path.join(self.parser_dir, plugin_file) if not os.path.isdir(location): self.parsers.append(import_module(self.parser_dir + '.' + plugin)) count += 1 self.logger.info("Loaded {} parsers.".format(count)) except: self.logger.error(traceback.format_exc())
2.5
2
app/tests/v2/test_admin.py
salma-nyagaka/FastFoodFastApi
0
12777436
'''tests for admins endpoints''' import json from unittest import TestCase from manage import Connection from app import create_app class TestOrders(TestCase): '''loads up all confiugration settings''' def setUp(self): self.app = create_app("testing") self.client = self.app.test_client() with self.app.app_context(): Connection().drop() Connection().create() Connection().create_admin() self.order_data = { "name": "Burger", "description": "Beef burger", "price": 60} def login(self): """ test for loggin in """ login_data = { "username": "Admin", "password": "<PASSWORD>" } response = self.client.post( "api/v2/auth/login", data=json.dumps(login_data), headers={'content-type': 'application/json'}) return response def user_login(self): """ test for signing up""" signup_data = { "username": "salmaa", "email": "<EMAIL>", "password": "<PASSWORD>", "confirm_password": "<PASSWORD>" } self.client.post( "api/v2/auth/signup", data=json.dumps(signup_data), headers={'content-type': 'application/json'} ) login_data = { "username": "salmaa", "password": "<PASSWORD>" } response = self.client.post( "api/v2/auth/login", data=json.dumps(login_data), headers={'content-type': 'application/json'} ) return response def get_token(self): """ function to get user token """ response = self.login() token = json.loads(response.data.decode('utf-8')).get('token', None) return token def get_user_token(self): """ function to get user token """ response = self.user_login() token = json.loads(response.data.decode('utf-8')).get('token', None) return token def test_place_new_menu(self): ''' Test to place an order ''' token = self.get_token() order_data = { "name": "Burger", "description": "Beef burger", "image": "Burger", "price": 60 } response = self.client.post( "/api/v2/menu", data=json.dumps(order_data), headers={"content-type": "application/json", 'Authorization': 'Bearer {}'.format(token)} ) response_data = json.loads(response.data.decode('utf-8')) self.assertEqual(response_data['message'], "Food menu created", 201) # def test_all_menu(self): # '''Test get all menu''' # token = self.get_token() # response = self.client.post( # "/api/v2/menu", # data=json.dumps(self.order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)} # ) # response = self.client.get( # "/api/v2/menu", # data=json.dumps(self.order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # print(response.data) # self.assertEqual(response.status_code, 200) def test_empty_menu(self): '''Test get all menu''' token = self.get_token() response = self.client.get( "/api/v2/menu", data=json.dumps(self.order_data), headers={"content-type": "application/json", 'Authorization': 'Bearer {}'.format(token)}) self.assertEqual(response.status_code, 404) # def test_get_specific_menu(self): # '''Test to get a specific menu''' # token = self.get_token() # order_data = { # "name": "Burger", # "description": "Beef burger", # "price": 60 # } # response = self.client.post( # "/api/v2/menu", # data=json.dumps(order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # response = self.client.get( # "/api/v2/menu/1", # data=json.dumps(self.order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # self.assertEqual(response.status_code, 200) # def test_get_specific_order(self): # '''Test to get a specific menu''' # user_token = self.get_user_token() # token = self.get_token() # self.client.post( # "/api/v2/menu", # data=json.dumps(self.order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # data = { # 'name': 'Chicken' # } # response = self.client.post( # "/api/v2/users/orders/1", # data=json.dumps(data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(user_token)}) # response = self.client.get( # "/api/v2/orders/1", # data=json.dumps(self.order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # self.assertEqual(response.status_code, 200) def test_get_non_existing_menu(self): '''Test to get a specific menu''' token = self.get_token() response = self.client.post( "/api/v2/menu", data=json.dumps(self.order_data), headers={"content-type": "application/json", 'Authorization': 'Bearer {}'.format(token)}) response = self.client.get( "/api/v2/menu/2331", data=json.dumps(self.order_data), headers={"content-type": "application/json", 'Authorization': 'Bearer {}'.format(token)}) self.assertEqual(response.status_code, 404) # def test_update_order_status(self): # '''Test to get a specific menu''' # user_token = self.get_user_token() # token = self.get_token() # self.client.post( # "/api/v2/menu", # data=json.dumps(self.order_data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # data = { # 'name': 'Burger' # } # status = { # "status": "accept" # } # self.client.post( # "/api/v2/users/orders/1", # data=json.dumps(data), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(user_token)}) # response = self.client.put( # "/api/v2/update/order/1", # data=json.dumps(status), # headers={"content-type": "application/json", # 'Authorization': 'Bearer {}'.format(token)}) # self.assertEqual(response.status_code, 200)
3.03125
3
tests/testOrtho.py
Rombur/ParrLO
3
12777437
<filename>tests/testOrtho.py<gh_stars>1-10 #!/usr/bin/env python import sys import os import subprocess import string print("Test Ortho...") nargs=len(sys.argv) mpicmd = sys.argv[1]+" "+sys.argv[2]+" "+sys.argv[3] for i in range(4,nargs-2): mpicmd = mpicmd + " "+sys.argv[i] print("MPI run command: {}".format(mpicmd)) exe = sys.argv[nargs-2] inp = sys.argv[nargs-1] print("Input file: %s"%inp) #run main code command = "{} {} -c {}".format(mpicmd,exe,inp) output = subprocess.check_output(command,shell=True) #analyse standard output lines=output.split(b'\n') tol = 1.e-8 for line in lines: #check orthogonality before orthogonalization if line.count(b'orthogonality') and line.count(b'before'): words=line.split() print(words) delta = eval(words[5]) print("Departure from orthogonality before orthogonalization = {}".format(delta)) if delta<100.*tol: print("Departure from orthogonality before orthogonalization too small: {}".format(delta)) sys.exit(1) #check orthogonality after orthogonalization if line.count(b'orthogonality') and line.count(b'after'): words=line.split() delta = eval(words[5]) if delta>tol: print("TEST FAILED: Orthogonalization not achieved!") print("Departure from orthogonality: {}".format(delta)) sys.exit(1) sys.exit(0)
2.734375
3
puller/__init__.py
adesso-mobile/puller
0
12777438
import hmac from typing import Optional from fastapi import FastAPI, Request from .config import get_config import logging import os import subprocess import uvicorn from shellescape import quote app = FastAPI() logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def run_hooks(repo_config, hook_type): old_path = os.getcwd() os.chdir(repo_config["path"]) for hook_file in repo_config.get("hooks", {}).get(hook_type, []): subprocess.run( command_preparation([hook_file], repo_config.get("executing_user")) ) os.chdir(old_path) def command_preparation(command, user): if user is None: return command return ["su", user, "-s", "/bin/bash", "-c", " ".join([quote(c) for c in command])] @app.post(path="/pull/{repo}") async def pull(request: Request, repo: str): c = get_config() #X-Event-Key: diagnostics:ping try: event_key = request.headers["X-Event-Key"] if event_key == 'diagnostics:ping': return "ok" except KeyError: pass try: repo_config = c[repo] except KeyError: logger.error("Repo does not seem to be configured") return body = await request.body() signature_local = hmac.new( bytes(repo_config["shared_secret"], "UTF-8"), body, digestmod="SHA256" ).hexdigest() signature_request = request.headers["X-Hub-Signature"].split("=")[1] if signature_local != signature_request: logger.error("Repo does not seem to be configured") return path = os.getcwd() os.chdir(repo_config["path"]) if repo_config.get("git_reset"): logging.info("Resetting the repository before pulling") subprocess.run( command_preparation( ["git", "reset", "--hard"], repo_config.get("executing_user") ) ) pull_process = subprocess.run( command_preparation(["git", "pull"], repo_config.get("executing_user")) ) git_url_process = subprocess.run( command_preparation( ["git", "config", "--get", "remote.origin.url"], repo_config.get("executing_user"), ), capture_output=True, ) git_url = git_url_process.stdout.decode("UTF-8").split("\n")[0] run_hooks(repo_config, "post_pull") os.chdir(path) if pull_process.returncode != 0 and repo_config.get("git_delete_if_pull_failed"): subprocess.run( command_preparation( ["rm", "-rf", repo_config["path"]], repo_config.get("executing_user") ) ) subprocess.run( command_preparation( ["git", "clone", git_url, repo_config["path"]], repo_config.get("executing_user"), ) ) pass return {} def start_server(): try: port = int(os.environ["PULLER_PORT"]) except: port = 8000 uvicorn.run("puller:app", host="0.0.0.0", port=port, log_level="info")
2.3125
2
ahvl/generate/password.py
gardar/ahvl
4
12777439
# # import modules # from ahvl.options.generate.password import OptionsGeneratePassword from ahvl.helper import AhvlMsg, AhvlHelper from passlib import pwd # # helper/message # msg = AhvlMsg() hlp = AhvlHelper() # # GeneratePassword # class GeneratePassword: def __init__(self, lookup_plugin): # set lookup plugin self.lookup_plugin = lookup_plugin self.variables = lookup_plugin.variables self.kwargs = lookup_plugin.kwargs # set options self.opts = OptionsGeneratePassword(lookup_plugin) def generate(self): # password or passphrase if self.opts.get('pwd_type') == "phrase": passwd = pwd.genphrase(entropy=self.opts.get('pwd_entropy'), length=self.opts.get('pwd_length'), returns=None, words=self.opts.get('pwd_words'), wordset=self.opts.get('pwd_wordset'), sep=self.opts.get('pwd_sep')) else: passwd = pwd.genword(entropy=self.opts.get('pwd_entropy'), length=self.opts.get('pwd_length'), returns=None, chars=self.opts.get('pwd_words'), charset=self.opts.get('pwd_charset')) # return result return passwd
2.546875
3
setka/pipes/SaveResult.py
SlinkoIgor/setka
0
12777440
<reponame>SlinkoIgor/setka from .Pipe import Pipe import os import torch class SaveResult(Pipe): ''' pipe for saving predictions of the model. The results are stored in a directory ```predictions``` and in directory specified in ```trainer._predictions_dir```. Batches are processed with the specified function ```f```. The directory is flushed during the ```__init__``` and the result is saved when the batch is finished (when after_batch is triggered). Args: f (callable): function to process the predictions. dir (string): location where the predictions will be saved ''' def __init__(self, f=None, dir='./'): self.f = f self.index = 0 self.dir = dir self.root_dir = os.path.join(self.dir, './predictions') if not os.path.exists(self.root_dir): os.makedirs(self.root_dir) @staticmethod def get_one(input, item_index): if isinstance(input, (list, tuple)): one = [] for list_index in range(len(input)): one.append(input[list_index][item_index]) return one else: one = input[item_index] return one def after_batch(self): if self.trainer._mode == 'test': res = {} for index in range(len(self.trainer._ids)): one_input = self.get_one(self.trainer._input, index) one_output = self.get_one(self.trainer._output, index) res[self.trainer._ids[index]] = one_output if self.f is not None: res[self.trainer._ids[index]] = self.f( one_input, one_output) torch.save(res, os.path.join(self.root_dir, str(self.index) + '.pth.tar')) self.index += 1
2.515625
3
MLP_InSample_UTD.py
IdeasLabUT/EDA-Artifact-Detection
