max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/sima/simo/blueprints/timedependentvolumemass.py
SINTEF/simapy
0
12776251
<reponame>SINTEF/simapy # # Generated with TimeDependentVolumeMassBlueprint from dmt.blueprint import Blueprint from dmt.dimension import Dimension from dmt.attribute import Attribute from dmt.enum_attribute import EnumAttribute from dmt.blueprint_attribute import BlueprintAttribute from sima.sima.blueprints.namedobject import NamedObjectBlueprint class TimeDependentVolumeMassBlueprint(NamedObjectBlueprint): """""" def __init__(self, name="TimeDependentVolumeMass", package_path="sima/simo", description=""): super().__init__(name,package_path,description) self.attributes.append(Attribute("name","string","",default="")) self.attributes.append(Attribute("description","string","",default="")) self.attributes.append(Attribute("_id","string","",default="")) self.attributes.append(BlueprintAttribute("scriptableValues","sima/sima/ScriptableValue","",True,Dimension("*"))) self.attributes.append(BlueprintAttribute("point","sima/sima/Point3","Mass point (local coordinates).",True)) self.attributes.append(BlueprintAttribute("flowRates","sima/simo/FlowRateItem","",True,Dimension("*"))) self.attributes.append(Attribute("vol0","number","Volume of liquid at t=0",default=0.0)) self.attributes.append(Attribute("volMax","number","Maximum allowable volume",default=0.0)) self.attributes.append(Attribute("volMin","number","Minimum allowable volume",default=0.0)) self.attributes.append(Attribute("volRateMax","number","Maximum allowable volume rate (HLA only)",default=0.0)) self.attributes.append(Attribute("volRateMin","number","Minimum allowable volume rate (HLA only)",default=0.0)) self.attributes.append(Attribute("density","number","Density of liquid in tank",default=0.0)) self.attributes.append(BlueprintAttribute("vectorZ","sima/sima/Vector3","Vector defining portion z-axis in local system",True)) self.attributes.append(BlueprintAttribute("vectorXZ","sima/sima/Vector3","Vector in local xz-plane def. portion x-axis",True)) self.attributes.append(BlueprintAttribute("portions","sima/simo/VolumeMassPortion","",True,Dimension("*")))
1.921875
2
misago/misago/users/tests/test_profilefields.py
vascoalramos/misago-deployment
2
12776252
<reponame>vascoalramos/misago-deployment<filename>misago/misago/users/tests/test_profilefields.py from django.contrib.auth import get_user_model from django.test import TestCase from ..profilefields import ProfileFields User = get_user_model() class ProfileFieldsLoadTests(TestCase): def test_no_groups(self): """profile fields util handles empty list""" profilefields = ProfileFields([]) profilefields.load() self.assertFalse(profilefields.fields_dict) def test_empty_group(self): """profile fields util handles empty group""" profilefields = ProfileFields([{"name": "Test", "fields": []}]) profilefields.load() self.assertFalse(profilefields.fields_dict) def test_field_defines_fieldname(self): """fields need to define fieldname""" profilefields = ProfileFields( [ { "name": "Test", "fields": [ "misago.users.tests.testfiles.profilefields.NofieldnameField" ], } ] ) with self.assertRaises(ValueError): profilefields.load() try: profilefields.load() except ValueError as e: error = str(e) self.assertIn( "misago.users.tests.testfiles.profilefields.NofieldnameField", error ) self.assertIn("profile field has to specify fieldname attribute", error) def test_detect_repeated_imports(self): """fields can't be specified multiple times""" profilefields = ProfileFields( [ { "name": "Test", "fields": ["misago.users.profilefields.default.TwitterHandleField"], }, { "name": "<NAME>", "fields": ["misago.users.profilefields.default.TwitterHandleField"], }, ] ) with self.assertRaises(ValueError): profilefields.load() try: profilefields.load() except ValueError as e: error = str(e) self.assertIn( "misago.users.profilefields.default.TwitterHandleField", error ) self.assertIn("profile field has been specified twice", error) def test_detect_repeated_fieldnames(self): """fields can't reuse other field's fieldnames""" profilefields = ProfileFields( [ { "name": "Test", "fields": [ "misago.users.tests.testfiles.profilefields.FieldnameField" ], }, { "name": "<NAME>", "fields": [ # pylint: disable=line-too-long "misago.users.tests.testfiles.profilefields.RepeatedFieldnameField" ], }, ] ) with self.assertRaises(ValueError): profilefields.load() try: profilefields.load() except ValueError as e: error = str(e) self.assertIn( "misago.users.tests.testfiles.profilefields.FieldnameField", error ) self.assertIn( "misago.users.tests.testfiles.profilefields.RepeatedFieldnameField", error, ) self.assertIn( 'field defines fieldname "hello" that is already in use by the', error ) def test_field_correct_field(self): """util loads correct field""" field_path = "misago.users.profilefields.default.RealNameField" profilefields = ProfileFields([{"name": "Test", "fields": [field_path]}]) profilefields.load() self.assertIn(field_path, profilefields.fields_dict)
2.4375
2
inherit.py
Prashant269/python
0
12776253
class baseclass(object): def printhim(self): print "prasanth" class inhertingclass(baseclass): pass x=inhertingclass() x.printhim()
3.21875
3
cospar/help_functions/_additional_analysis.py
rbonhamcarter/cospar
1
12776254
<gh_stars>1-10 import numpy as np from scipy import stats import scipy.sparse as ssp import pandas as pd from .. import settings from .. import logging as logg import time import ot.bregman as otb from ._help_functions_CoSpar import * from matplotlib import pyplot as plt import seaborn as sns from .. import plotting as pl """ This is not a necessary component of CoSpar. It requires additional packages. When publishing, you can change the __ini__ setting to remove this part. Making it too fat increase the work for maintenance. """ def Wasserstein_distance_private( prob_t0, prob_t1, full_cost_matrix, OT_epsilon=0.05, OT_stopThr=10 ** (-8), OT_max_iter=1000, ): """ Compute symmetric Wasserstein distance between two distributions. Parameters ---------- prob_t0: `np.array`, (n_1,) Distribution on initial state space. prob_t1: `np.array`, (n_2,) Distribution on later state space full_cost_matrix: `np.array`, shape (n_1, n_2) A cost matrix to map all initial states to all later states. This is a full matrix. OT_epsilon: `float`, optional (default: 0.05) Entropic regularization parameter to compute the optional transport map from target to ref. OT_stopThr: `float`, optional (default: 10**(-8)) The stop thresholding for computing the transport map. OT_max_iter: `float`, optional (default: 1000) The maximum number of iteration for computing the transport map. Returns ------- A vector for [forward_distance, backward_distance, the average] """ # normalized distribution prob_t0 = np.array(prob_t0) prob_t1 = np.array(prob_t1) sp_id_t0 = np.nonzero(prob_t0 > 0)[0] sp_id_t1 = np.nonzero(prob_t1 > 0)[0] resol = 10 ** (-10) input_t0 = prob_t0[sp_id_t0] / (resol + np.sum(prob_t0[sp_id_t0])) input_t1 = prob_t1[sp_id_t1] / (resol + np.sum(prob_t1[sp_id_t1])) logg.info("Compute forward transition map") sp_cost_matrix_t0t1 = full_cost_matrix[sp_id_t0][:, sp_id_t1] OT_transition_map_t0t1 = otb.sinkhorn_stabilized( input_t0, input_t1, sp_cost_matrix_t0t1, OT_epsilon, numItermax=OT_max_iter, stopThr=OT_stopThr, ) # if more than 10% of the prediction is less than 50% accurate, then we declare it a failure flag_1 = np.sum(OT_transition_map_t0t1.sum(1) < 0.5 * input_t0) > 0.1 * len( input_t0 ) flag_2 = np.sum(OT_transition_map_t0t1.sum(1) > 2 * input_t0) > 0.1 * len(input_t0) if not (flag_1 or flag_2): Wass_dis = np.sum(OT_transition_map_t0t1 * sp_cost_matrix_t0t1) return Wass_dis else: logg.error("Forward transition map construction failed") logg.info("Compute backward transition map instead") sp_cost_matrix_t1t0 = full_cost_matrix[sp_id_t1][:, sp_id_t0] OT_transition_map_t1t0 = otb.sinkhorn_stabilized( input_t1, input_t0, sp_cost_matrix_t1t0, OT_epsilon, numItermax=OT_max_iter, stopThr=OT_stopThr, ) flag_3 = np.sum(OT_transition_map_t1t0.sum(1) < 0.5 * input_t1) > 0.1 * len( input_t1 ) flag_4 = np.sum(OT_transition_map_t1t0.sum(1) > 2 * input_t1) > 0.1 * len( input_t1 ) Wass_dis = np.sum(OT_transition_map_t1t0 * sp_cost_matrix_t1t0) if not (flag_3 or flag_4): return Wass_dis else: logg.error("Backward transition map construction failed") return None def Wasserstein_distance( adata, group_A, group_B, OT_dis_KNN=5, OT_epsilon=0.05, compute_new=False, show_groups=True, ): """ Compute Wasserstein between two populations Parameters ---------- adata: :class:`~anndata.AnnData` object OT_epsilon: `float`, optional (default: 0.02) The entropic regularization, >0. A larger value increases uncertainty of the transition. OT_dis_KNN: `int`, optional (default: 5) Number of nearest neighbors to construct the KNN graph for computing the shortest path distance. OT_epsilon: `float`, optional (default: 0.05) Entropic regularization parameter to compute the optional transport map from target to ref. compute_new: `bool`, optional (default: False) If True, compute OT_map and also the shortest path distance from scratch, whether it was computed and saved before or not. show_groups: `bool`, optional (default: True) Plot each group, and overlay them on top of each other. Returns ------- A vector for [forward_distance, backward_distance, the average] """ data_des = adata.uns["data_des"][-1] data_path = settings.data_path figure_path = settings.figure_path group_A = np.array(group_A).astype(float) group_B = np.array(group_B).astype(float) if (len(group_A) != len(group_B)) or (len(group_A) != adata.shape[0]): logg.error("Size mismatch between group_A, group_B, and adata.shape[0].") return None else: if (np.sum(group_A > 0) == 0) or (np.sum(group_B > 0) == 0): logg.error("No cells selected.") return None if show_groups: X_emb = adata.obsm["X_emb"] x_emb = X_emb[:, 0] y_emb = X_emb[:, 1] fig_width = settings.fig_width fig_height = settings.fig_height point_size = settings.fig_point_size fig = plt.figure(figsize=(3 * fig_width, fig_height)) ax = plt.subplot(1, 3, 1) pl.customized_embedding( x_emb, y_emb, group_A, point_size=point_size, set_lim=False, ax=ax, title="Group A", ) ax = plt.subplot(1, 3, 2) pl.customized_embedding( x_emb, y_emb, group_B, point_size=point_size, set_lim=False, ax=ax, title="Group B", ) resol = 10 ** (-10) group_A = group_A / (resol + np.max(group_A)) group_B = group_B / (resol + np.max(group_B)) vector_array = group_A - group_B ax = plt.subplot(1, 3, 3) new_idx = np.argsort(abs(vector_array)) pl.customized_embedding( x_emb[new_idx], y_emb[new_idx], vector_array[new_idx], title="Overlay", point_size=point_size, set_lim=False, ax=ax, color_map=plt.cm.bwr, order_points=False, ) plt.tight_layout() fig.savefig( f"{figure_path}/{data_des}_Wass_dis_group_overlay.{settings.file_format_figs}" ) SPD_file_name = ( f"{data_path}/{data_des}_ShortestPathDistanceMatrix_KNN{OT_dis_KNN}.npy" ) if os.path.exists(SPD_file_name) and (not compute_new): logg.info("Load pre-computed shortest path distance matrix") OT_cost_matrix = np.load(SPD_file_name) else: logg.info("Compute new shortest path distance matrix") t = time.time() ShortPath_dis = compute_shortest_path_distance( adata, num_neighbors_target=OT_dis_KNN, mode="distances", method="others", normalize=False, ) # we do not want normalization here OT_cost_matrix = ShortPath_dis np.save( SPD_file_name, OT_cost_matrix ) # This is not a sparse matrix at all. logg.info( f"Finishing computing shortest-path distance, used time {time.time()-t}" ) Wass_dis = Wasserstein_distance_private( group_A, group_B, OT_cost_matrix, OT_epsilon=OT_epsilon ) return Wass_dis ######################## # Miscellaneous analysis ######################## def assess_fate_prediction_by_correlation_v0( adata, ground_truth, selected_time_points, plot_style="boxplot", figure_index="", show_groups=True, ): """ Assess biary fate prediction by correlation Parameters ---------- adata: :class:`~anndata.AnnData` object It should be run through cs.pl.binary_fate_bias ground_truth: `np.array` A vector of expected fate bias for each cell in the full space corresponding to adata_orig. We expect bias to fate A has value (0,1], and bias towards fate B has value [-1,0). Cells with value zeros are discarded before computing correlation. selected_time_points: `list` A list of selected time points for making the comparison. plot_style: `string` Plot used to visualize the results. It can be {'boxplot','scatter'}. figure_index: `string` optional (default: '') String index for annotate filename for saved figures. Used to distinuigh plots from different conditions. show_groups: `bool`, optional (default: True) Plot each group. Returns ------- correlation with ground truth at selected time points. """ data_des = adata.uns["data_des"][-1] if "binary_fate_bias" not in adata.uns.keys(): logg.error( "Binary fate bias not computed yet! Please run cs.pl.binary_fate_bias first!" ) return None else: fig_width = settings.fig_width fig_height = settings.fig_height point_size = settings.fig_point_size time_info = np.array(adata.obs["time_info"]) sp_idx_time = selecting_cells_by_time_points(time_info, selected_time_points) ground_truth_sp = np.array(ground_truth)[adata.uns["sp_idx"]] binary_fate_bias = adata.uns["binary_fate_bias"][1] sel_index = (abs(ground_truth_sp) > 0) & sp_idx_time ground_truth_sp = (1 + ground_truth_sp) / 2 # transform the value to 0 and 1. if np.sum(sel_index) == 0: logg.error("No cells selected.") return None else: corr = np.corrcoef(ground_truth_sp[sel_index], binary_fate_bias[sel_index])[ 0, 1 ] if np.isnan(corr): logg.error("Correlation is NaN.") return None else: corr = round(100 * corr) / 100 if show_groups: X_emb = adata.obsm["X_emb"] x_emb = X_emb[:, 0] y_emb = X_emb[:, 1] fig_width = settings.fig_width fig_height = settings.fig_height point_size = settings.fig_point_size fig = plt.figure(figsize=(2 * fig_width, fig_height)) ax = plt.subplot(1, 2, 1) new_idx = np.argsort(abs(ground_truth_sp - 0.5)) pl.customized_embedding( x_emb[new_idx], y_emb[new_idx], ground_truth_sp[new_idx], point_size=point_size, set_lim=False, color_map=plt.cm.bwr, ax=ax, title="Group A", order_points=False, ) ax = plt.subplot(1, 2, 2) new_idx = np.argsort(abs(binary_fate_bias - 0.5)) pl.customized_embedding( x_emb[new_idx], y_emb[new_idx], binary_fate_bias[new_idx], point_size=point_size, set_lim=False, color_map=plt.cm.bwr, ax=ax, title="Group B", order_points=False, ) if plot_style == "boxplot": data_frame = pd.DataFrame( { "Ref": ground_truth_sp[sel_index], "Prediction": binary_fate_bias[sel_index], } ) fig = plt.figure(figsize=(fig_width, fig_height)) ax = plt.subplot(1, 1, 1) sns.violinplot( x="Ref", y="Prediction", data=data_frame, ax=ax, color="red" ) sns.set(style="white") # ax.set_ylim([-0.5,20]) ax.set_xlabel("Reference fate bias") ax.set_ylabel("Predicted fate bias") plt.tight_layout() ax.set_title(f"Corr={corr}, {figure_index}") fig.savefig( f"{settings.figure_path}/{data_des}_{figure_index}_reference_prediction_box.{settings.file_format_figs}" ) if plot_style == "scatter": fig = plt.figure(figsize=(fig_width, fig_height)) ax = plt.subplot(1, 1, 1) ax.plot( ground_truth_sp[sel_index], binary_fate_bias[sel_index], "*r" ) ax.set_xlabel("Reference fate bias") ax.set_ylabel("Predicted fate bias") plt.tight_layout() ax.set_title(f"Corr={corr}, {figure_index}") fig.savefig( f"{settings.figure_path}/{data_des}_{figure_index}_reference_prediction_scatter.{settings.file_format_figs}" ) return corr def assess_fate_prediction_by_correlation( adata, expect_vector, predict_vecotr, selected_time_points, plot_style="scatter", figure_index="", show_groups=True, mask=None, remove_neutral_ref=True, background=False, vmax=1, vmin=0, ): """ Assess biary fate prediction by correlation The expect_vector and predict_vecotr are of the same length, in the range (0,1). We only use cells with non-neutral bias (which is 0.5) to compute the fate correlation. Parameters ---------- adata: :class:`~anndata.AnnData` object It should be run through pl.prediction expect_vector: `np.array` A vector of expected fate bias for each cell. The bias range is (0,1), with 0.5 being neutral. The neutral cells are discarded before computing correlation. predict_vector: `np.array` A vector of predicted fate bias for each cell. The bias range is (0,1), with 0.5 being neutral. selected_time_points: `list` A list of selected time points for making the comparison. plot_style: `string`, optional (default: 'scatter') Plot used to visualize the results. It can be {'boxplot','scatter'}. figure_index: `string` optional (default: '') String index for annotate filename for saved figures. Used to distinuigh plots from different conditions. show_groups: `bool`, optional (default: True) Plot each group. mask: `np.array`, optional (default: None) A boolean array to define which cells are used for computing correlation. remove_neutral_ref: `bool`, optional (default: True) Remove neutral reference states before computing the correlation. background: `bool`, optional (default: False) Show background at given time points. vmax: `float`, optional (default: 1) Maximum value to plot. vmin: `float`, optional (default: 0) Minimum value to plot. Returns ------- correlation between expect_vector and predict_vector at selected time points. """ # Copy the vector to avoid changing the original vector. reference = expect_vector.copy() prediction = predict_vecotr.copy() data_des = adata.uns["data_des"][-1] if (len(reference) != len(prediction)) or (len(reference) != adata.shape[0]): logg.error("Size mismatch between reference, prediction, and adata.shape[0].") return None else: fig_width = settings.fig_width fig_height = settings.fig_height point_size = settings.fig_point_size time_info = np.array(adata.obs["time_info"]) sp_idx_time = selecting_cells_by_time_points(time_info, selected_time_points) if (mask is not None) and (len(mask) == len(prediction)): mask = np.array(mask) reference[~mask] = 0.5 prediction[~mask] = 0.5 if remove_neutral_ref: logg.info( "Remove neutral states in the reference before computing correlation." ) sel_index = ( (abs(reference - 0.5) > 0) & sp_idx_time & ~np.isnan(reference) & ~np.isnan(prediction) ) else: sel_index = sp_idx_time if np.sum(sel_index) == 0: logg.error("No cells selected.") return None else: reference_sp = reference[sel_index] prediction_sp = prediction[sel_index] # df=pd.DataFrame({'Reference':reference,'Prediction':prediction,'sel_index':sel_index}) corr = np.corrcoef(reference_sp, prediction_sp)[0, 1] error = np.mean(abs(prediction_sp - reference_sp)) error = round(100 * error) / 100 if np.isnan(corr): # logg.error("Correlation is NaN.") corr = "NaN" else: corr = round(100 * corr) / 100 if show_groups: X_emb = adata.obsm["X_emb"] x_emb = X_emb[:, 0] y_emb = X_emb[:, 1] fig = plt.figure(figsize=(fig_width, fig_height)) ax = plt.subplot(1, 1, 1) vector_temp = reference_sp new_idx = np.argsort(abs(vector_temp - 0.5)) if background: if mask is not None: sel_index_1 = mask & sp_idx_time else: sel_index_1 = sp_idx_time pl.customized_embedding( x_emb[sel_index_1], y_emb[sel_index_1], np.ones(np.sum(sel_index_1)), point_size=point_size, set_lim=False, ax=ax, order_points=False, ) pl.customized_embedding( x_emb[sel_index][new_idx], y_emb[sel_index][new_idx], vector_temp[new_idx], point_size=point_size, set_lim=False, color_map=plt.cm.bwr, ax=ax, title="Reference", order_points=False, vmax=vmax, vmin=vmin, ) fig.savefig( f"{settings.figure_path}/{data_des}_{figure_index}_reference.{settings.file_format_figs}" ) fig = plt.figure(figsize=(fig_width, fig_height)) ax = plt.subplot(1, 1, 1) vector_temp = prediction_sp new_idx = np.argsort(abs(vector_temp - 0.5)) if background: if mask is not None: sel_index_1 = mask & sp_idx_time else: sel_index_1 = sp_idx_time pl.customized_embedding( x_emb[sel_index_1], y_emb[sel_index_1], np.ones(np.sum(sel_index_1)), point_size=point_size, set_lim=False, ax=ax, order_points=False, ) pl.customized_embedding( x_emb[sel_index][new_idx], y_emb[sel_index][new_idx], vector_temp[new_idx], point_size=point_size, set_lim=False, color_map=plt.cm.bwr, ax=ax, title="Prediction", order_points=False, vmax=vmax, vmin=vmin, ) fig.savefig( f"{settings.figure_path}/{data_des}_{figure_index}_prediction.{settings.file_format_figs}" ) if plot_style == "boxplot": reference_sp[reference_sp < 0.01] = 0 reference_sp[reference_sp > 0.99] = 1 data_frame = pd.DataFrame( {"Ref": reference_sp, "Prediction": prediction_sp} ) fig = plt.figure(figsize=(fig_width, fig_height)) ax = plt.subplot(1, 1, 1) sns.violinplot( x="Ref", y="Prediction", data=data_frame, ax=ax, color="red" ) sns.set(style="white") # ax.set_ylim([-0.5,20]) ax.set_xlabel("Reference fate bias") ax.set_ylabel("Predicted fate bias") plt.tight_layout() ax.set_title(f"R={corr}, Error={error} {figure_index}") fig.savefig( f"{settings.figure_path}/{data_des}_{figure_index}_reference_prediction_box.{settings.file_format_figs}" ) if plot_style == "scatter": fig = plt.figure(figsize=(fig_width, fig_height)) ax = plt.subplot(1, 1, 1) ax.plot(reference_sp, prediction_sp, "*r") ax.set_xlabel("Reference fate bias") ax.set_ylabel("Predicted fate bias") plt.tight_layout() ax.set_title(f"R={corr}, Error={error} {figure_index}") fig.savefig( f"{settings.figure_path}/{data_des}_{figure_index}_reference_prediction_scatter.{settings.file_format_figs}" ) return corr, error ####### plot heat maps for genes def heatmap_v1( figure_path, data_matrix, variable_names_x, variable_names_y, int_seed=10, data_des="", log_transform=False, color_map=plt.cm.Reds, vmin=None, vmax=None, fig_width=4, fig_height=6, color_bar=True, ): """ Plot ordered heat map of data_matrix matrix. Parameters ---------- figure_path: `str` path to save figures data_matrix: `np.array` A matrix whose columns should match variable_names variable_names: `list` List of variable names color_bar_label: `str`, optional (default: 'cov') Color bar label data_des: `str`, optional (default: '') String to distinguish different saved objects. int_seed: `int`, optional (default: 10) Seed to initialize the plt.figure object (to avoid plotting on existing object). log_transform: `bool`, optional (default: False) If true, perform a log transform. This is needed when the data matrix has entries varying by several order of magnitude. """ # o = get_hierch_order(data_matrix) # o1 = get_hierch_order(data_matrix.T) plt.figure(int_seed) if log_transform: plt.imshow( np.log(data_matrix + 1) / np.log(10), aspect="auto", cmap=color_map, vmin=vmin, vmax=vmax, ) else: plt.imshow(data_matrix, aspect="auto", cmap=color_map, vmax=vmax, vmin=vmin) variable_names_x = list(variable_names_x) variable_names_y = list(variable_names_y) if variable_names_x == "": plt.xticks([]) else: plt.xticks( np.arange(data_matrix.shape[1]) + 0.4, variable_names_x, rotation=70, ha="right", ) if variable_names_y == "": plt.yticks([]) else: plt.yticks( np.arange(data_matrix.shape[0]), variable_names_y, rotation=0, ha="right" ) if color_bar: cbar = plt.colorbar() cbar.set_label("Z-Score", rotation=270, labelpad=20) plt.gcf().set_size_inches((fig_width, fig_height)) plt.tight_layout() plt.savefig(figure_path + f"/{data_des}_data_matrix.{settings.file_format_figs}") def gene_expression_heat_map( adata, state_info, gene_list, selected_fates, rename_selected_fates=None, color_bar=False, method="zscore", fig_width=6, fig_height=3, horizontal="True", log_transform=False, vmin=None, vmax=None, ): """ Plot heatmap of gene expression within given clusters. The gene expression can be the relative value or zscore, depending on method {'zscore','Relative'} """ ( mega_cluster_list, valid_fate_list, fate_array_flat, sel_index_list, ) = analyze_selected_fates(selected_fates, state_info) gene_full = np.array(adata.var_names) gene_list = np.array(gene_list) sel_idx = np.in1d(gene_full, gene_list) valid_sel_idx = np.in1d(gene_list, gene_full) if np.sum(valid_sel_idx) > 0: cleaned_gene_list = gene_list[valid_sel_idx] if np.sum(valid_sel_idx) < len(gene_list): invalid_gene_list = gene_list[~valid_sel_idx] print(f"These are invalid gene names: {invalid_gene_list}") else: print("No valid genes selected.") gene_expression_matrix = np.zeros((len(mega_cluster_list), len(cleaned_gene_list))) X = adata.X resol = 10 ** (-10) if method == "zscore": logg.info("Using zscore (range: [-2,2], or [-1,1]") else: logg.info("Using relative gene expression. Range [0,1]") for k, temp in enumerate(cleaned_gene_list): temp_id = np.nonzero(gene_full == temp)[0][0] temp_vector = np.zeros(len(sel_index_list)) for j, temp_idx in enumerate(sel_index_list): temp_vector[j] = np.mean(X[temp_idx, temp_id]) if method == "zscore": z_score = stats.zscore(temp_vector) gene_expression_matrix[:, k] = z_score else: temp_vector = (temp_vector + resol) / (resol + np.sum(temp_vector)) gene_expression_matrix[:, k] = temp_vector if (rename_selected_fates is None) or ( len(rename_selected_fates) != len(mega_cluster_list) ): rename_selected_fates = mega_cluster_list if horizontal: heatmap_v1( settings.figure_path, gene_expression_matrix, cleaned_gene_list, rename_selected_fates, int_seed=10, data_des="", log_transform=False, color_map=plt.cm.coolwarm, fig_width=fig_width, fig_height=fig_height, color_bar=color_bar, vmin=vmin, vmax=vmax, ) else: heatmap_v1( settings.figure_path, gene_expression_matrix.T, rename_selected_fates, cleaned_gene_list, int_seed=10, data_des="", log_transform=False, color_map=plt.cm.coolwarm, fig_width=fig_height, fig_height=fig_width, color_bar=color_bar, vmin=vmin, vmax=vmax, ) return gene_expression_matrix # ####### plot heat maps for genes # def heatmap_v1(figure_path, data_matrix, variable_names_x,variable_names_y,int_seed=10, # data_des='',log_transform=False,color_map=plt.cm.Reds,vmin=None,vmax=None,fig_width=4,fig_height=6, # color_bar=True): # """ # Plot ordered heat map of data_matrix matrix. # Parameters # ---------- # figure_path: `str` # path to save figures # data_matrix: `np.array` # A matrix whose columns should match variable_names # variable_names: `list` # List of variable names # color_bar_label: `str`, optional (default: 'cov') # Color bar label # data_des: `str`, optional (default: '') # String to distinguish different saved objects. # int_seed: `int`, optional (default: 10) # Seed to initialize the plt.figure object (to avoid # plotting on existing object). # log_transform: `bool`, optional (default: False) # If true, perform a log transform. This is needed when the data # matrix has entries varying by several order of magnitude. # """ # #o = get_hierch_order(data_matrix) # #o1 = get_hierch_order(data_matrix.T) # plt.figure(int_seed) # if log_transform: # plt.imshow(np.log(data_matrix+1)/np.log(10), aspect='auto',cmap=color_map, vmin=vmin,vmax=vmax) # else: # plt.imshow(data_matrix, aspect='auto',cmap=color_map, vmax=vmax,vmin=vmin) # variable_names_x=list(variable_names_x) # variable_names_y=list(variable_names_y) # if variable_names_x=='': # plt.xticks([]) # else: # plt.xticks(np.arange(data_matrix.shape[1])+.4, variable_names_x, rotation=70, ha='right') # if variable_names_y=='': # plt.yticks([]) # else: # plt.yticks(np.arange(data_matrix.shape[0]), variable_names_y, rotation=0, ha='right') # if color_bar: # cbar = plt.colorbar() # cbar.set_label('Number of barcodes (log10)', rotation=270, labelpad=20) # plt.gcf().set_size_inches((fig_width,fig_height)) # plt.tight_layout() # plt.savefig(figure_path+f'/{data_des}_data_matrix.{settings.file_format_figs}') # def gene_expression_heat_map(adata, state_info, gene_list,selected_fates,rename_selected_fates=None,color_bar=False,fig_width=6,fig_height=3,horizontal='True',log_transform=False,vmin=None,vmax=None): # """ # Cacluate the gene expression Z-score of each gene within given clusters # """ # mega_cluster_list,valid_fate_list,fate_array_flat,sel_index_list=analyze_selected_fates(selected_fates,state_info) # gene_full=np.array(adata.var_names) # gene_list=np.array(gene_list) # sel_idx=np.in1d(gene_full,gene_list) # valid_sel_idx=np.in1d(gene_list,gene_full) # if np.sum(valid_sel_idx)>0: # cleaned_gene_list=gene_list[valid_sel_idx] # if np.sum(valid_sel_idx)<len(gene_list): # invalid_gene_list=gene_list[~valid_sel_idx] # print(f"These are invalid gene names: {invalid_gene_list}") # else: # print("No valid genes selected.") # gene_expression_matrix=np.zeros((len(mega_cluster_list),len(cleaned_gene_list))) # X=adata.X # resol=10**(-10) # for k,temp in enumerate(cleaned_gene_list): # temp_id=np.nonzero(gene_full==temp)[0][0] # temp_vector=np.zeros(len(sel_index_list)) # for j,temp_idx in enumerate(sel_index_list): # temp_vector[j]=np.mean(X[temp_idx,temp_id]) # z_score=stats.zscore(temp_vector) # #temp_vector=(temp_vector+resol)/(resol+np.sum(temp_vector)) # #gene_expression_matrix[:,k]=temp_vector # gene_expression_matrix[:,k]=z_score # if (rename_selected_fates is None) or (len(rename_selected_fates) != len(mega_cluster_list)): # rename_selected_fates=mega_cluster_list # if horizontal: # heatmap_v1(settings.figure_path, gene_expression_matrix, cleaned_gene_list,rename_selected_fates,int_seed=10, # data_des='',log_transform=False,color_map=plt.cm.coolwarm,fig_width=fig_width,fig_height=fig_height, # color_bar=color_bar,vmin=vmin,vmax=vmax) # else: # heatmap_v1(settings.figure_path, gene_expression_matrix.T,rename_selected_fates, cleaned_gene_list,int_seed=10, # data_des='',log_transform=False,color_map=plt.cm.coolwarm,fig_width=fig_height,fig_height=fig_width, # color_bar=color_bar,vmin=vmin,vmax=vmax) # return gene_expression_matrix def ML_learn_fate_bias( adata_train, adata_test, train_obs_name, thresh_low=0.4, thresh_high=0.6, test_obs_name="ML_predicted_bias", ): from sklearn.neural_network import MLPClassifier train_fate_bias = adata_train.obs[train_obs_name] final_fate_train = np.zeros(len(train_fate_bias), dtype=int) ## convert it to discrete label final_fate_train[train_fate_bias < thresh_low] = 0 final_fate_train[ (train_fate_bias >= thresh_low) & (train_fate_bias <= thresh_high) ] = 1 final_fate_train[train_fate_bias > thresh_high] = 2 final_coord_train = adata_train.obsm["X_pca"] t = time.time() clf = MLPClassifier(random_state=1, max_iter=300, alpha=0.1).fit( final_coord_train, final_fate_train ) final_coord_test = adata_test.obsm["X_pca"] pred_test = clf.predict(final_coord_test) adata_test.obs[test_obs_name] = pred_test / 2 pl.plot_precomputed_fate_bias(adata_test, test_obs_name)
2.25
2
testsite/main/views.py
navdhakar/django-project
0
12776255
<filename>testsite/main/views.py from django.shortcuts import render, redirect from django.http import HttpResponse from .models import Tutorial, TutorialCategory, TutorialSeries from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import login, logout, authenticate from django.contrib import messages def homepage(request): return render(request=request, template_name="main/home.html", context={"tutorials": Tutorial.objects.all()}) # Create your views here. def register(request): if request.method == "POST": form = UserCreationForm(request.POST) if form.is_valid(): user = form.save() username = form.cleaned_data.get('username') messages.success(request, f"new account created: {username}") login(request, user) messages.info(request, f"you are now logged in as {username}") return redirect("main:homepage") else: for msg in form.error_messages: messages.error(request, f"{msg}: {form.error_messages[msg]}") form = UserCreationForm return render(request, "main/register.html", context={"form":form}) def logout_req(request): logout(request) messages.info(request, "logged out successfully") return redirect("main:homepage")
