max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
venv/lib/python3.6/site-packages/pykalman/unscented.py
QuantTraderEd/vnpy_crypto
34
12776151
''' ========================================= Inference for Non-Linear Gaussian Systems ========================================= This module contains the Unscented Kalman Filter (Wan, <NAME> 2000) for state estimation in systems with non-Gaussian noise and non-linear dynamics ''' from collections import namedtuple import numpy as np from numpy import ma from scipy import linalg from .utils import array1d, array2d, check_random_state, get_params, preprocess_arguments, check_random_state from .standard import _last_dims, _determine_dimensionality, _arg_or_default # represents a collection of sigma points and their associated weights. one # point per row SigmaPoints = namedtuple( 'SigmaPoints', ['points', 'weights_mean', 'weights_covariance'] ) # represents mean and covariance of a multivariate normal distribution Moments = namedtuple('Moments', ['mean', 'covariance']) def points2moments(points, sigma_noise=None): '''Calculate estimated mean and covariance of sigma points Parameters ---------- points : [2 * n_dim_state + 1, n_dim_state] SigmaPoints SigmaPoints object containing points and weights sigma_noise : [n_dim_state, n_dim_state] array additive noise covariance matrix, if any Returns ------- moments : Moments object of size [n_dim_state] Mean and covariance estimated using points ''' (points, weights_mu, weights_sigma) = points mu = points.T.dot(weights_mu) points_diff = points.T - mu[:, np.newaxis] sigma = points_diff.dot(np.diag(weights_sigma)).dot(points_diff.T) if sigma_noise is not None: sigma = sigma + sigma_noise return Moments(mu.ravel(), sigma) def moments2points(moments, alpha=None, beta=None, kappa=None): '''Calculate "sigma points" used in Unscented Kalman Filter Parameters ---------- moments : [n_dim] Moments object mean and covariance of a multivariate normal alpha : float Spread of the sigma points. Typically 1e-3. beta : float Used to "incorporate prior knowledge of the distribution of the state". 2 is optimal is the state is normally distributed. kappa : float a parameter which means ???? Returns ------- points : [2*n_dim+1, n_dim] SigmaPoints sigma points and associated weights ''' (mu, sigma) = moments n_dim = len(mu) mu = array2d(mu, dtype=float) if alpha is None: alpha = 1.0 if beta is None: beta = 0.0 if kappa is None: kappa = 3.0 - n_dim # compute sqrt(sigma) sigma2 = linalg.cholesky(sigma).T # Calculate scaling factor for all off-center points lamda = (alpha * alpha) * (n_dim + kappa) - n_dim c = n_dim + lamda # calculate the sigma points; that is, # mu # mu + each column of sigma2 * sqrt(c) # mu - each column of sigma2 * sqrt(c) # Each column of points is one of these. points = np.tile(mu.T, (1, 2 * n_dim + 1)) points[:, 1:(n_dim + 1)] += sigma2 * np.sqrt(c) points[:, (n_dim + 1):] -= sigma2 * np.sqrt(c) # Calculate weights weights_mean = np.ones(2 * n_dim + 1) weights_mean[0] = lamda / c weights_mean[1:] = 0.5 / c weights_cov = np.copy(weights_mean) weights_cov[0] = lamda / c + (1 - alpha * alpha + beta) return SigmaPoints(points.T, weights_mean, weights_cov) def unscented_transform(points, f=None, points_noise=None, sigma_noise=None): '''Apply the Unscented Transform to a set of points Apply f to points (with secondary argument points_noise, if available), then approximate the resulting mean and covariance. If sigma_noise is available, treat it as additional variance due to additive noise. Parameters ---------- points : [n_points, n_dim_state] SigmaPoints points to pass into f's first argument and associated weights if f is defined. If f is unavailable, then f is assumed to be the identity function. f : [n_dim_state, n_dim_state_noise] -> [n_dim_state] function transition function from time t to time t+1, if available. points_noise : [n_points, n_dim_state_noise] array points to pass into f's second argument, if any sigma_noise : [n_dim_state, n_dim_state] array covariance matrix for additive noise, if any Returns ------- points_pred : [n_points, n_dim_state] SigmaPoints points transformed by f with same weights moments_pred : [n_dim_state] Moments moments associated with points_pred ''' n_points, n_dim_state = points.points.shape (points, weights_mean, weights_covariance) = points # propagate points through f if f is not None: if points_noise is None: points_pred = [f(points[i]) for i in range(n_points)] else: points_noise = points_noise.points points_pred = [f(points[i], points_noise[i]) for i in range(n_points)] else: points_pred = points # make each row a predicted point points_pred = np.vstack(points_pred) points_pred = SigmaPoints(points_pred, weights_mean, weights_covariance) # calculate approximate mean, covariance moments_pred = points2moments(points_pred, sigma_noise) return (points_pred, moments_pred) def unscented_correct(cross_sigma, moments_pred, obs_moments_pred, z): '''Correct predicted state estimates with an observation Parameters ---------- cross_sigma : [n_dim_state, n_dim_obs] array cross-covariance between the state at time t given all observations from timesteps [0, t-1] and the observation at time t moments_pred : [n_dim_state] Moments mean and covariance of state at time t given observations from timesteps [0, t-1] obs_moments_pred : [n_dim_obs] Moments mean and covariance of observation at time t given observations from times [0, t-1] z : [n_dim_obs] array observation at time t Returns ------- moments_filt : [n_dim_state] Moments mean and covariance of state at time t given observations from time steps [0, t] ''' mu_pred, sigma_pred = moments_pred obs_mu_pred, obs_sigma_pred = obs_moments_pred n_dim_state = len(mu_pred) n_dim_obs = len(obs_mu_pred) if not np.any(ma.getmask(z)): # calculate Kalman gain K = cross_sigma.dot(linalg.pinv(obs_sigma_pred)) # correct mu, sigma mu_filt = mu_pred + K.dot(z - obs_mu_pred) sigma_filt = sigma_pred - K.dot(cross_sigma.T) else: # no corrections to be made mu_filt = mu_pred sigma_filt = sigma_pred return Moments(mu_filt, sigma_filt) def augmented_points(momentses): '''Calculate sigma points for augmented UKF Parameters ---------- momentses : list of Moments means and covariances for multiple multivariate normals Returns ------- pointses : list of Points sigma points for each element of momentses ''' # stack everything together means, covariances = zip(*momentses) mu_aug = np.concatenate(means) sigma_aug = linalg.block_diag(*covariances) moments_aug = Moments(mu_aug, sigma_aug) # turn augmented representation into sigma points points_aug = moments2points(moments_aug) # unstack everything dims = [len(m) for m in means] result = [] start = 0 for i in range(len(dims)): end = start + dims[i] part = SigmaPoints( points_aug.points[:, start:end], points_aug.weights_mean, points_aug.weights_covariance ) result.append(part) start = end # return return result def augmented_unscented_filter_points(mean_state, covariance_state, covariance_transition, covariance_observation): """Extract sigma points using augmented state representation Primarily used as a pre-processing step before predicting and updating in the Augmented UKF. Parameters ---------- mean_state : [n_dim_state] array mean of state at time t given observations from time steps 0...t covariance_state : [n_dim_state, n_dim_state] array covariance of state at time t given observations from time steps 0...t covariance_transition : [n_dim_state, n_dim_state] array covariance of zero-mean noise resulting from transitioning from time step t to t+1 covariance_observation : [n_dim_obs, n_dim_obs] array covariance of zero-mean noise resulting from observation state at time t+1 Returns ------- points_state : [2 * n_dim_state + 1, n_dim_state] SigmaPoints sigma points for state at time t points_transition : [2 * n_dim_state + 1, n_dim_state] SigmaPoints sigma points for transition noise between time t and t+1 points_observation : [2 * n_dim_state + 1, n_dim_obs] SigmaPoints sigma points for observation noise at time step t+1 """ # get sizes of dimensions n_dim_state = covariance_state.shape[0] n_dim_obs = covariance_observation.shape[0] # extract sigma points using augmented representation state_moments = Moments(mean_state, covariance_state) transition_noise_moments = ( Moments(np.zeros(n_dim_state), covariance_transition) ) observation_noise_moments = ( Moments(np.zeros(n_dim_obs), covariance_observation) ) (points_state, points_transition, points_observation) = ( augmented_points([ state_moments, transition_noise_moments, observation_noise_moments ]) ) return (points_state, points_transition, points_observation) def unscented_filter_predict(transition_function, points_state, points_transition=None, sigma_transition=None): """Predict next state distribution Using the sigma points representing the state at time t given observations from time steps 0...t, calculate the predicted mean, covariance, and sigma points for the state at time t+1. Parameters ---------- transition_function : function function describing how the state changes between times t and t+1 points_state : [2*n_dim_state+1, n_dim_state] SigmaPoints sigma points corresponding to the state at time step t given observations from time steps 0...t points_transition : [2*n_dim_state+1, n_dim_state] SigmaPoints sigma points corresponding to the noise in transitioning from time step t to t+1, if available. If not, assumes that noise is additive sigma_transition : [n_dim_state, n_dim_state] array covariance corresponding to additive noise in transitioning from time step t to t+1, if available. If not, assumes noise is not additive. Returns ------- points_pred : [2*n_dim_state+1, n_dim_state] SigmaPoints sigma points corresponding to state at time step t+1 given observations from time steps 0...t. These points have not been "standardized" by the unscented transform yet. moments_pred : [n_dim_state] Moments mean and covariance corresponding to time step t+1 given observations from time steps 0...t """ assert points_transition is not None or sigma_transition is not None, \ "Your system is noiseless? really?" (points_pred, moments_pred) = ( unscented_transform( points_state, transition_function, points_noise=points_transition, sigma_noise=sigma_transition ) ) return (points_pred, moments_pred) def unscented_filter_correct(observation_function, moments_pred, points_pred, observation, points_observation=None, sigma_observation=None): """Integrate new observation to correct state estimates Parameters ---------- observation_function : function function characterizing how the observation at time t+1 is generated moments_pred : [n_dim_state] Moments mean and covariance of state at time t+1 given observations from time steps 0...t points_pred : [2*n_dim_state+1, n_dim_state] SigmaPoints sigma points corresponding to moments_pred observation : [n_dim_state] array observation at time t+1. If masked, treated as missing. points_observation : [2*n_dim_state, n_dim_obs] SigmaPoints sigma points corresponding to predicted observation at time t+1 given observations from times 0...t, if available. If not, noise is assumed to be additive. sigma_observation : [n_dim_obs, n_dim_obs] array covariance matrix corresponding to additive noise in observation at time t+1, if available. If missing, noise is assumed to be non-linear. Returns ------- moments_filt : [n_dim_state] Moments mean and covariance of state at time t+1 given observations from time steps 0...t+1 """ # Calculate E[z_t | z_{0:t-1}], Var(z_t | z_{0:t-1}) (obs_points_pred, obs_moments_pred) = ( unscented_transform( points_pred, observation_function, points_noise=points_observation, sigma_noise=sigma_observation ) ) # Calculate Cov(x_t, z_t | z_{0:t-1}) sigma_pair = ( ((points_pred.points - moments_pred.mean).T) .dot(np.diag(points_pred.weights_mean)) .dot(obs_points_pred.points - obs_moments_pred.mean) ) # Calculate E[x_t | z_{0:t}], Var(x_t | z_{0:t}) moments_filt = unscented_correct(sigma_pair, moments_pred, obs_moments_pred, observation) return moments_filt def augmented_unscented_filter(mu_0, sigma_0, f, g, Q, R, Z): '''Apply the Unscented Kalman Filter with arbitrary noise Parameters ---------- mu_0 : [n_dim_state] array mean of initial state distribution sigma_0 : [n_dim_state, n_dim_state] array covariance of initial state distribution f : function or [T-1] array of functions state transition function(s). Takes in an the current state and the process noise and outputs the next state. g : function or [T] array of functions observation function(s). Takes in the current state and outputs the current observation. Q : [n_dim_state, n_dim_state] array transition covariance matrix R : [n_dim_state, n_dim_state] array observation covariance matrix Returns ------- mu_filt : [T, n_dim_state] array mu_filt[t] = mean of state at time t given observations from times [0, t] sigma_filt : [T, n_dim_state, n_dim_state] array sigma_filt[t] = covariance of state at time t given observations from times [0, t] ''' # extract size of key components T = Z.shape[0] n_dim_state = Q.shape[-1] n_dim_obs = R.shape[-1] # construct container for results mu_filt = np.zeros((T, n_dim_state)) sigma_filt = np.zeros((T, n_dim_state, n_dim_state)) # TODO use _augumented_unscented_filter_update here for t in range(T): # Calculate sigma points for augmented state: # [actual state, transition noise, observation noise] if t == 0: mu, sigma = mu_0, sigma_0 else: mu, sigma = mu_filt[t - 1], sigma_filt[t - 1] # extract sigma points using augmented representation (points_state, points_transition, points_observation) = ( augmented_unscented_filter_points(mu, sigma, Q, R) ) # Calculate E[x_t | z_{0:t-1}], Var(x_t | z_{0:t-1}) and sigma points # for P(x_t | z_{0:t-1}) if t == 0: points_pred = points_state moments_pred = points2moments(points_pred) else: transition_function = _last_dims(f, t - 1, ndims=1)[0] (points_pred, moments_pred) = ( unscented_filter_predict( transition_function, points_state, points_transition=points_transition ) ) # Calculate E[z_t | z_{0:t-1}], Var(z_t | z_{0:t-1}) observation_function = _last_dims(g, t, ndims=1)[0] mu_filt[t], sigma_filt[t] = ( unscented_filter_correct( observation_function, moments_pred, points_pred, Z[t], points_observation=points_observation ) ) return (mu_filt, sigma_filt) def augmented_unscented_smoother(mu_filt, sigma_filt, f, Q): '''Apply the Unscented Kalman Smoother with arbitrary noise Parameters ---------- mu_filt : [T, n_dim_state] array mu_filt[t] = mean of state at time t given observations from times [0, t] sigma_filt : [T, n_dim_state, n_dim_state] array sigma_filt[t] = covariance of state at time t given observations from times [0, t] f : function or [T-1] array of functions state transition function(s). Takes in an the current state and the process noise and outputs the next state. Q : [n_dim_state, n_dim_state] array transition covariance matrix Returns ------- mu_smooth : [T, n_dim_state] array mu_smooth[t] = mean of state at time t given observations from times [0, T-1] sigma_smooth : [T, n_dim_state, n_dim_state] array sigma_smooth[t] = covariance of state at time t given observations from times [0, T-1] ''' # extract size of key parts of problem T, n_dim_state = mu_filt.shape # instantiate containers for results mu_smooth = np.zeros(mu_filt.shape) sigma_smooth = np.zeros(sigma_filt.shape) mu_smooth[-1], sigma_smooth[-1] = mu_filt[-1], sigma_filt[-1] for t in reversed(range(T - 1)): # get sigma points for [state, transition noise] mu = mu_filt[t] sigma = sigma_filt[t] moments_state = Moments(mu, sigma) moments_transition_noise = Moments(np.zeros(n_dim_state), Q) (points_state, points_transition) = ( augmented_points([moments_state, moments_transition_noise]) ) # compute E[x_{t+1} | z_{0:t}], Var(x_{t+1} | z_{0:t}) f_t = _last_dims(f, t, ndims=1)[0] (points_pred, moments_pred) = unscented_transform( points_state, f_t, points_noise=points_transition ) # Calculate Cov(x_{t+1}, x_t | z_{0:t-1}) sigma_pair = ( (points_pred.points - moments_pred.mean).T .dot(np.diag(points_pred.weights_covariance)) .dot(points_state.points - moments_state.mean).T ) # compute smoothed mean, covariance smoother_gain = sigma_pair.dot(linalg.pinv(moments_pred.covariance)) mu_smooth[t] = ( mu_filt[t] + smoother_gain .dot(mu_smooth[t + 1] - moments_pred.mean) ) sigma_smooth[t] = ( sigma_filt[t] + smoother_gain .dot(sigma_smooth[t + 1] - moments_pred.covariance) .dot(smoother_gain.T) ) return (mu_smooth, sigma_smooth) def additive_unscented_filter(mu_0, sigma_0, f, g, Q, R, Z): '''Apply the Unscented Kalman Filter with additive noise Parameters ---------- mu_0 : [n_dim_state] array mean of initial state distribution sigma_0 : [n_dim_state, n_dim_state] array covariance of initial state distribution f : function or [T-1] array of functions state transition function(s). Takes in an the current state and outputs the next. g : function or [T] array of functions observation function(s). Takes in the current state and outputs the current observation. Q : [n_dim_state, n_dim_state] array transition covariance matrix R : [n_dim_state, n_dim_state] array observation covariance matrix Returns ------- mu_filt : [T, n_dim_state] array mu_filt[t] = mean of state at time t given observations from times [0, t] sigma_filt : [T, n_dim_state, n_dim_state] array sigma_filt[t] = covariance of state at time t given observations from times [0, t] ''' # extract size of key components T = Z.shape[0] n_dim_state = Q.shape[-1] n_dim_obs = R.shape[-1] # construct container for results mu_filt = np.zeros((T, n_dim_state)) sigma_filt = np.zeros((T, n_dim_state, n_dim_state)) for t in range(T): # Calculate sigma points for P(x_{t-1} | z_{0:t-1}) if t == 0: mu, sigma = mu_0, sigma_0 else: mu, sigma = mu_filt[t - 1], sigma_filt[t - 1] points_state = moments2points(Moments(mu, sigma)) # Calculate E[x_t | z_{0:t-1}], Var(x_t | z_{0:t-1}) if t == 0: points_pred = points_state moments_pred = points2moments(points_pred) else: transition_function = _last_dims(f, t - 1, ndims=1)[0] (_, moments_pred) = ( unscented_filter_predict( transition_function, points_state, sigma_transition=Q ) ) points_pred = moments2points(moments_pred) # Calculate E[x_t | z_{0:t}], Var(x_t | z_{0:t}) observation_function = _last_dims(g, t, ndims=1)[0] mu_filt[t], sigma_filt[t] = ( unscented_filter_correct( observation_function, moments_pred, points_pred, Z[t], sigma_observation=R ) ) return (mu_filt, sigma_filt) def additive_unscented_smoother(mu_filt, sigma_filt, f, Q): '''Apply the Unscented Kalman Filter assuming additiven noise Parameters ---------- mu_filt : [T, n_dim_state] array mu_filt[t] = mean of state at time t given observations from times [0, t] sigma_filt : [T, n_dim_state, n_dim_state] array sigma_filt[t] = covariance of state at time t given observations from times [0, t] f : function or [T-1] array of functions state transition function(s). Takes in an the current state and outputs the next. Q : [n_dim_state, n_dim_state] array transition covariance matrix Returns ------- mu_smooth : [T, n_dim_state] array mu_smooth[t] = mean of state at time t given observations from times [0, T-1] sigma_smooth : [T, n_dim_state, n_dim_state] array sigma_smooth[t] = covariance of state at time t given observations from times [0, T-1] ''' # extract size of key parts of problem T, n_dim_state = mu_filt.shape # instantiate containers for results mu_smooth = np.zeros(mu_filt.shape) sigma_smooth = np.zeros(sigma_filt.shape) mu_smooth[-1], sigma_smooth[-1] = mu_filt[-1], sigma_filt[-1] for t in reversed(range(T - 1)): # get sigma points for state mu = mu_filt[t] sigma = sigma_filt[t] moments_state = Moments(mu, sigma) points_state = moments2points(moments_state) # compute E[x_{t+1} | z_{0:t}], Var(x_{t+1} | z_{0:t}) f_t = _last_dims(f, t, ndims=1)[0] (points_pred, moments_pred) = ( unscented_transform(points_state, f_t, sigma_noise=Q) ) # Calculate Cov(x_{t+1}, x_t | z_{0:t-1}) sigma_pair = ( (points_pred.points - moments_pred.mean).T .dot(np.diag(points_pred.weights_covariance)) .dot(points_state.points - moments_state.mean).T ) # compute smoothed mean, covariance smoother_gain = sigma_pair.dot(linalg.pinv(moments_pred.covariance)) mu_smooth[t] = ( mu_filt[t] + smoother_gain .dot(mu_smooth[t + 1] - moments_pred.mean) ) sigma_smooth[t] = ( sigma_filt[t] + smoother_gain .dot(sigma_smooth[t + 1] - moments_pred.covariance) .dot(smoother_gain.T) ) return (mu_smooth, sigma_smooth) class UnscentedMixin(object): """Methods shared by all Unscented Kalman Filter implementations.""" def __init__(self, transition_functions=None, observation_functions=None, transition_covariance=None, observation_covariance=None, initial_state_mean=None, initial_state_covariance=None, n_dim_state=None, n_dim_obs=None, random_state=None): # determine size of state and observation space n_dim_state = _determine_dimensionality( [(transition_covariance, array2d, -2), (initial_state_covariance, array2d, -2), (initial_state_mean, array1d, -1)], n_dim_state ) n_dim_obs = _determine_dimensionality( [(observation_covariance, array2d, -2)], n_dim_obs ) # set parameters self.transition_functions = transition_functions self.observation_functions = observation_functions self.transition_covariance = transition_covariance self.observation_covariance = observation_covariance self.initial_state_mean = initial_state_mean self.initial_state_covariance = initial_state_covariance self.n_dim_state = n_dim_state self.n_dim_obs = n_dim_obs self.random_state = random_state def _initialize_parameters(self): """Retrieve parameters if they exist, else replace with defaults""" arguments = get_params(self) defaults = self._default_parameters() converters = self._converters() processed = preprocess_arguments([arguments, defaults], converters) return ( processed['transition_functions'], processed['observation_functions'], processed['transition_covariance'], processed['observation_covariance'], processed['initial_state_mean'], processed['initial_state_covariance'] ) def _parse_observations(self, obs): """Safely convert observations to their expected format""" obs = ma.atleast_2d(obs) if obs.shape[0] == 1 and obs.shape[1] > 1: obs = obs.T return obs def _converters(self): return { 'transition_functions': array1d, 'observation_functions': array1d, 'transition_covariance': array2d, 'observation_covariance': array2d, 'initial_state_mean': array1d, 'initial_state_covariance': array2d, 'n_dim_state': int, 'n_dim_obs': int, 'random_state': check_random_state, } class UnscentedKalmanFilter(UnscentedMixin): r'''Implements the General (aka Augmented) Unscented Kalman Filter governed by the following equations, .. math:: x_0 &\sim \text{Normal}(\mu_0, \Sigma_0) \\ x_{t+1} &= f_t(x_t, \text{Normal}(0, Q)) \\ z_{t} &= g_t(x_t, \text{Normal}(0, R)) Notice that although the input noise to the state transition equation and the observation equation are both normally distributed, any non-linear transformation may be applied afterwards. This allows for greater generality, but at the expense of computational complexity. The complexity of :class:`UnscentedKalmanFilter.filter()` is :math:`O(T(2n+m)^3)` where :math:`T` is the number of time steps, :math:`n` is the size of the state space, and :math:`m` is the size of the observation space. If your noise is simply additive, consider using the :class:`AdditiveUnscentedKalmanFilter` Parameters ---------- transition_functions : function or [n_timesteps-1] array of functions transition_functions[t] is a function of the state and the transition noise at time t and produces the state at time t+1. Also known as :math:`f_t`. observation_functions : function or [n_timesteps] array of functions observation_functions[t] is a function of the state and the observation noise at time t and produces the observation at time t. Also known as :math:`g_t`. transition_covariance : [n_dim_state, n_dim_state] array transition noise covariance matrix. Also known as :math:`Q`. observation_covariance : [n_dim_obs, n_dim_obs] array observation noise covariance matrix. Also known as :math:`R`. initial_state_mean : [n_dim_state] array mean of initial state distribution. Also known as :math:`\mu_0` initial_state_covariance : [n_dim_state, n_dim_state] array covariance of initial state distribution. Also known as :math:`\Sigma_0` n_dim_state: optional, integer the dimensionality of the state space. Only meaningful when you do not specify initial values for `transition_covariance`, or `initial_state_mean`, `initial_state_covariance`. n_dim_obs: optional, integer the dimensionality of the observation space. Only meaningful when you do not specify initial values for `observation_covariance`. random_state : optional, int or RandomState seed for random sample generation ''' def sample(self, n_timesteps, initial_state=None, random_state=None): '''Sample from model defined by the Unscented Kalman Filter Parameters ---------- n_timesteps : int number of time steps initial_state : optional, [n_dim_state] array initial state. If unspecified, will be sampled from initial state distribution. random_state : optional, int or Random random number generator ''' (transition_functions, observation_functions, transition_covariance, observation_covariance, initial_state_mean, initial_state_covariance) = ( self._initialize_parameters() ) n_dim_state = transition_covariance.shape[-1] n_dim_obs = observation_covariance.shape[-1] # logic for instantiating rng if random_state is None: rng = check_random_state(self.random_state) else: rng = check_random_state(random_state) # logic for selecting initial state if initial_state is None: initial_state = rng.multivariate_normal( initial_state_mean, initial_state_covariance ) # logic for generating samples x = np.zeros((n_timesteps, n_dim_state)) z = np.zeros((n_timesteps, n_dim_obs)) for t in range(n_timesteps): if t == 0: x[0] = initial_state else: transition_function = ( _last_dims(transition_functions, t - 1, ndims=1)[0] ) transition_noise = ( rng.multivariate_normal( np.zeros(n_dim_state), transition_covariance.newbyteorder('=') ) ) x[t] = transition_function(x[t - 1], transition_noise) observation_function = ( _last_dims(observation_functions, t, ndims=1)[0] ) observation_noise = ( rng.multivariate_normal( np.zeros(n_dim_obs), observation_covariance.newbyteorder('=') ) ) z[t] = observation_function(x[t], observation_noise) return (x, ma.asarray(z)) def filter(self, Z): '''Run Unscented Kalman Filter Parameters ---------- Z : [n_timesteps, n_dim_state] array Z[t] = observation at time t. If Z is a masked array and any of Z[t]'s elements are masked, the observation is assumed missing and ignored. Returns ------- filtered_state_means : [n_timesteps, n_dim_state] array filtered_state_means[t] = mean of state distribution at time t given observations from times [0, t] filtered_state_covariances : [n_timesteps, n_dim_state, n_dim_state] array filtered_state_covariances[t] = covariance of state distribution at time t given observations from times [0, t] ''' Z = self._parse_observations(Z) (transition_functions, observation_functions, transition_covariance, observation_covariance, initial_state_mean, initial_state_covariance) = ( self._initialize_parameters() ) (filtered_state_means, filtered_state_covariances) = ( augmented_unscented_filter( initial_state_mean, initial_state_covariance, transition_functions, observation_functions, transition_covariance, observation_covariance, Z ) ) return (filtered_state_means, filtered_state_covariances) def filter_update(self, filtered_state_mean, filtered_state_covariance, observation=None, transition_function=None, transition_covariance=None, observation_function=None, observation_covariance=None): r"""Update a Kalman Filter state estimate Perform a one-step update to estimate the state at time :math:`t+1` give an observation at time :math:`t+1` and the previous estimate for time :math:`t` given observations from times :math:`[0...t]`. This method is useful if one wants to track an object with streaming observations. Parameters ---------- filtered_state_mean : [n_dim_state] array mean estimate for state at time t given observations from times [1...t] filtered_state_covariance : [n_dim_state, n_dim_state] array covariance of estimate for state at time t given observations from times [1...t] observation : [n_dim_obs] array or None observation from time t+1. If `observation` is a masked array and any of `observation`'s components are masked or if `observation` is None, then `observation` will be treated as a missing observation. transition_function : optional, function state transition function from time t to t+1. If unspecified, `self.transition_functions` will be used. transition_covariance : optional, [n_dim_state, n_dim_state] array state transition covariance from time t to t+1. If unspecified, `self.transition_covariance` will be used. observation_function : optional, function observation function at time t+1. If unspecified, `self.observation_functions` will be used. observation_covariance : optional, [n_dim_obs, n_dim_obs] array observation covariance at time t+1. If unspecified, `self.observation_covariance` will be used. Returns ------- next_filtered_state_mean : [n_dim_state] array mean estimate for state at time t+1 given observations from times [1...t+1] next_filtered_state_covariance : [n_dim_state, n_dim_state] array covariance of estimate for state at time t+1 given observations from times [1...t+1] """ # initialize parameters (transition_functions, observation_functions, transition_cov, observation_cov, _, _) = ( self._initialize_parameters() ) def default_function(f, arr): if f is None: assert len(arr) == 1 f = arr[0] return f transition_function = default_function( transition_function, transition_functions ) observation_function = default_function( observation_function, observation_functions ) transition_covariance = _arg_or_default( transition_covariance, transition_cov, 2, "transition_covariance" ) observation_covariance = _arg_or_default( observation_covariance, observation_cov, 2, "observation_covariance" ) # Make a masked observation if necessary if observation is None: n_dim_obs = observation_covariance.shape[0] observation = np.ma.array(np.zeros(n_dim_obs)) observation.mask = True else: observation = np.ma.asarray(observation) # make sigma points (points_state, points_transition, points_observation) = ( augmented_unscented_filter_points( filtered_state_mean, filtered_state_covariance, transition_covariance, observation_covariance ) ) # predict (points_pred, moments_pred) = ( unscented_filter_predict( transition_function, points_state, points_transition ) ) # correct next_filtered_state_mean, next_filtered_state_covariance = ( unscented_filter_correct( observation_function, moments_pred, points_pred, observation, points_observation=points_observation ) ) return (next_filtered_state_mean, next_filtered_state_covariance) def smooth(self, Z): '''Run Unscented Kalman Smoother Parameters ---------- Z : [n_timesteps, n_dim_state] array Z[t] = observation at time t. If Z is a masked array and any of Z[t]'s elements are masked, the observation is assumed missing and ignored. Returns ------- smoothed_state_means : [n_timesteps, n_dim_state] array filtered_state_means[t] = mean of state distribution at time t given observations from times [0, n_timesteps-1] smoothed_state_covariances : [n_timesteps, n_dim_state, n_dim_state] array filtered_state_covariances[t] = covariance of state distribution at time t given observations from times [0, n_timesteps-1] ''' Z = self._parse_observations(Z) (transition_functions, observation_functions, transition_covariance, observation_covariance, initial_state_mean, initial_state_covariance) = ( self._initialize_parameters() ) (filtered_state_means, filtered_state_covariances) = self.filter(Z) (smoothed_state_means, smoothed_state_covariances) = ( augmented_unscented_smoother( filtered_state_means, filtered_state_covariances, transition_functions, transition_covariance ) ) return (smoothed_state_means, smoothed_state_covariances) def _default_parameters(self): return { 'transition_functions': lambda state, noise: state + noise, 'observation_functions': lambda state, noise: state + noise, 'transition_covariance': np.eye(self.n_dim_state), 'observation_covariance': np.eye(self.n_dim_obs), 'initial_state_mean': np.zeros(self.n_dim_state), 'initial_state_covariance': np.eye(self.n_dim_state), 'random_state': 0, } class AdditiveUnscentedKalmanFilter(UnscentedMixin): r'''Implements the Unscented Kalman Filter with additive noise. Observations are assumed to be generated from the following process, .. math:: x_0 &\sim \text{Normal}(\mu_0, \Sigma_0) \\ x_{t+1} &= f_t(x_t) + \text{Normal}(0, Q) \\ z_{t} &= g_t(x_t) + \text{Normal}(0, R) While less general the general-noise Unscented Kalman Filter, the Additive version is more computationally efficient with complexity :math:`O(Tn^3)` where :math:`T` is the number of time steps and :math:`n` is the size of the state space. Parameters ---------- transition_functions : function or [n_timesteps-1] array of functions transition_functions[t] is a function of the state at time t and produces the state at time t+1. Also known as :math:`f_t`. observation_functions : function or [n_timesteps] array of functions observation_functions[t] is a function of the state at time t and produces the observation at time t. Also known as :math:`g_t`. transition_covariance : [n_dim_state, n_dim_state] array transition noise covariance matrix. Also known as :math:`Q`. observation_covariance : [n_dim_obs, n_dim_obs] array observation noise covariance matrix. Also known as :math:`R`. initial_state_mean : [n_dim_state] array mean of initial state distribution. Also known as :math:`\mu_0`. initial_state_covariance : [n_dim_state, n_dim_state] array covariance of initial state distribution. Also known as :math:`\Sigma_0`. n_dim_state: optional, integer the dimensionality of the state space. Only meaningful when you do not specify initial values for `transition_covariance`, or `initial_state_mean`, `initial_state_covariance`. n_dim_obs: optional, integer the dimensionality of the observation space. Only meaningful when you do not specify initial values for `observation_covariance`. random_state : optional, int or RandomState seed for random sample generation ''' def sample(self, n_timesteps, initial_state=None, random_state=None): '''Sample from model defined by the Unscented Kalman Filter Parameters ---------- n_timesteps : int number of time steps initial_state : optional, [n_dim_state] array initial state. If unspecified, will be sampled from initial state distribution. ''' (transition_functions, observation_functions, transition_covariance, observation_covariance, initial_state_mean, initial_state_covariance) = ( self._initialize_parameters() ) n_dim_state = transition_covariance.shape[-1] n_dim_obs = observation_covariance.shape[-1] # logic for instantiating rng if random_state is None: rng = check_random_state(self.random_state) else: rng = check_random_state(random_state) # logic for selecting initial state if initial_state is None: initial_state = ( rng.multivariate_normal( initial_state_mean, initial_state_covariance ) ) # logic for generating samples x = np.zeros((n_timesteps, n_dim_state)) z = np.zeros((n_timesteps, n_dim_obs)) for t in range(n_timesteps): if t == 0: x[0] = initial_state else: transition_function = ( _last_dims(transition_functions, t - 1, ndims=1)[0] ) transition_noise = ( rng.multivariate_normal( np.zeros(n_dim_state), transition_covariance.newbyteorder('=') ) ) x[t] = transition_function(x[t - 1]) + transition_noise observation_function = ( _last_dims(observation_functions, t, ndims=1)[0] ) observation_noise = ( rng.multivariate_normal( np.zeros(n_dim_obs), observation_covariance.newbyteorder('=') ) ) z[t] = observation_function(x[t]) + observation_noise return (x, ma.asarray(z)) def filter(self, Z): '''Run Unscented Kalman Filter Parameters ---------- Z : [n_timesteps, n_dim_state] array Z[t] = observation at time t. If Z is a masked array and any of Z[t]'s elements are masked, the observation is assumed missing and ignored. Returns ------- filtered_state_means : [n_timesteps, n_dim_state] array filtered_state_means[t] = mean of state distribution at time t given observations from times [0, t] filtered_state_covariances : [n_timesteps, n_dim_state, n_dim_state] array filtered_state_covariances[t] = covariance of state distribution at time t given observations from times [0, t] ''' Z = self._parse_observations(Z) (transition_functions, observation_functions, transition_covariance, observation_covariance, initial_state_mean, initial_state_covariance) = ( self._initialize_parameters() ) (filtered_state_means, filtered_state_covariances) = ( additive_unscented_filter( initial_state_mean, initial_state_covariance, transition_functions, observation_functions, transition_covariance, observation_covariance, Z ) ) return (filtered_state_means, filtered_state_covariances) def filter_update(self, filtered_state_mean, filtered_state_covariance, observation=None, transition_function=None, transition_covariance=None, observation_function=None, observation_covariance=None): r"""Update a Kalman Filter state estimate Perform a one-step update to estimate the state at time :math:`t+1` give an observation at time :math:`t+1` and the previous estimate for time :math:`t` given observations from times :math:`[0...t]`. This method is useful if one wants to track an object with streaming observations. Parameters ---------- filtered_state_mean : [n_dim_state] array mean estimate for state at time t given observations from times [1...t] filtered_state_covariance : [n_dim_state, n_dim_state] array covariance of estimate for state at time t given observations from times [1...t] observation : [n_dim_obs] array or None observation from time t+1. If `observation` is a masked array and any of `observation`'s components are masked or if `observation` is None, then `observation` will be treated as a missing observation. transition_function : optional, function state transition function from time t to t+1. If unspecified, `self.transition_functions` will be used. transition_covariance : optional, [n_dim_state, n_dim_state] array state transition covariance from time t to t+1. If unspecified, `self.transition_covariance` will be used. observation_function : optional, function observation function at time t+1. If unspecified, `self.observation_functions` will be used. observation_covariance : optional, [n_dim_obs, n_dim_obs] array observation covariance at time t+1. If unspecified, `self.observation_covariance` will be used. Returns ------- next_filtered_state_mean : [n_dim_state] array mean estimate for state at time t+1 given observations from times [1...t+1] next_filtered_state_covariance : [n_dim_state, n_dim_state] array covariance of estimate for state at time t+1 given observations from times [1...t+1] """ # initialize parameters (transition_functions, observation_functions, transition_cov, observation_cov, _, _) = ( self._initialize_parameters() ) def default_function(f, arr): if f is None: assert len(arr) == 1 f = arr[0] return f transition_function = default_function( transition_function, transition_functions ) observation_function = default_function( observation_function, observation_functions ) transition_covariance = _arg_or_default( transition_covariance, transition_cov, 2, "transition_covariance" ) observation_covariance = _arg_or_default( observation_covariance, observation_cov, 2, "observation_covariance" ) # Make a masked observation if necessary if observation is None: n_dim_obs = observation_covariance.shape[0] observation = np.ma.array(np.zeros(n_dim_obs)) observation.mask = True else: observation = np.ma.asarray(observation) # make sigma points moments_state = Moments(filtered_state_mean, filtered_state_covariance) points_state = moments2points(moments_state) # predict (_, moments_pred) = ( unscented_filter_predict( transition_function, points_state, sigma_transition=transition_covariance ) ) points_pred = moments2points(moments_pred) # correct (next_filtered_state_mean, next_filtered_state_covariance) = ( unscented_filter_correct( observation_function, moments_pred, points_pred, observation, sigma_observation=observation_covariance ) ) return (next_filtered_state_mean, next_filtered_state_covariance) def smooth(self, Z): '''Run Unscented Kalman Smoother Parameters ---------- Z : [n_timesteps, n_dim_state] array Z[t] = observation at time t. If Z is a masked array and any of Z[t]'s elements are masked, the observation is assumed missing and ignored. Returns ------- smoothed_state_means : [n_timesteps, n_dim_state] array filtered_state_means[t] = mean of state distribution at time t given observations from times [0, n_timesteps-1] smoothed_state_covariances : [n_timesteps, n_dim_state, n_dim_state] array filtered_state_covariances[t] = covariance of state distribution at time t given observations from times [0, n_timesteps-1] ''' Z = ma.asarray(Z) (transition_functions, observation_functions, transition_covariance, observation_covariance, initial_state_mean, initial_state_covariance) = ( self._initialize_parameters() ) (filtered_state_means, filtered_state_covariances) = self.filter(Z) (smoothed_state_means, smoothed_state_covariances) = ( additive_unscented_smoother( filtered_state_means, filtered_state_covariances, transition_functions, transition_covariance ) ) return (smoothed_state_means, smoothed_state_covariances) def _default_parameters(self): return { 'transition_functions': lambda state: state, 'observation_functions': lambda state: state, 'transition_covariance': np.eye(self.n_dim_state), 'observation_covariance': np.eye(self.n_dim_obs), 'initial_state_mean': np.zeros(self.n_dim_state), 'initial_state_covariance': np.eye(self.n_dim_state), 'random_state': 0, }