10
12777441
# -*- coding: utf-8 -*- """ Created on Fri Jun 23 12:03:59 2017 @author: Kevin """ import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import LeaveOneGroupOut,GridSearchCV dataPath = 'UTDallas/' dataName = 'UTD' nJobs = 12 # Number of cores to use # Load feature matrices, labels, and groups (denoting which labeled time # segment each row of the feature matrix comes from) featuresAll = np.loadtxt(dataPath+dataName+'_all.csv',delimiter=',') featuresAcc = np.loadtxt(dataPath+dataName+'_acc.csv',delimiter=',') featuresEda = np.loadtxt(dataPath+dataName+'_eda.csv',delimiter=',') labels = np.loadtxt(dataPath+dataName+'_label.csv') groups = np.loadtxt(dataPath+dataName+'_groups.csv') # Indicates the subjects that have no MAs, in order to exclude them during grid search includeRowsTrain = np.logical_and( np.logical_and(np.where(groups!=5,True,False), np.where(groups!=17,True,False)),np.where(groups!=18,True,False)) # Leave-one-group-out cross-validation cv = LeaveOneGroupOut() # Parameter tuning by grid search solver='lbfgs' activation='relu' regParam = 10.0**np.arange(-3,5) # Comment out one of the choices below (either 1 or 2 hidden layers) # 1 hidden layer hiddenLayerSizes = 2**np.arange(0,8) """ # 2 hidden layers hidden1,hidden2 = np.meshgrid(2**np.arange(0,8),2**np.arange(0,8)) hiddenLayerSizes = np.reshape(np.stack([hidden1,hidden2]), (2,np.size(hidden1))).T.tolist() """ parameters = {'alpha': regParam, 'hidden_layer_sizes': hiddenLayerSizes} gsAll = GridSearchCV(MLPClassifier(solver=solver,activation=activation), parameters,'roc_auc',n_jobs=nJobs,cv=cv,refit=False, verbose=1) gsAll.fit(featuresAll[includeRowsTrain,:],labels[includeRowsTrain], groups[includeRowsTrain]) bestAlphaAll = gsAll.best_params_['alpha'] bestHiddenSizesAll = gsAll.best_params_['hidden_layer_sizes'] gsAcc = GridSearchCV(MLPClassifier(solver=solver,activation=activation), parameters,'roc_auc',n_jobs=nJobs,cv=cv,refit=False, verbose=1) gsAcc.fit(featuresAcc[includeRowsTrain,:],labels[includeRowsTrain], groups[includeRowsTrain]) bestAlphaAcc = gsAcc.best_params_['alpha'] bestHiddenSizesAcc = gsAcc.best_params_['hidden_layer_sizes'] gsEda = GridSearchCV(MLPClassifier(solver=solver,activation=activation), parameters,'roc_auc',n_jobs=nJobs,cv=cv,refit=False, verbose=1) gsEda.fit(featuresEda[includeRowsTrain,:],labels[includeRowsTrain], groups[includeRowsTrain]) bestAlphaEda = gsEda.best_params_['alpha'] bestHiddenSizesEda = gsEda.best_params_['hidden_layer_sizes'] predAll = np.zeros(np.shape(labels)) predAcc = np.zeros(np.shape(labels)) predEda = np.zeros(np.shape(labels)) for train, test in cv.split(featuresAll,labels,groups): mlpAll = MLPClassifier(hidden_layer_sizes=bestHiddenSizesAll, solver=solver,alpha=bestAlphaAll) mlpAll.fit(featuresAll[train,:],labels[train]) predAll[test] = mlpAll.predict_proba(featuresAll[test,:])[:,1] mlpAcc = MLPClassifier(hidden_layer_sizes=bestHiddenSizesAcc, solver=solver,alpha=bestAlphaAcc) mlpAcc.fit(featuresAcc[train,:],labels[train]) predAcc[test] = mlpAcc.predict_proba(featuresAcc[test,:])[:,1] mlpEda = MLPClassifier(hidden_layer_sizes=bestHiddenSizesEda, solver=solver,alpha=bestAlphaEda) mlpEda.fit(featuresEda[train,:],labels[train]) predEda[test] = mlpEda.predict_proba(featuresEda[test,:])[:,1] # Save the scores for further analysis #np.save('MLPpredAllScores_UTD',predAll) #np.save('MLPpredAccScores_UTD',predAcc) #np.save('MLPpredEdaScores_UTD',predEda) print('MLP AUC ALL: %f (%s)' % (roc_auc_score(labels,predAll),gsAll.best_params_)) print('MLP AUC ACC: %f (%s)' % (roc_auc_score(labels,predAcc),gsAcc.best_params_)) print('MLP AUC EDA: %f (%s)' % (roc_auc_score(labels,predEda),gsEda.best_params_))
2.4375
2
settings/development.py
GhalebKhaled/fb-bot-test
0
12777442