2.421875
2
client/wmdriver.py
imrehg/lambdam
1
12776256
<gh_stars>1-10 """ Driver module for HighFinesse WS7 """ import ctypes import numpy wlm = ctypes.windll.wlmData # load the DLL int32 = ctypes.c_long uInt32 = ctypes.c_ulong uInt64 = ctypes.c_ulonglong float64 = ctypes.c_double double = ctypes.c_double long = ctypes.c_long dword = ctypes.c_ulong LZERO = long(0) DZERO = double(0) cInstCheckForWLM = long(-1) cInstResetCalc = long(0) cInstReturnMode = cInstResetCalc cInstNotification = long(1) cInstCopyPattern = long(2) cInstCopyAnalysis = cInstCopyPattern cInstControlWLM = long(3) cInstControlDelay = long(4) cInstControlPriority = long(5) # Amplitude Constants cMin1 = long(0); cMin2 = long(1); cMax1 = long(2); cMax2 = long(3); cAvg1 = long(4); cAvg2 = long(5); validAmps = [cMin1, cMin2, cMax1, cMax2, cAvg1, cAvg2] # Pattern and Analysis cPatternDisable = long(0); cPatternEnable = long(1); cAnalysisDisable = cPatternDisable; cAnalysisEnable = cPatternEnable; cSignal1Interferometers = long(0); cSignal1WideInterferometer = long(1); cSignal1Grating = long(1); cSignal2Interferometers = long(2); cSignal2WideInterferometer = long(3); cSignalAnalysis = long(4); # Trigger parameters cCtrlMeasurementContinue = long(0) cCtrlMeasurementInterrupt = long(1) cCtrlMeasurementTriggerPoll = long(2) cCtrlMeasurementTriggerSuccess = long(3) getexposure = wlm.GetExposureNum getexposure.restype = long def GetExposure(): """ Get exposure values (ms) """ t1 = getexposure(long(1), long(1), LZERO) t2 = getexposure(long(1), long(2), LZERO) return (t1, t2) setexposure = wlm.SetExposureNum setexposure.restype = long def SetExposure(t=(5, 5)): """ Set exposure values """ ret1 = setexposure(long(1), long(1), long(t[0])) ret2 = setexposure(long(1), long(2), long(t[1])) return (ret1, ret2) getfreq = wlm.GetFrequency getfreq.restype = double def GetFrequency(): """ Get a single frequency reading """ return getfreq(DZERO) getwave = wlm.GetWavelength getwave.restype = double def GetWavelength(): """ Get a single frequency reading """ return getwave(DZERO) getinterferencestats = wlm.GetAmplitudeNum getinterferencestats.restype = long def GetInterferenceStats(info=cMax1): """ Get interference pattern stats """ if (info in validAmps): out = getinterferencestats(long(1), info, LZERO) else: out = None return out gettemperature = wlm.GetTemperature gettemperature.restype = double def GetTemperature(): """ Get current wavemeter temperature """ return gettemperature(DZERO) getpatternitemcount = wlm.GetPatternItemCount getpatternitemcount.restype = long def GetPatternItemCount(index): """ Get interferometer's point coint """ return getpatternitemcount(index) getpatternitemsize = wlm.GetPatternItemSize getpatternitemsize.restype = long def GetPatternItemSize(index): """ Get interferometer's data type size """ return getpatternitemsize(index) getpatterndata = wlm.GetPatternData getpatterndata.restype = long def GetPatternData(index, pointer): """ Get interferometer's data type size """ return getpatterndata(index, pointer) getpattern = wlm.GetPattern getpattern.restype = long def GetPattern(index): """ Get interferometer's data type size """ return getpattern(index) setpattern = wlm.SetPattern setpattern.restype = long def SetPattern(index, iEnable): """ Get interferometer's data type size """ return setpattern(index, iEnable) triggermeasurement = wlm.TriggerMeasurement triggermeasurement.restype = long def TriggerMeasurement(Action): """ Interrupts, continues or triggers the measurement loop. Input parameters: cCtrlMeasurementContinue cCtrlMeasurementInterrupt cCtrlMeasurementTriggerPoll cCtrlMeasurementTriggerSuccess """ return triggermeasurement(Action) #### # Own functions #### def EnableInterferogram(): """ Enable to always export the interferograms """ SetPattern(cSignal1Interferometers, cPatternEnable) SetPattern(cSignal1WideInterferometer, cPatternEnable) def Interferogram(): """ Get the interferogram from the two interferometers in our current model of wavemeter. """ cnt = 1024 inter1 = (ctypes.c_long*cnt)() pi1 = ctypes.cast(inter1, ctypes.POINTER(ctypes.c_long)) inter2 = (ctypes.c_long*cnt)() pi2 = ctypes.cast(inter2, ctypes.POINTER(ctypes.c_long)) GetPatternData(cSignal1Interferometers, pi1) GetPatternData(cSignal1WideInterferometer, pi2) inter1 = [int(i/6.5e4) for i in inter1] inter2 = [int(i/6.5e4) for i in inter2] return (inter1, inter2)
1.757813
2
redplane-store/apps/pktgen/parse_pcap.py
daehyeok-kim/redplane-public
11
12776257
<reponame>daehyeok-kim/redplane-public from scapy.all import * import sys print(sys.argv[1]) packets = rdpcap(sys.argv[1], count = 100) out_file = open('m57_summary.txt',"w") ip_list = [] tcp_flows = [] udp_flows = [] total = 0 for packet in packets: print (packet.time) if packet.haslayer(IP) and packet.haslayer(TCP): total += 1 flow_key = (packet[IP].src, packet[IP].dst, packet[TCP].sport, packet[TCP].dport) if flow_key not in tcp_flows: tcp_flows.append(flow_key) elif packet.haslayer(IP) and packet.haslayer(UDP): total += 1 flow_key = (packet[IP].src, packet[IP].dst, packet[UDP].sport, packet[UDP].dport) if flow_key not in udp_flows: udp_flows.append(flow_key) if packet.haslayer(TCP) and packet[IP].src.find('192.168') != -1: if packet[IP].dst not in ip_list: ip_list.append(packet[IP].dst) out_file.write('%s %d %d %d\n'%(packet[IP].dst, packet[TCP].sport, packet[TCP].dport, packet[IP].len)) if packet.haslayer(TCP) and packet[IP].dst.find('192.168') != -1: print (packet.show()) #if packet[IP].dst not in ip_list: # ip_list.append(packet[IP].dst) #out_file.write('%s %d %d %d\n'%(packet[IP].dst, packet[TCP].sport, packet[TCP].dport, packet[IP].len)) print ("Unique dest IP: %d" % len(ip_list)) print ("UDP flows: %d"%(len(udp_flows))) print ("TCP flows: %d"%(len(tcp_flows))) print ("Total packets: %d"%(total))
2.5
2
fancy/trainer/configs/model_config.py
susautw/fancy-trainer
0
12776258
<filename>fancy/trainer/configs/model_config.py from cached_property import cached_property from torch.nn import Module from fancy import config as cfg from . import ImporterConfig class ModelConfig(ImporterConfig): param: dict = cfg.Option(default={}, type=cfg.process.flag_container) @cached_property def model(self) -> Module: if not isinstance(self.param, dict): raise TypeError("params must be a dict") model = self.imported(**self.param) if not isinstance(model, Module): raise TypeError("imported_cls must be subclass of torch.nn.Module or a Callable returned it.") return model
2.375
2
experiments/coil100.py
Guanzhou-Ke/conan
5
12776259
from .default import Experiment coil100 = Experiment( arch='alexnet', hidden_dim=1024, verbose=True, log_dir='./logs/mytest', device='cuda', extra_record=True, opt='adam', epochs=100, lr=1e-3, batch_size=24, cluster_hidden_dim=512, ds_name='coil-100', img_size=128, input_channels=[3, 3, 3], views=3, clustering_loss_type='ddc', num_cluster=100, fusion_act='relu', use_bn=True, contrastive_type='simclr', projection_layers=2, projection_dim=512, prediction_hidden_dim=0, # Just for simsiam. contrastive_lambda=0.01, temperature=0.1, seed=0, )
1.78125
2
data/migrations/0024_job_vm_volume_name.py
Duke-GCB/bespin-api
0
12776260
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-08-04 19:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('data', '0023_auto_20170801_1925'), ] operations = [ migrations.AddField( model_name='job', name='vm_volume_name', field=models.CharField(blank=True, help_text='Name of the volume attached to store data for this job.', max_length=255, null=True), ), ]
1.71875
2
python-code/ml/ml.py
Edward-Son/yhack2017
0
12776261
<filename>python-code/ml/ml.py import xml.etree.ElementTree as ET import numpy as np from sklearn.externals import joblib from sklearn import svm #get the number code for the people / get the samples indices = [] i = 0 with open("./found-bad-people/1-common-people") as f: for line in f: indices.append(int(line.strip('\n').split(' ')[-1])) i += 1 #get the features root = ET.parse("./FINRAChallengeData/IAPD/IA_INDVL_Feed_10_11_2017.xml/IA_Indvl_Feeds1.xml").getroot() #preset numpy array size ahead of time to improve speed i = 0 for line in root[0]: i += 1 target = np.zeros(shape=(i)) data = np.zeros(shape=(i,5)) #where all the numbers refer to a key dic = {} rowCounter = 0 j = 0 for line in root[0]: #feature 1 : city try: city = line[2][0].attrib['city'] except: city = 'NAcity' #if the key doesnt exist, add to dictionnary if not dic.has_key(city): dic[city] = j j += 1 #feature 2 : organisation name try: orgName = line[2][0].attrib['orgNm'] except: orgName = 'NAorg' #if the key doesnt exist, add to dictionnary if not dic.has_key(orgName): dic[orgName] = j j += 1 #feature 3 : branch location try: branchCity = line[2][0][1][0].attrib['city'] except: branchCity = 'NAbranchcity' #if the key doesnt exist, add to dictionnary if not dic.has_key(branchCity): dic[branchCity] = j j += 1 #feature 4 : number of exams taken try: numExams = 0 for exam in line[3]: numExams += 1 exams = str(numExams) + 'examsTaken' except: exams = 'NAexams' #if the key doesnt exist, add to dictionnary if not dic.has_key(exams): dic[exams] = j j += 1 #feature 5 : has other business? try: otherBus = line[7][0].attrib['desc'] otherBus = 'YesOtherBusiness' except: otherBus = 'NAOtherBusiness' #if the key doesnt exist, add to dictionnary if not dic.has_key(otherBus): dic[otherBus] = j j += 1 #update the image data data[rowCounter] = [dic[city],dic[orgName],dic[branchCity],dic[exams],dic[otherBus]] #update target data if indices.count(rowCounter) == 0 : target[rowCounter] = 0 else: target[rowCounter] = 1 rowCounter += 1 #train model with second data set indices = [] i = 0 with open("./found-bad-people/2-common-people") as f: for line in f: indices.append(int(line.strip('\n').split(' ')[-1])) i += 1 root2 = ET.parse("./FINRAChallengeData/IAPD/IA_INDVL_Feed_10_11_2017.xml/IA_Indvl_Feeds2.xml").getroot() #get length of file l = 0 for line in root2[0]: l += 1 #set the size of numpy array data2 = np.zeros(shape=(l,5)) target2 = np.zeros(shape=(l)) rowCounter = 0 for line in root2[0]: #feature 1 : city try: city = line[2][0].attrib['city'] except: city = 'NAcity' #if the key doesnt exist, add to dictionnary if not dic.has_key(city): dic[city] = j j += 1 #feature 2 : organisation name try: orgName = line[2][0].attrib['orgNm'] except: orgName = 'NAorg' #if the key doesnt exist, add to dictionnary if not dic.has_key(orgName): dic[orgName] = j j += 1 #feature 3 : branch location try: branchCity = line[2][0][1][0].attrib['city'] except: branchCity = 'NAbranchcity' #if the key doesnt exist, add to dictionnary if not dic.has_key(branchCity): dic[branchCity] = j j += 1 #feature 4: number of exams taken try: numExams = 0 for exam in line[3]: numExams += 1 exams = str(numExams) + 'examsTaken' except: exams = 'NAexams' #if the key doesnt exist, add to dictionnary if not dic.has_key(exams): dic[exams] = j j += 1 #feature 5 : has other business? try: otherBus = line[7][0].attrib['desc'] otherBus = 'YesOtherBusiness' except: otherBus = 'NAOtherBusiness' #if the key doesnt exist, add to dictionnary if not dic.has_key(otherBus): dic[otherBus] = j j += 1 #update the image data data2[rowCounter] = [dic[city],dic[orgName],dic[branchCity],dic[exams],dic[otherBus]] #update target data if indices.count(rowCounter) == 0 : target2[rowCounter] = 0 else: target2[rowCounter] = 1 rowCounter += 1 #train model with first data set clf = svm.SVC(gamma=0.001, C=100.) clf.fit(data, target) #train model with the second data set clf.fit(data2, target2) root3 = ET.parse("./FINRAChallengeData/IAPD/IA_INDVL_Feed_10_11_2017.xml/IA_Indvl_Feeds3.xml").getroot() m = 0 for line in root3[0]: m += 1 data3 = np.zeros(shape=(l,5)) rowCounter = 0 for line in root3[0]: #feature 1 : city try: city = line[2][0].attrib['city'] except: city = 'NAcity' #if the key doesnt exist, add to dictionnary if not dic.has_key(city): dic[city] = j j += 1 #feature 2 : organisation name try: orgName = line[2][0].attrib['orgNm'] except: orgName = 'NAorg' #if the key doesnt exist, add to dictionnary if not dic.has_key(orgName): dic[orgName] = j j += 1 #feature 3 : branch location try: branchCity = line[2][0][1][0].attrib['city'] except: branchCity = 'NAbranchcity' #if the key doesnt exist, add to dictionnary if not dic.has_key(branchCity): dic[branchCity] = j j += 1 #feature 4: number of exams taken try: numExams = 0 for exam in line[3]: numExams += 1 exams = str(numExams) + 'examsTaken' except: exams = 'NAexams' #if the key doesnt exist, add to dictionnary if not dic.has_key(exams): dic[exams] = j j += 1 #feature 5 : has other business? try: otherBus = line[7][0].attrib['desc'] otherBus = 'YesOtherBusiness' except: otherBus = 'NAOtherBusiness' #if the key doesnt exist, add to dictionnary if not dic.has_key(otherBus): dic[otherBus] = j j += 1 #update the image data data3[rowCounter] = [dic[city],dic[orgName],dic[branchCity],dic[exams],dic[otherBus]] rowCounter += 1 #predict on sample data set print("length: " + str(len(data3))) with open("resultsFinal", 'w') as f : results = clf.predict(data3) for k in results: f.write(str(k) + "\n") joblib.dump(clf, "finalPersistence.pkl") # clf = joblib.load('finalPersistence.pkl')
2.6875
3
inbm-vision/vision-agent/vision/tests/unit/test_registry.py
ahameedx/intel-inb-manageability
5
12776262
<reponame>ahameedx/intel-inb-manageability import datetime from unittest import TestCase from vision.registry_manager import Registry, Firmware, Hardware, Status, Security, OperatingSystem from mock import Mock class TestRegistry(TestCase): def setUp(self): self.mock_datetime = Mock() def test_create_registry_success(self): dt = datetime.datetime(2020, 10, 9) new_firmware = Firmware(boot_fw_date=self.mock_datetime, boot_fw_vendor="American Megatrends Inc.", boot_fw_version="1.0") new_os = OperatingSystem(os_type="Yocto", os_version="2.5", os_release_date=dt) new_hardware = Hardware(flashless=False, manufacturer="AMI", platform_type="KEEMBAY", stepping="A0", sku="3400VE", model="Intel Keem Bay HDDL2", platform_product="intel", serial_num="c0428202080d709", version="bit-creek-2.13.2-r1.aarch64") new_security = Security(dm_verity_enabled=False, measured_boot_enabled=False, is_provisioned=False, is_xlink_secured=False, guid=12345) new_status = Status(heartbeat_timestamp=self.mock_datetime) new_registry = Registry(device_id="123ABC", firmware=new_firmware, hardware=new_hardware, os=new_os, security=new_security, status=new_status) self.assertIsNotNone(new_registry) def test_create_registry_fail(self): self.assertRaises(TypeError, Registry, (self.mock_datetime, "American Megatrends Inc.", "1.0", "123ABC", self.mock_datetime, "Yocto", "2.5"))
2.34375
2
python/arachne/driver/pipeline.py
fixstars/arachne
3
12776263
from dataclasses import dataclass, field from logging import getLogger from typing import Any, Dict, List import hydra from hydra.core.config_store import ConfigStore from hydra.utils import to_absolute_path from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline, node from kedro.runner import SequentialRunner from omegaconf import MISSING, DictConfig, OmegaConf from arachne.config.base import BaseConfig from arachne.data import Model from arachne.tools import ToolConfigFactory, ToolFactory from arachne.utils.model_utils import ( init_from_dir, init_from_file, load_model_spec, save_model, ) logger = getLogger(__name__) @dataclass class PipelineConfig(BaseConfig): """ This is a configuration class for pipeline. Attributes: tools (Any): Tool specific configurations. This will be overwritten by the value of the pipeline option. pipeline (List[str]): Specifies tools to be applied in series. """ tools: Any = MISSING pipeline: List[str] = MISSING def get_default_tool_configs(tools: List[str]) -> Dict: all_tools = ToolFactory.list() config = {} for t in tools: if t not in all_tools: assert False, f"Not supported tool ({t}) yet" config[t] = ToolConfigFactory.get(t) return config def run(input: Model, cfg: PipelineConfig) -> Model: """ This function constructs and applies a pipeline defined by the config object to an input model. Args: input (Model): An input model. cfg (PipelineConfig): A config object. Returns: Model: An output model. """ # Preprare DataCatalog data_catalog = DataCatalog() data_catalog.add("root_input", MemoryDataSet(data=input)) # setup catalogs for each tool configs and outputs for idx, tool in enumerate(cfg.pipeline): config = "tools." + tool + "." + str(idx) + ".config" output = "tools." + tool + "." + str(idx) + ".output" data_catalog.add(config, MemoryDataSet(data=cfg.tools[tool])) data_catalog.add(output, MemoryDataSet()) # Construct pipeline pipeline_tmp = [] prev_output = "root_input" for idx, tool in enumerate(cfg.pipeline): t = ToolFactory.get(tool) config = "tools." + tool + "." + str(idx) + ".config" output = "tools." + tool + "." + str(idx) + ".output" tool_inputs = {"input": prev_output, "cfg": config} task = node(t.run, inputs=tool_inputs, outputs=output) prev_output = output pipeline_tmp.append(task) pipeline = Pipeline(pipeline_tmp) # Create a runner to run the pipeline runner = SequentialRunner() # Run the pipeline runner.run(pipeline, data_catalog) return data_catalog.load(prev_output) @hydra.main(config_path="../config", config_name="config") def main(cfg: DictConfig) -> None: """ This is a main function for `arachne.driver.pipeline`. """ try: assert len(list(cfg.pipeline)) > 0 except AssertionError as err: logger.exception("You must specify one tool at least") raise err logger.info(OmegaConf.to_yaml(cfg)) # Setup the input DNN model if not cfg.model_file and not cfg.model_dir: raise RuntimeError("User must specify either model_file or model_dir.") if cfg.model_file and cfg.model_dir: raise RuntimeError("User must specify either model_file or model_dir.") input_model: Model if cfg.model_file: input_model = init_from_file(to_absolute_path(cfg.model_file)) else: input_model = init_from_dir(to_absolute_path(cfg.model_dir)) if cfg.model_spec_file: # if a YAML file describing the model specification is provided, overwrite input_model.spec input_model.spec = load_model_spec(to_absolute_path(cfg.model_spec_file)) output_model = run(input_model, cfg) # type: ignore save_model( model=output_model, output_path=to_absolute_path(cfg.output_path), tvm_cfg=cfg.tools.tvm ) if __name__ == "__main__": defaults = [{"tools": ToolFactory.list()}, {"override hydra/job_logging": "custom"}, "_self_"] @dataclass class PipelineCLIConfig(PipelineConfig): defaults: List[Any] = field(default_factory=lambda: defaults) cs = ConfigStore.instance() cs.store(name="config", node=PipelineCLIConfig) main()
2.203125
2
button_mapping.py
ash3rz/flexx_gamepad
1
12776264
import sys darwin = { 0: "button square", 1: "button cross", 2: "button circle", 3: "button triangle", 4: "bumper left", 5: "bumper right", 6: "trigger left", 7: "trigger right", 8: "select", 9: "start", 10: "left stick", 11: "right stick", 12: "meta", 13: "touchpad", "left": "dpad left", "right": "dpad right", "up": "dpad up", "down": "dpad down", "axis": { 0: ["stick left", "x"], 1: ["stick left", "y"], 2: ["stick right", "x"], 5: ["stick right", "y"] } } linux = { 0: "button square", 1: "button cross", 2: "button circle", 3: "button triangle", 4: "bumper left", 5: "bumper right", 6: "trigger left", 7: "trigger right", 8: "select", 9: "start", 10: "left stick", 11: "right stick", 12: "meta", 13: "touchpad", "left": "dpad left", "right": "dpad right", "up": "dpad up", "down": "dpad down", "axis": { 0: ["stick left", "x"], 1: ["stick left", "y"], 2: ["stick right", "x"], 5: ["stick right", "y"] } } windows = { 0: "button cross", 1: "button circle", 2: "button square", 3: "button triangle", 4: "select", 5: "meta", 6: "start", 7: "stick left", 8: "stick right", 9: "bumper left", 10: "bumper right", 11: "dpad up", 12: "dpad down", 13: "dpad left", 14: "dpad right", 15: "touchpad", "axis": { 0: ["stick left", "x"], 1: ["stick left", "y"], 2: ["stick right", "x"], 3: ["stick right", "y"], 4: ["trigger left", None], 5: ["trigger right", None] } } def button_mapping(button_key): platform = sys.platform if "darwin" == platform: return darwin[button_key] elif "win32" == platform: return windows[button_key] else: return linux[button_key]
2.046875
2
py_test/voice/voice_python.py
GotoRen/notify-me
0
12776265
import urllib.request as req import subprocess s = '侵入者あり' print(s) # 読み上げ subprocess.check_output('./jtalk.sh "' +s + '"', shell=True)
2.34375
2
figures/Plotter_fisher_fock.py
sqvarfort/Coherent-states-Fisher-information
1
12776266
import matplotlib.pyplot as plt from numpy import * import os """ filename1 = "data_processing/" + "GeneralQuantumFisher1photons" filename2 = "data_processing/" + "GeneralQuantumFisher2photons" filename3 = "data_processing/" + "GeneralQuantumFisher3photons" with open(filename1) as f: fisher1 = f.readlines() with open(filename2) as f: fisher2 = f.readlines() with open(filename3) as f: fisher3 = f.readlines() fisher1 = [float(i) for i in fisher1] fisher2 = [float(i) for i in fisher2] fisher3 = [float(i) for i in fisher3] times = linspace(0, 2*pi, len(fisher1)) filename_pure = "data_processing/" + "FisherInfoN20Homodyne" filename_deco01 = "data_processing/" + "FisherHomodyneN25Deco0.1" filename_deco05 = "data_processing/" + "FisherHomodyneN25Deco0.5" with open(filename_pure) as f: for line in f: fisher_pure = line.split(",") with open(filename_deco01) as f: for line in f: fisher_deco01 = line.split(",") with open(filename_deco05) as f: for line in f: fisher_deco05 = line.split(",") fisher_pure = [float(i) for i in fisher_pure] fisher_deco01 = [float(i) for i in fisher_deco01] fisher_deco05 = [float(i) for i in fisher_deco05] times_pure = list(load("data_processing/" + "FisherInfoN20HomodyneTimes.npy")) times_deco01 = list(load("data_processing/" + "times2016-08-21-08.05.18.npy")) times_deco05 = list(load("data_processing/" + "times2016-08-20-01.16.02.npy")) for i in range(0,1): del fisher_pure[::2] del fisher_deco01[::2] del fisher_deco05[::2] del times_pure[::2] del times_deco01[::2] del times_deco05[::2] filename_pure = "data_processing/" + "fisher_mirror_N30" filename_deco = "data_processing/" + "FisherN25MirrorDeco0.1" with open(filename_pure) as f: for line in f: fisher_pure = line.split(",") with open(filename_deco) as f: for line in f: fisher_deco = line.split(",") fisher_pure = [float(i) for i in fisher_pure] fisher_deco = [float(i) for i in fisher_deco] del fisher_pure[::2] del fisher_pure[::2] del fisher_pure[::2] times_pure = linspace(0, 2*pi, len(fisher_pure)) times_deco = list(load("data_processing/" + "times2016-08-21-08.05.18.npy")) del fisher_deco[::2] del fisher_deco[::2] del fisher_deco[::2] del times_deco[::2] del times_deco[::2] del times_deco[::2] """ filename00 = "data/simulation2017-02-07-13.45.35/fock_fisher" filename_times00 = "data/simulation2017-02-07-13.45.35/times" filename005 = "data/simulation2017-02-08-09.36.08/fock_fisher" filename_times005 = "data/simulation2017-02-08-09.36.08/times" fisher00 = load(filename00 + '.npy') times00 = load(filename_times00 + '.npy') fisher005 = load(filename005 + '.npy') times005 = load(filename_times005 + '.npy') # Mask the decoherence fisher005 = ma.masked_where(fisher005 > 3.8, fisher005) fisher005 = ma.masked_where(fisher005 < 0.0, fisher005) #plt.show() def plot_fisher(times, data, chirange, filename): """ function: plot_fisher - data/array: Fisher information to be plotted vs time. Output: - Plot/file """ plt.figure(figsize=(13,11)) # Use Latex params = {'backend': 'ps', 'font.size': 12, 'axes.labelsize': 12, # 'text.fontsize': 10, 'legend.fontsize': 10, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'text.usetex': True, #benutze latex fuer schrift encoding -> automatisch selbe schriftart wie in latex 'text.latex.unicode': True, 'font.family': 'serif', 'font.serif': 'cm', #'figure.figsize': fig_size, 'text.latex.preamble': [r'\usepackage{physics}', r'\usepackage{amsmath}']} plt.rcParams.update(params) #plt.rc('text', usetex=True) #plt.rc('font', family='serif') plt.xlabel('$t$', size = 40) plt.ylabel('$I_F$', size = 40) ax = plt.subplot(111) ax.tick_params(axis='both', which='major', pad=10) #plt.title('Fisher Information vs. time for ' + r'$\bar{g} = $' + str(self.args['gbar']) + ', $k = $' + str(self.k) + ', $N = $' + str(self.N) + ', $h = $' + str(self.h), size = 20, y=1.02) #plt.gca().grid(True, linewidth = 2) #plt.plot(times[0], data[0], '-o', color = 'k', label = '$1$ photon') #plt.plot(times[1], data[1], '-o', color = 'b', label = '$4$ photons') #plt.plot(times[2], data[2], '-o', color = 'r', label = '$9$ photons') #plt.plot(times[0], data[0], color = 'b', label = 'Analytic') plt.plot(times[0], data[0], '-o', color = 'k', markeredgewidth=0.0, label = '$\kappa = 0.0$') plt.plot(times[1], data[1], '-o', color = 'b', markeredgewidth=0.0, label = '$\kappa = 0.05$') plt.xticks([ 0, pi/2, pi, 3*pi/2, 2*pi], [r'$0$', r'$\pi/2$', r'$\pi$', r'$3\pi/2$', r'$2\pi$'], size = 40) plt.yticks([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5], [r'$0.0$', r'$0.5$', r'$1.0$', r'$1.5$', r'$2.0$', r'$2.5$', r'$3.0$', r'$3.5$'], size = 30) #plt.yticks([0.0, 1000, 2000, 3000, 4000, 5000, 6000], [r'$0.0$', r'$1000$', r'$2000$', r'$3000$', r'$4000$', r'$5000$', r'$6000$'], size = 40) #plt.yticks([0.0, 100, 200, 300, 400, 500, 600, 700, 800, 900], [r'$0.0$', r'$100$', r'$200$', r'$300$', r'$400$', r'$500$', r'$600$', r'$700$', r'$800$', r'$900$'], size = 40) #plt.yticks([0.0, 200, 400, 600, 800], [r'$0.0$', r'$200$', r'$400$', r'$600$', r'$800$'], size = 30) plt.subplots_adjust(bottom=0.15) #plt.xlim([0, pi/2]) #plt.ylim([0,300]) plt.legend(loc = 1, fontsize = 30) path = os.path.join(filename) plt.savefig(path + ".pdf",transparent=True, dpi=600) plt.show() plot_fisher([times00, times005], [fisher00, fisher005], [0.0], "Fisher_Fock")
2.59375
3
project/database2.py
nikodrum/evaluationua
0
12776267
# -*- coding: UTF-8 -*- from flask import g import sqlite3 import math database = "project/appart.db" categ_coef = 17960 coef = 360/6378137 def connect_db(): return sqlite3.connect(database) def insert_db(street,lat,lon,year,room,all_area,all_floors): # validating wether coordinates in Kyiv #calculating distances if lat < 50.702443 and lat > 50.144912: if lon > 30.225671 and lon < 30.935312: len_to_center_in_coord = ((lat-50.450198)**2+(lon-30.523986)**2)**(1/2) len_to_center = len_to_center_in_coord/coef len_to_metro = def_nearest_subway(lat,lon) else: len_to_center = 0 len_to_metro = 0 # calculating data for building of price estimation client_price = int(math.exp(7.483156+ 0.001652*float(year) + 0.122520*float(room) + 0.008478*float(all_area) + 0.007029*float(all_floors) - 0.000286*float(len_to_center) - 0.000407*float(len_to_metro))) category = int((client_price)/categ_coef) # inserting data to DB data_list = [street,lat,lon,year,room,all_area,all_floors,client_price,category,len_to_center*6.283279] g.db = connect_db() cur = g.db.cursor() cur.execute('INSERT INTO client_data VALUES (?,?,?,?,?,?,?,?,?,?)',data_list) g.db.commit() return g.db.close() # taking from database info def search_db(): g.db = connect_db() cur = g.db.cursor() # taking client data client_row = cur.execute('SELECT * FROM client_data WHERE ROWID=(SELECT MAX(ROWID) FROM client_data)') posts_cl = [] posts_cl = [dict(year = row[3],room=row[4],all_area=row[5],all_floors=row[6],cl_price=row[7],category=row[8]) for row in client_row.fetchall()] # taking data from calculated category based on price estimation category = posts_cl[0]['category'] if category == 0: category = 1 my_data_row = cur.execute('SELECT * FROM mytable_na WHERE price_category = (?)',[category]) posts_my_data=[] posts_my_data = [dict(price=row[3],street=row[0],room=row[5],all_area=row[6],all_floors=row[9],distr=row[12]) for row in my_data_row.fetchall()] g.db.close() return [posts_cl,posts_my_data] def taking_data_for_plot(rand_district): g.db = connect_db() cur = g.db.cursor() # taking all data with district which was choosen in my data #7 differnt metrics of districts distr_data = cur.execute('SELECT * FROM mytable_na WHERE distr = (?)',[rand_district]) post_plot_distr = [dict(price = row[3],room = row[5],all_area=row[6],livin_area=row[7],kitch_area=row[8],all_floors=row[9],year=row[11],distr=str(row[13])) for row in distr_data.fetchall()] g.db.close() return post_plot_distr def def_nearest_subway(lat,lon): g.db = connect_db() cur = g.db.cursor() # taking metro data client_row = cur.execute('SELECT * FROM metro_coords ') metro_coords = [] for row in client_row.fetchall(): metro_coords.append([row[0],row[1],row[2]]) g.db.close() min_list = [] for i in range(0,len(metro_coords)): min_list.append((((lat - metro_coords[i][1])**2+(lon - metro_coords[i][2]))**2)**(1/2)) min_val = None for i in range(0,len(min_list)) : if min_val is None or min_list[i] < min_val : min_val = min_list[i] return min_val/coef
3.109375
3
setup.py
philbarker/ocxmd
8
12776268
<reponame>philbarker/ocxmd from setuptools import setup setup( name="ocxmd", version="0.2", py_modules=["ocxmd"], install_requires=["markdown>=3.0", "PyYAML>=3.13"], author="<NAME>", author_email="<EMAIL>", url="https://github.com/philbarker/ocxmd", description="A python markdown extension to take metadata embedded as YAML in a page of markdown and render it as JSON-LD in the HTML created by MkDocs.", license="Apache2", )
1.320313
1
myapp/forms.py
quinchoponcho/helloworld
0
12776269
from django import forms from django.forms import ModelForm from .models import Customer, Order from myapp.models import Name class NameForm(forms.ModelForm): name_value = forms.CharField(max_length=100, help_text = "Enter a name") class Meta: model = Name fields = ('name_value',) class OrderForm(ModelForm): class Meta: model = Order fields = '__all__'
2.34375
2
elementary/best-stock.py
vargad/exercises
1
12776270
<gh_stars>1-10 #!/usr/bin/env python3 def best_stock(data): return sorted(data.items(), key=lambda x: x[1])[-1][0] if __name__ == '__main__': print(best_stock({ "CAL": 42.0, "GOG": 190.5, "DAG": 32.2 })) assert best_stock({ "CAL": 42.0, "GOG": 190.5, "DAG": 32.2 }) == "GOG" assert best_stock({ "CAL": 31.4, "GOG": 3.42, "APL": 170.34 }) == "APL"
3.109375
3
18. Exam Prep/checkmate.py
elenaborisova/Python-Advanced
2
12776271
<gh_stars>1-10 def find_position(matrix, size, symbol): positions = [] for row in range(size): for col in range(size): if matrix[row][col] == symbol: positions.append([row, col]) return positions def is_position_valid(row, col, size): return 0 <= row < size and 0 <= col < size def check_for_checkmate(queen_pos, size, matrix): for direction in CHANGES: q_row, q_col = queen_pos[0], queen_pos[1] change_row, change_col = CHANGES[direction][0], CHANGES[direction][1] while is_position_valid(q_row + change_row, q_col + change_col, size): q_row += change_row q_col += change_col if matrix[q_row][q_col] == "Q": break elif matrix[q_row][q_col] == "K": return True return False SIZE = 8 board = [input().split() for _ in range(SIZE)] king_pos = find_position(board, SIZE, "K")[0] queens_positions = find_position(board, SIZE, "Q") queens_winners = [] CHANGES = { "up": (-1, 0), "down": (1, 0), "right": (0, 1), "left": (0, -1), "up-left": (-1, -1), "down-left": (1, -1), "up-right": (-1, 1), "down-right": (1, 1), } for queen in queens_positions: if check_for_checkmate(queen, SIZE, board): queens_winners.append(queen) if queens_winners: [print(queen) for queen in queens_winners] else: print("The king is safe!")