3.140625
3
src/cloudwatch/modules/flusher.py
klarna/collectd-cloudwatch
1
12776152
import threading import time import os import math from client.putclient import PutClient from logger.logger import get_logger from metricdata import MetricDataStatistic, MetricDataBuilder class Flusher(object): """ The flusher is responsible for translating Collectd metrics to CloudWatch MetricDataStatistic, batching, aggregating and flushing metrics to CloudWatch endpoints. Keyword arguments: config_helper -- The ConfigHelper object with configuration loaded """ _LOGGER = get_logger(__name__) _FLUSH_INTERVAL_IN_SECONDS = 60 _FLUSH_DELTA_IN_SECONDS = 1 _MAX_METRICS_PER_PUT_REQUEST = 20 _MAX_METRICS_TO_AGGREGATE = 2000 def __init__(self, config_helper): self.lock = threading.Lock() self.client = None self.config = config_helper self.metric_map = {} self.last_flush_time = time.time() self.nan_key_set = set() def is_numerical_value(self, value): """ Assume that the value from collectd to this plugin is float or Integer, if string transfer from collectd to this interface, we should modify the method _add_values_to_metric, to convert the string type value to float type value. Returns: True if the value is float and is not nan False if the value is nan """ try: return not math.isnan(float(value)) except ValueError: return False def add_metric(self, value_list): """ Translates Collectd metrics to CloudWatch format and stores them in flusher for further processing such as batching and aggregating. Keyword arguments: value_list -- The ValueList object passed by Collectd to the write callback """ with self.lock: # The flush operation should take place before adding metric for a new minute. # Together with flush delta this ensures that old metrics are flushed before or at the start of a new minute. self._flush_if_need(time.time()) if self.config.whitelist.is_whitelisted(self._get_metric_key(value_list)): self._aggregate_metric(value_list) def _flush_if_need(self, current_time): """ Checks if metrics should be flushed and starts the flush procedure """ if self._is_flush_time(current_time): if self.config.debug and self.metric_map: state = "" for dimension_metrics in self.metric_map: state += str(dimension_metrics) + "[" + str(self.metric_map[dimension_metrics][0].statistics.sample_count) + "] " self._LOGGER.info("[debug] flushing metrics " + state) self._flush() def _is_flush_time(self, current_time): return (current_time - self.last_flush_time) + self._FLUSH_DELTA_IN_SECONDS >= self._FLUSH_INTERVAL_IN_SECONDS def record_nan_value(self, key, value_list): if not key in self.nan_key_set: self._LOGGER.warning( "Adding Metric value is not numerical, key: " + key + " value: " + str(value_list.values)) self.nan_key_set.add(key) def _aggregate_metric(self, value_list): """ Selects existing metric or adds a new metric to the metric_map. Then aggregates values from ValueList with the selected metric. If the size of metric_map is above the limit, new metric will not be added and the value_list will be dropped. """ nan_value_count = 0 key = self._get_metric_key(value_list) if key in self.metric_map: nan_value_count = self._add_values_to_metrics(self.metric_map[key], value_list) else: if len(self.metric_map) < self._MAX_METRICS_TO_AGGREGATE: metrics = MetricDataBuilder(self.config, value_list).build() nan_value_count = self._add_values_to_metrics(metrics, value_list) if nan_value_count != len(value_list.values): self.metric_map[key] = metrics else: self._LOGGER.warning("Batching queue overflow detected. Dropping metric.") if nan_value_count: self.record_nan_value(key, value_list) def _get_metric_key(self, value_list): """ Generates key for the metric. The key must use both metric_name and plugin instance to ensure uniqueness. """ return value_list.plugin + "-" + value_list.plugin_instance + "-" + value_list.type + "-" +value_list.type_instance def _add_values_to_metrics(self, dimension_metrics, value_list): """ Aggregates values from value_list with existing metric Add the valid value to the metric and just skip the nan value. Returns: return the count of the nan value in value_list """ for metric in dimension_metrics: nan_value_count = 0 for value in value_list.values: if self.is_numerical_value(value): metric.add_value(value) else: nan_value_count += 1 return nan_value_count def _flush(self): """ Batches and puts metrics to CloudWatch """ self.last_flush_time = time.time() self.client = PutClient(self.config) if self.metric_map: prepare_batch = self._prepare_batch() try: while True: metric_batch = prepare_batch.next() if not metric_batch: break self.client.put_metric_data(MetricDataStatistic.NAMESPACE, metric_batch) if len(metric_batch) < self._MAX_METRICS_PER_PUT_REQUEST: break except StopIteration, e: self._LOGGER.error("_flush error: "+ str(e)) def _prepare_batch(self): """ Removes metrics from the metric_map and adds them to the batch. The batch size is defined by _MAX_METRICS_PER_PUT_REQUEST. """ metric_batch = [] while self.metric_map: key, dimension_metrics = self.metric_map.popitem() for metric in dimension_metrics: if len(metric_batch) < self._MAX_METRICS_PER_PUT_REQUEST: metric_batch.append(metric) else: yield metric_batch metric_batch = [] metric_batch.append(metric) yield metric_batch
2.34375
2
scripts/vis_layout.py
d116626/covid
0
12776153
import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot, offline def get_layout(themes, title="", x_name="", y_name="", tipo=None): layout = go.Layout( # automargin=True, margin=dict( l=themes["margin"]["l"], r=themes["margin"]["r"], t=themes["margin"]["t"], b=themes["margin"]["b"], ), barmode=themes["barmode"], hovermode=themes["hovermode"], autosize=True, # automargin=True, # title=dict( # text=title, # x=0.5, # # y=0.9, # xanchor='center', # yanchor='top', # font = dict( # size=themes['title']['size'], # color=themes['title']['color'] # ) # ), # xaxis_title=x_name, xaxis=dict( tickfont=dict( size=themes["axis_legend"]["size"], color=themes["axis_legend"]["color"], ), gridcolor=themes["axis_legend"]["gridcolor"], zerolinecolor=themes["axis_legend"]["gridcolor"], # linecolor=themes['axis_legend']['gridcolor'], # linewidth=2, # mirror=True, tickformat=themes["axis_legend"]["tickformat"]["x"], type=themes["axis_legend"]["type"]["x"], ), yaxis_title=y_name, yaxis=dict( tickfont=dict( size=themes["axis_legend"]["size"], color=themes["axis_legend"]["color"], ), gridcolor=themes["axis_legend"]["gridcolor"], zerolinecolor=themes["axis_legend"]["gridcolor"], # linecolor=themes['axis_legend']['gridcolor'], # linewidth=2, tickformat=themes["axis_legend"]["tickformat"]["y"], type=tipo, ), font=dict( size=themes["axis_tilte"]["size"], color=themes["axis_tilte"]["color"] ), legend=go.layout.Legend( x=themes["legend"]["position"]["x"], y=themes["legend"]["position"]["y"], xanchor=themes["legend"]["position"]["xanchor"], yanchor=themes["legend"]["position"]["yanchor"], traceorder=themes["legend"]["traceorder"], orientation=themes["legend"]["orientation"], font=dict( family=themes["legend"]["family"], size=themes["legend"]["size"], color=themes["legend"]["color"], ), bgcolor=themes["legend"]["bgcolor"], bordercolor=themes["legend"]["bordercolor"], borderwidth=themes["legend"]["borderwidth"], ), height=themes["altura"], width=themes["largura"], paper_bgcolor=themes["paper_bgcolor"], plot_bgcolor=themes["plot_bgcolor"], annotations=[ dict( showarrow=False, text=f"<b>{themes['source']['text']}<b>", x=themes["source"]["position"]["x"], y=themes["source"]["position"]["y"], xref="paper", yref="paper", align="left", # xanchor='right', xshift=0, yshift=0, font=dict( family=themes["source"]["family"], size=themes["source"]["size"], color=themes["source"]["color"], ), ) ], ) return layout def get_layout_new(themes, var, scale): layout = go.Layout( hovermode=themes["hovermode"], margin=dict( l=themes["margin"]["l"], r=themes["margin"]["r"], t=themes["margin"]["t"], b=themes["margin"]["b"], ), barmode=themes["barmode"], autosize=True, title=dict( text=themes["vars"][var]["title"], x=0.5, y=0.9, xanchor="center", yanchor="top", font=dict(size=themes["title"]["size"], color=themes["title"]["color"]), ), xaxis_title=themes["vars"][var]["x_title"], xaxis=dict( tickfont=dict( size=themes["axis_legend"]["size"], color=themes["axis_legend"]["color"], ), gridcolor=themes["axis_legend"]["gridcolor"], zerolinecolor=themes["axis_legend"]["gridcolor"], linecolor=themes["axis_legend"]["gridcolor"], # linewidth=2, # mirror=True, tickformat=themes["axis_legend"]["scale"][scale]["x"]["tickformat"], type=themes["axis_legend"]["scale"][scale]["x"]["type"], ), yaxis_title=themes["vars"][var]["y_title"], yaxis=dict( tickfont=dict( size=themes["axis_legend"]["size"], color=themes["axis_legend"]["color"], ), gridcolor=themes["axis_legend"]["gridcolor"], zerolinecolor=themes["axis_legend"]["gridcolor"], # linecolor=themes['axis_legend']['gridcolor'], # linewidth=2, tickformat=themes["axis_legend"]["scale"][scale]["y"]["tickformat"], type=themes["axis_legend"]["scale"][scale]["y"]["type"], ), font=dict( size=themes["axis_tilte"]["size"], color=themes["axis_tilte"]["color"] ), legend=go.layout.Legend( x=themes["legend"]["position"]["x"], y=themes["legend"]["position"]["y"], xanchor=themes["legend"]["position"]["xanchor"], yanchor=themes["legend"]["position"]["yanchor"], traceorder=themes["legend"]["traceorder"], orientation=themes["legend"]["orientation"], font=dict( family=themes["legend"]["family"], size=themes["legend"]["size"], color=themes["legend"]["color"], ), bgcolor=themes["legend"]["bgcolor"], bordercolor=themes["legend"]["bordercolor"], borderwidth=themes["legend"]["borderwidth"], ), height=themes["altura"], width=themes["largura"], paper_bgcolor=themes["paper_bgcolor"], plot_bgcolor=themes["plot_bgcolor"], annotations=[ dict( showarrow=False, text=f"<b>{themes['source']['text']}<b>", x=themes["source"]["position"]["x"], y=themes["source"]["position"]["y"], xref="paper", yref="paper", align="left", # xanchor='right', xshift=0, yshift=0, font=dict( family=themes["source"]["family"], size=themes["source"]["size"], color=themes["source"]["color"], ), ) ], ) return layout def get_layout_bar(themes): layout = go.Layout( hovermode=themes["hovermode"], margin=dict( l=themes["margin"]["l"], r=themes["margin"]["r"], t=themes["margin"]["t"], b=themes["margin"]["b"], ), barmode=themes["barmode"], autosize=True, xaxis_title=themes["axis_legend"]["x"]["title"], xaxis=dict( tickfont=dict( size=themes["axis_legend"]["size"], color=themes["axis_legend"]["color"], ), gridcolor=themes["axis_legend"]["gridcolor"], zerolinecolor=themes["axis_legend"]["gridcolor"], linecolor=themes["axis_legend"]["gridcolor"], # linewidth=2, # mirror=True, tickformat=themes["axis_legend"]["scale"]["linear"]["x"]["tickformat"], type=themes["axis_legend"]["scale"]["linear"]["x"]["type"], ), yaxis_title=themes["axis_legend"]["y"]["title"], yaxis=dict( tickfont=dict( size=themes["axis_legend"]["size"], color=themes["axis_legend"]["color"], ), gridcolor=themes["axis_legend"]["gridcolor"], zerolinecolor=themes["axis_legend"]["gridcolor"], # linecolor=themes['axis_legend']['gridcolor'], # linewidth=2, tickformat=themes["axis_legend"]["scale"]["linear"]["y"]["tickformat"], type=themes["axis_legend"]["scale"]["linear"]["y"]["type"], ), font=dict( size=themes["axis_tilte"]["size"], color=themes["axis_tilte"]["color"] ), legend=go.layout.Legend( x=themes["legend"]["position"]["x"], y=themes["legend"]["position"]["y"], xanchor=themes["legend"]["position"]["xanchor"], yanchor=themes["legend"]["position"]["yanchor"], traceorder=themes["legend"]["traceorder"], orientation=themes["legend"]["orientation"], font=dict( family=themes["legend"]["family"], size=themes["legend"]["size"], color=themes["legend"]["color"], ), bgcolor=themes["legend"]["bgcolor"], bordercolor=themes["legend"]["bordercolor"], borderwidth=themes["legend"]["borderwidth"], ), height=themes["altura"], width=themes["largura"], paper_bgcolor=themes["paper_bgcolor"], plot_bgcolor=themes["plot_bgcolor"], # annotations=[ # dict( # showarrow=False, # text=f"<b>{themes['source']['text']}<b>", # x=themes["source"]["position"]["x"], # y=themes["source"]["position"]["y"], # xref="paper", # yref="paper", # align="left", # # xanchor='right', # xshift=0, # yshift=0, # font=dict( # family=themes["source"]["family"], # size=themes["source"]["size"], # color=themes["source"]["color"], # ), # ) # ], ) return layout
2.453125
2
setup.py
callat-qcd/espressodb
8
12776154
# -*- coding: utf-8 -*- """Setup file for EspressoDB """ from espressodb import __version__ __author__ = "@cchang5, @ckoerber" from os import path from setuptools import setup, find_packages CWD = path.abspath(path.dirname(__file__)) with open(path.join(CWD, "README.md"), encoding="utf-8") as inp: LONG_DESCRIPTION = inp.read() with open(path.join(CWD, "requirements.txt"), encoding="utf-8") as inp: REQUIREMENTS = [el.strip() for el in inp.read().split(",")] with open(path.join(CWD, "requirements-dev.txt"), encoding="utf-8") as inp: REQUIREMENTS_DEV = [el.strip() for el in inp.read().split(",")] setup( name="espressodb", python_requires=">=3.6", version=__version__, description="Science database interface using Django as the content manager.", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", url="https://github.com/callat-qcd/espressodb", project_urls={ "Bug Reports": "https://github.com/callat-qcd/espressodb/issues", "Source": "https://github.com/callat-qcd/espressodb", "Documentation": "https://espressodb.readthedocs.io", }, author=__author__, author_email="<EMAIL>", keywords=["Database", "Workflow", "Django"], packages=find_packages(exclude=["docs", "tests", "example"]), install_requires=REQUIREMENTS, entry_points={"console_scripts": ["espressodb=espressodb.manage:main"]}, extras_require={"dev": REQUIREMENTS_DEV}, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Topic :: Database :: Database Engines/Servers", "Topic :: Database", "Topic :: Scientific/Engineering", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Operating System :: OS Independent", "Framework :: Django :: 2.2", "Framework :: Django :: 3.0", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: BSD License", ], include_package_data=True, )
1.625
2
parsers/Interrupts.py
ondrejholecek/fortimonitor
9
12776155
from EasyParser import EasyParser import re import time # FG1K2D-2 # diag hardware sysinfo interrupts # CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 # 0: 36 0 0 0 0 0 0 0 IO-APIC-edge timer # 2: 0 0 0 0 0 0 0 0 XT-PIC-XT-PIC cascade # 3: 0 3577171 0 0 0 0 0 0 IO-APIC-edge serial # 4: 0 4688 0 0 0 0 0 0 IO-APIC-edge serial # 8: 0 0 0 0 0 0 0 0 IO-APIC-edge rtc # 16: 0 1832355 0 0 0 0 0 0 IO-APIC-fasteoi ehci_hcd:usb1, ehci_hcd:usb2, uhci_hcd:usb5, uhci_hcd:usb9, linux-kernel-bde, mgmt1 # 17: 0 0 3 0 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb3, uhci_hcd:usb6, mgmt2 # 18: 0 0 0 0 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb4, uhci_hcd:usb7 # 19: 0 0 0 0 0 0 0 0 IO-APIC-fasteoi uhci_hcd:usb8, net2280 # 64: 1 0 0 260298 0 0 0 0 PCI-MSI-edge ahci # 65: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_0_vpn0 # 66: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_0_vpn1 # 67: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_0_vpn2 # 68: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_0_vpn3 # 69: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_0_kxp # 70: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_1_vpn0 # 71: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_1_vpn1 # 72: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_1_vpn2 # 73: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_1_vpn3 # 74: 0 0 0 0 0 0 0 0 PCI-MSI-edge cp8_1_kxp # 75: 5 1 0 0 0 0 0 0 PCI-MSI-edge np6_0-tx-rx0 # 76: 0 1 5 0 0 0 0 0 PCI-MSI-edge np6_0-tx-rx1 # 77: 0 0 1 0 5 0 0 0 PCI-MSI-edge np6_0-tx-rx2 # 78: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_0-err0 # 79: 0 0 17 0 0 0 0 0 PCI-MSI-edge np6_0-nturbo-tx-rx0 # 80: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_0-nturbo-err0 # 81: 16418964 0 0 1 0 0 0 0 PCI-MSI-edge np6_0-nturbo-ips-0 # 82: 0 16141636 0 1 0 0 0 0 PCI-MSI-edge np6_0-nturbo-ips-1 # 83: 0 0 0 14991882 0 0 0 0 PCI-MSI-edge np6_0-nturbo-ips-2 # 84: 0 0 0 1 15879562 0 0 0 PCI-MSI-edge np6_0-nturbo-ips-3 # 85: 0 0 0 0 1 16707050 0 0 PCI-MSI-edge np6_0-nturbo-ips-4 # 86: 0 0 0 0 1 0 16444822 0 PCI-MSI-edge np6_0-nturbo-ips-5 # 87: 0 0 0 0 1 0 0 16581448 PCI-MSI-edge np6_0-nturbo-ips-6 # 88: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_0-nturbo-ips-7 # 89: 0 0 0 0 0 1 7 0 PCI-MSI-edge np6_0-tx-rx3 # 90: 5 0 0 0 0 1 0 0 PCI-MSI-edge np6_0-tx-rx4 # 91: 0 0 5 0 0 1 0 0 PCI-MSI-edge np6_0-tx-rx5 # 92: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_0-err1 # 93: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_0-nturbo-err1 # 94: 207221826 0 0 0 0 0 1 0 PCI-MSI-edge np6_1-tx-rx0 # 95: 0 0 200639569 0 0 0 1 0 PCI-MSI-edge np6_1-tx-rx1 # 96: 0 0 0 0 240962811 0 1 0 PCI-MSI-edge np6_1-tx-rx2 # 97: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_1-err0 # 98: 0 1 479259756 0 0 0 0 0 PCI-MSI-edge np6_1-nturbo-tx-rx0 # 99: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_1-nturbo-err0 # 100: 0 0 1 0 0 0 240663469 0 PCI-MSI-edge np6_1-tx-rx3 # 101: 210887756 0 1 0 0 0 0 0 PCI-MSI-edge np6_1-tx-rx4 # 102: 0 0 202674599 0 0 0 0 0 PCI-MSI-edge np6_1-tx-rx5 # 103: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_1-err1 # 104: 0 0 0 0 0 0 0 0 PCI-MSI-edge np6_1-nturbo-err1 # NMI: 451378 451332 451379 451331 451379 451330 451380 451329 Non-maskable interrupts # LOC: 27025393 27025374 27025356 27025338 27025320 27025302 27025284 27025266 Local timer interrupts # SPU: 0 0 0 0 0 0 0 0 Spurious interrupts # PMI: 451378 451332 451379 451331 451379 451330 451380 451329 Performance monitoring interrupts # IWI: 0 0 0 0 0 0 0 0 IRQ work interrupts # RES: 54764029 23029410 66355685 21516202 64664597 18859876 69639605 20136217 Rescheduling interrupts # CAL: 1227 1315 1304 287 1295 1290 1323 1325 Function call interrupts # TLB: 350 792 1188 1324 712 547 831 507 TLB shootdowns # ERR: 0 # MIS: 0 # FG1K2D-2 # fnsysctl cat /proc/softirqs # CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 # HI: 0 0 0 0 0 0 0 0 # TIMER: 28521064 28525832 28520649 28526326 28524819 28526243 28524655 28526254 # NET_TX: 994 57592 871 518 854 502 578 462 # NET_RX: 576621254 1990912 889144076 0 350281983 2 353098308 0 # BLOCK: 476 301 193 275534 181 396 98 313 # BLOCK_IOPOLL: 0 0 0 0 0 0 0 0 # TASKLET: 14128586 1943262 12439627 1942008 9747759 1944864 9735439 1961939 # SCHED: 9818324 13579287 11060339 13505914 10051866 12468454 9796770 12164434 # HRTIMER: 0 0 0 0 0 0 0 0 # RCU: 26288609 14045430 23576147 14059434 19574070 15025426 19446047 15275527 class ParserInterrupts(EasyParser): def prepare(self): self.re_cpus = re.compile("^\s+CPU.*?(\d+)\s+\n") def get(self, soft=True, hard=True, description=None): interrupts = {} collected_on = None cpus = None desc_re = None if description != None: desc_re = re.compile(description) if hard: hw = self.get_real('hard') interrupts.update(hw['interrupts']) collected_on = hw['collected_on'] cpus = hw['cpus'] if soft: sw = self.get_real('soft') interrupts.update(sw['interrupts']) collected_on = sw['collected_on'] cpus = sw['cpus'] if collected_on == None or cpus == None: raise Exception('Either soft or hard interrupts must be selected') # filter out not matching for irq in interrupts.keys(): if desc_re == None or desc_re.search(interrupts[irq]['description']) != None: continue del interrupts[irq] return { 'collected_on': collected_on, 'cpus' : cpus, 'interrupts' : interrupts, } def get_real(self, source): if source == 'hard': interrupts = self.sshc.clever_exec("diagnose hardware sysinfo interrupts") elif source == 'soft': interrupts = self.sshc.clever_exec("fnsysctl cat /proc/softirqs") else: raise Exception('Interrupts can be either "hard" or "soft"') command_time = time.time() result = {} # count cpus g = self.re_cpus.search(interrupts) if g == None: raise Exception("Cannot count CPUs") cpus = int(g.group(1))+1 # parse lines with entry for each cpu tmp = "^\s*(\S+):" + "\s*(\d+)"*cpus if source == 'hard': tmp += "\s+(.*?)[\r]*$" re_interrupt = re.compile(tmp, re.M) for iline in re_interrupt.findall(interrupts): if source == 'hard': try: int(iline[0]) except ValueError: itype = 'other' else: itype = 'numeric' if itype == 'numeric': tmp = iline[-1].split(None, 1) trigger = tmp[0] desc = tmp[1] elif itype == 'other': trigger = 'other' desc = iline[-1] elif source == 'soft': itype = 'soft' trigger = 'other' if iline[0] == 'NET_RX': desc = 'Incoming packets (NAPI)' elif iline[0] == 'NET_TX': desc = 'Outgoing packets (NAPI)' elif iline[0] == 'HI': desc = 'High priority tasklet' elif iline[0] == 'TASKLET': desc = 'Normal priority tasklet' elif iline[0] == 'TIMER': desc = 'Normal timer' elif iline[0] == 'HRTIMER': desc = 'High-resolution timer' elif iline[0] == 'RCU': desc = 'RCU locking' elif iline[0] == 'SCHED': desc = 'Scheduler' elif iline[0] in ('BLOCK', 'BLOCK_IOPOLL'): desc = 'Block device (disk)' else: desc = 'softirq' ticks = {'total':0} for i in range(cpus): ticks[i] = int(iline[1+i]) ticks['total'] += ticks[i] result[iline[0]] = { 'type' : itype, 'trigger' : trigger, 'description' : desc, 'ticks' : ticks, 'source' : source, } # parse lines with single cpu column re_single = re.compile('^\s*(ERR|MIS):\s*(\d+)', re.M) for single in re_single.findall(interrupts): ticks = {'total': int(single[1])} for i in range(cpus): ticks[i] = ticks['total'] result[single[0]] = { 'type' : 'single', 'trigger' : 'other', 'description' : 'unknown', 'ticks' : ticks, 'source' : source, } return { 'collected_on': command_time, 'cpus' : cpus, 'interrupts' : result, }
1.75
2
pytorch_yolo_v1/utils/torch_utils.py
ldylab/learning_yolo_family_with_pytorch
0
12776156
<filename>pytorch_yolo_v1/utils/torch_utils.py<gh_stars>0 import torch def load_match_dict(model, model_path): # model: single gpu model, please load dict before warp with nn.DataParallel pretrain_dict = torch.load(model_path) model_dict = model.state_dict() # the pretrain dict may be multi gpus, cleaning pretrain_dict = {k.replace('.module', ''): v for k, v in pretrain_dict.items()} # 1. filter out unnecessary keys pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and v.shape == model_dict[k].shape} # 2. overwrite entries in the existing state dict model_dict.update(pretrain_dict) # 3. load the new state dict model.load_state_dict(model_dict)
2.375
2
rl_algorithms/a2c/agent.py
mshukor/DSACfD
1
12776157
# -*- coding: utf-8 -*- """1-Step Advantage Actor-Critic agent for episodic tasks in OpenAI Gym. - Author: <NAME> - Contact: <EMAIL> """ import argparse from typing import Tuple import gym import numpy as np import torch import wandb from rl_algorithms.common.abstract.agent import Agent from rl_algorithms.common.helper_functions import numpy2floattensor from rl_algorithms.registry import AGENTS, build_learner from rl_algorithms.utils.config import ConfigDict @AGENTS.register_module class A2CAgent(Agent): """1-Step Advantage Actor-Critic interacting with environment. Attributes: env (gym.Env): openAI Gym environment args (argparse.Namespace): arguments including hyperparameters and training settings hyper_params (ConfigDict): hyper-parameters network_cfg (ConfigDict): config of network for training agent optim_cfg (ConfigDict): config of optimizer state_dim (int): state size of env action_dim (int): action size of env actor (nn.Module): policy model to select actions critic (nn.Module): critic model to evaluate states actor_optim (Optimizer): optimizer for actor critic_optim (Optimizer): optimizer for critic episode_step (int): step number of the current episode i_episode (int): current episode number transition (list): recent transition information """ def __init__( self, env: gym.Env, env_info: ConfigDict, args: argparse.Namespace, hyper_params: ConfigDict, learner_cfg: ConfigDict, log_cfg: ConfigDict, ): """Initialize.""" Agent.__init__(self, env, env_info, args, log_cfg) self.transition: list = list() self.episode_step = 0 self.i_episode = 0 self.hyper_params = hyper_params self.learner_cfg = learner_cfg self.learner_cfg.args = self.args self.learner_cfg.env_info = self.env_info self.learner_cfg.hyper_params = self.hyper_params self.learner_cfg.log_cfg = self.log_cfg self.learner = build_learner(self.learner_cfg) def select_action(self, state: np.ndarray) -> torch.Tensor: """Select an action from the input space.""" state = numpy2floattensor(state, self.learner.device) selected_action, dist = self.learner.actor(state) if self.args.test: selected_action = dist.mean else: predicted_value = self.learner.critic(state) log_prob = dist.log_prob(selected_action).sum(dim=-1) self.transition = [] self.transition.extend([log_prob, predicted_value]) return selected_action def step(self, action: torch.Tensor) -> Tuple[np.ndarray, np.float64, bool, dict]: """Take an action and return the response of the env.""" action = action.detach().cpu().numpy() next_state, reward, done, info = self.env.step(action) if not self.args.test: done_bool = done if self.episode_step == self.args.max_episode_steps: done_bool = False self.transition.extend([next_state, reward, done_bool]) return next_state, reward, done, info def write_log(self, log_value: tuple): i, score, policy_loss, value_loss = log_value total_loss = policy_loss + value_loss print( "[INFO] episode %d\tepisode step: %d\ttotal score: %d\n" "total loss: %.4f\tpolicy loss: %.4f\tvalue loss: %.4f\n" % (i, self.episode_step, score, total_loss, policy_loss, value_loss) ) if self.args.log: wandb.log( { "total loss": total_loss, "policy loss": policy_loss, "value loss": value_loss, "score": score, } ) def train(self): """Train the agent.""" # logger if self.args.log: self.set_wandb() # wandb.watch([self.actor, self.critic], log="parameters") for self.i_episode in range(1, self.args.episode_num + 1): state = self.env.reset() done = False score = 0 policy_loss_episode = list() value_loss_episode = list() self.episode_step = 0 while not done: if self.args.render and self.i_episode >= self.args.render_after: self.env.render() action = self.select_action(state) next_state, reward, done, _ = self.step(action) self.episode_step += 1 policy_loss, value_loss = self.learner.update_model(self.transition) policy_loss_episode.append(policy_loss) value_loss_episode.append(value_loss) state = next_state score += reward # logging policy_loss = np.array(policy_loss_episode).mean() value_loss = np.array(value_loss_episode).mean() log_value = (self.i_episode, score, policy_loss, value_loss) self.write_log(log_value) if self.i_episode % self.args.save_period == 0: self.learner.save_params(self.i_episode) self.interim_test() # termination self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
2.390625
2
simulation/src/launch_tools/scripts/launch_tools/services_timer.py
LeonardII/KitCarFork
0
12776158
<gh_stars>0 #!/usr/bin/env python """Copyright (c) 2013, Systems, Robotics and Vision Group University of the Balearican Islands All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Systems, Robotics and Vision Group, University of the Balearican Islands nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import roslib roslib.load_manifest("launch_tools") import sys import threading import rospy import rosservice ## Class for calling a service using a timer. class TimedService(threading.Thread): ## The constructor # @param self The object pointer. # @param name The service name this class is going to call # @param freq The desired timer period def __init__(self, name, period): threading.Thread.__init__(self) self._service_name = name self._service_period = period ## Run function required by threading library def run(self): rospy.wait_for_service(self._service_name) rospy.Timer(rospy.Duration(self._service_period), self.callback) rospy.loginfo( "Initialized timer for service: \n\t* Name: %s\n\t* Period: %f ", self._service_name, self._service_period, ) ## Timer callback # @param event The event that has generated this callback def callback(self, event): rospy.wait_for_service(self._service_name) service_class = rosservice.get_service_class_by_name(self._service_name) try: service = rospy.ServiceProxy(self._service_name, service_class) service() rospy.loginfo("Service %s called.", self._service_name) except rospy.ServiceException, e: rospy.logwarn("Service %s call failed: %s", self._service_name, e) ## @var _service_name # The service name going to be called _service_name = "service" ## @var _service_period # The timer period to call the service _service_period = 1.0 ## Print usage for people that does not deserve to use this awesome python node. def usage(): return "%s service period [service period ...]" % sys.argv[0] ## main function if __name__ == "__main__": rospy.init_node("services_timer") if len(sys.argv) >= 3: names = sys.argv[1 : len(sys.argv) : 2] periods = sys.argv[2 : len(sys.argv) : 2] rospy.loginfo("names : %s", names) rospy.loginfo("periods : %s", periods) ts_list = [] for name, period in zip(names, periods): ts_list.append(TimedService(str(name), float(period))) for ts in ts_list: ts.start() else: rospy.loginfo(usage()) sys.exit(1) rospy.spin()
1.726563
2
ListaDeExercicios/Exercicio12.py
LucasAlmeida0/Estudos
0
12776159
# 12 Tendo como dados de entrada a altura de uma pessoa, construa um algoritmo que calcule seu peso ideal, usando a seguinte fórmula: (72.7*altura) - 58 Altura = float(input("Digite sua altura: ")); PesoIdeal = ( 72.7 * Altura ) - 58; print("Seu peso ideal é {:.2f}".format(PesoIdeal));
3.609375
4
src/autostory/map_generators.py
gustavospiess/2021-1-JD-Eq1
0
12776160
from typing import NamedTuple from random import choice, randint, shuffle __doc___ = ''' This module is used to generate the graph of a game map. The graph is divided in partition in such way that to any two partitions, there are at most one edge between this two. This partitions are linked in a tree structure, internally it can be any ordinary graph, but between two partitions there are only one possible walk. To every edge that link two partitions `a` and `b`, it is considered locked, the key is granted to be in a partition bigger then min(a, b), this way, the navigation starting from the last partition can go through every vertex. ''' class Raw(NamedTuple): vertexes: set edges: set keys: set initial: 'Vertex' final: 'Vertex' class Vertex(NamedTuple): area: int sub_area: int @property def identifier(self) -> str: return f'{self.area}_{self.sub_area}' class Edge(NamedTuple): origin: 'Vertex' destin: 'Vertex' class Key(NamedTuple): position: 'Vertex' door: 'Edge' def raw(size = 3, size_factor = 4) -> Raw: if not size or size < 3: size = 3 if not size_factor or size_factor < 4: size_factor = 4 vertexes = [Vertex(0, 0)] edges = [] keys = [] for area_id in range(1, size): vertexes.append(Vertex(area_id, 0)) minimum_sub_size = size_factor//2+1 maximum_sub_size = size_factor*2-1 sub_size = randint(minimum_sub_size, maximum_sub_size) for sub_area_id in range(1, sub_size): new_vertex = Vertex(area_id, sub_area_id) minimum_connection = 1 maximum_connection = min(sub_area_id, 3) connection_amount = randint(minimum_connection, maximum_connection) for connection_id in range(connection_amount): edges.append(Edge( new_vertex, choice(tuple(v for v in vertexes if v.area == area_id)) )) vertexes.append(new_vertex) for area_id in range(0, size-1): previous = [area_id + 1, randint(min(area_id+1, size-1), size-1)] shuffle(previous) key_area, door_area = previous new_edge = Edge( choice(tuple(v for v in vertexes if v.area == door_area)), choice(tuple(v for v in vertexes if v.area == area_id)), ) new_key = Key( choice(tuple(v for v in vertexes if v.area == key_area and v not in new_edge)), new_edge, ) edges.append(new_edge) keys.append(new_key) return Raw( vertexes = set(vertexes), edges = set(edges), keys = set(keys), initial = vertexes[-1], final = vertexes[0])
3.90625
4
network/setup.py
splitstrument/training
4
12776161
from setuptools import setup, find_packages setup(name='unmix', version='1.0', packages=find_packages())
1.21875
1
contrib/aws/awsexecutor.py
lachnerm/benchexec
0
12776162