<gh_stars>0 from __future__ import unicode_literals from .base import * WSGI_APPLICATION = 'wsgi.heroku.application' WSGI_APPLICATION = 'wsgi.heroku.application' ADMIN_MEDIA_PREFIX = ''.join([STATIC_URL, 'admin/']) import dj_database_url DATABASE_URL = os.environ['DATABASE_URL'] DATABASES = { 'default': dj_database_url.parse(DATABASE_URL), } DATABASES['default']['CONN_MAX_AGE'] = None SECRET_KEY = os.environ['SECRET_KEY'] CONFIGURED_ALLOWED_HOSTS = os.environ['ALLOWED_HOSTS'].split(',') for host in CONFIGURED_ALLOWED_HOSTS: if host: ALLOWED_HOSTS.append(host) SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # djangosecure settings SECURE_FRAME_DENY = True SECURE_HSTS_SECONDS = True SECURE_HSTS_INCLUDE_SUBDOMAINS = True SECURE_BROWSER_XSS_FILTER = True SECURE_SSL_REDIRECT = True SECURE_CONTENT_TYPE_NOSNIFF = True
1.796875
2
renderer/render_utils.py
archonic/frankmocap
1,612
12777443
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np # vertices: frames x meshVerNum x 3 # trifaces: facePolygonNum x 3 = 22800 x 3 def ComputeNormal(vertices, trifaces): if vertices.shape[0] > 5000: print('ComputeNormal: Warning: too big to compute {0}'.format(vertices.shape) ) return #compute vertex Normals for all frames U = vertices[:,trifaces[:,1],:] - vertices[:,trifaces[:,0],:] #frames x faceNum x 3 V = vertices[:,trifaces[:,2],:] - vertices[:,trifaces[:,1],:] #frames x faceNum x 3 originalShape = U.shape #remember: frames x faceNum x 3 U = np.reshape(U, [-1,3]) V = np.reshape(V, [-1,3]) faceNormals = np.cross(U,V) #frames x 13776 x 3 from sklearn.preprocessing import normalize if np.isnan(np.max(faceNormals)): print('ComputeNormal: Warning nan is detected {0}') return faceNormals = normalize(faceNormals) faceNormals = np.reshape(faceNormals, originalShape) if False: #Slow version vertex_normals = np.zeros(vertices.shape) #(frames x 11510) x 3 for fIdx, vIdx in enumerate(trifaces[:,0]): vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] for fIdx, vIdx in enumerate(trifaces[:,1]): vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] for fIdx, vIdx in enumerate(trifaces[:,2]): vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] else: #Faster version # Computing vertex normals, much faster (and obscure) replacement index = np.vstack((np.ravel(trifaces), np.repeat(np.arange(len(trifaces)), 3))).T index_sorted = index[index[:,0].argsort()] vertex_normals = np.add.reduceat(faceNormals[:,index_sorted[:, 1],:][0], np.concatenate(([0], np.cumsum(np.unique(index_sorted[:, 0], return_counts=True)[1])[:-1])))[None, :] vertex_normals = vertex_normals.astype(np.float64) originalShape = vertex_normals.shape vertex_normals = np.reshape(vertex_normals, [-1,3]) vertex_normals = normalize(vertex_normals) vertex_normals = np.reshape(vertex_normals,originalShape) return vertex_normals def ComputeNormal_gpu(vertices, trifaces): import torch import torch.nn.functional as F if vertices.shape[0] > 5000: print('ComputeNormal: Warning: too big to compute {0}'.format(vertices.shape) ) return #compute vertex Normals for all frames #trifaces_cuda = torch.from_numpy(trifaces.astype(np.long)).cuda() vertices_cuda = torch.from_numpy(vertices.astype(np.float32)).cuda() U_cuda = vertices_cuda[:,trifaces[:,1],:] - vertices_cuda[:,trifaces[:,0],:] #frames x faceNum x 3 V_cuda = vertices_cuda[:,trifaces[:,2],:] - vertices_cuda[:,trifaces[:,1],:] #frames x faceNum x 3 originalShape = list(U_cuda.size()) #remember: frames x faceNum x 3 U_cuda = torch.reshape(U_cuda, [-1,3])#.astype(np.float32) V_cuda = torch.reshape(V_cuda, [-1,3])#.astype(np.float32) faceNormals = U_cuda.cross(V_cuda) faceNormals = F.normalize(faceNormals,dim=1) faceNormals = torch.reshape(faceNormals, originalShape) # trifaces has duplicated vertex index, so cannot be parallazied # vertex_normals = torch.zeros(vertices.shape,dtype=torch.float32).cuda() #(frames x 11510) x 3 # for fIdx, vIdx in enumerate(trifaces[:,0]): # vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] # for fIdx, vIdx in enumerate(trifaces[:,1]): # vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] # for