3.859375
4
Code/Client/ui_face.py
jhuboo/sparky
3
12776272
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'C:\Users\Freenove\Desktop\树莓派六足机器人\界面UI\face.ui' # # Created by: PyQt5 UI code generator 5.15.0 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Face(object): def setupUi(self, Face): Face.setObjectName("Face") Face.resize(650, 320) Face.setStyleSheet("QWidget{\n" "background:#484848;\n" "}\n" "QAbstractButton{\n" "border-style:none;\n" "border-radius:0px;\n" "padding:5px;\n" "color:#DCDCDC;\n" "background:qlineargradient(spread:pad,x1:0,y1:0,x2:0,y2:1,stop:0 #858585,stop:1 #383838);\n" "}\n" "QAbstractButton:hover{\n" "color:#000000;\n" "background-color:#008aff;\n" "}\n" "QAbstractButton:pressed{\n" "color:#DCDCDC;\n" "border-style:solid;\n" "border-width:0px 0px 0px 4px;\n" "padding:4px 4px 4px 2px;\n" "border-color:#008aff;\n" "background-color:#444444;\n" "}\n" "\n" "QLabel{\n" "color:#DCDCDC;\n" "\n" "\n" "}\n" "QLabel:focus{\n" "border:1px solid #00BB9E;\n" "\n" "}\n" "\n" "QLineEdit{\n" "border:1px solid #242424;\n" "border-radius:3px;\n" "padding:2px;\n" "background:none;\n" "selection-background-color:#484848;\n" "selection-color:#DCDCDC;\n" "}\n" "QLineEdit:focus,QLineEdit:hover{\n" "border:1px solid #242424;\n" "}\n" "QLineEdit{\n" "border:1px solid #242424;\n" "border-radius:3px;\n" "padding:2px;\n" "background:none;\n" "selection-background-color:#484848;\n" "selection-color:#DCDCDC;\n" "}\n" "\n" "QLineEdit:focus,QLineEdit:hover{\n" "border:1px solid #242424;\n" "}\n" "QLineEdit{\n" "lineedit-password-character:9<PASSWORD>;\n" "}") self.label_video = QtWidgets.QLabel(Face) self.label_video.setGeometry(QtCore.QRect(20, 10, 400, 300)) font = QtGui.QFont() font.setFamily("Arial") self.label_video.setFont(font) self.label_video.setAlignment(QtCore.Qt.AlignCenter) self.label_video.setObjectName("label_video") self.label_photo = QtWidgets.QLabel(Face) self.label_photo.setGeometry(QtCore.QRect(440, 15, 200, 200)) font = QtGui.QFont() font.setFamily("Arial") self.label_photo.setFont(font) self.label_photo.setAlignment(QtCore.Qt.AlignCenter) self.label_photo.setObjectName("label_photo") self.lineEdit = QtWidgets.QLineEdit(Face) self.lineEdit.setGeometry(QtCore.QRect(490, 235, 140, 25)) font = QtGui.QFont() font.setFamily("Arial") self.lineEdit.setFont(font) self.lineEdit.setObjectName("lineEdit") self.label = QtWidgets.QLabel(Face) self.label.setGeometry(QtCore.QRect(440, 240, 45, 15)) font = QtGui.QFont() font.setFamily("Arial") self.label.setFont(font) self.label.setObjectName("label") self.Button_Read_Face = QtWidgets.QPushButton(Face) self.Button_Read_Face.setGeometry(QtCore.QRect(460, 275, 150, 25)) font = QtGui.QFont() font.setFamily("Arial") self.Button_Read_Face.setFont(font) self.Button_Read_Face.setObjectName("Button_Read_Face") self.retranslateUi(Face) QtCore.QMetaObject.connectSlotsByName(Face) def retranslateUi(self, Face): _translate = QtCore.QCoreApplication.translate Face.setWindowTitle(_translate("Face", "Face")) self.label_video.setText(_translate("Face", "Video")) self.label_photo.setText(_translate("Face", "Photo")) self.label.setText(_translate("Face", "Name:")) self.Button_Read_Face.setText(_translate("Face", "Read Face"))
2.09375
2
lib/coginvasion/hood/SafeZoneLoader.py
theclashingfritz/Cog-Invasion-Online-Dump
1
12776273
<filename>lib/coginvasion/hood/SafeZoneLoader.py<gh_stars>1-10 # uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: lib.coginvasion.hood.SafeZoneLoader from direct.directnotify.DirectNotifyGlobal import directNotify from direct.fsm.StateData import StateData from direct.fsm.ClassicFSM import ClassicFSM from direct.fsm.State import State from direct.actor.Actor import Actor from panda3d.core import ModelPool, TexturePool, NodePath from lib.coginvasion.globals import CIGlobals from lib.coginvasion.manager.SettingsManager import SettingsManager from QuietZoneState import QuietZoneState import ToonInterior, LinkTunnel, types, random class SafeZoneLoader(StateData): notify = directNotify.newCategory('SafeZoneLoader') def __init__(self, hood, parentFSMState, doneEvent): StateData.__init__(self, doneEvent) self.hood = hood self.parentFSMState = parentFSMState self.fsm = ClassicFSM('safeZoneLoader', [State('off', self.enterOff, self.exitOff), State('playground', self.enterPlayground, self.exitPlayground, ['quietZone']), State('toonInterior', self.enterToonInterior, self.exitToonInterior, ['quietZone']), State('quietZone', self.enterQuietZone, self.exitQuietZone, ['playground', 'toonInterior'])], 'off', 'off') self.placeDoneEvent = 'placeDone' self.place = None self.playground = None self.battleMusic = None self.invasionMusic = None self.invasionMusicFiles = None self.interiorMusic = None self.bossBattleMusic = None self.music = None self.tournamentMusic = None self.linkTunnels = [] self.szHolidayDNAFile = None self.animatedFish = None return def findAndMakeLinkTunnels(self): for tunnel in self.geom.findAllMatches('**/*linktunnel*'): dnaRootStr = tunnel.getName() link = LinkTunnel.SafeZoneLinkTunnel(tunnel, dnaRootStr) self.linkTunnels.append(link) def load(self): StateData.load(self) if self.pgMusicFilename: if type(self.pgMusicFilename) == types.ListType: filename = random.choice(self.pgMusicFilename) else: filename = self.pgMusicFilename self.music = base.loadMusic(filename) if self.battleMusicFile: self.battleMusic = base.loadMusic(self.battleMusicFile) if self.invasionMusicFiles: self.invasionMusic = None if self.bossBattleMusicFile: self.bossBattleMusic = base.loadMusic(self.bossBattleMusicFile) if self.interiorMusicFilename: self.interiorMusic = base.loadMusic(self.interiorMusicFilename) if self.tournamentMusicFiles: self.tournamentMusic = None self.createSafeZone(self.dnaFile) children = self.geom.findAllMatches('**/*doorFrameHole*') for child in children: child.hide() self.parentFSMState.addChild(self.fsm) _, _, _, _, _, _, _, _, af = SettingsManager().getSettings('settings.json') if af == 'on': self.notify.info('Anisotropic Filtering is on, applying to textures.') for nodepath in self.geom.findAllMatches('*'): try: for node in nodepath.findAllMatches('**'): try: node.findTexture('*').setAnisotropicDegree(8) except: pass except: continue return def unload(self): StateData.unload(self) if self.animatedFish: self.animatedFish.cleanup() self.animatedFish.removeNode() self.animatedFish = None self.parentFSMState.removeChild(self.fsm) del self.parentFSMState del self.animatedFish self.geom.removeNode() del self.geom del self.fsm del self.hood del self.playground del self.music del self.interiorMusic del self.battleMusic del self.bossBattleMusic del self.tournamentMusic self.ignoreAll() ModelPool.garbageCollect() TexturePool.garbageCollect() return def enter(self, requestStatus): StateData.enter(self) if base.localAvatar.zoneId < CIGlobals.DynamicZonesBegin: self.findAndMakeLinkTunnels() self.fsm.enterInitialState() messenger.send('enterSafeZone') self.setState(requestStatus['where'], requestStatus) partyGate = self.geom.find('**/prop_party_gate_DNARoot') if not partyGate.isEmpty(): partyGate.removeNode() del partyGate petShop = self.geom.find('**/*pet_shop_DNARoot*') if not petShop.isEmpty(): fish = petShop.find('**/animated_prop_PetShopFishAnimatedProp_DNARoot') if fish: self.animatedFish = Actor('phase_4/models/props/exteriorfish-zero.bam', {'chan': 'phase_4/models/props/exteriorfish-swim.bam'}) self.animatedFish.reparentTo(petShop) self.animatedFish.setPos(fish.getPos()) self.animatedFish.loop('chan') fish.removeNode() def exit(self): StateData.exit(self) messenger.send('exitSafeZone') for link in self.linkTunnels: link.cleanup() if self.animatedFish: self.animatedFish.stop('chan') self.linkTunnels = [] def setState(self, stateName, requestStatus): self.fsm.request(stateName, [requestStatus]) def createSafeZone(self, dnaFile): if self.szStorageDNAFile: loader.loadDNAFile(self.hood.dnaStore, self.szStorageDNAFile) if self.szHolidayDNAFile: loader.loadDNAFile(self.hood.dnaStore, self.szHolidayDNAFile) node = loader.loadDNAFile(self.hood.dnaStore, dnaFile) if node.getNumParents() == 1: self.geom = NodePath(node.getParent(0)) self.geom.reparentTo(hidden) else: self.geom = hidden.attachNewNode(node) self.makeDictionaries(self.hood.dnaStore) if self.__class__.__name__ not in ('TTSafeZoneLoader', ): self.geom.flattenMedium() gsg = base.win.getGsg() if gsg: self.geom.prepareScene(gsg) def makeDictionaries(self, dnaStore): self.nodeList = [] for i in xrange(dnaStore.getNumDNAVisGroups()): groupFullName = dnaStore.getDNAVisGroupName(i) groupNode = self.geom.find('**/' + groupFullName) if groupNode.isEmpty(): self.notify.error('Could not find visgroup') if self.__class__.__name__ not in ('TTSafeZoneLoader', ): groupNode.flattenMedium() self.nodeList.append(groupNode) self.hood.dnaStore.resetPlaceNodes() self.hood.dnaStore.resetDNAGroups() self.hood.dnaStore.resetDNAVisGroups() self.hood.dnaStore.resetDNAVisGroupsAI() def enterPlayground(self, requestStatus): try: self.hood.stopSuitEffect() except: pass self.acceptOnce(self.placeDoneEvent, self.handlePlaygroundDone) self.place = self.playground(self, self.fsm, self.placeDoneEvent) self.place.load() def exitPlayground(self): self.ignore(self.placeDoneEvent) self.place.exit() self.place.unload() self.place = None base.cr.playGame.setPlace(self.place) return def handlePlaygroundDone(self): status = self.place.doneStatus if self.hood.isSameHood(status) and status['loader'] == 'safeZoneLoader' and status['where'] not in ('minigame', ): self.fsm.request('quietZone', [status]) else: self.doneStatus = status messenger.send(self.doneEvent) def enterToonInterior(self, requestStatus): self.acceptOnce(self.placeDoneEvent, self.handleToonInteriorDone) self.place = ToonInterior.ToonInterior(self, self.fsm, self.placeDoneEvent) self.place.load() def enterThePlace(self, requestStatus): base.cr.playGame.setPlace(self.place) if self.place is not None: self.place.enter(requestStatus) return def exitToonInterior(self): self.ignore(self.placeDoneEvent) self.place.exit() self.place.unload() self.place = None base.cr.playGame.setPlace(self.place) return def handleToonInteriorDone(self): status = self.place.doneStatus if status['loader'] == 'safeZoneLoader' and self.hood.isSameHood(status) and status['shardId'] == None or status['how'] == 'doorOut': self.fsm.request('quietZone', [status]) else: self.doneStatus = status messenger.send(self.doneEvent) return def enterQuietZone(self, requestStatus): self.fsm.request(requestStatus['where'], [requestStatus], exitCurrent=0) self.quietZoneDoneEvent = uniqueName('quietZoneDone') self.acceptOnce(self.quietZoneDoneEvent, self.handleQuietZoneDone) self.quietZoneStateData = QuietZoneState(self.quietZoneDoneEvent) self.quietZoneStateData.load() self.quietZoneStateData.enter(requestStatus) def exitQuietZone(self): self.ignore(self.quietZoneDoneEvent) del self.quietZoneDoneEvent self.quietZoneStateData.exit() self.quietZoneStateData.unload() self.quietZoneStateData = None return def handleQuietZoneDone(self): status = self.quietZoneStateData.getDoneStatus() self.exitQuietZone() if status['where'] == 'estate' or status['loader'] == 'townLoader': self.doneStatus = status messenger.send(self.doneEvent) else: self.enterThePlace(status) def enterOff(self): pass def exitOff(self): pass
1.882813
2
Drawing Book/Drawing Book.py
saurav0001kumar/HackerRank
1
12776274
<filename>Drawing Book/Drawing Book.py #!/bin/python3 import os import sys # # Complete the pageCount function below. # def pageCount(n, p): t1=0 t2=0 if p==1 or p==n: return(0) else: i=2 while i<=p: if i%2==0: t1+=1 i+=1 i=n-1 while i>=p: if i%2!=0: t2+=1 i-=1 if t1<t2: return(t1) else: return(t2) # # Write your code here. # if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input()) p = int(input()) result = pageCount(n, p) fptr.write(str(result) + '\n') fptr.close()
3.890625
4
hawkweed/monads/either.py
hellerve/hawkweed
20
12776275
<filename>hawkweed/monads/either.py """The Either monad""" from hawkweed.monads.monad import Monad class Either(Monad): """The Either abstract base class""" def __init__(self, value): raise NotImplementedError("please use the type instances Left or Right") class Left(Either): """The Left instance of the Either monad""" def __init__(self, value): self.value = value def bind(self, fun): """ The monadic bind function of Left. It will just return itself. Complexity: O(1) params: fun: the function returns: self """ return self class Right(Either): """The Right instance of the Either monad""" def __init__(self, value): self.value = value def bind(self, fun): """ The monadic bind function of Right. It will just apply the function to the value and be done with it. Complexity: O(k) where k is the complexity of the function params: fun: the function returns: the transformed value """ return fun(self.value) def either(left, right, monad): """ Takes a function left, a function right and a value and binds according to the value (into left if it is a Left, into right if it is a Right). Otherwise throws a ValueError. Complexity: O(1) or complexity of the given function params: left: the function that should be executed on Left right: the function that should be executed on Right throws: ValueError returns: whatever the functions return """ if is_left(monad): return monad.bind(left) if is_right(monad): return monad.bind(right) raise ValueError("monad in either must either be left or right") def lefts(monads): """ Takes a list and returns only the instances of Left. Complexity: O(1) params: monads: the list returns: an iterable of the Left values """ return (x for x in monads if is_left(x)) def rights(monads): """ Takes a list and returns only the instances of Right. Complexity: O(1) params: monads: the list returns: a generator of the Right values """ return (x for x in monads if is_right(x)) def is_either(monad): """ Checks whether a value is an instance of Either. Complexity: O(1) params: val: the value to check returns: the truth value """ return is_left(monad) or is_right(monad) def is_left(monad): """ Checks whether a value is an instance of Left. Complexity: O(1) params: val: the value to check returns: the truth value """ return isinstance(monad, Left) def is_right(monad): """ Checks whether a value is an instance of Right. Complexity: O(1) params: val: the value to check returns: the truth value """ return isinstance(monad, Right) def partition_eithers(monads): """ Takes a list and returns a two-element Atuple where the first element is a list of all the instances of Left and the second element is a list of all the instances of Right. Complexity: O(1) params: monads: the list of monads returns: the tuple """ return lefts(monads), rights(monads)
3.671875
4
ex0021.py
GantzLorran/Python
1
12776276
<filename>ex0021.py import pygame pygame.mixer.init() pygame.mixer.music.load('FH3.mp3') pygame.mixer.music.play() input() pygame.event.wait()
2.0625
2
webapp01.py
sgriffith3/2022-02-28-SDE
2
12776277
<reponame>sgriffith3/2022-02-28-SDE import random import string from flask import Flask app = Flask(__name__) @app.route("/") def main_page(): return "Howdy neighbor!" @app.route("/rando") def rando_str(): s = "" for i in range(10): s += random.choice(string.ascii_letters) return s if __name__ == "__main__": app.run(port=2224, host="0.0.0.0")
2.734375
3
luracoin/helpers.py
maguayo/luracoin-python
12
12776278
import os import ecdsa import binascii import hashlib from typing import Union from luracoin.config import Config def bits_to_target(bits: bytes) -> hex: """ The first byte is the exponent and the other three bytes are the coefficient. Example: 0x1d00ffff => 00000000ffff000000000000000000000000...[0x1d = 29 bytes] """ bits = bits.hex() # We get the first two characters which is the first byte and convert it # to an integer, later we substract three bytes which are the coefficient # and after that we multiply that for two, because each byte has two chars target_exponent_number = (int(bits[0:2], 16) - 3) * 2 target_exponent = "".join(["0" for d in range(target_exponent_number)]) # The target has to be 32 bytes, so 64 characters. We need to add 0's at # the start of the target as padding. Also here we need to add 6 because # we need to take in account the exponent too padding_number = 64 - target_exponent_number - 6 padding = "".join(["0" for d in range(padding_number)]) return padding + bits[2:8] + target_exponent def sha256d(s: Union[str, bytes]) -> str: """A double SHA-256 hash.""" if not isinstance(s, bytes): s = s.encode() return hashlib.sha256(hashlib.sha256(s).digest()).hexdigest() def mining_reward(height) -> int: halving = int(height / Config.HALVING_BLOCKS) + 1 return int(Config.BLOCK_REWARD / halving) def little_endian_to_int(little_endian_hex: str) -> int: return int.from_bytes( binascii.unhexlify(little_endian_hex), byteorder="little" ) def is_hex(s: str) -> bool: try: int(s, 16) except ValueError: return False return len(s) % 2 == 0 def bytes_to_signing_key(private_key: bytes) -> ecdsa.SigningKey: return ecdsa.SigningKey.from_string(private_key, curve=ecdsa.SECP256k1)
3.328125
3
moveit_ros/benchmarks/benchmarks/scripts/moveit_benchmark_statistics.py
KenmeiFusamae/moveit
0
12776279
#!/usr/bin/env python ###################################################################### # Software License Agreement (BSD License) # # Copyright (c) 2010, Rice University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the Rice University nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ###################################################################### # Author: <NAME>, <NAME>, <NAME> from sys import argv, exit import os import sqlite3 import datetime import matplotlib matplotlib.use('pdf') from matplotlib import __version__ as matplotlibversion from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy as np from optparse import OptionParser, OptionGroup def read_benchmark_log(dbname, filenames): """Parse benchmark log files and store the parsed data in a sqlite3 database.""" conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') c.execute("""CREATE TABLE IF NOT EXISTS experiments (id INTEGER PRIMARY KEY AUTOINCREMENT, name VARCHAR(512), totaltime REAL, timelimit REAL, hostname VARCHAR(1024), date DATETIME, setup TEXT)""") c.execute("""CREATE TABLE IF NOT EXISTS known_planner_configs (id INTEGER PRIMARY KEY AUTOINCREMENT, planner_name VARCHAR(512) NOT NULL, settings TEXT)""") for filename in filenames: print("Processing " + filename) logfile = open(filename,'r') expname = logfile.readline().split()[-1] hostname = logfile.readline().split()[-1] date = " ".join(logfile.readline().split()[2:]) goal_name = logfile.readline().split()[-1] # disabled the planning request part #logfile.readline() # skip <<<| #expsetup = "" #expline = logfile.readline() #while not expline.startswith("|>>>"): # expsetup = expsetup + expline # expline = logfile.readline() expsetup = "" timelimit = float(logfile.readline().split()[0]) totaltime = float(logfile.readline().split()[0]) c.execute('INSERT INTO experiments VALUES (?,?,?,?,?,?,?)', (None, expname, totaltime, timelimit, hostname, date, expsetup) ) c.execute('SELECT last_insert_rowid()') experiment_id = c.fetchone()[0] num_planners = int(logfile.readline().split()[0]) for i in range(num_planners): planner_name = logfile.readline()[:-1] print("Parsing data for " + planner_name) # read common data for planner num_common = int(logfile.readline().split()[0]) settings = "" for j in range(num_common): settings = settings + logfile.readline() + ';' # find planner id c.execute("SELECT id FROM known_planner_configs WHERE (planner_name=? AND settings=?)", (planner_name, settings,)) p = c.fetchone() if p==None: c.execute("INSERT INTO known_planner_configs VALUES (?,?,?)", (None, planner_name, settings,)) c.execute('SELECT last_insert_rowid()') planner_id = c.fetchone()[0] else: planner_id = p[0] # read run properties # number of properties to read from log file num_properties = int(logfile.readline().split()[0]) # load a dictionary of properties and types # we keep the names of the properties in a list as well, to ensure the correct order of properties properties = {} basePropNames = ['experimentid', 'plannerid', 'goal_name'] # these are the ones not from the planner directly basePropValues = [experiment_id, planner_id, goal_name] propNames = [] propNames.extend(basePropNames) for j in range(num_properties): field = logfile.readline().split() ftype = field[-1] fname = "_".join(field[:-1]) properties[fname] = ftype propNames.append(fname) # create the table, if needed table_columns = "experimentid INTEGER, plannerid INTEGER, goal_name VARCHAR(100)" for k, v in properties.iteritems(): table_columns = table_columns + ', ' + k + ' ' + v table_columns = table_columns + ", FOREIGN KEY(experimentid) REFERENCES experiments(id) ON DELETE CASCADE ON UPDATE CASCADE" table_columns = table_columns + ", FOREIGN KEY(plannerid) REFERENCES known_planner_configs(id) ON DELETE CASCADE ON UPDATE CASCADE" planner_table = 'planner_%s' % planner_name c.execute("CREATE TABLE IF NOT EXISTS `%s` (%s)" % (planner_table, table_columns)) # check if the table has all the needed columns; if not, add them c.execute('SELECT * FROM `%s`' % planner_table) added_columns = [ t[0] for t in c.description] for col in properties.keys(): if not col in added_columns: c.execute('ALTER TABLE `' + planner_table + '` ADD ' + col + ' ' + properties[col] + ';') # add measurements insert_fmt_str = 'INSERT INTO `' + planner_table + '` (' + ','.join(propNames) + ') VALUES (' + ','.join('?'*(num_properties + len(basePropNames))) + ')' num_runs = int(logfile.readline().split()[0]) for j in range(num_runs): run = tuple(basePropValues + [None if len(x)==0 else float(x) for x in logfile.readline().split('; ')[:-1]]) c.execute(insert_fmt_str, run) logfile.readline() logfile.close() conn.commit() c.close() def plot_attribute(cur, planners, attribute, typename): """Create a box plot for a particular attribute. It will include data for all planners that have data for this attribute.""" plt.clf() ax = plt.gca() labels = [] measurements = [] nan_counts = [] is_bool = True for planner in planners: cur.execute('SELECT * FROM `%s`' % planner) attributes = [ t[0] for t in cur.description] if attribute in attributes: cur.execute('SELECT `%s` FROM `%s` WHERE `%s` IS NOT NULL' % (attribute, planner, attribute)) measurement = [ t[0] for t in cur.fetchall() ] cur.execute('SELECT count(*) FROM `%s` WHERE `%s` IS NULL' % (planner, attribute)) nan_counts.append(cur.fetchone()[0]) cur.execute('SELECT DISTINCT `%s` FROM `%s`' % (attribute, planner)) is_bool = is_bool and set([t[0] for t in cur.fetchall() if not t[0]==None]).issubset(set([0,1])) measurements.append(measurement) labels.append(planner.replace('planner_geometric_','').replace('planner_control_','')) if is_bool: width = .5 measurements_percentage = [sum(m)*100./len(m) for m in measurements] ind = range(len(measurements)) plt.bar(ind, measurements_percentage, width) xtickNames = plt.xticks([x+width/2. for x in ind], labels, rotation=30) ax.set_ylabel(attribute.replace('_',' ') + ' (%)') else: if int(matplotlibversion.split('.')[0])<1: plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5) else: plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5, bootstrap=1000) ax.set_ylabel(attribute.replace('_',' ')) xtickNames = plt.setp(ax,xticklabels=labels) plt.setp(xtickNames, rotation=25) ax.set_xlabel('Motion planning algorithm') ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) if max(nan_counts)>0: maxy = max([max(y) for y in measurements]) for i in range(len(labels)): x = i+width/2 if is_bool else i+1 ax.text(x, .95*maxy, str(nan_counts[i]), horizontalalignment='center', size='small') plt.show() def plot_statistics(dbname, fname): """Create a PDF file with box plots for all attributes.""" print("Generating plot...") conn = sqlite3.connect(dbname) c = conn.cursor() c.execute('PRAGMA FOREIGN_KEYS = ON') c.execute("SELECT name FROM sqlite_master WHERE type='table'") table_names = [ str(t[0]) for t in c.fetchall() ] planner_names = [ t for t in table_names if t.startswith('planner_') ] attributes = [] types = {} experiments = [] # merge possible attributes from all planners for p in planner_names: c.execute('SELECT * FROM `%s` LIMIT 1' % p) atr = [ t[0] for t in c.description] atr.remove('plannerid') atr.remove('experimentid') for a in atr: if a not in attributes: c.execute('SELECT typeof(`%s`) FROM `%s` WHERE `%s` IS NOT NULL LIMIT 1' % (a, p, a)) attributes.append(a) types[a] = c.fetchone()[0] c.execute('SELECT DISTINCT experimentid FROM `%s`' % p) eid = [t[0] for t in c.fetchall() if not t[0]==None] for e in eid: if e not in experiments: experiments.append(e) attributes.sort() pp = PdfPages(fname) for atr in attributes: if types[atr]=='integer' or types[atr]=='real': plot_attribute(c, planner_names, atr, types[atr]) pp.savefig(plt.gcf()) plt.clf() pagey = 0.9 pagex = 0.06 for e in experiments: # get the number of runs, per planner, for this experiment runcount = [] for p in planner_names: c.execute('SELECT count(*) FROM `%s` WHERE experimentid = %s' % (p, e)) runcount.append(c.fetchone()[0]) # check if this number is the same for all planners runs = "Number of averaged runs: " if len([r for r in runcount if not r == runcount[0]]) > 0: runs = runs + ", ".join([planner_names[i].replace('planner_geometric_','').replace('planner_control_','') + "=" + str(runcount[i]) for i in range(len(runcount))]) else: runs = runs + str(runcount[0]) c.execute('SELECT name, timelimit FROM experiments WHERE id = %s' % e) d = c.fetchone() plt.figtext(pagex, pagey, "Experiment '%s'" % d[0]) plt.figtext(pagex, pagey-0.05, runs) plt.figtext(pagex, pagey-0.10, "Time limit per run: %s seconds" % d[1]) pagey -= 0.22 plt.show() pp.savefig(plt.gcf()) pp.close() def save_as_mysql(dbname, mysqldump): # See http://stackoverflow.com/questions/1067060/perl-to-python import re print("Saving as MySQL dump file...") conn = sqlite3.connect(dbname) mysqldump = open(mysqldump,'w') # make sure all tables are dropped in an order that keepd foreign keys valid c = conn.cursor() c.execute("SELECT name FROM sqlite_master WHERE type='table'") table_names = [ str(t[0]) for t in c.fetchall() ] c.close() last = ['experiments', 'known_planner_configs'] for table in table_names: if table.startswith("sqlite"): continue if not table in last: mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table) for table in last: if table in table_names: mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table) for line in conn.iterdump(): process = False for nope in ('BEGIN TRANSACTION','COMMIT', 'sqlite_sequence','CREATE UNIQUE INDEX', 'CREATE VIEW'): if nope in line: break else: process = True if not process: continue line = re.sub(r"[\n\r\t ]+", " ", line) m = re.search('CREATE TABLE ([a-zA-Z0-9_]*)(.*)', line) if m: name, sub = m.groups() sub = sub.replace('"','`') line = '''CREATE TABLE IF NOT EXISTS %(name)s%(sub)s''' line = line % dict(name=name, sub=sub) # make sure we use an engine that supports foreign keys line = line.rstrip("\n\t ;") + " ENGINE = InnoDB;\n" else: m = re.search('INSERT INTO "([a-zA-Z0-9_]*)"(.*)', line) if m: line = 'INSERT INTO %s%s\n' % m.groups() line = line.replace('"', r'\"') line = line.replace('"', "'") line = re.sub(r"([^'])'t'(.)", "\\1THIS_IS_TRUE\\2", line) line = line.replace('THIS_IS_TRUE', '1') line = re.sub(r"([^'])'f'(.)", "\\1THIS_IS_FALSE\\2", line) line = line.replace('THIS_IS_FALSE', '0') line = line.replace('AUTOINCREMENT', 'AUTO_INCREMENT') mysqldump.write(line) mysqldump.close() def generate_csv(dbname, fname): """Create a csv file with all experiments combined into one list.""" print("Generating CSV output...") # Open CSV File csv = open(fname, 'w') # Connect to database conn = sqlite3.connect(dbname) cursor = conn.cursor() cursor.execute('PRAGMA FOREIGN_KEYS = ON') # Get planner tables cursor.execute("SELECT name FROM sqlite_master WHERE type='table'") table_names = [ str(t[0]) for t in cursor.fetchall() ] planner_names = [ t for t in table_names if t.startswith('planner_') ] # Create vectors attributes = [] types = {} experiments = [] # merge possible attributes from all planners for planner_name in planner_names: cursor.execute('SELECT * FROM `%s` LIMIT 1' % planner_name) atr = [ t[0] for t in cursor.description] atr.remove('plannerid') atr.remove('experimentid') for attribute in atr: if attribute not in attributes: cursor.execute('SELECT typeof(`%s`) FROM `%s` WHERE `%s` IS NOT NULL LIMIT 1' % (attribute, planner_name, attribute)) attributes.append(attribute) # add this new attribute (first time seen) types[attribute] = cursor.fetchone()[0] # Find new exeperiments for this planner table and add to our experiment vector cursor.execute('SELECT DISTINCT experimentid FROM `%s`' % planner_name) experiment_ids = [t[0] for t in cursor.fetchall() if not t[0]==None] for experiment_id in experiment_ids: if experiment_id not in experiments: experiments.append(experiment_id) # Sort all found attributes attributes.sort(reverse=True) # Create header of the CSV csv.write('planner_type') for atr in attributes: #if types[atr]=='integer' or types[atr]=='real': csv.write(", %s"%atr) csv.write('\n') # new line # Start creating CSV file by polling each planner table and seperating its data into proper column # format, leaving blanks where planner is missing possible attribute data for planner_name in planner_names: cursor.execute('SELECT * FROM `%s`' % planner_name) # get this planner's attributes planner_attributes = [ t[0] for t in cursor.description] #print>>csv, planner_attributes # loop through each row of the planner experiments, aka each 'run' for run in cursor.fetchall(): # write a *simplified* planner name name_short = planner_name.strip('planner') name_short = name_short.strip('_OMPL_') name_short = name_short.replace('[','_') name_short = name_short.strip('kConfigDefault]') csv.write(name_short) # loop through each global attribute for atr in attributes: # find the global attribute in this table if it exists if atr in planner_attributes: # output value index_of_attr = planner_attributes.index(atr) csv.write(", %s" %run[index_of_attr]) else: csv.write(", ") # done with this line csv.write("\n") if __name__ == "__main__": usage = """%prog [options] [<benchmark.log> ...]""" parser = OptionParser(usage) parser.add_option("-d", "--database", dest="dbname", default="benchmark.db", help="Filename of benchmark database [default: %default]") parser.add_option("-v", "--view", action="store_true", dest="view", default=False, help="Compute the views for best planner configurations") parser.add_option("-p", "--plot", dest="plot", default=None, help="Create a PDF of plots") parser.add_option("-c", "--csv", dest="csv", default=None, help="Create a CSV of combined experiments") parser.add_option("-m", "--mysql", dest="mysqldb", default=None, help="Save SQLite3 database as a MySQL dump file") parser.add_option("-o", "--overwrite", action="store_true", dest="overwrite", default=False, help="Use this flag to enable overwriting a previous database file with new benchmarks") if len(argv) == 1: parser.print_help() (options, args) = parser.parse_args() if len(args) > 0: # Check if user wants to start a new database (delete old one) if options.overwrite: try: os.remove(options.dbname) except OSError: pass read_benchmark_log(options.dbname, args) if options.plot: plot_statistics(options.dbname, options.plot) if options.csv: generate_csv(options.dbname, options.csv) if options.mysqldb: save_as_mysql(options.dbname, options.mysqldb)
1.125
1
composer/models/__init__.py
jacobfulano/composer
2
12776280
# Copyright 2021 MosaicML. All Rights Reserved. from composer.models.base import BaseMosaicModel as BaseMosaicModel from composer.models.base import MosaicClassifier as MosaicClassifier from composer.models.classify_mnist import MNIST_Classifier as MNIST_Classifier from composer.models.classify_mnist import MnistClassifierHparams as MnistClassifierHparams from composer.models.efficientnetb0 import EfficientNetB0 as EfficientNetB0 from composer.models.efficientnetb0 import EfficientNetB0Hparams as EfficientNetB0Hparams from composer.models.gpt2 import GPT2Hparams as GPT2Hparams from composer.models.gpt2 import GPT2Model as GPT2Model from composer.models.model_hparams import Initializer as Initializer from composer.models.model_hparams import ModelHparams as ModelHparams from composer.models.resnet18 import ResNet18 as ResNet18 from composer.models.resnet18 import ResNet18Hparams as ResNet18Hparams from composer.models.resnet50 import ResNet50 as ResNet50 from composer.models.resnet50 import ResNet50Hparams as ResNet50Hparams from composer.models.resnet56_cifar10 import CIFAR10_ResNet56 as CIFAR10_ResNet56 from composer.models.resnet56_cifar10 import CIFARResNetHparams as CIFARResNetHparams from composer.models.resnet101 import ResNet101 as ResNet101 from composer.models.resnet101 import ResNet101Hparams as ResNet101Hparams from composer.models.transformer_shared import MosaicTransformer as MosaicTransformer from composer.models.unet import UNet as UNet from composer.models.unet import UnetHparams as UnetHparams
1.125
1
mpi4jax/_src/flush.py
Thenerdstation/mpi4jax
122
12776281
<reponame>Thenerdstation/mpi4jax import jax def flush(platform): """Wait for all pending XLA operations""" devices = jax.devices(platform) for device in devices: # as suggested in jax#4335 noop = jax.device_put(0, device=device) + 0 noop.block_until_ready()
2.1875
2
Assignments/Comprehensions/Exercise/09. Bunker.py
KaloyankerR/python-advanced-repository
0
12776282
items = {key: {} for key in input().split(", ")} n = int(input()) for _ in range(n): line = input().split(" - ") category, item = line[0], line[1] items_count = line[2].split(";") quantity = int(items_count[0].split(":")[1]) quality = int(items_count[1].split(":")[1]) items[category][item] = (quantity, quality) items_count = sum([sum([i[0] for i in list(items[x].values())]) for x in items]) avg_quality = sum([sum([i[1] for i in list(items[x].values())]) for x in items]) / len([x for x in items.keys()]) print(f"Count of items: {items_count}") print(f"Average quality: {avg_quality:.2f}") [print(f"{x} -> {', '.join(items[x])}") for x in items.keys()]
3.4375
3
scripts/move.py
xdze2/pyrobot
0
12776283
<gh_stars>0 import time from threading import Thread from pyrobot.drive import Mobility # from pyrobot.imu import Imu # import numpy as np # import matplotlib.pyplot as plt import zmq # Prepare our context and publisher context = zmq.Context() subscriber = context.socket(zmq.PAIR) subscriber.bind("tcp://*:5564") # subscriber.setsockopt(zmq.SUBSCRIBE, b"key") mob = Mobility() while True: # Read envelope with address key = subscriber.recv() print('->', key) if key == b'i': print('forward') mob.drive(70, 0) time.sleep(.2) mob.drive(0, 0) elif key == b'k': print('backward') mob.drive(-70, 0) time.sleep(.2) mob.drive(0, 0) # [address, contents] = subscriber.recv() # print(f"[{address}] {contents}") # mob = Mobility() # data = list() # sense = Imu(data) # th = Thread( # target=sense.loop # ) # th.start() # time.sleep(.2) # mob.drive(0, -70, 1) # time.sleep(.2) # mob.drive(0, 70, 1) # time.sleep(.2) # sense.run = False # data = np.array(sense.data) # plt.plot(np.cumsum(data[:, 0]), label='wx') # plt.plot(np.cumsum(data[:, 1]), label='wy') # plt.plot(np.cumsum(data[:, 2]), label='wz') # plt.legend() # plt.savefig('graph.png')
2.46875
2
dask/dataframe/io/orc/__init__.py
Juanlu001/dask
9,684
12776284
<filename>dask/dataframe/io/orc/__init__.py from .core import read_orc, to_orc
1.140625
1
xml2ES.py
Fadavvi/XML2Elastic
4
12776285
import xmltodict import json from elasticsearch import Elasticsearch from elasticsearch.connection import create_ssl_context import sys ##By: <NAME> def Connect2ES(ip='127.0.0.1',port='9200',user="",password="",https=False,CertPath="",ES_Index='reports',Data=""): ## Connection to Elastic Search (http/https) raiseFieldLimit = ''' { "index.mapping.total_fields.limit": 500000 }''' if https : context = create_ssl_context(cafile=CertPath) es = Elasticsearch( [ip], http_auth=(user, password), scheme="https", port=int(port), ssl_context=context, ) else : es = Elasticsearch( [ip], scheme="http", port=int(port), ) if not es.indices.exists(index=ES_Index): es.indices.create(index=ES_Index, ignore=400,body=raiseFieldLimit) es.index(index=ES_Index, doc_type='Report', body=Data) def XML2JSON(address): # Any XML 2 JSON (tested on: ZAP, Nesus v2 and higher, acunetix 11, Openvas, Arachni , Nikto, NMAP) file = open(address,"r") return (json.dumps(xmltodict.parse(file.read()))) if (sys.argv[1] == 'http'): Connect2ES (ip=sys.argv[2],port=sys.argv[3],https=False,ES_Index=(sys.argv[5]),Data=XML2JSON(sys.argv[4])) elif (sys.argv[1] == 'https'): Connect2ES (ip=sys.argv[2],port=sys.argv[3],https=True,user=sys.argv[6],password=sys.argv[7],CertPath=sys.argv[8],ES_Index=(sys.argv[5]),Data=XML2JSON(sys.argv[4])) else: print ('Did not support on this version') # Usage: python3 scanner.py [HTTP] [ES IP] [ES Port] [XML Path] [ES Index name] # python3 scanner.py [HTTPs] [ES IP] [ES Port] [XML Path] [ES Index name] [User Name] [Password] [Cert Path]
2.859375
3
mala/datahandling/__init__.py
DanielKotik/mala
11
12776286
"""All functions for handling data.""" from .data_handler import DataHandler from .data_scaler import DataScaler from .data_converter import DataConverter
1.046875
1
neat/activations.py
greenmachine1902/NEAT
0
12776287
from __future__ import annotations import random from mattslib import math_util __version__ = '1.4.1' __date__ = '19/03/2022' def getActivation(activation: str = '') -> activation_function: """ Returns the requested or a random activation function. :param activation: str :return: - activation_function - (x: int | float) -> int | float """ activations = {'absolute': math_util.absolute, 'binaryStep': math_util.binaryStep, 'clamped': math_util.clamped, 'identity': math_util.identity, 'log': math_util.log, 'tanh': math_util.tanh, 'leakyReLU': math_util.leakyReLU, 'sigmoid': math_util.sigmoid, 'swish': math_util.swish} activation_function = activations[activation] if activation in activations \ else random.choice(list(activations.values())) return activation_function
2.96875
3
venv/Lib/site-packages/psychopy/demos/coder/stimuli/aperture.py
mintzer/pupillometry-rf-back
0
12776288
<filename>venv/Lib/site-packages/psychopy/demos/coder/stimuli/aperture.py #!/usr/bin/env python # -*- coding: utf-8 -*- """ Demo for the class psychopy.visual.Aperture(). Draw two gabor circles, one with an irregular aperture and one with no aperture. """ from __future__ import division from psychopy import visual, event # Need to allowStencil=True for a window with an Aperture: win = visual.Window([400, 400], allowStencil=True, units='norm') instr = visual.TextStim(win, text="Any key to quit", pos=(0, -.7)) gabor1 = visual.GratingStim(win, mask='circle', sf=4, size=1.2, color=[0.5, -0.5, 1]) gabor2 = visual.GratingStim(win, mask='circle', sf=4, size=1.2, color=[-0.5, -0.5, -1]) vertices = [(-0.02, -0.0), (-.8, .2), (0, .6), (.1, 0.06), (.8, .3), (.6, -.4)] # `sizes in Aperture refers to the diameter when shape='circle'; # vertices or other shapes are scaled accordingly aperture = visual.Aperture(win, size=0.9, shape=vertices) # try shape='square' aperture.enabled = False # enabled by default when created gabor1.draw() instr.draw() # drawing will now only be done within the aperture shape: aperture.enabled = True gabor2.draw() win.flip() event.waitKeys() win.close() # The contents of this file are in the public domain.