# BenchExec is a framework for reliable benchmarking. # This file is part of BenchExec. # # Copyright (C) <NAME> # # SPDX-License-Identifier: Apache-2.0 # prepare for Python 3 from __future__ import absolute_import, division, print_function, unicode_literals import collections import io import json import logging import os import requests import shutil import sys import time import zipfile import benchexec.util from benchexec.model import MEMLIMIT, TIMELIMIT, CORELIMIT sys.dont_write_bytecode = True # prevent creation of .pyc files REQUEST_URL = { "create": "{0}{1}/execution/create", "upload": "{0}{1}/upload/{2}?file={3}", "launch": "{0}{1}/execution/{2}/launch?verifier={3}&verifierS3={4}&tasks={5}&tasksS3={6}&commands={7}", "progress": "{0}{1}/execution/{2}/progress", "results": "{0}{1}/execution/{2}/results", "clean": "{0}{1}/clean", } DEFAULT_CLOUD_TIMELIMIT = 300 # s DEFAULT_CLOUD_MEMLIMIT = None DEFAULT_CLOUD_MEMORY_REQUIREMENT = 7000000000 # 7 GB DEFAULT_CLOUD_CPUCORE_REQUIREMENT = 2 # one core with hyperthreading DEFAULT_CLOUD_CPUMODEL_REQUIREMENT = "" # empty string matches every model STOPPED_BY_INTERRUPT = False def init(config, benchmark): benchmark.executable = benchmark.tool.executable() benchmark.tool_version = benchmark.tool.version(benchmark.executable) logging.info("Using %s version %s.", benchmark.tool_name, benchmark.tool_version) def get_system_info(): return None def execute_benchmark(benchmark, output_handler): (toolpaths, awsInput) = getAWSInput(benchmark) with open(benchmark.config.aws_config, "r") as conf_file: conf = json.load(conf_file)[0] aws_endpoint = conf["Endpoint"] aws_token = conf["UserToken"] try: logging.info("Building archive files for the verifier-tool and the tasks...") verifier_arc_name = benchmark.tool_name + "_" + benchmark.instance + ".zip" verifier_arc_path = _createArchiveFile( verifier_arc_name, toolpaths["absBaseDir"], toolpaths["absToolpaths"], ) tasks_arc_name = "tasks_" + benchmark.instance + ".zip" tasks_arc_path = _createArchiveFile( tasks_arc_name, toolpaths["absBaseDir"], toolpaths["absSourceFiles"], ) start_time = benchexec.util.read_local_time() logging.info("Waiting for the AWS EC2-instance to set everything up...") # Create http_request = requests.get( REQUEST_URL["create"].format(aws_endpoint, aws_token) ) _exitWhenRequestFailed(http_request) msg = http_request.json() if ( msg.get("message") is not None and msg.get("message") == "Token not authorized." ): sys.exit("Invalid token submitted: " + aws_token) requestId = msg["requestId"] # Upload verifier http_request = requests.get( REQUEST_URL["upload"].format( aws_endpoint, aws_token, requestId, verifier_arc_name ) ) _exitWhenRequestFailed(http_request) msg = http_request.json() (verifier_uploadUrl, verifier_s3_key, verifier_aws_public_url) = ( msg["uploadUrl"], msg["S3Key"], msg["publicURL"], ) payload = open(verifier_arc_path, "rb").read() headers = {"Content-Type": "application/zip"} http_request = requests.request( "PUT", verifier_uploadUrl, headers=headers, data=payload ) _exitWhenRequestFailed(http_request) # Upload tasks http_request = requests.get( REQUEST_URL["upload"].format( aws_endpoint, aws_token, requestId, tasks_arc_name ) ) _exitWhenRequestFailed(http_request) msg = http_request.json() (tasks_uploadUrl, tasks_s3_key, tasks_aws_public_url) = ( msg["uploadUrl"], msg["S3Key"], msg["publicURL"], ) payload = open(tasks_arc_path, "rb").read() headers = {"Content-Type": "application/zip"} http_request = requests.request( "PUT", tasks_uploadUrl, headers=headers, data=payload ) _exitWhenRequestFailed(http_request) # Launch http_request = requests.get( REQUEST_URL["launch"].format( aws_endpoint, aws_token, requestId, verifier_aws_public_url, verifier_s3_key, tasks_aws_public_url, tasks_s3_key, json.dumps(awsInput), ) ) _exitWhenRequestFailed(http_request) # Progress logging.info( "Executing RunExec on the AWS workers. Depending on the size of the tasks, this might take a while." ) progress_url = REQUEST_URL["progress"].format( aws_endpoint, aws_token, requestId ) initialized = False # Give the ec2-instance some time for instantiation while not initialized: http_request = requests.get(progress_url) _exitWhenRequestFailed(http_request) msg = http_request.json() if ( msg["message"] == "Internal server error" or msg["instancesNotTerminatedTotal"] > 0 ): logging.info("waiting...") time.sleep(10) continue initialized = True logging.info("Done. Collecting the results back from AWS.") # Results http_request = requests.get( REQUEST_URL["results"].format(aws_endpoint, aws_token, requestId) ) _exitWhenRequestFailed(http_request) for url in http_request.json()["urls"]: logging.debug("Downloading file from url: %s", url) result_file = requests.get(url) zipfile.ZipFile(io.BytesIO(result_file.content)).extractall( benchmark.log_folder ) except KeyboardInterrupt: stop() finally: if os.path.exists(verifier_arc_path): os.remove(verifier_arc_path) if os.path.exists(tasks_arc_path): os.remove(tasks_arc_path) if STOPPED_BY_INTERRUPT: output_handler.set_error("interrupted") end_time = benchexec.util.read_local_time() handleCloudResults(benchmark, output_handler, start_time, end_time) # Clean requests.get(REQUEST_URL["clean"].format(aws_endpoint, aws_token)) def stop(): global STOPPED_BY_INTERRUPT STOPPED_BY_INTERRUPT = True def _exitWhenRequestFailed(http_request): if http_request.status_code != 200: sys.exit( "Http-request failed (Server responded with status code: {0}).".format( http_request.status_code ) ) def getAWSInput(benchmark): ( requirements, numberOfRuns, limitsAndNumRuns, runDefinitions, sourceFiles, ) = getBenchmarkData(benchmark) (workingDir, toolpaths) = getToolData(benchmark) absWorkingDir = os.path.abspath(workingDir) absToolpaths = list(map(os.path.abspath, toolpaths)) absSourceFiles = list(map(os.path.abspath, sourceFiles)) absBaseDir = benchexec.util.common_base_dir(absSourceFiles + absToolpaths) if absBaseDir == "": sys.exit("No common base dir found.") toolpaths = { "absBaseDir": absBaseDir, "workingDir": workingDir, "absWorkingDir": absWorkingDir, "toolpaths": toolpaths, "absToolpaths": absToolpaths, "sourceFiles": sourceFiles, "absSourceFiles": absSourceFiles, } awsInput = { "requirements": requirements, "workingDir": os.path.relpath(absWorkingDir, absBaseDir), } if benchmark.result_files_patterns: if len(benchmark.result_files_patterns) > 1: sys.exit("Multiple result-files patterns not supported in cloud mode.") awsInput.update({"resultFilePatterns": benchmark.result_files_patterns[0]}) awsInput.update({"limitsAndNumRuns": limitsAndNumRuns}) awsInput.update({"runDefinitions": runDefinitions}) return (toolpaths, awsInput) def _zipdir(path, zipfile, absBaseDir): for root, dirs, files in os.walk(path): for file in files: filepath = os.path.join(root, file) zipfile.write(filepath, os.path.relpath(filepath, absBaseDir)) def _createArchiveFile(archive_name, absBaseDir, abs_paths): archive_path = os.path.join(absBaseDir, archive_name) if os.path.isfile(archive_path): sys.exit( "Zip file already exists: '{0}'; not going to overwrite it.".format( os.path.normpath(archive_path) ) ) zipf = zipfile.ZipFile(archive_path, "w", zipfile.ZIP_DEFLATED) for file in abs_paths: if not os.path.exists(file): zipf.close() if os.path.isfile(archive_path): os.remove(archive_path) sys.exit( "Missing file '{0}', cannot run benchmark without it.".format( os.path.normpath(file) ) ) if os.path.isdir(file): _zipdir(file, zipf, absBaseDir) else: zipf.write(file, os.path.relpath(file, absBaseDir)) zipf.close() return archive_path def getBenchmarkData(benchmark): # get requirements r = benchmark.requirements requirements = { "cpu_cores": DEFAULT_CLOUD_CPUCORE_REQUIREMENT if r.cpu_cores is None else r.cpu_cores, "cpu_model": DEFAULT_CLOUD_CPUMODEL_REQUIREMENT if r.cpu_model is None else r.cpu_model, "memory_in_mb": bytes_to_mb( DEFAULT_CLOUD_MEMORY_REQUIREMENT if r.memory is None else r.memory ), } # get limits and number of Runs timeLimit = benchmark.rlimits.get(TIMELIMIT, DEFAULT_CLOUD_TIMELIMIT) memLimit = bytes_to_mb(benchmark.rlimits.get(MEMLIMIT, DEFAULT_CLOUD_MEMLIMIT)) coreLimit = benchmark.rlimits.get(CORELIMIT, None) numberOfRuns = sum( len(runSet.runs) for runSet in benchmark.run_sets if runSet.should_be_executed() ) limitsAndNumRuns = { "number_of_runs": numberOfRuns, "time_limit_in_sec": timeLimit, "mem_limit_in_mb": memLimit, } if coreLimit is not None: limitsAndNumRuns.update({"core_limit": coreLimit}) # get Runs with args and sourcefiles sourceFiles = set() runDefinitions = [] for runSet in benchmark.run_sets: if not runSet.should_be_executed(): continue if STOPPED_BY_INTERRUPT: break # get runs for run in runSet.runs: runDefinition = {} # wrap list-elements in quotations-marks if they contain whitespace cmdline = ["'{}'".format(x) if " " in x else x for x in run.cmdline()] cmdline = " ".join(cmdline) log_file = os.path.relpath(run.log_file, benchmark.log_folder) runDefinition.update( { "cmdline": cmdline, "log_file": log_file, "sourcefile": run.sourcefiles, "required_files": run.required_files, } ) runDefinitions.append(runDefinition) sourceFiles.update(run.sourcefiles) sourceFiles.update(run.required_files) if not runDefinitions: sys.exit("Benchmark has nothing to run.") return (requirements, numberOfRuns, limitsAndNumRuns, runDefinitions, sourceFiles) def getToolData(benchmark): workingDir = benchmark.working_directory() if not os.path.isdir(workingDir): sys.exit("Missing working directory '{0}', cannot run tool.".format(workingDir)) logging.debug("Working dir: " + workingDir) toolpaths = benchmark.required_files() validToolpaths = set() for file in toolpaths: if not os.path.exists(file): sys.exit( "Missing file '{0}', not runing benchmark without it.".format( os.path.normpath(file) ) ) validToolpaths.add(file) return (workingDir, validToolpaths) def bytes_to_mb(mb): if mb is None: return None return int(mb / 1000 / 1000) def handleCloudResults(benchmark, output_handler, start_time, end_time): outputDir = benchmark.log_folder if not os.path.isdir(outputDir) or not os.listdir(outputDir): # outputDir does not exist or is empty logging.warning( "Cloud produced no results. Output-directory is missing or empty: %s", outputDir, ) if start_time and end_time: usedWallTime = (end_time - start_time).total_seconds() else: usedWallTime = None # write results in runs and handle output after all runs are done executedAllRuns = True runsProducedErrorOutput = False for runSet in benchmark.run_sets: if not runSet.should_be_executed(): output_handler.output_for_skipping_run_set(runSet) continue output_handler.output_before_run_set(runSet, start_time=start_time) for run in runSet.runs: filename = os.path.split(run.log_file)[1] resultFilesDir = os.path.splitext(filename)[0] awsFileDir = os.path.join(benchmark.log_folder, resultFilesDir) logFile = os.path.join(awsFileDir, filename) shutil.move(logFile, run.log_file) dataFile = run.log_file + ".data" shutil.move(logFile + ".data", dataFile) errFile = run.log_file + ".stdError" if os.path.exists(errFile): shutil.move(logFile + ".stdError", errFile) if os.path.isdir(awsFileDir): if os.listdir(awsFileDir): logging.info("Dir %s contains unhandled files", awsFileDir) else: os.rmdir(awsFileDir) if os.path.exists(dataFile) and os.path.exists(run.log_file): try: values = parseCloudRunResultFile(dataFile) if not benchmark.config.debug: os.remove(dataFile) except IOError as e: logging.warning( "Cannot extract measured values from output for file %s: %s", run.identifier, e, ) output_handler.all_created_files.add(dataFile) output_handler.set_error("missing results", runSet) executedAllRuns = False else: output_handler.output_before_run(run) run.set_result(values, ["host"]) output_handler.output_after_run(run) else: logging.warning("No results exist for file %s.", run.identifier) output_handler.set_error("missing results", runSet) executedAllRuns = False if os.path.exists(run.log_file + ".stdError"): runsProducedErrorOutput = True # The directory structure differs between direct and webclient mode when using VCloud. # Move all output files from "sibling of log-file" to "sibling of parent directory". rawPath = run.log_file[: -len(".log")] dirname, filename = os.path.split(rawPath) vcloudFilesDirectory = rawPath + ".files" benchexecFilesDirectory = os.path.join( dirname[: -len(".logfiles")] + ".files", filename ) if os.path.isdir(vcloudFilesDirectory) and not os.path.isdir( benchexecFilesDirectory ): shutil.move(vcloudFilesDirectory, benchexecFilesDirectory) output_handler.output_after_run_set( runSet, walltime=usedWallTime, end_time=end_time ) output_handler.output_after_benchmark(STOPPED_BY_INTERRUPT) if not executedAllRuns: logging.warning("Some expected result files could not be found!") if runsProducedErrorOutput and not benchmark.config.debug: logging.warning( "Some runs produced unexpected warnings on stderr, please check the %s files!", os.path.join(outputDir, "*.stdError"), ) def parseCloudRunResultFile(filePath): def read_items(): with open(filePath, "rt") as file: for line in file: key, value = line.split("=", 1) yield key, value return parse_vcloud_run_result(read_items()) def parse_vcloud_run_result(values): result_values = collections.OrderedDict() def parse_time_value(s): if s[-1] != "s": raise ValueError('Cannot parse "{0}" as a time value.'.format(s)) return float(s[:-1]) def set_exitcode(new): if "exitcode" in result_values: old = result_values["exitcode"] assert ( old == new ), "Inconsistent exit codes {} and {} from VerifierCloud".format(old, new) else: result_values["exitcode"] = new for key, value in values: value = value.strip() if key in ["cputime", "walltime"]: result_values[key] = parse_time_value(value) elif key == "memory": result_values["memory"] = int(value.strip("B")) elif key == "exitcode": set_exitcode(benchexec.util.ProcessExitCode.from_raw(int(value))) elif key == "returnvalue": set_exitcode(benchexec.util.ProcessExitCode.create(value=int(value))) elif key == "exitsignal": set_exitcode(benchexec.util.ProcessExitCode.create(signal=int(value))) elif ( key in ["host", "terminationreason", "cpuCores", "memoryNodes", "starttime"] or key.startswith("blkio-") or key.startswith("cpuenergy") or key.startswith("energy-") or key.startswith("cputime-cpu") ): result_values[key] = value elif key not in ["command", "timeLimit", "coreLimit", "memoryLimit"]: result_values["vcloud-" + key] = value return result_values
1.992188
2
tests/fork/conftest.py
AqualisDAO/curve-dao-contracts
217
12776163
<gh_stars>100-1000 import pytest from brownie_tokens import MintableForkToken class _MintableTestToken(MintableForkToken): def __init__(self, address): super().__init__(address) @pytest.fixture(scope="session") def MintableTestToken(): yield _MintableTestToken @pytest.fixture(scope="module") def USDC(): yield _MintableTestToken("<KEY>") @pytest.fixture(scope="module") def ThreeCRV(): yield _MintableTestToken("0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490") @pytest.fixture(scope="module") def SUSD(): yield _MintableTestToken("0x57ab1ec28d129<PASSWORD>52df4df418<PASSWORD>a2d46d5f51") @pytest.fixture(scope="module") def SBTC(): yield _MintableTestToken("0xfE18be6b3Bd88A2D2A7f928d00292E7a9963CfC6")
1.867188
2
src/haydi/base/permutations.py
Kobzol/haydi
5
12776164
from .domain import Domain from math import factorial import itertools import random class Permutations(Domain): def __init__(self, domain, name=None): super(Permutations, self).__init__(name) self._set_flags_from_domain(domain) self.step_jumps = False # not implemented yet self.domain = domain def _compute_size(self): return factorial(self.domain.size) def create_iter(self, step=0): assert step == 0 # nonzero step implemented yet items = tuple(self.domain) return itertools.permutations(items) def generate_one(self): return random.shuffle(tuple(self.domain)) def _remap_domains(self, transformation): return Permutations(transformation(self.domain), self.name)
3
3
tests/timetools_test.py
ziotom78/stripsim
0
12776165
<reponame>ziotom78/stripsim #!/usr/bin/env python3 # -*- encoding: utf-8 -*- import unittest as ut import os.path import stripeline.timetools as tt import numpy as np class TestTimeTools(ut.TestCase): def testSplitTimeRangeSimple(self): '''Test split_time_range against a very simple input''' result = tt.split_time_range( time_length=2.0, num_of_chunks=2, sampfreq=2.0, time0=0.5) self.assertEqual(len(result), 2) self.assertEqual(result[0], tt.TimeChunk( start_time=0.5, num_of_samples=2)) self.assertEqual(result[1], tt.TimeChunk( start_time=1.5, num_of_samples=2)) def testSplitTimeRangeComplex(self): '''Test split_time_range against a tricky input''' result = tt.split_time_range( time_length=10.0, num_of_chunks=4, sampfreq=1.0, time0=2.0) self.assertEqual(len(result), 4) self.assertEqual(result[0], tt.TimeChunk( start_time=2.0, num_of_samples=2)) self.assertEqual(result[1], tt.TimeChunk( start_time=5.0, num_of_samples=2)) self.assertEqual(result[2], tt.TimeChunk( start_time=7.0, num_of_samples=2)) self.assertEqual(result[3], tt.TimeChunk( start_time=10.0, num_of_samples=2)) class TestToiProviders(ut.TestCase): 'Test classes like ToiProvider and FitsToiProvider' def test_split(self): 'Verify that "split_into_n" returns the expected results.' self.assertEqual(tuple(tt.split_into_n(10, 4)), (2, 3, 2, 3)) self.assertEqual(tuple(tt.split_into_n(201, 2)), (100, 101)) def test_toi_splitting(self): 'Verify that "assign_toi_files_to_processes" returns the expected results.' samples_per_processes = [110, 90] fits_files = [tt.ToiFile(file_name='A.fits', num_of_samples=40), tt.ToiFile(file_name='B.fits', num_of_samples=60), tt.ToiFile(file_name='C.fits', num_of_samples=30), tt.ToiFile(file_name='D.fits', num_of_samples=70)] result = tt.assign_toi_files_to_processes( samples_per_processes, fits_files) self.assertEqual(len(result), 2) self.assertEqual(len(result[0]), 3) self.assertEqual(len(result[1]), 2) segment0, segment1 = tuple(result) self.assertEqual(segment0[0], tt.ToiFileSegment(file_name='A.fits', first_element=0, num_of_elements=40)) self.assertEqual(segment0[1], tt.ToiFileSegment(file_name='B.fits', first_element=0, num_of_elements=60)) self.assertEqual(segment0[2], tt.ToiFileSegment(file_name='C.fits', first_element=0, num_of_elements=10)) self.assertEqual(segment1[0], tt.ToiFileSegment(file_name='C.fits', first_element=10, num_of_elements=20)) self.assertEqual(segment1[1], tt.ToiFileSegment(file_name='D.fits', first_element=0, num_of_elements=70)) def test_fits_tois(self): 'Verify that FitsToiProvider is able to load some real data from FITS files' test_file_path = os.path.dirname(__file__) file_names = [os.path.join(test_file_path, x) for x in ['toi_test_A.fits', 'toi_test_B.fits', 'toi_test_C.fits']] file_layout = \ tt.FitsTableLayout(time_col=tt.FitsColumn(hdu=1, column='TIME'), theta_col=tt.FitsColumn(hdu=2, column=0), phi_col=tt.FitsColumn(hdu=2, column=1), psi_col=tt.FitsColumn(hdu=2, column=2), signal_cols=[ tt.FitsColumn(hdu=3, column='DET_Q1'), tt.FitsColumn(hdu=3, column='DET_Q2'), tt.FitsColumn(hdu=3, column='DET_U1'), tt.FitsColumn(hdu=3, column='DET_U2') ]) # Create a set of FitsToiProviders, one for each MPI rank. Note that we do # *not* really use MPI here (comm is None): we just want to check that # the segment is loaded correctly for each rank num_of_processes = 2 providers = [tt.FitsToiProvider(rank=i, num_of_processes=num_of_processes, file_names=file_names, file_layout=file_layout, comm=None) for i in range(num_of_processes)] # Check that get_time works self.assertTrue(np.allclose( providers[0].get_time(), np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]))) self.assertTrue(np.allclose( providers[1].get_time(), np.array([8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]))) # Check that get_pointings work theta0, phi0 = providers[0].get_pointings() theta1, phi1 = providers[1].get_pointings() self.assertTrue(np.allclose( theta0, np.array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]))) self.assertTrue(np.allclose( theta1, np.array([0.5, 0.4, 0.3, 0.0, 0.1, 0.2, 0.3, 0.4]))) self.assertTrue(np.allclose( phi0, np.array([0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.0]))) self.assertTrue(np.allclose( phi1, np.array([0.2, 0.4, 0.6, 0.0, 0.01, 0.02, 0.03, 0.04]))) # Check that get_signal works, both when passing an integer and a string sig_from_idx = providers[0].get_signal(0) sig_from_name = providers[0].get_signal('Q1') self.assertTrue(np.allclose(sig_from_idx, sig_from_name)) self.assertTrue(np.allclose( sig_from_idx, np.array([0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])))
2.5
2
Python/loop4.py
AungWinnHtut/CStutorial
0
12776166
<filename>Python/loop4.py # loop3 userinput = input("Enter a letter in the range A - C : ") while (userinput != "A") and (userinput != "a") and (userinput != "B") and (userinput != "b") and (userinput != "C") and (userinput != "c"): userinput = input("Enter a letter in the range A-C : ")
3.78125
4
bleurt/score_test.py
yongchanghao/bleurt
416
12776167
<reponame>yongchanghao/bleurt # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for scoring function.""" import os from bleurt import score import tensorflow.compat.v1 as tf tf.enable_eager_execution() references = [ "An apple a day keeps the doctor away.", "An apple a day keeps the doctor away." ] candidates = [ "An apple a day keeps the doctor away.", "An apple a day keeps doctors away." ] ref_scores = [0.910811, 0.771989] def get_test_checkpoint(): pkg = os.path.abspath(__file__) pkg, _ = os.path.split(pkg) ckpt = os.path.join(pkg, "test_checkpoint") assert tf.io.gfile.exists(ckpt) return ckpt class ScoreTest(tf.test.TestCase): def test_default_bleurt_score(self): bleurt = score.BleurtScorer() scores = bleurt.score(references=references, candidates=candidates) self.assertLen(scores, 2) self.assertAllClose(scores, ref_scores) def test_positional_args_error(self): bleurt = score.BleurtScorer() with self.assertRaises(AssertionError): _ = bleurt.score(references, candidates) def test_bleurt_nulls(self): bleurt = score.BleurtScorer() test_references = [] test_candidates = [] scores = bleurt.score( references=test_references, candidates=test_candidates) self.assertLen(scores, 0) def test_bleurt_empty(self): bleurt = score.BleurtScorer() test_references = [""] test_candidates = [""] scores = bleurt.score( references=test_references, candidates=test_candidates) self.assertLen(scores, 1) def test_bleurt_score_with_checkpoint(self): checkpoint = get_test_checkpoint() bleurt = score.BleurtScorer(checkpoint) scores = bleurt.score(references=references, candidates=candidates) self.assertLen(scores, 2) self.assertAllClose(scores, ref_scores) def test_tf_bleurt_score_eager(self): # Creates the TF Graph. bleurt_ops = score.create_bleurt_ops() tfcandidates = tf.constant(candidates) tfreferences = tf.constant(references) bleurt_out = bleurt_ops(references=tfreferences, candidates=tfcandidates) # Computes the BLEURT scores. self.assertIn("predictions", bleurt_out) self.assertEqual(bleurt_out["predictions"].shape, (2,)) self.assertAllClose(bleurt_out["predictions"], ref_scores) def test_tf_bleurt_positional_args_error(self): # Creates the TF Graph. bleurt_ops = score.create_bleurt_ops() tfcandidates = tf.constant(candidates) tfreferences = tf.constant(references) with self.assertRaises(AssertionError): _ = bleurt_ops(tfreferences, tfcandidates) if __name__ == "__main__": tf.test.main()
2.1875
2
qa/rpc-tests/preciousblock.py
jeffontenot/bitcoin
0
12776168
#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test PreciousBlock code # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class PreciousTest(BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 3) def setup_network(self): self.nodes = [] self.is_network_split = False self.nodes.append(start_node(0, self.options.tmpdir, ["-debug"])) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug"])) self.nodes.append(start_node(2, self.options.tmpdir, ["-debug"])) def run_test(self): print "Mine blocks A-B-C on Node 0" self.nodes[0].generate(3) assert(self.nodes[0].getblockcount() == 3) hashC = self.nodes[0].getbestblockhash() print "Mine competing blocks E-F-G on Node 1" self.nodes[1].generate(3) assert(self.nodes[1].getblockcount() == 3) hashG = self.nodes[1].getbestblockhash() assert(hashC != hashG) print "Connect nodes and check no reorg occurs" connect_nodes_bi(self.nodes,0,1) sync_blocks(self.nodes[0:2]) assert(self.nodes[0].getbestblockhash() == hashC) assert(self.nodes[1].getbestblockhash() == hashG) print "Make Node0 prefer block G" self.nodes[0].preciousblock(hashG) assert(self.nodes[0].getbestblockhash() == hashG) print "Make Node0 prefer block C again" self.nodes[0].preciousblock(hashC) assert(self.nodes[0].getbestblockhash() == hashC) print "Make Node1 prefer block C" self.nodes[1].preciousblock(hashC) sync_chain(self.nodes[0:2]) # wait because node 1 may not have downloaded hashC assert(self.nodes[1].getbestblockhash() == hashC) print "Make Node1 prefer block G again" self.nodes[1].preciousblock(hashG) assert(self.nodes[1].getbestblockhash() == hashG) print "Make Node0 prefer block G again" self.nodes[0].preciousblock(hashG) assert(self.nodes[0].getbestblockhash() == hashG) print "Make Node1 prefer block C again" self.nodes[1].preciousblock(hashC) assert(self.nodes[1].getbestblockhash() == hashC) print "Mine another block (E-F-G-)H on Node 0 and reorg Node 1" self.nodes[0].generate(1) assert(self.nodes[0].getblockcount() == 4) sync_blocks(self.nodes[0:2]) hashH = self.nodes[0].getbestblockhash() assert(self.nodes[1].getbestblockhash() == hashH) print "Node1 should not be able to prefer block C anymore" self.nodes[1].preciousblock(hashC) assert(self.nodes[1].getbestblockhash() == hashH) print "Mine competing blocks I-J-K-L on Node 2" self.nodes[2].generate(4) assert(self.nodes[2].getblockcount() == 4) hashL = self.nodes[2].getbestblockhash() print "Connect nodes and check no reorg occurs" connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) sync_blocks(self.nodes[0:3]) assert(self.nodes[0].getbestblockhash() == hashH) assert(self.nodes[1].getbestblockhash() == hashH) assert(self.nodes[2].getbestblockhash() == hashL) print "Make Node1 prefer block L" self.nodes[1].preciousblock(hashL) assert(self.nodes[1].getbestblockhash() == hashL) print "Make Node2 prefer block H" self.nodes[2].preciousblock(hashH) assert(self.nodes[2].getbestblockhash() == hashH) if __name__ == '__main__': PreciousTest().main()
2.375
2
pyTMD/model.py
tsutterley/pyTMD
47
12776169
#!/usr/bin/env python u""" model.py Written by <NAME> (09/2021) Retrieves tide model parameters for named tide models and from model definition files UPDATE HISTORY: Written 09/2021 """ import os import re import io import copy class model: """Retrieves tide model parameters for named models or from a model definition file for use in the pyTMD tide prediction programs """ def __init__(self, directory=os.getcwd(), **kwargs): # set default keyword arguments kwargs.setdefault('compressed',False) kwargs.setdefault('format','netcdf') kwargs.setdefault('verify',True) # set initial attributes self.atl03 = None self.atl06 = None self.atl07 = None self.atl11 = None self.atl12 = None self.compressed = copy.copy(kwargs['compressed']) self.constituents = None self.description = None self.directory = os.path.expanduser(directory) self.format = copy.copy(kwargs['format']) self.gla12 = None self.grid_file = None self.long_name = None self.model_file = None self.name = None self.projection = None self.reference = None self.scale = None self.type = None self.variable = None self.verify = copy.copy(kwargs['verify']) self.version = None def grid(self,m): """Create a model object from known tide grid files """ # model name self.name = m # select between known tide models if (m == 'CATS0201'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'cats0201_tmd') self.grid_file = self.pathfinder('grid_CATS') elif (m == 'CATS2008'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'CATS2008') self.grid_file = self.pathfinder('grid_CATS2008') elif (m == 'CATS2008_load'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory, 'CATS2008a_SPOTL_Load') self.grid_file = self.pathfinder('grid_CATS2008a_opt') elif (m == 'TPXO9-atlas'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas') self.grid_file = self.pathfinder('grid_tpxo9_atlas') self.version = 'v1' elif (m == 'TPXO9-atlas-v2'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v2') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v2') self.version = 'v2' elif (m == 'TPXO9-atlas-v3'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v3') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v3') self.version = 'v3' elif (m == 'TPXO9-atlas-v4'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v4') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v4') self.version = 'v4' elif (m == 'TPXO9.1'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO9.1','DATA') self.grid_file = self.pathfinder('grid_tpxo9') self.version = '9.1' elif (m == 'TPXO8-atlas'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'tpxo8_atlas') self.grid_file = self.pathfinder('grid_tpxo8atlas_30_v1') self.version = '8' elif (m == 'TPXO7.2'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO7.2_tmd') self.grid_file = self.pathfinder('grid_tpxo7.2') self.version = '7.2' elif (m == 'TPXO7.2_load'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO7.2_load') self.grid_file = self.pathfinder('grid_tpxo6.2') self.version = '7.2' elif (m == 'AODTM-5'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'aodtm5_tmd') self.grid_file = self.pathfinder('grid_Arc5km') elif (m == 'AOTIM-5'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'aotim5_tmd') self.grid_file = self.pathfinder('grid_Arc5km') elif (m == 'AOTIM-5-2018'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'Arc5km2018') self.grid_file = self.pathfinder('grid_Arc5km2018') self.version = '2018' elif (m == 'Gr1km-v2'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'greenlandTMD_v2') self.grid_file = self.pathfinder('grid_Greenland8.v2') self.version = 'v2' else: raise Exception("Unlisted tide model") # return the model parameters return self def elevation(self,m): """Create a model object from known tidal elevation models """ # model name self.name = m # model type self.type = 'z' # select between known tide models if (m == 'CATS0201'): self.model_directory = os.path.join(self.directory,'cats0201_tmd') self.grid_file = self.pathfinder('grid_CATS') self.model_file = self.pathfinder('h0_CATS02_01') self.format = 'OTIS' self.projection = '4326' # model description and references self.reference = ('https://mail.esr.org/polar_tide_models/' 'Model_CATS0201.html') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'CATS2008'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'CATS2008') self.grid_file = self.pathfinder('grid_CATS2008') self.model_file = self.pathfinder('hf.CATS2008.out') self.projection = 'CATS2008' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/cats2008/') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'CATS2008_load'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory, 'CATS2008a_SPOTL_Load') self.grid_file = self.pathfinder('grid_CATS2008a_opt') self.model_file = self.pathfinder('h_CATS2008a_SPOTL_load') self.projection = 'CATS2008' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/cats2008/') self.atl03 = 'tide_load' self.atl06 = 'tide_load' self.atl07 = 'height_segment_load' self.atl11 = 'tide_load' self.atl12 = 'tide_load_seg' self.gla12 = 'd_ldElv' self.variable = 'tide_load' self.long_name = "Load Tide" self.description = ("Local displacement due to Ocean " "Loading (-6 to 0 cm)") elif (m == 'TPXO9-atlas'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas') self.grid_file = self.pathfinder('grid_tpxo9_atlas') model_files = ['h_q1_tpxo9_atlas_30','h_o1_tpxo9_atlas_30', 'h_p1_tpxo9_atlas_30','h_k1_tpxo9_atlas_30', 'h_n2_tpxo9_atlas_30','h_m2_tpxo9_atlas_30', 'h_s2_tpxo9_atlas_30','h_k2_tpxo9_atlas_30', 'h_m4_tpxo9_atlas_30','h_ms4_tpxo9_atlas_30', 'h_mn4_tpxo9_atlas_30','h_2n2_tpxo9_atlas_30'] self.model_file = self.pathfinder(model_files) self.projection = '4326' self.scale = 1.0/1000.0 self.version = 'v1' # model description and references self.reference = ('http://volkov.oce.orst.edu/tides/' 'tpxo9_atlas.html') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO9-atlas-v2'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v2') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v2') model_files = ['h_q1_tpxo9_atlas_30_v2','h_o1_tpxo9_atlas_30_v2', 'h_p1_tpxo9_atlas_30_v2','h_k1_tpxo9_atlas_30_v2', 'h_n2_tpxo9_atlas_30_v2','h_m2_tpxo9_atlas_30_v2', 'h_s2_tpxo9_atlas_30_v2','h_k2_tpxo9_atlas_30_v2', 'h_m4_tpxo9_atlas_30_v2','h_ms4_tpxo9_atlas_30_v2', 'h_mn4_tpxo9_atlas_30_v2','h_2n2_tpxo9_atlas_30_v2'] self.model_file = self.pathfinder(model_files) self.projection = '4326' self.scale = 1.0/1000.0 self.version = 'v2' # model description and references self.reference = 'https://www.tpxo.net/global/tpxo9-atlas' self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO9-atlas-v3'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v3') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v3') model_files = ['h_q1_tpxo9_atlas_30_v3','h_o1_tpxo9_atlas_30_v3', 'h_p1_tpxo9_atlas_30_v3','h_k1_tpxo9_atlas_30_v3', 'h_n2_tpxo9_atlas_30_v3','h_m2_tpxo9_atlas_30_v3', 'h_s2_tpxo9_atlas_30_v3','h_k2_tpxo9_atlas_30_v3', 'h_m4_tpxo9_atlas_30_v3','h_ms4_tpxo9_atlas_30_v3', 'h_mn4_tpxo9_atlas_30_v3','h_2n2_tpxo9_atlas_30_v3', 'h_mf_tpxo9_atlas_30_v3','h_mm_tpxo9_atlas_30_v3'] self.model_file = self.pathfinder(model_files) self.projection = '4326' self.scale = 1.0/1000.0 self.version = 'v3' # model description and references self.reference = 'https://www.tpxo.net/global/tpxo9-atlas' self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO9-atlas-v4'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v4') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v4') model_files = ['h_q1_tpxo9_atlas_30_v4','h_o1_tpxo9_atlas_30_v4', 'h_p1_tpxo9_atlas_30_v4','h_k1_tpxo9_atlas_30_v4', 'h_n2_tpxo9_atlas_30_v4','h_m2_tpxo9_atlas_30_v4', 'h_s2_tpxo9_atlas_30_v4','h_k2_tpxo9_atlas_30_v4', 'h_m4_tpxo9_atlas_30_v4','h_ms4_tpxo9_atlas_30_v4', 'h_mn4_tpxo9_atlas_30_v4','h_2n2_tpxo9_atlas_30_v4', 'h_mf_tpxo9_atlas_30_v4','h_mm_tpxo9_atlas_30_v4'] self.model_file = self.pathfinder(model_files) self.projection = '4326' self.scale = 1.0/1000.0 self.version = 'v4' # model description and references self.reference = 'https://www.tpxo.net/global/tpxo9-atlas' self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO9.1'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO9.1','DATA') self.grid_file = self.pathfinder('grid_tpxo9') self.model_file = self.pathfinder('h_tpxo9.v1') self.projection = '4326' self.version = '9.1' # model description and references self.reference = ('http://volkov.oce.orst.edu/' 'tides/global.html') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO8-atlas'): self.format = 'ATLAS' self.model_directory = os.path.join(self.directory,'tpxo8_atlas') self.grid_file = self.pathfinder('grid_tpxo8atlas_30_v1') self.model_file = self.pathfinder('hf.tpxo8_atlas_30_v1') self.projection = '4326' self.version = '8' # model description and references self.reference = ('http://volkov.oce.orst.edu/' 'tides/tpxo8_atlas.html') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO7.2'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO7.2_tmd') self.grid_file = self.pathfinder('grid_tpxo7.2') self.model_file = self.pathfinder('h_tpxo7.2') self.projection = '4326' self.version = '7.2' # model description and references self.reference = ('http://volkov.oce.orst.edu/' 'tides/global.html') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'TPXO7.2_load'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO7.2_load') self.grid_file = self.pathfinder('grid_tpxo6.2') self.model_file = self.pathfinder('h_tpxo7.2_load') self.projection = '4326' self.version = '7.2' # model description and references self.reference = ('http://volkov.oce.orst.edu/' 'tides/global.html') self.atl03 = 'tide_load' self.atl06 = 'tide_load' self.atl07 = 'height_segment_load' self.atl11 = 'tide_load' self.atl12 = 'tide_load_seg' self.gla12 = 'd_ldElv' self.variable = 'tide_load' self.long_name = "Load Tide" self.description = ("Local displacement due to Ocean " "Loading (-6 to 0 cm)") elif (m == 'AODTM-5'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'aodtm5_tmd') self.grid_file = self.pathfinder('grid_Arc5km') self.model_file = self.pathfinder('h0_Arc5km.oce') self.projection = 'PSNorth' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/' 'aodtm-5/') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'AOTIM-5'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'aotim5_tmd') self.grid_file = self.pathfinder('grid_Arc5km') self.model_file = self.pathfinder('h_Arc5km.oce') self.projection = 'PSNorth' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/' 'aotim-5/') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'AOTIM-5-2018'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'Arc5km2018') self.grid_file = self.pathfinder('grid_Arc5km2018') self.model_file = self.pathfinder('h_Arc5km2018') self.projection = 'PSNorth' self.version = '2018' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/' 'aotim-5/') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'Gr1km-v2'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'greenlandTMD_v2') self.grid_file = self.pathfinder('grid_Greenland8.v2') self.model_file = self.pathfinder('h_Greenland8.v2') self.projection = '3413' self.version = 'v2' # model description and references self.reference = 'https://doi.org/10.1002/2016RG000546' self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'GOT4.7'): self.format = 'GOT' self.model_directory = os.path.join(self.directory, 'GOT4.7','grids_oceantide') model_files = ['q1.d','o1.d','p1.d','k1.d','n2.d', 'm2.d','s2.d','k2.d','s1.d','m4.d'] self.model_file = self.pathfinder(model_files) self.scale = 1.0/100.0 self.version = '4.7' # model description and references self.reference = ('https://denali.gsfc.nasa.gov/' 'personal_pages/ray/MiscPubs/' '19990089548_1999150788.pdf') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'GOT4.7_load'): self.format = 'GOT' self.model_directory = os.path.join(self.directory, 'GOT4.7','grids_loadtide') model_files = ['q1load.d','o1load.d', 'p1load.d','k1load.d','n2load.d', 'm2load.d','s2load.d','k2load.d', 's1load.d','m4load.d'] self.model_file = self.pathfinder(model_files) self.scale = 1.0/1000.0 self.version = '4.7' # model description and references self.reference = ('https://denali.gsfc.nasa.gov/' 'personal_pages/ray/MiscPubs/' '19990089548_1999150788.pdf') self.atl03 = 'tide_load' self.atl06 = 'tide_load' self.atl07 = 'height_segment_load' self.atl11 = 'tide_load' self.atl12 = 'tide_load_seg' self.gla12 = 'd_ldElv' self.variable = 'tide_load' self.long_name = "Load Tide" self.description = ("Local displacement due to Ocean " "Loading (-6 to 0 cm)") elif (m == 'GOT4.8'): self.format = 'GOT' self.model_directory = os.path.join(self.directory, 'got4.8','grids_oceantide') model_files = ['q1.d','o1.d','p1.d','k1.d','n2.d', 'm2.d','s2.d','k2.d','s1.d','m4.d'] self.model_file = self.pathfinder(model_files) self.scale = 1.0/100.0 self.version = '4.8' # model description and references self.reference = ('https://denali.gsfc.nasa.gov/' 'personal_pages/ray/MiscPubs/' '19990089548_1999150788.pdf') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'GOT4.8_load'): self.format = 'GOT' self.model_directory = os.path.join(self.directory, 'got4.8','grids_loadtide') model_files = ['q1load.d','o1load.d', 'p1load.d','k1load.d','n2load.d', 'm2load.d','s2load.d','k2load.d', 's1load.d','m4load.d'] self.model_file = self.pathfinder(model_files) self.scale = 1.0/1000.0 self.version = '4.8' # model description and references self.reference = ('https://denali.gsfc.nasa.gov/' 'personal_pages/ray/MiscPubs/' '19990089548_1999150788.pdf') self.atl03 = 'tide_load' self.atl06 = 'tide_load' self.atl07 = 'height_segment_load' self.atl11 = 'tide_load' self.atl12 = 'tide_load_seg' self.gla12 = 'd_ldElv' self.variable = 'tide_load' self.long_name = "Load Tide" self.description = ("Local displacement due to Ocean " "Loading (-6 to 0 cm)") elif (m == 'GOT4.10'): self.format = 'GOT' self.model_directory = os.path.join(self.directory, 'GOT4.10c','grids_oceantide') model_files = ['q1.d','o1.d','p1.d','k1.d','n2.d', 'm2.d','s2.d','k2.d','s1.d','m4.d'] self.model_file = self.pathfinder(model_files) self.scale = 1.0/100.0 self.version = '4.10' # model description and references self.reference = ('https://denali.gsfc.nasa.gov/' 'personal_pages/ray/MiscPubs/' '19990089548_1999150788.pdf') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'GOT4.10_load'): self.format = 'GOT' self.model_directory = os.path.join(self.directory, 'GOT4.10c','grids_loadtide') model_files = ['q1load.d','o1load.d', 'p1load.d','k1load.d','n2load.d', 'm2load.d','s2load.d','k2load.d', 's1load.d','m4load.d'] self.model_file = self.pathfinder(model_files) self.scale = 1.0/1000.0 self.version = '4.10' # model description and references self.reference = ('https://denali.gsfc.nasa.gov/' 'personal_pages/ray/MiscPubs/' '19990089548_1999150788.pdf') self.atl03 = 'tide_load' self.atl06 = 'tide_load' self.atl07 = 'height_segment_load' self.atl11 = 'tide_load' self.atl12 = 'tide_load_seg' self.gla12 = 'd_ldElv' self.variable = 'tide_load' self.long_name = "Load Tide" self.description = ("Local displacement due to Ocean " "Loading (-6 to 0 cm)") elif (m == 'FES2014'): self.format = 'FES' self.model_directory = os.path.join(self.directory, 'fes2014','ocean_tide') model_files = ['2n2.nc','eps2.nc','j1.nc','k1.nc', 'k2.nc','l2.nc','la2.nc','m2.nc','m3.nc','m4.nc', 'm6.nc','m8.nc','mf.nc','mks2.nc','mm.nc', 'mn4.nc','ms4.nc','msf.nc','msqm.nc','mtm.nc', 'mu2.nc','n2.nc','n4.nc','nu2.nc','o1.nc','p1.nc', 'q1.nc','r2.nc','s1.nc','s2.nc','s4.nc','sa.nc', 'ssa.nc','t2.nc'] self.model_file = self.pathfinder(model_files) self.constituents = ['2n2','eps2','j1','k1','k2','l2', 'lambda2','m2','m3','m4','m6','m8','mf','mks2','mm', 'mn4','ms4','msf','msqm','mtm','mu2','n2','n4','nu2', 'o1','p1','q1','r2','s1','s2','s4','sa','ssa','t2'] self.scale = 1.0/100.0 self.version = 'FES2014' # model description and references self.reference = ('https://www.aviso.altimetry.fr/' 'en/data/products/auxiliary-products/' 'global-tide-fes.html') self.atl03 = 'tide_ocean' self.atl06 = 'tide_ocean' self.atl07 = 'height_segment_ocean' self.atl11 = 'tide_ocean' self.atl12 = 'tide_ocean_seg' self.gla12 = 'd_ocElv' self.variable = 'tide_ocean' self.long_name = "Ocean Tide" self.description = ("Ocean Tides including diurnal and " "semi-diurnal (harmonic analysis), and longer period " "tides (dynamic and self-consistent equilibrium).") elif (m == 'FES2014_load'): self.format = 'FES' self.model_directory = os.path.join(self.directory, 'fes2014','load_tide') model_files = ['2n2.nc','eps2.nc','j1.nc','k1.nc', 'k2.nc','l2.nc','la2.nc','m2.nc','m3.nc','m4.nc', 'm6.nc','m8.nc','mf.nc','mks2.nc','mm.nc', 'mn4.nc','ms4.nc','msf.nc','msqm.nc','mtm.nc', 'mu2.nc','n2.nc','n4.nc','nu2.nc','o1.nc','p1.nc', 'q1.nc','r2.nc','s1.nc','s2.nc','s4.nc','sa.nc', 'ssa.nc','t2.nc'] self.model_file = self.pathfinder(model_files) self.constituents = ['2n2','eps2','j1','k1','k2','l2', 'lambda2','m2','m3','m4','m6','m8','mf','mks2','mm', 'mn4','ms4','msf','msqm','mtm','mu2','n2','n4','nu2', 'o1','p1','q1','r2','s1','s2','s4','sa','ssa','t2'] self.scale = 1.0/100.0 self.version = 'FES2014' # model description and references self.reference = ('https://www.aviso.altimetry.fr/' 'en/data/products/auxiliary-products/' 'global-tide-fes.html') self.atl03 = 'tide_load' self.atl06 = 'tide_load' self.atl07 = 'height_segment_load' self.atl11 = 'tide_load' self.atl12 = 'tide_load_seg' self.gla12 = 'd_ldElv' self.variable = 'tide_load' self.long_name = "Load Tide" self.description = ("Local displacement due to Ocean " "Loading (-6 to 0 cm)") else: raise Exception("Unlisted tide model") # return the model parameters return self def current(self,m): """Create a model object from known tidal current models """ # model name self.name = m # model type self.type = ['u','v'] # select between tide models if (m == 'CATS0201'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'cats0201_tmd') self.grid_file = self.pathfinder('grid_CATS') self.model_file = dict(u=self.pathfinder('UV0_CATS02_01')) self.projection = '4326' # model description and references self.reference = ('https://mail.esr.org/polar_tide_models/' 'Model_CATS0201.html') elif (m == 'CATS2008'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'CATS2008') self.grid_file = self.pathfinder('grid_CATS2008') self.model_file = dict(u=self.pathfinder('uv.CATS2008.out')) self.projection = 'CATS2008' elif (m == 'TPXO9-atlas'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas') self.grid_file = self.pathfinder('grid_tpxo9_atlas') model_files = {} model_files['u'] = ['u_q1_tpxo9_atlas_30','u_o1_tpxo9_atlas_30', 'u_p1_tpxo9_atlas_30','u_k1_tpxo9_atlas_30', 'u_n2_tpxo9_atlas_30','u_m2_tpxo9_atlas_30', 'u_s2_tpxo9_atlas_30','u_k2_tpxo9_atlas_30', 'u_m4_tpxo9_atlas_30','u_ms4_tpxo9_atlas_30', 'u_mn4_tpxo9_atlas_30','u_2n2_tpxo9_atlas_30'] model_files['v'] = ['v_q1_tpxo9_atlas_30','v_o1_tpxo9_atlas_30', 'v_p1_tpxo9_atlas_30','v_k1_tpxo9_atlas_30', 'v_n2_tpxo9_atlas_30','v_m2_tpxo9_atlas_30', 'v_s2_tpxo9_atlas_30','v_k2_tpxo9_atlas_30', 'v_m4_tpxo9_atlas_30','v_ms4_tpxo9_atlas_30', 'v_mn4_tpxo9_atlas_30','v_2n2_tpxo9_atlas_30'] self.model_file = {} for key,val in model_files.items(): self.model_file[key] = self.pathfinder(val) self.projection = '4326' self.scale = 1.0/100.0 self.version = 'v1' # model description and references self.reference = ('http://volkov.oce.orst.edu/tides/' 'tpxo9_atlas.html') elif (m == 'TPXO9-atlas-v2'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v2') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v2') model_files = {} model_files['u'] = ['u_q1_tpxo9_atlas_30_v2','u_o1_tpxo9_atlas_30_v2', 'u_p1_tpxo9_atlas_30_v2','u_k1_tpxo9_atlas_30_v2', 'u_n2_tpxo9_atlas_30_v2','u_m2_tpxo9_atlas_30_v2', 'u_s2_tpxo9_atlas_30_v2','u_k2_tpxo9_atlas_30_v2', 'u_m4_tpxo9_atlas_30_v2','u_ms4_tpxo9_atlas_30_v2', 'u_mn4_tpxo9_atlas_30_v2','u_2n2_tpxo9_atlas_30_v2'] model_files['v'] = ['v_q1_tpxo9_atlas_30_v2','v_o1_tpxo9_atlas_30_v2', 'v_p1_tpxo9_atlas_30_v2','v_k1_tpxo9_atlas_30_v2', 'v_n2_tpxo9_atlas_30_v2','v_m2_tpxo9_atlas_30_v2', 'v_s2_tpxo9_atlas_30_v2','v_k2_tpxo9_atlas_30_v2', 'v_m4_tpxo9_atlas_30_v2','v_ms4_tpxo9_atlas_30_v2', 'v_mn4_tpxo9_atlas_30_v2','v_2n2_tpxo9_atlas_30_v2'] self.model_file = {} for key,val in model_files.items(): self.model_file[key] = self.pathfinder(val) self.projection = '4326' self.scale = 1.0/100.0 self.version = 'v2' # model description and references self.reference = 'https://www.tpxo.net/global/tpxo9-atlas' elif (m == 'TPXO9-atlas-v3'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v3') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v3') model_files = {} model_files['u'] = ['u_q1_tpxo9_atlas_30_v3','u_o1_tpxo9_atlas_30_v3', 'u_p1_tpxo9_atlas_30_v3','u_k1_tpxo9_atlas_30_v3', 'u_n2_tpxo9_atlas_30_v3','u_m2_tpxo9_atlas_30_v3', 'u_s2_tpxo9_atlas_30_v3','u_k2_tpxo9_atlas_30_v3', 'u_m4_tpxo9_atlas_30_v3','u_ms4_tpxo9_atlas_30_v3', 'u_mn4_tpxo9_atlas_30_v3','u_2n2_tpxo9_atlas_30_v3'] model_files['v'] = ['v_q1_tpxo9_atlas_30_v3','v_o1_tpxo9_atlas_30_v3', 'v_p1_tpxo9_atlas_30_v3','v_k1_tpxo9_atlas_30_v3', 'v_n2_tpxo9_atlas_30_v3','v_m2_tpxo9_atlas_30_v3', 'v_s2_tpxo9_atlas_30_v3','v_k2_tpxo9_atlas_30_v3', 'v_m4_tpxo9_atlas_30_v3','v_ms4_tpxo9_atlas_30_v3', 'v_mn4_tpxo9_atlas_30_v3','v_2n2_tpxo9_atlas_30_v3'] self.model_file = {} for key,val in model_files.items(): self.model_file[key] = self.pathfinder(val) self.projection = '4326' self.scale = 1.0/100.0 self.version = 'v3' # model description and references self.reference = 'https://www.tpxo.net/global/tpxo9-atlas' elif (m == 'TPXO9-atlas-v4'): self.model_directory = os.path.join(self.directory,'TPXO9_atlas_v4') self.grid_file = self.pathfinder('grid_tpxo9_atlas_30_v4') model_files = {} model_files['u'] = ['u_q1_tpxo9_atlas_30_v4','u_o1_tpxo9_atlas_30_v4', 'u_p1_tpxo9_atlas_30_v4','u_k1_tpxo9_atlas_30_v4', 'u_n2_tpxo9_atlas_30_v4','u_m2_tpxo9_atlas_30_v4', 'u_s2_tpxo9_atlas_30_v4','u_k2_tpxo9_atlas_30_v4', 'u_m4_tpxo9_atlas_30_v4','u_ms4_tpxo9_atlas_30_v4', 'u_mn4_tpxo9_atlas_30_v4','u_2n2_tpxo9_atlas_30_v4'] model_files['v'] = ['v_q1_tpxo9_atlas_30_v4','v_o1_tpxo9_atlas_30_v4', 'v_p1_tpxo9_atlas_30_v4','v_k1_tpxo9_atlas_30_v4', 'v_n2_tpxo9_atlas_30_v4','v_m2_tpxo9_atlas_30_v4', 'v_s2_tpxo9_atlas_30_v4','v_k2_tpxo9_atlas_30_v4', 'v_m4_tpxo9_atlas_30_v4','v_ms4_tpxo9_atlas_30_v4', 'v_mn4_tpxo9_atlas_30_v4','v_2n2_tpxo9_atlas_30_v4'] self.model_file = {} for key,val in model_files.items(): self.model_file[key] = self.pathfinder(val) self.projection = '4326' self.scale = 1.0/100.0 self.version = 'v4' # model description and references self.reference = 'https://www.tpxo.net/global/tpxo9-atlas' elif (m == 'TPXO9.1'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO9.1') self.grid_file = self.pathfinder('grid_tpxo9') self.model_file = dict(u=self.pathfinder('u_tpxo9.v1')) self.projection = '4326' self.version = '9.1' # model description and references self.reference = ('http://volkov.oce.orst.edu/tides/' 'global.html') elif (m == 'TPXO8-atlas'): self.format = 'ATLAS' self.model_directory = os.path.join(self.directory,'tpxo8_atlas') self.grid_file = self.pathfinder('grid_tpxo8atlas_30_v1') self.model_file = dict(u=self.pathfinder('uv.tpxo8_atlas_30_v1')) self.projection = '4326' self.version = '8' # model description and references self.reference = ('http://volkov.oce.orst.edu/tides/' 'tpxo8_atlas.html') elif (m == 'TPXO7.2'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'TPXO7.2_tmd') self.grid_file = self.pathfinder('grid_tpxo7.2') self.model_file = dict(u=self.pathfinder('u_tpxo7.2')) self.projection = '4326' self.version = '7.2' # model description and references self.reference = ('http://volkov.oce.orst.edu/tides/' 'global.html') elif (m == 'AODTM-5'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'aodtm5_tmd') self.grid_file = self.pathfinder('grid_Arc5km') self.model_file = dict(u=self.pathfinder('UV0_Arc5km')) self.projection = 'PSNorth' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/' 'aodtm-5/') elif (m == 'AOTIM-5'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'aotim5_tmd') self.grid_file = self.pathfinder('grid_Arc5km') self.model_file = dict(u=self.pathfinder('UV_Arc5km')) self.projection = 'PSNorth' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/' 'aotim-5/') elif (m == 'AOTIM-5-2018'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'Arc5km2018') self.grid_file = self.pathfinder('grid_Arc5km2018') self.model_file = dict(u=self.pathfinder('UV_Arc5km2018')) self.projection = 'PSNorth' self.version = '2018' # model description and references self.reference = ('https://www.esr.org/research/' 'polar-tide-models/list-of-polar-tide-models/' 'aotim-5/') elif (m == 'Gr1km-v2'): self.format = 'OTIS' self.model_directory = os.path.join(self.directory,'greenlandTMD_v2') self.grid_file = self.pathfinder('grid_Greenland8.v2') self.model_file = dict(u=self.pathfinder('u_Greenland8_rot.v2')) self.projection = '3413' self.version = 'v2' # model description and references self.reference = 'https://doi.org/10.1002/2016RG000546' elif (m == 'FES2014'): self.format = 'FES' model_directory = {} model_directory['u'] = os.path.join(self.directory, 'fes2014','eastward_velocity') model_directory['v'] = os.path.join(self.directory, 'fes2014','northward_velocity') model_files = ['2n2.nc','eps2.nc','j1.nc','k1.nc', 'k2.nc','l2.nc','la2.nc','m2.nc','m3.nc','m4.nc', 'm6.nc','m8.nc','mf.nc','mks2.nc','mm.nc', 'mn4.nc','ms4.nc','msf.nc','msqm.nc','mtm.nc', 'mu2.nc','n2.nc','n4.nc','nu2.nc','o1.nc','p1.nc', 'q1.nc','r2.nc','s1.nc','s2.nc','s4.nc','sa.nc', 'ssa.nc','t2.nc'] self.model_file = {} for key,val in model_directory.items(): self.model_directory = os.path.expanduser(model_directory) self.model_file[key] = self.pathfinder(val) self.constituents = ['2n2','eps2','j1','k1','k2','l2','lambda2', 'm2','m3','m4','m6','m8','mf','mks2','mm','mn4','ms4','msf', 'msqm','mtm','mu2','n2','n4','nu2','o1','p1','q1','r2','s1', 's2','s4','sa','ssa','t2'] self.scale = 1.0 self.version = 'FES2014' # model description and references self.reference = ('https://www.aviso.altimetry.fr/en/data/products' 'auxiliary-products/global-tide-fes.html') else: raise Exception("Unlisted tide model") # return the model parameters return self @property def gzip(self): """compression flag""" return '.gz' if self.compressed else '' @property def suffix(self): """format suffix flag""" return '.nc' if (self.format == 'netcdf') else '' def pathfinder(self,model_file): """Completes file paths and appends file and gzip suffixes """ if isinstance(model_file,list): output_file = [os.path.join(self.model_directory, ''.join([f,self.suffix,self.gzip])) for f in model_file] valid = all([os.access(f, os.F_OK) for f in output_file]) elif isinstance(model_file,str): output_file = os.path.join(self.model_directory, ''.join([model_file,self.suffix,self.gzip])) valid = os.access(output_file, os.F_OK) #-- check that (all) output files exist if self.verify and not valid: raise FileNotFoundError(output_file) #-- return the complete output path return output_file def from_file(self, definition_file): """Create a model object from an input definition file """ # variable with parameter definitions parameters = {} # Opening definition file and assigning file ID number if isinstance(definition_file,io.IOBase): fid = copy.copy(definition_file) else: fid = open(os.path.expanduser(definition_file), 'r') # for each line in the file will extract the parameter (name and value) for fileline in fid: # Splitting the input line between parameter name and value part = fileline.rstrip().split(maxsplit=1) # filling the parameter definition variable parameters[part[0]] = part[1] # close the parameter file fid.close() # convert from dictionary to model variable temp = self.from_dict(parameters) # verify model name, format and type assert temp.name assert temp.format in ('OTIS','ATLAS','netcdf','GOT','FES') assert temp.type # verify necessary attributes are with model format assert temp.model_file # split model file into list if an ATLAS, GOT or FES file # model files can be comma, tab or space delimited # extract full path to tide model files if re.search(r'[\s\,]+', temp.model_file): temp.model_file = [os.path.expanduser(f) for f in re.split(r'[\s\,]+',temp.model_file)] temp.model_directory = os.path.dirname(temp.model_file[0]) else: temp.model_file = os.path.expanduser(temp.model_file) temp.model_directory = os.path.dirname(temp.model_file) # extract full path to tide grid file if temp.format in ('OTIS','ATLAS','netcdf'): assert temp.grid_file temp.grid_file = os.path.expanduser(temp.grid_file) if temp.format in ('OTIS','ATLAS'): assert temp.projection # convert scale from string to float if temp.format in ('netcdf','GOT','FES'): assert temp.scale temp.scale = float(temp.scale) if temp.format in ('FES',): assert temp.version # split type into list if currents u,v if re.search(r'[\s\,]+', temp.type): temp.type = re.split(r'[\s\,]+',temp.type) # convert boolean strings if isinstance(temp.compressed,str): temp.compressed = self.to_bool(temp.compressed) # return the model parameters return temp def from_dict(self,d): """Create a model object from a python dictionary """ for key,val in d.items(): setattr(self,key,copy.copy(val)) # return the model parameters return self def to_bool(self,val): """Converts strings of True/False to a boolean values """ if val.lower() in ('y','yes','t','true','1'): return True elif val.lower() in ('n','no','f','false','0'): return False else: raise ValueError('Invalid boolean string {0}'.format(val))
2.796875
3
src/normalisr/normalisr.py
lingfeiwang/normalisr
9
12776170
#!/usr/bin/python3 from .qc import qc_reads, qc_outlier from .lcpm import lcpm, scaling_factor from .norm import normcov, compute_var, normvar from .de import de from .coex import coex from .binnet import binnet from .gocovt import gotop, pccovt assert __name__ != "__main__"
1.195313
1
src/hyphenator.py
AntiCompositeNumber/maplink-generator
2
12776171
#!/usr/bin/env python3 # coding: utf-8 # SPDX-License-Identifier: Apache-2.0 # Copyright 2021 AntiCompositeNumber # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import urllib.parse import flask import mwparserfromhell import requests from stdnum import isbn bp = flask.Blueprint("hyphenator", __name__, url_prefix="/hyphenator") flash = [] def get_wikitext(url): wikitext_url = url + "&action=raw" headers = { "user-agent": "anticompositetools/hyphenator " "(https://anticompositetools.toolforge.org/hyphenator; " "<EMAIL>) python-requests/" + requests.__version__ } for i in range(1, 5): try: request = requests.get(wikitext_url, headers=headers) request.raise_for_status() except Exception: if request.status_code == 404: flash.append(("That page does not exist.", "danger")) raise elif i == 4: flash.append(("Unable to retrieve wikitext.", "danger")) raise else: time.sleep(5 * i) continue else: start_time = time.strftime("%Y%m%d%H%M%S", time.gmtime()) timestruct = time.strptime( request.headers["Last-Modified"], "%a, %d %b %Y %H:%M:%S %Z" ) edit_time = time.strftime("%Y%m%d%H%M%S", timestruct) return (request.text, (edit_time, start_time)) def find_isbns(code): for template in code.ifilter_templates(): if template.name.matches("ISBN") or template.name.matches("ISBNT"): try: raw_isbn = template.get("1").value.strip() except ValueError: continue para = "1" elif template.has("isbn", ignore_empty=True): raw_isbn = template.get("isbn").value.strip() para = "isbn" elif template.has("ISBN", ignore_empty=True): raw_isbn = template.get("ISBN").value.strip() para = "ISBN" else: continue yield (template, raw_isbn, para) def check_isbn(raw_isbn): """If the ISBN can be worked on, return True""" if len(raw_isbn) == 17 or not isbn.is_valid(raw_isbn): return False else: return True def get_page_url(url): parsed = urllib.parse.urlparse(url) if parsed.path == "/w/index.php": query_params = urllib.parse.parse_qs(parsed.query) if "oldid" not in query_params: title = query_params["title"][0] else: flash.append(("Invalid URL", "danger")) raise ValueError # fix elif "/wiki/" in parsed.path: # Because some people expect invalid URLs to work anyway title = urllib.parse.quote(urllib.parse.unquote(parsed.path[6:]), safe=":/") else: flash.append(("Invalid URL", "danger")) raise ValueError # this one too new_url = parsed.scheme + "://" + parsed.netloc + "/w/index.php?title=" + title return new_url def main(raw_url, convert=True): url = get_page_url(raw_url) wikitext, times = get_wikitext(url) code = mwparserfromhell.parse(wikitext) count = 0 for template, raw_isbn, para in find_isbns(code): if not check_isbn(raw_isbn): continue new_isbn = isbn.format(raw_isbn, convert=convert) if raw_isbn != new_isbn: count += 1 template.add(para, new_isbn) return code, times, count, url @bp.route("/", methods=["GET"]) def form(): return flask.render_template("hyphenator-form.html") @bp.route("/output", methods=["POST"]) def output(): def check_err(messages): for message in messages: if message[1] == "danger": return True return False if flask.request.method == "POST": pageurl = flask.request.form["page_url"] convert = bool(flask.request.form.get("convert", False)) try: newtext, times, count, url = main(pageurl, convert) except Exception as err: if not check_err(flash): flash.append( ("An unhandled {0} exception occurred.".format(err), "danger") ) for message in flash: flask.flash(message[0], message[1]) return flask.redirect(flask.url_for("hyphenator.form")) submit_url = url + "&action=submit" return flask.render_template( "hyphenator-output.html", count=count, submit_url=submit_url, newtext=newtext, edit_time=times[0], start_time=times[1], )
2.5
2
Scripts/1. Data collection/4.1_tag_count.py
NAIST-SE/Package_management_system
1
12776172
# -*- coding: utf-8 -*- """ Created on Tue Jan 28 15:53:15 2020 @author: syful """ import xml.etree.ElementTree as et import re import pandas as pd from datetime import datetime start = datetime.now() from tqdm.auto import tqdm import numpy as np from collections import Counter import os #Please specify your dataset directory. os.chdir("your dataset directory") Id=[] CreationDate=[] Score=[] ViewCount=[] Title=[] Body=[] Tags=[] Tag_list=[] df2 = pd.read_csv("syc01_PM_related_initial_post_detailed_syc.csv") for element in df2['Tags']: res = re.findall(r'\<(.*?)\>', element) for tag_element in res: Tag_list.append(tag_element) tag=[] count=[] data=Counter(Tag_list) for i in data: tag.append(i) count.append(data[i]) dict={'tags':tag, 'count':count} df1=pd.DataFrame(dict) df1.to_csv('syc02_filtered_tag.csv', header=True, index=False, encoding='utf-8')
2.65625
3
thefarm/daylight/daylight.py
harmsm/thefarm
0
12776173
<gh_stars>0 __description__ = \ """ To change servers, make a subclass of DaylightServer and re-define the _grab_from_server method. """ __date__ = "2017-04-12" __author__ = "<NAME> (<EMAIL>)" import urllib.request, json from datetime import datetime import logging, os class DaylightException(Exception): """ Exception for this module. """ def __init__(self,*args,**kwargs): logging.warning(args[0]) super().__init__(*args,**kwargs) class DaylightServer: """ Get information about daylight (sunrise, sunset, etc.) from a server. """ def __init__(self,latitude,longitude,twilight="civil"): """ """ self._latitude = latitude self._longitude = longitude # Deal with twilight definition self._twilight = twilight if self._twilight not in ["civil","nautical","astronomical"]: err = "twilight \"{}\" not recognized. should be civil, nautical or astronomical\n".format(self._twilight) raise DaylightException(err) # Update self.update() self._icon_dict = {} self._icon_dict["day"] = os.path.join("img","day.png") self._icon_dict["night"] = os.path.join("night","day.png") def update(self): """ """ try: self._grab_from_server() self._last_check_time = datetime.now() except (ValueError,urllib.error.URLError) as e: err = "Problem downloading sunrise/sunset times" raise DaylightException(err) except: err = "Unknown problem updating sunrise/sunset times!" raise DaylightException(err) def _grab_from_server(self): """ Grab sunrise, sunset, twilight_begin, and twilight_end from the sunrise-sunset.org server, storing the information as datetime.datetime objects that can be accessed using the Daylight properties. Sets the following (as datetime objects in current time zone): self._twilight_begin self._twilight_end self._sunrise self._sunset """ url_base = "https://api.sunrise-sunset.org/json?lat={:.7f}&lng={:.7f}&date=today&formatted=0" time_format = "%Y-%m-%dT%H:%M:%S+00:00" url = url_base.format(self._latitude,self._longitude) # Grab the date with urllib.request.urlopen(url) as u: json_data = json.loads(u.read().decode()) # Make sure the read worked if json_data['status'] != "OK": err = "server json could not be read\n" raise DaylightException(err) # Parse resulting json twilight_begin = json_data["results"]["{}_twilight_begin".format(self._twilight)] twilight_end = json_data["results"]["{}_twilight_end".format(self._twilight)] sunrise = json_data["results"]["sunrise"] sunset = json_data["results"]["sunset"] # Convert to dateime objects utc_offset = datetime.now() - datetime.utcnow() self._twilight_begin = datetime.strptime(twilight_begin,time_format) + utc_offset self._twilight_end = datetime.strptime(twilight_end,time_format) + utc_offset self._sunrise = datetime.strptime(sunrise,time_format) + utc_offset self._sunset = datetime.strptime(sunset,time_format) + utc_offset @property def last_update(self): return self._last_check_time @property def sunrise(self): if self._sunrise.day != self._last_check_time.day: self.update() return self._sunrise @property def sunset(self): if self._sunset.day != self._last_check_time.day: self.update() return self._sunset @property def twilight_begin(self): if self._twilight_end.day != self._last_check_time.day: self.update() return self._twilight_begin @property def twilight_end(self): if self._twilight_end.day != self._last_check_time.day: self.update() return self._twilight_end @property def web_content(self): self.update() now = datetime.datetime.now() state = "" if now < self.twilight_begin: if now > self.twighlight_end: state = "night" # Get time and update graphic out = [] out.append('<div class="well"><div class="row">') # Icon out.append('<div class="col-xs-6 col-s-3">') out.append('<img class="img-responsive" src="{}" />'.format(icon)) out.append('</div>') # Text out.append('<div class="col-xs-6 col-s-9">') out.append("Stuff about other stuff.") out.append('</div>') out.append('</div></div>') return "".join(out)
2.984375
3
pwtools/test/test_extend_array.py
elcorto/pwtools
41
12776174
import numpy as np import os from pwtools import num, common rand = np.random.rand def equal(a,b): assert (a == b).all() def test_extend_array(): arr = rand(3,3) nrep = 5 a0 = num.extend_array(arr, nrep, axis=0) a1 = num.extend_array(arr, nrep, axis=1) a2 = num.extend_array(arr, nrep, axis=2) am1 = num.extend_array(arr, nrep, axis=-1) assert a0.shape == (nrep,3,3) assert a1.shape == (3,nrep,3) assert a2.shape == (3,3,nrep) assert am1.shape == (3,3,nrep) equal(a2, am1) for axis, aa in enumerate([a0, a1, a2]): for ii in range(nrep): # slicetake(a0, 3, 0) -> a0[3,:,:] equal(arr, num.slicetake(aa, ii, axis=axis))
2.953125
3
docs/GNIB.py
naitao/SEProject_Group18
0
12776175
<gh_stars>0 #!/usr/bin/python from selenium import webdriver from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException from selenium.webdriver.support.ui import WebDriverWait # available since 2.4.0 from selenium.webdriver.support import expected_conditions as EC # available since 2.26.0 from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains import multiprocessing, time, random, datetime from selenium.webdriver.firefox.options import Options from selenium.common.exceptions import WebDriverException import datetime from subprocess import call import time, json class GNIB: def __init__(self): self.today = datetime.datetime.now().day self.__url = "https://burghquayregistrationoffice.inis.gov.ie/Website/AMSREG/AMSRegWeb.nsf/AppSelect?OpenForm" profile = webdriver.FirefoxProfile() #profile.set_preference("font.size.variable.x-western", 10) #profile.set_preference("font.size.variable.x-unicode", 10) profile.set_preference("browser.fullscreen.autohide", True) profile.set_preference("layout.css.devPixelsPerPx", "0.8") options = Options() options.add_argument("--headless") self.driver = webdriver.Firefox(firefox_options=options, firefox_profile=profile) self.driver.maximize_window() self.__data = {} ''' options = webdriver.ChromeOptions() self.driver = webdriver.Chrome(chrome_options=options) ''' def checkMonth(self): elements = self.driver.find_elements_by_xpath('//td[contains(@class,"day")]') available_days = [] for i in range(len(elements)): try: text = elements[i].text # Click the particular data to check if it is clickable elements[i].click() time.sleep(0.5) # If the date is clickable, we need to click button going back # to the previous schedule tap self.driver.find_element_by_xpath('//input[@id="Appdate"]').click() time.sleep(0.5) #print("Checking {}...".format(text)) if self.driver.find_element_by_xpath('//td[contains(@class, "active day")]').text == text: print("{} is available!".format(text)) available_days.append(text) elements = self.driver.find_elements_by_xpath('//td[contains(@class,"day")]') except WebDriverException: #print("{} Element is not clickable".format(text)) continue #print("current id: {}, total: {}".format(i, len(elements))) return list(set(available_days)) def checkSlot(self): self.driver.get(self.__url) self.driver.execute_script("document.body.style.zoom='50%'") time.sleep(1) # Find the element on Category selection category_element = self.driver.find_element_by_id('Category') category_element.click() time.sleep(0.5) # Choose study category study_element = self.driver.find_element_by_xpath('//option[@value="Study"]') study_element.click() time.sleep(0.5) # Find the element on Subcategory selection sub_category_element = self.driver.find_element_by_id('SubCategory') sub_category_element.click() time.sleep(0.5) # Choose Master subcategory master_sub_category_element = self.driver.find_element_by_xpath('//select[@id="SubCategory"]//option[@value="Masters"]') master_sub_category_element.click() time.sleep(1) # Date of Brith self.driver.find_element_by_id('DOB').click() time.sleep(1.5) table_element = self.driver.find_element_by_xpath('//table[@class="table-condensed"]') self.driver.find_element_by_xpath('//span[contains(text(), "2009")]').click() time.sleep(0.5) self.driver.find_element_by_xpath('//span[contains(text(), "Jan")]').click() time.sleep(0.5) self.driver.find_element_by_xpath('//td[contains(text(), "28")]').click() time.sleep(0.5) # Confirmation on GNIB card self.driver.find_element_by_id('ConfirmGNIB').click() time.sleep(0.5) self.driver.find_element_by_xpath('//option[@value="Renewal"]').click() # Input GNIB number gnib_number_form_element = self.driver.find_element_by_id('GNIBNo') gnib_number_form_element.send_keys("I78193432") time.sleep(0.5) # Input expiry date expiry_form_element = self.driver.find_element_by_id('GNIBExDT') expiry_form_element.click() print("find out expiry form!") # click year #self.driver.find_element_by_xpath('//div[@class="datepicker-years"]/*/span[contains(text(), "2018")]').click() self.driver.find_element_by_xpath('//span[contains(text(), "2018")]').click() time.sleep(0.5) # click month self.driver.find_element_by_xpath('//span[contains(text(), "Dec")]').click() time.sleep(0.5) # click day self.driver.find_element_by_xpath('//td[contains(text(), "30")]').click() print("Filled expiry form!") time.sleep(0.5) # Confirm all above self.driver.find_element_by_id('UsrDeclaration').click() time.sleep(0.5) # Given name self.driver.find_element_by_id('GivenName').send_keys("Peng") # Surname self.driver.find_element_by_id('SurName').send_keys("Ye") # Nationality self.driver.find_element_by_id('Nationality').click() self.driver.find_element_by_xpath('//option[contains(text(), "China")]').click() # Email self.driver.find_element_by_id('Email').send_keys("<EMAIL>") self.driver.find_element_by_id('EmailConfirm').send_keys("<EMAIL>") # Familly element = self.driver.find_element_by_id('FamAppYN') element.click() time.sleep(0.5) print("clicked Familly!") self.driver.find_element_by_xpath('//select[@id="FamAppYN"]/option[contains(text(), "No")]').click() # passport self.driver.find_element_by_id('PPNoYN').click() self.driver.find_element_by_xpath('//select[@id="PPNoYN"]/option[contains(text(), "Yes")]').click() self.driver.find_element_by_id('PPNo').send_keys("E93312971") # Look for appointment self.driver.find_element_by_id('btLook4App').click() # Search for appointments by self.driver.find_element_by_id('AppSelectChoice').click() self.driver.find_element_by_xpath('//select[@id="AppSelectChoice"]/option[contains(text(), "specific date")]').click() self.driver.find_element_by_id('Appdate').click() date_element = self.driver.find_element_by_xpath('//th[@class="datepicker-switch"]') print("Available days on {}".format(date_element.text)) text_file = "monitor.log" currentTime = datetime.datetime.now() days = self.checkMonth() message = "{}: {}".format(date_element.text, days) self.__data[date_element.text] = [currentTime, days] if len(days) > 0: list(map(print,days))[0] with open(text_file, "a") as f: f.write("{} | {}\n".format(currentTime, message)) f.close() time.sleep(1) # Click next page while True: try: self.driver.find_element_by_xpath('//div[@class="datepicker-days"]//th[@class="next"]').click() date_element = self.driver.find_element_by_xpath('//th[@class="datepicker-switch"]') print("Available days on {}".format(date_element.text)) days = self.checkMonth() message = "{}: {}".format(date_element.text, days) self.__data[date_element.text] = [currentTime, days] with open(text_file, "a") as f: f.write("{} | {}\n".format(currentTime, message)) f.close() time.sleep(1) except Exception: break ''' # Check "I am not robot self.driver.find_element_by_xpath('//div[@class="rc-anchor-center-container"]/label[@id="recaptcha-anchor-label"]').click() ''' self.driver.quit() with open("/tmp/gnib.json", 'w', encoding='utf-8') as f: f.write(json.dumps(self.__data, f, ensure_ascii=False)) if __name__ == '__main__': # claen up firefox processes first call(["pkill", "firefox"]) print("firefox processes were clean up!") time.sleep(1) mygnib = GNIB() mygnib.checkSlot()
2.421875
2
courses/python/cursoemvideo/exercicios/ex046.py
bdpcampos/public
3
12776176
import time for i in range(10, -1, -1): print(i) time.sleep(1) print('FOGOSSSSSSSSS!!!!!!!!! \o/ \o/ \o/ \o/ ')
2.9375
3
main/urls.py
rajeshgupta14/pathscriptfinal
0
12776177
<gh_stars>0 """mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.conf.urls.static import static #from django.conf.urls import patterns from django.conf import settings from django.contrib import admin from myapp import views as myappviews from consultantform import views as myviews from django.views.generic.base import TemplateView urlpatterns = [ url(r'^admin/',admin.site.urls),#fwdslash url(r'^home/$',myappviews.home,name="home"), url(r'^$',myappviews.auth_view,name="auth_view"),#addedslash url(r'^login/$',myappviews.auth_view,name="auth_view"), url(r'^logout/$',myappviews.getout,name="getout"), url(r'^invalid/$',myappviews.invalid_login,name="invalid_login"), url(r'^clients/$',myappviews.clients,name="clients"), url(r'^ram/(?P<consultantform_id>\d+)$',myviews.ram,name="ram"), url(r'^ram1/(?P<consultantform_id>\d+)$',myviews.ram1,name="ram1"), url(r'^ram2/(?P<consultantform_id>\d+)$',myviews.ram2,name="ram2"), url(r'^ram3/(?P<consultantform_id>\d+)$',myviews.ram3,name="ram3"), url(r'^ramm/(?P<checklistform_id>\d+)$',myviews.ramm,name="ramm"), url(r'^rammm/(?P<projectform_id>\d+)$',myviews.rammm,name="rammm"), url(r'^consultantformss/(?P<a_id>\d+)/$',myviews.consultantformss,name='consultantformss'), url(r'^projects/(?P<a_id>\d+)$',myviews.projects,name='projects'), url(r'^finalformss/(?P<a_id>\d+)/$',myviews.finalformss,name='finalformss'), url(r'^consultantformss/(?P<a_id>\d+)/get/(?P<consultantform_id>\d+)/$',myviews.consultantform,name='consultantform'), url(r'^consultantformss/(?P<a_id>\d+)/getbr/(?P<consultantform_id>\d+)/$',myviews.branchform,name='branchform'), url(r'^consultantformss/(?P<a_id>\d+)/getsu/(?P<consultantform_id>\d+)/$',myviews.subsidiaryform,name='subsidiaryform'), url(r'^consultantformss/(?P<a_id>\d+)/getre/(?P<consultantform_id>\d+)/$',myviews.relatedform,name='relatedform'), url(r'^consultantformss/(?P<a_id>\d+)/getpr/(?P<consultantform_id>\d+)/$',myviews.productform,name='productform'), url(r'^consultantformss/(?P<a_id>\d+)/gets/(?P<checklistform_id>\d+)/$',myviews.checklistform,name='checklistform'), url(r'^consultantformss/(?P<a_id>\d+)/getp/(?P<projectform_id>\d+)/$',myviews.projectform,name='projectform'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<serviceform_id>\d+)/$',myviews.serviceforms,name='serviceforms'), url(r'^consultantformss/(?P<a_id>\d+)/get/(?P<consultantform_id>\d+)/$',myviews.consultantform,name='consultantform'), url(r'^consultantformss/(?P<a_id>\d+)/gett/(?P<form_id>\d+)/$',myviews.finalform,name='finalform'), url(r'^consultantformss/(?P<a_id>\d+)/getd/(?P<project_id>\d+)/(?P<dueform_id>\d+)/$',myviews.sam,name='sam'), url(r'^consultantformss/(?P<a_id>\d+)/getsc/(?P<project_id>\d+)/(?P<scriptform_id>\d+)/$',myviews.samm,name='samm'), url(r'^consultantformss/(?P<a_id>\d+)/getst/(?P<project_id>\d+)/(?P<strategyform_id>\d+)/$',myviews.sammm,name='sammm'), url(r'^consultantformss/(?P<a_id>\d+)/getps/(?P<project_id>\d+)/(?P<psform_id>\d+)/$',myviews.dam,name='dam'), url(r'^consultantformss/(?P<a_id>\d+)/getdi/(?P<project_id>\d+)/(?P<digiform_id>\d+)/$',myviews.damm,name='damm'), url(r'^consultantformss/(?P<a_id>\d+)/getm/(?P<project_id>\d+)/(?P<miomform_id>\d+)/$',myviews.dammm,name='dammm'), url(r'^consultantformss/(?P<a_id>\d+)/getpd/(?P<project_id>\d+)/(?P<dueform_id>\d+)/$',myviews.samp,name='samp'), url(r'^consultantformss/(?P<a_id>\d+)/getpsc/(?P<project_id>\d+)/(?P<scriptform_id>\d+)/$',myviews.sammp,name='sammp'), url(r'^consultantformss/(?P<a_id>\d+)/getpst/(?P<project_id>\d+)/(?P<strategyform_id>\d+)/$',myviews.sammmp,name='sammmp'), url(r'^consultantformss/(?P<a_id>\d+)/getpps/(?P<project_id>\d+)/(?P<psform_id>\d+)/$',myviews.damp,name='damp'), url(r'^consultantformss/(?P<a_id>\d+)/getpdi/(?P<project_id>\d+)/(?P<digiform_id>\d+)/$',myviews.dammp,name='dammp'), url(r'^consultantformss/(?P<a_id>\d+)/getpm/(?P<project_id>\d+)/(?P<miomform_id>\d+)/$',myviews.dammmp,name='dammmp'), url(r'^consultantformss/(?P<a_id>\d+)/create/$',myviews.create,name='create'), url(r'^consultantformss/(?P<a_id>\d+)/create1/$',myviews.create1,name='create1'), url(r'^consultantformss/(?P<a_id>\d+)/create2/$',myviews.create2,name='create2'), url(r'^consultantformss/(?P<a_id>\d+)/create3/$',myviews.create3,name='create3'), url(r'^consultantformss/(?P<a_id>\d+)/checklist/$',myviews.checklist,name='checklist'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<project_id>\d+)/created$',myviews.created,name='created'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<project_id>\d+)/createsc$',myviews.createsc,name='createsc'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<project_id>\d+)/createst$',myviews.createst,name='createst'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<project_id>\d+)/createps$',myviews.createps,name='createps'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<project_id>\d+)/createdigi$',myviews.createdigi,name='createdigi'), url(r'^consultantformss/(?P<a_id>\d+)/getf/(?P<project_id>\d+)/createmiom$',myviews.createmiom,name='createmiom'), url(r'^500/$', TemplateView.as_view(template_name="404.html")), url(r'^404/$', TemplateView.as_view(template_name="404.html")), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT) #if settings.DEBUG:
2.625
3
Day-6/problem1.py
sanjusci/10-Days-of-Statistics
1
12776178
# Day 6: The Central Limit Theorem I # Enter your code here. Read input from STDIN. Print output to STDOUT __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2019" import math class Day6(object): e = 2.71829 def __init__(self): pass # Define functions def the_central_limit_theorem_i(self, mean, std, value): return 0.5 * (1 + math.erf((value - mean) / (std * (2 ** 0.5)))) if __name__ == '__main__': d6 = Day6() # Set data max_weight = float(input()) n = float(input()) mean = float(input()) std = float(input()) new_mean = mean * n new_std = math.sqrt(n) * std # Gets the result and show on the screen result = d6.the_central_limit_theorem_i(new_mean, new_std, max_weight) print('{:.4f}'.format(result))
3.71875
4
keras_text_cls/embedding/word2vec_embedder.py
titicaca/keras-text-cls
3
12776179
import logging import numpy as np from keras_text_cls.embedding.base_embedder import BaseEmbedder from keras_text_cls.vocab import Vocabulary, SYMBOL_PADDING, SYMBOL_UNKNOWN from gensim.models.word2vec import Word2Vec class Word2vecEmbedder(BaseEmbedder): """ Word2vec Embedder is a wrapper of gensim word2vec model Reference to: https://radimrehurek.com/gensim/models/word2vec.html Attributes ---------- dim: int embedding vector dimension, default 300 seed: int random seed, default is None """ def __init__(self, dim=300, seed=None): super().__init__(dim, seed) def transform(self, word): if not self.is_fitted: raise ValueError("model needs to be fitted first") if word in self._model.wv.vocab: return self._model.wv[word] elif word == SYMBOL_PADDING: return self._PADDING_VEC else: return self._UNKNOWN_VEC def fit_on_words(self, words, sg=0, window=5, min_count=5, workers=4, iter=5, negative=5, **kwargs): """ fit word2vec model on words, vector size is assigned internally by default (equal to model._dim) parameters are the same as gensim word2vec model :param words: 2-dim list of words :param sg: int {1, 0} Defines the training algorithm. If 1, skip-gram is employed; otherwise, CBOW is used. :param window: int The maximum distance between the current and predicted word within a sentence. :param min_count: int The maximum distance between the current and predicted word within a sentence. :param workers: int Use these many worker threads to train the model (=faster training with multicore machines). :param iter: int Number of iterations (epochs) over the corpus. :param negative: int If > 0, negative sampling will be used, the int for negative specifies how many "noise words" should be drawn (usually between 5-20). If set to 0, no negative sampling is used. :param kwargs: more arguments can assigned by referring to gensim word2vec model :return: fitted model """ if self.is_fitted: raise ValueError("model is already fitted") sentences = words vector_size = self._dim word2vec_model = Word2Vec(sentences, size=vector_size, sg=sg, window=window, min_count=min_count, workers=workers, iter=iter, negative=negative, **kwargs) self._model = word2vec_model logging.info("word2ec model is fitted successfully") self.is_fitted = True return self def get_vocabs(self): if not self.is_fitted: raise ValueError("model needs to be fitted first") vocabs_set = set(self._predefined_vocabs) vocabs = self._predefined_vocabs.copy() for w in self._model.wv.vocab: if w not in vocabs_set: vocabs_set.add(w) vocabs.append(w) return vocabs def get_dim(self): if self.is_fitted: return self._model.vector_size else: return self._dim def save_model(self, path): if not self.is_fitted: raise ValueError("model needs to be fitted first") self._model.save(path) logging.info("saving model into: " + path) @staticmethod def load_model(path): w2v = Word2vecEmbedder() w2v._model = Word2Vec.load(path) logging.info("loaded word2vec model from: " + path) w2v.is_fitted = True return w2v
3.171875
3
net/pacemaker1/files/extra-patch-cts_remote.py
egypcio/freebsd-ports
7
12776180
--- cts/remote.py.orig 2020-02-07 14:06:22 UTC +++ cts/remote.py @@ -125,7 +125,7 @@ class RemoteExec: ''' def __init__(self, rsh, silent=False): - self.async = [] + self.async_calls = [] self.rsh = rsh self.silent = silent self.logger = LogFactory()
1.570313
2
bridges/data_src_dependent/song.py
krs-world/bridges-python
1
12776181
class Song: """ @brief A Song object, used along with the Songs data source. This is a convenience class provided for users who wish to use this data source as part of their application. It provides an API that makes it easy to access the attributes of this data set. This object is generally not created by the user, to see how its created check out bridges::data_src_dependent::data_source::get_song() For an example, check out https://bridgesuncc.github.io/tutorials/Data_Song_Lyrics.html @author <NAME>, <NAME> @date 2018, 12/29/20 """ def __init__(self, artist: str = "", song: str = "", album: str = "", lyrics: str = "", release_date: str = ""): """ @brief Constructor Args: artist: song artist song: song title album: song album lyrics: lyrics of song release_date: release date of song """ self._artist = artist self._song = song self._lyrics = lyrics self._album = album self._release_date = release_date @property def artist(self): """ @brief return artist of song Returns: artist name of song """ return self._artist @artist.setter def artist(self, a): """ @brief Set artist of song Args: a: artist name to set """ self._artist = a @property def song_title(self): """ @brief return title of song Returns: song title """ return self._song @song_title.setter def song_title(self, s): """ @brief Set the song title Args: s: artist name to set """ self._song = s @property def album_title(self): """ @brief return album title Returns: album title of song """ return self._album @album_title.setter def album_title(self, a): """ @brief Set title of song Args: a: album title to set """ self._album = a @property def lyrics(self): """ @brief return lyrics of song Returns: lyrics of song """ return self._lyrics @lyrics.setter def lyrics(self, l): """ @brief Set artist of song Args: l: lyrics data to set """ self._lyrics = l @property def release_date(self): """ @brief return release date of song Returns: release date of song """ return self._release_date @release_date.setter def release_date(self, r): """ @brief Set release date of song Args: r: release date to set """ self._release_date = r