fIdx, vIdx in enumerate(trifaces[:,2]): # vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:] # Computing vertex normals, much faster (and obscure) replacement index = np.vstack((np.ravel(trifaces), np.repeat(np.arange(len(trifaces)), 3))).T index_sorted = index[index[:,0].argsort()] vertex_normals = np.add.reduceat(faceNormals[:,index_sorted[:, 1],:][0], np.concatenate(([0], np.cumsum(np.unique(index_sorted[:, 0], return_counts=True)[1])[:-1])))[None, :] vertex_normals = torch.from_numpy(vertex_normals).float().cuda() vertex_normals = F.normalize(vertex_normals,dim=2) vertex_normals = vertex_normals.data.cpu().numpy() #(batch, chunksize, dim) return vertex_normals
2.234375
2
utils/remove_pixel_values.py
kkahatapitiya/occlusion_removal
2
12777444
import os import numpy as np import cv2 import sys #sys.path.insert(0, '/home/kumarak/Desktop/campus_temp/pred2/') #import get_dataset_colormap read="./all_at_100_nocol/" gtread=open("./thinglabels.txt").readlines() gt={} #print(gtread) for i in gtread: gt[int(i.split(':')[0])]=i.split(':')[1][1:-1] #print(gt) #map=get_dataset_colormap.create_label_colormap() #list=[(map[i],i) for i in range(0,len(map))] list=[] for filename in os.listdir(read): #print(filename) if filename.endswith('.png'): img=cv2.imread(read+filename) classes=[gt[i] for i in np.unique(img) if i!=255] list.append((filename,classes)) for i in sorted(list): print(i)
2.59375
3
backend/data/__init__.py
TiFu/runepicker-helper
0
12777445
<reponame>TiFu/runepicker-helper from .champion import championById from .wiki import wikiById
0.921875
1
python-codes/tests/testcircle.py
WillianEsp/RM_with_CV
1
12777446
import cv2 import numpy as np img = cv2.imread('imagem.jpg') ##img = cv2.imread('imagem3.jpg',0) cv2.imshow('imagem',img) img = cv2.GaussianBlur(img, (7, 5), 0) cv2.imshow('imagemblur',img) gray_img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) circles = cv2.HoughCircles(gray_img,cv2.HOUGH_GRADIENT,1,30, param1=50,param2=30,minRadius=0,maxRadius=60) cimg = img circles = np.uint16(np.around(circles)) for i in circles[0,:]: # draw the outer circle cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2) # draw the center of the circle cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3) cv2.circle(cimg,(0,0),i[2],(0,0,255),2) cv2.circle(cimg,(390,390),i[2],(255,0,0),2) cv2.imshow('detected circles',cimg) cv2.waitKey(0) cv2.destroyAllWindows()
3.28125
3
repeat.py
arunkumarang/python
0
12777447
<gh_stars>0 #!/usr/bin/env python import sys def repeat(s, exclaim): """ Return the string 's' repeated 3 times. If exclaim is true, add exclamation mark. """ result = s + s + s if exclaim: result = result + '!!!' return result def main(): print repeat('Yay', False) print repeat('Woo Hoo', True) if __name__ == '__main__': main() #help(len) #help(sys) #dir(list) help(list) sys.exit(0)
3.671875
4
bazel/spec-bundling/index.bzl
aspect-build/dev-infra
33
12777448
load("@build_bazel_rules_nodejs//:index.bzl", "js_library") load("//bazel/esbuild:index.bzl", "esbuild", "esbuild_amd", "esbuild_config") load("//bazel/spec-bundling:spec-entrypoint.bzl", "spec_entrypoint") load("//bazel/spec-bundling:bundle-config.bzl", "spec_bundle_config_file") """ Starlark file exposing a macro for bundling Bazel targets with spec files into a single spec ESM/AMD file. Bundling is helpful as it avoids unnecessary complexity with module resolution at runtime with loaders such as SystemJS or RequireJS. Additionally, given that Angular framework packages do no longer ship UMD bundles, bundling simplifies the integration of those FW packages significantly. It also helps with incorporating Angular linker-processed output of library ESM files. """ def spec_bundle( name, deps, platform, run_angular_linker = False, # We cannot use `ES2017` or higher as that would result in `async/await` not being downleveled. # ZoneJS needs to be able to intercept these as otherwise change detection