3.21875
3
stackoverflow/question/models.py
vivekdhinoja/stackoverflow
0
12776289
<reponame>vivekdhinoja/stackoverflow<filename>stackoverflow/question/models.py from ckeditor_uploader.fields import RichTextUploadingField from django.conf import settings from django.db import models from django.urls import reverse_lazy from django_extensions.db.models import TimeStampedModel from taggit.managers import TaggableManager # Create your models here. class Question(TimeStampedModel): title = models.CharField(max_length=100, unique=True) slug = models.SlugField(max_length=100, unique=True) description = RichTextUploadingField() tags = TaggableManager() author = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='questions') class Meta: verbose_name_plural = 'Questions' ordering = ['-created'] def __str__(self): return self.title def get_absolute_url(self): return reverse_lazy("question:question-detail", kwargs={"slug": self.slug})
2.25
2
python/MarkovChain.py
alessandrobondielli/alessandrobondielli.github.com
0
12776290
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy.random as random class MarkovChain: """Simple Markov Chain Model. Parameters ---------- n : int Number of states. p : list, len (n) Base probabilities. T : list of list, shape (n, n) Transition probabilities states : list, len (n), optional List of string labels for the states. verbose : bool, optional When ``True`` per-iteration convergence reports are printed to :data:`sys.stderr`. You can diagnose convergence via the :attr:`monitor_` attribute. Attributes ---------- stat : int Dimensionality of the Gaussian emissions. Examples -------- >>> mc = MarkovChain(n=2, P = [0.3,0.7], T =[[0.2,0.5],[0.8,0.5]], states = ['Rain','Sunny']) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE >>> mc.move() >>> mc.get_state() 'Sunny' """ def __init__(self, n, P, T, states=None, verbose= False): """Simple Markov chain model. """ assert len(P) == n, "Probability vector should be of size %d" %n assert len(T) == len(T[0]) and len(T) == n, "Transition matrix should be of size %d" %n assert states is None or len(states) == n, "States vector should be of size $d" %n # Number of states of the MarkovChain self.n = n self.states = states self.p = P self.T = T self.state = random.choice(range(self.n),1,p=self.p)[0] self.verbose = verbose def check_state(self): state = self.states[self.state] if self.states else self.state if self.verbose: print 'Current State: %s' % (state) def set_state(self, state): """Set the state for the MarkovChain to the specified state. Can be used for initialization. Parameters ---------- state : int, or string the state to set; can be either the index of the state, or its string label, if labels have been provided at initialization time. Returns ------- None """ self.state = self.states.index(state) if self.states else state if self.verbose: state = self.states[self.state] if self.states else self.state print 'State is now: %s' % (state) def get_state(self): """Get the state of the markov chain. Parameters ---------- Returns ------- state : int, or string the current state to of the Markov Chain; can be either the index of the state, or its string label, if labels have been provided at initialization time. """ state = self.states[self.state] if self.states else self.state return state def move(self): """Sample num_samples samples from the Markov Model. Parameters ---------- Returns ------- mutated : boolean true if the the model state has changed during the current update. """ current_state = self.state self.state = random.choice(range(self.n),1,p=self.T[current_state])[0] state = self.states[self.state] if self.states else self.state if self.verbose: print 'New State: %s' % (state) return self.state != current_state # Jukes e Cantor # alpha < 1/3. def JC69(nucleotide): """Initialize a Markov Chain for a nucleotide, using a Jukes e Cantor model. Parameters ---------- nucleotide: string, must be one of ['A', 'C', 'G', 'T'] A nucleotide used to initialize the model. Returns ------- mc : MarkovChain object. The MarkovChain object, using a Jukes Cantor Model initialized to the provided nucleotide. Examples -------- >>> nuc_mc = JC69('A') <__main__.MarkovChain instance at 0x1a22066638> ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE >>> nuc_mc.get_state() 'A' >>> nuc_mc.move() 'True' >>> nuc_mc.get_state() 'C' """ n = 4 prob = [0.25, 0.25, 0.25, 0.25] alpha = 0.005 JC69_sub = [[1-alpha*3, alpha, alpha, alpha], [alpha, 1-alpha*3, alpha, alpha], [alpha, alpha, 1-alpha*3, alpha], [alpha, alpha, alpha, 1-alpha*3]] states = list('ACGT') mc = MarkovChain(n, prob, JC69_sub, states = states) mc.set_state(nucleotide) return mc #plot della distribuzione def plot_gen(total_arr): total_v = total_arr.mean(axis=0) fig = plt.figure() ax = plt.plot(total_v,range(length*5)) plt.plot(range(length),range(length)) plt.plot([75,75],[0,500],'--') c_p = np.linspace(0,0.75,750,endpoint=False) k_p = -3./4 * np.log(1- 4./3 *c_p) plt.plot(c_p*length,k_p*length) plt.xlabel('c') plt.ylabel('k') return plt
3.21875
3
BOJ/04000~04999/4400~4499/4447.py
shinkeonkim/today-ps
2
12776291
cnt = int(input()) for i in range(cnt): s=input() a=s.lower() g=a.count('g') b=a.count('b') print(s,"is",end=" ") if g == b: print("NEUTRAL") elif g>b: print("GOOD") else: print("A BADDY")
3.59375
4
sandbox/scripts/doc_embeddings.py
GOALCLEOPATRA/MLM
0
12776292
<reponame>GOALCLEOPATRA/MLM import torch import flair from flair.data import Sentence from flair.embeddings import FlairEmbeddings, BertEmbeddings, DocumentPoolEmbeddings # set device torch.cuda.set_device(2) DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') flair.device = DEVICE class DocEmbeddings(object): def __init__(self, model_name): super().__init__() assert model_name in ['flair', 'bert', 'use'] self.model_name = model_name self.document_embeddings = self.load_embedding_model(model_name) def load_embedding_model(self, name): if name == 'flair': print('Loading Flair Embeddings...') flair_embedding_forward = FlairEmbeddings('news-forward') flair_embedding_backward = FlairEmbeddings('news-backward') return DocumentPoolEmbeddings([flair_embedding_forward, flair_embedding_backward]) elif name == 'bert': print('Loading BERT Embeddings...') bert_embeddings = BertEmbeddings('bert-base-uncased') # bert-base-multilingual-cased return DocumentPoolEmbeddings([bert_embeddings]) print('Done!') def embed(self, tokens): x = Sentence(tokens if self.model_name == 'flair' else tokens[:500]) # for bert we use the first 500 tokens self.document_embeddings.embed(x) return x.embedding
2.421875
2
helper_functions/test.py
cleveranjos/Rapid-ML-Gateway
3
12776293
<gh_stars>1-10 import python_finance as pf def main(): tickers = ['AAPL', 'MSFT', 'NFLX', 'AMZN', 'GOOG'] tickers_b = ['DOCU', 'SHOP', 'WMT'] start = '20200101' end = '20201007' attrib = 'Adj Close' #print(pf.get_tickers(tickers, start, end, attrib)) #print(pf.get_Percent_change(tickers, start, end, attrib)) #print(pf.get_Mean_Daily_Return(tickers, start, end, attrib)) #print(pf.get_Cov_Matrix(tickers, start, end, attrib)) print(pf.get_tickers(tickers_b, start, end, attrib)) print(pf.get_Percent_change(tickers_b, start, end, attrib)) mean_returns = pf.get_Mean_Daily_Return(tickers_b, start, end, attrib) print(mean_returns) cov = pf.get_Cov_Matrix(tickers_b, start, end, attrib) print(cov) num_portfolios = 100000 rf = 0 print(pf.simulate_random_portfolios(num_portfolios, mean_returns, cov, rf, tickers_b)) if __name__ == "__main__": main()
2.5625
3
game/state.py
MeinAccount/ea-snake
0
12776294
import random from collections import deque from typing import Tuple from game.direction import Directions, GRID_WIDTH, GRID_HEIGHT class GameState: apple_pos = (0, 0) positions = None direction = 0 def __init__(self, start_pos: Tuple[int, int], length: int = 3) -> None: self.length = length self.positions = deque() self.positions.append(start_pos) for i in range(1, length): self.positions.append(Directions.apply(2, self.positions[i - 1])) self.apple_replace() def move(self) -> Tuple[bool, bool]: new_pos = Directions.apply(self.direction, self.positions[0]) # check for edge if new_pos[0] == -1 or new_pos[0] == GRID_WIDTH or new_pos[1] == -1 or new_pos[1] == GRID_HEIGHT: return False, False # check for apple has_grown = self.apple_pos == new_pos if has_grown: self.length += 1 self.apple_replace() else: self.positions.pop() # check for self intersection self_intersection = new_pos in self.positions self.positions.appendleft(new_pos) return not self_intersection, has_grown def apple_replace(self): self.apple_pos = (random.randrange(0, GRID_WIDTH), random.randrange(0, GRID_HEIGHT)) while self.apple_pos in self.positions: self.apple_pos = (random.randrange(0, GRID_WIDTH), random.randrange(0, GRID_HEIGHT)) def distance_to_apple(self): x, y = self.positions[0] return abs(x - self.apple_pos[0]) + abs(y - self.apple_pos[1])
3.546875
4
sqlite/funcs/db_creation.py
vrcunha/db_sql_and_nosql
1
12776295
import os from dotenv import load_dotenv, find_dotenv from sqlalchemy.sql.sqltypes import Integer, REAL, TEXT from sqlalchemy import (create_engine, MetaData, Column, Table) from sqlalchemy_utils import database_exists, create_database load_dotenv(find_dotenv()) engine = create_engine(f"sqlite:///{os.getenv('SQLITE_DB_NAME')}", echo=False) if not database_exists(engine.url): create_database(engine.url) metadata = MetaData(bind=engine) produtos = Table('products', metadata, Column('id', Integer, primary_key=True), Column('name', TEXT(50), nullable=False), Column('price', REAL(8,2), nullable=False), Column('stock', TEXT(50), nullable=False) ) metadata.create_all()
2.515625
3
tryalgo/fenwick.py
siebenbrunner/tryalgo
0
12776296
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """\ Fenwick tree <NAME> et <NAME> - 2014-2018 """ # snip{ class Fenwick: """maintains a tree to allow quick updates and queries """ def __init__(self, t): """stores a table t and allows updates and queries of prefix sums in logarithmic time. :param array t: with numerical values """ self.s = [0] * (len(t) + 1) # create internal storage for a in range(len(t)): self.add(a, t[a]) # initialize # pylint: disable=redefined-builtin def prefixSum(self, a): """ :param int a: index in t, negative a will return 0 :returns: t[0] + ... + t[a] """ i = a + 1 # internal index starts at 1 total = 0 while i > 0: # loops over neighbors total += self.s[i] # cumulative sum i -= (i & -i) # left neighbor return total def intervalSum(self, a, b): """ :param int a b: with 0 <= a <= b :returns: t[a] + ... + t[b] """ return self.prefixSum(b) - self.prefixSum(a-1) def add(self, a, val): """ :param int a: index in t :modifies: adds val to t[a] """ i = a + 1 # internal index starts at 1 while i < len(self.s): # loops over parents self.s[i] += val # update node i += (i & -i) # parent # variante: # pylint: disable=bad-whitespace def intervalAdd(self, a, b, val): """Variant, adds val to t[a], to t[a + 1] ... and to t[b] :param int a b: with 0 <= a <= b < len(t) """ self.add(a, +val) self.add(b + 1, -val) def get(self, a): """Variant, reads t[a] :param int i: negative a will return 0 """ return self.prefixSum(a) # snip}
3.515625
4
aliyun_exporter/info_provider.py
harvey-zang/aliyun-exporter
1
12776297
import json import time import datetime from aliyunsdkcore.client import AcsClient from cachetools import cached, TTLCache from prometheus_client.metrics_core import GaugeMetricFamily import aliyunsdkecs.request.v20140526.DescribeInstancesRequest as DescribeECS import aliyunsdkrds.request.v20140815.DescribeDBInstancesRequest as DescribeRDS import aliyunsdkr_kvstore.request.v20150101.DescribeInstancesRequest as DescribeRedis import aliyunsdkslb.request.v20140515.DescribeLoadBalancersRequest as DescribeSLB import aliyunsdkslb.request.v20140515.DescribeLoadBalancerAttributeRequest as DescribeSLBAttr import aliyunsdkslb.request.v20140515.DescribeLoadBalancerTCPListenerAttributeRequest as DescribeSLBTcpAttr import aliyunsdkslb.request.v20140515.DescribeLoadBalancerHTTPListenerAttributeRequest as DescribeSLBHttpAttr import aliyunsdkslb.request.v20140515.DescribeLoadBalancerHTTPSListenerAttributeRequest as DescribeSLBHttpsAttr import aliyunsdkdds.request.v20151201.DescribeDBInstancesRequest as Mongodb import aliyunsdkcdn.request.v20180510.DescribeUserDomainsRequest as DescribeCDN from aliyun_exporter.utils import try_or_else cache = TTLCache(maxsize=100, ttl=3600) ''' InfoProvider provides the information of cloud resources as metric. The result from alibaba cloud API will be cached for an hour. Different resources should implement its own 'xxx_info' function. Different resource has different information structure, and most of them are nested, for simplicity, we map the top-level attributes to the labels of metric, and handle nested attribute specially. If a nested attribute is not handled explicitly, it will be dropped. ''' class InfoProvider(): def __init__(self, client: AcsClient): self.client = client @cached(cache) def get_metrics(self, resource: str) -> GaugeMetricFamily: return { 'ecs': lambda : self.ecs_info(), 'rds': lambda : self.rds_info(), 'cdn': lambda : self.cdn_info(), 'redis': lambda : self.redis_info(), 'slb':lambda : self.slb_info(), 'mongodb':lambda : self.mongodb_info(), }[resource]() def ecs_info(self) -> GaugeMetricFamily: req = DescribeECS.DescribeInstancesRequest() nested_handler = { 'InnerIpAddress': lambda obj : try_or_else(lambda : obj['IpAddress'][0], ''), 'PublicIpAddress': lambda obj : try_or_else(lambda : obj['IpAddress'][0], ''), 'VpcAttributes': lambda obj : try_or_else(lambda : obj['PrivateIpAddress']['IpAddress'][0], ''), } return self.info_template(req, 'aliyun_meta_ecs_info', nested_handler=nested_handler) def rds_info(self) -> GaugeMetricFamily: req = DescribeRDS.DescribeDBInstancesRequest() return self.info_template(req, 'aliyun_meta_rds_info', to_list=lambda data: data['Items']['DBInstance']) def redis_info(self) -> GaugeMetricFamily: req = DescribeRedis.DescribeInstancesRequest() return self.info_template(req, 'aliyun_meta_redis_info', to_list=lambda data: data['Instances']['KVStoreInstance']) def slb_info(self) -> GaugeMetricFamily: req = DescribeSLB.DescribeLoadBalancersRequest() gauge = self.info_template(req, 'aliyun_meta_slb_info', to_list=lambda data: data['LoadBalancers']['LoadBalancer']) gauge_slb_info = None for s in gauge.samples: slb_id = s.labels['LoadBalancerId'] req_slb_attr = DescribeSLBAttr.DescribeLoadBalancerAttributeRequest() req_slb_attr.set_LoadBalancerId(slb_id) slb_attrs_resp = self.client.do_action_with_exception(req_slb_attr) slb_attrs_info = json.loads(slb_attrs_resp) for protocol_info in slb_attrs_info['ListenerPortsAndProtocol']['ListenerPortAndProtocol']: protocol = protocol_info['ListenerProtocol'] port = protocol_info['ListenerPort'] req_slb_proto = None if protocol == 'tcp': req_slb_proto = DescribeSLBTcpAttr.DescribeLoadBalancerTCPListenerAttributeRequest() elif protocol == 'http': req_slb_proto = DescribeSLBHttpAttr.DescribeLoadBalancerHTTPListenerAttributeRequest() elif protocol == 'https': req_slb_proto = DescribeSLBHttpsAttr.DescribeLoadBalancerHTTPSListenerAttributeRequest() req_slb_proto.set_LoadBalancerId(slb_id) req_slb_proto.set_ListenerPort(int(port)) slb_protocol_resp = self.client.do_action_with_exception(req_slb_proto) slb_protocol_info: dict = json.loads(slb_protocol_resp) if 'ForwardCode' in slb_protocol_info.keys(): continue Bandwidth = slb_protocol_info['Bandwidth'] if gauge_slb_info is None: gauge_slb_info = GaugeMetricFamily('aliyun_meta_slb_proto_bandwidth', 'protocolBandwidth', labels=['instanceId', 'ListenerProtocol', 'ListenerPort']) gauge_slb_info.add_metric([slb_id, protocol, str(port)], value=float(Bandwidth)) return gauge_slb_info def mongodb_info(self) -> GaugeMetricFamily: req = Mongodb.DescribeDBInstancesRequest() return self.info_template(req, 'aliyun_meta_mongodb_info', to_list=lambda data: data['DBInstances']['DBInstance']) def cdn_info(self) -> GaugeMetricFamily: req = DescribeCDN.DescribeUserDomainsRequest() req.set_DomainStatus('online') nested_handler = { 'DomainName': lambda obj: try_or_else(lambda: obj['DomainName'], ''), } return self.info_template(req, 'aliyun_meta_cdn_info', to_list=lambda data: data['Domains']['PageData']) ''' Template method to retrieve resource information and transform to metric. ''' def info_template(self, req, name, desc='', page_size=100, page_num=1, nested_handler=None, to_list=(lambda data: data['Instances']['Instance'])) -> GaugeMetricFamily: gauge = None label_keys = None for instance in self.pager_generator(req, page_size, page_num, to_list): if gauge is None: label_keys = self.label_keys(instance, nested_handler) gauge = GaugeMetricFamily(name, desc, labels=label_keys) gauge.add_metric(labels=self.label_values(instance, label_keys, nested_handler), value=1.0) return gauge def info_template_bytime(self, req, name, desc='', label_keys=None, nested_handler=None, to_value=(lambda data: data['Instances']['Instance'])) -> GaugeMetricFamily: value = self.generator_by_time(req, to_value) gauge = GaugeMetricFamily(name, desc, labels=label_keys) gauge.add_metric(labels=[value], value=1.0) return gauge def pager_generator(self, req, page_size, page_num, to_list): req.set_PageSize(page_size) while True: req.set_PageNumber(page_num) resp = self.client.do_action_with_exception(req) data = json.loads(resp) instances = to_list(data) for instance in instances: if 'test' not in instance.get('DomainName'): yield instance if len(instances) < page_size: break page_num += 1 def generator_by_time(self, req, to_value): now = time.time() - 60 start_time = datetime.datetime.utcfromtimestamp(now-120).strftime("%Y-%m-%dT%H:%M:%SZ") end_time = datetime.datetime.utcfromtimestamp(now).strftime("%Y-%m-%dT%H:%M:%SZ") req.set_accept_format('json') req.set_StartTime(start_time) req.set_EndTime(end_time) resp = self.client.do_action_with_exception(req) value = to_value(resp) return value def label_keys(self, instance, nested_handler=None): if nested_handler is None: nested_handler = {} return [k for k, v in instance.items() if k in nested_handler or isinstance(v, str) or isinstance(v, int)] def label_values(self, instance, label_keys, nested_handler=None): if nested_handler is None: nested_handler = {} return map(lambda k: str(nested_handler[k](instance[k])) if k in nested_handler else try_or_else(lambda: str(instance[k]), ''), label_keys)
1.804688
2
karmabot/settings.py
meganlkm/karmabot
15
12776298
<filename>karmabot/settings.py # Copyright (c) 2019 Target Brands, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from flask import current_app import hvac from datetime import datetime LOG_LEVEL = os.environ.get('LOG_LEVEL', 'WARNING') USE_VAULT = os.environ.get('USE_VAULT', "False").lower() in ['true', '1', 't', 'y', 'yes'] vault = None vault_base_path = None if USE_VAULT: vault = hvac.Client(url=os.environ.get('VAULT_URI'), token=os.environ.get('VAULT_TOKEN')) vault_base_path = os.environ.get('VAULT_BASE', "secret") VERIFICATION_TOKEN = os.environ.get('VERIFICATION_TOKEN', '') MONGODB = os.environ.get('MONGODB', 'mongodb://localhost:27017') FAKE_SLACK = os.environ.get('FAKE_SLACK', "False").lower() in ['true', '1', 't', 'y', 'yes'] SLACK_EVENTS_ENDPOINT = os.environ.get("SLACK_EVENTS_ENDPOINT", "/slack_events") # Number of "gifts" per hour (note: quantity in gifts is not considered) KARMA_RATE_LIMIT = os.environ.get('KARMA_RATE_LIMIT', 60) # Number of days karma is good for KARMA_TTL = os.environ.get('KARMA_TTL', 90) # Color to use for stuff KARMA_COLOR = os.environ.get('KARMA_COLOR', '#af8b2d') def get_access_token(workspace): if USE_VAULT: return _vault_get_access_token(workspace) else: return _env_get_access_token(workspace) def get_bot_token(workspace): if USE_VAULT: return _vault_get_bot_token(workspace) else: return _env_get_bot_token(workspace) def _env_get_access_token(workspace): current_app.logger.debug(f"DEBUG: Got request for {workspace} workspace (env)") return os.environ.get(f"ACCESS_{workspace}", None) def _env_get_bot_token(workspace): current_app.logger.debug(f"DEBUG: Got request for {workspace} workspace (env)") return os.environ.get(f"BOT_{workspace}", None) # vault cache _access_token_cache = {} _bot_token_cache = {} _vault = None _TTL = os.environ.get('VAULT_CACHE_TTL', 300) # Measured in seconds def _vault_get_access_token(workspace): global _access_token_cache, _TTL current_app.logger.debug(f"DEBUG: Got request for {workspace} workspace (vault)") n = datetime.now().timestamp() (token, ts) = _access_token_cache.get(workspace, (None, 0)) if ts + _TTL > n: return token try: token_data = vault.secrets.kv.v1.read_secret(f'{vault_base_path}/access_{workspace}.txt') token = token_data['data']['value'] _access_token_cache[workspace] = (token, n) return token except Exception as ex: current_app.logger.warning(f"Had a problem getting a token for workspace {workspace}:\n{ex}") def _vault_get_bot_token(workspace): global _vault, _bot_token_cache, _TTL, vault, vault_base_path current_app.logger.debug(f"DEBUG: Got request for {workspace} workspace (vault)") n = datetime.now().timestamp() (token, ts) = _bot_token_cache.get(workspace, (None, 0)) if ts + _TTL > n: return token try: token_data = vault.secrets.kv.v1.read_secret(f'{vault_base_path}/bot_{workspace}.txt') token = token_data['data']['value'] _bot_token_cache[workspace] = (token, n) return token except Exception as ex: current_app.logger.warning(f"Had a problem getting a token for workspace {workspace}:\n{ex}")
1.710938
2
ASCII_value.py
RAVURISREESAIHARIKRISHNA/Python-2.7.12-3.5.2-
0
12776299
<reponame>RAVURISREESAIHARIKRISHNA/Python-2.7.12-3.5.2-<filename>ASCII_value.py print("Enter a character:\n") ch=input() while(len(ch)!=1): print("\nShould Enter single Character...RETRY!") ch=input() print(ord(ch))
3.3125
3
nlde/query/triple_pattern.py
Lars-H/federated_crop
3
12776300
from urlparse import urlparse from . import Argument class TriplePattern(object): def __init__(self, s, p, o, **kwargs): if isinstance(s, Argument): self.subject = s else: self.subject = Argument(s) if isinstance(p, Argument): self.predicate = p else: self.predicate = Argument(p) if isinstance(o, Argument): self.object = o else: self.object = Argument(o) self.count = kwargs.get("count", None) self.distinct_subjects = kwargs.get("subjects", None) self.distinct_predicates = kwargs.get("predicates", None) self.distinct_objects = kwargs.get("objects", None) self.sources = kwargs.get("sources", {}) self.subject_auths = {} self.object_auths = {} self.id = -1 def __key(self): return (self.subject, self.predicate, self.object) def __hash__(self): return hash(self.__key()) def __repr__(self): return str(self.subject) + " " + str(self.predicate) + " " + str(self.object) + " ." def __str__(self): return repr(self) # Less than: for Sorting def __lt__(self, other): return hash(self) < hash(other) # Equals: for Sorting def __eq__(self, other): return hash(self) == hash(other) # Length def __len__(self): return 1 @property def cardinality(self): return self.count @cardinality.setter def cardinality(self, cardinality): self.count = cardinality @property def selectivity(self): try: sel = min( float(1.0 / self.distinct_subjects), float(1.0 / self.distinct_predicates), float(1.0 / self.distinct_objects)) return sel except: return 0.0 def get_variables(self): variables = [] if not self.subject.isconstant: variables.append(self.subject.get_variable()) if not self.predicate.isconstant: variables.append(self.predicate.get_variable()) if not self.object.isconstant: variables.append(self.object.get_variable()) return set(variables) def __getitem__(self, i): if i == 0: return self.subject elif i == 1: return self.predicate elif i == 2: return self.object elif i == 3: return self.variables else: raise IndexError() @property def variables(self): return self.get_variables() def compatible(self, T): return len((self.variables.intersection(T.variables))) > 0 @property def variables_dict(self): v_dict = { "s" : [], "p" : [], "o" : [] } if not self.subject.isconstant: v_dict['s'] = list([self.subject.get_variable()]) if not self.predicate.isconstant: v_dict['p'] = list([self.predicate.get_variable()]) if not self.object.isconstant: v_dict['o'] = list([self.object.get_variable()]) return v_dict def get_variable_position(self, var): positions = 0 if not self.subject.isconstant and self.subject.get_variable() == var: positions = positions | 4 if not self.predicate.isconstant and self.predicate.get_variable() == var: positions = positions | 2 if not self.object.isconstant and self.object.get_variable() == var: positions = positions | 1 return positions @property def variable_position(self): positions = 0 if not self.subject.isconstant and self.subject.isvariable(): positions = positions | 4 if not self.predicate.isconstant and self.predicate.isvariable(): positions = positions | 2 if not self.object.isconstant and self.object.isvariable(): positions = positions | 1 return positions @property def source_set(self): return set(self.sources.keys())
2.640625
3
src/frange.py
ttheikki2/Usadel-for-nanowires
0
12776301
import sys def frange(start, end=None, inc=None): "A range function, that does accept floats" if end == None: end = start + 0.0 start = 0.0 else: start += 0.0 # force it to be a float if inc == None: inc = 1.0 count = int((end - start) / inc) if start + count * inc != end + inc: count += 1 L = [None,] * count for i in xrange(count): L[i] = start + i * inc return L start = float(sys.argv[1]) end = float(sys.argv[2]) inc = float(sys.argv[3]) for item in frange(start, end, inc): print("%.2f" % item)
3.96875
4
OpenGLCffi/GL/EXT/ARB/transform_feedback_instanced.py
cydenix/OpenGLCffi
0
12776302
<filename>OpenGLCffi/GL/EXT/ARB/transform_feedback_instanced.py from OpenGLCffi.GL import params @params(api='gl', prms=['mode', 'id', 'instancecount']) def glDrawTransformFeedbackInstanced(mode, id, instancecount): pass @params(api='gl', prms=['mode', 'id', 'stream', 'instancecount']) def glDrawTransformFeedbackStreamInstanced(mode, id, stream, instancecount): pass
1.726563
2
gym-duckietown/learning/imitation/iil_dagger/algorithms/__init__.py
lyf44/CS4278-5478-Project-Materials
4
12776303
from .dagger import DAgger
1.03125
1
starfish/pipeline/registration/fourier_shift.py
Xiaojieqiu/starfish
1
12776304
<filename>starfish/pipeline/registration/fourier_shift.py from typing import Union from starfish.constants import Indices from starfish.image import ImageStack from starfish.util.argparse import FsExistsType from ._base import RegistrationAlgorithmBase class FourierShiftRegistration(RegistrationAlgorithmBase): """ Implements fourier shift registration. TODO: (dganguli) FILL IN DETAILS HERE PLS. Performs a simple translation registration. See Also -------- https://en.wikipedia.org/wiki/Phase_correlation """ def __init__(self, upsampling: int, reference_stack: Union[str, ImageStack], **kwargs) -> None: self.upsampling = upsampling if isinstance(reference_stack, ImageStack): self.reference_stack = reference_stack else: self.reference_stack = ImageStack.from_path_or_url(reference_stack) @classmethod def add_arguments(cls, group_parser): group_parser.add_argument("--upsampling", default=1, type=int, help="Amount of up-sampling") group_parser.add_argument( "--reference-stack", type=FsExistsType(), required=True, help="The image stack to align the input image stack to.") def register(self, image: ImageStack): # TODO: (ambrosejcarr) is this the appropriate way of dealing with Z in registration? mp = image.max_proj(Indices.CH, Indices.Z) reference_image = self.reference_stack.max_proj(Indices.HYB, Indices.CH, Indices.Z) for h in range(image.num_hybs): # compute shift between maximum projection (across channels) and dots, for each hyb round # TODO: make the max projection array ignorant of axes ordering. shift, error = compute_shift(mp[h, :, :], reference_image, self.upsampling) print("For hyb: {}, Shift: {}, Error: {}".format(h, shift, error)) for c in range(image.num_chs): for z in range(image.num_zlayers): # apply shift to all zlayers, channels, and hyb rounds indices = {Indices.HYB: h, Indices.CH: c, Indices.Z: z} data, axes = image.get_slice(indices=indices) assert len(axes) == 0 result = shift_im(data, shift) image.set_slice(indices=indices, data=result) return image def compute_shift(im, ref, upsample_factor=1): from skimage.feature import register_translation shift, error, diffphase = register_translation(im, ref, upsample_factor) return shift, error def shift_im(im, shift): import numpy as np from scipy.ndimage import fourier_shift fim_shift = fourier_shift(np.fft.fftn(im), map(lambda x: -x, shift)) im_shift = np.fft.ifftn(fim_shift) return im_shift.real
2.546875
3
samples/models/pu_power/rx580_power_model/__init__.py
greenlsi/mercury_mso_framework
1
12776305
from .rx580_power_model import Rx580PowerModel
1.148438
1
green/__init__.py
TurgayPamuklu/GreenRAN
0
12776306
<reponame>TurgayPamuklu/GreenRAN """Deployment of Solar Panels on a Urban Area. <NAME> <<EMAIL>> Initial Operations for Journal 1 """ from collections import OrderedDict from datetime import datetime from city import CityAfterDeployment from city import CityBeforeDeployment from heuristic import E from monitor import BatteryMemoryPlotter from monitor import Monitor from monitor import MonitorAssignment from monitor import MonitorTraffic from operatorCallers import DeploymentHeuristics from operatorCallers import PreOperator from operators import FossilDeployment from output import * from renewableEnergy import SolarEnergy from snapshot import * from traffic import Traffic # ------------------------------- VARIOUS INIT METHOD FUNCTIONS --------------------------------------------------- def get_number_of_awake_micros(fo, co): j = 0 print("co.bs_types:{}".format(co.bs_types)) for cl in fo.city_configuration_list: micro = 0 for i in cl.bs_deployed_and_active: if co.bs_types[i] == BSType.MICRO: micro += 1 print("hour {} --> bs_count:{} micro_bs:{}".format(j, len(cl.bs_deployed_and_active), micro)) j += 1 def fossil_data_for_initial_panel_sizes(): city_name = 'jakarta' snapshot.set_solar_data_path(city_name) solar_energy = snapshot.load_solar_energy() total_generated_energy = 0 for day_of_the_year in range(NUMBER_OF_SIMULATION_DAY): for hour_of_the_day in range(NUMBER_OF_TIME_SLOT_IN_ONE_DAY): total_generated_energy += solar_energy.harvest_the_solar_energy(day_of_the_year, hour_of_the_day, 1) print("total_generated_energy:{}".format(total_generated_energy)) fossil_operator = snapshot.load_fossil_operator() city_after_deployment = snapshot.load_city_after_deployment() energy_consumption, number_of_awake_count = fossil_operator.get_energy_consumption_per_bs() total_energy_consumption = sum(energy_consumption) print("PURE FOSSIL SYSTEM:: total_energy_consumption:{} Price:{}".format(total_energy_consumption, total_energy_consumption * E.LIFE_TIME_ENERGY_COST)) for i in range(city_after_deployment.bs_count): print("BS[{}] Type:{} Awake_count:{} Energy Consumption:{} panel Size:{}".format(i, city_after_deployment.bs_types[i], number_of_awake_count[i], energy_consumption[i], energy_consumption[i] / total_generated_energy)) size_of_solar_panels_and_batteries = [] for i in range(city_after_deployment.bs_count): if city_after_deployment.bs_types[i] == BSType.MICRO: size_of_solar_panels_and_batteries.append((1, 2500)) else: panel_size = int(np.ceil(energy_consumption[i] / total_generated_energy)) if panel_size > 8: panel_size = 8 size_of_solar_panels_and_batteries.append((panel_size, 2500 * panel_size)) snapshot.save_size_of_sp_and_batt(size_of_solar_panels_and_batteries, snapshot.log_file_name('fossil', 1)) # ------------------------------- VARIOUS INIT METHOD FUNCTIONS --------------------------------------------------- class PreMonitor(object): # MONITOR RELATED FUNCTIONS @staticmethod def get_average_traffic_in_a_day_period(tr): smf = SaatliMaarifTakvimi() traffic_in_a_day_period = [0 for x in range(NUMBER_OF_TIME_SLOT_IN_ONE_DAY)] traffic_in_a_day_period_density = [0 for x in range(NUMBER_OF_TIME_SLOT_IN_ONE_DAY)] for day_no in range(NUMBER_OF_SIMULATION_DAY): for hour_of_the_day in range(NUMBER_OF_TIME_SLOT_IN_ONE_DAY): traffic_in_a_day_period[hour_of_the_day] += tr.get_user_traffic_demand_in_a_specif_time_slot(day_no, hour_of_the_day) smf.yapragi_kopar() # increase_the_time_slot for hour_no in range(NUMBER_OF_TIME_SLOT_IN_ONE_DAY): traffic_in_a_day_period[hour_no] /= NUMBER_OF_SIMULATION_DAY for x_coor in range(CoordinateConverter.GRID_COUNT_IN_ONE_EDGE): for y_coor in range(CoordinateConverter.GRID_COUNT_IN_ONE_EDGE): traffic_in_a_day_period_density[hour_no] += traffic_in_a_day_period[hour_no][x_coor][y_coor] traffic_in_a_day_period_density[hour_no] /= CoordinateConverter.GRID_COUNT return traffic_in_a_day_period_density @staticmethod def get_average_traffic_per_meter_square_per_day(tr): avg = 0 day_period = PreMonitor.get_average_traffic_in_a_day_period(tr) for hour_no in range(NUMBER_OF_TIME_SLOT_IN_ONE_DAY): avg += day_period[hour_no] avg /= (CoordinateConverter.GRID_WIDTH * CoordinateConverter.GRID_WIDTH) return avg @staticmethod def get_daily_average_harvested_energy(): avg = [] snapshot = Snapshot() for cn in city_name_list: snapshot.set_solar_data_path(cn) s = snapshot.load_solar_energy() avg.append((cn, s.get_average_regeneration_energy_in_a_day(1))) # 4 is the panel size return avg @staticmethod def show_assignment(): snapshot = Snapshot() snapshot.set_traffic_scen_folder(traffic_scenarios[0]) snapshot.set_solar_data_path(city_name_list[0]) city_after_deployment = snapshot.load_city_after_deployment() operator = snapshot.load_fossil_operator() m_assignment = MonitorAssignment() m_assignment.show_assignment_all(operator, city_after_deployment) @staticmethod def show_bs_locations(): m_assignment = MonitorAssignment() m_assignment.show_bs_locations() @staticmethod def iteration_load(method, traffic_scen, city_name, value_list, data_type): if data_type is "GUROBI": for i in range(10): value_list[i] = value_list[i] * 1.05 if traffic_scen is 3 and city_name is "jakarta": value_list[8] += 1435 value_list[9] += 2367 elif method is "traffic_aware" and traffic_scen is 1: for i in range(10): value_list[i] += 5000 @staticmethod def plot_iterations_only_one_tr(): snapshot = Snapshot() operational_method = 'hybrid' m = Monitor() for ts in traffic_scenarios: h_all = [] for city in city_name_list: snapshot.set_results_folder(ts, city, "STANDARD") expenditures = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) total_expenditure = [0 for x in range(len(expenditures))] for configuration_index in range(len(expenditures)): total_expenditure[configuration_index] += expenditures[configuration_index][0] h_all.append(total_expenditure) m.plt_iterations_heuristic(h_all) @staticmethod def plot_iterations_compare_with_prev_data(): snapshot = Snapshot() operational_method = 'hybrid' m = Monitor() for ts in traffic_scenarios: h_all = [] for city_name in city_name_list: snapshot.set_results_folder(ts, city_name, "STANDARD") expenditures = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) total_expenditure = [0 for x in range(len(expenditures))] for configuration_index in range(len(expenditures)): total_expenditure[configuration_index] += expenditures[configuration_index][0] h_all.append(total_expenditure) snapshot.set_results_folder(ts, city_name, "PREV_DATA") expenditures = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) total_expenditure = [0 for x in range(len(expenditures))] for configuration_index in range(len(expenditures)): total_expenditure[configuration_index] += expenditures[configuration_index][0] h_all.append(total_expenditure) m.plt_iterations_heuristic_prev_data(h_all) m.show() @staticmethod def plot_iteration_for_each_scenario(show_type='total_expenditure'): snapshot = Snapshot() gtbi = PreMonitor.get_the_iteration("STANDARD") # standard operational_method = 'hybrid' m = Monitor() for city_name in city_name_list: h_all = [] best_heuristic_all = [] for ts in traffic_scenarios: total_expenditure = [0 for x in range(E.MAX_PANEL_SIZE * E.MAX_BATTERY_SIZE)] best_heuristic_key = city_name + "_hybrid_ts:" + str( ts) # get the best heuristic value for the specific city and traffic scenario best_heuristic_value = gtbi[best_heuristic_key] snapshot.set_results_folder(ts, city_name, "SAME_PANEL_SIZE") expenditures = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) for configuration_index in range(len(expenditures)): total_expenditure[configuration_index] = expenditures[configuration_index][0] best_heuristic_all.append(best_heuristic_value) h_all.append(total_expenditure) m.plt_iterations_same_size(h_all, best_heuristic_all, show_type) m.show() @staticmethod def get_the_iteration(data_type="STANDARD", iteration_type="BEST"): snapshot = Snapshot() best_iteration_values = OrderedDict() number_of_city = len(city_name_list) number_of_scenario = len(traffic_scenarios) for traffic_scenario in traffic_scenarios: for cn in city_name_list: snapshot.set_results_folder(traffic_scenario, cn, data_type) # standard for operational_method in CalibrationParameters.get_parameters(): lih = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) if iteration_type is "BEST": ll = min(lih, key=lambda t: t[0]) elif iteration_type is "FIRST": ll = lih[0] else: raise Exception("Aieee SW Bug!") if data_type is "GUROBI": ll = [x * 1.05 for x in ll] if number_of_city == 1: best_iteration_values['TS:' + str(traffic_scenario) + operational_method] = ll[0] elif number_of_scenario == 1: best_iteration_values['City:' + cn + ' ' + operational_method] = ll[0] else: best_iteration_values[cn + '_' + operational_method + '_ts:' + str(traffic_scenario)] = ll[0] return best_iteration_values @staticmethod def get_the_best_tco(return_average_value, data_type="STANDARD", iteration_type="BEST"): snapshot = Snapshot() confidence_data = OrderedDict() op_methods = CalibrationParameters.get_parameters() for traffic_scen in traffic_scenarios: for city_name in city_name_list: for op_index in range(len(op_methods)): value_list = [] for traffic_index in range(10): snapshot.set_results_folder(traffic_scen, city_name, data_type, traffic_index) lih = snapshot.load_iteration_history(snapshot.log_file_name(op_methods[op_index], 0)) if iteration_type is "BEST": ll = min(lih, key=lambda t: t[0]) elif iteration_type is "FIRST": ll = lih[0] value_list.append(ll[0]) PreMonitor.iteration_load(op_methods[op_index], traffic_scen, city_name, value_list, data_type) if return_average_value: value_list = sum(value_list) / float(len(value_list)) confidence_data[city_name + '_' + op_methods[op_index] + '_ts:' + str(traffic_scen)] = value_list return confidence_data @staticmethod def plot_confidence_intervals(comparison_type="OPERATIONAL_METHODS"): m = Monitor() if comparison_type is "OPERATIONAL_METHODS": confidence_data = PreMonitor.get_the_best_tco(False) m.plt_confidence_intervals(confidence_data) else: dict_draw = OrderedDict() confidence_data = PreMonitor.get_the_best_tco(False) confidence_data_gurobi = PreMonitor.get_the_best_tco(False, "GUROBI", "FIRST") for traffic_scen in traffic_scenarios: for city_name in city_name_list: key_is = city_name + '_' + 'hybrid' + '_ts:' + str(traffic_scen) # this is the key coming from get_the_best_tco heuristic_key_is = city_name + '_' + 'heuristic' + '_ts:' + str(traffic_scen) # this is new key gurobi_key_is = city_name + '_' + 'gurobi' + '_ts:' + str(traffic_scen) # this is new key dict_draw[heuristic_key_is] = confidence_data[key_is] dict_draw[gurobi_key_is] = confidence_data_gurobi[key_is] m.plt_confidence_intervals(dict_draw, "GUROBI") @staticmethod def plot_iterations(show_type='total_expenditure'): snapshot = Snapshot() gtbi = PreMonitor.get_the_iteration("STANDARD") # standard operational_method = 'hybrid' m = Monitor() h_all = [] best_heuristic_all = [] for city_name in city_name_list: total_expenditure = [0 for x in range(E.MAX_PANEL_SIZE * E.MAX_BATTERY_SIZE)] best_heuristic_value = 0 for ts in traffic_scenarios: best_heuristic_key = city_name + "_hybrid_ts:" + str(ts) # get the best heuristic value for the specific city and traffic scenario best_heuristic_value += gtbi[best_heuristic_key] snapshot.set_results_folder(ts, city_name, "SAME_PANEL_SIZE") expenditures = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) for configuration_index in range(len(expenditures)): if show_type == 'carbon_emission': total_expenditure[configuration_index] += (expenditures[configuration_index][2] / E.CARBON_RATE) else: total_expenditure[configuration_index] += expenditures[configuration_index][0] best_heuristic_value /= len(traffic_scenarios) best_heuristic_all.append(best_heuristic_value) total_expenditure = [x / len(traffic_scenarios) for x in total_expenditure] h_all.append(total_expenditure) m.plt_iterations_same_size(h_all, best_heuristic_all, show_type, "city") h_all = [] best_heuristic_all = [] for ts in traffic_scenarios: total_expenditure = [0 for x in range(E.MAX_PANEL_SIZE * E.MAX_BATTERY_SIZE)] best_heuristic_value = 0 for city_name in city_name_list: best_heuristic_key = city_name + "_hybrid_ts:" + str(ts) # get the best heuristic value for the specific city and traffic scenario best_heuristic_value += gtbi[best_heuristic_key] snapshot.set_results_folder(ts, city_name, "SAME_PANEL_SIZE") expenditures = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) for configuration_index in range(len(expenditures)): total_expenditure[configuration_index] += expenditures[configuration_index][0] best_heuristic_value /= len(traffic_scenarios) best_heuristic_all.append(best_heuristic_value) total_expenditure = [x / len(traffic_scenarios) for x in total_expenditure] h_all.append(total_expenditure) m.plt_iterations_same_size(h_all, best_heuristic_all, show_type, "traffic") @staticmethod def plot_iterations_all_type(): snapshot = Snapshot() m = Monitor() for traffic_scenario in traffic_scenarios: for cn in city_name_list: snapshot.set_results_folder(traffic_scenario, cn, 'SAME_PANEL_SIZE') # standard h = [] for operational_method in CalibrationParameters.get_parameters(): h.append(snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0))) m.plt_iterations_same_size(h) m.show() @staticmethod def plot_daily_average_energy(): avg = PreMonitor.get_daily_average_harvested_energy() monitor_generic = Monitor() monitor_generic.show_harvesting_energy_hour(avg) @staticmethod def plot_monthly_average_energy(): snapshot = Snapshot() avg = [] for cn in city_name_list: snapshot.set_solar_data_path(cn) s = snapshot.load_solar_energy() avg.append((cn, s.get_average_regeneration_energy_in_a_month(1))) monitor_generic = Monitor() monitor_generic.show_harvesting_energy_month(avg) @staticmethod def new_city_map_shower(type_of_draw='day_period'): snapshot = Snapshot() mg = MonitorTraffic() snapshot.set_traffic_scen_folder(1) tr = snapshot.load_tr() traffic_map_list = [] traffic_map_list_title = [] if type_of_draw == 'day_period': # HOURS_OF_A_DAY = [4, 8, 11, 14, 16, 18, 20, 22] HOURS_OF_A_DAY = [4, 11, 16, 20] for i in HOURS_OF_A_DAY: traffic_map_list.append(tr.get_user_traffic_demand_in_a_specif_time_slot(0, i)) traffic_map_list_title.append("{:0>2d}:00".format(i)) mg.simple_show_city_map(traffic_map_list, type_of_draw) else: DAYS_OF_A_WEEK = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] days_of_a_week_no = [0, 2, 5, 6] # for i in range(0, 8, 1): for i in days_of_a_week_no: traffic_map_list.append(tr.get_user_traffic_demand_in_a_specif_time_slot(i, 18)) # traffic_map_list.append(tr.get_user_traffic_demand_in_a_specif_time_slot(i, 0)) traffic_map_list_title.append(DAYS_OF_A_WEEK[i % len(DAYS_OF_A_WEEK)]) mg.simple_show_city_map(traffic_map_list, type_of_draw) @staticmethod def plot_traffic_in_a_day_period(): mg = MonitorTraffic() tra = Traffic(CoordinateConverter.GRID_COUNT_IN_ONE_EDGE, 1) one_day_traffic = [] number_of_zone = 1 # 5 for i in range(number_of_zone): one_day_traffic.append(tra.get_a_random_traffic_pattern_for_monitor()) mg.plt_traffic_in_a_day_period(one_day_traffic) @staticmethod def plot_traffic_figures(): # PreMonitor.new_city_map_shower(3) # PreMonitor.new_city_map_shower() PreMonitor.plot_traffic_in_a_day_period() @staticmethod def get_the_best_configuration_for_battery_history_record(): best_iteration_values_for_all_methods = OrderedDict() for method in CalibrationParameters.get_parameters(): a = PreMonitor.get_the_best_iteration_index(method, "same") for key_a in a: val_a = a[key_a] best_iteration_values_for_all_methods[key_a + '_' + method] = val_a return best_iteration_values_for_all_methods @staticmethod def get_the_best_iteration_index(operational_method='hybrid', folder_type='STANDARD'): snapshot = Snapshot() best_iteration_values = OrderedDict() for cn in city_name_list: for ts in traffic_scenarios: snapshot.set_results_folder(ts, cn, folder_type) # data_type = same lih = snapshot.load_iteration_history(snapshot.log_file_name(operational_method, 0)) ll = lih.index(min(lih, key=lambda t: t[0])) best_iteration_values[cn + '_ts' + str(ts)] = ll return best_iteration_values @staticmethod def get_the_best_size_of_sp_and_batt(operational_method='hybrid', folder_type='STANDARD'): snapshot = Snapshot() best_iter = PreMonitor.get_the_best_iteration_index(operational_method, folder_type) it_no = list(best_iter.values())[0] battery_info_list = snapshot.load_size_of_sp_and_batt(snapshot.log_file_name('hybrid', it_no)) return battery_info_list @staticmethod def get_consumption_data_from_battery_history(battery_list): """read operation, return ren_con_total, fossil_con_total """ ren_con_total = 0 fossil_con_total = 0 wasted_en_total = 0 generated_energy_total = 0 bs_count = len(battery_list) for i in range(bs_count): ren_con = [0 for x in range(bs_count)] fossil_con = [0 for x in range(bs_count)] wasted_en = [0 for x in range(bs_count)] generated_energy = [0 for x in range(bs_count)] for time_slice in range(NUMBER_OF_SIMULATION_DAY * NUMBER_OF_TIME_SLOT_IN_ONE_DAY): generated_energy[i] += battery_list[i][time_slice][0] ren_con[i] += battery_list[i][time_slice][3] fossil_con[i] += battery_list[i][time_slice][2] wasted_en[i] += battery_list[i][time_slice][4] generated_energy_total += generated_energy[i] ren_con_total += ren_con[i] fossil_con_total += fossil_con[i] wasted_en_total += wasted_en[i] return ren_con_total, fossil_con_total @staticmethod def dump_the_best_cal_vals(): snapshot = Snapshot() for ts in traffic_scenarios: for cn in city_name_list: snapshot.set_results_folder(ts, cn) # standard print("======== traffic_scen:{} city_name:{}".format(ts, cn)) lowest_fossil_consumption = 10000000000.0 lfc_cal = -1 for calibration_val in np.arange(0, 4.1, 0.2): conf_name = snapshot.log_file_name("hybrid_with_traffic_sizing", 100.0 + calibration_val) bh = snapshot.load_battery_history(conf_name) (ren_con_total, fossil_con_total) = PreMonitor.get_consumption_data_from_battery_history(bh) if fossil_con_total < lowest_fossil_consumption: lfc_cal = calibration_val lowest_fossil_consumption = fossil_con_total print("cv:{} --> ren_con_total:{} fossil_con_total:{} TOTAL:{}".format(calibration_val, ren_con_total, fossil_con_total, fossil_con_total + ren_con_total)) print("operational expenditure: {}".format(fossil_con_total * E.LIFE_TIME_ENERGY_COST)) print("the lowest fossil consumption index:{} value:{}".format(lfc_cal, lowest_fossil_consumption)) @staticmethod def dump_the_best_panel_batt_comb_same_size(): a = PreMonitor.get_the_best_iteration_index() for cn in city_name_list: for ts in traffic_scenarios: val = a[cn + '_ts' + str(ts)] (panel, battery) = ((val / E.MAX_BATTERY_SIZE) + 1, ((val % E.MAX_BATTERY_SIZE) + 1) * 2.5) print('{} - {} : {}/{}'.format(cn, ts, panel, battery)) ''' @staticmethod def get_the_min_max(data_type="STANDARD", only_avg=False): min_max_vals = OrderedDict() op_methods = CalibrationParameters.get_parameters() min_vals = [1000000000.0 for x in range(len(op_methods))] max_vals = [0 for x in range(len(op_methods))] avg_vals = [0 for x in range(len(op_methods))] for traffic_scen in traffic_scenarios: for city_name in city_name_list: for traffic_index in range(10): snapshot.set_results_folder(traffic_scen, city_name, data_type, traffic_index) for op_index in range(len(op_methods)): lih = snapshot.load_iteration_history(snapshot.log_file_name(op_methods[op_index], 0)) ll = min(lih, key=lambda t: t[0]) if min_vals[op_index] >= ll[0]: min_vals[op_index] = ll[0] if max_vals[op_index] <= ll[0]: max_vals[op_index] = ll[0] avg_vals[op_index] += ll[0] for op_index in range(len(op_methods)): min_max_vals["min_" + city_name + '_' + op_methods[op_index] + '_ts:' + str(traffic_scen)] = min_vals[op_index] min_max_vals["max_" + city_name + '_' + op_methods[op_index] + '_ts:' + str(traffic_scen)] = max_vals[op_index] min_max_vals["avg_" + city_name + '_' + op_methods[op_index] + '_ts:' + str(traffic_scen)] = avg_vals[op_index] / float(10.0) return min_max_vals ''' @staticmethod def plot_comparison_of_standard_and_gurobi_results(): dict_draw = OrderedDict() gtbi = PreMonitor.get_the_best_tco(True) gtbri = PreMonitor.get_the_best_tco(True, "GUROBI", "FIRST") # standard for traffic_scen in traffic_scenarios: for city_name in city_name_list: key_is = city_name + '_' + 'hybrid' + '_ts:' + str(traffic_scen) # this is the key coming from get_the_best_tco heuristic_key_is = city_name + '_' + 'heuristic' + '_ts:' + str(traffic_scen) # this is new key gurobi_key_is = city_name + '_' + 'gurobi' + '_ts:' + str(traffic_scen) # this is new key dict_draw[heuristic_key_is] = gtbi[key_is] dict_draw[gurobi_key_is] = gtbri[key_is] Monitor.plt_bar_gurobi(dict_draw) @staticmethod def plot_bar_comparison_of_operational_method(): bi = PreMonitor.get_the_best_tco(True) ''' PURE_GRID_ENERGY = [410000, 543000, 705000, 814000] for traffic_scen in traffic_scenarios: for city_name in city_name_list: key_is = city_name + '_' + 'grid' + '_ts:' + str(traffic_scen) bi[key_is] = PURE_GRID_ENERGY[traffic_scen - 1] ''' Monitor.plt_bar_total_expenditure(bi) @staticmethod def plot_cost_vs_traffic_rate(): snapshot = Snapshot() bi = PreMonitor.get_the_best_tco(True) avg_traffic = [] number_of_bs = [] for traffic_scen in traffic_scenarios: snapshot.set_traffic_scen_folder(traffic_scen) city_after_deployment = snapshot.load_city_after_deployment() number_of_bs.append(city_after_deployment.bs_count) tr = snapshot.load_tr() avg_traffic.append(PreMonitor.get_average_traffic_per_meter_square_per_day(tr)) # PURE_GRID_ENERGY = [410000, 543000, 705000, 814000] # PURE_GRID_ENERGY = [252116, 332798, 382641, 418942] PURE_GRID_ENERGY = [261492, 333326, 374648, 408566] for traffic_scen in traffic_scenarios: for city_name in city_name_list: key_is = city_name + '_' + 'grid' + '_ts:' + str(traffic_scen) bi[key_is] = PURE_GRID_ENERGY[traffic_scen - 1] Monitor.plt_cost_vs_traffic_rate(bi, avg_traffic) @staticmethod def remaining_energy(): snapshot = Snapshot() op_met = CalibrationParameters.get_parameters() for op in op_met: bh = snapshot.load_battery_history(snapshot.log_file_name(op, 0)) d = Monitor() d.show_battery_history(bh) @staticmethod def plot_renewable_energy_snapshots(co): p = BatteryMemoryPlotter(co.bs_count) plot_each_figure_separately = False if plot_each_figure_separately: for plotted_type in range(4): print("Plotted Type:{}".format(SHC.BATTERY_RECORDS_FOR_EACH_CONF[plotted_type])) p.plot_every_vs_month(plotted_type) # p.plot_every_vs_hour(plotted_type) p.show() else: plotted_type = 'standard' # 'show_carbon_emission' # p.plot_every_vs_month_two_figures(plotted_type) p.plot_every_vs_hour_two_figures(plotted_type) ''' plotted_type = 'show_carbon_emission' p.plot_every_vs_month_two_figures(plotted_type) p.plot_every_vs_hour_two_figures(plotted_type) ''' @staticmethod def battery_history_plottings(): cn = 'istanbul' ts = 1 snapshot = Snapshot() snapshot.set_solar_data_path(cn) snapshot.set_traffic_scen_folder(ts) snapshot.set_results_folder(ts, cn, "SAME_PANEL_SIZE") # data_type = same ''' best_iter = [] for method in CalibrationParameters.get_parameters(): lih = snapshot.load_iteration_history(snapshot.log_file_name(method, 0)) ll = lih.index(min(lih, key=lambda t: t[0])) best_iter.append(ll) best_iter = [best_iter[1] for x in range(len(best_iter))] # the best hybrid panel&batt comb. for every methods Output.write_the_all_history_logs_to_a_single_file(best_iter) ''' city_after_deployment = snapshot.load_city_after_deployment() PreMonitor.plot_renewable_energy_snapshots(city_after_deployment) # overall system battery plotting function class PreSimulation(object): @staticmethod def print_deployed_bs_list(s): deployed_list = [] for i in range(len(s.bs_deployed_and_active)): if s.bs_deployed_and_active[i] == 1: deployed_list.append(i) print("# of deployed base stations:" + str(len(deployed_list))) print("deployed base stations:" + str(deployed_list)) @staticmethod def run_fossil_operation(): snapshot = Snapshot() city_name = 'istanbul' for traffic_scen in traffic_scenarios: total_tco = 0 for traffic_index in range(10): print("======== traffic_scen:{} city_name:{} traffic_index:{}".format(traffic_scen, city_name, traffic_index)) snapshot.set_traffic_scen_folder(traffic_scen, traffic_index) snapshot.set_solar_data_path(city_name) city_after_deployment = snapshot.load_city_after_deployment() co, ro, tco = PreOperator.run_only_one_iteration(city_after_deployment) print("traffic_index:{} tco:{}".format(traffic_index, tco)) total_tco += tco # snapshot.save_fossil_operator(ro) print("traffic_scen:{} total_tco:{}".format(traffic_scen, total_tco)) @staticmethod def create_city_and_fossil_deployment(): snapshot = Snapshot() tr = snapshot.load_tr() c = CityBeforeDeployment(tr) # write_service_rate_to_a_file(c) s = FossilDeployment(c) s.greedy_deployment_for_every_grid() # modify_traffic_for_uncovered_nodes(s, tr) s.remove_unassigned_bses() PreOperator.greedy_remove_deployed_base_stations(s) deployed_list = [] for i in range(len(s.bs_deployed_and_active)): if s.bs_deployed_and_active[i] == 1: deployed_list.append(i) print("# of deployed base stations:" + str(len(deployed_list))) print("deployed base stations:" + str(deployed_list)) print("is_there_any_unassigned_location: " + str(s.is_there_any_unassigned_location())) cad = CityAfterDeployment(s, tr) snapshot.save_city_after_deployment(cad) print("City is created and saved to a file at: {}".format(datetime.now())) @staticmethod def create_and_save_solar_energy(city_name): snapshot = Snapshot() snapshot.set_solar_data_path(city_name) solar_energy = SolarEnergy(city_name) # connecting the battery to the solar panel snapshot.save_solar_energy(solar_energy) @staticmethod def create_and_save_traffic(extra=None): snapshot = Snapshot() for traffic_scen in traffic_scenarios: snapshot.set_traffic_scen_folder(traffic_scen, extra) tr = Traffic(CoordinateConverter.GRID_COUNT_IN_ONE_EDGE, traffic_scen) snapshot.save_tr(tr) print("Traffic is created and saved to a file at: {}".format(datetime.now())) pass class PriceTrends(object): @staticmethod def calculate_price_in_future(current_year_price, end_year, increasing_percentage): for i in range(end_year): current_year_price *= (1 + increasing_percentage) return current_year_price @staticmethod def calculate_average_price(current_year_price, end_year, increasing_percentage): total_price = current_year_price for i in range(end_year - 1): current_year_price *= (1 + increasing_percentage) total_price += current_year_price return total_price / end_year @staticmethod def calculate_price_trends(): val = PriceTrends.calculate_price_in_future(0.117, 15, 0.04) avg = PriceTrends.calculate_average_price(0.117, 15, 0.04) print('current price:{} in next {} years it becomes:{} and avg is:{}'.format(0.1, 4, val, avg)) @staticmethod def clean_unneccessary_files(folder="STANDARD"): snapshot = Snapshot() for city_name in city_name_list: for traffic_scen in traffic_scenarios: if folder is "STANDARD": for traffic_index in range(10): snapshot.set_results_folder(traffic_scen, city_name, "STANDARD", traffic_index) snapshot.delete_all_battery_history_in_a_folder() elif folder is "GUROBI": for traffic_index in range(10): snapshot.set_results_folder(traffic_scen, city_name, "GUROBI", traffic_index) snapshot.delete_all_battery_history_in_a_folder() else: snapshot.set_results_folder(traffic_scen, city_name, "SAME_PANEL_SIZE") for iter_no in range(96): log_file_name = snapshot.log_file_name("hybrid", iter_no) snapshot.delete_battery_history(log_file_name) @staticmethod def traffic_test(): avg_traffic = [] avg_traffic_old = [] number_of_bs = [] snapshot = Snapshot() snapshot.set_traffic_scen_folder(3) tr = snapshot.load_tr() u_d = tr.get_user_traffic_demand_for_sim_duration() var_1 = np.var(u_d) mean_1 = np.var(u_d) std_1 = np.std(u_d) avg_traffic = PreMonitor.get_average_traffic_per_meter_square_per_day(tr) print("var_1:{:.2E}, mean_1:{:.2E}, std_1:{:.2E}".format(var_1, mean_1, std_1)) snapshot.set_traffic_scen_folder(3) tr = snapshot.load_tr() u_d = tr.get_user_traffic_demand_for_sim_duration() var_2 = np.var(u_d) mean_2 = np.var(u_d) std_2 = np.std(u_d) avg_traffic_old = PreMonitor.get_average_traffic_per_meter_square_per_day(tr) print("var_2:{:.2E}, mean_2:{:.2E}, std_2:{:.2E}".format(var_2, mean_2, std_2)) def multi_create(traffic_scen, traffic_index=None): snapshot = Snapshot() snapshot.set_traffic_scen_folder(traffic_scen, traffic_index) PreSimulation.create_city_and_fossil_deployment() # Creating a city and providing a fossil deployment co = snapshot.load_city_after_deployment() lone_wolves = set() for x_coor in range(CoordinateConverter.GRID_COUNT_IN_ONE_EDGE): for y_coor in range(CoordinateConverter.GRID_COUNT_IN_ONE_EDGE): if co.can_bs_list[x_coor][y_coor][0] == -1: lone_wolves.add(co.can_bs_list[x_coor][y_coor][0]) print("lone_wolves:{}".format(lone_wolves)) macro, micro = co.get_macro_micro_list() print("Traffic:{}".format(traffic_scen)) print("MACRO BS[#{}]:{}".format(len(macro), macro)) for i in range(len(macro)): print("{}::{}".format(i, co.bs_locations[macro[i]])) print("MICRO BS[#{}]:{}".format(len(micro), micro)) for i in range(len(micro)): print("{}::{}".format(i, co.bs_locations[micro[i]])) def multi_test(traffic_scen, city_name, traffic_index=None, sim_type="STANDARD"): snapshot = Snapshot() # sys.stdout = open('log_tr{}_{}.txt'.format(traffic_scen, city_name), 'w') print("--------------- traffic_scen:{} city_name:{} traffic_index:{}---------------".format(traffic_scen, city_name, traffic_index)) # sys.stdout.flush() snapshot.set_traffic_scen_folder(traffic_scen, traffic_index) snapshot.set_solar_data_path(city_name) if sim_type == "SAME_PANEL_SIZE": snapshot.set_results_folder(traffic_scen, city_name, "SAME_PANEL_SIZE") else: snapshot.set_results_folder(traffic_scen, city_name, "STANDARD", traffic_index) for operational_method in CalibrationParameters.get_parameters(): print("--------------- OPERATIONAL METHOD:{} ---------------".format(operational_method)) snapshot = Snapshot() # sys.stdout.flush() city_after_deployment = snapshot.load_city_after_deployment() if sim_type == "SAME_PANEL_SIZE": DeploymentHeuristics.simulate_with_same_size_solar_and_batteries(city_after_deployment, operational_method) else: DeploymentHeuristics.simulate(city_after_deployment, operational_method) if __name__ == '__main__': print("Simulation starts..{}".format(datetime.now())) snapshot = Snapshot() # ''' Creating Data # snapshot.create_results_folders_for_random_panel_size_and_batteries() # for city_name in city_name_list: # PreSimulation.create_and_save_solar_energy(city_name) # snapshot.create_traffic_scen_folder() # for index in range(10): # PreSimulation.create_and_save_traffic(index) ''' processes = [] for traffic_scen in traffic_scenarios: for traffic_index in range(10): processes.append(Process(target=multi_create, args=(traffic_scen, traffic_index))) for p in processes: p.start() for p in processes: p.join() ''' # PreSimulation.run_fossil_operation() # Output.out_cplex("cplex") ''' Dump various information before simulations city_after_deployment = load_city_after_deployment() print "Energy Threshold to increasing panel size:{}".format((E.SOLAR_PANEL_COST_OF_1KW_SIZE * E.THRESHOLD_CALIBRATION_FOR_IP) / E.LIFE_TIME_ENERGY_COST) print "Energy Threshold to decreasing panel size:{}".format((E.SOLAR_PANEL_COST_OF_1KW_SIZE * E.THRESHOLD_CALIBRATION_FOR_DP) / E.LIFE_TIME_ENERGY_COST) print "Energy Threshold to increasing/decreasing battery size:{}".format((E.BATTERY_COST_OF_2500KW_SIZE * E.THRESHOLD_CALIBRATION_FOR_IB) / E.LIFE_TIME_ENERGY_COST) print "Energy Threshold to decreasing battery size:{}".format((E.BATTERY_COST_OF_2500KW_SIZE * E.THRESHOLD_CALIBRATION_FOR_DB) / E.LIFE_TIME_ENERGY_COST) ''' # ''' Simulation and Heuristic Stuff # Event('print performance results', 'test') # PriceTrends.calculate_price_trends() # explanation:: dump the results of 999 iteration and then simulate only it and don't save the new iteration results ''' snapshot.set_solar_data_path('istanbul') snapshot.set_traffic_scen_folder(1) snapshot.set_results_folder(1, 'istanbul') city_after_deployment = snapshot.load_city_after_deployment() DeploymentHeuristics.diagnose_operational_methods(city_after_deployment, 'battery_aware', 'hybrid', 32) ''' # ----------------------------------- SIMULATIONS - AND - HEURISTICS ------------------------------------------ # explanation:: main operation iteratively simulate until reach a stop ''' normal simulation snapshot.create_results_folders() multi_process = True if multi_process: processes = [] for traffic_scen in traffic_scenarios: for city_name in city_name_list: for traffic_index in range(10): processes.append(Process(target=multi_test, args=(traffic_scen, city_name, traffic_index))) for p in processes: p.start() for p in processes: p.join() else: for traffic_scen in traffic_scenarios: for city_name in city_name_list: print "--------------- traffic_scen:{} city_name:{}---------------".format(traffic_scen, city_name) snapshot.set_traffic_scen_folder(traffic_scen) snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name, "STANDARD") for operational_method in CalibrationParameters.get_parameters(): print "--------------- OPERATIONAL METHOD:{} ---------------".format(operational_method) city_after_deployment = snapshot.load_city_after_deployment() DeploymentHeuristics.simulate(city_after_deployment, operational_method) ''' ''' random process simulation for traffic_scen in traffic_scenarios: snapshot.set_traffic_scen_folder(traffic_scen) city_after_deployment = snapshot.load_city_after_deployment() for city_name in city_name_list: snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name) DeploymentHeuristics.simulate_random_heuristic(city_after_deployment, 'hybrid') ''' ''' same panel & battery size simulation snapshot.create_results_folders_for_same_panel_size_and_batteries() multi_process = True if multi_process: processes = [] for traffic_scen in traffic_scenarios: for city_name in city_name_list: processes.append(Process(target=multi_test, args=(traffic_scen, city_name, None, "SAME_PANEL_SIZE"))) for p in processes: p.start() for p in processes: p.join() else: for traffic_scen in traffic_scenarios: snapshot.set_traffic_scen_folder(traffic_scen) city_after_deployment = snapshot.load_city_after_deployment() for city_name in city_name_list: print "======== traffic_scen:{} city_name:{}".format(traffic_scen, city_name) snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name, "SAME_PANEL_SIZE") ZERO_SIZE = False if ZERO_SIZE: DeploymentHeuristics.simulate_with_zero_size_solar_and_batteries(city_after_deployment) else: for operational_method in CalibrationParameters.get_parameters(): DeploymentHeuristics.simulate_with_same_size_solar_and_batteries(city_after_deployment, operational_method) ''' ''' heuristic optimization battery_info_list = PreMonitor.get_the_best_size_of_sp_and_batt('hybrid','BASE') traffic_scen = traffic_scenarios[0] snapshot.set_traffic_scen_folder(traffic_scen) city_after_deployment = snapshot.load_city_after_deployment() city_name = city_name_list[0] snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name) snapshot.create_results_folders() DeploymentHeuristics.simulate_optimization_calibration(city_after_deployment, 'hybrid', battery_info_list) ''' ''' Running the hybrid algorithm with the best traffic-aware sizing results best_iteration_dictionary = PreMonitor.get_the_best_iteration_index('traffic_aware','STANDARD') for traffic_scen in traffic_scenarios: snapshot.set_traffic_scen_folder(traffic_scen) city_after_deployment = snapshot.load_city_after_deployment() for city_name in city_name_list: the_key = city_name+'_ts'+str(traffic_scen) traffic_aware_it_no = best_iteration_dictionary[the_key] print "======== traffic_scen:{} city_name:{}".format(traffic_scen, city_name) snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name) battery_info_list = snapshot.load_size_of_sp_and_batt(snapshot.log_file_name('traffic_aware', traffic_aware_it_no)) PreOperator.calibrate_renewable_city(city_after_deployment, battery_info_list) ''' ''' Calibrating the hybrid algorithm with the best hybrid sizing results best_iteration_dictionary = PreMonitor.get_the_best_iteration_index('hybrid') for traffic_scen in traffic_scenarios: snapshot.set_traffic_scen_folder(traffic_scen) city_after_deployment = snapshot.load_city_after_deployment() for city_name in city_name_list: the_key = city_name+'_ts'+str(traffic_scen) traffic_aware_it_no = best_iteration_dictionary[the_key] print "======== traffic_scen:{} city_name:{}".format(traffic_scen, city_name) snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name, "STANDARD") battery_info_list = snapshot.load_size_of_sp_and_batt(snapshot.log_file_name('hybrid', traffic_aware_it_no)) PreOperator.calibrate_renewable_city(city_after_deployment, battery_info_list) ''' ''' Running the hybrid algorithm with the gurobi sizing results for traffic_scen in traffic_scenarios: for traffic_index in range(8, 10): snapshot.set_traffic_scen_folder(traffic_scen, traffic_index) city_after_deployment = snapshot.load_city_after_deployment() for city_name in city_name_list: print "======== traffic_scen:{} city_name:{} traffic_index:{}".format(traffic_scen, city_name, traffic_index) snapshot.set_solar_data_path(city_name) snapshot.set_results_folder(traffic_scen, city_name, "GUROBI", traffic_index) battery_info_list = snapshot.load_size_of_sp_and_batt(snapshot.log_file_name('gurobi', 0)) DeploymentHeuristics.simulate_optimization_calibration(city_after_deployment, 'hybrid', battery_info_list) ''' # ----------------------------------- JOURNAL 1 - FIGURES ------------------------------------------ # Figure 1-2-8 are not related with Python # Figure 3 : \label{fig:traffic_day # Figure 4 : \label{fig:traffic_hours_of_the_day # Figure 5 : \label{fig:traffic_days_of_the_week # PreMonitor.plot_traffic_figures() # Figure 6 : \label{fig:harvested_hourly # PreMonitor.plot_daily_average_energy() # Figure 7 : \label{fig:harvested_daily # PreMonitor.plot_monthly_average_energy() # Figure 9 : \label{fig:assignments # PreMonitor.show_assignment() # Figure 10 : \label{fig:bs_locations # PreMonitor.show_bs_locations() # Figure 11 : \label{fig:bc_cumulative}The Performance of Operational Methods in Different Cities and Traffic Rates} # PreMonitor.plot_cost_vs_traffic_rate() # Figure 12: \label{fig:bc} Comparison of Operational Methods. # PreMonitor.plot_bar_comparison_of_operational_method() # Figure 13-14: \label{fig:active_unstored_hourly and active_unstored_monthly} Comparison of Operational Methods. # PreMonitor.battery_history_plottings() # Figure 15: label{fig:brute} Comparison of Our Heuristic with the Brute Force Method # PreMonitor.plot_comparison_of_standard_and_gurobi_results() # Figure 16-17: label{fig:combination_per_traffic and combination_per_city} Heuristic in different configurations # PreMonitor.plot_iterations() # Figure Confidence Intervals # PreMonitor.plot_confidence_intervals() # PreMonitor.plot_confidence_intervals("GUROBI") # ----------------------------------- OLD FIGURES ------------------------------------------ # PreMonitor.remaining_energy() # a specific battery plotting function # PreMonitor.dump_the_best_panel_batt_comb_same_size() # PreMonitor.dump_the_best_cal_vals() # PreMonitor.plot_iterations_only_one_tr() # PreMonitor.plot_iterations_compare_with_prev_data() # PreMonitor.plot_iteration_for_each_scenario() # PreMonitor.plot_iterations_all_type() # PreMonitor.plot_iterations('carbon_emission') # ''' # TRAFFIC TEST # PriceTrends.traffic_test() # PriceTrends.clean_unneccessary_files("GUROBI") print("Running ends at:{}".format(datetime.now()))
2.375
2
setup.py
zaanposni/vvs
13
12776307
from setuptools import setup, find_packages with open("readme.md", "r") as fh: long_description = fh.read() setup( name='vvspy', py_modules=["vvspy"], version='1.1.3', license='MIT', description='API Wrapper for VVS (Verkehrsverbund Stuttgart)', author='zaanposni', author_email='<EMAIL>', url='https://github.com/FI18-Trainees/vvspy', keywords=['VVS', 'API', 'STUTTGART', 'WRAPPER', 'JSON', 'REST', 'EFA', 'PYTHON'], packages=find_packages(exclude=["*tests"]), package_data={ "vvspy": ["vvspy/*"] }, install_requires=[ 'requests', 'typing', ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], long_description=long_description, long_description_content_type="text/markdown" )
1.367188
1
ioflo/base/__init__.py
BradyHammond/ioflo
128
12776308
<filename>ioflo/base/__init__.py """ base package """ #print("Package at {0}".format(__path__[0])) import importlib _modules = ['globaling', 'excepting', 'interfacing', 'registering', 'storing', 'skedding', 'tasking', 'framing', 'logging', 'serving', 'monitoring', 'acting', 'poking', 'goaling', 'needing', 'traiting', 'fiating', 'wanting','completing','doing', 'deeding', 'arbiting', 'housing', 'building'] for m in _modules: importlib.import_module(".{0}".format(m), package='ioflo.base') from .storing import Store, Node, Share, Data, Deck from .doing import doify, Doer, DoerParam, DoerSince, DoerLapse
2.34375
2
Visualizer/PureSorts/MergeSorts.py
jupiterbjy/Sorting_in_visual
1
12776309
<filename>Visualizer/PureSorts/MergeSorts.py<gh_stars>1-10 from typing import MutableSequence import array # TODO: check stability on this: failed stability test. on Baekjoon. def Merge(arr: MutableSequence): def join_parts(array_, left, right, mid): sorted_ = array.array('i') l_, r, m = left, right, mid + 1 while l_ <= mid and m <= right: if array_[l_] <= array_[m]: sorted_.append(array_[l_]) l_ += 1 else: sorted_.append(array_[m]) m += 1 if l_ > mid: for idx in range(m, right + 1): sorted_.append(array_[idx]) else: for idx in range(l_, mid + 1): sorted_.append(array_[idx]) for idx in range(right, left - 1, -1): array_[idx] = sorted_.pop() def sub_merge(array_, left, right): if left < right: mid = (left + right) // 2 sub_merge(array_, left, mid) sub_merge(array_, mid + 1, right) join_parts(array_, left, right, mid) sub_merge(arr, 0, len(arr) - 1) # return arr def Merge_inplace_rotation(arr): import operator # https://www.geeksforgeeks.org/iterative-merge-sort/ # https://xinok.wordpress.com/2014/08/17/in-place-merge-sort-demystified-2/ def swap(arr_, a, b): arr_[a], arr_[b] = arr_[b], arr_[a] def reverse(arr_, range_: range): for idx in range(len(range_) // 2 - 1, -1, -1): swap(arr_, range_.start + idx, range_.stop - idx - 1) def rotate(arr_, range_: range, amount): if len(range_) == 0 or amount == 0: return split = range_.start + amount if amount >= 0 else range_.stop + amount reverse(arr_, range(range_.start, split)) reverse(arr_, range(split, range_.stop)) reverse(arr_, range_) def _binary_main(arr_, range_: range, val, comp): start = range_.start end = range_.stop while start < end: mid = start + (end - start) // 2 if comp(arr_[mid], val): start = mid + 1 else: end = mid if start == range_.stop - 1 and comp(arr_[start], val): start += 1 return start def binary_first(arr_, val, range_: range): return _binary_main(arr_, range_, val, operator.lt) def binary_last(arr_, val, range_: range): return _binary_main(arr_, range_, val, operator.le) def merge(arr_, range_a, range_b): if len(range_a) == 0 or len(range_b) == 0: return range_a = range(range_a.start, range_a.stop) range_b = range(range_b.start, range_b.stop) while True: mid = binary_first(arr_, arr_[range_a.start], range_b) amount = mid - range_a.stop rotate(arr_, range(range_a.start, mid), -amount) if range_b.stop == mid: break range_b = range(mid, range_b.stop) range_a = range(range_a.start + amount, mid) range_a = range(binary_last(arr_, arr_[range_a.start], range_a), range_a.stop) if len(range_a) == 0: break def sub_merge(array_, left, right): if left < right: mid = (left + right) // 2 sub_merge(array_, left, mid) sub_merge(array_, mid + 1, right) merge(array_, range(left, mid), range(mid, right)) sub_merge(arr, 0, len(arr) - 1)
3.25
3
app.py
deutranium/wordclouds
0
12776310
<gh_stars>0 from flask import Flask, render_template, request import pandas as pd from PySripts.pandas_implementation import * from PySripts.df_text import * from PySripts.wordcloud_generator import * app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/', methods = ['POST']) def upload_file(): if request.method == 'POST': # input file f = request.files['file'] # decodes utf-8 into a python string decoded = f.read().decode('utf-8') # Converts the string into a Pandas DataFrame Data_extracted = get_DataFrame(decoded) # Date input conditions start_date = request.form.get("start_date") end_date = request.form.get("end_date") # The if-elif statements below are used to to trim down the chats DataFrame # based on the input Dates provided by the user. if (start_date!='') & (end_date!=''): start_date = pd.to_datetime(start_date, format="%Y-%m-%d") end_date = pd.to_datetime(end_date, format="%Y-%m-%d") if (start_date>end_date): return render_template('index.html', date_error=1) Data_extracted = Data_extracted[ (Data_extracted.Date>=start_date) & (Data_extracted.Date<=end_date) ] elif (start_date!=''): start_date = pd.to_datetime(start_date, format="%Y-%m-%d") print(start_date) Data_extracted = Data_extracted[ (Data_extracted.Date>=start_date) ] elif (end_date!=''): end_date = pd.to_datetime(end_date, format="%Y-%m-%d") Data_extracted = Data_extracted[ Data_extracted.Date<=end_date ] # Returns a Warning if the DataFrame is empty, given all input conditions if(len(Data_extracted)==0): return render_template("index.html", no_element_error=1) # Gets a string of all chats from the DataFrame and using that string to create a # wordcloud image and show it on index.hmtl txt = df_to_text(Data_extracted) wc_created = create_wc(txt) return render_template('index.html', plot=1, url ='/static/WordCloud.png') @app.after_request def add_header(response): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' response.headers['Cache-Control'] = 'public, max-age=0' return response if __name__ == '__main__': app.run(debug=True)
2.78125
3
solutions/439_ternary_expression_parser.py
YiqunPeng/leetcode_pro
0
12776311
<gh_stars>0 class Solution: def parseTernary(self, expression: str) -> str: c, values = expression.split('?', 1) cnt = 0 p = 0 for i in range(len(values)): if values[i] == ':': if cnt > 0: cnt -= 1 else: p = i break elif values[i] == '?': cnt += 1 tv, fv = values[:p] , values[p+1:] if c == 'T': if tv.find('?') == -1: return tv else: return self.parseTernary(tv) else: if fv.find('?') == -1: return fv else: return self.parseTernary(fv)
2.84375
3
tests/run_command_test.py
m3brown/plz
9
12776312
import os import subprocess from unittest import skip from unittest.mock import patch from plz.runner import run_command starting_dir = os.getcwd() def test_run_command_returns_int(): # Arrange # Act result = run_command("echo test") # Assert assert type(result) == int @patch("subprocess.check_call") def test_run_command_returns_1_if_CalledProcessError(mock_check_call): # Arrange mock_check_call.side_effect = subprocess.CalledProcessError # Act result = run_command('bash -c "exit 99"') # Assert assert result == 1 @patch("subprocess.check_call") def test_run_command_returns_1_if_CalledProcessError(mock_check_call): # Arrange mock_check_call.side_effect = KeyboardInterrupt # Act result = run_command('bash -c "exit 99"') # Assert assert result == 1 @skip("Error codes no longer supported") def test_run_command_returns_exit_code(): # Arrange # Act result = run_command('bash -c "exit 99"') # Assert assert result == 99 @skip("returning output not currently supported") def test_run_command_returns_output(): # Arrange stdout = "\n".join(["1", "2", "3", "4"]) # Act result = run_command('bash -c "for x in `seq 1 4`; do echo $x; done"') # Assert assert result[1] == stdout.split("\n") def test_run_command_prints_to_stdout(capfd): # Arrange stdout = "\n".join(["1", "2", "3", "4"]) + "\n" # Act run_command('bash -c "for x in `seq 1 4`; do echo $x; done"') out, err = capfd.readouterr() # Assert assert out == stdout @skip("stdout parameter not currently supported") def test_run_command_does_not_print_to_stdout_when_disabled(capfd): # Arrange # Act run_command('bash -c "for x in `seq 1 4`; do echo $x; done"', std_output=False) out, err = capfd.readouterr() # Assert assert out == "" def test_run_command_accepts_env(capfd): # Arrange test_value = "this is a test" # Act run_command('bash -c "echo $FOO"', env={"FOO": test_value}) out, err = capfd.readouterr() # Assert assert out == "{}\n".format(test_value) def test_run_command_simple_glob(capfd): # Arrange stdout = "\n".join(["plz/__init__.py"]) + "\n" # Act run_command("ls plz/__*.py") out, err = capfd.readouterr() # Assert assert out == stdout def test_run_command_glob_with_cwd(capfd): """ Integration test Scenario: the plz.yaml file is "located" in the plz directory. In this case, the user will be running something like: `plz ls` """ # Arrange os.chdir(starting_dir) stdout = "\n".join(["__init__.py"]) + "\n" cwd = os.path.join(os.getcwd(), "plz") # Act run_command("ls __*.py", cwd=cwd) out, err = capfd.readouterr() # Assert assert out == stdout def test_run_command_glob_with_cwd_and_args(capfd): """ Integration test Scenario: the plz.yaml file is "located" in the root of this repo, but the command is run from the child plz directory. In this case, the user will be running something like: `plz ls ../*.md` """ # Arrange os.chdir(starting_dir) stdout = "\n".join(["README.md"]) + "\n" cwd = os.getcwd() os.chdir("plz") # Act run_command("ls", cwd=cwd, args=["../*.md"]) out, err = capfd.readouterr() # Assert assert out == stdout
2.46875
2
scripts/tutorials/generate_database.py
cfontanive/SIMPLE-db
6
12776313
<reponame>cfontanive/SIMPLE-db # Script to generate database from JSON contents # This gets run automatically with Github Actions import argparse import sys import os from astrodbkit2.astrodb import create_database, Database sys.path.append(os.getcwd()) # hack to be able to discover simple from simple.schema import * # Location of source data DB_PATH = 'data' DB_NAME = 'SIMPLE.db' # Used to overwrite AstrodbKit2 reference tables defaults REFERENCE_TABLES = ['Publications', 'Telescopes', 'Instruments', 'Modes', 'PhotometryFilters'] def load_postgres(connection_string): # For Postgres, we connect and drop all database tables # Fix for SQLAlchemy 1.4.x if connection_string.startswith("postgres://"): connection_string = connection_string.replace("postgres://", "postgresql://", 1) try: db = Database(connection_string) db.base.metadata.drop_all() db.session.close() db.engine.dispose() except RuntimeError: # Database already empty or doesn't yet exist pass # Proceed to load the database load_database(connection_string) def load_sqlite(): # First, remove the existing database in order to recreate it from the schema # If the schema has not changed, this part can be skipped if os.path.exists(DB_NAME): os.remove(DB_NAME) connection_string = 'sqlite:///' + DB_NAME # Proceed to load the database load_database(connection_string) def load_database(connection_string): # Create and load the database create_database(connection_string) # Now that the database is created, connect to it and load up the JSON data db = Database(connection_string, reference_tables=REFERENCE_TABLES) db.load_database(DB_PATH, verbose=False) print('New database generated.') # Close all connections db.session.close() db.engine.dispose() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate the SIMPLE database') parser.add_argument('architecture', choices=['sqlite', 'postgres'], help='Database architecture to use.') parser.add_argument('connection_string', nargs='?', help='Connection string to use for non-sqlite databases.') args = parser.parse_args() # Get the connection string for any non-sqlite database if args.connection_string is not None: connection_string = args.connection_string else: connection_string = os.getenv('SIMPLE_DATABASE_URL', default='') # Run the loader for the specified DB architecture if args.architecture == 'postgres': load_postgres(connection_string) elif args.architecture == 'sqlite': load_sqlite()