3.4375
3
references/nlp_dicts.py
derpyninja/nlp4cciwr
0
12776182
<gh_stars>0 # -*- coding: utf-8 -*- from collections import OrderedDict # set: unordered collections of unique elements (no duplicates possible) stopwords_bbc_monitoring = { "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "w", "x", "y", "z", "january", "march", "april", "may", "june", "juli", "august", "september", "october", "november", "december", "jan", "feb", "mar", "apr", "jun", "jul", "aug", "sep", "oct", "nov", "dev", "hyperlink", "url", "bbc", "monitoring", "al", "gmt", "news", "tv", "television", "gen", "rig", "ha", "report", "reports", "statement", "top", "web", "site", "af1", "af", "mon", "announcer", "agency", "min", "maj", "gen", "page", "said", "says", "say", "saying", "cite", "cited", "citing", "source", "year", "time", "day", "season", "top", "media", "nf", "pk", "sources", "page", "website", "websites", "press", "british broadcasting corporation", "bbc monitoring research", "bbc mon nf newsfile", "number", "british", "broadcasting", "corporation", "video", "show", "agency", "english", "europol", "gb", "eu1", "newspaper", "reported", "report", "excerpt", "excerpts", "time", "internet", "press", "highlights", "web", "sites", "site", "spanish", "la", "la1", "translated", "translate", "online", "summary", "headline", "headlines", "radio", "television", "district", "region", "report", "daily", "official", "officials", "today", "newspaper", "cent", "video show", "new", "people", "district", "afp", "quote", "paper", "area", "areas", "write", "writes", "written", "writing", "village", "town", "yesterday", "head", "helicopter", "weekend", "promotion", "sport", "significant", "special", "interview", "senior", "introduce", "presenter", "correspondent", "text", "section", "quotes", "article", "read", "comment", "publish", "publishes", "published", "publishing", "want", "come", "tell", "dollar", "dollars", "take", "local", "regional", "country", "state", "showing", "shown", "shows", "showed", "words", "word", "wording", "carry", "carries", "carrying", "carried", "satellite", "think", "thinks", "comment", "commented", "commenting", "notes", "noted", "know", "knowing", "known", "main", "great", "greatly", "review", "reviews", "briefing", "summaries", "programme", "min", "mins", "column", "listed", "commercial", "commercials", "newsfile", } if __name__ == "__main__": import pandas as pd df = pd.DataFrame(stopwords_bbc_monitoring, columns=["stopword"]) df = df.sort_values(by="stopword") df.to_csv("stopwords_bbc_monitoring_data.csv", index=False) print(df.shape)
2.171875
2
app/ui/files_list_dialog.py
Deteriorator/GUI-YouGet
85
12776183
<filename>app/ui/files_list_dialog.py<gh_stars>10-100 # !/usr/bin/env python3 # -*- coding: utf-8 -*- from PyQt5.QtGui import QIcon from app.ui.ui_files_list_dialog import Ui_FilesListDialog from app import mlog, mconfig from app.util import status from app.util.download_thread import DownloadThread from PyQt5.QtWidgets import QDialog, QMessageBox, QProgressDialog from PyQt5.QtCore import QThread, Qt from app.ui.icon_rc import * __author__ = 'InG_byr' class FilesListDialog(Ui_FilesListDialog): def __init__(self): super().__init__() self.files_list_dialog = QDialog() self.setupUi(self.files_list_dialog) self.files_list_dialog.setFixedSize(self.files_list_dialog.width(), self.files_list_dialog.height()) self.files_list_dialog.show() self.msg = QMessageBox() self.set_slot() self.set_combo_box() def set_slot(self): self.push_button_confirm.clicked.connect(self.start_download_files) self.push_button_cancel.clicked.connect(self.files_list_dialog.close) def set_combo_box(self): options = mconfig.get_streams() if options: self.combo_box_options.addItems(options) else: self.combo_box_options.addItem('default') def update_files_list(self, files_list): self.text_files_list.setHtml(files_list) def start_download_files(self): status.set_default() self.push_button_confirm.setEnabled(False) option = self.combo_box_options.currentText() mconfig.set_file_itag(option) mlog.debug('option is ' + option) self.download_thread = DownloadThread(mconfig.get_urls(), **mconfig.kwargs) self.download_thread.finish_signal.connect(self.finish_download) self.download_thread.start() self.show_progress_bar() def show_msg(self, icon, title, text): self.msg.setWindowTitle(title) self.msg.setWindowIcon(QIcon(':/res/favicon.ico')) self.msg.setIcon(icon) self.msg.setText(text) self.msg.setStandardButtons(QMessageBox.Ok) self.msg.show() def finish_download(self, is_succeed): self.push_button_confirm.setEnabled(True) if is_succeed: if self.result: self.show_msg(QMessageBox.Information, 'Tip', self.result + '\n\nFiles path: ' + mconfig.get_file_path()) else: self.show_msg(QMessageBox.Information, 'Completed', 'Download completed (ง •̀_•́)ง\n\nFiles path: ' + mconfig.get_file_path()) else: self.show_msg(QMessageBox.Critical, 'Failed', 'Download failed (╯°Д°)╯︵ ┻━┻') def show_progress_bar(self): percent = 0 is_exits = False self.result = None progressDialog = QProgressDialog(self.files_list_dialog) progressDialog.setAutoReset(True) progressDialog.setWindowModality(Qt.WindowModal) progressDialog.setMinimumDuration(5) progressDialog.setWindowTitle('Downloading') progressDialog.setWindowIcon(QIcon(':/res/favicon.ico')) progressDialog.setLabelText('Current speed: ') progressDialog.setCancelButtonText('Cancel') progressDialog.setRange(0, 100) progressDialog.setValue(0) progressDialog.show() while percent < 100 and not is_exits: percent = status.get_percent() is_exits = status.get_exist() if is_exits: self.result = 'Files already exists (..•˘_˘•..)' progressDialog.close() break progressDialog.setValue(percent) progressDialog.setLabelText('Current speed: ' + str(status.get_speed())) QThread.msleep(100) if progressDialog.wasCanceled(): status.set_stop_thread(True) self.download_thread.wait() mlog.debug('stop the download thread') mlog.debug('download_thread.isRunning ' + str(self.download_thread.isRunning())) progressDialog.close() self.result = 'Paused Σ(っ °Д °;)っ' break
2.28125
2
titanic/titanic.py
cjporteo/kaggle-competitions
0
12776184
<filename>titanic/titanic.py import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np pd.set_option('display.max_rows', 5000) pd.set_option('display.max_columns', 5000) from collections import Counter, defaultdict from scipy.stats import skew from scipy.special import boxcox1p from scipy.stats import boxcox_normmax from sklearn.preprocessing import LabelEncoder, RobustScaler from sklearn.model_selection import GridSearchCV, ShuffleSplit #Common Model Algorithms from sklearn import svm, ensemble from xgboost import XGBClassifier X_train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId') X_test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId') X_train.dropna(axis=0, subset=['Survived'], inplace=True) # This dictionary will store all the family members and their survival outcomes for each family. # Two passengers are said to be in the same "family" if they have the same last name and family size. # Consider, for instance, the scenario where there are multiple Brown families on board, but one is # a family of 6 and the other is a lone bachelor. # Our system will be able to discriminate between these two groups and not associate them. # # { key = (last name, family size), type=tuple : value = list of tuples for all family members in training set (full name, outcome) } family_survival_details = defaultdict(list) # This dictionary will function similarly to the family dictionary, but instead just looks for matching tickets and isn't concerned with group size. # { key = ticket : value = list of tuples for all ticket group members in training set (full name, outcome) } ticket_survival_details = defaultdict(list) # This set stores all the passengers who do not have any other family members in the training set. # More formally, this set stores all passengers satisfying len(family_survival_details[lastname, familysize]) = 1 unknown_passengers_by_family = set([]) # Again, this functions similiarly to the "unknown by family" set. # This set stores all passengers satisfying len(ticket_survival_details[ticket]) = 1 unknown_passengers_by_ticket = set([]) # Trims the cardinality of the Title feature that we are about to engineer from the Name field def adjust_title(title): if title in ['Mr', 'Miss', 'Mrs', 'Master']: return title elif title in ['Mlle', 'Ms']: return 'Miss' elif title in ['Mme', 'Dona']: return 'Mrs' return 'Other' # Builds the FamilyName, FamilySize and Title features for df in [X_train, X_test]: df['FamilyName'] = df['Name'].map(lambda x : x.split(',')[0]) df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 df['Title'] = df['Name'].str.extract(' ([A-Za-z]+)\.', expand=False) df['Title'] = df['Title'].map(adjust_title) # This function populates our family survival details dictionary def fill_fsd(row): last_name = row['FamilyName'] size = row['FamilySize'] full_name = row['Name'] survived = row['Survived'] family_survival_details[(last_name, size)].append((full_name, survived)) # This function populates our ticket survival details dictionary def fill_tsd(row): ticket = row['Ticket'] full_name = row['Name'] survived = row['Survived'] ticket_survival_details[ticket].append((full_name, survived)) # Call the above two functions X_train.apply(fill_fsd, axis=1) X_train.apply(fill_tsd, axis=1) # Establish a base survival rates dictionary based on class, gender, and title. # When we lack any family or ticket survival rate information about a passenger, we will use this base rate. # Even when we have family data, this base rate will still be useful. See below for details. base_survival_rates = dict(X_train.groupby(by=['Pclass', 'Sex', 'Title'])['Survived'].mean()) # This will give us what we are looking for, our crucial feature: family specific survival rates. # For each passenger in the training set and the testing set, we inquire about the known outcomes for # all OTHER seen members of that family group. # It is very important that we don't include the outcome for the passenger in question in this calculation, # since this would lead to data leakage and would tarnish the usefulness of this predictor. # # Comments have been added to this function for clarity. def get_fsr(row): last_name = row['FamilyName'] size = row['FamilySize'] full_name = row['Name'] # Where we are storing the known outcomes for other passengers in the family. outcomes = [] for passenger, outcome in family_survival_details[(last_name, size)]: if passenger != full_name: # We only care about the outcome for OTHER passengers in the family. # Ex: When building the family survival rate for <NAME>, we don't # care about whether he survived or not, only his family. (Sorry John) outcomes.append(outcome) if not outcomes: # If we don't have any known outcomes for other family members, add this passenger # to the unknown set and return 0 as a survival rate (we will adjust this later) unknown_passengers_by_family.add(full_name) return 0 # Return the average of all the outcomes to get a probility to estimate survival. return np.mean(outcomes) # This is simply the ticket counterpart to the above function. The inner workings are very similar. def get_tsr(row): ticket = row['Ticket'] full_name = row['Name'] outcomes = [] for passenger, outcome in ticket_survival_details[ticket]: if passenger != full_name: outcomes.append(outcome) if not outcomes: unknown_passengers_by_ticket.add(full_name) return 0 return np.mean(outcomes) for df in [X_train, X_test]: df['FamilySurvival'] = df.apply(get_fsr, axis=1) df['TicketSurvival'] = df.apply(get_tsr, axis=1) for df in [X_train, X_test]: df['KnownFamily?'] = df['Name'].map(lambda x: 0 if x in unknown_passengers_by_family else 1) df['KnownTicket?'] = df['Name'].map(lambda x: 0 if x in unknown_passengers_by_ticket else 1) unknown_passengers = set([]) # This function amalgamates every result we have so far involving base, family, and ticket survival rate. # The resulting overall survival rate will be a weighted average of these three rates. def get_osr(row): base_rate = base_survival_rates[(row['Pclass'], row['Sex'], row['Title'])] if row['KnownFamily?'] and row['KnownTicket?']: # The passenger can be identified by family and ticket group. return 0.25*row['FamilySurvival'] + 0.25*row['TicketSurvival'] + 0.5*base_rate elif row['KnownFamily?']: # The passenger can be identified by family group only. return 0.5*row['FamilySurvival'] + 0.5*base_rate elif row['KnownTicket?']: # The passenger can be identified by ticket group only. return 0.5*row['TicketSurvival'] + 0.5*base_rate else: # The passenger can't be identified by family or ticket group. unknown_passengers.add(row['Name']) return base_rate for df in [X_train, X_test]: df['GroupRate'] = df.apply(get_osr, axis=1) df['GroupRate'] = df.apply(get_osr, axis=1) for df in [X_train, X_test]: df['KnownGroup?'] = df['Name'].map(lambda x: 0 if x in unknown_passengers else 1) df.drop(['FamilySurvival', 'TicketSurvival', 'KnownFamily?', 'KnownTicket?'], axis=1, inplace=True) y = X_train['Survived'] X_train.drop(['Survived'], axis=1, inplace=True) train_size = len(X_train) ''' # Which features have missing values and what are is their datatype? def investigate_missing(df): for col in df: missing = df[col].isnull().sum() if missing > 0: print("{}: {} missing --- type: {}".format(col, missing, df[col].dtype)) investigate_missing(pd.concat([X_train, X_test])) ''' def featureProcessing(df): # Change class from numerical to categorical, since class is ordinal. df['Pclass'] = df['Pclass'].astype(str) # Impute missing fares by the average fare across corresponding class, gender, and title. df['Fare'] = df.groupby(by=['Pclass', 'Sex', 'Title'])['Fare'].transform(lambda x : x.fillna(x.median())) # Impute missing ages by the average age across corresponding class, gender, and title. df['Age'] = df.groupby(by=['Pclass', 'Sex', 'Title'])['Age'].transform(lambda x : x.fillna(x.median())) # Fill missing embarking locations with S, the mode. df['Embarked'].fillna('S', inplace=True) # Passengers travelling together might not have matching last names (friends?) but could have matching tickets. # Create a feature to represent the size of the "ticket group". df['TicketGroupSize'] = df.groupby('Ticket')['Ticket'].transform('count') # Condense family size and ticket group size into the maximum between the two. # Split this feature into five bins. df['GroupSize'] = df[["FamilySize", "TicketGroupSize"]].max(axis=1) group_bins = [0, 1, 2, 4, 6, df['GroupSize'].max()] group_labels = ['Alone', 'Small', 'Medium', 'Large', 'XLarge'] df['GroupSize'] = pd.cut(df['GroupSize'], group_bins, labels=group_labels).astype(str) # "Women and children only" df['Female?'] = np.where(df['Sex'] == 'female', 1, 0) adults = ['Mr', 'Mrs', 'Other'] df['Parent?'] = np.where((df['Title'].isin(adults)) & (df['Parch'] > 0), 1, 0) # Cabin has lot of missing values, but of these missing values, the vast majority lie in 2nd and 3rd class. # Doing some simple research on the deck layout of Titanic and the likely cabin assignments. We can make # relatively safe assumptions to categorize passengers into their respective deck categories. # The three deck categories I will use here are ABC, DE, and FG. # These very strongly correlate to 1st, 2nd and 3rd class, respectively, but there is enough variation to warrant # the inclusion of this feature. # # Ex: a 3rd class passenger whose cabin happens to be located in D or E deck will stand a better chance of survival # than a 3rd class passenger in F or G def get_deck(row): if pd.isnull(row['Cabin']): if row['Pclass'] == '1': return 'ABC' elif row['Pclass'] == '2': return 'DE' return 'FG' deck = row['Cabin'][0] if deck in 'ABCT': return 'ABC' elif deck in 'DE': return 'DE' return 'FG' df['DeckClass'] = df.apply(get_deck, axis=1) df.drop(['Ticket', 'Cabin', 'Name', 'Parch', 'SibSp', 'Sex', 'FamilyName', 'TicketGroupSize', 'FamilySize'], axis=1, inplace=True) # Our numerical features numericals = ['Fare', 'Age'] # Our categorical features categoricals = df.select_dtypes(include='object').columns.values # Process the numerical features skewness = df[numericals].apply(lambda x: skew(x)) skew_index = skewness[abs(skewness) >= 0.5].index # Get features with high skew for col in skew_index: # Apply boxcox transformation to attempt to reduce their skewness df[col] = boxcox1p(df[col], boxcox_normmax(df[col] + 1)) for feat in numericals: # Reshape using RobustScaler df[feat] = RobustScaler().fit_transform(df[feat].apply(float).values.reshape(-1,1)) # One-hot encode the categorical features for feat in categoricals: dummies = pd.get_dummies(df[feat]) dummies.columns = [feat + ": " + col for col in dummies.columns.values] df.drop(feat, axis=1, inplace=True) df = df.join(dummies) return df X_full = featureProcessing(pd.concat([X_train, X_test])) X_train = X_full[:train_size] X_test = X_full[train_size:] # We will use five different models, tune them, and then hold a vote. vote_est = [ ('for', ensemble.RandomForestClassifier()), ('svc', svm.SVC(probability=True)), ('xgb', XGBClassifier()), ('ada', ensemble.AdaBoostClassifier()), ('gb', ensemble.GradientBoostingClassifier()) ] # The tuned hyperparameters for each of the models. Obtained using GridSearchCV to cross-validate # on five shuffle splits for each hyperparameter combination with train = 0.6, test = 0.3, drop = 0.1. tuned_parameters=[ {'criterion': 'entropy', 'max_depth': 12, 'n_estimators': 550, 'oob_score': True, 'random_state': 0}, {'C': 10, 'decision_function_shape': 'ovo', 'gamma': 0.01, 'kernel': 'rbf', 'probability': True, 'random_state': 0}, {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 100, 'random_state': 0}, {'algorithm': 'SAMME', 'learning_rate': 0.15, 'n_estimators': 250, 'random_state': 0}, {'learning_rate': 0.01, 'loss': 'deviance', 'max_depth': 4, 'n_estimators': 100, 'random_state': 0} ] #tuned_parameters = [] #The hyperparameter search space for our models. grid_n_estimator = [100, 250, 400, 550, 700, 850, 1000] grid_ratio = [.1, .25, .5, .75, 0.9] grid_learn = [0.01, 0.025, 0.05, 0.075, 0.1, 0.15] grid_max_depth = [2, 4, 6, 8, 10, 12, 15, 20, None] grid_criterion = ['gini', 'entropy'] grid_bool = [True, False] grid_seed = [0] grid_param = [ [{ #RandomForestClassifier 'n_estimators': grid_n_estimator, 'criterion': grid_criterion, 'max_depth': grid_max_depth, 'oob_score': [True], 'random_state': grid_seed }], [{ #SVC 'kernel': ['rbf'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'decision_function_shape': ['ovo', 'ovr'], 'probability': [True], 'random_state': grid_seed }], [{ #XGBClassifier 'learning_rate': grid_learn, #default: .3 'max_depth': [3, 4, 5, 6, 8, 10], #default 2 'n_estimators': grid_n_estimator, 'random_state': grid_seed }], [{ #AdaBoostClassifier 'algorithm': ['SAMME','SAMME.R'], 'n_estimators' : grid_n_estimator, 'learning_rate': grid_learn, 'random_state': grid_seed }], [{ #GradientBoostingClassifier 'loss' : ['deviance'], 'n_estimators' : grid_n_estimator, 'learning_rate': grid_learn, 'max_depth': [3, 4, 5, 6, 8, 10], 'random_state': grid_seed }] ] cv_split = ShuffleSplit(n_splits = 5, test_size = .3, train_size = .6, random_state = 0) # This code is only executed if the list of tuned parameters is empty. It will find the optimal hyperparameters. if not tuned_parameters: for clf, param in zip(vote_est, grid_param): print(clf[0]) best_search = GridSearchCV(estimator = clf[1], param_grid = param, cv = cv_split, scoring = 'accuracy', n_jobs=-1, verbose=True) best_search.fit(X_train, y) print("Best Parameters:\n{}".format(best_search.best_params_)) print("Best Score: {}\n".format(best_search.best_score_)) best_param = best_search.best_params_ clf[1].set_params(**best_param) else: # Set the model parameters to the tuned values. for clf, tuned_param in zip(vote_est, tuned_parameters): clf[1].set_params(**tuned_param) # Conduct the hard vote. vote_hard_tuned = ensemble.VotingClassifier(estimators = vote_est, voting = 'hard') vote_hard_tuned.fit(X_train, y) preds = vote_hard_tuned.predict(X_test) output = pd.DataFrame({'PassengerId' : X_test.index, 'Survived' : preds}) output.to_csv('submission.csv', index=False)
3.296875
3
examples/10-customer-payment-history.py
bryanwills/mollie-api-python
95
12776185
<filename>examples/10-customer-payment-history.py<gh_stars>10-100 # Example: Retrieving the payment history for a customer # import os import flask from mollie.api.client import Client from mollie.api.error import Error def main(): try: # # Initialize the Mollie API library with your API key. # # See: https://www.mollie.com/dashboard/settings/profiles # api_key = os.environ.get("MOLLIE_API_KEY", "test_test") mollie_client = Client() mollie_client.set_api_key(api_key) body = "" customer_id = flask.request.args.get("customer_id") # If no customer ID was provided in the URL, we grab the first customer if customer_id is None: customers = mollie_client.customers.list() body += "<p>No customer ID specified. Attempting to retrieve the first page of customers " body += "and grabbing the first.</p>" if not len(customers): body += "<p>You have no customers. You can create one from the examples.</p>" return body customer = next(customers) else: customer = mollie_client.customers.get(customer_id) amount_of_payments_to_retrieve = 20 # # Retrieve the latest payments for the customer # # See: https://www.mollie.com/nl/docs/reference/customers/list-payments # params = { "limit": amount_of_payments_to_retrieve, } payments = mollie_client.customer_payments.with_parent_id(customer.id).list(**params) body += f'<p>Showing the last {len(payments)} payments for customer "{customer.id}"</p>' for payment in payments: body += f'<p>Payment {payment.id} ({payment.amount["value"]}) {payment.amount["currency"]}</p>' return body except Error as err: return f"API call failed: {err}" if __name__ == "__main__": print(main())
3.046875
3
src/final_work/image_converter.py
mi-sts/spbu_python_homeworks
0
12776186
import typing import torch import torchvision import numpy as np from PIL import Image from torch.autograd import Variable from src.final_work.transformer import Transformer from enum import Enum class ModelType(Enum): HOSODA = "hosoda_mamoru" KON = "kon_satoshi" MIYAZAKI = "miyazaki_hayao" SHINKAI = "shinkai_makoto" class Device(Enum): CPU = "cpu" GPU = torch.device("cuda") class ImageConverter: MODELS_DIRECTORY = "models" def __init__(self): self.device = self._define_device() self._init_models() def _get_model(self, model_type: ModelType) -> Transformer: return self.models[model_type.value] @staticmethod def _define_device() -> Device: _is_gpu_enable = torch.cuda.is_available() if _is_gpu_enable: return Device.GPU else: return Device.CPU def _init_models(self): self.models = dict() for model_type in ModelType: self.models[model_type.value] = self._create_model(model_type) def _load_model_parameters(self, model: ModelType): return torch.load(f"{self.MODELS_DIRECTORY}/{model.value}.pth", self.device.value) def _create_model(self, model_type: ModelType) -> Transformer: new_model = Transformer() new_model_parameters = self._load_model_parameters(model_type) new_model.load_state_dict(new_model_parameters) if self.device == Device.GPU: new_model.to(self.device.value) new_model.eval() return new_model def convert_image(self, image: Image, model_type: ModelType) -> Image: image = image.convert("RGB") image = np.asarray(image) image = image[:, :, [2, 1, 0]] image = torchvision.transforms.ToTensor()(image).unsqueeze(0) image = -1 + 2 * image if self.device == Device.GPU: image = Variable(image).to(self.device.value) else: image = Variable(image).float() model = self._get_model(model_type) converted_image = model(image) converted_image = converted_image[0] converted_image = converted_image[[2, 1, 0], :, :] converted_image = converted_image.data.cpu().float() * 0.5 + 0.5 return torchvision.transforms.ToPILImage()(converted_image)
2.578125
3
midastools/misc/create_mip.py
lab-midas/toolbox
3
12776187
<gh_stars>1-10 import SimpleITK as sitk import argparse from pathlib import Path import matplotlib.pyplot as plt def main(): print("NIFI-image information") parser = argparse.ArgumentParser() parser.add_argument('--nii', help='image .nii file') args = parser.parse_args() nii_file = vars(args)['nii'] print(nii_file) if not nii_file: print('please specifiy .nii file') return 1 nii_file = Path(nii_file) if not nii_file.exists(): print(str(nii_file), ' does not exist.') reader = sitk.ImageFileReader() reader.SetImageIO('NiftiImageIO') reader.SetFileName(str(nii_file)) img = reader.Execute() mip_img = sitk.MaximumProjection(img, 1) print(mip_img.GetSize()) plt.imshow(sitk.GetArrayFromImage(mip_img)[:, 0, :]) plt.show() if __name__ == '__main__': main()
2.65625
3
save/MacroFuegoRunsList.py
tbird20d/fserver
0
12776188
<reponame>tbird20d/fserver """ MacroFuegoRunList - show a list of test runs """ import os def main(req, args=""): full_dirlist = os.listdir(req.config.files_dir+os.sep+"runs") full_dirlist.sort() # each run is it's own directory dirlist = full_dirlist # FIXTHIS - look for test run json file if not dirlist: return req.html_error("No runs found.") runs_url = req.config.files_url_base + os.sep + "runs/" html = "<ul>" for item in dirlist: html += '<li><a href="'+runs_url+item+'">' + item + '</a></li>\n' html += "</ul>" return html
2.46875
2
alphamind/portfolio/meanvariancebuilder.py
rongliang-tech/alpha-mind
186
12776189
# -*- coding: utf-8 -*- """ Created on 2017-6-27 @author: cheng.li """ from typing import Dict from typing import Optional from typing import Tuple from typing import Union import numpy as np from alphamind.portfolio.optimizers import ( QuadraticOptimizer, TargetVolOptimizer ) from alphamind.exceptions.exceptions import PortfolioBuilderException def _create_bounds(lbound, ubound, bm, risk_exposure, risk_target): if lbound is not None: lbound = lbound - bm if ubound is not None: ubound = ubound - bm if risk_exposure is not None: cons_mat = risk_exposure.T bm_risk = cons_mat @ bm clbound = (risk_target[0] - bm_risk).reshape((-1, 1)) cubound = (risk_target[1] - bm_risk).reshape((-1, 1)) else: cons_mat = None clbound = None cubound = None return lbound, ubound, cons_mat, clbound, cubound def _create_result(optimizer, bm): if optimizer.status() == "optimal" or optimizer.status() == "optimal_inaccurate": return optimizer.status(), optimizer.feval(), optimizer.x_value() + bm else: raise PortfolioBuilderException(optimizer.status()) def mean_variance_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float, None], ubound: Union[np.ndarray, float, None], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], lam: float = 1., linear_solver: str = 'deprecated') -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if cons_mat is not None: cons_matrix = np.concatenate([cons_mat, clbound, cubound], axis=1) else: cons_matrix = None cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] prob = QuadraticOptimizer(objective=-er, cons_matrix=cons_matrix, lbound=lbound, ubound=ubound, penalty=lam, cov=cov, factor_cov=risk_cov, factor_load=risk_exposure, factor_special=special_risk) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() + bm else: raise PortfolioBuilderException(prob.status()) def target_vol_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float], ubound: Union[np.ndarray, float], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], vol_target: float = 1., linear_solver: str = 'ma27') -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if cons_mat is not None: cons_matrix = np.concatenate([cons_mat, clbound, cubound], axis=1) else: cons_matrix = None cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] prob = TargetVolOptimizer(objective=-er, cons_matrix=cons_matrix, lbound=lbound, ubound=ubound, target_vol=vol_target, factor_cov=risk_cov, factor_load=risk_exposure, factor_special=special_risk, cov=cov) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() + bm else: raise PortfolioBuilderException(prob.status())
2.375
2
run.py
icdlvru2021/project1-ai
0
12776190
import pacman import autograder """ run.py runs things that look like command-line arguments for Berkeley Python. Leave the 'python pacman.py' part at the beginning, just like running from the command line. You should comment out all lines in the file except the one you wan to run! """ #pacman.main('python pacman.py --layout tinyMaze --pacman GoWestAgent') #pacman.main('python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch') pacman.main('python pacman.py -l mediumMaze -p SearchAgent -a fn=dfs') # autograder #autograder.run('python autograder.py') #autograder.run('python autograder -q q1') #autograder.run('python autograder.py -t test_cases/q2/graph_bfs_vs_dfs')
2.8125
3
src/dataset/vctk_dataset.py
antic11d/neural-compression
0
12776191
<reponame>antic11d/neural-compression<gh_stars>0 from torch.utils.data import Dataset import pickle import os import numpy as np class VCTKFeaturesDataset(Dataset): def __init__( self, vctk_path, subdirectory, normalizer=None, features_path="features" ): self._vctk_path = vctk_path self._subdirectory = subdirectory features_path = self._vctk_path + os.sep + features_path self._sub_features_path = features_path + os.sep + self._subdirectory self._files_number = len(os.listdir(self._sub_features_path)) self._normalizer = normalizer def __getitem__(self, index): dic = None path = self._sub_features_path + os.sep + str(index) + ".pickle" if not os.path.isfile(path): raise OSError("No such file '{}'".format(path)) if os.path.getsize(path) == 0: raise OSError("Empty file '{}'".format(path)) with open(path, "rb") as file: dic = pickle.load(file) if self._normalizer: dic["input_features"] = ( dic["input_features"] - self._normalizer["train_mean"] ) / self._normalizer["train_std"] dic["output_features"] = ( dic["output_features"] - self._normalizer["train_mean"] ) / self._normalizer["train_std"] dic["quantized"] = ( np.array([]) if dic["quantized"] is None else dic["quantized"] ) dic["one_hot"] = np.array([]) if dic["one_hot"] is None else dic["one_hot"] dic["index"] = index return dic def __len__(self): return self._files_number
2.359375
2
tests/unit/test_ikonos_image.py
DigitalGlobe/gbdxtools
81
12776192
<gh_stars>10-100 ''' Authors: <NAME>, <NAME> Contact: <EMAIL> Unit tests for the gbdxtools.Idaho class ''' from gbdxtools import IkonosImage, CatalogImage import vcr import unittest from helpers import mockable_interface, gbdx_vcr class GE01ImageTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.gbdx = mockable_interface() @gbdx_vcr.use_cassette('tests/unit/cassettes/test_ikonos_image.yaml', filter_headers=['authorization']) def test_ikonos_image(self): _id = '2001110218231680000010116110' img = self.gbdx.catalog_image(_id, bbox=[-111.96084176146779, 36.627666371883, -111.91772282506821, 36.670785308282575]) self.assertTrue(isinstance(img, IkonosImage)) assert img.shape == (4, 1500, 1500) assert img.proj == 'EPSG:4326' @gbdx_vcr.use_cassette('tests/unit/cassettes/test_ikonos_image_pansharpen.yaml', filter_headers=['authorization']) def test_ikonos_image_pansharpen(self): _id = '2013052717574940000011621174' img = self.gbdx.catalog_image(_id, pansharpen=True, bbox=[-104.89514954388144, 39.59212288111695, -104.87939038753511, 39.60903377365575]) self.assertTrue(isinstance(img, IkonosImage)) assert img.shape == (4, 2353, 2193) assert img.proj == 'EPSG:4326' @gbdx_vcr.use_cassette('tests/unit/cassettes/test_ikonos_image_proj.yaml', filter_headers=['authorization']) def test_ikonos_image_proj(self): _id = '2001110218231680000010116110' img = self.gbdx.catalog_image(_id, proj="EPSG:3857") self.assertTrue(isinstance(img, IkonosImage)) assert img.shape == (4, 33624, 4870) assert img.proj == 'EPSG:3857'
1.9375
2
deep-insight/deepinsight/topo.py
opennetworkinglab/sdfabric-utils
2
12776193
# SPDX-FileCopyrightText: Copyright 2021-present Open Networking Foundation. # SPDX-License-Identifier: Apache-2.0 import ipaddress import logging import re from collections import Counter, defaultdict import kubernetes as k8s import requests from netaddr import IPAddress log = logging.getLogger("DeepInsightTopoUtility") INT_HOST_REPORTER_TOPO_API="http://{}:4048/api/v1/topology" PORT_MAPPINGS = {} def parse_port_id(port_string): # Port string can be "[port/channel](id)" or just "id". # Only return the ID of port. match = re.match(r"\[([0-9]+/[0-9]+)\]\(([0-9]+)\)", port_string) if not match: return int(port_string) else: return int(match.group(2)) def parse_port_name(port_string): # Port string can be "[port/channel](id)" or just "id". # Return the "port/channel" string, if exists. # Otherwise, return the ID of port. match = re.match(r"\[([0-9]+/[0-9]+)\]\(([0-9]+)\)", port_string) if not match: return port_string elif match.group(1): return match.group(1) else: return match.group(2) def gen_topo( onos_url="http://localhost:8181/onos/v1", onos_user="onos", onos_pass="<PASSWORD>", with_end_host=False, k8s_clusters=[], ): """ Generate topology based on ONOS and K8s cluster topology. :param onos_url: The ONOS URL, default is http://localhost:8181/onos/v1 :param onos_user: The ONOS user, default is onos :param onos_pass: The ONOS password, default is <PASSWORD> :param with_end_host: Include end hosts(k8s nodes), default is False :param k8s_clusters: [For end host] The list of K8s cluster info, default is empty """ log.info( "Using ONOS REST APIs at %s (user:%s, password:%s)", onos_url, onos_user, onos_pass, ) auth = requests.auth.HTTPBasicAuth(onos_user, onos_pass) netcfg = requests.get(onos_url + "/network/configuration", auth=auth) if not netcfg.ok: log.fatal("Unable to retrieve netcfg\n%s", netcfg.text) netcfg = netcfg.json() topo = {"switches": [], "links": [], "subnets": [], "hosts": []} for key, value in netcfg["devices"].items(): topo["switches"].append( { "switchId": value["segmentrouting"]["ipv4NodeSid"], "name": key, "deviceType": "legacy", "ip": value["segmentrouting"]["ipv4Loopback"], } ) devices = requests.get(onos_url + "/devices", auth=auth) if not devices.ok: log.fatal("Unable to retrieve devices\n%s", devices.text) devices = devices.json()["devices"] for device in devices: device_ports = requests.get(onos_url + "/devices/" + device['id'] + "/ports", auth=auth) if not device_ports.ok: log.fatal("Unable to retrieve ports of device\n%s", device_ports.text) for elem in device_ports.json()['ports']: port_name = parse_port_name(elem['port']) port_id = parse_port_id(elem['port']) if not device['id'] in PORT_MAPPINGS: PORT_MAPPINGS[device['id']] = {} PORT_MAPPINGS[device['id']][port_id] = port_name print(PORT_MAPPINGS) subnets = defaultdict(lambda: {}) for key, value in netcfg["ports"].items(): if "interfaces" not in value: continue ifaces = value["interfaces"] for iface in ifaces: for ip in iface["ips"]: ip = ipaddress.ip_interface(ip) subnets[str(ip.network)][key] = True subnet_id = 1 for subnet, ports in subnets.items(): topo["subnets"].append( {"ip_subnet": subnet, "name": subnet, "subnet_id": subnet_id} ) for port in ports: switch_id, port_num = port.split("/") topo["links"].append( { "node1": switch_id, "port1": PORT_MAPPINGS[switch_id][int(port_num)], "node2": subnet, "port2": "-1", "switchPort1": int(port_num), } ) subnet_id = subnet_id + 1 hosts = requests.get(onos_url + "/hosts", auth=auth) if not hosts.ok: log.fatal("Unable to retrieve hosts\n%s", hosts.text) hosts = hosts.json()["hosts"] # A dictionary stores mapping from host IP to locations. # Later we will use this dictionary to find the location of next hop for each routes. host_ip_to_locations = {} # Host names in ONOS are not unique, in case of duplicates, append count # suffix (e.h., myhost_1, myhost_2). Similarly, we use different names for hosts with # multiple IP addresses. name_ctr = Counter() for host in hosts: try: name = host["annotations"]["name"] except KeyError: name = host["id"] for ip in host["ipAddresses"]: name_ctr.update([name]) unique_name = "%s_%s" % (name, name_ctr[name]) topo["hosts"].append( { "ip": ip, "name": unique_name, } ) for location in host["locations"]: port_num = parse_port_id(location["port"]) topo["links"].append( { "node1": location["elementId"], "port1": PORT_MAPPINGS[location["elementId"]][int(port_num)], "node2": unique_name, "port2": "-1", "switchPort1": port_num, } ) host_ip_to_locations[ip] = host["locations"] links = requests.get(onos_url + "/links", auth=auth) if not links.ok: log.fatal("Unable to retrieve hosts\n%s", links.text) links = links.json()["links"] for app, value in netcfg["apps"].items(): if app == "org.omecproject.up4": if "up4" not in value: continue up4 = value["up4"] if "devices" in up4: up4_switch_ids = up4["devices"] else: # TODO: For backward compatibility # remove this when we are no longer need it. up4_switch_ids = [up4["deviceId"]] s1uaddr = up4["s1uAddr"] s1uaddr = ipaddress.ip_address(s1uaddr) uepools = set([str(ipaddress.ip_network(n)) for n in up4["uePools"]]) for uepool in uepools: topo["subnets"].append( {"ip_subnet": uepool, "name": uepool, "subnet_id": subnet_id} ) subnet_id = subnet_id + 1 subnets_with_ue = [] for s in subnets: if s1uaddr in ipaddress.ip_network(s): subnets_with_ue.append(s) if len(subnets_with_ue) == 0: log.warning("Unable to map UP4 S1U address to switch port: %s", s1uaddr) continue for s in subnets_with_ue: for port in subnets[s]: switch_id, port_num = port.split("/") if switch_id in up4_switch_ids: for uepool in uepools: topo["links"].append( { "node1": switch_id, "port1": PORT_MAPPINGS[switch_id][int(port_num)], "node2": uepool, "port2": "-1", "switchPort1": int(port_num), } ) elif app == "org.onosproject.route-service": if "routes" not in value: continue for route in value["routes"]: if "prefix" not in route or "nextHop" not in route: continue prefix = route["prefix"] next_hop = route["nextHop"] topo["subnets"].append( {"ip_subnet": prefix, "name": prefix, "subnet_id": subnet_id} ) subnet_id = subnet_id + 1 route_locations = host_ip_to_locations.get(next_hop, []) for route_location in route_locations: port_num = parse_port_id(route_location["port"]) topo["links"].append( { "node1": route_location["elementId"], "port1": PORT_MAPPINGS[route_location["elementId"]][int(port_num)], "node2": prefix, "port2": "-1", "switchPort1": port_num, } ) # ONOS returns an entry for each direction of a bidirectional link, but # DeepInsight expects only one entry for both directions. bidi_links = {} for link in links: key = [str(link["src"]), str(link["dst"])] key.sort() key = tuple(key) port1_num = parse_port_id(link["src"]["port"]) port2_num = parse_port_id(link["dst"]["port"]) bidi_links[key] = { "node1": link["src"]["device"], "port1": PORT_MAPPINGS[link["src"]["device"]][int(port1_num)], "node2": link["dst"]["device"], "port2": PORT_MAPPINGS[link["dst"]["device"]][int(port2_num)], "switchPort1": port1_num, "switchPort2": port2_num, } topo["links"].extend(bidi_links.values()) if not with_end_host: return topo # End hosts topology config for idx, cluster in enumerate(k8s_clusters): if not 'subnet' in cluster: log.error("Missing 'subnet' in K8s cluster info [argument index=%d]: %s, skipping to add K8s cluster to topology file.", idx, cluster) continue k8s_config = cluster['config'] if 'config' in cluster else None k8s_cluster_subnet = cluster['subnet'] k8s.config.load_kube_config(config_file=k8s_config) k8s_node_ips = [] for node in k8s.client.CoreV1Api().list_node().items: k8s_node_ips += [ item.address for item in node.status.addresses if item.type == "InternalIP" ] for subnet in topo["subnets"]: if subnet["ip_subnet"] == k8s_cluster_subnet: k8s_subnet = subnet subnet_id = subnet["subnet_id"] break else: k8s_subnet = { "name": k8s_cluster_subnet, "ip_subnet": k8s_cluster_subnet, "subnet_id": subnet_id, } subnet_id += 1 k8s_node_cidrs = [] ipam_blocks = k8s.client.CustomObjectsApi().list_cluster_custom_object( group="crd.projectcalico.org", version="v1", plural="ipamblocks" ) for item in ipam_blocks["items"]: cidr = item["spec"]["cidr"] k8s_node_cidrs.append( {"name": str(cidr), "ip_subnet": str(cidr), "subnet_id": subnet_id} ) subnet_id += 1 vswitch_links = dict() vswitches = [] for node_id, node_ip in enumerate(k8s_node_ips): url = INT_HOST_REPORTER_TOPO_API.format(node_ip) host_topology = requests.get(url) if not host_topology.ok: log.fatal("Unable to access Topology API from K8s node %s\n%s", node_ip, host_topology.text) for link in host_topology.json()["links"]: if link["is-node-iface"]: node_iface = link["id"] vswitch_ip = link["ip-addresses"][0] hostname = [host["name"] for host in topo["hosts"] if host["ip"] == vswitch_ip] hostname = hostname[0] if len(hostname) != 0 else "" name = "device:vswitch" + str(node_id) vswitches.append( { "name": name, "ip": vswitch_ip, "default-intf": str(node_iface), "deviceType": "legacy", "switchId": int(IPAddress(node_ip)), "hostname": hostname, } ) vswitch_links[name] = host_topology.json()["links"] topo['switches'].extend(vswitches) all_host_subnets = k8s_node_cidrs + [k8s_subnet] # Overrides links in the topology config. # Connects the physical switch to the host vswitch for link in topo["links"]: for sw in vswitches: # find IP of an attached host host_ip = [host["ip"] for host in topo["hosts"] if host["name"] == link["node2"]] host_ip = host_ip[0] if len(host_ip) != 0 else "" if host_ip == sw["ip"]: link["port2"] = sw["default-intf"] link["node2"] = sw["name"] link["switchPort2"] = int(sw["default-intf"]) # Connect vswitch to all possible subnets with all possible ports. for sw in vswitches: for host_subnet in all_host_subnets: for link in vswitch_links[sw["name"]]: if link["is-node-iface"]: # skip data interfaces continue topo["links"].append( { "node1": sw["name"], "node2": host_subnet["name"], "port1": str(link["id"]), "port2": "-1", "switchPort1": int(link["id"]), } ) # Overrides subnets in the topology config. if k8s_subnet not in topo["subnets"]: topo["subnets"].append(k8s_subnet) topo["subnets"] += k8s_node_cidrs return topo
2.40625