would not work properly. target = "es2016", workspace_name = None, **kwargs): """ Macro that will bundle all test files, with their respective transitive dependencies, into a single bundle file that can be loaded within Karma or NodeJS directly. Test files are bundled as Angular framework packages do not ship UMD files and to avoid overall complexity with maintaining a runtime loader such as RequireJS or SystemJS. """ is_browser_test = platform == "browser" package_name = native.package_name() spec_entrypoint( name = "%s_spec_entrypoint" % name, deps = deps, testonly = True, ) spec_bundle_config_file( name = "%s_config_file" % name, testonly = True, output_name = "%s_config.mjs" % name, run_angular_linker = run_angular_linker, ) esbuild_config( name = "%s_config" % name, config_file = ":%s_config_file" % name, testonly = True, deps = ["//shared-scripts/angular-linker:js_lib"], ) if is_browser_test and not workspace_name: fail("The spec-bundling target %s is declared as browser test. In order to be able " + "to construct an AMD module name, the `workspace_name` attribute needs to be set.") # Browser tests (Karma) need named AMD modules to load. # TODO(devversion): consider updating `@bazel/concatjs` to support loading JS files directly. esbuild_rule = esbuild_amd if is_browser_test else esbuild amd_name = "%s/%s/%s" % (workspace_name, package_name, name + "_spec") if is_browser_test else None esbuild_rule( name = "%s_bundle" % name, testonly = True, config = ":%s_config" % name, entry_point = ":%s_spec_entrypoint" % name, module_name = amd_name, output = "%s_spec.js" % name, target = target, platform = platform, deps = deps + [":%s_spec_entrypoint" % name], link_workspace_root = True, **kwargs ) js_library( name = name, testonly = True, named_module_srcs = [":%s_bundle" % name], )
1.5
2
sdk/test/test_file.py
DarrahK/yapily-sdk-python
0
12777449
<filename>sdk/test/test_file.py<gh_stars>0 # coding: utf-8 """ Yapily API To access endpoints that require authentication, use your application key and secret created in the Dashboard (https://dashboard.yapily.com) # noqa: E501 The version of the OpenAPI document: 1.157.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import yapily from yapily.models.file import File # noqa: E501 from yapily.rest import ApiException class TestFile(unittest.TestCase): """File unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test File include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = yapily.models.file.File() # noqa: E501 if include_optional : return File( absolute = True, absolute_file = yapily.models.file.File( absolute = True, absolute_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', parent_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), path = '0', total_space = 56, usable_space = 56, ), canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', parent_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), path = '0', total_space = 56, usable_space = 56, ), absolute_path = '0', canonical_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', parent_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), path = '0', total_space = 56, usable_space = 56, ), absolute_path = '0', canonical_file = yapily.models.file.File( absolute = True, absolute_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', parent_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), path = '0', total_space = 56, usable_space = 56, ), absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', parent_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), path = '0', total_space = 56, usable_space = 56, ), canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', parent_file = yapily.models.file.File( absolute = True, absolute_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), absolute_path = '0', canonical_file = yapily.models.file.File( absolute = True, absolute_path = '0', canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), canonical_path = '0', directory = True, file = True, free_space = 56, hidden = True, name = '0', parent = '0', path = '0', total_space = 56, usable_space = 56, ), path = '0', total_space = 56, usable_space = 56 ) else : return File( ) def testFile(self): """Test File""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