3.078125
3
model/__init__.py
kaniblu/pytorch-vrae
10
12776314
import utils from . import rnn from . import vae from . import common from . import pooling from . import manager from . import encoder from . import decoder from . import nonlinear from . import embedding def add_arguments(parser): ModelArgumentConstructor(parser).add_all_arguments() class ModelArgumentConstructor(object): def __init__(self, parser): self.parser = parser @staticmethod def joinargs(parent, name): assert name is not None, "name cannot be empty" frags = [name] if parent is not None: frags.insert(0, parent) return '-'.join(frags) def add(self, name, parent=None, **kwargs): self.parser.add_argument(f"--{self.joinargs(parent, name)}", **kwargs) def add_module_argument(self, key, module): modules = manager.get_module_names(module) self.add(key, type=str, default=modules[0], choices=modules) def add_nonlinear_argument(self, key): self.add_module_argument(key, nonlinear) def add_pooling_arguments(self, key): self.add_module_argument(key, pooling) def add_rnn_arguments(self, key): self.add_module_argument(key, rnn) self.add("layers", parent=key, type=int, default=1) self.add("dynamic", parent=key, action="store_true", default=False) self.add("dropout", parent=key, type=float, default=0) def add_encoder_arguments(self, key): self.add_module_argument(key, encoder) self.add_rnn_arguments(self.joinargs(key, "cell")) self.add_pooling_arguments(self.joinargs(key, "pooling")) def add_decoder_arguments(self, key): self.add_module_argument(key, decoder) self.add_rnn_arguments(self.joinargs(key, "cell")) def add_vsae_arguments(self, key): self.add_module_argument(key, vae) self.add("z-dim", parent=key, type=int, default=512) self.add("word-dim", parent=key, type=int, default=300) self.add("kld-scale", parent=key, type=float, default=1.0) self.add_encoder_arguments(self.joinargs(key, "encoder")) self.add_decoder_arguments(self.joinargs(key, "decoder")) self.add("embed-freeze", parent=key, action="store_true", default=False) def add_all_arguments(self): self.add_nonlinear_argument("nonlinear") self.add_vsae_arguments("vae") class ModelBuilder(object): def __init__(self, args, vocab): self.args = args self.vocab = vocab self.vocab_size = len(vocab) self.bos_idx = vocab.f2i.get(args.bos) self.eos_idx = vocab.f2i.get(args.eos) def get(self, key, default=None): return getattr(self.args, key, default) def get_module_cls(self, key, kwargs_map=None, fallback=None): if fallback is None: fallback = {} if kwargs_map is None: kwargs_map = {} type = self.get(key) cls = manager.get(type) sub_kwargs = utils.map_val(type, kwargs_map, ignore_err=True, fallback=fallback) def create(*args, **kwargs): return cls(*args, **kwargs, **sub_kwargs) return create def get_nonlinear_cls(self, key): return self.get_module_cls(key) def get_pooling_cls(self, key): return self.get_module_cls(key) def get_rnn_cls(self, key): return self.get_module_cls(key, fallback=dict( dynamic=self.get(f"{key}_dynamic"), dropout=self.get(f"{key}_dropout"), layers=self.get(f"{key}_layers") )) def get_encoder_cls(self, key): return self.get_module_cls(key, { "last-state-rnn-encoder": dict( rnn_cls=self.get_rnn_cls(f"{key}_cell") ), "pooled-rnn-encoder": dict( rnn_cls=self.get_rnn_cls(f"{key}_cell"), pool_cls=self.get_pooling_cls(f"{key}_pooling") ) }) def get_decoder_cls(self, key): return self.get_module_cls(key, { "rnn-decoder": dict( rnn_cls=self.get_rnn_cls(f"{key}_cell") ), "rnn-recalling-decoder": dict( rnn_cls=self.get_rnn_cls(f"{key}_cell") ), }) def get_embedding_cls(self, key): return lambda *args, **kwargs: embedding.FineTunableEmbedding( *args, **kwargs, allow_padding=True, freeze=self.get(f"{key}_embed_freeze"), unfrozen_idx=[self.bos_idx, self.eos_idx] ) def get_vsae_cls(self, key): return self.get_module_cls(key, { "variational-sentence-autoencoder": dict( z_dim=self.get(f"{key}_z_dim"), word_dim=self.get(f"{key}_word_dim"), vocab_size=self.vocab_size, kld_scale=self.get(f"{key}_kld_scale"), emb_cls=self.get_embedding_cls(key), enc_cls=self.get_encoder_cls(f"{key}_encoder"), dec_cls=self.get_decoder_cls(f"{key}_decoder") ) }) def build_model(*args, **kwargs): builder = ModelBuilder(*args, **kwargs) nonlinear.set_default(builder.get_nonlinear_cls("nonlinear")) return builder.get_vsae_cls("vae")()
2.265625
2
Course-Work/week_5/Money Change Again.py
TSG405/Algorithmic-Toolbox-UC-San-Diego
1
12776315
<reponame>TSG405/Algorithmic-Toolbox-UC-San-Diego >> import math money = int(input()) denominations = [1, 3, 4] minCoins = [0] + [math.inf]*money for i in range(1, money+1): for j in denominations: if i>=j: coins = minCoins[i-j]+1 if coins < minCoins[i]: minCoins[i] = coins print(minCoins[money]) ''' ---OR--- n=int(input()) f=[0 for tsg in range(n+1)] f[0],f[1],i=0,1,2 def ch3(i): if (i>=4): z3 = i-4 return z3 else: return -1 def ch2(i): if (i>=3): z2 = i-3 return z2 else: return -1 while(i<=n): z3=z2=z1=2*n k3=ch3(i) if (k3!=-1): z3=f[k3] else: z3=n*2 k2=ch2(i) if (k2!=-1): z2=f[k2] else: z2=n*2 k1=i-1 z1=f[k1] j=min(z3,z2,z1) if (j==z3): f[i]=z3+1 elif (j==z2): f[i]=z2+1 else: f[i]=z1+1 i+=1 if(n==1): print(1) else: print(f[-1]) ''' @ CODED BY TSG405, 2021
3.15625
3
test.py
AniruddhaGawali/Hand_Cricket
1
12776316
<filename>test.py # Importing Tkinter module from tkinter import * from tkinter.ttk import * # Creating master Tkinter window master = Tk() # Creating object of photoimage class # Image should be in the same folder # in which script is saved p1 = PhotoImage(file = 'data/img/img1.png') # Setting icon of master window master.iconphoto(False, p1) # Creating button b = Button(master, text = 'Click me !') b.pack(side = TOP) # Infinite loop can be terminated by # keyboard or mouse interrupt # or by any predefined function (destroy()) mainloop()
3.109375
3
inkml/references.py
Coderik/pinkml
0
12776317
<reponame>Coderik/pinkml from typing import Mapping, Set from . import ink, reading_types as rt from .ids import is_local_id, to_local_id def resolve_references(definitions: rt.Definitions, assume_local_refs): # Resolve Brush.parentRef ignored_ids = resolve_brush_parent_references(definitions.brushes) if len(ignored_ids) > 0: for id in ignored_ids: del definitions.brushes[id] print('Some brush references are either cyclic or incorrect and could not be resolved.Following brushes will ' 'be ignored: {} '.format(', '.join(ignored_ids))) # Resolve Timestamp.parentRef ignored_ids = resolve_timestamp_parent_references(definitions.timestamps) if len(ignored_ids) > 0: for id in ignored_ids: del definitions.timestamps[id] print('Some timestamp references are either cyclic or incorrect and could not be resolved.Following timestamps ' 'will be ignored: {} '.format(', '.join(ignored_ids))) # Resolve Context.parentRef ignored_ids = resolve_context_parent_references(definitions.contexts) if len(ignored_ids) > 0: for id in ignored_ids: del definitions.contexts[id] print('Some context references are either cyclic or incorrect and could not be resolved.Following timestamps ' 'will be ignored: {} '.format(', '.join(ignored_ids))) # Resolve Context.inkSourceRef, Context.traceFormatRef, Context.brushRef and Context.inkSourceRef resolve_context_content_references(definitions, assume_local_refs) def resolve_brush_parent_references(brushes: Mapping[str, rt.BrushEnvelope]) -> Set[str]: backlog: Set[str] = set() resolved: Set[str] = set() # Find all terminal brushes that do not reference other brushes for brush in brushes.values(): if brush.parent_ref == '' or brush.parent_ref == '#DefaultBrush': resolved.add(brush.id) else: backlog.add(brush.id) while len(backlog) > 0: # Look for brushes that reference already resolved brushes (and thus can be resolved) stage_ids = [] for id in backlog: brush = brushes[id] parent_id = to_local_id(brush.parent_ref) if parent_id in resolved: # Resolve reference brush.brush.parent = brushes[parent_id].brush stage_ids.append(id) # Stop, if no refs were resolved at this stage if len(stage_ids) == 0: break # Mark brushes resolved at this stage and remove them from backlog for id in stage_ids: resolved.add(id) backlog.remove(id) # TODO: replace missing ref by no-ref and keep the item itself? (only drop cycles) # NOTE: if backlog is not empty at this point, there are cyclic or incorrect references return backlog def resolve_timestamp_parent_references(timestamps: Mapping[str, rt.TimestampEnvelope]) -> Set[str]: backlog: Set[str] = set() resolved: Set[str] = set() # Find all terminal timestamps that do not reference other timestamps for timestamp in timestamps.values(): if timestamp.parent_ref == '': resolved.add(timestamp.id) else: backlog.add(timestamp.id) while len(backlog) > 0: # Look for timestamps that reference already resolved timestamps (and thus can be resolved) stage_ids = [] for id in backlog: timestamp = timestamps[id] parent_id = to_local_id(timestamp.parent_ref) if parent_id in resolved: # Resolve reference timestamp.timestamp.parent = timestamps[parent_id].timestamp stage_ids.append(id) # Stop, if no refs were resolved at this stage if len(stage_ids) == 0: break # Mark timestamps resolved at this stage and remove them from backlog for id in stage_ids: resolved.add(id) backlog.remove(id) # NOTE: if backlog is not empty at this point, there are cyclic or incorrect references return backlog def resolve_context_parent_references(contexts: Mapping[str, rt.ContextEnvelope]) -> Set[str]: backlog: Set[str] = set() resolved: Set[str] = set() # Find all terminal contexts that do not reference other contexts for context in contexts.values(): if context.parent_ref == '': resolved.add(context.id) else: backlog.add(context.id) while len(backlog) > 0: # Look for contexts that reference already resolved contexts (and thus can be resolved) stage_ids = [] for id in backlog: context = contexts[id] parent_id = to_local_id(context.parent_ref) if parent_id in resolved: # Resolve reference context.context.parent = contexts[parent_id].context stage_ids.append(id) # Stop, if no refs were resolved at this stage if len(stage_ids) == 0: break # Mark contexts resolved at this stage and remove them from backlog for id in stage_ids: resolved.add(id) backlog.remove(id) # NOTE: if backlog is not empty at this point, there are cyclic or incorrect references return backlog def resolve_context_content_references(definitions: rt.Definitions, assume_local_refs): for context in definitions.contexts.values(): # Set Context.ink_source if isinstance(context.ink_source_or_ref, ink.InkSource): context.context.ink_source = context.ink_source_or_ref elif len(context.ink_source_or_ref) > 0: if is_local_id(context.ink_source_or_ref) or assume_local_refs: ink_source_id = to_local_id(context.ink_source_or_ref) if ink_source_id in definitions.ink_sources: context.context.ink_source = definitions.ink_sources[ink_source_id] else: print('Warning. Could not find inkSource "{}" referenced by context "{}"' .format(context.ink_source_or_ref, context.id)) else: print('Warning. External references are not yet supported: "{}"'.format(context.ink_source_or_ref)) # Set Context.trace_format if isinstance(context.trace_format_or_ref, ink.TraceFormat): context.context.trace_format = context.trace_format_or_ref elif len(context.trace_format_or_ref) > 0: if is_local_id(context.trace_format_or_ref) or assume_local_refs: trace_format_id = to_local_id(context.trace_format_or_ref) if trace_format_id in definitions.trace_formats: context.context.trace_format = definitions.trace_formats[trace_format_id] else: print('Warning. Could not find traceFormat "{}" referenced by context "{}"' .format(context.trace_format_or_ref, context.id)) else: print('Warning. External references are not yet supported: "{}"'.format(context.trace_format_or_ref)) # Set Context.brush if isinstance(context.brush_or_ref, rt.BrushEnvelope): # Set brush that is given as a nested element if len(context.brush_or_ref.id) > 0: # This brush has an ID, so its refs should already be resolved. Take it from definitions if context.brush_or_ref.id in definitions.brushes: context.context.brush = definitions.brushes[context.brush_or_ref.id].brush else: # This brush is not in definitions, which means that it was ignored for some reason print('Warning. Context "{}" references a brush that was ignored'.format(context.id)) else: # This brush has no ID, so it is not in definitions context.context.brush = context.brush_or_ref.brush # If needed, resolve parent reference of this brush here, because it was not processed before if len(context.brush_or_ref.parent_ref) > 0: parent_id = to_local_id(context.brush_or_ref.parent_ref) if parent_id in definitions.brushes: context.context.brush.parent = definitions.brushes[parent_id].brush else: print('Warning. Could not find brush "{}" referenced by brush "{}"' .format(context.brush_or_ref.parent_ref, context.brush_or_ref.id)) elif len(context.brush_or_ref) > 0: if is_local_id(context.brush_or_ref) or assume_local_refs: # Set brush that is given as a reference brush_id = to_local_id(context.brush_or_ref) if brush_id in definitions.brushes: context.context.brush = definitions.brushes[brush_id].brush else: print('Warning. Could not find brush "{}" referenced by context "{}"' .format(context.brush_or_ref, context.id)) else: print('Warning. External references are not yet supported: "{}"'.format(context.brush_or_ref)) # Set Context.timestamp if isinstance(context.timestamp_or_ref, rt.TimestampEnvelope): # Set timestamp that is given as a nested element if len(context.timestamp_or_ref.id) > 0: # This timestamp has an ID, so its refs should already be resolved. Take it from definitions if context.timestamp_or_ref.id in definitions.timestamps: context.context.timestamp = definitions.timestamps[context.timestamp_or_ref.id].timestamp else: # This timestamp is not in definitions, which means that it was ignored for some reason print('Context "{}" references a timestamp that was ignored'.format(context.id)) else: # This timestamp has no ID, so it is not in definitions context.context.timestamp = context.timestamp_or_ref.timestamp # If needed, resolve parent reference of this timestamp here, because it was not processed before if len(context.timestamp_or_ref.parent_ref) > 0: if context.timestamp_or_ref.parent_ref in definitions.timestamps: context.context.timestamp.parent = \ definitions.timestamps[context.timestamp_or_ref.parent_ref].timestamp else: print('Could not find timestamp "{}" referenced by timestamp "${}"' .format(context.timestamp_or_ref.parent_ref, context.timestamp_or_ref.id)) elif len(context.timestamp_or_ref) > 0: if is_local_id(context.timestamp_or_ref) or assume_local_refs: # Set timestamp that is given as a reference timestamp_id = to_local_id(context.timestamp_or_ref) if timestamp_id in definitions.timestamps: context.context.timestamp = definitions.timestamps[timestamp_id].timestamp else: print('Could not find timestamp "{}" referenced by context "{}"' .format(context.timestamp_or_ref, context.id)) else: print('External references are not yet supported: "{}"'.format(context.timestamp_or_ref))
2.03125
2
aws_interface/settings/base.py
hubaimaster/aws-interface
53
12776318
import json import os from django.utils.translation import ugettext_lazy as _ BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRETS_DIR = os.path.join(BASE_DIR, 'secret') SECRETS_BASE = os.path.join(SECRETS_DIR, 'base.json') try: secrets_base = json.load(open(SECRETS_BASE, 'rt')) except FileNotFoundError: import subprocess subprocess.call('python generate_secrets.py') secrets_base = json.load(open(SECRETS_BASE, 'rt')) """ raise ImproperlyConfigured('Could not find secret file {}'.format(SECRETS_BASE)) """ SECRET_KEY = secrets_base['SECRET_KEY'] # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'storages', 'dashboard.apps.DashboardConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', # For translation 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'wsgi.application' LOGIN_URL = '/login/' LOGIN_REDIRECT_URL = '/apps/' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_USER_MODEL = 'dashboard.User' AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'ko-KR' TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] LANGUAGES = [ ('ko', _('Korean')), ('en', _('English')), ] LOCALE_PATHS = ( os.path.join(BASE_DIR, 'locale'), )
1.929688
2
01_captions/utils.py
saikrishnarallabandi/compositionality-expts
2
12776319
<reponame>saikrishnarallabandi/compositionality-expts from datetime import datetime # to get the current date and time def log(log_message): """ - DOES: adds a log message "log_message" and its time stamp to a log file. """ # open the log file and make sure that it's closed properly at the end of the # block, even if an exception occurs: with open("log.txt", "a") as log_file: # write the current time stamp and log message to logfile: log_file.write(datetime.strftime(datetime.today(), "%Y-%m-%d %H:%M:%S") + ": " + log_message) log_file.write("\n") # (so the next message is put on a new line)
3.546875
4
tests/platform_tests/test_killed_pid.py
noahspurrier/pexpect
8
12776320
<filename>tests/platform_tests/test_killed_pid.py #!/usr/bin/env python import os, time, signal import expyct e = expyct.expyct ('/bin/sh', '-i') print 'pid,fd:', e.pid, e.fd print 'isAlive:', e.isAlive() # Treat it brusquely. print 'sending SIGKILL...' os.kill (e.pid, signal.SIGKILL) time.sleep (1) print os.read(e.fd, 1000) print 'isAlive:', e.isAlive() e.expect('\#') e.send ('ls -la /\n') r,m,i = e.expect ('\#') print r
1.992188
2
ADContentViewer.py
Ping-P0ng/ADContentViewer
0
12776321
import tornado.ioloop import tornado.web import os import sqlite3 import json import re import argparse import sys MainPageStart = """<html><head> <title>ADContentViewer</title> </head> <body> <div style="display: flex;height: 100%;width: 100%;"> <div style="float: left; width: 60px; background-color: mediumblue; padding: 3px; box-shadow: 0 0 5px 2px; "> <form action="request"> <input type="submit" name="action" value="H" style=" background-color: Transparent;background-repeat:no-repeat;border: none;cursor:pointer;overflow: hidden;outline:none;height: 7%;width: 100%;color: white;font-size: x-large;font-family: unset;font-style: normal;"/> <input type="submit" name="action" value="U" style=" background-color: Transparent;background-repeat:no-repeat;border: none;cursor:pointer;overflow: hidden;outline:none;height: 7%;width: 100%;color: white;font-size: x-large;font-family: unset;font-style: normal;"/> <input type="submit" name="action" value="G" style=" background-color: Transparent;background-repeat:no-repeat;border: none;cursor:pointer;overflow: hidden;outline:none;height: 7%;width: 100%;color: white;font-size: x-large;font-family: unset;font-style: normal;"/> <input type="submit" name="action" value="C" style=" background-color: Transparent;background-repeat:no-repeat;border: none;cursor:pointer;overflow: hidden;outline:none;height: 7%;width: 100%;color: white;font-size: x-large;font-family: unset;font-style: normal;"/> <input type="submit" name="action" value="T" style=" background-color: Transparent;background-repeat:no-repeat;border: none;cursor:pointer;overflow: hidden;outline:none;height: 7%;width: 100%;color: white;font-size: x-large;font-family: unset;font-style: normal;"/> </form> </div > <div style="float: left; background-color: #f9f9f9; height: 100%; position: relative; width: 100%; margin: 0 12px; box-shadow: -20px 20px 0 -17px #fff, 20px -20px 0 -17px #fff, 20px 20px 0 -20px #c27153, 0 0 0 2px #c27153;"> """ MainPageEnd = """</div> </div> </body></html>""" HomePage = """<div style="height: 7%; width: 100%; text-align: left; margin: 5px; line-height: 2.5; vertical-align: middle; box-shadow: 0 2px 0 0 black; font-size: x-large; font-style: normal;">""" ObjPage = """style="background-color: Transparent; background-repeat: no-repeat; border: none; cursor: pointer; line-height: normal; overflow: hidden; outline: none; height: auto; min-height: 5%; position: static; width: 100%; text-align: left; color: black; font-size: larger; font-style: normal; box-shadow: 0 2px 0 0 black;" """ ViewDiv = """<div style="height: 85%;width: 100%;overflow: auto;">""" SearchPanel = """method="get" style="margin: 15px;"> <input type="text" name="search" placeholder="Search string" style="border: 2px solid black;width: 89%; height: 5%;border-radius: 21px; outline: none;"> <input type="submit" name="action" value="search" style="border: 2px solid black;width: 10%; height: 5%; color: black; outline: none; background-color: white; text-decoration: none; border-radius: 21px;"/></form>""" UpdateHashPanel = """ <label style="text-decoration: underline; color: black; font-size: x-large; margin-left: 90px;">Hash</label> <div style="width: max-content; border: 2px solid mediumblue; margin: 10px;"><form action="tools" enctype="multipart/form-data" method="post"> <label for="file-upload" style=" border: 2px solid black; width: 200px; height: 30px; border-radius: 21px; outline: none; text-align: center; display: block; margin: 10px; padding-top: 10;">Select hash file </label> <input id="file-upload" type="file" name="content" style="display:none;"> <input type="hidden" name="action" value="update_hash"/> <input type="submit" value="Update" style=" border: 2px solid black; width: 100px; height: 5%; margin-left: 60px; color: black; outline: none; background-color: white; text-decoration: none; border-radius: 21px;"> </form></div>""" UpdateObjectPanel = """ <label style="text-decoration: underline; color: black; font-size: x-large; margin-left: 85px;">Object</label> <div style="width: max-content; border: 2px solid mediumblue; margin: 10px;"> <form action="tools" enctype="multipart/form-data" method="post"> <label for="file-object" style=" border: 2px solid black; width: 200px; height: 30px; border-radius: 21px; outline: none; text-align: center; display: block; margin: 10px; padding-top: 10;">Select object file </label> <input id="file-object" type="file" name="content" style="display:none;"/> <input type="hidden" name="action" value="update_object"/> <select id="format" name="format_file" style="border: 2px solid black; border-radius: 21px; display: block; padding: 5px; margin: 10px; outline: none; margin-left: 50px; background-color: white;"> <option value="adfind_default">adfind_default</option> </select> <input type="submit" value="Update" style=" border: 2px solid black; width: 100px; height: 5%; margin-left: 60px; color: black; outline: none; background-color: white; text-decoration: none; padding: .8em 1em calc(.8em + 3px); border-radius: 21px;"> </form></div>""" UserAccountControl = {"SCRIPT":1, "ACCOUNTDISABLE":2, "HOMEDIR_REQUIRED":8, "LOCKOUT":16, "PASSWD_NOTREQD":32, "PASSWD_CANT_CHANGE":64, "ENCRYPTED_TEXT_PWD_ALLOWED":128, "TEMP_DUPLICATE_ACCOUNT":256, "NORMAL_ACCOUNT":512, "INTERDOMAIN_TRUST_ACCOUNT":2048, "WORKSTATION_TRUST_ACCOUNT":4096, "SERVER_TRUST_ACCOUNT":8192, "DONT_EXPIRE_PASSWORD":<PASSWORD>, "MNS_LOGON_ACCOUNT":131072, "SMARTCARD_REQUIRED":262144, "TRUSTED_FOR_DELEGATION":524288, "NOT_DELEGATED":1048576, "USE_DES_KEY_ONLY":2097152, "DONT_REQ_PREAUTH":4194304, "PASSWORD_EXPIRED":<PASSWORD>, "TRUSTED_TO_AUTH_FOR_DELEGATION":16777216, "PARTIAL_SECRETS_ACCOUNT":67108864 } class Web(tornado.web.RequestHandler): def initialize(self,Settings,MainReader): self.Settings = Settings self.MainReader = MainReader if(os.path.exists(Settings["db_name"])): self.ObjDb = sqlite3.connect(Settings["db_name"]) self.ObjCursor = self.ObjDb.cursor() def post(self): if(self.request.uri[:6] == "/tools"): WritePage = MainPageStart AllInputArg = self.request.arguments if("action" in AllInputArg.keys()): if("update_hash" == self.get_argument("action")): HashUpdateFiles = self.request.files Out = {"update":0,"add":0} if("content" in HashUpdateFiles.keys()): try: HashStr = HashUpdateFiles["content"][0]["body"].decode("utf-8").replace("\n"," ") PwdData = re.findall(r"([^: ]*):[^:]*:([^:]*):([^:]*):\S*:\S*:(\S*)",HashStr) except: PwdData = re.findall(r"([^\n\r:]*):[^:]*:([^:]*):([^:]*):\S*:\S*:(\S*)",HashUpdateFiles["content"][0]["body"].decode("UTF-16LE")[1:]) if(len(PwdData) == 0): try: HashStr = HashUpdateFiles["content"][0]["body"].decode("utf-8").replace("\n"," ") HashcatFormat = re.findall(r"([^: ]*):(\S*)",HashStr) except: HashcatFormat = re.findall(r"([^\n\r:]*):(\S*)",HashUpdateFiles["content"][0]["body"].decode("UTF-16LE")[1:]) if(len(HashcatFormat) != 0): for CurretHash in HashcatFormat: self.ObjCursor.execute("""UPDATE pwd SET pass='{1}' WHERE NT='{0}'""".format(CurretHash[0],CurretHash[1])) self.ObjDb.commit() WritePage = WritePage + """<div style="margin:10px;">Filename: {0}<br>Format: NT:pass<br>{1} hash updated<br><div>""".format(HashUpdateFiles["content"][0]["filename"],len(HashcatFormat)) else: for CurretPwd in PwdData: SelectPwd = self.ObjCursor.execute("""SELECT * FROM pwd WHERE sAMAccountName='{0}'""".format(CurretPwd[0])) CheckPwd = SelectPwd.fetchone() if(CheckPwd == None): self.ObjCursor.execute("""INSERT INTO pwd VALUES ('{0}','{1}','{2}','{3}')""".format(CurretPwd[0],CurretPwd[1],CurretPwd[2],CurretPwd[3])) Out["add"] += 1 else: self.ObjCursor.execute("""UPDATE pwd SET LM='{1}',NT='{2}',pass='{3}' WHERE sAMAccountName='{0}'""".format(CurretPwd[0],CurretPwd[1],CurretPwd[2],CurretPwd[3])) Out["update"] += 1 self.ObjDb.commit() WritePage = WritePage + """<div style="margin:10px;">Filename: {0}<br>Format: pwd<br>{1} hash added<br>{2} hash updated<br><div>""".format(HashUpdateFiles["content"][0]["filename"],Out["add"],Out["update"]) self.write(WritePage) elif("update_object" == self.get_argument("action")): ObjectUpdateFile = self.request.files if("content" in ObjectUpdateFile.keys()): try: ObjectData = ObjectUpdateFile["content"][0]["body"].decode("utf-8") except: ObjectData = ObjectUpdateFile["content"][0]["body"].decode("UTF-16LE")[1:] if(len(ObjectData) != 0): WritePage = WritePage + """<div style="margin:10px;height: 85%;width: 100%;overflow: auto;">""" self.write(WritePage) self.MainReader.GetADObjects(ObjectData.split('\n'),self) self.write("""</div>"""+MainPageEnd) def get(self): if(self.request.uri == "/"): self.redirect("/home") elif(self.request.uri[:6] == "/tools"): WritePage = MainPageStart WritePage = WritePage + UpdateHashPanel + UpdateObjectPanel self.write(WritePage+"""</div>"""+MainPageEnd) elif(self.request.uri[:6] == "/users" or self.request.uri[:10] == "/computers" or self.request.uri[:7] == "/groups"): AllInputArg = self.request.arguments if(self.request.uri[:6] == "/users"): WritePage = MainPageStart + '<form action="users" ' + SearchPanel + ViewDiv elif(self.request.uri[:10] == "/computers"): WritePage = MainPageStart + '<form action="computers" ' + SearchPanel + ViewDiv elif(self.request.uri[:7] == "/groups"): WritePage = MainPageStart + '<form action="groups" ' + SearchPanel + ViewDiv if("count" in AllInputArg.keys() and "offset" in AllInputArg.keys()): GetArgUserCount = self.get_argument("count") GetArgUserOffset = self.get_argument("offset") if("action" in AllInputArg.keys()): if(self.get_argument("action") == "next"): GetArgUserOffset = int(GetArgUserOffset) + int(GetArgUserCount) elif(self.get_argument("action") == "back"): GetArgUserOffset = int(GetArgUserOffset) - int(GetArgUserCount) if(GetArgUserOffset < 0): GetArgUserOffset = 0 if(self.request.uri[:6] == "/users"): for InfoObject in self.ObjCursor.execute("""SELECT sAMAccountName,userAccountControl,description FROM users LIMIT {0},{1}""".format(GetArgUserOffset,GetArgUserCount)): PrintStr = "{0}".format(InfoObject[0]) if(UserAccountControl["ACCOUNTDISABLE"] & int(InfoObject[1]) != 0): PrintStr = "*ACCOUNTDISABLE* {0}".format(PrintStr) descriptionValue = "" if(InfoObject[2] != ""): descriptionValue = "- {0}".format(InfoObject[2]) WritePage = WritePage + """<a style="text-decoration: none; color: black;" href="/users?action=info&object={0}"><div """.format(InfoObject[0])+ObjPage+""">{0} {1}</div></a><br>""".format(PrintStr,descriptionValue) NPanel = """<form action="users" method="get" style="margin: 15px; position: absolute;bottom: 0; right: 0;">""" elif(self.request.uri[:10] == "/computers"): for InfoObject in self.ObjCursor.execute("""SELECT sAMAccountName,description FROM computers LIMIT {0},{1}""".format(GetArgUserOffset,GetArgUserCount)): descriptionValue = "" if(InfoObject[1] != ""): descriptionValue = "- {0}".format(InfoObject[1]) WritePage = WritePage + """<a style="text-decoration: none; color: black;" href="/computers?action=info&object={0}"><div """.format(InfoObject[0])+ObjPage+""">{0} {1}</div></a><br>""".format(InfoObject[0],descriptionValue) NPanel = """<form action="computers" method="get" style="margin: 15px; position: absolute;bottom: 0; right: 0;">""" elif(self.request.uri[:7] == "/groups"): for InfoObject in self.ObjCursor.execute("""SELECT sAMAccountName,description FROM groups LIMIT {0},{1}""".format(GetArgUserOffset,GetArgUserCount)): descriptionValue = "" if(InfoObject[1] != ""): descriptionValue = "- {0}".format(InfoObject[1]) WritePage = WritePage + """<a style="text-decoration: none; color: black;" href="/groups?action=info&object={0}"><div """.format(InfoObject[0])+ObjPage+""">{0} {1}</div></a><br>""".format(InfoObject[0],descriptionValue) NPanel = """<form action="groups" method="get" style="margin: 15px; position: absolute;bottom: 0; right: 0;">""" NPanel = NPanel + """<input type="submit" name="action" value="back" style="border: 2px solid black;width: 70px; height: 38px; color: black; outline: none; background-color: white; text-decoration: none; border-radius: 21px;"/>""" NPanel = NPanel + """<input type="text" name="count" placeholder="Count" value="{0}" style="border: 2px solid black;width: 100px;height: 38px; border-radius: 21px; outline: none; text-align: center;"/>""".format(GetArgUserCount) NPanel = NPanel + """<input type="hidden" name="offset" value="{0}"/>""".format(GetArgUserOffset) NPanel = NPanel + """<input type="submit" name="action" value="next" style="border: 2px solid black;width: 70px; height: 38px; color: black; outline: none; background-color: white; text-decoration: none; border-radius: 21px;"/></form>""" self.write(WritePage+" </div>"+NPanel+MainPageEnd) elif("action" in AllInputArg.keys()): GetArgAction = self.get_argument("action") if(GetArgAction == "search"): GetArgSearch = self.get_argument("search") if(GetArgSearch != ""): if(self.request.uri[:6] == "/users"): WritePage = MainPageStart + '<form action="users" ' + SearchPanel + ViewDiv elif(self.request.uri[:10] == "/computers"): WritePage = MainPageStart + '<form action="computers" ' + SearchPanel + ViewDiv elif(self.request.uri[:7] == "/groups"): WritePage = MainPageStart + '<form action="groups" ' + SearchPanel + ViewDiv if(self.request.uri[:6] == "/users"): for InfoObject in self.ObjCursor.execute("""SELECT sAMAccountName,userAccountControl,description FROM users WHERE sAMAccountName LIKE '%{0}%'""".format(GetArgSearch)): PrintStr = "{0}".format(InfoObject[0]) if(UserAccountControl["ACCOUNTDISABLE"] & int(InfoObject[1]) != 0): PrintStr = "*ACCOUNTDISABLE* {0}".format(PrintStr) descriptionValue = "" if(InfoObject[2] != ""): descriptionValue = "- {0}".format(InfoObject[2]) WritePage = WritePage + """<a style="text-decoration: none; color: black;" href="/users?action=info&object={0}"><div """.format(InfoObject[0])+ObjPage+""">{0} {1}</div></a><br>""".format(PrintStr,descriptionValue) elif(self.request.uri[:10] == "/computers"): for InfoObject in self.ObjCursor.execute("""SELECT sAMAccountName,description FROM computers WHERE sAMAccountName LIKE '%{0}%'""".format(GetArgSearch)): descriptionValue = "" if(InfoObject[1] != ""): descriptionValue = "- {0}".format(InfoObject[1]) WritePage = WritePage + """<a style="text-decoration: none; color: black;" href="/computers?action=info&object={0}"><div """.format(InfoObject[0])+ObjPage+""">{0} {1}</div></a><br>""".format(InfoObject[0],descriptionValue) elif(self.request.uri[:7] == "/groups"): for InfoObject in self.ObjCursor.execute("""SELECT sAMAccountName,description FROM groups WHERE sAMAccountName LIKE '%{0}%'""".format(GetArgSearch)): descriptionValue = "" if(InfoObject[1] != ""): descriptionValue = "- {0}".format(InfoObject[1]) WritePage = WritePage + """<a style="text-decoration: none; color: black;" href="/groups?action=info&object={0}"><div """.format(InfoObject[0])+ObjPage+""">{0} {1}</div></a><br>""".format(InfoObject[0],descriptionValue) self.write(WritePage+"""</div>"""+MainPageEnd) elif(GetArgAction == "info"): GetArgObj = self.get_argument("object") if(GetArgObj != ""): if(self.request.uri[:6] == "/users"): SelectObj = self.ObjCursor.execute("""SELECT users.FullData from users where users.samaccountname='{0}'""".format(GetArgObj)) elif(self.request.uri[:10] == "/computers"): SelectObj = self.ObjCursor.execute("""SELECT FullData FROM computers WHERE sAMAccountName='{0}'""".format(GetArgObj)) elif(self.request.uri[:7] == "/groups"): SelectObj = self.ObjCursor.execute("""SELECT FullData FROM groups WHERE sAMAccountName='{0}'""".format(GetArgObj)) ObjValue = SelectObj.fetchone() if(ObjValue != None): JsonObj = json.loads(ObjValue[0]) if(self.request.uri[:6] == "/users"): WritePage = MainPageStart + '<form action="users" ' + SearchPanel + ViewDiv elif(self.request.uri[:10] == "/computers"): WritePage = MainPageStart + '<form action="computers" ' + SearchPanel + ViewDiv elif(self.request.uri[:7] == "/groups"): WritePage = MainPageStart + '<form action="groups" ' + SearchPanel + ViewDiv for CurrentKey in JsonObj.keys(): if(isinstance(JsonObj[CurrentKey],list)): for CurrentValue in JsonObj[CurrentKey]: if(CurrentKey == "member" or CurrentKey == "memberOf"): WritePage = WritePage + """{0}: <a style="text-decoration: none; color: black;" href="/request?dn={1}">{1}</a><br>""".format(CurrentKey,CurrentValue) else: WritePage = WritePage + "{0}: {1}<br>".format(CurrentKey,CurrentValue) else: if(CurrentKey == "userAccountControl"): PrintStr = "" for CurrentUAC in UserAccountControl.keys(): if(UserAccountControl[CurrentUAC] & int(JsonObj[CurrentKey]) != 0): PrintStr += " {0} |".format(CurrentUAC) WritePage = WritePage + "{0}: {1} > {2}<br>".format(CurrentKey,JsonObj[CurrentKey],PrintStr[:-1]) else: WritePage = WritePage + "{0}: {1}<br>".format(CurrentKey,JsonObj[CurrentKey]) SelectPwd = self.ObjCursor.execute("""SELECT LM,NT,pass FROM pwd WHERE sAMAccountName='{0}'""".format(GetArgObj)) CheckPwd = SelectPwd.fetchone() if(CheckPwd != None): WritePage = WritePage + "---------------------------<br>" WritePage = WritePage + "{0}:{1}:{2}".format(CheckPwd[0],CheckPwd[1],CheckPwd[2]) self.write(WritePage+"""</div>"""+MainPageEnd) else: pass elif(self.request.uri == "/home"): WritePage = MainPageStart CountUser = self.ObjCursor.execute("""SELECT count(*) FROM users""") CountUserValue = CountUser.fetchone() WritePage = WritePage + HomePage + "Users: {0}</div>".format(CountUserValue[0]) CountGroup = self.ObjCursor.execute("""SELECT count(*) FROM groups""") CountGroupValue = CountUser.fetchone() WritePage = WritePage + HomePage + "Groups: {0}</div>".format(CountGroupValue[0]) CountPC = self.ObjCursor.execute("""SELECT count(*) FROM computers""") CountPCValue = CountUser.fetchone() WritePage = WritePage + HomePage + "Computers: {0}</div>".format(CountPCValue[0]) CountHash = self.ObjCursor.execute("""SELECT count(*) FROM pwd""") CountHashValue = CountHash.fetchone() CountPass = self.ObjCursor.execute("""SELECT count(*) FROM pwd WHERE pass!=''""") CountPassValue = CountHash.fetchone() WritePage = WritePage + HomePage + "Passwords: {0}/{1}</div>".format(CountPassValue[0],CountHashValue[0]) self.write(WritePage+MainPageEnd) elif(self.request.uri[:8] == "/request"): AllInputArg = self.request.arguments if("action" in AllInputArg.keys()): GetArgAction = self.get_argument("action") if(GetArgAction == "H"): self.redirect("/home") elif(GetArgAction == "T"): self.redirect("/tools") elif(GetArgAction == "U"): self.redirect("/users?offset=0&count={0}".format(self.Settings["obj_count_page"])) elif(GetArgAction == "C"): self.redirect("/computers?offset=0&count={0}".format(self.Settings["obj_count_page"])) elif(GetArgAction == "G"): self.redirect("/groups?offset=0&count={0}".format(self.Settings["obj_count_page"])) elif("dn" in AllInputArg.keys()): GetArgAction = self.get_argument("dn") CountUser = self.ObjCursor.execute("""SELECT sAMAccountName FROM users WHERE dn='{0}'""".format(GetArgAction)) CountUserValue = CountUser.fetchone() if(CountUserValue != None): self.redirect("/users?action=info&object={0}".format(CountUserValue[0])) CountPC = self.ObjCursor.execute("""SELECT sAMAccountName FROM computers WHERE dn='{0}'""".format(GetArgAction)) CountPCValue = CountPC.fetchone() if(CountPCValue != None): self.redirect("/computers?action=info&object={0}".format(CountPCValue[0])) CountGroup = self.ObjCursor.execute("""SELECT sAMAccountName FROM groups WHERE dn='{0}'""".format(GetArgAction)) CountGroupValue = CountGroup.fetchone() if(CountGroupValue != None): self.redirect("/groups?action=info&object={0}".format(CountGroupValue[0])) else: WritePage = MainPageStart + """<div style="margin: 10px;">Object not found</div>""" + MainPageEnd self.write(WritePage) class Reader(object): def __init__(self,Settings): self.ADInfoFiles = {} self.Settings = Settings if(os.path.isdir(Settings["db_name"])): sys.exit("> {0} - it directory".format(Settings["db_name"])) if(not os.path.exists(Settings["db_name"])): self.ObjDb = sqlite3.connect(Settings["db_name"]) self.ObjCursor = self.ObjDb.cursor() print("> create {0}".format(Settings["db_name"])) self.ObjCursor.execute('''CREATE TABLE users (dn text, sAMAccountName text,userAccountControl int,description text, FullData text)''') self.ObjCursor.execute('''CREATE TABLE groups (dn text, sAMAccountName text,description text, FullData text)''') self.ObjCursor.execute('''CREATE TABLE pwd (sAMAccountName text, LM text, NT text, pass text)''') self.ObjCursor.execute('''CREATE TABLE computers (dn text, sAMAccountName text,userAccountControl int,description text, FullData text)''') self.ObjDb.commit() print("> create 4 tables (users,groups,computers,pwd)") else: print("> connect {0}".format(Settings["db_name"])) self.ObjDb = sqlite3.connect(Settings["db_name"]) self.ObjCursor = self.ObjDb.cursor() # sAMAccountType: # - SAM_DOMAIN_OBJECT 0x0 # - SAM_GROUP_OBJECT 0x10000000 # - SAM_NON_SECURITY_GROUP_OBJECT 0x10000001 # - SAM_ALIAS_OBJECT 0x20000000 # - SAM_NON_SECURITY_ALIAS_OBJECT 0x20000001 # - SAM_USER_OBJECT 0x30000000 # - SAM_NORMAL_USER_ACCOUNT 0x30000000 # - SAM_MACHINE_ACCOUNT 0x30000001 # - SAM_TRUST_ACCOUNT 0x30000002 # - SAM_APP_BASIC_GROUP 0x40000000 # - SAM_APP_QUERY_GROUP 0x40000001 # - SAM_ACCOUNT_TYPE_MAX 0x7fffffff def AddObjectDB(self,ADObject): #print(ADObject) descriptionValue = "" if("description" in ADObject.keys()): descriptionValue = ADObject["description"] if(int(ADObject["sAMAccountType"]) == 805306368): # user object SelectObj = self.ObjCursor.execute("""SELECT sAMAccountName FROM users WHERE sAMAccountName='{0}'""".format(ADObject["sAMAccountName"])) CheckObj = SelectObj.fetchone() if(CheckObj == None): self.ObjCursor.execute("""INSERT INTO users VALUES ('{0}','{1}',{2},'{3}','{4}')""".format(ADObject["dn"],ADObject["sAMAccountName"],ADObject["userAccountControl"],descriptionValue,json.dumps(ADObject))) self.ObjDb.commit() return("user","add") elif(len(CheckObj) == 1): self.ObjCursor.execute("""UPDATE users SET sAMAccountName='{1}', userAccountControl={2}, description='{3}', FullData='{4}' WHERE dn='{0}'""".format(ADObject["dn"],ADObject["sAMAccountName"],ADObject["userAccountControl"],descriptionValue,json.dumps(ADObject))) self.ObjDb.commit() return("user","update") else: return("user","fail") elif(int(ADObject["sAMAccountType"]) == 805306369): # computer object SelectObj = self.ObjCursor.execute("""SELECT sAMAccountName FROM computers WHERE sAMAccountName='{0}'""".format(ADObject["sAMAccountName"])) CheckObj = SelectObj.fetchone() if(CheckObj == None): self.ObjCursor.execute("""INSERT INTO computers VALUES ('{0}','{1}',{2},'{3}','{4}')""".format(ADObject["dn"],ADObject["sAMAccountName"],ADObject["userAccountControl"],descriptionValue,json.dumps(ADObject))) self.ObjDb.commit() return("computer","add") elif(len(CheckObj) == 1): self.ObjCursor.execute("""UPDATE computers SET sAMAccountName='{1}', userAccountControl={2}, description='{3}', FullData='{4}' WHERE dn='{0}'""".format(ADObject["dn"],ADObject["sAMAccountName"],ADObject["userAccountControl"],descriptionValue,json.dumps(ADObject))) self.ObjDb.commit() return("computer","update") else: return("computer","fail") elif(int(ADObject["sAMAccountType"]) == 536870912 or int(ADObject["sAMAccountType"]) == 268435456): # group object SelectObj = self.ObjCursor.execute("""SELECT sAMAccountName FROM groups WHERE sAMAccountName='{0}'""".format(ADObject["sAMAccountName"])) CheckObj = SelectObj.fetchone() if(CheckObj == None): self.ObjCursor.execute("""INSERT INTO groups VALUES ('{0}','{1}','{2}','{3}')""".format(ADObject["dn"],ADObject["sAMAccountName"],descriptionValue,json.dumps(ADObject))) self.ObjDb.commit() return("group","add") elif(len(CheckObj) == 1): self.ObjCursor.execute("""UPDATE groups SET sAMAccountName='{1}', description='{2}', FullData='{3}' WHERE dn='{0}'""".format(ADObject["dn"],ADObject["sAMAccountName"],descriptionValue,json.dumps(ADObject))) self.ObjDb.commit() return("group","update") else: return("group","fail") def GetADObjects(self,ObjFile,WebObj): self.WebObj = WebObj ResultObject = {"user":{"add":0,"update":0,"fail":0},"group":{"add":0,"update":0,"fail":0},"computer":{"add":0,"update":0,"fail":0}} if(self.Settings["format"] == "ADFind_default"): ObjData = {} CheckFirstObj = False for CurrentLine in ObjFile: SplitLine = CurrentLine[:-1].split(':') if(len(SplitLine) == 2): if(CheckFirstObj == False): if(SplitLine[0] == "dn"): CheckFirstObj = True if(ObjData != {}): ResultAdd = self.AddObjectDB(ObjData) if(ResultAdd[1] == "add"): ResultObject[ResultAdd[0]]["add"] += 1 elif(ResultAdd[1] == "update"): ResultObject[ResultAdd[0]]["update"] += 1 elif(ResultAdd[1] == "fail"): ResultObject[ResultAdd[0]]["fail"] += 1 ObjData = {} ObjData[SplitLine[0]] = SplitLine[1] else: if(SplitLine[0] == "dn"): if(ObjData != {}): ResultAdd = self.AddObjectDB(ObjData) if(ResultAdd[1] == "add"): ResultObject[ResultAdd[0]]["add"] += 1 elif(ResultAdd[1] == "update"): ResultObject[ResultAdd[0]]["update"] += 1 elif(ResultAdd[1] == "fail"): ResultObject[ResultAdd[0]]["fail"] += 1 ObjData = {} ObjData[SplitLine[0]] = SplitLine[1] elif(SplitLine[0][1:] == "memberOf" or SplitLine[0][1:] == "member" or SplitLine[0][1:] == "servicePrincipalName" or SplitLine[0][1:] == "objectClass"): if(SplitLine[0][1:] not in ObjData.keys()): ObjData[SplitLine[0][1:]] = [SplitLine[1][1:]] else: ObjData[SplitLine[0][1:]].append(SplitLine[1][1:]) else: ObjData[SplitLine[0][1:]] = SplitLine[1][1:] if(ObjData != {}): ResultAdd = self.AddObjectDB(ObjData) if(ResultAdd[1] == "add"): ResultObject[ResultAdd[0]]["add"] += 1 elif(ResultAdd[1] == "update"): ResultObject[ResultAdd[0]]["update"] += 1 elif(ResultAdd[1] == "fail"): ResultObject[ResultAdd[0]]["fail"] += 1 if(ResultObject["user"]["add"] != 0 or ResultObject["user"]["update"] != 0 or ResultObject["user"]["fail"] != 0): self.WebObj.write("User object:<br>- {0} add<br>- {1} update<br>- {2} fail".format(ResultObject["user"]["add"],ResultObject["user"]["update"],ResultObject["user"]["fail"])) elif(ResultObject["group"]["add"] != 0 or ResultObject["group"]["update"] != 0 or ResultObject["group"]["fail"] != 0): self.WebObj.write("Group object:<br>- {0} add<br>- {1} update<br>- {2} fail".format(ResultObject["group"]["add"],ResultObject["group"]["update"],ResultObject["group"]["fail"])) elif(ResultObject["computer"]["add"] != 0 or ResultObject["computer"]["update"] != 0 or ResultObject["computer"]["fail"] != 0): self.WebObj.write("Computer object:<br>- {0} add<br>- {1} update<br>- {2} fail".format(ResultObject["computer"]["add"],ResultObject["computer"]["update"],ResultObject["computer"]["fail"])) # ADInfo file format: # - ADFind_default # if __name__ == "__main__": parser = argparse.ArgumentParser("ADContentViewer") parser.add_argument("-db", help="db file name (default: adinfo.db)") args = parser.parse_args() if(args.db == None): OutSqlFile = "adinfo.db" else: OutSqlFile = args.db Settings = {"format":"ADFind_default", "db_name":OutSqlFile, "obj_count_page":"10"} MainReader = Reader(Settings) application = tornado.web.Application([ (r"/", Web,dict(Settings=Settings,MainReader=MainReader)), (r"/home", Web,dict(Settings=Settings,MainReader=MainReader)), (r"/request", Web,dict(Settings=Settings,MainReader=MainReader)), (r"/users", Web,dict(Settings=Settings,MainReader=MainReader)), (r"/groups", Web,dict(Settings=Settings,MainReader=MainReader)), (r"/computers", Web,dict(Settings=Settings,MainReader=MainReader)), (r"/tools", Web,dict(Settings=Settings,MainReader=MainReader)), ]) print("> go http://127.0.0.1:16600/") application.listen(16600) tornado.ioloop.IOLoop.current().start()