2
ressources/constant.py
Jouca/Horse-Game
0
12776194
<gh_stars>0 COLOR = { 'ORANGE': (255, 121, 0), 'LIGHT_YELLOW': (255, 230, 130), 'YELLOW': (255, 204, 0), 'LIGHT_BLUE': (148, 228, 228), 'BLUE': (51, 204, 204), 'LIGHT_RED': (255, 136, 106), 'RED': (255, 51, 0), 'LIGHT_GREEN': (206, 255, 60), 'GREEN': (153, 204, 0), 'CYAN': (0, 159, 218), 'BLUE_PAUL': (0, 59, 111), 'PURPLE': (161, 6, 132), 'WHITE': (255, 255, 255), 'BLACK': (0, 0, 0), 'GOLD': (245, 189, 2), 'SILVER': (187, 194, 204), 'BRONZE':(205, 127, 50), } PLAYER_COLORS = ["YELLOW", "BLUE", "RED", "GREEN"] PLATEAU_PLAYERS_COORDINATES = [(0, 0, 0), (308, 0, -90), (352, 308, 180), (0, 352, -270)] FONT_HEIGHT = [19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106, 107, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 127, 128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 144, 145, 147, 148, 150, 151, 153, 154, 156, 157, 159, 160, 162, 163, 165, 166, 168, 169, 171, 172, 174, 175, 177, 178, 180, 181, 183, 184, 186, 187, 189, 190, 192, 193, 195, 196, 198, 199, 201, 202, 204, 205, 207, 208, 210, 211, 213, 214, 216, 217, 219, 220, 222, 223, 225, 226, 228, 229, 231, 232, 234, 235, 237, 238, 240, 241, 243, 244, 246, 247, 249, 250, 252, 253, 255, 256, 258, 259, 261, 262, 264, 265, 267, 268, 270, 271, 273, 274, 276, 277, 279, 280, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300]
1.8125
2
dash_echarts/examples/line_race.py
Covarians/dash-echarts
28
12776195
import json import datetime, time from os import path import dash import dash_echarts import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate basepath = path.dirname(__file__) filepath = path.abspath(path.join(basepath+'/static', 'life-expectancy-table.json')) with open(filepath) as json_file: raw_data = json.load(json_file) def get_countries(): return list(set([e[3] for e in raw_data[1:]])) dataset_with_filters = [ { "id": f"dataset_{country}", "fromDatasetId": "dataset_raw", "transform": { "type": "filter", "config": { "and": [ {"dimension": "Year", "gte": 1950}, {"dimension": "Country", "=": country}, ] }, }, } for country in get_countries() ] series_list = [ { "type": "line", "datasetId": f"dataset_{country}", "showSymbol": False, "name": country, "endLabel": { "show": True, "formatter": "line_race_formatter" }, "labelLayout": {"moveOverlap": "shiftY"}, "emphasis": {"focus": "series"}, "encode": { "x": "Year", "y": "Income", "label": ["Country", "Income"], "itemName": "Year", "tooltip": ["Income"], }, } for country in get_countries() ] option = { "animationDuration": 10000, "animation": True, "dataset": [{"id": "dataset_raw", "source": raw_data}] + dataset_with_filters, "title": {"text": "Income since 1950"}, "tooltip": {"order": "valueDesc", "trigger": "axis"}, "xAxis": {"type": "category", "nameLocation": "middle"}, "yAxis": {"name": "Income"}, "grid": {"right": 140}, "series": series_list, } layout = html.Div([ dash_echarts.DashECharts( option = option, id='echarts', style={ "width": '100%', "height": '100vh', }, funs={ "line_race_formatter": ''' function(params){ return params.value[3] + ': ' + params.value[0]; } ''' }, fun_values=['line_race_formatter'] ), dbc.Button('restart', color='success', id='line-race-button', style={ 'position': 'absolute', 'height': 50, 'width': '5%', 'top': '25%', 'right': '15%', 'opacity': 0.8 } ), ]) def main(): app = dash.Dash( external_stylesheets=[dbc.themes.BOOTSTRAP], meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1"} ], suppress_callback_exceptions=True, ) app.layout = layout @app.callback( Output('echarts', 'reset_id'), [Input("line-race-button", "n_clicks")], ) def update_line_race(n_clicks): triggered = dash.callback_context.triggered # value = triggered[0]['value'] prop_id, event = triggered[0]['prop_id'].split('.') if n_clicks: if 'line-race-button' in prop_id: dtime = datetime.datetime.now() int_time = int(time.mktime(dtime.timetuple())) return int_time raise PreventUpdate app.run_server(debug=True) if __name__ == '__main__': main()
2.453125
2
src/promotion/register_model.py
AHaryanto/azure-automl-mlops
16
12776196
import os import sys from azureml.core.model import Model sys.path.append(os.getcwd()) import config as f # noqa: E402 model_name = f.params["registered_model_name"] if f.params['remote_run'] is True: model_path = os.environ['MODEL_PATH'] elif f.params['remote_run'] is False: model_path = os.path.join('models', model_name, 'best_model_data') else: raise Exception('remote_run unknown value. The value was: ' + f.params['remote_run']) print(f'Registering {model_name} from {model_path}') model = Model.register( model_path=model_path, model_name=model_name, tags={ 'industry': 'retail', 'type': 'regression' }, description="Retail AutoML regression model.", workspace=f.ws) print(f'{model.name} successfully registered to {f.ws.name}')
2.28125
2
test/unit/test_resource_manager_v2.py
gmzcarlos/platform-services-python-sdk
0
12776197
<reponame>gmzcarlos/platform-services-python-sdk<filename>test/unit/test_resource_manager_v2.py<gh_stars>0 # -*- coding: utf-8 -*- # (C) Copyright IBM Corp. 2020. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime, timezone from ibm_cloud_sdk_core.authenticators.no_auth_authenticator import NoAuthAuthenticator import inspect import json import pytest import requests import responses from ibm_platform_services.resource_manager_v2 import * service = ResourceManagerV2( authenticator=NoAuthAuthenticator() ) base_url = 'https://resource-controller.cloud.ibm.com/v2' service.set_service_url(base_url) ############################################################################## # Start of Service: ResourceGroup ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for list_resource_groups #----------------------------------------------------------------------------- class TestListResourceGroups(): #-------------------------------------------------------- # list_resource_groups() #-------------------------------------------------------- @responses.activate def test_list_resource_groups_all_params(self): # Set up mock url = base_url + '/resource_groups' mock_response = '{"resources": [{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}]}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values account_id = 'testString' date = 'testString' # Invoke method response = service.list_resource_groups( account_id=account_id, date=date, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 # Validate query params query_string = responses.calls[0].request.url.split('?',1)[1] query_string = requests.utils.unquote(query_string) assert 'account_id={}'.format(account_id) in query_string assert 'date={}'.format(date) in query_string #-------------------------------------------------------- # test_list_resource_groups_required_params() #-------------------------------------------------------- @responses.activate def test_list_resource_groups_required_params(self): # Set up mock url = base_url + '/resource_groups' mock_response = '{"resources": [{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}]}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Invoke method response = service.list_resource_groups() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #----------------------------------------------------------------------------- # Test Class for create_resource_group #----------------------------------------------------------------------------- class TestCreateResourceGroup(): #-------------------------------------------------------- # create_resource_group() #-------------------------------------------------------- @responses.activate def test_create_resource_group_all_params(self): # Set up mock url = base_url + '/resource_groups' mock_response = '{"id": "id", "crn": "crn"}' responses.add(responses.POST, url, body=mock_response, content_type='application/json', status=201) # Set up parameter values name = 'test1' account_id = '25eba2a9-beef-450b-82cf-f5ad5e36c6dd' # Invoke method response = service.create_resource_group( name=name, account_id=account_id, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 201 # Validate body params req_body = json.loads(str(responses.calls[0].request.body, 'utf-8')) assert req_body['name'] == 'test1' assert req_body['account_id'] == '25eba2a9-beef-450b-82cf-f5ad5e36c6dd' #-------------------------------------------------------- # test_create_resource_group_required_params() #-------------------------------------------------------- @responses.activate def test_create_resource_group_required_params(self): # Set up mock url = base_url + '/resource_groups' mock_response = '{"id": "id", "crn": "crn"}' responses.add(responses.POST, url, body=mock_response, content_type='application/json', status=201) # Invoke method response = service.create_resource_group() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 201 #----------------------------------------------------------------------------- # Test Class for get_resource_group #----------------------------------------------------------------------------- class TestGetResourceGroup(): #-------------------------------------------------------- # get_resource_group() #-------------------------------------------------------- @responses.activate def test_get_resource_group_all_params(self): # Set up mock url = base_url + '/resource_groups/testString' mock_response = '{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' # Invoke method response = service.get_resource_group( id, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_get_resource_group_value_error() #-------------------------------------------------------- @responses.activate def test_get_resource_group_value_error(self): # Set up mock url = base_url + '/resource_groups/testString' mock_response = '{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "id": id, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.get_resource_group(**req_copy) #----------------------------------------------------------------------------- # Test Class for update_resource_group #----------------------------------------------------------------------------- class TestUpdateResourceGroup(): #-------------------------------------------------------- # update_resource_group() #-------------------------------------------------------- @responses.activate def test_update_resource_group_all_params(self): # Set up mock url = base_url + '/resource_groups/testString' mock_response = '{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.PATCH, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' name = 'testString' state = 'testString' # Invoke method response = service.update_resource_group( id, name=name, state=state, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 # Validate body params req_body = json.loads(str(responses.calls[0].request.body, 'utf-8')) assert req_body['name'] == 'testString' assert req_body['state'] == 'testString' #-------------------------------------------------------- # test_update_resource_group_required_params() #-------------------------------------------------------- @responses.activate def test_update_resource_group_required_params(self): # Set up mock url = base_url + '/resource_groups/testString' mock_response = '{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.PATCH, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' # Invoke method response = service.update_resource_group( id, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_update_resource_group_value_error() #-------------------------------------------------------- @responses.activate def test_update_resource_group_value_error(self): # Set up mock url = base_url + '/resource_groups/testString' mock_response = '{"id": "id", "crn": "crn", "account_id": "account_id", "name": "name", "state": "state", "default": false, "quota_id": "quota_id", "quota_url": "quota_url", "payment_methods_url": "payment_methods_url", "resource_linkages": [{"anyKey": "anyValue"}], "teams_url": "teams_url", "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.PATCH, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "id": id, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.update_resource_group(**req_copy) #----------------------------------------------------------------------------- # Test Class for delete_resource_group #----------------------------------------------------------------------------- class TestDeleteResourceGroup(): #-------------------------------------------------------- # delete_resource_group() #-------------------------------------------------------- @responses.activate def test_delete_resource_group_all_params(self): # Set up mock url = base_url + '/resource_groups/testString' responses.add(responses.DELETE, url, status=204) # Set up parameter values id = 'testString' # Invoke method response = service.delete_resource_group( id, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 204 #-------------------------------------------------------- # test_delete_resource_group_value_error() #-------------------------------------------------------- @responses.activate def test_delete_resource_group_value_error(self): # Set up mock url = base_url + '/resource_groups/testString' responses.add(responses.DELETE, url, status=204) # Set up parameter values id = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "id": id, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.delete_resource_group(**req_copy) # endregion ############################################################################## # End of Service: ResourceGroup ############################################################################## ############################################################################## # Start of Service: QuotaDefinition ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for list_quota_definitions #----------------------------------------------------------------------------- class TestListQuotaDefinitions(): #-------------------------------------------------------- # list_quota_definitions() #-------------------------------------------------------- @responses.activate def test_list_quota_definitions_all_params(self): # Set up mock url = base_url + '/quota_definitions' mock_response = '{"resources": [{"id": "id", "name": "name", "type": "type", "number_of_apps": 14, "number_of_service_instances": 27, "default_number_of_instances_per_lite_plan": 41, "instances_per_app": 17, "instance_memory": "instance_memory", "total_app_memory": "total_app_memory", "vsi_limit": 9, "resource_quotas": [{"_id": "id", "resource_id": "resource_id", "crn": "crn", "limit": 5}], "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}]}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Invoke method response = service.list_quota_definitions() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #----------------------------------------------------------------------------- # Test Class for get_quota_definition #----------------------------------------------------------------------------- class TestGetQuotaDefinition(): #-------------------------------------------------------- # get_quota_definition() #-------------------------------------------------------- @responses.activate def test_get_quota_definition_all_params(self): # Set up mock url = base_url + '/quota_definitions/testString' mock_response = '{"id": "id", "name": "name", "type": "type", "number_of_apps": 14, "number_of_service_instances": 27, "default_number_of_instances_per_lite_plan": 41, "instances_per_app": 17, "instance_memory": "instance_memory", "total_app_memory": "total_app_memory", "vsi_limit": 9, "resource_quotas": [{"_id": "id", "resource_id": "resource_id", "crn": "crn", "limit": 5}], "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' # Invoke method response = service.get_quota_definition( id, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_get_quota_definition_value_error() #-------------------------------------------------------- @responses.activate def test_get_quota_definition_value_error(self): # Set up mock url = base_url + '/quota_definitions/testString' mock_response = '{"id": "id", "name": "name", "type": "type", "number_of_apps": 14, "number_of_service_instances": 27, "default_number_of_instances_per_lite_plan": 41, "instances_per_app": 17, "instance_memory": "instance_memory", "total_app_memory": "total_app_memory", "vsi_limit": 9, "resource_quotas": [{"_id": "id", "resource_id": "resource_id", "crn": "crn", "limit": 5}], "created_at": "2019-01-01T12:00:00", "updated_at": "2019-01-01T12:00:00"}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values id = 'testString' # Pass in all but one required param and check for a ValueError req_param_dict = { "id": id, } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.get_quota_definition(**req_copy) # endregion ############################################################################## # End of Service: QuotaDefinition ############################################################################## ############################################################################## # Start of Model Tests ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for QuotaDefinition #----------------------------------------------------------------------------- class TestQuotaDefinition(): #-------------------------------------------------------- # Test serialization/deserialization for QuotaDefinition #-------------------------------------------------------- def test_quota_definition_serialization(self): # Construct dict forms of any model objects needed in order to build this model. resource_quota_model = {} # ResourceQuota resource_quota_model['_id'] = 'testString' resource_quota_model['resource_id'] = 'testString' resource_quota_model['crn'] = 'testString' resource_quota_model['limit'] = 36.0 # Construct a json representation of a QuotaDefinition model quota_definition_model_json = {} quota_definition_model_json['id'] = 'testString' quota_definition_model_json['name'] = 'testString' quota_definition_model_json['type'] = 'testString' quota_definition_model_json['number_of_apps'] = 36.0 quota_definition_model_json['number_of_service_instances'] = 36.0 quota_definition_model_json['default_number_of_instances_per_lite_plan'] = 36.0 quota_definition_model_json['instances_per_app'] = 36.0 quota_definition_model_json['instance_memory'] = 'testString' quota_definition_model_json['total_app_memory'] = 'testString' quota_definition_model_json['vsi_limit'] = 36.0 quota_definition_model_json['resource_quotas'] = [resource_quota_model] quota_definition_model_json['created_at'] = '2020-01-28T18:40:40.123456Z' quota_definition_model_json['updated_at'] = '2020-01-28T18:40:40.123456Z' # Construct a model instance of QuotaDefinition by calling from_dict on the json representation quota_definition_model = QuotaDefinition.from_dict(quota_definition_model_json) assert quota_definition_model != False # Construct a model instance of QuotaDefinition by calling from_dict on the json representation quota_definition_model_dict = QuotaDefinition.from_dict(quota_definition_model_json).__dict__ quota_definition_model2 = QuotaDefinition(**quota_definition_model_dict) # Verify the model instances are equivalent assert quota_definition_model == quota_definition_model2 # Convert model instance back to dict and verify no loss of data quota_definition_model_json2 = quota_definition_model.to_dict() assert quota_definition_model_json2 == quota_definition_model_json #----------------------------------------------------------------------------- # Test Class for QuotaDefinitionList #----------------------------------------------------------------------------- class TestQuotaDefinitionList(): #-------------------------------------------------------- # Test serialization/deserialization for QuotaDefinitionList #-------------------------------------------------------- def test_quota_definition_list_serialization(self): # Construct dict forms of any model objects needed in order to build this model. resource_quota_model = {} # ResourceQuota resource_quota_model['_id'] = 'testString' resource_quota_model['resource_id'] = 'testString' resource_quota_model['crn'] = 'testString' resource_quota_model['limit'] = 36.0 quota_definition_model = {} # QuotaDefinition quota_definition_model['id'] = 'testString' quota_definition_model['name'] = 'testString' quota_definition_model['type'] = 'testString' quota_definition_model['number_of_apps'] = 36.0 quota_definition_model['number_of_service_instances'] = 36.0 quota_definition_model['default_number_of_instances_per_lite_plan'] = 36.0 quota_definition_model['instances_per_app'] = 36.0 quota_definition_model['instance_memory'] = 'testString' quota_definition_model['total_app_memory'] = 'testString' quota_definition_model['vsi_limit'] = 36.0 quota_definition_model['resource_quotas'] = [resource_quota_model] quota_definition_model['created_at'] = '2020-01-28T18:40:40.123456Z' quota_definition_model['updated_at'] = '2020-01-28T18:40:40.123456Z' # Construct a json representation of a QuotaDefinitionList model quota_definition_list_model_json = {} quota_definition_list_model_json['resources'] = [quota_definition_model] # Construct a model instance of QuotaDefinitionList by calling from_dict on the json representation quota_definition_list_model = QuotaDefinitionList.from_dict(quota_definition_list_model_json) assert quota_definition_list_model != False # Construct a model instance of QuotaDefinitionList by calling from_dict on the json representation quota_definition_list_model_dict = QuotaDefinitionList.from_dict(quota_definition_list_model_json).__dict__ quota_definition_list_model2 = QuotaDefinitionList(**quota_definition_list_model_dict) # Verify the model instances are equivalent assert quota_definition_list_model == quota_definition_list_model2 # Convert model instance back to dict and verify no loss of data quota_definition_list_model_json2 = quota_definition_list_model.to_dict() assert quota_definition_list_model_json2 == quota_definition_list_model_json #----------------------------------------------------------------------------- # Test Class for ResCreateResourceGroup #----------------------------------------------------------------------------- class TestResCreateResourceGroup(): #-------------------------------------------------------- # Test serialization/deserialization for ResCreateResourceGroup #-------------------------------------------------------- def test_res_create_resource_group_serialization(self): # Construct a json representation of a ResCreateResourceGroup model res_create_resource_group_model_json = {} res_create_resource_group_model_json['id'] = 'testString' res_create_resource_group_model_json['crn'] = 'testString' # Construct a model instance of ResCreateResourceGroup by calling from_dict on the json representation res_create_resource_group_model = ResCreateResourceGroup.from_dict(res_create_resource_group_model_json) assert res_create_resource_group_model != False # Construct a model instance of ResCreateResourceGroup by calling from_dict on the json representation res_create_resource_group_model_dict = ResCreateResourceGroup.from_dict(res_create_resource_group_model_json).__dict__ res_create_resource_group_model2 = ResCreateResourceGroup(**res_create_resource_group_model_dict) # Verify the model instances are equivalent assert res_create_resource_group_model == res_create_resource_group_model2 # Convert model instance back to dict and verify no loss of data res_create_resource_group_model_json2 = res_create_resource_group_model.to_dict() assert res_create_resource_group_model_json2 == res_create_resource_group_model_json #----------------------------------------------------------------------------- # Test Class for ResourceGroup #----------------------------------------------------------------------------- class TestResourceGroup(): #-------------------------------------------------------- # Test serialization/deserialization for ResourceGroup #-------------------------------------------------------- def test_resource_group_serialization(self): # Construct a json representation of a ResourceGroup model resource_group_model_json = {} resource_group_model_json['id'] = 'testString' resource_group_model_json['crn'] = 'testString' resource_group_model_json['account_id'] = 'testString' resource_group_model_json['name'] = 'testString' resource_group_model_json['state'] = 'testString' resource_group_model_json['default'] = True resource_group_model_json['quota_id'] = 'testString' resource_group_model_json['quota_url'] = 'testString' resource_group_model_json['payment_methods_url'] = 'testString' resource_group_model_json['resource_linkages'] = [{ 'foo': 'bar' }] resource_group_model_json['teams_url'] = 'testString' resource_group_model_json['created_at'] = '2020-01-28T18:40:40.123456Z' resource_group_model_json['updated_at'] = '2020-01-28T18:40:40.123456Z' # Construct a model instance of ResourceGroup by calling from_dict on the json representation resource_group_model = ResourceGroup.from_dict(resource_group_model_json) assert resource_group_model != False # Construct a model instance of ResourceGroup by calling from_dict on the json representation resource_group_model_dict = ResourceGroup.from_dict(resource_group_model_json).__dict__ resource_group_model2 = ResourceGroup(**resource_group_model_dict) # Verify the model instances are equivalent assert resource_group_model == resource_group_model2 # Convert model instance back to dict and verify no loss of data resource_group_model_json2 = resource_group_model.to_dict() assert resource_group_model_json2 == resource_group_model_json #----------------------------------------------------------------------------- # Test Class for ResourceGroupList #----------------------------------------------------------------------------- class TestResourceGroupList(): #-------------------------------------------------------- # Test serialization/deserialization for ResourceGroupList #-------------------------------------------------------- def test_resource_group_list_serialization(self): # Construct dict forms of any model objects needed in order to build this model. resource_group_model = {} # ResourceGroup resource_group_model['id'] = 'testString' resource_group_model['crn'] = 'testString' resource_group_model['account_id'] = 'testString' resource_group_model['name'] = 'testString' resource_group_model['state'] = 'testString' resource_group_model['default'] = True resource_group_model['quota_id'] = 'testString' resource_group_model['quota_url'] = 'testString' resource_group_model['payment_methods_url'] = 'testString' resource_group_model['resource_linkages'] = [{ 'foo': 'bar' }] resource_group_model['teams_url'] = 'testString' resource_group_model['created_at'] = '2020-01-28T18:40:40.123456Z' resource_group_model['updated_at'] = '2020-01-28T18:40:40.123456Z' # Construct a json representation of a ResourceGroupList model resource_group_list_model_json = {} resource_group_list_model_json['resources'] = [resource_group_model] # Construct a model instance of ResourceGroupList by calling from_dict on the json representation resource_group_list_model = ResourceGroupList.from_dict(resource_group_list_model_json) assert resource_group_list_model != False # Construct a model instance of ResourceGroupList by calling from_dict on the json representation resource_group_list_model_dict = ResourceGroupList.from_dict(resource_group_list_model_json).__dict__ resource_group_list_model2 = ResourceGroupList(**resource_group_list_model_dict) # Verify the model instances are equivalent assert resource_group_list_model == resource_group_list_model2 # Convert model instance back to dict and verify no loss of data resource_group_list_model_json2 = resource_group_list_model.to_dict() assert resource_group_list_model_json2 == resource_group_list_model_json #----------------------------------------------------------------------------- # Test Class for ResourceQuota #----------------------------------------------------------------------------- class TestResourceQuota(): #-------------------------------------------------------- # Test serialization/deserialization for ResourceQuota #-------------------------------------------------------- def test_resource_quota_serialization(self): # Construct a json representation of a ResourceQuota model resource_quota_model_json = {} resource_quota_model_json['_id'] = 'testString' resource_quota_model_json['resource_id'] = 'testString' resource_quota_model_json['crn'] = 'testString' resource_quota_model_json['limit'] = 36.0 # Construct a model instance of ResourceQuota by calling from_dict on the json representation resource_quota_model = ResourceQuota.from_dict(resource_quota_model_json) assert resource_quota_model != False # Construct a model instance of ResourceQuota by calling from_dict on the json representation resource_quota_model_dict = ResourceQuota.from_dict(resource_quota_model_json).__dict__ resource_quota_model2 = ResourceQuota(**resource_quota_model_dict) # Verify the model instances are equivalent assert resource_quota_model == resource_quota_model2 # Convert model instance back to dict and verify no loss of data resource_quota_model_json2 = resource_quota_model.to_dict() assert resource_quota_model_json2 == resource_quota_model_json # endregion ############################################################################## # End of Model Tests ##############################################################################
2.09375
2
code_sender/rstudio/__init__.py
fredcallaway/SendCode
177
12776198
import sublime import os from ..clipboard import clipboard plat = sublime.platform() if plat == "osx": from ..applescript import osascript RSTUDIOAPPLESCRIPT = os.path.join(os.path.dirname(__file__), "rstudio.applescript") def send_to_rstudio(cmd): osascript(RSTUDIOAPPLESCRIPT, cmd) elif plat == "windows": from .. import winauto def send_to_rstudio(cmd, from_view): rid = winauto.find_rstudio() clipboard.set_clipboard(cmd) winauto.paste_to_rstudio(rid, from_view=from_view) clipboard.reset_clipboard() elif plat == "linux": from ..xdotool import xdotool def send_to_rstudio(cmd): wid = xdotool("search", "--onlyvisible", "--class", "rstudio") if wid: wid = wid.decode("utf-8").strip().split("\n")[-1] clipboard.set_clipboard(cmd) xdotool("key", "--window", wid, "ctrl+v") xdotool("key", "--window", wid, "--clearmodifiers", "Return") clipboard.reset_clipboard()
2.40625
2
webvep/webvep_api/urls.py
IanVermes/vep_api
0
12776199
from django.urls import path, include from rest_framework.urlpatterns import format_suffix_patterns from webvep_api.views import ping_view, vcf_view, vep_view urlpatterns = [path("ping/", ping_view), path("vcf/", vcf_view), path("vep/", vep_view)] urlpatterns = format_suffix_patterns(urlpatterns)
1.890625
2
leetcode/0944_delete_columns_to_make_sorted.py
jacquerie/leetcode
3
12776200
# -*- coding: utf-8 -*- class Solution: def minDeletionSize(self, A): return len([col for col in zip(*A) if col != tuple(sorted(col))]) if __name__ == '__main__': solution = Solution() assert 1 == solution.minDeletionSize(['cba', 'daf', 'ghi']) assert 0 == solution.minDeletionSize(['a', 'b']) assert 3 == solution.minDeletionSize(['zyx', 'wvu', 'tsr'])
2.9375
3
Experiments/partialopt.py
robot0321/learnit_exp
0
12776201