2.1875
2
hw_2/hw2_1_b.py
ssupasanya/Coursework
0
12777450
# File: hw2_1_b.py expenses = [ '''Amount:Category:Date:Description''', '''5.25:supply:20170222:box of staples''', '''79.81:meal:20170222:lunch with ABC Corp. clients Al, Bob, and Cy''', '''43.00:travel:20170222:cab back to office''', '''383.75:travel:20170223:flight to Boston, to visit ABC Corp.''', '''55.00:travel:20170223:cab to ABC Corp. in Cambridge, MA''', '''23.25:meal:20170223:dinner at Logan Airport''', '''318.47:supply:20170224:paper, toner, pens, paperclips, tape''', '''142.12:meal:20170226:host dinner with ABC clients, Al, Bob, Cy, Dave, Ellie''', '''303.94:util:20170227:Peoples Gas''', '''121.07:util:20170227:Verizon Wireless''', '''7.59:supply:20170227:Python book (used)''', '''79.99:supply:20170227:spare 20" monitor''', '''49.86:supply:20170228:Stoch Cal for Finance II''', '''6.53:meal:20170302:Dunkin Donuts, drive to Big Inc. near DC''', '''127.23:meal:20170302:dinner, Tavern64''', '''33.07:meal:20170303:dinner, Uncle Julio's''', '''86.00:travel:20170304:mileage, drive to/from Big Inc., Reston, VA''', '''22.00:travel:20170304:tolls''', '''378.81:travel:20170304:Hyatt Hotel, Reston VA, for Big Inc. meeting''', '''1247.49:supply:20170306:Dell 7000 laptop/workstation''', '''6.99:supply:20170306:HDMI cable''', '''212.06:util:20170308:Duquesne Light''', '''23.86:supply:20170309:Practical Guide to Quant Finance Interviews''', '''195.89:supply:20170309:black toner, HP 304A, 2-pack''', '''86.00:travel:20170317:mileage, drive to/from Big Inc., Reston, VA''', '''32.27:meal:20170317:lunch at Clyde's with Fred and Gina, Big Inc.''', '''22.00:travel:20170317:tolls''', '''119.56:util:20170319:Verizon Wireless''', '''284.23:util:20170323:Peoples Gas''', '''8.98:supply:20170325:Flair pens''' ] separated_expenses = [] for expense in expenses: separated_expenses.append(expense.split(':')) expenses_list = [float(expense[0]) for expense in separated_expenses[1:]] print(expenses_list) def sum_of_vals(vals): """ :param vals: an iterable such as list :return: sum of the values from the iterable """ sum = 0 for val in vals: sum += val return sum def mean_val(vals): """ :param vals: an iterable such as list :return: the mean of the values from the iterable """ return sum_of_vals(vals) / len(vals) def stdev_of_vals(vals): """ :param vals: an iterable such as list :return: the sample standard deviation of the values from the iterable """ squared_differences = [] for val in vals: squared_differences.append(pow(val - mean_val(vals), 2)) return pow(sum_of_vals(squared_differences) / (len(vals) - 1), 0.5) def median_val(vals): """ :param vals: an iterable such as list :return: the median of the values from the iterable """ n = len(vals) sorted_vals = sorted(vals) if n % 2 == 0: return (sorted_vals[n // 2] + sorted_vals[n // 2 - 1]) / 2 else: return sorted_vals[n // 2] def min_max_vals(vals): """ :param vals: an iterable such as list :return: a tuple in which the first item is the minimum value from the iterable, and the second item is the maximum value from the iterable """ sorted_vals = sorted(vals) return sorted_vals[0], sorted_vals[-1] print(f"{'Num of values:':14s} {len(expenses_list):8d}\n" f"{'Sum of values:':14s} {sum_of_vals(expenses_list):8.2f}\n" f"{'Mean value:':14s} {mean_val(expenses_list):8.2f}\n" f"{'Std Deviation:':14s} {stdev_of_vals(expenses_list):8.2f}\n" f"{'Median value:':14s} {median_val(expenses_list):8.2f}\n" f"{'Minimum value:':14s} {min_max_vals(expenses_list)[0]:8.2f}\n" f"{'Maximum value:':14s} {min_max_vals(expenses_list)[1]:8.2f}")
1.773438
2