2.40625
2
app/urls.py
B-ROY/TESTGIT
2
12776322
# -*- coding: utf-8 -*- from django.conf.urls import patterns, include, url # Uncomment the next two lines to enable the admin: from django.contrib import admin from django.conf.urls.static import static from django.conf import settings admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'app.thirdpart.views.main', name='首页'), # url(r'^item/detail/$', 'app.thirdpart.views.item_detail', name='详情'), # url(r'^mysite/', include('mysite.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: #/admin/auth/user/ url(r'^$', 'app.customer.views.user.base'), url(r'^homepage/$', 'app.customer.views.user.homepage'), # url(r'^stat$', 'statistics.views.index.index', name="statistics_index"), url(r'^audio/', include('app.audio.urls')), url(r'^add/top', 'app.customer.views.user.add_top'), url(r'^del/top', 'app.customer.views.user.delete_top'), url(r'^top/position', 'app.customer.views.user.save_top_position'), url(r'^admin/', include(admin.site.urls)), url(r'^customer/', include('app.customer.urls')), url(r'^signin/$', 'django.contrib.auth.views.login', {'template_name': 'signin.html'}, name="signin"), url(r'^signout/$', 'django.contrib.auth.views.logout_then_login', name="signout"), ################################################################################################################### # 定义静态文件处理函数 ################################################################################################################### url(r'^static/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT,}), ) + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
1.882813
2
mmseg/utils/inverted_residual_module.py
HusterRC/mmsegmentation
2
12776323
from mmcv.cnn import ConvModule, build_norm_layer from torch import nn class InvertedResidual(nn.Module): """Inverted residual module. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): adjusts number of channels of the hidden layer in InvertedResidual by this amount. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). """ def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU6')): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(in_channels * expand_ratio)) self.use_res_connect = self.stride == 1 \ and in_channels == out_channels layers = [] if expand_ratio != 1: # pw layers.append( ConvModule( in_channels, hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) layers.extend([ # dw ConvModule( hidden_dim, hidden_dim, kernel_size=3, padding=dilation, stride=stride, dilation=dilation, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), # pw-linear nn.Conv2d(hidden_dim, out_channels, 1, 1, 0, bias=False), build_norm_layer(norm_cfg, out_channels)[1], ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x)
2.9375
3
nltk_download.py
anasayubi/implement_timmonsr-kylee84_research_paper
0
12776324
from nltk import download download()
1.039063
1
051 - 100/ex078.py
SocrammBR/Desafios-Python-CursoEmVideo
0
12776325
<reponame>SocrammBR/Desafios-Python-CursoEmVideo lista = [] for c in range(0, 5): lista.append(int(input(f'Digite um valor para a posição {c}: '))) print('=-=' * 10) print(f'Você digitou os valores {lista}') print(f'O maior valor digitado é o {max(lista)} e ele está na posição {lista.index(max(lista))}') print(f'O menor valor digitado é o {min(lista)} e ele está na posição {lista.index(min(lista))}')
3.609375
4
evaluation/plot_mr-qr.py
cragkhit/elasticsearch
23
12776326
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np df = pd.DataFrame({'Group': ['A', 'A', 'A', 'B', 'C', 'B', 'B', 'C', 'A', 'C'], 'Apple': np.random.rand(10),'Orange': np.random.rand(10)}) # df = df[['Group','Apple','Orange']] dd = pd.melt(df, id_vars=['Group'], value_vars=['Apple', 'Orange'], var_name='Fruits') sns.boxplot(x='Group', y='value', data=dd, hue='Fruits') plt.show()
3.515625
4
pisces/util.py
omarmarcillo/piscesWIN
0
12776327
<filename>pisces/util.py<gh_stars>0 import logging import math from getpass import getpass import numpy as np import sqlalchemy as sa from sqlalchemy.orm import Session from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.exc import NoSuchTableError, IntegrityError, OperationalError from sqlalchemy.exc import ProgrammingError from sqlalchemy.orm.exc import NoResultFound, UnmappedInstanceError #import obspy.geodetics as geod from obspy.core import AttribDict from obspy.taup import taup from pisces.schema.util import PiscesMeta import pisces.schema.kbcore as kba def db_connect(*args, **kwargs): """ Connect to your database. Parameters ---------- backend : string One of the SQLAlchemy connection strings from http://docs.sqlalchemy.org/en/rel_0_7/core/engines.html#database-urls user : string, optional Not required for sqlite. passwd : string, optional Not needed for sqlite. Prompted if needed and not provided. server : string, optional Database host server. port : string or integer, optional Port on remote server. instance : string, optional The database instance. For sqlite, this is the file name. conn : string, optional A fully-formed SQLAlchemy style connection string. Returns ------- session : bound SQLAlchemy Session instance Examples -------- 1. Connect to a local sqlite database file: >>> meta, session = db_connect(conn='sqlite:///mydb.sqlite') #or >>> meta, session = db_connect(backend='sqlite', instance='mydb.sqlite') Notes ----- For connection string format, see: http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html """ #TODO: take advantage of sqlalchemy.engine.url.URL #XXX: is not protected against using args and kwargs if len(args) == 1: kwargs['conn'] = args[0] if kwargs.get('conn'): conn = kwargs.get('conn') else: backend = kwargs.get('backend') user = kwargs.get('user', '') psswd = kwargs.get('passwd', '') server = kwargs.get('server', '') port = kwargs.get('port', '') instance = kwargs.get('instance', '') if backend is 'sqlite': userpsswd = '' else: if user and not psswd: psswd = getpass("Enter password for {0}: ".format(user)) userpsswd = ':'.join([user, psswd]) elif psswd and not user: user = getpass("Enter username for given password: ") userpsswd = ':'.join([user, psswd]) elif user and psswd: userpsswd = ':'.join([user, psswd]) else: userpsswd = ':' if server: serverport = '@' + server if port: serverport += ':' + str(port) else: serverport = '' conn = "{0}://{1}{2}/{3}".format(backend, userpsswd, serverport, instance) engine = sa.create_engine(conn) session = Session(bind=engine) return session def url_connect(url): """ Connect to a database using an RFC-1738 compliant URL, like sqlalchemy's create_engine, prompting for a password if a username is supplied. Parameters ---------- url : string A fully-formed SQLAlchemy style connection string. See http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls Returns ------- session : bound SQLAlchemy Session instance Examples -------- SQLite database file, local: >>> url_connect('sqlite:///local/path/to/mydb.sqlite') SQLite database file, full path: >>> url_connect('sqlite:////full/path/to/mydb.sqlite') Remote Oracle, OS-authenticated (no user or password needs to be specified) >>> url_connect('oracle://dbserver.lanl.gov:8080/mydb') Remote Oracle, password-authenticated (specify user, prompted for password) >>> url_connect('oracle://<EMAIL>:8080/mydb') Enter password for scott: Remote Oracle, password-authenticated (password specified) >>> url_connect('oracle://scott:<EMAIL>:8080/mydb') """ this_url = sa.engine.url.make_url(url) if this_url.username and not this_url.password: this_url.password = getpass("Enter password for {0}: ".format(this_url.username)) e = sa.create_engine(this_url) session = Session(bind=e) return session def table_contains_all(itable, keys): all([key in itable.columns for key in keys]) #def ormtable(fulltablename, base=None): # """ # For known schema-qualified tables, use: # Origin = ormtable('global.origin', base=kb.Origin) # For arbitrary tables, use: # MyTable = ormtable('jkmacc.sometable') # For arbitrary tables without Pisces-specific method, use: # MyTable = ormtable('jkmacc.sometable', base=declarative_base()) # """ # # ORMBase = base if base else declarative_base(metaclass=PiscesMeta, # constructor=None) # parents = (ORMBase,) # try: # owner, tablename = fulltable.split('.') # except ValueError: # owner, tablename = None, fulltable # if owner: # parents += declarative_base(metadata=MetaData(schema=owner)), # # return type(fulltable.capitalize(), parents, {}) def get_tables(bind, fulltablenames, metadata=None, primary_keys=None, base=None): """ Reflect/load an arbitrary database table as a mapped class. This is a shortcut for SQLAlchemy's declarative mapping using __table__. See http://docs.sqlalchemy.org/en/rel_0_9/orm/extensions/declarative.html#using-a-hybrid-approach-with-table. Parameters ---------- bind : sqlalchemy.engine.base.Engine instance Engine pointing to the target database. fulltables : list of strings Of the form ['owner1.tablename1', 'owner2.tablename2', ...] Leave out 'owner.' if database doesn't use owners (sqlite, etc...) metadata : sqlalchemy.MetaData, optional MetaData into which reflected Tables go. If not supplied, a new one is created, accessible from MyTable.metadata on one of the loaded tables. primary_keys : dict, optional Tablename, primary key list pairs of the form, {'owner1.tablename1': ['primary_key1', 'primary_key2']} These are required if the table is a view or has no primary key. base : sqlalchemy.ext.declarative.api.DeclarativeMeta, optional The declarative base the from which loaded table classes will inherit. The info dictionary of loaded Columns will be updated from those in the base. These are used to generate default values and string representations. Import from pisces.schema.css3, or extensions thereof. Default, sqlalchemy.ext.declarative.api.DeclarativeMeta. Returns ------- list Corresponding list of ORM table classes mapped to reflected tables, Can be used for querying or making row instances. Raises ------ sqlalchemy.exc.NoSuchTableError : Table doesn't exist. sqlalchemy.exc.InvalidRequestError : Table already loaded in metadata. sqlalchemy.exc.ArgumentError : Table has no primary key(s). Notes ----- In SQLAlchemy, a database account/owner is generally used with the "schema" keyword argument. For core tables in a Pisces schema, this function isn't recommended. Instead, subclass from the known abstract table. Examples -------- # for unknown table >>> import pisces.schema.css3 as css >>> RandomTable = get_tables(engine, ['randomtable']) # for a known/prototype table >>> class Site(css.Site): __tablename__ = 'myaccount.my_site_tablename' """ if not metadata: metadata = sa.MetaData() if not bind: raise ValueError("Must provide bound metadata or bind.") # we have metadata if not bind: bind = metadata.bind ORMBase = base if base else declarative_base(metaclass=PiscesMeta, constructor=None, metadata=metadata) colinfo = getattr(base, '_column_info_registry', {}) parents = (ORMBase,) outTables = [] for fulltable in fulltablenames: try: owner, tablename = fulltable.split('.') except ValueError: # no owner given owner, tablename = None, fulltable # reflect the table itable = sa.Table(tablename, metadata, autoload=True, autoload_with=bind, schema=owner) # update reflected table with known schema column info if colinfo: for col in itable.columns: col.info.update(colinfo.get(col.name, {})) dct = {'__table__': itable} # put any desired __table_args__: {} here # no primary key, can't map. spoof primary key mapping from inputs if primary_keys and fulltable in primary_keys: dct['__mapper_args__'] = {'primary_key': [getattr(itable.c, key) for key in primary_keys[fulltable]]} ORMTable = type(tablename.capitalize(), parents, dct) outTables.append(ORMTable) return outTables def make_table(fulltablename, prototype): """ Create a new ORM class/model on-the-fly from a prototype. Parameters ---------- fulltablename : str Schema-qualified name of the database table, like 'owner.tablename' or just 'tablename'. The resulting classname will be the capitalized tablename, like 'Tablename'. prototype : sqlalchemy abstract ORM class The prototype table class. pisces.schema.css.Site, for example. Notes ----- It's better to declare classes in an external module, and import them. SQLAlchemy doesn't let you use the same table names twice, so on-the-fly class creation and naming is risky: 1. You can't use make_tables again if you accidentally overwrite the variable you used to hold the class you created. 2. You can't use make_tables again if you import something from a script/module where make_tables was used with the same table name. """ try: owner, tablename = fulltablename.split('.') except ValueError: owner, tablename = None, fulltablename parents = (prototype,) if owner: OwnerBase = declarative_base(metadata=sa.MetaData(schema=owner)) parents = (OwnerBase, prototype) else: parents = (prototype,) dct = {'__tablename__': tablename} return type(tablename.capitalize(), parents, dct) def make_same_size(lat1, lon1, lat2, lon2): """ Returns numpy arrays the same size as longest inputs. assume: lat1/lon1 are same size and lat2/lon2 are same size assume: the smaller of the sizes is a scalar """ #TODO: EAFP lon1 = np.array(lon1) lat1 = np.array(lat1) lon2 = np.array(lon2) lat2 = np.array(lat2) #assume: lat1/lon1 are same size and lat2/lon2 are same size #assume: the smaller of the sizes is a scalar N1 = lon1.size N2 = lon2.size if N1 > N2: lon2 = lon2.repeat(N1) lat2 = lat2.repeat(N1) elif N2 > N1: lon1 = lon1.repeat(N2) lat1 = lat1.repeat(N2) return lat1, lon1, lat2, lon2 def gen_id(i=0): """ Produce a generator for sequential integer id values. Examples -------- >>> lastorid = 7 >>> orid = gen_id(lastorid) >>> orid.next() 8 >>> orid.next() 9 Generate more than one at a time: >>> orid, arid, wfid = (gen_id() for id in ['orid', 'arid', 'wfid']) >>> orid.next(), arid.next() (1, 1) Dictionary of id generators for desired ids, starting where they left off. ids not in Lastid will be missing >>> ids = session.query(Lastid).filter(Lastid.keyname.in_(['orid','arid']).all() >>> last = dict([(id.keyname, gen_id(id.keyvalue)) for id in ids]) >>> last['orid'].next() 8820005 """ while 1: i += 1 yield i def travel_times(ref, deg=None, km=None, depth=0.): """ Get *approximate* relative travel time(s). Parameters ---------- ref : list or tuple of strings and/or floats Reference phase names or horizontal velocities [km/sec]. deg : float, optional Degrees of arc between two points of interest (spherical earth). km : float, optional Horizontal kilometers between two points of interest (spherical earth). depth : float, optional. default, 0. Depth (positive down) of event, in kilometers. Returns ------- numpy.ndarray Relative times, in seconds, same length as "ref". NaN if requested time is undefined. Examples -------- Get relative P arrival and 2.7 km/sec surface wave arrival at 35 degrees distance. >>> times = travel_times(['P', 2.7], deg=35.0) To get absolute window, add the origin time like: >>> w1, w2 = times + epoch_origin_time Notes ----- Either deg or km must be indicated. The user is responsible for adding/subtracting time (such as origin time, pre-window noise time, etc.) from those predicted in order to define a window. Phase travel times use ak135. """ times = np.zeros(len(ref), dtype='float') tt = None for i, iref in enumerate(ref): if isinstance(iref, str): # phase time requested if not tt: tt try: idx = [ph['phase_name'] for ph in tt].index(iref) itt = [ph['time'] for ph in tt][idx] except ValueError: # phase not found itt = None else: # horizontal velocity if not km: km = deg*(2*math.pi/360.0)*6371.0 itt = km/iref times[i] = itt return times def add_rows(session, rows, recurse=False): """Handle common errors with logging in SQLAlchemy add_all. Tries to add in bulk. Failing that, it will rollback and optionally try to add one at a time. Parameters ---------- session : sqlalchemy.orm.Session rows : list Mapped table instances. recurse : bool, optional After failure, try to add records individually. Returns ------- num : int Number of objects added. 0 if none. e : exception or None """ e = None num = 0 try: session.add_all(rows) session.commit() num = len(rows) except (ProgrammingError, UnmappedInstanceError) as e: # IntegrityError: duplicate row(s) # ProgrammingError: string encoding problem # UnmappedInstanceError: tried to add something like a list or None session.rollback() logging.warning(str(e)) except IntegrityError: print str(e) session.rollback() finally: # always executed if e and recurse: # if an exception was thrown and recursion was requested for row in rows: i, e = add_rows(session, [row], recurse=False) num += i return num, e def get_lastids(session, Lastid, keynames=None, expunge=True, create=False): """ Load or create Lastid instances into a convenient and readable attribute-based dictionary. Parameters ---------- session : sqlalchemy.orm.Session instance Lastid : Lastid table class ids : list or tuple of strings Lastid.keyname values to load. expunge : bool If True, expunge loaded ids from the session. This frees you to modify them without affecting the database from which they were loaded. In this case, you'll have to add them back into a session and commit them for their changes to be reflected on the database. create : bool If True, create ids that don't already exist. Examples -------- Get and set lastid values directly by name or by attribute. >>> last = get_lastids(session, Lastid, ['orid', 'arid']) >>> last.orid, last['orid'] Lastid(keyname='orid'), Lastid(keyname='orid') Test for their existence by name. >>> 'orid' in last True Use the Lastid's 'next' generator behavior for readable code >>> next(last.orid) 18 >>> last.orid.keyvalue 18 Update your database when you're done. >>> session.add_all(ids.values()) >>> session.commit() """ last = AttribDict() q = session.query(Lastid) if keynames is None: lastids = q.all() else: lastids = [] for keyname in keynames: lastid = q.filter(Lastid.keyname == keyname).first() if lastid: lastids.append(lastid) elif create: lastid = Lastid(keyname=keyname, keyvalue=0) session.add(lastid) lastids.append(lastid) for lastid in lastids: if expunge: session.expunge(lastid) last[lastid.keyname] = lastid return last #CORETABLES = [CoreTable('affiliation', kba.Affiliation, kb.Affiliation), # CoreTable('arrival', kba.Arrival, kb.Arrival), # CoreTable('assoc', kba.Assoc, kb.Assoc), # CoreTable('event', kba.Event, kb.Event), # CoreTable('instrument', kba.Instrument, kb.Instrument), # CoreTable('lastid', kba.Lastid, kb.Lastid), # CoreTable('origin', kba.Origin, kb.Origin), # CoreTable('site', kba.Site, kb.Site), # CoreTable('sitechan', kba.Sitechan, kb.Sitechan), # CoreTable('wfdisc', kba.Wfdisc, kb.Wfdisc)] def get_options(db,prefix=None): ''' for coretable in CORETABLES: table_group.add_argument('--' + coretable.name, default=None, metavar='owner.tablename', dest=coretable.name) ''' options={'url':'sqlite:///'+db,'prefix':prefix} return options def get_or_create_tables(session, prefix=None, create=True, **tables): """ Load or create canonical ORM KB Core table classes. Parameters ---------- session : sqlalchemy.orm.Session prefix : str Table name prefix for core tables, e.g. 'global.' for 'global.<tablename>' create : bool If True, create a table that isn't found. Also accepted are canonical table name keywords with '[owner.]tablename' arguments, which will replace any prefix-based core table names. Returns ------- tables : dict Mapping between canonical table names and SQLA ORM classes. e.g. {'origin': MyOrigin, ...} """ # The Plan: # 1. For each core table, build or get the table name # 2. If it's a vanilla table name, just use a pre-packaged table class # 3. If not, try to autoload it. # 4. If it doesn't exist, make it from a prototype and create it in the database. # TODO: check options for which tables to produce. tables = {} for coretable in CORETABLES: # build the table name if options['prefix']==None: fulltablename = coretable.name else: fulltablename = prefix + coretable.name # fulltablename is either an arbitrary string or prefix + core name, but not None # put table classes into the tables dictionary if fulltablename == coretable.name: # it's a vanilla table name. just use a pre-packaged table class instead of making one. tables[coretable.name] = coretable.table else: tables[coretable.name] = ps.make_table(fulltablename, coretable.prototype) tables[coretable.name].__table__.create(session.bind, checkfirst=True) session.commit() return tables
2.65625
3
removeKthNodeFromEnd.py
rramnani/LeetCode
0
12776328
def removeKthNodeFromEnd(head, k): # Write your code here. #length = len(head) counter = 1 first = head second = head while counter <= k: second = second.next counter+=1 if second is None: # second is pointing to None => First is at the head of linked list head.value = head.next.value head.next = head.next.next return # then we're done here while second.next is not None: second = second.next first = first.next first.next = first.next.next return head
3.859375
4
src/hjerter/algorithms/hafm.py
chingyulin/ml_numpy
0
12776329
<filename>src/hjerter/algorithms/hafm.py import numpy as np p0 = np.array([1, 8]) p1 = np.array([7, 3]) line_a = np.stack([p0, p1]) q = np.array([3, 2]) v = p1 - p0 u = q - p0 def find_angle(v1, v2): return np.arccos(np.sum(v1 * v2) / np.sqrt(np.sum(v1 ** 2) * np.sum(v2 ** 2))) theta_0 = find_angle(u, v) theta = np.arctan(-v[0] / v[1]) p_v_u = (np.sum(u * v) / np.sum(v ** 2)) * v t = p0 + p_v_u d = np.sqrt(np.sum((t - q) ** 2)) w = p1 - q theta_1 = find_angle(w, v) print("Theta_0", theta_0) print("Theta_1", theta_1) print("Theta", theta) print("Distance", d)
3.203125
3
tests/test_tricks.py
phipleg/trafaret-config
26
12776330
<reponame>phipleg/trafaret-config<filename>tests/test_tricks.py import unittest from collections import OrderedDict from textwrap import dedent import trafaret as T from .util import get_err class TestCall(unittest.TestCase): TRAFARET = T.Dict({ T.Key("call_dict", optional=True): # The following is the ordered dict because we want to obey order # in the error messages. Otherwise, it could be normal dict as well T.Call(lambda _: T.DataError({ "anything": "bad idea", "bad": "another bad idea", })), T.Key("call_str", optional=True): T.Call(lambda _: T.DataError("some error")), }) def test_call_dict(self): self.assertEqual(get_err(self.TRAFARET, u""" call_dict: "hello" """), dedent(u"""\ config.yaml:2: call_dict.anything: bad idea config.yaml:2: call_dict.bad: another bad idea """)) def test_call_str(self): self.assertEqual(get_err(self.TRAFARET, u""" call_str: "hello" """), dedent(u"""\ config.yaml:2: call_str: some error -> 'hello' """)) class TestForward(unittest.TestCase): FWD = T.Forward() TRAFARET = T.Dict({ T.Key("value", optional=True): FWD, }) FWD << T.Int() def test_int(self): self.assertEqual(get_err(self.TRAFARET, u""" value: "hello" """), dedent(u"""\ config.yaml:2: value: value can't be converted to int -> 'hello' """))
2.75
3
archives/02/tootle/utils.py
asmodehn/caerbannog
1
12776331
import enum # Directly, naively, modeled in python 3.6 # from the code shown in : https://www.youtube.com/watch?v=AG3KuqDbmhM # Side Note: Yes, Python has enums ! class PenState(enum.Enum): UP = -1 DOWN = 1
3.15625
3
main.py
adamd1985/random-streamers
0
12776332
from flask import ( Flask, render_template, Response, stream_with_context, send_from_directory, ) from flask_cors import CORS import os import random import json import string from time import sleep from datetime import datetime, date, timedelta def random_date(year_start=2000, year_end=2005): """Random datetime between 2 dates""" start_date = datetime(year_start, 1, 1) end_date = datetime(year_end, 1, 1) time_between_dates = end_date - start_date days_between_dates = time_between_dates.days random_number_of_days = random.randrange(days_between_dates) random_seconds = random.randrange(0, 60 * 60 * 24) rand_date = start_date + timedelta( days=random_number_of_days, seconds=random_seconds ) return rand_date def random_data(include_digits=False, include_nulls=False): """Generate a random string of fixed length""" size = random.randint(10, 200) if include_nulls and bool(random.getrandbits(1)): rand_str = None elif include_digits: rand_str = "".join( random.choice(string.ascii_letters + string.digits) for i in range(1, size) ) else: rand_str = "".join(random.choice(string.ascii_letters) for i in range(1, size)) return rand_str def generate(include_digits=False, include_nulls=False): """create and return data in small parts""" for counter in range(1, 60): obj = dict() obj["id"] = counter obj["date"] = random_date().strftime("%m/%d/%Y, %H:%M:%S %p") obj["payload"] = random_data(include_digits, include_nulls) json_obj = json.dumps(obj) # sleep(1000) yield json_obj def create_app(config=None): template_dir = os.path.relpath("./templates") app = Flask( __name__, instance_relative_config=True, template_folder=template_dir, static_url_path="/static", ) app.config.from_object(__name__) if config is not None: app.config.update(config) try: os.makedirs(app.instance_path) except OSError: pass CORS(app) @app.after_request def set_response_headers(response): """Ensures no cache""" response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Pragma"] = "no-cache" response.headers["Expires"] = "0" return response @app.route("/stream1", methods=["GET"]) def gimme_data1(): """streams down large data""" # stream with context so the 'after_request' happens when streaming is finished return Response(stream_with_context(generate()), mimetype="application/json") @app.route("/stream2", methods=["GET"]) def gimme_data2(): """streams down large data""" # stream with context so the 'after_request' happens when streaming is finished return Response( stream_with_context(generate(include_digits=True)), mimetype="application/json", ) @app.route("/stream3", methods=["GET"]) def gimme_data3(): """streams down large data""" # stream with context so the 'after_request' happens when streaming is finished return Response( stream_with_context(generate(include_digits=True, include_nulls=True)), mimetype="application/json", ) @app.route("/") def entry_point(): """simple entry for test""" return render_template("base.html") return app if __name__ == "__main__": app = create_app() app.run(host="0.0.0.0", port=random.randint(2000, 9000))
2.9375
3
{{cookiecutter.github_repository_name}}/{{cookiecutter.app_name}}/apps/common/views.py
powerdefy/cookiecutter-django-rest
0
12776333
<gh_stars>0 import asyncio from django.db import transaction from django.utils.decorators import classonlymethod, method_decorator from django.views import View @method_decorator(transaction.non_atomic_requests, name='dispatch') class AsyncView(View): @classonlymethod def as_view(cls, **initkwargs): view = super().as_view(**initkwargs) view._is_coroutine = asyncio.coroutines._is_coroutine return view
2.1875
2
gelada_tests.py
marcysweber/lifetime-repro-success
0
12776334
import unittest from agent import * from completesimulation import HamadryasSim, HamaPopulation, GeladaSim, GelPopulation from dispersal import HamadryasDispersal, GeladaDispersal from group import HamadryasGroup, GeladaGroup from seedgroups import HamadryasSeed, GeladaSeed class DispersalTests(unittest.TestCase): def setup_gelada(self): sim = GeladaSim() pop = GelPopulation() band1 = GeladaGroup(1) band2 = GeladaGroup(2) pop.groupsdict[1] = band1 pop.groupsdict[2] = band2 GeladaSeed.addagenttoseed(1, band1, pop, 'm', None, None, 10, sim) pass def test_attractiveness_ranking(self): pass def test_become_bachelor(self): pass def test_inherit(self): pass def test_challenge(self): pass def test_fol_switch_OMU(self): pass def test_disperse_bands(self): pass def test_follow(self): pass def test_solitary(self): pass def test_follower(self): pass
2.5
2
Ch9/fillTheGaps.py
AdamPellot/AutomateTheBoringStuffProjects
0
12776335
#! python3 # fillTheGaps.py - Finds all files with a given prefix, such as # spam001.txt, spam002.txt, and so on, in a single # folder and locates any gaps in the numbering. Have # the program rename all the later files to close this # gap. # <NAME> import re import os import shutil # Returns boolean based on if the passed string has a file extension. def isFileExtension(filename): extensionRegex = re.compile(r'\.[a-zA-Z]{3,4}') mo = extensionRegex.search(filename) if not mo: return True else: return False print('Enter the absolute path of the folder you want to search:') folder = input() print('''Enter the name of the file without the desired prefix: (Ex. Enter spam.txt instead of spam001.txt)''') filename = input() if isFileExtension(filename) is False: while isFileExtension(filename) is False: print('Invalid filename: File extension not found') print('''Enter the name of the file without the desired prefix: (Ex. Enter spam.txt instead of spam001.txt)''') filename = input() print('''Finally enter the prefix you would like to use starting at 1: (Ex. 001, 01, 1)''') prefix = input() # Ensures extension starts at 1. if prefix[-1] != '1': while True: print('Invalid Prefix') print('''Please enter the prefix that starts at 1: (Ex. 001, 01, 1)''') extension = input() if prefix[-1] == '1': break # If the prefix is something like 001, this holds those 0's. charsBeforeNum = prefix[:-1] # Create variable that holds the file extension. extensionRegex = re.compile(r'\.[a-zA-Z]{3,4}') mo = extensionRegex.search(filename) extension = mo.group() # Holds a string of the file without extension. So is spam.txt is spam. filewoExtension = filename.replace(extension, '') # Create regex that detects the file number. fileNumRegex = re.compile(r'([1-9]+[0]*)\.') fileNums = [] # Put the file numbers in a list. for file in os.listdir(folder): if filewoExtension in file: mo = fileNumRegex.search(file) fileNums.append(int(mo.group(1))) # Sort the list of file numbers. fileNums.sort() # Determines where the gap in the numbering begins for i in range(len(fileNums)): if fileNums[i] + 1 != fileNums[i+1]: gapStart = fileNums[i] break filesToBeRenamed = [] # Determines which numbered files have to be renamed to keep the numbering. for file in os.listdir(folder): if filewoExtension in file: mo = fileNumRegex.search(file) if int(mo.group(1)) > gapStart: filesToBeRenamed.append(int(mo.group(1))) # Sort the list of file numbers to be renamed. filesToBeRenamed.sort() newFileNum = gapStart + 1 # Fills in the gaps in the numbering. for i in range(len(filesToBeRenamed)): filePath = os.path.join(folder, filewoExtension + charsBeforeNum + str(filesToBeRenamed[i]) + extension) newFilePath = os.path.join(folder, filewoExtension + charsBeforeNum + str(newFileNum) + extension) newFileNum += 1 if os.path.exists(filePath): os.rename(filePath, newFilePath)
4.15625
4
HayStack_Client/Inbox_Module.py
ConsensusGroup/Haystack
1
12776336