<filename>Experiments/partialopt.py import os os.environ['CUDA_VISIBLE_DEVICES'] = '5' os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false' checkpoint_dir = 'checkpoints/checkpoints_shapene/' from functools import partial import jax # jax==0.1.67 / jaxlib==0.1.55 from jax import random, grad, jit, vmap, flatten_util, nn from jax.experimental import optix from jax.config import config import jax.numpy as np import haiku as hk from livelossplot import PlotLosses import matplotlib.pyplot as plt from tqdm.notebook import tqdm as tqdm import os import cv2 import imageio import json import pickle rng = jax.random.PRNGKey(42) SPLITS_FILE = '/mnt/disk2/JYChung/dataset/metaNeRF/shapenet/car_splits.json' # Update DATA_PATH = '/mnt/disk2/JYChung/dataset/metaNeRF/shapenet/cars/02958343' # Update import json import imageio def load_train_ex(train_ex_dir, key=None): with open(os.path.join('/', train_ex_dir, 'transforms.json'), 'r') as fp: meta = json.load(fp) camera_angle_x = float(meta['camera_angle_x']) imgs = [] bkgds = [] poses = [] for idx in np.arange(len(meta['frames'])): frame = meta['frames'][idx] fname = os.path.join(train_ex_dir, os.path.basename(frame['file_path']) + '.png') imgs.append(imageio.imread(fname)) poses.append(np.array(frame['transform_matrix'])) H, W = imgs[0].shape[:2] focal = .5 * W / np.tan(.5 * camera_angle_x) imgs = (np.array(imgs) / 255.).astype(np.float32) imgs = imgs[...,:3] * imgs[...,-1:] + 1-imgs[...,-1:] poses = np.array(poses).astype(np.float32) return imgs, poses, [H,W,focal] with open(SPLITS_FILE, "r") as read_file: splits = json.load(read_file) train_exs = [os.path.join(DATA_PATH, d) for d in sorted(splits['train'])] test_exs =[os.path.join(DATA_PATH, d) for d in sorted(splits['test'])] val_exs = [os.path.join(DATA_PATH, d) for d in sorted(splits['val'])] def get_rays(H, W, focal, c2w): i, j = np.meshgrid(np.arange(W), np.arange(H), indexing='xy') dirs = np.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -np.ones_like(i)], -1) rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) rays_o = np.broadcast_to(c2w[:3,-1], rays_d.shape) return np.stack([rays_o, rays_d], 0) get_rays = jit(get_rays, static_argnums=(0, 1)) get_ray_batch = jax.vmap(get_rays, in_axes=[None, None, None, 0], out_axes=1) def render_rays(rnd_input, model, params, rays, N_samples, rand=False, allret=False): rays_o, rays_d = rays near = 2 far = 6 # Compute 3D query points z_vals = np.linspace(near, far, N_samples) if rand: z_vals += random.uniform(rnd_input, shape=list(rays_o.shape[:-1]) + [N_samples]) * (far-near)/N_samples pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # Run network pts_flat = np.reshape(pts, [-1,3]) raw = model.apply(params, pts_flat) raw = np.reshape(raw, list(pts.shape[:-1]) + [4]) # Compute opacities and colors rgb, sigma_a = raw[...,:3], raw[...,3] sigma_a = jax.nn.relu(sigma_a) rgb = jax.nn.sigmoid(rgb) # Do volume rendering dists = np.concatenate([z_vals[..., 1:] - z_vals[..., :-1], np.broadcast_to([1e-3], z_vals[...,:1].shape)], -1) alpha = 1. - np.exp(-sigma_a * dists) trans = np.minimum(1., 1. - alpha + 1e-10) trans = np.concatenate([np.ones_like(trans[...,:1]), trans[...,:-1]], -1) weights = alpha * np.cumprod(trans, -1) rgb_map = np.sum(weights[...,None] * rgb, -2) acc_map = np.sum(weights, -1) rgb_map = rgb_map + (1.-acc_map[...,None]) # white background if False: rgb_map = rgb_map + (1.-acc_map[..., None]) if not allret: return rgb_map depth_map = np.sum(weights * z_vals, -1) return rgb_map, depth_map, acc_map def render_fn_inner(rnd_input, model, params, rays, rand, allret, N_samples): return render_rays(rnd_input, model, params, rays, N_samples=N_samples, rand=rand, allret=allret) render_fn_inner = jit(render_fn_inner, static_argnums=(1, 4, 5, 6)) def render_fn(rnd_input, model, params, rays, N_samples, rand): chunk = 5 for i in range(0, rays.shape[1], chunk): out = render_fn_inner(rnd_input, model, params, rays[:,i:i+chunk], rand, True, N_samples) if i==0: rets = out else: rets = [np.concatenate([a, b], 0) for a, b in zip(rets, out)] return rets class Model(hk.Module): def __init__(self): super().__init__() self.width = 256 self.depth = 6 self.use_viewdirs = False def __call__(self, coords, view_dirs=None): sh = coords.shape if self.use_viewdirs: viewdirs = None viewdirs = np.repeat(viewdirs[...,None,:], coords.shape[-2], axis=-2) viewdirs /= np.linalg.norm(viewdirs, axis=-1, keepdims=True) viewdirs = np.reshape(viewdirs, (-1,3)) viewdirs = hk.Linear(output_size=self.width//2)(viewdirs) viewdirs = jax.nn.relu(viewdirs) coords = np.reshape(coords, [-1,3]) x = np.concatenate([np.concatenate([np.sin(coords*(2**i)), np.cos(coords*(2**i))], axis=-1) for i in np.linspace(0,8,20)], axis=-1) for _ in range(self.depth-1): x = hk.Linear(output_size=self.width)(x) x = jax.nn.relu(x) if self.use_viewdirs: density = hk.Linear(output_size=1)(x) x = np.concatenate([x,viewdirs], axis=-1) x = hk.Linear(output_size=self.width)(x) x = jax.nn.relu(x) rgb = hk.Linear(output_size=3)(x) out = np.concatenate([density, rgb], axis=-1) else: out = hk.Linear(output_size=4)(x) out = np.reshape(out, list(sh[:-1]) + [4]) return out plt_groups = {'Train PSNR':[], 'Test PSNR':[]} plotlosses_model = PlotLosses(groups=plt_groups) exp_name = 'chairs' max_iters = 100001 batch_size = 128 num_views = 25 test_time_views = 1 inner_update_steps = 32 inner_step_size = .5 lr = 5e-4 N_samples = 128 model = hk.without_apply_rng(hk.transform(lambda x, y=None: Model()(x, y))) params = model.init(rng, np.ones((1,3))) test_inner_steps = 128*128 * 4 // batch_size mse_fn = jit(lambda x, y: np.mean((x - y)**2)) psnr_fn = jit(lambda x, y: -10 * np.log10(mse_fn(x, y))) # update inner model network weights with once step of sgd @jit def single_step(rng, images, rays, params, idx): def sgd(param, update): return param - inner_step_size * update def loss_fn(params, rng_inputs): idx = random.randint(rng_inputs[0], shape=(batch_size,), minval=0, maxval=images.shape[0]) image_sub = images[idx,:] rays_sub = rays[:,idx,:] g = render_rays(rng_inputs[1], model, params, rays_sub, N_samples, rand=True) return mse_fn(g, image_sub) rng, *rng_inputs = jax.random.split(rng, 3) loss, grad = jax.value_and_grad(loss_fn)(params, rng_inputs) params = jax.tree_multimap(sgd, params, grad) return rng, params, loss # update inner model network weights inner_update_steps number of times def update_network_weights(rng, images, rays, params): params_mutsave = hk.data_structures.to_mutable_dict(params) for _ in range(inner_update_steps): idx = random.randint(rng, shape=(batch_size,), minval=0, maxval=images.shape[0]) rng, new_params, loss = single_step(rng, images, rays, params, idx) new_params = hk.data_structures.to_mutable_dict(new_params) params_mutsave['model/linear_5'] = new_params['model/linear_5'] params = hk.data_structures.to_immutable_dict(params_mutsave) return rng, params, loss # update meta model weights based on trained inner model weights def update_model(rng, params, opt_state, images, rays): rng, new_params, model_loss = update_network_weights(rng, images, rays, params) def calc_grad(params, new_params): return params - new_params model_grad = jax.tree_multimap(calc_grad, params, new_params) updates, opt_state = opt.update(model_grad, opt_state) params = optix.apply_updates(params, updates) return rng, params, opt_state, model_loss # train meta model inner_steps number of times to evaluate meta parameters def update_network_weights_test(rng, images, rays, params, inner_steps): lowest_loss = 1e7 params_mutsave = hk.data_structures.to_mutable_dict(params) for _ in range(inner_steps): idx = random.randint(rng, shape=(batch_size,), minval=0, maxval=images.shape[0]) rng, new_params, loss = single_step(rng, images, rays, params, idx) new_params = hk.data_structures.to_mutable_dict(new_params) params_mutsave['model/linear_5'] = new_params['model/linear_5'] params = hk.data_structures.to_immutable_dict(params_mutsave) if loss < lowest_loss: lowest_loss = loss return rng, params, lowest_loss opt = optix.adam(lr) opt_state = opt.init(params) plt_groups['Train PSNR'].append(exp_name+f'_train') plt_groups['Test PSNR'].append(exp_name+f'_test') step = 0 train_psnrs = [] rng = jax.random.PRNGKey(0) train_size = len(train_exs) test_psnrs = [] for step in range(max_iters): try: rng, rng_input = jax.random.split(rng) img_idx = random.randint(rng, shape=(1,), minval=0, maxval=train_size) images, poses, hwf = load_train_ex(train_exs[img_idx[0]], rng) images = images[:num_views] poses = poses[:num_views] except: continue images = np.reshape(images, (-1,3)) rays = get_ray_batch(hwf[0], hwf[1], hwf[2], poses) rays = np.reshape(rays, (2,-1,3)) rng, params, opt_state, loss = update_model(rng, params, opt_state, images, rays) train_psnrs.append(-10 * np.log10(loss)) if step == 0: plotlosses_model.update({exp_name+'_train':np.mean(np.array(train_psnrs))}, current_step=step) train_psnrs = [] if step % 1000 == 0 and step != 0: plotlosses_model.update({exp_name+'_train':np.mean(np.array(train_psnrs))}, current_step=step) train_psnr = float(np.mean(np.array(train_psnrs))) train_psnrs = [] test_psnr = [] for i in range(5): images, poses, hwf = load_train_ex(val_exs[0], rng) test_holdout_images, test_images = np.split(images, [25], axis=0) test_holdout_poses, test_poses = np.split(poses, [25], axis=0) test_rays = get_ray_batch(hwf[0], hwf[1], hwf[2], test_poses) test_images = test_images[:test_time_views] test_rays = test_rays[:test_time_views] test_images = np.reshape(test_images, (-1,3)) test_rays = np.reshape(test_rays, (2,-1,3)) rng, test_params, test_inner_loss = update_network_weights_test(rng, test_images, test_rays, params, test_inner_steps) test_holdout_rays = get_rays(hwf[0], hwf[1], hwf[2], test_holdout_poses[0]) test_result = np.clip(render_fn(rng, model, test_params, test_holdout_rays, N_samples, rand=False)[0], 0, 1) test_psnr.append(psnr_fn(test_holdout_images[0], test_result)) test_psnr = np.mean(np.array(test_psnr)) test_psnrs.append(test_psnr) plotlosses_model.update({exp_name+'_test':test_psnr}, current_step=step) plotlosses_model.send() plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plt.imshow(test_holdout_images[0]) plt.subplot(1, 2, 2) plt.imshow(test_result) plt.show() if step % 10000 == 0 and step != 0: pickle.dump(params, open(f"{checkpoint_dir}/{exp_name}_{step}.pkl", 'wb'))
1.78125
2
opensdraw/lcad_language/lexerParser.py
HazenBabcock/openldraw
9
12776202
<gh_stars>1-10 #!/usr/bin/env python # # Lexer, Parser and abstract syntax tree model for lcad. Much of # inspiration for this comes from the lexer / parser in the hy # project: # # https://github.com/hylang/hy/tree/master/hy/lex # # Hazen 07/14 # from functools import wraps # Lexer. from rply import LexerGenerator lg = LexerGenerator() lg.add('LPAREN', r'\(') lg.add('RPAREN', r'\)') #lg.add('STRING', r'(".*?"|\'.*?\')') lg.add('STRING', r'("[^"]*"|\'[^\']*\')') lg.add('IDENTIFIER', r'[^()\[\]{}\'"\s;]+') lg.ignore(r';.*(?=\r|\n|$)') lg.ignore(r'\s+') lexer = lg.build() # Model. class LCadObject(object): pass class LCadConstant(LCadObject): pass class LCadExpression(LCadObject): def __init__(self, expression): self.initialized = False self.lenv = None self.simple_type_name = "Expression" self.value = expression class LCadFloat(LCadConstant): def __init__(self, value): self.simple_type_name = "Float" self.value = float(value) class LCadInteger(LCadConstant): def __init__(self, value): self.simple_type_name = "Integer" self.value = int(value) class LCadString(LCadConstant): def __init__(self, value): self.simple_type_name = "String" self.value = str(value[1:-1]) class LCadSymbol(LCadObject): def __init__(self, value): self.lenv = None self.simple_type_name = "Symbol" self.value = str(value) # Parser. from rply import ParserGenerator def set_boundaries(fun): @wraps(fun) def wrapped(state, p): start = p[0].source_pos end = p[-1].source_pos ret = fun(state, p) ret.filename = state.filename ret.start_line = start.lineno ret.start_column = start.colno if start is not end: ret.end_line = end.lineno ret.end_column = end.colno else: ret.end_line = start.lineno ret.end_column = start.colno + len(p[0].value) return ret return wrapped pg = ParserGenerator( [rule.name for rule in lexer.rules], cache_id="lcad_parser" ) @pg.production('main : list') def main(state, p): return p[0] @pg.production('list : term list') def list(state, p): return [p[0]] + p[1] @pg.production('list : term') def single_list(state, p): return [p[0]] @pg.production('term : string') @pg.production('term : identifier') @pg.production('term : parens') def term(state, p): return p[0] @pg.production("string : STRING") @set_boundaries def string(state, p): return LCadString(p[0].getstr()) @pg.production("identifier : IDENTIFIER") @set_boundaries def identifier(state, p): text = p[0].getstr() try: return LCadInteger(text) except ValueError: pass try: return LCadFloat(text) except ValueError: pass return LCadSymbol(text) @pg.production('parens : LPAREN list RPAREN') @set_boundaries def parens(state, p): return LCadExpression(p[1]) @pg.production('parens : LPAREN RPAREN') @set_boundaries def empty_parens(state, p): return LCadExpression([]) @pg.error def error_handler(state, token): if (token.gettokentype() == '$end'): raise Exception("Unexpected EOF. Empty file? Unbalanced Parenthesis?") raise ValueError("Ran into a {!s} where it wasn't expected at row {!s} column {!s}".format(token.gettokentype(), token.source_pos.lineno, token.source_pos.colno)) parser = pg.build() class ParserState(object): def __init__(self, filename): self.filename = filename def parse(string, filename = "na"): return parser.parse(lexer.lex(string), state = ParserState(filename)) # For testing purposes. if (__name__ == '__main__'): import sys if (len(sys.argv) != 2): print("usage: <file to parse>") exit() with open(sys.argv[1]) as fp: print(parse(fp.read(), sys.argv[1])) # # The MIT License # # Copyright (c) 2014 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #
2.71875
3
plugins/tests/papermilltests/test_spark_notebook.py
slai/flytekit
1
12776203
import os from flytekitplugins.papermill import NotebookTask from flytekitplugins.spark import Spark from flytekit import kwtypes from flytekit.types.schema import FlyteSchema def _get_nb_path(name: str, suffix: str = "", abs: bool = True, ext: str = ".ipynb") -> str: """ Creates a correct path no matter where the test is run from """ _local_path = os.path.dirname(__file__) path = f"{_local_path}/testdata/{name}{suffix}{ext}" return os.path.abspath(path) if abs else path def test_notebook_task_simple(): nb_name = "nb-spark" nb = NotebookTask( name="test", notebook_path=_get_nb_path(nb_name, abs=False), outputs=kwtypes(df=FlyteSchema[kwtypes(name=str, age=int)]), task_config=Spark(spark_conf={"x": "y"}), ) n, out, render = nb.execute() assert nb.python_interface.outputs.keys() == {"df", "out_nb", "out_rendered_nb"} assert nb.output_notebook_path == out == _get_nb_path(nb_name, suffix="-out") assert nb.rendered_output_path == render == _get_nb_path(nb_name, suffix="-out", ext=".html")
2
2
docker/api/swarm.py
rsumner31/docker-py
0
12776204
import logging from six.moves import http_client from .. import utils log = logging.getLogger(__name__) class SwarmApiMixin(object): def create_swarm_spec(self, *args, **kwargs): return utils.SwarmSpec(*args, **kwargs) @utils.minimum_version('1.24') def init_swarm(self, advertise_addr=None, listen_addr='0.0.0.0:2377', force_new_cluster=False, swarm_spec=None): url = self._url('/swarm/init') if swarm_spec is not None and not isinstance(swarm_spec, dict): raise TypeError('swarm_spec must be a dictionary') data = { 'AdvertiseAddr': advertise_addr, 'ListenAddr': listen_addr, 'ForceNewCluster': force_new_cluster, 'Spec': swarm_spec, } response = self._post_json(url, data=data) self._raise_for_status(response) return True @utils.minimum_version('1.24') def inspect_swarm(self): url = self._url('/swarm') return self._result(self._get(url), True) @utils.check_resource @utils.minimum_version('1.24') def inspect_node(self, node_id): url = self._url('/nodes/{0}', node_id) return self._result(self._get(url), True) @utils.minimum_version('1.24') def join_swarm(self, remote_addrs, join_token, listen_addr=None, advertise_addr=None): data = { "RemoteAddrs": remote_addrs, "ListenAddr": listen_addr, "JoinToken": join_token, "AdvertiseAddr": advertise_addr, } url = self._url('/swarm/join') response = self._post_json(url, data=data) self._raise_for_status(response) return True @utils.minimum_version('1.24') def leave_swarm(self, force=False): url = self._url('/swarm/leave') response = self._post(url, params={'force': force}) # Ignore "this node is not part of a swarm" error if force and response.status_code == http_client.NOT_ACCEPTABLE: return True self._raise_for_status(response) return True @utils.minimum_version('1.24') def nodes(self, filters=None): url = self._url('/nodes') params = {} if filters: params['filters'] = utils.convert_filters(filters) return self._result(self._get(url, params=params), True) @utils.minimum_version('1.24') def update_node(self, node_id, version, node_spec=None): url = self._url('/nodes/{0}/update?version={1}', node_id, str(version)) res = self._post_json(url, data=node_spec) self._raise_for_status(res) return True @utils.minimum_version('1.24') def update_swarm(self, version, swarm_spec=None, rotate_worker_token=False, rotate_manager_token=False): url = self._url('/swarm/update') response = self._post_json(url, data=swarm_spec, params={ 'rotateWorkerToken': rotate_worker_token, 'rotateManagerToken': rotate_manager_token, 'version': version }) self._raise_for_status(response) return True
2.046875
2
rel-eng/custom/custom.py
ehelms/foreman-packaging
0
12776205
<reponame>ehelms/foreman-packaging # Copyright (c) 2008-2014 Red Hat, Inc. # # This software is licensed to you under the GNU General Public License, # version 2 (GPLv2). There is NO WARRANTY for this software, express or # implied, including the implied warranties of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. You should have received a copy of GPLv2 # along with this software; if not, see # http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt. # # Red Hat trademarks are not licensed under GPLv2. No permission is # granted to use or replicate Red Hat trademarks that are incorporated # in this software or its documentation. from datetime import datetime import json import os import os.path import re import shutil import urllib from zipfile import ZipFile from tito.builder.fetch import SourceStrategy from tito.common import error_out, debug, run_command class JenkinsSourceStrategy(SourceStrategy): """ Downloads the source files from Jenkins, from a job that produces them as artifacts. Will follow the version number present in the filename and adds a timestamp & SHA if available from the Jenkins job start reasons. Designed to be used for nightly or pull request builds only. It first copies source files from git, then downloads the Jenkins artifacts over the top, so they're merged (patches etc can then be stored in git). Takes the following arguments: jenkins_url: base URL of Jenkins ("http://ci.theforeman.org") jenkins_job: name of job ("test_develop") jenkins_job_id: job number or alias ("123", "lastSuccessfulBuild") """ def fetch(self): url_base = self.builder.args['jenkins_url'] job_name = self.builder.args['jenkins_job'] if 'jenkins_job_id' in self.builder.args: job_id = self.builder.args['jenkins_job_id'] else: job_id = "lastSuccessfulBuild" job_url_base = "%s/job/%s/%s" % (url_base, job_name, job_id) json_url = "%s/api/json" % job_url_base job_info = json.loads(urllib.urlopen(json_url).read()) if "number" in job_info: job_id = job_info["number"] if "runs" in job_info: run_idx = 0 for idx, run in enumerate(job_info["runs"]): if run["number"] == job_id: run_idx = idx break job_url_base = job_info["runs"][run_idx]["url"] elif "url" in job_info: job_url_base = job_info["url"] url = "%s/artifact/*zip*/archive.zip" % job_url_base debug("Fetching from %s" % url) (zip_path, zip_headers) = urllib.urlretrieve(url) zip_file = ZipFile(zip_path, 'r') try: zip_file.extractall(self.builder.rpmbuild_sourcedir) finally: zip_file.close() # Copy the live spec from our starting location. Unlike most builders, # we are not using a copy from a past git commit. self.spec_file = os.path.join(self.builder.rpmbuild_sourcedir, '%s.spec' % self.builder.project_name) shutil.copyfile( os.path.join(self.builder.start_dir, '%s.spec' % self.builder.project_name), self.spec_file) for s in os.listdir(self.builder.start_dir): if os.path.exists(os.path.join(self.builder.start_dir, s)): shutil.copyfile( os.path.join(self.builder.start_dir, s), os.path.join(self.builder.rpmbuild_sourcedir, os.path.basename(s))) print(" %s.spec" % self.builder.project_name) i = 0 replacements = [] src_files = run_command("find %s -type f" % os.path.join(self.builder.rpmbuild_sourcedir, 'archive')).split("\n") for s in src_files: base_name = os.path.basename(s) debug("Downloaded file %s" % base_name) if ".tar" not in base_name and ".gem" not in base_name: debug("Skipping %s as it isn't a source archive" % base_name) continue dest_filepath = os.path.join(self.builder.rpmbuild_sourcedir, base_name) shutil.move(s, dest_filepath) self.sources.append(dest_filepath) # Add a line to replace in the spec for each source: source_regex = re.compile("^(source%s:\s*)(.+)$" % i, re.IGNORECASE) new_line = "Source%s: %s\n" % (i, base_name) replacements.append((source_regex, new_line)) i += 1 # Replace version in spec: version_regex = re.compile("^(version:\s*)(.+)$", re.IGNORECASE) self.version = self._get_version() print("Building version: %s" % self.version) replacements.append((version_regex, "Version: %s\n" % self.version)) self.replace_in_spec(replacements) rel_date = datetime.utcnow().strftime("%Y%m%d%H%M") gitrev = "" for action in job_info["actions"]: if "lastBuiltRevision" in action: gitrev = "git%s" % action["lastBuiltRevision"]["SHA1"][0:7] self.release = rel_date + gitrev print("Building release: %s" % self.release) run_command("sed -i '/^Release:/ s/%%/.%s%%/' %s" % (self.release, self.spec_file)) def _get_version(self): """ Get the version from the builder. Sources are configured at this point. """ # Assuming source0 is a tar.gz we can extract a version from: base_name = os.path.basename(self.sources[0]) debug("Extracting version from: %s" % base_name) # Example filename: tito-0.4.18.tar.gz: simple_version_re = re.compile(".*-(.*).(tar.gz|tgz|zip|tar.bz2|gem)") match = re.search(simple_version_re, base_name) if match: version = match.group(1) else: error_out("Unable to determine version from file: %s" % base_name) return version def replace_in_spec(self, replacements): """ Replace lines in the spec file using the given replacements. Replacements are a tuple of a regex to look for, and a new line to substitute in when the regex matches. Replaces all lines with one pass through the file. """ in_f = open(self.spec_file, 'r') out_f = open(self.spec_file + ".new", 'w') for line in in_f.readlines(): for line_regex, new_line in replacements: match = re.match(line_regex, line) if match: line = new_line out_f.write(line) in_f.close() out_f.close() shutil.move(self.spec_file + ".new", self.spec_file)
2.109375
2
scripts/launch_image.py
rf972/lisa-qemu
2
12776206
<reponame>rf972/lisa-qemu<filename>scripts/launch_image.py # # Copyright 2020 Linaro # # Launches an image created via build_image.py. # import build_image if __name__ == "__main__": inst_obj = build_image.BuildImage(ssh=True) inst_obj.run()
1.546875
2
custom_auth/custom_login/my_user_manager.py
farhadmpr/DjangoMobileLogin
0
12776207
<reponame>farhadmpr/DjangoMobileLogin<filename>custom_auth/custom_login/my_user_manager.py from django.contrib.auth.base_user import BaseUserManager class MyUserManager(BaseUserManager): def create_user(self, mobile, password=<PASSWORD>, **other_fields): if not mobile: raise ValueError('mobile is required') user = self.model(mobile=mobile, **other_fields) user.set_password(password) user.save() return user def create_superuser(self, mobile, password=<PASSWORD>, **other_fields): other_fields.setdefault('is_staff', True) other_fields.setdefault('is_superuser', True) other_fields.setdefault('is_active', True) if other_fields.get('is_staff') is not True: raise ValueError('superuser must have is_staff') if other_fields.get('is_superuser') is not True: raise ValueError('superuser must have is_superuser') return self.create_user(mobile, password, **other_fields)
2.421875
2
test/test_products.py
sdtaylor/pyUpackQA
2
12776208
import pytest import numpy as np from unpackqa import (unpack_to_array, unpack_to_dict, list_products, list_qa_flags, list_sensors, ) from unpackqa.tools.validation import (product_info_has_required_entries, flag_info_is_non_empty_dict, flag_info_bit_list_non_empty, flag_info_bits_non_neg_ints, flag_info_flag_is_str, bits_are_only_used_once, bits_are_reasonable, bits_do_not_exceed_bit_size, max_value_matches_num_bits, bits_are_ordered, ) from unpackqa.tools.validation import InvalidProductSpec from unpackqa.product_loader import all_products """ Validating product definitions. """ qa_array = np.array([[8,8,8], [16,16,16], [255,255,255]]) all_product_identifiers = list_products(sensor='all') def test_product_ids_are_unique(): """No duplicate product identifers""" assert len(all_product_identifiers) == len(set(all_product_identifiers)) def test_list_sensors(): """Should have some output""" assert len(list_sensors()) > 0 def test_list_products(): """Each sensor should have some products""" sensors = list_sensors() sensor_has_products = [len(list_products(sensor=s))>0 for s in sensors] assert all(sensor_has_products) def test_list_products_invalid_sensor(): """Should raise error with unknown sensor""" with pytest.raises(ValueError): list_products(sensor='asdf') def test_list_flags_invalid_product(): """Should raise error with unknown product ID""" with pytest.raises(ValueError): list_qa_flags(product = 'asdf') @pytest.mark.parametrize('product', all_product_identifiers) def test_qa_flag_list(product): """Lists of flags should be available for each product""" flags = list_qa_flags(product = product) assert len(flags) > 0 @pytest.mark.parametrize('product', all_product_identifiers) def test_product_info_is_dict(product): """product_info entry should be dictonary""" product_info = all_products[product] assert isinstance(product_info, dict) """ Several tests for all products configred within the package. Within product_info the 'flag_info' entry should be a dictonary with key value pairs: 'flag name':[bit0,bit1,..] Where flag name is a str, with a value of a list. List entries are non-negative ints. These same tests are used to validate user passed custom specifications, so instead of essentially writing a new test function for each, just iterate over them and create some informative output if 1 or more fails. """ test_list = [('product info does not have required entries',product_info_has_required_entries), ('flag_info is not dictionary, or is empty', flag_info_is_non_empty_dict), ('flag_info has empty lists',flag_info_bit_list_non_empty), ('flag_info has negative and/or non-int values',flag_info_bits_non_neg_ints), ('flag_info keys are not strings',flag_info_flag_is_str), ('duplicate bits detected',bits_are_only_used_once), ('bits are larger than needed for even a 32 bit int', bits_are_reasonable), ('largest bit is greater than num_bits',bits_do_not_exceed_bit_size), ('max_value is >= 2**num_bits',max_value_matches_num_bits), ('bits are out of order',bits_are_ordered), ] @pytest.mark.parametrize('product', all_product_identifiers) def test_product_info(product): product_info = all_products[product] failed_tests = [] tests_failed = False for test_message, test_function in test_list: try: test_function(product_info) except InvalidProductSpec: tests_failed = True failed_tests.append(test_message) if tests_failed: error_message = '{} failed tests for {}\n'.format(len(failed_tests), product) error_message = error_message + '\n'.join(['{}. {}'.format(i+1,m) for i,m in enumerate(failed_tests)]) assert False, error_message
2.578125
3
DESAFIO-012.py
Lukones/Evolution-Projetos-Python
0
12776209
# Um programa que resolve a hipotenusa # from math import hypot co = float(input('Comprimento do cateto opsoto: ')) ca = float(input('Comprimento do cateto adjacente: ')) print(f'A hipotenusa vai medir: {hypot(co, ca):.2f}')
3.703125
4
cryptography/the_var/__init__.py
JASTYN/pythonmaster
3
12776210
def the_var(var): n = [ord(i) - 96 for i in var.split("+")] return sum(n)
2.65625
3
view/web.py
jvpersuhn/Certo
0
12776211
import sys sys.path.append("C:/Users/900143/Desktop/Certo") from controller.squad_controller import BackController, FrontController,SGBDController , SquadController, BackEnd, FrontEnd, SGBD, Squad from flask import Flask, render_template, request, redirect app = Flask(__name__) bc = BackController() fc = FrontController() sc = SGBDController() sqc = SquadController() @app.route('/') def inicio(): return render_template('index.html') @app.route('/listar') def listar(): l = sqc.select_all() return render_template('listar.html', lista = l) @app.route('/excluir') def excluir(): id = int(request.args['id']) sqc.delete(sqc.select_byId(id)) return redirect('/listar') @app.route('/cadastrar') def cadastrar(): if 'id' in request.args: squad = sqc.select_byId(request.args['id']) else: squad = Squad(0,'','','') return render_template('cadastrar.html', squad = squad) @app.route('/salvar') def salvar(): id = int(request.args['id']) nome = request.args['nome'] desc = request.args['desc'] qtdPessoas = request.args['numPessoas'] squad = Squad(id,nome,desc,qtdPessoas) idF = request.args['idF'] if idF: idF = int(idF) else: idF = 0 nomeF = request.args['nomeF'] descF = request.args['descF'] versaoF = request.args['versaoF'] front = FrontEnd(idF,nomeF,descF,versaoF) idB = request.args['idB'] if idB: idB = int(idB) else: idB = 0 nomeB = request.args['nomeB'] descB = request.args['descB'] versaoB = request.args['versaoB'] back = BackEnd(idB, nomeB, descB, versaoB) idS = request.args['idS'] if idS: idS = int(idS) else: idS = 0 nomeS = request.args['nomeS'] descS = request.args['descS'] versaoS = request.args['versaoS'] sgbd = SGBD(idS,nomeS,descS,versaoS) if id == 0: squad.id_linguagemFront = fc.insert(front) squad.id_linguagemBack = bc.insert(back) squad.id_sgbd = sc.insert(sgbd) sqc.insert(squad) else: squad.linguagemFront = front squad.linguagemBack = back squad.sgbd = sgbd squad.id_linguagemFront = idF squad.id_linguagemBack = idB squad.id_sgbd = idS sqc.update(squad) return redirect('/listar') app.run(debug=True)
2.28125
2
numerical/splines/__init__.py
shaxov/scikit-numerical
3
12776212
<gh_stars>1-10 from .definitions import ( linear, schoenberg, ) __all__ = ['linear', 'schoenberg']
1.0625
1
collipa/controllers/reply.py
ywmmmw/collipa
99
12776213
<reponame>ywmmmw/collipa # coding: utf-8 import tornado.web from ._base import BaseHandler from pony import orm from .user import EmailMixin from collipa.models import Topic, Reply from collipa.forms import ReplyForm from collipa.libs.decorators import require_permission from collipa import config class HomeHandler(BaseHandler, EmailMixin): @orm.db_session def get(self, reply_id): reply_id = int(reply_id) reply = Reply.get(id=reply_id) if not reply: raise tornado.web.HTTPError(404) return self.render("reply/index.html", reply=reply) @orm.db_session @tornado.web.authenticated def put(self, reply_id): reply_id = int(reply_id) reply = Reply.get(id=reply_id) action = self.get_argument('action', None) user = self.current_user if not reply: raise tornado.web.HTTPError(404) result = {} if not action: result = {'status': 'info', 'message': '缺少 action 参数'} if action == 'up': if reply.user_id != user.id: result = user.up(reply_id=reply.id) else: result = {'status': 'info', 'message': '不能为自己的评论投票'} if action == 'down': if reply.user_id != user.id: result = user.down(reply_id=reply.id) else: result = {'status': 'info', 'message': '不能为自己的评论投票'} if action == 'collect': result = user.collect(reply_id=reply.id) if action == 'thank': result = user.thank(reply_id=reply.id) if action == 'report': result = user.report(reply_id=reply.id) return self.send_result(result) @orm.db_session @tornado.web.authenticated def delete(self, reply_id): if not self.current_user.is_admin: return self.redirect_next_url() reply = Reply.get(id=reply_id) if not reply: return self.redirect_next_url() subject = "评论删除通知 - " + config.site_name template = ( '<p>尊敬的 <strong>{nickname}</strong> 您好!</p>' '<p>您在主题 <strong><a href="{topic_url}">「{topic_title}」</a></strong>' '下的评论由于违反社区规定而被删除,我们以邮件的形式给您进行了备份,备份数据如下:</p>' '<div class="content">{content}</div>' ) content = template.format( nickname=reply.author.nickname, topic_url=config.site_url + reply.topic.url, topic_title=reply.topic.title, content=reply.content ) self.send_email(self, reply.author.email, subject, content) reply.delete() result = {'status': 'success', 'message': '已成功删除'} return self.send_result(result) class CreateHandler(BaseHandler): @orm.db_session @tornado.web.authenticated @require_permission def post(self): page = int(self.get_argument('page', 1)) category = self.get_argument('category', 'index') topic_id = int(self.get_argument('topic_id', 0)) topic = Topic.get(id=topic_id) if not topic_id: result = {'status': 'error', 'message': '无此主题,不能创建评论'} if self.is_ajax: return self.write(result) else: self.flash_message(**result) return self.redirect_next_url() user = self.current_user form = ReplyForm(self.request.arguments) if form.validate(): reply = form.save(user=user, topic=topic) reply.put_notifier() result = {'status': 'success', 'message': '评论创建成功', 'content': reply.content, 'name': reply.author.name, 'nickname': reply.author.nickname, 'author_avatar': reply.author.get_avatar(size=48), 'author_url': reply.author.url, 'author_name': reply.author.name, 'author_nickname': reply.author.nickname, 'reply_url': reply.url, 'created': reply.created, 'id': reply.id, 'floor': reply.floor} if self.is_ajax: return self.write(result) self.flash_message(**result) return self.redirect(topic.url) reply_count = topic.reply_count page_count = (reply_count + config.reply_paged - 1) // config.reply_paged replies = topic.get_replies(page=page, category=category) data = dict(form=form, topic=topic, replies=replies, category=category, page=page, page_count=page_count, url=topic.url) return self.send_result_and_render(form.result, "topic/index.html", data) class EditHandler(BaseHandler): @orm.db_session @tornado.web.authenticated @require_permission def get(self, reply_id): reply = Reply.get(id=reply_id) if not reply or (reply.author != self.current_user and not self.current_user.is_admin): return self.redirect_next_url() form = ReplyForm(content=reply.content) return self.render("reply/edit.html", form=form, reply=reply) @orm.db_session @tornado.web.authenticated @require_permission def post(self, reply_id): reply = Reply.get(id=reply_id) if not reply or (reply.author != self.current_user and not self.current_user.is_admin): return self.redirect_next_url() user = self.current_user form = ReplyForm(self.request.arguments) if form.validate(): reply = form.save(user=user, topic=reply.topic, reply=reply) reply.put_notifier() result = {'status': 'success', 'message': '评论修改成功', 'reply_url': reply.url} return self.send_result(result, reply.url) data = dict(form=form, reply=reply) return self.send_result_and_render(form.result, "reply/edit.html", data) class HistoryHandler(BaseHandler): @orm.db_session def get(self, reply_id): reply = Reply.get(id=reply_id) if not reply: return self.redirect_next_url() if not reply.histories: return self.redirect(reply.topic.url) return self.render("reply/history.html", reply=reply, histories=reply.histories)
2
2
src/main/python/monocyte/handler/rds2.py
claytonbrown/aws-monocyte
20
12776214
<gh_stars>10-100 # Monocyte - Search and Destroy unwanted AWS Resources relentlessly. # Copyright 2015 Immobilien Scout GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from boto import rds2 from monocyte.handler import Resource, Handler SKIPPING_CREATION_STATEMENT = "Currently in creation. Skipping." SKIPPING_AUTOGENERATED_STATEMENT = "Not a manually created Snapshot. Skipping." SKIPPING_DELETION_STATEMENT = "Deletion already in progress. Skipping." DELETION_STATEMENT = "Initiating deletion sequence for %s." CREATION_STATUS = "creating" AUTOMATED_STATUS = "automated" DELETION_STATUS = "deleting" class Instance(Handler): def fetch_region_names(self): return [region.name for region in rds2.regions()] def fetch_unwanted_resources(self): for region_name in self.region_names: connection = rds2.connect_to_region(region_name) resources = connection.describe_db_instances() or [] for resource in resources["DescribeDBInstancesResponse"]["DescribeDBInstancesResult"]["DBInstances"]: resource_wrapper = Resource(resource=resource, resource_type=self.resource_type, resource_id=resource["DBInstanceIdentifier"], creation_date=resource["InstanceCreateTime"], region=region_name) if resource['DBInstanceIdentifier'] in self.ignored_resources: self.logger.info('IGNORE ' + self.to_string(resource_wrapper)) continue yield resource_wrapper def to_string(self, resource): return "Database Instance found in {region}, ".format(**vars(resource)) + \ "with name {DBInstanceIdentifier}, with status {DBInstanceStatus}".format(**resource.wrapped) def delete(self, resource): if self.dry_run: return if resource.wrapped["DBInstanceStatus"] == DELETION_STATUS: warnings.warn(Warning(SKIPPING_DELETION_STATEMENT)) self.logger.info(DELETION_STATEMENT % resource.wrapped["DBInstanceIdentifier"]) connection = rds2.connect_to_region(resource.region) connection.delete_db_instance(resource.wrapped["DBInstanceIdentifier"], skip_final_snapshot=True) class Snapshot(Handler): def fetch_region_names(self): return [region.name for region in rds2.regions()] def fetch_unwanted_resources(self): for region_name in self.region_names: connection = rds2.connect_to_region(region_name) resources = connection.describe_db_snapshots() or [] for resource in resources["DescribeDBSnapshotsResponse"]["DescribeDBSnapshotsResult"]["DBSnapshots"]: resource_wrapper = Resource(resource=resource, resource_type=self.resource_type, resource_id=resource["DBSnapshotIdentifier"], creation_date=resource["SnapshotCreateTime"], region=region_name) if resource['DBSnapshotIdentifier'] in self.ignored_resources: self.logger.info('IGNORE ' + self.to_string(resource_wrapper)) continue yield resource_wrapper def to_string(self, resource): return "Database Snapshot found in {region}, ".format(**vars(resource)) + \ "with name {DBSnapshotIdentifier}, with status {Status}".format(**resource.wrapped) def delete(self, resource): if self.dry_run: return if resource.wrapped["Status"] == DELETION_STATUS: warnings.warn(Warning(SKIPPING_DELETION_STATEMENT)) if resource.wrapped["Status"] == CREATION_STATUS: warnings.warn(Warning(SKIPPING_CREATION_STATEMENT)) if resource.wrapped["SnapshotType"] == AUTOMATED_STATUS: warnings.warn(Warning(SKIPPING_AUTOGENERATED_STATEMENT)) self.logger.info(DELETION_STATEMENT % resource.wrapped["DBSnapshotIdentifier"]) connection = rds2.connect_to_region(resource.region) connection.delete_db_snapshot(resource.wrapped["DBSnapshotIdentifier"])
2.015625
2
server/main.py
gtluu/timsconvert
3
12776215
# main.py from app import app import views if __name__ == '__main__': app.run(host='0.0.0.0',port='5000')
1.578125
2
lino/core/site.py
khchine5/lino
1
12776216