<reponame>ConsensusGroup/Haystack #################################################################################### ############## This module is used to handle the inbox of the client ############### #################################################################################### from User_Modules import Initialization from Tools_Module import Tools from Configuration_Module import Configuration from DynamicPublicLedger_Module import Dynamic_Public_Ledger from User_Modules import User_Profile from IOTA_Module import IOTA_Module from Contact_Module import Contact_Client class Inbox_Manager(Initialization, Tools): def __init__(self): Initialization.__init__(self) Tools.__init__(self) Configuration.__init__(self) self.Received_Dir = str(self.InboxGenerator(Output_Directory = True).ReceivedMessages+"/"+Configuration().ReceivedMessages+".txt") self.Relayed_Dir = str(self.InboxGenerator(Output_Directory = True).RelayedMessages+"/"+Configuration().RelayedMessage+".txt") self.NotRelayed_Dir = str(self.InboxGenerator(Output_Directory = True).OutstandingRelay+"/"+Configuration().NotRelayedMessage+".txt") self.Message_Inbox = self.UserFolder+"/"+self.MessageFolder+"/"+Configuration().ReceivedMessages+"/"+self.Inbox+".txt" def Create_DB(self): #Here we check if the DB files are already written. self.Build_DB(File = self.Received_Dir) self.Build_DB(File = self.Relayed_Dir) self.Build_DB(File = self.NotRelayed_Dir) return self def Read_Tangle(self, IOTA_Instance, Block = "", From = "", To = ""): RelayedMessages_Dictionary = self.Read_From_Json(directory = self.Relayed_Dir) NotRelayed_Dictionary = self.Read_From_Json(directory = self.NotRelayed_Dir) if Block != "": Incoming = IOTA_Instance.Receive(Start = Block - self.Replay, Stop = Block + 1, JSON = True).Message elif From != To != "": Incoming = IOTA_Instance.Receive(Start = From, Stop = To, JSON = True).Message else: Incoming = [] for i in Incoming: Bundle_Hash = str(i[0].get('bundle_hash')) Message_Received = i[1][1:len(i[1])-1] if self.Label_In_Dictionary(Input_Dictionary = RelayedMessages_Dictionary, Label = Bundle_Hash) == False: if self.Label_In_Dictionary(Input_Dictionary = NotRelayed_Dictionary, Label = Bundle_Hash) == False: NotRelayed_Dictionary = self.Add_To_Dictionary(Input_Dictionary = NotRelayed_Dictionary, Entry_Label = Bundle_Hash, Entry_Value = Message_Received) #Now we write the dictionary to file. self.Write_To_Json(directory = self.NotRelayed_Dir, Dictionary = NotRelayed_Dictionary) return self def Postprocessing_Packet(self, ToSend, Hash_Of_Incoming_Tx, IOTA_Instance): Next_Address = ToSend[1] Cipher = ToSend[0] Relayed_Dictionary = self.Read_From_Json(directory = self.Relayed_Dir) NotRelayed_Dictionary = self.Read_From_Json(directory = self.NotRelayed_Dir) if Next_Address != '0'*81: Relayed_Bundle_Hash = str(IOTA_Instance.Send(ReceiverAddress = Next_Address, Message = Cipher)) Relayed_Dictionary = self.Add_To_Dictionary(Input_Dictionary = Relayed_Dictionary, Entry_Label = Hash_Of_Incoming_Tx, Entry_Value = str(Relayed_Bundle_Hash)) NotRelayed_Dictionary = self.Remove_From_Dictionary(Input_Dictionary = NotRelayed_Dictionary, Label = Hash_Of_Incoming_Tx) elif Next_Address == '0'*81: Relayed_Dictionary = self.Add_To_Dictionary(Input_Dictionary = Relayed_Dictionary, Entry_Label = Hash_Of_Incoming_Tx, Entry_Value = str('0'*81)) NotRelayed_Dictionary = self.Remove_From_Dictionary(Input_Dictionary = NotRelayed_Dictionary, Label = Hash_Of_Incoming_Tx) self.Write_To_Json(directory = self.Relayed_Dir, Dictionary = Relayed_Dictionary) self.Write_To_Json(directory = self.NotRelayed_Dir, Dictionary = NotRelayed_Dictionary) return self def Addressed_To_Client(self, Message_PlainText, Symmetric_Message_Key): Client_Dictionary = self.Read_From_Json(directory = self.Received_Dir) if self.Label_In_Dictionary(Input_Dictionary = Client_Dictionary, Label = Message_PlainText) == False: self.Add_To_Dictionary(Input_Dictionary = Client_Dictionary, Entry_Label = Message_PlainText, Entry_Value = self.String_To_Base64(Symmetric_Message_Key)) self.Write_To_Json(directory = self.Received_Dir, Dictionary = Client_Dictionary) return self def Completed_Messages(self, Input= []): #Add the message input later #First create the inbox DB self.Build_DB(File = self.Message_Inbox) Inbox = self.Read_From_Json(directory = self.Message_Inbox) Current_TangleTime = Dynamic_Public_Ledger().PublicIOTA.LatestTangleTime().TangleTime for i in Input: From_Address = i[0] try: hex = i[1].split(self.Identifier) int(hex,16) Ping = True except: Message = self.String_To_Base64(String = i[1]) Ping = False if Ping == False: Inbox = self.Add_To_Dictionary(Input_Dictionary = Inbox, Entry_Label = Message, Entry_Value = From_Address) print("New Message!!!\n") self.Write_To_Json(directory = self.Message_Inbox, Dictionary = Inbox) return self def Reconstruction_Of_Message(self, Verify): #Make sure there is a file: self.Create_DB() #Read the file Client_Dictionary = self.Read_From_Json(directory = self.Received_Dir) Unique_SymKeys = [] for i in Client_Dictionary.values(): Unique_SymKeys.append(i) Unique_SymKeys = set(Unique_SymKeys) Message = [] for i in Unique_SymKeys: Pieces_From_SymKey = [] Unmodified_Labels = [] for Cipher, Symkey in Client_Dictionary.items(): if i == Symkey: Pieces_From_SymKey.append(str(Cipher).replace(Configuration().MessageIdentifier,'')) Unmodified_Labels.append(str(Cipher)) Sym_Key = self.Base64_To_String(str(i)) Format_To_Digest = [Pieces_From_SymKey, Sym_Key] Output = Dynamic_Public_Ledger().Rebuild_Shrapnells(String = Format_To_Digest, Verify = Verify) if isinstance(Output, list): Message.append(Output) for z in Unmodified_Labels: Client_Dictionary = self.Remove_From_Dictionary(Input_Dictionary = Client_Dictionary, Label = z) self.Write_To_Json(directory = self.Received_Dir, Dictionary = Client_Dictionary) self.Completed_Messages(Input = Message) if len(Message) == 0: return [[False, False, False]] else: return Message def Read_Stored_Messages(self): Dictionary = self.Read_From_Json(directory = self.Message_Inbox) Saved_Messages = self.Dictionary_To_List(Dictionary = Dictionary) Data = [] for i in Saved_Messages: Message = self.Base64_To_String(Encoded = i[0]) From_Address = i[1] #Now check if the address is in the address book. Output = Contact_Client().Retrieve_UserName_From_Address(Address_To_Search = From_Address) if Output == False: User = From_Address elif isinstance(Output, list): User = str(Output[0]+" ("+From_Address+")") Data.append([Message, User]) return Data class Trusted_Paths(Tools, Configuration, User_Profile): def __init__(self): Tools.__init__(self) Configuration.__init__(self) User_Profile.__init__(self) self.Ledger_Accounts_Dir = str(self.UserFolder+"/"+self.PathFolder+"/"+self.Ledger_Accounts_File) self.Last_Block_Dir = str(self.UserFolder+"/"+self.PathFolder+"/"+self.Last_Block) self.Ping_Dir = str(self.UserFolder+"/"+self.PathFolder+"/"+self.Trajectory_Ping) self.Incoming_Shrapnells = str(self.UserFolder+"/"+self.MessageFolder+"/"+Configuration().ReceivedMessages+"/"+Configuration().ReceivedMessages+".txt") self.TrustedNodes_Dir = str(self.UserFolder+"/"+self.PathFolder+"/"+self.Trusted_Nodes) self.Current_Block = Dynamic_Public_Ledger().Calculate_Block().Block self.PrivateIOTA = IOTA_Module(Seed = self.Private_Seed) def Build_LedgerDB(self): self.Build_Directory(directory = str(self.UserFolder+"/"+self.PathFolder)) self.Build_DB(File = self.Ledger_Accounts_Dir) self.Build_DB(File = self.Last_Block_Dir) self.Build_DB(File = self.Ping_Dir) #Read the file when the user was last online Block_Number = self.Read_From_Json(directory = self.Last_Block_Dir) #If the dictionary is empty if Block_Number == {}: Block_Number = self.Add_To_Dictionary(Input_Dictionary = Block_Number, Entry_Label = "Block", Entry_Value = self.Current_Block) self.Write_To_Json(directory = self.Last_Block_Dir, Dictionary = Block_Number) self.Last_Block_Online = self.Current_Block else: self.Last_Block_Online = Block_Number["Block"] return self def Catch_Up(self): self.Build_LedgerDB() Accounts = self.Read_From_Json(directory = self.Ledger_Accounts_Dir) if self.Last_Block_Online != self.Current_Block: self.Write_To_Json(directory = str(self.UserFolder+"/"+self.PathFolder+"/"+self.Current_Ledger_Accounts), Dictionary = {}) self.Write_To_Json(directory = self.TrustedNodes_Dir, Dictionary = {}) self.Write_To_Json(directory = self.Ping_Dir, Dictionary = {}) self.Last_Block_Online = self.Last_Block_Online-1 BlockDifference = int(self.Current_Block - self.Last_Block_Online) if BlockDifference >= self.Replay: Upperbound_Block = self.Last_Block_Online + self.Replay Sync = "Syncing node." else: Upperbound_Block = self.Last_Block_Online + BlockDifference if BlockDifference == 1: Sync = "Node synced." else: Sync = "Syncing node." for i in Dynamic_Public_Ledger().Check_User_In_Ledger(ScanAll = True, From = self.Last_Block_Online, To = Upperbound_Block).All_Accounts: Accounts = self.Add_To_Dictionary(Input_Dictionary = Accounts, Entry_Label = i[0], Entry_Value = i[1]) self.Write_To_Json(directory = self.Ledger_Accounts_Dir, Dictionary = Accounts) Inbox_Manager().Read_Tangle(IOTA_Instance = self.PrivateIOTA, From = self.Last_Block_Online-2, To = Upperbound_Block) self.Write_To_Json(directory = self.Last_Block_Dir, Dictionary = self.Add_To_Dictionary(Input_Dictionary = {}, Entry_Label = "Block", Entry_Value = Upperbound_Block)) self.Output = str("Scanning from: "+str(self.Last_Block_Online) + " To: "+str(Upperbound_Block)+" Status: "+Sync) self.Last_Block_Online = Upperbound_Block if self.Current_Block == self.Last_Block_Online: Inbox_Manager().Read_Tangle(IOTA_Instance = self.PrivateIOTA, Block = self.Current_Block) return self def Scan_Paths(self): self.Build_DB(File = self.TrustedNodes_Dir) Pings = self.Read_From_Json(directory = self.Ping_Dir) Shrapnells = self.Read_From_Json(directory = self.Incoming_Shrapnells) Pings_List = self.Dictionary_To_List(Dictionary = Pings) Shrapnells_List = self.Dictionary_To_List(Dictionary = Shrapnells) Found_Pings = [] #Search for ping fragments in the message bank and record them. for i in Shrapnells_List: for ping in Pings_List: if ping[0] in i[0]: Found_Pings.append(ping[0]) #Split the ping string to find non lazy addresses Trusted_Nodes = [] for entry in Found_Pings: String_split = Pings[entry].split("-->") Block = String_split.pop(0) Temp = [] for node in String_split: if node == "LOCALCLIENT": Break = True else: Break = False Temp.append([node, Block]) if Break == True: for i in Temp: Trusted_Nodes.append(i) #Read current DB Nodes_Dictionary = self.Read_From_Json(directory = self.TrustedNodes_Dir) for i in Trusted_Nodes: Nodes_Dictionary = self.Add_To_Dictionary(Input_Dictionary = Nodes_Dictionary, Entry_Label = str(i[0]), Entry_Value = i[1]) self.Write_To_Json(directory = self.TrustedNodes_Dir, Dictionary = Nodes_Dictionary) return self
1.929688
2
rcmd/__init__.py
sysr-q/rcmd.py
1
12776337
# -*- coding: utf-8 -*- from __future__ import print_function import collections import functools import inspect import string import sys import re import rcmd.parser __all__ = ("Rcmd",) __version__ = "1.1.1" PROMPT = "(Rcmd) " PY2 = sys.version_info[0] == 2 DEFAULT_PARSER = rcmd.parser.Regex class OrderedDefaultDict(collections.OrderedDict): def __init__(self, *args, **kwargs): if not args: self.default_factory = None else: if not (args[0] is None or callable(args[0])): raise TypeError('first argument must be callable or None') self.default_factory = args[0] args = args[1:] super(OrderedDefaultDict, self).__init__(*args, **kwargs) def __missing__ (self, key): if self.default_factory is None: raise KeyError(key) self[key] = default = self.default_factory() return default def __reduce__(self): # optional, for pickle support args = (self.default_factory,) if self.default_factory else tuple() return self.__class__, args, None, None, self.iteritems() class Rcmd(object): def __init__(self, module=None, prompt=None, parser=None, stdin=None, stdout=None): """ TODO: document. """ if parser is None: self.parser = DEFAULT_PARSER() else: self.parser = parser self.module = module if prompt is not None: self.prompt = prompt else: self.prompt = PROMPT if stdin is not None: self.stdin = stdin else: self.stdin = sys.stdin if stdout is not None: self.stdout = stdout else: self.stdout = sys.stdout if PY2: self.inputter = raw_input else: self.inputter = input # Junk we need in our loop. self._eof = "\x00\x00" # any hard to enter string self.use_rawinput = True self.intro = None self.lastcmd = "" self.identchars = string.ascii_letters + string.digits + "_" # Register decorators and whatnot. self.command = self.parser.command self.unregister = self.parser.unregister self.events = OrderedDefaultDict(list) events = ["emptyline", "default", #"bang", "question", "precmd", "postcmd", "preloop", "postloop"] for event in events: self.easy_handler(event)(rcmd.parser.noop) def _default(line): self.stdout.write("*** Unknown syntax: {0}\n".format(line)) self.stdout.flush() self.default(_default) self.precmd(lambda line: line.strip()) self.postcmd(lambda stop, results, line: (stop, results)) def easy_handler(self, event): def handler(f): self.events[event] = [f] return f # Where the magic happens. setattr(self, event, handler) return handler def loop(self, intro=None): """ TODO as heck. See Python's cmd.Cmd.cmdloop for some (somewhat horrifying) example loops - that's what we're working similarly to. """ self.fire("preloop") if intro is not None: self.intro = intro if self.intro is not None: self.stdout.write(self.intro + "\n") self.stdout.flush() stop = None while not stop: if self.use_rawinput: try: line = self.inputter(self.prompt) except EOFError: line = self._eof else: self.stdout.write(self.prompt) self.stdout.flush() line = self.stdin.readline() if not len(line): line = self._eof else: line = line.rstrip("\r\n") line = self.fire("precmd", line) stop, results = self.onecmd(line) stop, results = self.fire("postcmd", stop, results, line) self.fire("postloop") def event(self, name): def handler(f): self.events[name].append(f) f._handling = name return f return handler def unevent(self, f): if not hasattr(f, "_handling") or not f in self.events[f._handling]: return False del self.events[f._handling][f] return True def fire(self, name, *args, **kwargs): if len(self.events[name]) == 1: return self.events[name][0](*args, **kwargs) for event in self.events[name]: event(*args, **kwargs) def onecmd(self, line): if not line: return self.fire("emptyline"), None if line == self._eof: return True, None self.lastcmd = line matches, args, kwargs = self.parser.best_guess(line) if len(matches) == 0: return self.fire("default", line), None kwargs.setdefault("line", line) results = [] for handlers in matches: for function in handlers: if function.no_args: results.append(function()) elif function.options["inject"]: results.append(function(*args, **kwargs)) else: results.append(function(args)) return any(results), results
2.3125
2
src/438-find_all_anagram_substring.py
dennislblog/coding
0
12776338
class Solution: def findAnagrams(self, s: str, p: str) -> List[int]: # just use a sliding window np, ns = len(p), len(s) res = [] if np > ns: return [] map_ = [0] * 26 for i,x in enumerate(p): map_[ord(x) - 97] -= 1 map_[ord(s[i])-97] += 1 for i in range(ns-np+1): # the last index to check is ns-np if not any(map_): res.append(i) # kick out s[i] and add s[i+np] if i + np < ns: map_[ord(s[i])-97] -= 1 map_[ord(s[i+np])-97] += 1 return res
2.671875
3
tools/writeBurlyWeights.py
fsanges/glTools
165
12776339
import maya.mel as mm import maya.cmds as mc import maya.OpenMaya as OpenMaya import glTools.utils.base import glTools.utils.mesh import glTools.utils.skinCluster import os.path def writeBurlyWeights(mesh,skinCluster,influence,filePath): ''' ''' # Get basic procedure information burly = 'dnBurlyDeformer1' vtxCount = mc.polyEvaluate(mesh,v=True) inf = mc.ls(influence,l=True) # Check skinCluster if not glTools.utils.skinCluster.isSkinCluster(skinCluster): raise Exception('Object "'+skinCluster+'" is not a valid skinCluster!') # Get skinCluster Fn skinFn = glTools.utils.skinCluster.getSkinClusterFn(skinCluster) # Get influence dag path influencePath = glTools.utils.base.getMDagPath(influence) # Get points affected by influence infSelectionList = OpenMaya.MSelectionList() infWeightList = OpenMaya.MFloatArray() skinFn.getPointsAffectedByInfluence(influencePath,infSelectionList,infWeightList) infObjectPath = OpenMaya.MDagPath() infComponentList = OpenMaya.MObject() infSelectionList.getDagPath(0,infObjectPath,infComponentList) # Get affect point indices infComponentIndex = OpenMaya.MIntArray() infComponentIndexFn = OpenMaya.MFnSingleIndexedComponent(infComponentList) infComponentIndexFn.getElements(infComponentIndex) infComponentIndex = list(infComponentIndex) # Get affect point position and normal arrays infComponentPosArray = OpenMaya.MPointArray() infComponentNormArray = OpenMaya.MVectorArray() infComponentVtxIt = OpenMaya.MItMeshVertex(infObjectPath,infComponentList) normal = OpenMaya.MVector() while not infComponentVtxIt.isDone(): infComponentPosArray.append(infComponentVtxIt.position(OpenMaya.MSpace.kWorld)) infComponentVtxIt.getNormal(normal) infComponentNormArray.append(normal) infComponentVtxIt.next() # Open file fileId = open(filePath, "w") # Header header = [ '<?xml version="1.0" standalone="no" ?>\n', '<dnWeights type="dnBurlyDeformer" version="1.0" name="'+burly+'">\n', '\t<Map name="'+inf[0]+'">\n', '\t\t<Topology vertexCount="'+str(vtxCount)+'"/>\n' ] fileId.writelines(header) # Weights weights = ['\t\t<Weights>\n'] for i in range(len(infComponentIndex)): if not i%5: weights.append('\t\t\t') weights.append(str(infWeightList[i]) + ' ') if i%5 == 4: weights.append('\n') weights.append('\n\t\t</Weights>\n') fileId.writelines(weights) # Indices indices = ['\t\t<Indices>\n'] for i in range(len(infComponentIndex)): if not i%10: indices.append('\t\t\t') indices.append(str(infComponentIndex[i]) + ' ') if i%10 == 9: indices.append('\n') indices.append('\n\t\t</Indices>\n') fileId.writelines(indices) # Position pos = ['\t\t<Positions>\n'] for i in range(len(infComponentIndex)): if not i%2: pos.append('\t\t\t') pos.append(str(infComponentPosArray[i][0])+' '+str(infComponentPosArray[i][1])+' '+str(infComponentPosArray[i][2])+' ') if i%2: pos.append('\n') pos.append('\n\t\t</Positions>\n') fileId.writelines(pos) # Normals norm = ['\t\t<Normals>\n'] for i in range(len(infComponentIndex)): if not i%2: norm.append('\t\t\t') norm.append(str(infComponentNormArray[i][0])+' '+str(infComponentNormArray[i][1])+' '+str(infComponentNormArray[i][2])+' ') if i%2: norm.append('\n') norm.append('\n\t\t</Normals>\n') fileId.writelines(norm) # Radii radii = ['\t\t<Radii>\n'] for i in range(len(infComponentIndex)): if not i%6: radii.append('\t\t\t') radii.append('0.01 ') if i%6 == 5: radii.append('\n') radii.append('\n\t\t</Radii>\n') fileId.writelines(radii) # Footer footer = ['\t</Map>','\n</dnWeights>'] fileId.writelines(footer) # Close file fileId.close() def writeBurlyWeights_allInfluences(mesh,skinCluster,directoryPath): ''' ''' # Check mesh if not glTools.utils.mesh.isMesh(mesh): raise Exception('Object "'+mesh+'" contains no valid polygon mesh!') # Check skinCluster if not glTools.utils.skinCluster.isSkinCluster(skinCluster): raise Exception('Object "'+skinCluster+'" is not a valid skinCluster!') # Check directory if not os.path.isdir(directoryPath): raise Exception('Directory path "'+directoryPath+'" does not exist!') # Get skinCluster influences influenceList = mc.skinCluster(skinCluster,q=True,inf=True) # Write weights for influence in influenceList: writeBurlyWeights(mesh,skinCluster,influence,directoryPath+influence+'.xml') def loadBurlyWeights(burlyDeformer,directoryPath): ''' ''' # Check burly deformer if not mc.objExists(burlyDeformer): raise Exception('Burly deformer "'+burlyDeformer+'" does not exist!') # Check directory path if not directoryPath.endswith('/'): directoryPath+='/' if not os.path.isdir(directoryPath): raise Exception('Directory path "'+directoryPath+'" does not exist!') # Get directory listing fileList = [i for i in os.listdir(directoryPath) if i.endswith('.xml')] # Load weights for filePath in fileList: fileId = directoryPath+filePath influence = filePath.replace('.xml','') mm.eval('dnBurlyDeformer -loadWeights "'+fileId+'" "'+burlyDeformer+'" "'+influence+'"') def convertToBurly(skinCluster,burlyDeformerName=''): ''' ''' # Check skinCluster if not mc.objExists(skinCluster): raise Exception('SkinCluster "'+skinCluster+'" does not exist!') if not glTools.utils.skinCluster.isSkinCluster(skinCluster): raise Exception('Object "'+skinCluster+'" is not a valid skinCluster deformer!') # Get affected mesh #mesh = # Designate temporary path for exported weight files dirPath = '/usr/tmp/' # Export skinCluster weight files influenceList = mc.skinCluster(skinCluster,q=True,inf=True) writeBurlyWeights_allInfluences(mesh,skinCluster,dirPath) # Create burly deformer mm.eval('dnBurlyDeformer_createNamed("'+geo+'","'+burlyDeformerName+'")')
1.898438
2
awslogs_watch/lib/execute.py
deresmos/awslogs-watch
3
12776340
import shlex import sys from subprocess import PIPE, Popen from typing import List class Executer: SUCCESS = 0 ERROR = 1 @staticmethod def run(command: str) -> None: p = Popen(shlex.split(command)) print(f"-> {command}") p.communicate() if p.returncode == Executer.ERROR: sys.exit(Executer.ERROR) @staticmethod def run_pipe(command: str) -> List[str]: p = Popen(shlex.split(command), stdout=PIPE) print(f"-> {command}") result = p.communicate() if p.returncode == Executer.ERROR: sys.exit(Executer.ERROR) return_lines = result[0].decode("utf-8").split("\n") return return_lines @staticmethod def exit_error(): sys.exit(Executer.ERROR)
2.890625
3
daily-problems/Day3/problem3.py
jeffreycshelton/ghp-challenges
0
12776341
<filename>daily-problems/Day3/problem3.py<gh_stars>0 ''' An N x N board contains only 0s and 1s. In each move, you can swap any 2 rows with each other, or any 2 columns with each other. What is the minimum number of moves to transform the board into a "chessboard" - a board where no 0s and no 1s are 4-directionally adjacent? If the task is impossible, return -1. Examples: Input: board = [[0,1,1,0],[0,1,1,0],[1,0,0,1],[1,0,0,1]] Output: 2 Explanation: One potential sequence of moves is shown below, from left to right: 0110 1010 1010 0110 --> 1010 --> 0101 1001 0101 1010 1001 0101 0101 The first move swaps the first and second column. The second move swaps the second and third row. Input: board = [[0, 1], [1, 0]] Output: 0 Explanation: Also note that the board with 0 in the top left corner, 01 10 is also a valid chessboard. Input: board = [[1, 0], [1, 0]] Output: -1 Explanation: No matter what sequence of moves you make, you cannot end with a valid chessboard. ''' # Aryan Mittal's Solution def movesToChessboard(board): """ :type board: List[List[int]] :rtype: int """
4.0625
4
lemon_markets/account.py
Fadope1/lemon-markets-python-sdk
16
12776342
<gh_stars>10-100 from typing import Union from lemon_markets.common.helpers import UUIDObjectMixin from lemon_markets.common.objects import AbstractApiObjectMixin, ListMixin, ListIterator from lemon_markets.common.requests import ApiRequest class AccountState: uuid: str _token: str _cash_to_invest: float = None _total_balance: float = None def fetch_account_state(self): request = ApiRequest( endpoint="accounts/{}/state/".format(self.uuid), method="GET", authorization_token=self._token ) self._cash_to_invest = request.response.get("cash_to_invest") self._total_balance = request.response.get("total_balance") @property def cash_in_invest(self) -> float: if not self._cash_to_invest: self.fetch_account_state() return self._cash_to_invest @property def total_balance(self) -> float: if not self._total_balance: self.fetch_account_state() return self._total_balance class Account(AccountState, UUIDObjectMixin, AbstractApiObjectMixin, ListMixin): _token: str class Fields(AbstractApiObjectMixin.Fields): name: str type: str currency: str uuid: str def __init__(self, uuid: str, authorization_token: Union[str, "Token"] = None): super().__init__(uuid=uuid, authorization_token=authorization_token) self.uuid = uuid self._token = authorization_token @property def token(self) -> str: """ An account can have multiple tokens. Thus, this makes calling the API way easier. :return: {str} """ return self._token if self._token else None def retrieve(self): self.check_instance() request = ApiRequest( endpoint="accounts/{}/".format(self.uuid), method="GET", authorization_token=self._token ) self.set_data(request.response) return self @staticmethod def list(authorization_token: Union[str, "Token"], limit: int = None, offset: int = None) -> ListIterator: return ListMixin.list(object_class=Account, authorization_token=authorization_token, limit=limit, offset=offset )
2.71875
3
analysis/explainshell/manager.py
lizhi16/dockerfile_analysis_framework
3
12776343
import sys, os, argparse, logging, glob from explainshell import options, store, fixer, manpage, errors, util, config from explainshell.algo import classifier logger = logging.getLogger('explainshell.manager') class managerctx(object): def __init__(self, classifier, store, manpage): self.classifier = classifier self.store = store self.manpage = manpage self.name = manpage.name self.classifiermanpage = None self.optionsraw = None self.optionsextracted = None self.aliases = None class manager(object): '''the manager uses all parts of the system to read, classify, parse, extract and write a man page to the database''' def __init__(self, dbhost, dbname, paths, overwrite=False, drop=False): self.paths = paths self.overwrite = overwrite self.store = store.store(dbname, dbhost) self.classifier = classifier.classifier(self.store, 'bayes') self.classifier.train() if drop: self.store.drop(True) def ctx(self, m): return managerctx(self.classifier, self.store, m) def _read(self, ctx, frunner): frunner.pre_get_raw_manpage() ctx.manpage.read() ctx.manpage.parse() assert len(ctx.manpage.paragraphs) > 1 ctx.manpage = store.manpage(ctx.manpage.shortpath, ctx.manpage.name, ctx.manpage.synopsis, ctx.manpage.paragraphs, list(ctx.manpage.aliases)) frunner.post_parse_manpage() def _classify(self, ctx, frunner): ctx.classifiermanpage = store.classifiermanpage(ctx.name, ctx.manpage.paragraphs) frunner.pre_classify() _ = list(ctx.classifier.classify(ctx.classifiermanpage)) frunner.post_classify() def _extract(self, ctx, frunner): options.extract(ctx.manpage) frunner.post_option_extraction() if not ctx.manpage.options: logger.warn("couldn't find any options for manpage %s", ctx.manpage.name) def _write(self, ctx, frunner): frunner.pre_add_manpage() return ctx.store.addmanpage(ctx.manpage) def _update(self, ctx, frunner): frunner.pre_add_manpage() return ctx.store.updatemanpage(ctx.manpage) def process(self, ctx): frunner = fixer.runner(ctx) self._read(ctx, frunner) self._classify(ctx, frunner) self._extract(ctx, frunner) m = self._write(ctx, frunner) return m def edit(self, m, paragraphs=None): ctx = self.ctx(m) frunner = fixer.runner(ctx) if paragraphs: m.paragraphs = paragraphs frunner.disable('paragraphjoiner') frunner.post_option_extraction() else: self._extract(ctx, frunner) m = self._update(ctx, frunner) return m def run(self): added = [] exists = [] for path in self.paths: try: m = manpage.manpage(path) logger.info('handling manpage %s (from %s)', m.name, path) try: mps = self.store.findmanpage(m.shortpath[:-3]) mps = [mp for mp in mps if m.shortpath == mp.source] if mps: assert len(mps) == 1 mp = mps[0] if not self.overwrite or mp.updated: logger.info('manpage %r already in the data store, not overwriting it', m.name) exists.append(m) continue except errors.ProgramDoesNotExist: pass # the manpage is not in the data store; process and add it ctx = self.ctx(m) m = self.process(ctx) if m: added.append(m) except errors.EmptyManpage, e: logger.error('manpage %r is empty!', e.args[0]) except ValueError: logger.fatal('uncaught exception when handling manpage %s', path) except KeyboardInterrupt: raise except: logger.fatal('uncaught exception when handling manpage %s', path) raise if not added: logger.warn('no manpages added') else: self.findmulticommands() return added, exists def findmulticommands(self): manpages = {} potential = [] for _id, m in self.store.names(): if '-' in m: potential.append((m.split('-'), _id)) else: manpages[m] = _id mappings = set([x[0] for x in self.store.mappings()]) mappingstoadd = [] multicommands = {} for p, _id in potential: if ' '.join(p) in mappings: continue if p[0] in manpages: mappingstoadd.append((' '.join(p), _id)) multicommands[p[0]] = manpages[p[0]] for src, dst in mappingstoadd: self.store.addmapping(src, dst, 1) logger.info('inserting mapping (multicommand) %s -> %s', src, dst) for multicommand, _id in multicommands.iteritems(): self.store.setmulticommand(_id) logger.info('making %r a multicommand', multicommand) return mappingstoadd, multicommands def main(files, dbname, dbhost, overwrite, drop, verify): if verify: s = store.store(dbname, dbhost) ok = s.verify() return 0 if ok else 1 if drop: if raw_input('really drop db (y/n)? ').strip().lower() != 'y': drop = False else: overwrite = True # if we drop, no need to take overwrite into account gzs = set() for path in files: if os.path.isdir(path): gzs.update([os.path.abspath(f) for f in glob.glob(os.path.join(path, '*.gz'))]) else: gzs.add(os.path.abspath(path)) m = manager(dbhost, dbname, gzs, overwrite, drop) added, exists = m.run() for mp in added: print 'successfully added %s' % mp.source if exists: print 'these manpages already existed and werent overwritten: \n\n%s' % '\n'.join([m.path for m in exists]) if __name__ == '__main__': parser = argparse.ArgumentParser(description='process man pages and save them in the store') parser.add_argument('--log', type=str, default='ERROR', help='use log as the logger log level') parser.add_argument('--overwrite', action='store_true', default=False, help='overwrite man pages that already exist in the store') parser.add_argument('--drop', action='store_true', default=False, help='delete all existing man pages') parser.add_argument('--db', default='explainshell', help='mongo db name') parser.add_argument('--host', default=config.MONGO_URI, help='mongo host') parser.add_argument('--verify', action='store_true', default=False, help='verify db integrity') parser.add_argument('files', nargs='*') args = parser.parse_args() logging.basicConfig(level=getattr(logging, args.log.upper())) sys.exit(main(args.files, args.db, args.host, args.overwrite, args.drop, args.verify))
2.640625
3
models/tests/test_utils.py
WangYuNeng/EvolutionaryGAN-pytorch
0
12776344
from unittest import TestCase import torch from models.utils import combine_mapping_networks, categorize_mappings from models.networks.fc import FCGenerator class UtilTests(TestCase): def setUp(self) -> None: self.state_dicts = [FCGenerator().state_dict() for _ in range(5)] self.mappings = [torch.eye(300, 300) for _ in range(2)] def test_combine_networks(self): child = combine_mapping_networks(*self.mappings, is_SO=True) self.assertTrue( torch.all(child['module.layer'] == self.mappings[0]) ) def test_combine_networks_r(self): for i in range(len(self.mappings)): self.mappings[i][0] = -self.mappings[i][0] child = combine_mapping_networks(*self.mappings, is_SO=False) self.assertTrue( torch.all(child['module.layer'] == self.mappings[0]) )
2.453125
2
cpu/test_center.py
xavierboud/tictactoe
0
12776345
from django.test import SimpleTestCase from cpu.center import Center from game.transforms import Board class CenterAiTest(SimpleTestCase): def test_picks_center(self): data = [' '] * 9 cpu = Center() move = cpu.play(Board(data), 'x', 'o') self.assertEquals(move, 4) def test_wins_if_possible(self): data = [ ' ', ' ', ' ', 'o', 'x', ' ', 'o', ' ', 'x', ] cpu = Center() move = cpu.play(Board(data), 'x', 'o') self.assertEquals(move, 0) def test_defends_if_needed(self): data = [ ' ', ' ', ' ', ' ', 'x', ' ', 'o', ' ', 'x', ] cpu = Center() move = cpu.play(Board(data), 'o', 'x') self.assertEquals(move, 0)
2.546875
3
13_baseline_interface.py
saikrishnar/TTS_Interface
0
12776346
<reponame>saikrishnar/TTS_Interface<filename>13_baseline_interface.py #!/usr/bin/python # -*- coding: utf-8 -*- """ ZetCode PyQt4 tutorial In this example, we receive data from a QtGui.QInputDialog dialog. author: <NAME> website: zetcode.com last edited: October 2011 """ import sys, os from PyQt4 import QtGui from PyQt4.QtGui import QSound #import pyttsx #engine=pyttsx.init() import pyttsx engine=pyttsx.init() class Example(QtGui.QWidget): def __init__(self): super(Example, self).__init__() self.initUI() def initUI(self): self.btn = QtGui.QPushButton('Speak', self) self.btn.move(20, 270) #self.btn.clicked.connect(self.showDialog) self.btn.clicked.connect(self.readText) self.te = QtGui.QTextEdit(self) self.te.move(20, 22) self.btn = QtGui.QPushButton('Browse Text', self) self.btn.move(140, 270) #self.btn.clicked.connect(self.showDialog) self.btn.clicked.connect(self.selectFile_text) self.btn = QtGui.QPushButton('Browse Audio', self) self.btn.move(260, 270) #self.btn.clicked.connect(self.showDialog) self.btn.clicked.connect(self.selectFile_audio) self.setGeometry(600, 600, 150, 150) self.setWindowTitle('Text to Speech Demo') self.show() def showDialog(self): text, ok = QtGui.QInputDialog.getText(self, 'TTS Demo', 'Enter the text to read:') if ok: self.le.setText(str(text)) s = str(text) #cmd = 'espeak ' + s #print cmd #os.system(cmd) #engine.say(s) #engine.runAndWait() cmd = 'echo s | festival --tts' os.system(cmd) def selectFile_text(self): #self.te.setText(QtGui.QFileDialog.getOpenFileName()) fileName = QtGui.QFileDialog.getOpenFileName() f = open(fileName) s = ' ' for line in f: s = s + line self.te.setText(s) def selectFile_audio(self): QtGui.QSound.play(QtGui.QFileDialog.getOpenFileName()) def readText(self): text = self.te.toPlainText() print text #engine.say(text) #engine.runAndWait() read_lines = 0 for line in text: cmd = 'echo ' + str(line) + ' | festival --tts' os.system(cmd) engine.say(s) engine.runAndWait() return def readText(self): text = self.te.toPlainText() print text engine.say(text) engine.runAndWait() def main(): app = QtGui.QApplication(sys.argv) ex = Example() sys.exit(app.exec_()) if __name__ == '__main__': main()
2.671875
3
test/test_dummy.py
darnir/firefly-cli
13
12776347
import unittest class TestCase(unittest.TestCase): def test_dummy(self): self.assertEqual('tests to be added', 'tests to be added') if __name__ == '__main__': unittest.main()
2.53125
3
academics/models.py
judeakinwale/SMS-backup
0
12776348
from django.db import models from django.conf import settings from django.utils.translation import gettext_lazy as _ from datetime import datetime # Create your models here. class Faculty(models.Model): """Model definition for Faculty.""" name = models.CharField(max_length=250, unique=True) code = models.IntegerField(null=True, blank=True, unique=True) description = models.TextField(null=True, blank=True) dean = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.DO_NOTHING, limit_choices_to={'is_staff': True}, null=True, blank=True ) is_active = models.BooleanField(default=True) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) class Meta: """Meta definition for Faculty.""" ordering = ['id'] verbose_name = _('Faculty') verbose_name_plural = _('Faculty') def save(self, *args, **kwargs): if self.dean: try: dean = self.dean.staff_set.all().first() dean.is_dean_of_faculty = True dean.save() print(f"{dean} \n Is dean of faculty: {dean.is_dean_of_faculty}") except Exception: self.dean.get_staff() dean = self.dean.staff_set.all().first() dean.is_dean_of_faculty = True dean.save() print(f"{dean} \n Is dean of faculty: {dean.is_dean_of_faculty}") super(Faculty, self).save(*args, **kwargs) # Call the real save() method def __str__(self): """String representation of Faculty.""" return self.name class Department(models.Model): """Model definition for Department.""" faculty = models.ForeignKey(Faculty, on_delete=models.CASCADE) name = models.CharField(max_length=250, unique=True) code = models.CharField(max_length=250, null=True, blank=True, unique=True) description = models.TextField(null=True, blank=True) head = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.DO_NOTHING, limit_choices_to={'is_staff': True}, null=True, blank=True ) is_active = models.BooleanField(default=True) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) class Meta: """Meta definition for Department.""" ordering = ['id'] verbose_name = _('Department') verbose_name_plural = _('Departments') def save(self, *args, **kwargs): if self.head: try: head = self.head.staff_set.all().first() head.is_head_of_department = True head.save() print(f"{head} \n Is head of department: {head.is_head_of_department}") except Exception: self.head.get_staff() head = self.head.staff_set.all().first() head.is_head_of_department = True head.save() print(f"{head} \n Is head of department: {head.is_head_of_department}") super(Department, self).save(*args, **kwargs) # Call the real save() method def __str__(self): """String representation of Department.""" return self.name class Specialization(models.Model): """Model definition for Specialization.""" department = models.ForeignKey(Department, on_delete=models.CASCADE) name = models.CharField(max_length=250, unique=True) code = models.CharField(max_length=250, null=True, blank=True, unique=True) max_level = models.ForeignKey("Level", on_delete=models.DO_NOTHING, null=True, blank=True) description = models.TextField(null=True, blank=True) is_active = models.BooleanField(default=True) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) class Meta: """Meta definition for Specialization.""" ordering = ['id'] verbose_name = _('Specialization') verbose_name_plural = _('Specializations') def __str__(self): """String representation of Specialization.""" return self.name class Course(models.Model): """Model definition for Course.""" specialization = models.ForeignKey(Specialization, on_delete=models.CASCADE) name = models.CharField(max_length=250, unique=True) code = models.CharField(max_length=250, null=True, blank=True, unique=True) description = models.TextField(null=True, blank=True) coordinator = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.DO_NOTHING, limit_choices_to={'is_staff': True}, null=True, blank=True ) is_active = models.BooleanField(default=True) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) class Meta: """Meta definition for Course.""" ordering = ['id'] verbose_name = _('Course') verbose_name_plural = _('Courses') def __str__(self): """String representation of Course.""" return self.name class Level(models.Model): """Model definition for Level.""" class LevelChoices(models.IntegerChoices): ONE = 100 TWO = 200 THREE = 300 FOUR = 400 FIVE = 500 code = models.IntegerField( choices=LevelChoices.choices, null=True, default=LevelChoices.ONE, ) class Meta: """Meta definition for Level.""" ordering = ['id'] verbose_name = _('Level') verbose_name_plural = _('Levels') def __str__(self): """String representation of Level""" return f"{self.code}" class Semester(models.Model): """Model definition for Semester.""" class SemesterChoices(models.IntegerChoices): FIRST = 1, '1st Semester' SECOND = 2, '2nd Semester' semester = models.IntegerField( choices=SemesterChoices.choices, null=True, default=SemesterChoices.FIRST ) class Meta: """Meta definition for Semester.""" ordering = ['id'] verbose_name = 'Semester' verbose_name_plural = 'Semesters' def __str__(self): """String representation of Semester.""" return f"{self.semester}" class Session(models.Model): """Model definition for Session.""" year = models.CharField(max_length=4) is_current = models.BooleanField(default=False) class Meta: """Meta definition for Session.""" ordering = ['year'] verbose_name = 'Session' verbose_name_plural = 'Sessions' def save(self, *args, **kwargs): current_year = datetime.today().year year = datetime.strptime(self.year, "%Y").year if year == current_year: self.is_current = True super(Session, self).save(*args, **kwargs) # Call the real save() method def __str__(self): """String representation of Session.""" return f'{self.year} / {datetime.strptime(self.year, "%Y").year + 1}'
2.59375
3
src/python/fibonacci.py
allenjzhang/playground
1
12776349
memMap = {} def fibonacci (n): if (n not in memMap): if n <= 0: print("Invalid input") elif n == 1: memMap[n] = 0 elif n == 2: memMap[n] = 1 else: memMap[n] = fibonacci (n-1) + fibonacci (n-2) return memMap[n] def fibonacciSlow (n): if n <= 0: print("Invalid input") elif n == 1: return 0 elif n == 2: return 1 else: return fibonacci (n-1) + fibonacci (n-2) print(fibonacci (1000)) print("---------------") print(fibonacciSlow (1000))
4.03125
4
yogadl/_core.py
aaron276h/YogaDL
74
12776350
<reponame>aaron276h/YogaDL # Copyright 2020 Determined AI. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ The core interfaces of the yoga data layer. """ import abc from typing import Any, Callable, Optional, Union import tensorflow as tf # TODO: Make sure users are not required to have TF, PyTorch, # and TP dataflows all installed to use this. Submittable = Union[ tf.data.Dataset, ] class Stream: """ Stream contains a generator of data and other required information to feed into framework specific data APIs. """ def __init__( self, iterator_fn: Callable, length: int, output_types: Any = None, output_shapes: Any = None, ): self.iterator_fn = iterator_fn self.length = length self.output_types = output_types self.output_shapes = output_shapes def __iter__(self) -> Any: """ Iterate through the records in the stream. """ return self.iterator_fn() def __len__(self) -> int: """ Return the length of the stream, which may differ from the length of the dataset. """ return self.length class DataRef(metaclass=abc.ABCMeta): """ The base interface for a reference to a dataset in the yogadl framework. The DataRef may refer to a dataset in a remote storage location; it need not refer to locally- available data. The only mechanism for accessing the records inside the dataset is to create a Stream and to iterate through them. By specifying all of the random-access options up front, the backend which provides the DataRef can provide performance-optimized streaming, since it is guaranteed with yogadl that lower layers will operate without random access. """ @abc.abstractmethod def stream( self, start_offset: int = 0, shuffle: bool = False, skip_shuffle_at_epoch_end: bool = False, shuffle_seed: Optional[int] = None, shard_rank: int = 0, num_shards: int = 1, drop_shard_remainder: bool = False, ) -> Stream: """ Create a sequentially accessible set of records from the dataset, according to the random-access arguments given as parameters. """ pass @abc.abstractmethod def __len__(self) -> int: """ Return the length of the dataset that the DataRef refers to. """ pass class Storage(metaclass=abc.ABCMeta): """ Storage is a cache for datasets. Storage accepts datasets in various forms via submit(), and returns DataRef objects via fetch(). Conceptually, Storage is sort of like a DataRef factory. It stores datasets in an unspecified format, and returns objects which implement the DataRef interface. Note that submit() and fetch() are not multiprocessing-safe by default. The @cacheable decorator should be safe to call simultaneously from many threads, processes, or machines. """ @abc.abstractmethod def submit(self, data: Submittable, dataset_id: str, dataset_version: str) -> None: """ Stores dataset to a cache. """ pass @abc.abstractmethod def fetch(self, dataset_id: str, dataset_version: str) -> DataRef: """ Fetch a dataset from storage and provide a DataRef for streaming it. """ pass @abc.abstractmethod def cacheable(self, dataset_id: str, dataset_version: str) -> Callable: """ A decorator that calls submit and fetch and is responsible for coordinating amongst instances of Storage in different processes. """ pass
1.929688
2