# -*- coding: UTF-8 -*- # Copyright 2009-2018 <NAME>. # License: BSD, see LICENSE for more details. # doctest lino/core/site.py """ Defines the :class:`Site` class. For an overview see :doc:`/dev/site` and :doc:`/dev/plugins`. .. doctest init: >>> import lino >>> lino.startup('lino.projects.std.settings_test') """ from __future__ import unicode_literals, print_function from builtins import map from builtins import str import six import os import sys from os.path import normpath, dirname, join, isdir, relpath, exists import inspect import datetime import warnings import collections from importlib import import_module from six.moves.urllib.parse import urlencode from unipath import Path from atelier.utils import AttrDict, date_offset, tuple_py2 from atelier import rstgen from django.utils.translation import ugettext_lazy as _ from django.utils.translation import get_language # from django.core.exceptions import ImproperlyConfigured from lino.core.plugin import Plugin from lino import assert_django_code, DJANGO_DEFAULT_LANGUAGE from etgen.html import E from lino.core.utils import simplify_name, get_models # from lino.utils.html2text import html2text # from html2text import html2text from lino.core.exceptions import ChangedAPI # from .roles import SiteUser from html2text import HTML2Text # _INSTANCES = [] def html2text(html): text_maker = HTML2Text() text_maker.unicode_snob = True return text_maker.handle(html) PRINT_EMAIL = """send email Sender: {sender} To: {recipients} Subject: {subject} {body} """ LanguageInfo = collections.namedtuple( 'LanguageInfo', ('django_code', 'name', 'index', 'suffix')) """ A named tuple with four fields: - `django_code` -- how Django calls this language - `name` -- how Lino calls it - `index` -- the position in the :attr:`Site.languages` tuple - `suffix` -- the suffix to append to babel fields for this language """ def to_locale(language): """Simplified copy of `django.utils.translation.to_locale`, but we need it while the `settings` module is being loaded, i.e. we cannot yet import django.utils.translation. Also we don't need the to_lower argument. """ p = language.find('-') if p >= 0: # Get correct locale for sr-latn if len(language[p + 1:]) > 2: return language[:p].lower() + '_' \ + language[p + 1].upper() + language[p + 2:].lower() return language[:p].lower() + '_' + language[p + 1:].upper() else: return language.lower() def class2str(cl): return cl.__module__ + '.' + cl.__name__ gettext_noop = lambda s: s PLUGIN_CONFIGS = {} def configure_plugin(app_label, **kwargs): """ Set one or several configuration settings of the given plugin *before* the :setting:`SITE` has been instantiated. See :doc:`/dev/plugins`. """ # if PLUGIN_CONFIGS is None: # raise ImproperlyConfigured( # "Tried to call configure_plugin after Site instantiation") cfg = PLUGIN_CONFIGS.setdefault(app_label, {}) cfg.update(kwargs) # from django.db.models.fields import NOT_PROVIDED class NOT_PROVIDED(object): pass class Site(object): """ The base class for a Lino application. This class is designed to be overridden by both application developers and local site administrators. Your :setting:`SITE` setting is expected to contain an instance of a subclass of this. .. attribute:: plugins An :class:`AttrDict <atelier.utils.AttrDict>` with one entry for each installed plugin, mapping the `app_label` of every plugin to the corresponding :class:`lino.core.plugin.Plugin` instance. This attribute is automatically filled by Lino and available as :attr:`dd.plugins <lino.api.dd>` already before Django starts to import :xfile:`models.py` modules. .. attribute:: modules Old name for :attr:`models`. Deprecated. .. attribute:: models An :class:`AttrDict <atelier.utils.AttrDict>` which maps every installed `app_label` to the corresponding :xfile:`models.py` module object. This is also available as the shortcut :attr:`rt.models <lino.api.rt.models>`. See :doc:`/dev/plugins` .. attribute:: LANGUAGE_CHOICES A tuple in the format expected by Django's `choices <https://docs.djangoproject.com/en/1.11/ref/models/fields/#choices>`__ attribute, used e.g. by :class:`LanguageField <lino.utils.mldbc.fields.LanguageField>`. It's content is automatically populated from :attr:`languages` and application code should not change it's value. """ auto_fit_column_widths = True """ The default value for the :attr:`auto_fit_column_widths <lino.core.tables.AbstractTable.auto_fit_column_widths>` of tables in this application. """ confdirs = None """ This attribute is available only after site startup. See :mod:`lino.utils.config`. """ kernel = None """ This attribute is available only after :meth:`startup`. See :mod:`lino.core.kernel`. """ # ui = None # """ # Deprecated alias for :attr:`kernel`. # """ readonly = False """Setting this to `True` turns this site in a readonly site. This means that :setting:`DATABASES` must point to the :setting:`DATABASES` of some other (non-readonly) site, and that :manage:`initdb` will do nothing. """ history_aware_logging = False """Whether to log a message :message:`Started %s (using %s) --> PID %s` at process startup (and a message :message:`Done PID %s` at termination). These two messages are interesting e.g. when a system administrator wants to know which processes have been running on a given production site, but they are usually disturbing during development. TODO: Replace this setting by an aproach using a second logger `lino.archive`. Also tidy up usage of :mod:`lino.utils.dblogger`. To be meditated. See also :ref:`lino.logging`. """ the_demo_date = None """A hard-coded constant date to be used as reference by :meth:`today` and :meth:`demo_date`. For example many demo databases have this set because certain tests rely on a constant reference date. """ title = None """The title of this web site to appear in the browser window. If this is None, Lino will use :attr:`verbose_name` as default value. """ hoster_status_url = "http://bugs.saffre-rumma.net/" """This is mentioned in :xfile:`500.html`. """ verbose_name = "yet another Lino application" """The name of this application, to be displayed to end-users at different places. Note the difference between :attr:`title` and :attr:`verbose_name`: - :attr:`title` may be None, :attr:`verbose_name` not. - :attr:`title` is used by the :srcref:`index.html <lino/modlib/extjs/config/extjs/index.html>` for :mod:`lino.modlib.extjs`. - :attr:`title` and :attr:`verbose_name` are used by :xfile:`admin_main.html` to generate the fragments "Welcome to the **title** site" and "We are running **verbose_name** version **x.y**" (the latter only if :attr:`version` is set). - :meth:`site_version` uses :attr:`verbose_name` (not :attr:`title`) IOW, the :attr:`title` is rather for usage by local system administrators, while the :attr:`verbose_name` is rather for usage by application developers. """ version = None "The version number." url = None """ The URL of the website that describes this application. Used e.g. in a :menuselection:`Site --> About` dialog box. """ # server_url = None server_url = "http://127.0.0.1:8000/" """The "official" URL used by "normal" users when accessing this Lino site. This is used by templates such as the email sent by :class:`lino.modlib.notify.Message` """ device_type = 'desktop' """ The default device type used on this server. Should be one of ``'desktop'``, ``'tablet'`` or ``'mobile'``. This is used by :class:`DeviceTypeMiddleware <lino.core.auth.middleware.DeviceTypeMiddleware>`. """ obj2text_template = "*{0}*" """The format template to use when rendering a ForeignKey as plain text. Note: reSTructuredText uses *italic* and **bold**. Changing this can cause lots of trivial failures in test suites. It is also used by :mod:`lino.modlib.notify` when generating the mail body. """ make_missing_dirs = True """Set this to `False` if you don't want Lino to automatically create missing directories when needed. If this is False, Lino will raise an exception in these cases, asking you to create it yourself. """ userdocs_prefix = '' project_name = None """A nickname for this project. This is used to set :attr:`cache_dir` and therefore should be unique for all Lino projects in a given development environment. If this is None, Lino will find a default value by splitting :attr:`project_dir` and taking the last part (or the second-last if the last part is 'settings'. """ cache_dir = None """The directory where Lino will create temporary data for this project, including the :xfile:`media` directory and the :xfile:`default.db` file. This is either the same as :attr:`project_dir` or (if :envvar:`LINO_CACHE_ROOT` is set), will be set to :envvar:`LINO_CACHE_ROOT` + :attr:`project_name`. """ project_dir = None """Full path to your local project directory. Lino automatically sets this to the directory of the :xfile:`settings.py` file (or however your :envvar:`DJANGO_SETTINGS_MODULE` is named). It is recommended to not override this variable. Note that when using a *settings package*, :attr:`project_dir` points to the :file:`settings` subdir of what we would intuitively consider the project directory. If the :attr:`project_dir` contains a :xfile:`config` directory, this will be added to the config search path. """ languages = None """The language distribution used on this site. It has its own chapter :doc:`/dev/languages` in the Developers Guide. """ not_found_msg = '(not installed)' django_settings = None """This is a reference to the `globals()` dictionary of your :xfile:`settings.py` file (the one you provided when instantiating the Site object). """ startup_time = None """ The time when this Site has been instantiated, in other words the startup time of this Django process. Don't modify this. """ plugins = None models = None top_level_menus = [ ("master", _("Master")), ("main", None), ("reports", _("Reports")), ("config", _("Configure")), ("explorer", _("Explorer")), ("site", _("Site")), ] "The list of top-level menu items. See :meth:`setup_menu`." # is_local_project_dir = False # """Contains `True` if this is a "local" project. For local projects, # Lino checks for local fixtures and config directories and adds # them to the default settings. # This is automatically set when a :class:`Site` is instantiated. # """ ignore_model_errors = False """Not yet sure whether this is needed. Maybe when generating documentation. """ loading_from_dump = False """Whether the process is currently loading data from a Python dump. When loading from a python dump, application code should not generate certain automatic data because that data is also part of the dump. This is normally `False`, but a Python dump created with :manage:`dump2py` explicitly calls :meth:`install_migrations` which sets this to `True`. Application code should not change this setting except for certain special test cases. """ # see docs/settings.rst migration_class = None """ If you maintain a data migrator module for your application, specify its name here. See :ref:`datamig` and/or :func:`lino.utils.dpy.install_migrations`. TODO: rename this to `migrator_class` """ migration_module = None """The full Python path of a module to use for all migrations. """ hidden_languages = None """A string with a space-separated list of django codes of languages that should be hidden. :ref:`welfare` uses this because the demo database has 4 languages, but `nl` is currently hidden bu default. """ BABEL_LANGS = tuple() partners_app_label = 'contacts' """ Temporary setting, see :ref:`polymorphism`. """ # three constants used by lino_xl.lib.workflows: max_state_value_length = 20 max_action_name_length = 50 max_actor_name_length = 100 trusted_templates = False """ Set this to True if you are sure that the users of your site won't try to misuse Jinja's capabilities. """ allow_duplicate_cities = False """In a default configuration (when :attr:`allow_duplicate_cities` is False), Lino declares a UNIQUE clause for :class:`Places <lino_xl.lib.countries.models.Places>` to make sure that your database never contains duplicate cities. This behaviour mighr disturb e.g. when importing legacy data that did not have this restriction. Set it to True to remove the UNIQUE clause. Changing this setting might affect your database structure and thus require a :doc:`/topics/datamig` if your application uses :mod:`lino_xl.lib.countries`. """ uid = 'myuid' """A universal identifier for this Site. This is needed when synchronizing with CalDAV server. Locally created calendar components in remote calendars will get a UID based on this parameter, using ``"%s@%s" % (self.pk, settings.SITE.kernel)``. The default value is ``'myuid'``, and you should certainly override this on a production server that uses remote calendars. """ project_model = None """ Optionally set this to the full name of a model used as "central project" in your application. Models which inherit from :class:`ProjectRelated <lino.mixins.ProjectRelated>` then have an additional ForeignKey to this model. """ user_model = None """ If :mod:`lino.modlib.users` is installed, this holds a reference to the model class which represents a user of the system. Default value is `None`, meaning that this application has no user management. See also :meth:`set_user_model` """ social_auth_backends = None """ A list of backends for `Python Social Auth <https://github.com/python-social-auth>`__ (PSA). Having this at a value different from `None` means that this site uses authentication via third-party providers. Sites which use this must also install PSA into their environment:: $ pip install social-auth-app-django Depending on the backend you must also add credentials in your local :xfile:`settings.py` file, e.g.:: SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = \ '1234567890-a1b2c3d4e5.apps.googleusercontent.com' SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'SH6da...' A working example is in the :mod:`lino_book.projects.team` demo project. """ use_security_features = False """ Set this to `True` in order to activate a selection of security features to protect against miscellaneous attacks. You can do this only if your application is being served via HTTPS. The idea is to provide a reasonable security out of the box. This will activate some middleware and set some security-related settings. This is a new feature and not much tested. As a hoster you may prefer adding security manually using your established standards (regarding security Lino does not add anything to plain Django). See also :doc:`/admin/security`. """ use_ipdict = False """ Whether this site uses :mod:`lino.modlib.ipdict`. Note that :mod:`lino.modlib.ipdict` unlike normal plugins should not be installed by adding it to your :meth:`get_installed_apps` method but by setting this attribute. This approach has the advantage of also setting :setting:`MIDDLEWARE_CLASSES` automatically. """ # use_auth = True # """Whether this site uses authentication. If this is set to `False`, # all requests are anonymous (as if :attr:`user_model` was `None`). # This is ignored when :attr:`user_model` is `None`. # """ auth_middleware = None """ Override used Authorisation middlewares with supplied tuple of middleware class names. If None, use logic described in :doc:`/topics/auth` """ workflows_module = None """The full Python path of the **workflows module** to be used on this site. """ user_types_module = None """The name of the **user types module** to be used on this site. Default value is `None`, meaning that permission control is inactive: everything is permitted. But note that :meth:`set_user_model` sets it to :mod:`lino.core.user_types`. This must be set if you want to enable permission control based on user roles defined in :attr:`Permittable.required_roles <lino.core.permissions.Permittable.required_roles>` and :attr:`UserType.role <lino.modlib.users.choicelists.UserType.role>`. If set, Lino will import the named module during site startup. It is expected to define application-specific user roles (if necessary) and to fill the :class:`UserTypes <lino.modlib.users.choicelists.UserTypes>` choicelist. For example:: class Site(Site): user_types_module = 'myapp.user_types' Examples of such user types modules are :mod:`lino.core.user_types` and :mod:`lino_noi.lib.noi.user_types`. """ custom_layouts_module = None """The full Python path of the **custom layouts module** used on this site. """ legacy_data_path = None """ Used by custom fixtures that import data from some legacy database. """ propvalue_max_length = 200 """ Used by :mod:`lino_xl.lib.properties`. """ show_internal_field_names = True """Whether the internal field names should be visible. ExtUI implements this by prepending them to the tooltip, which means that :attr:`use_quicktips` must also be `True`. Default is `True`. """ never_build_site_cache = False """Set this to `True` if you want that Lino never (re)builds the site cache, even when asked. This can be useful on a development server when you are debugging directly on the generated :xfile:`lino*.js`. Or for certain unit test cases. """ build_js_cache_on_startup = False """Whether the Javascript cache files should be built on startup for all user profiles and languages. On a production server this should be `True` for best performance, but often this is not necessary, so default value is `False`, which means that each file is built upon need (when a first request comes in). You can also set it to `None`, which means that Lino decides automatically during startup: it becomes `False` if either :func:`lino.core.utils.is_devserver` returns True or setting:`DEBUG` is set. .. envvar:: LINO_BUILD_CACHE_ON_STARTUP If a variable of that name is set, then Lino will override the code value and set :attr:`build_js_cache_on_startup` to True. """ keep_erroneous_cache_files = False """When some exception occurs during :meth:`lino.core.kernel.Kernel.make_cache_file`, Lino usually removes the partly generated file to make sure that it will try to generate it again (and report the same error message) for every subsequent next request. Set this to `True` if you need to see the partly generated cache file. **Don't forget to remove this** when you have inspected the file and fixed the reason of the exception, because if this is `True` and some next exception occurs (which will happen sooner or later), then all subsequent requests will usually end up to the user with a blank screen and (if they notice it), a message :message:`TypeError: Lino.main_menu is undefined` in their Javascript console. """ use_websockets = False """Set this to `True` in order to activate use of websockets and channels. This setting is currently used only by :mod:`lino.modlib.notify`, so its setting is ignored if your application doesn't use that plugin. If you use :mod:`lino.modlib.notify` and change this setting to True, then you need to install `django-channels`:: pip install channels """ use_java = True """ A site-wide option to disable everything that needs Java. Note that it is up to the plugins which include Java applications to respect this setting. Usage example is :mod:`lino_xl.lib.beid`. """ use_silk_icons = False """ If this is `True`, certain Lino plugins use the deprecated `silk icons library <http://www.famfamfam.com/lab/icons/silk/>`__ for representing workflows. The recommended but not yet fully implemented "modern" style is to use unicode symbols instead of icons. """ use_new_unicode_symbols = False """Whether to use "new" unicode symbols (e.g. from the `Miscellaneous Symbols and Pictographs <https://en.wikipedia.org/wiki/Miscellaneous_Symbols_and_Pictographs>`__ block) which are not yet implemented in all fonts. Currently used by :mod:`lino_noi.lib.noi.workflows` """ use_experimental_features = False """Whether to include "experimental features". Deprecated. lino_xl.lib.inspect """ site_config_defaults = {} """ Default values to be used when creating the :attr:`site_config`. Usage example:: site_config_defaults = dict(default_build_method='appypdf') """ # default_build_method = "appypdf" # default_build_method = "appyodt" # default_build_method = "wkhtmltopdf" default_build_method = None """The default build method to use when rendering printable documents. This is the last default value, used only when :attr:`default_build_method <lino.modlib.system.models.SiteConfig.default_build_method>` in :class:`SiteConfig <lino.modlib.system.models.SiteConfig>` is empty. """ is_demo_site = True """When this is `True`, then this site runs in "demo" mode. "Demo mode" means: - the welcome text for anonymous users says "This demo site has X users, they all have "<PASSWORD>" as password", followed by a list of available usernames. Default value is `True`. On a production site you will of course set this to `False`. See also :attr:`demo_fixtures` and :attr:`the_demo_date`. """ demo_email = '<EMAIL>' # demo_fixtures = ['std', 'demo', 'demo2'] demo_fixtures = [] """ The list of fixtures to be loaded by the :manage:`prep` command. """ use_spinner = False # doesn't work. leave this to False #~ django_admin_prefix = '/django' django_admin_prefix = None """ The prefix to use for Django admin URLs. Leave this unchanged as long as :srcref:`docs/tickets/70` is not solved. """ time_format_extjs = 'H:i' """ Format (in ExtJS syntax) to use for displaying dates to the user. If you change this setting, you also need to override :meth:`parse_time`. """ alt_time_formats_extjs = "g:ia|g:iA|g:i a|g:i A|h:i|g:i|H:i|ga|ha|gA|h a|g a|g A|gi|hi" \ "|gia|hia|g|H|gi a|hi a|giA|hiA|gi A|hi A" \ "|Hi|g.ia|g.iA|g.i a|g.i A|h.i|g.i|H.i" """Alternative time entry formats accepted by ExtJS time widgets. ExtJS default is: "g:ia|g:iA|g:i a|g:i A|h:i|g:i|H:i|ga|ha|gA|h a|g a|g A|gi|hi|gia|hia|g|H|gi a|hi a|giA|hiA|gi A|hi A" Lino's extended default also includes: "Hi" (1900) and "g.ia|g.iA|g.i a|g.i A|h.i|g.i|H.i" (Using . in replacement of ":") """ date_format_extjs = 'd.m.Y' """Format (in ExtJS syntax) to use for displaying dates to the user. If you change this setting, you also need to override :meth:`parse_date`. """ alt_date_formats_extjs = 'd/m/Y|Y-m-d' """Alternative date entry formats accepted by ExtJS Date widgets. """ default_number_format_extjs = '0,000.00/i' # default_number_format_extjs = '0,00/i' uppercase_last_name = False """ Whether last name of persons should (by default) be printed with uppercase letters. See :mod:`lino.test_apps.human` """ jasmine_root = None """Path to the Jasmine root directory. Only used on a development server if the `media` directory has no symbolic link to the Jasmine root directory and only if :attr:`use_jasmine` is True. """ default_user = None """Username of the user to be used for all incoming requests. Setting this to a nonempty value will disable authentication on this site. The special value `'anonymous'` will cause anonymous requests (whose `user` attribute is the :class:`AnonymousUser <lino.core.auth.utils.AnonymousUser>` singleton). See also :meth:`get_auth_method`. This setting should be `None` when :attr:`user_model` is `None`. """ remote_user_header = None """The name of the header (set by the web server) that Lino should consult for finding the user of a request. The default value `None` means that http authentication is not used. Apache's default value is ``"REMOTE_USER"``. """ ldap_auth_server = None """ This should be a string with the domain name and DNS (separated by a space) of the LDAP server to be used for authentication. Example:: ldap_auth_server = 'DOMAIN_NAME SERVER_DNS' """ use_gridfilters = True use_eid_applet = False """ Whether to include functionality to read Belgian id cards using the official `eid-applet <http://code.google.com/p/eid-applet>`_. This option is experimental and doesn't yet work. See `/blog/2012/1105`. """ use_esteid = False """ Whether to include functionality to read Estonian id cards. This option is experimental and doesn't yet work. """ use_filterRow = not use_gridfilters """ See `/blog/2011/0630`. This option was experimental and doesn't yet work (and maybe never will). """ use_awesome_uploader = False """ Whether to use AwesomeUploader. This option was experimental and doesn't yet work (and maybe never will). """ use_tinymce = True """Replaced by :mod:`lino.modlib.tinymce`. """ use_jasmine = False """Whether to use the `Jasmine <https://github.com/pivotal/jasmine>`_ testing library. """ use_quicktips = True """Whether to make use of `Ext.QuickTips <http://docs.sencha.com/ext-js/3-4/#!/api/Ext.QuickTips>`_ for displaying :ref:`help_texts` and internal field names (if :attr:`show_internal_field_names`). """ use_css_tooltips = False """ Whether to make use of CSS tooltips when displaying help texts defined in :class:`lino.models.HelpText`. """ use_vinylfox = False """ Whether to use VinylFox extensions for HtmlEditor. This feature was experimental and doesn't yet work (and maybe never will). See `/blog/2011/0523`. """ webdav_root = None """ The path on server to store webdav files. Default is :attr:`cache_dir` + ´/media/webdav'. """ webdav_url = None """ The URL prefix for webdav files. In a normal production configuration you should leave this to `None`, Lino will set a default value "/media/webdav/", supposing that your Apache is configured as described in :doc:`/admin/webdav`. This may be used to simulate a :term:`WebDAV` location on a development server. For example on a Windows machine, you may set it to ``w:\``, and before invoking :manage:`runserver`, you issue in a command prompt:: subst w: <dev_project_path>\media\webdav """ webdav_protocol = None """ Set this to a string like e.g. 'wdav' in order to use a custom protocol for opening editable printable documents. In this case Lino expects the browser to be configured to understand the given protocol. If this is non-empty, Lino ignores whether :mod:`lino.modlib.davlink` is installed or not. When an *editable* printable document has been generated, Lino does not open a new browser window on that document but invokes the client's Office application. That application accesses the document either via a WebDAV link (on a production server) or a ``file://`` link (on a development server). """ beid_protocol = None """ Set this to a string like e.g. 'beid' in order to use a custom protocal for reading eid cards. """ sidebar_width = 0 """ Used by :mod:`lino.modlib.plain`. Width of the sidebar in 1/12 of total screen width. Meaningful values are 0 (no sidebar), 2 or 3. """ config_id = 1 """ The primary key of the one and only :class:`SiteConfig <lino.modlib.system.models.SiteConfig>` instance of this :class:`Site`. Default value is 1. This is Lino's equivalent of Django's :setting:`SITE_ID` setting. Lino applications don't need ``django.contrib.sites`` (`The "sites" framework <https://docs.djangoproject.com/en/dev/ref/contrib/sites/>`_) because an analog functionality is provided by :mod:`lino.modlib.system`. """ preview_limit = 15 """ Default value for the :attr:`preview_limit <lino.core.tables.AbstractTable.preview_limit>` parameter of all tables who don't specify their own one. Default value is 15. """ # default_ui = 'lino_extjs6.extjs6' default_ui = 'lino.modlib.extjs' """ The full Python name of the plugin which is to be used as default user interface on this :class:`Site`. Default value is :mod:`lino.modlib.extjs`. Other candidates are :mod:`lino.modlib.bootstrap3`, :mod:`lino_xl.lib.pages` and :mod:`lino_extjs6.extjs6` . Another possibility is to set it to `None`. In that case you will probably also set :attr:`root_urlconf` to a custom URL dispatcher. Usage example for this see :mod:`lino.projects.cms`. """ admin_ui = None mobile_view = False """ When this is `False` (the default), then Lino uses an attribute named :attr:`main <lino.core.layouts.BaseLayout.main>` as the main element of a detail window and :attr:`column_names <lino.core.tables.AbstractTable.column_names>` as the table's column layout. When this is `True`, then Lino uses :attr:`main_m <lino.core.layouts.BaseLayout.main_m>` and :attr:`column_names_m <lino.core.tables.AbstractTable.column_names_m>` respectively. """ detail_main_name = 'main' # detail_main_name = 'main_m' design_name = 'desktop' """ The name of the design to use. The default value is ``'desktop'``. The value should be one of ``'desktop'`` or ``'mobile'``. For every plugin, Lino will try to import its "design module". For example if :attr:`design_name` is ``'desktop'``, then the design module for a plugin ``'foo.bar'`` is ``'foo.bar.desktop'``. If such a module exists, Lino imports it and adds it to :attr:`models.bar`. The result is the same as if there were a ``from .desktop import *`` statement at the end of the :xfile:`models.py` module. """ root_urlconf = 'lino.core.urls' """ The value to be attribute to :setting:`ROOT_URLCONF` when this :class:`Site` instantiates. The default value is :mod:`lino.core.urls`. """ textfield_format = 'plain' """ The default format for text fields. Valid choices are currently 'plain' and 'html'. Text fields are either Django's `models.TextField` or :class:`lino.core.fields.RichTextField`. You'll probably better leave the global option as 'plain', and specify explicitly the fields you want as html by declaring them:: foo = fields.RichTextField(...,format='html') We even recommend that you declare your *plain* text fields also using `fields.RichTextField` and not `models.TextField`:: foo = fields.RichTextField() Because that gives subclasses of your application the possibility to make that specific field html-formatted:: resolve_field('Bar.foo').set_format('html') """ log_each_action_request = False """ Whether Lino should log every incoming request for non :attr:`readonly <lino.core.actions.Action.readonly>` actions. This is experimental. Theoretically it is useless to ask Lino for logging every request since Apache does this. OTOH Lino can produce more readable logs. Note also that there is no warranty that actually *each* request is being logged. It corrently works only for requests that are being processed by the kernel's :meth:`run_action <lino.core.kernel.Kernel.run_action>` or :meth:`run_callback <lino.core.kernel.Kernel.run_callback>` methods. """ verbose_client_info_message = False """ Set this to True if actions should send debug messages to the client. These will be shown in the client's Javascript console only. """ help_url = "http://www.lino-framework.org" help_email = "<EMAIL>" """ An e-mail address where users can get help. This is included in :xfile:`admin_main.html`. """ catch_layout_exceptions = True """ Lino usually catches any exception during startup (in :func:`create_layout_element <lino.core.layouts.create_layout_element>`) to report errors of style "Unknown element "postings.PostingsByController ('postings')" referred in layout <PageDetail on pages.Pages>." Setting this to `False` is useful when there's some problem *within* the framework. """ strict_dependencies = True """ This should be True unless this site is being used just for autodoc or similar applications. """ strict_choicelist_values = True """ Whether invalid values in a ChoiceList should raise an exception. This should be `True` except for exceptional situations. """ csv_params = dict() """ Site-wide default parameters for CSV generation. This must be a dictionary that will be used as keyword parameters to Python `csv.writer() <http://docs.python.org/library/csv.html#csv.writer>`_ Possible keys include: - encoding : the charset to use when responding to a CSV request. See http://docs.python.org/library/codecs.html#standard-encodings for a list of available values. - many more allowed keys are explained in `Dialects and Formatting Parameters <http://docs.python.org/library/csv.html#csv-fmt-params>`_. """ logger_filename = 'lino.log' """ The name of Lino's main log file, created in :meth:`setup_logging`. See also :ref:`lino.logging`. """ auto_configure_logger_names = 'schedule atelier django lino radicale' """ A string with a space-separated list of logger names to be automatically configured. See :meth:`setup_logging`. """ # appy_params = dict(ooPort=8100) appy_params = dict( ooPort=8100, pythonWithUnoPath='/usr/bin/python3', raiseOnError=True) """ Used by :class:`lino_xl.lib.appypod.choicelist.AppyBuildMethod`. Allowed keyword arguments for `appy.pod.renderer.Render` are:: pythonWithUnoPath=None, ooPort=2002 stylesMapping={} forceOoCall=False, finalizeFunction=None overwriteExisting=False raiseOnError=False imageResolver=None See `the source code <http://bazaar.launchpad.net/~appy-dev/appy/trunk/view/head:/pod/renderer.py>`_ for details. See also :doc:`/admin/oood` """ #~ decimal_separator = '.' decimal_separator = ',' """ Set this to either ``'.'`` or ``','`` to define wether to use comma or dot as decimal point separator when entering a `DecimalField`. """ # decimal_group_separator = ',' # decimal_group_separator = ' ' # decimal_group_separator = '.' decimal_group_separator = u"\u00A0" """ Decimal group separator for :meth:`decfmt`. """ time_format_strftime = '%H:%M' """ Format (in strftime syntax) to use for displaying dates to the user. If you change this setting, you also need to override :meth:`parse_time`. """ date_format_strftime = '%d.%m.%Y' """ Format (in strftime syntax) to use for displaying dates to the user. If you change this setting, you also need to override :meth:`parse_date`. """ date_format_regex = "/^[0123]?\d\.[01]?\d\.-?\d+$/" """ Format (in Javascript regex syntax) to use for displaying dates to the user. If you change this setting, you also need to override :meth:`parse_date`. """ datetime_format_strftime = '%Y-%m-%dT%H:%M:%S' """ Format (in strftime syntax) to use for formatting timestamps in AJAX responses. If you change this setting, you also need to override :meth:`parse_datetime`. """ datetime_format_extjs = 'Y-m-d\TH:i:s' """ Format (in ExtJS syntax) to use for formatting timestamps in AJAX calls. If you change this setting, you also need to override :meth:`parse_datetime`. """ # for internal use: _site_config = None _logger = None _starting_up = False override_modlib_models = None """ A dictionary which maps model class names to the plugin which overrides them. This is automatically filled at startup. You can inspect it, but you should not modify it. Needed for :meth:`is_abstract_model`. The challenge is that we want to know exactly where every model's concrete class will be defined *before* actually starting to import the :xfile:`models.py` modules. That's why we need :attr:`extends_models <lino.core.plugin.Plugin.extends_models>`. This can be tricky, see e.g. 20160205. """ installed_plugin_modules = None """ Used internally by :meth:`is_abstract_model`. Don't modify. A set of the full Python paths of all imported plugin modules. Not just the plugin modules themselves but also those they inherit from. """ def __init__(self, settings_globals=None, local_apps=[], **kwargs): """Every Lino application calls this once in it's :file:`settings.py` file. See :doc:`/usage`. `settings_globals` is the `globals()` dictionary of your :xfile:`settings.py`. """ if hasattr(self, 'setup_choicelists'): raise ChangedAPI("setup_choicelists is no longer supported") if hasattr(self, 'setup_workflows'): raise ChangedAPI("setup_workflows is no longer supported") # if len(_INSTANCES): # raise Exception("20161219") # # happens e.g. during sphinx-build # _INSTANCES.append(self) # self.logger.info("20140226 Site.__init__() a %s", self) #~ print "20130404 ok?" if 'no_local' in kwargs: kwargs.pop('no_local') # For the moment we just silently ignore it, but soon: # if False: raise ChangedAPI("The no_local argument is no longer needed.") self._welcome_handlers = [] self._help_texts = dict() self.plugins = AttrDict() self.models = AttrDict() self.modules = self.models # backwards compat # self.actors = self.models # backwards compat # self.actors = AttrDict() if settings_globals is None: settings_globals = {} self.init_before_local(settings_globals, local_apps) self.setup_logging() self.run_lino_site_module() self.override_settings(**kwargs) self.load_plugins() for p in self.installed_plugins: p.on_plugins_loaded(self) if self.migration_module is not None: self.django_settings.update( MIGRATION_MODULES={ p.app_label:self.migration_module for p in self.installed_plugins}) self.setup_plugins() self.install_settings() from lino.utils.config import ConfigDirCache self.confdirs = ConfigDirCache(self) for k in ('ignore_dates_before', 'ignore_dates_after'): if hasattr(self, k): msg = "{0} is no longer a site attribute" msg += " but a plugin attribute on lino_xl.lib.cal." msg = msg.format(k) raise ChangedAPI(msg) self.load_help_texts() def init_before_local(self, settings_globals, local_apps): """If your :attr:`project_dir` contains no :xfile:`models.py`, but *does* contain a `fixtures` subdir, then Lino automatically adds this as a local fixtures directory to Django's :setting:`FIXTURE_DIRS`. But only once: if your application defines its own local fixtures directory, then this directory "overrides" those of parent applications. E.g. lino_noi.projects.care does not want to load the application-specific fixtures of lino_noi.projects.team. """ if not isinstance(settings_globals, dict): raise Exception(""" The first argument when instantiating a %s must be your settings.py file's `globals()` and not %r """ % (self.__class__.__name__, settings_globals)) if isinstance(local_apps, six.string_types): local_apps = [local_apps] self.local_apps = local_apps self.django_settings = settings_globals project_file = settings_globals.get('__file__', '.') self.project_dir = Path(dirname(project_file)).absolute().resolve() # inherit `project_name` from parent? # if self.__dict__.get('project_name') is None: if self.project_name is None: parts = reversed(self.project_dir.split(os.sep)) # print(20150129, list(parts)) for part in parts: if part != 'settings': self.project_name = part break cache_root = os.environ.get('LINO_CACHE_ROOT', None) if cache_root: cr = Path(cache_root).absolute() if not cr.exists(): msg = "LINO_CACHE_ROOT ({0}) does not exist!".format(cr) raise Exception(msg) self.cache_dir = cr.child(self.project_name).resolve() self.setup_cache_directory() else: self.cache_dir = Path(self.project_dir).absolute() self._startup_done = False self.startup_time = datetime.datetime.now() db = self.get_database_settings() if db is not None: self.django_settings.update(DATABASES=db) self.update_settings(SERIALIZATION_MODULES={ "py": "lino.utils.dpy", }) if self.site_prefix != '/': if not self.site_prefix.endswith('/'): raise Exception("`site_prefix` must end with a '/'!") if not self.site_prefix.startswith('/'): raise Exception("`site_prefix` must start with a '/'!") self.update_settings( SESSION_COOKIE_PATH=self.site_prefix[:-1]) # self.update_settings(SESSION_COOKIE_NAME='ssid') # ## Local project directory # modname = self.__module__ # i = modname.rfind('.') # if i != -1: # modname = modname[:i] # self.is_local_project_dir = modname not in self.local_apps self.VIRTUAL_FIELDS = [] def setup_logging(self): """Modifies the :data:`DEFAULT_LOGGING <django.utils.log.DEFAULT_LOGGING>` dictionary *before* Django passes it to the `logging.config.dictConfig <https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig>`__ function. Note that this is called *before* any plugins are loaded. It is designed to work with the :setting:`LOGGING` and :setting:`LOGGER_CONFIG` settings unmodified. It does the following modifications: - (does not) configure the console handler to write to stdout instead of Django's default stderr (as explained `here <http://codeinthehole.com/writing/console-logging-to-stdout-in-django/>`__) because that breaks testing. - Define a *default logger configuration* which is initially the same as the one used by Django:: { 'handlers': ['console', 'mail_admins'], 'level': 'INFO', } - If the :attr:`project_dir` has a subdirectory named ``log``, and if :attr:`logger_filename` is not empty, add a handler named ``file`` and a formatter named ``verbose``, and add that handler to the default logger configuration. - Apply the default logger configuration to every logger name in :attr:`auto_configure_logger_names`. It does nothing at all if :attr:`auto_configure_logger_names` is set to `None` or empty. See also :ref:`lino.logging`. See also Django's doc about `Logging <https://docs.djangoproject.com/en/1.11/topics/logging/>`__. """ if not self.auto_configure_logger_names: return from django.utils.log import DEFAULT_LOGGING d = DEFAULT_LOGGING level = os.environ.get('LINO_LOGLEVEL') or 'INFO' file_level = os.environ.get('LINO_FILE_LOGLEVEL') or 'INFO' loggercfg = { 'handlers': ['console', 'mail_admins'], 'level': level, } handlers = d.setdefault('handlers', {}) if True: # We override Django's default config: write to stdout (not # stderr) and remove the 'require_debug_true' filter. console = handlers.setdefault('console', {}) console['stream'] = sys.stdout console['filters'] = [] console['level'] = level if self.logger_filename and 'file' not in handlers: logdir = self.project_dir.child('log') if logdir.isdir(): # if self.history_aware_logging is None: # self.history_aware_logging = True formatters = d.setdefault('formatters', {}) formatters.setdefault('verbose', dict( format='%(asctime)s %(levelname)s ' '[%(module)s %(process)d %(thread)d] : %(message)s', datefmt='%Y%m-%d %H:%M:%S')) handlers['file'] = { 'level': file_level, 'class': 'logging.FileHandler', 'filename': logdir.child(self.logger_filename), 'encoding': 'UTF-8', 'formatter': 'verbose', } loggercfg['handlers'].append('file') for name in self.auto_configure_logger_names.split(): # if name not in d['loggers']: d['loggers'][name] = loggercfg # set schedule logger level to WARNING # TODO: find a more elegant way to do this. if 'schedule' in d['loggers']: d['loggers']['schedule'] = { 'handlers': loggercfg['handlers'], 'level': 'WARNING', } dblogger = d['loggers'].setdefault('django.db.backends', {}) dblogger['propagate'] = False dblogger['level'] = os.environ.get('LINO_SQL_LOGLEVEL', 'WARNING') dblogger['handlers'] = loggercfg['handlers'] # self.update_settings(LOGGING=d) # from pprint import pprint # pprint(d) # print("20161126 Site %s " % d['loggers'].keys()) # import yaml # print(yaml.dump(d)) def get_database_settings(self): """Return a dict to be set as the :setting:`DATABASE` setting. The default behaviour uses SQLiite on a file named :xfile:`default.db` in the :attr:`cache_dir`, and in ``:memory:`` when :attr:`cache_dir` is `None`. And alternative might be for example:: def get_database_settings(self): return { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test_' + self.project_name, 'USER': 'django', 'PASSWORD': os.environ['MYSQL_PASSWORD'], 'HOST': 'localhost', 'PORT': 3306, 'OPTIONS': { "init_command": "SET storage_engine=MyISAM", } } } """ if self.cache_dir is None: pass # raise Exception("20160516 No cache_dir") else: dbname = self.cache_dir.child('default.db') return { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': dbname } } def run_lino_site_module(self): """See :ref:`lino.site_module`. """ site_module = os.environ.get('LINO_SITE_MODULE', None) if site_module: mod = import_module(site_module) func = getattr(mod, 'setup_site', None) if func: func(self) # try: # from djangosite_local import setup_site # except ImportError: # pass # else: # setup_site(self) def override_settings(self, **kwargs): # Called internally during `__init__` method. # Also called from :mod:`lino.utils.djangotest` #~ logger.info("20130404 lino.site.Site.override_defaults") for k, v in kwargs.items(): if not hasattr(self, k): raise Exception("%s has no attribute %s" % (self.__class__, k)) setattr(self, k, v) self.apply_languages() def load_plugins(self): """Load all plugins and build the :setting:`INSTALLED_APPS` setting for Django. This includes a call to :meth:`get_apps_modifiers` and :meth:`get_installed_apps`. """ # Called internally during `__init__` method. requested_apps = [] apps_modifiers = self.get_apps_modifiers() if hasattr(self, 'hidden_apps'): raise ChangedAPI("Replace hidden_apps by get_apps_modifiers()") def add(x): if isinstance(x, six.string_types): app_label = x.split('.')[-1] x = apps_modifiers.pop(app_label, x) if x: requested_apps.append(x) else: # if it's not a string, then it's an iterable of strings for xi in x: add(xi) for x in self.get_installed_apps(): add(x) for x in self.local_apps: add(x) # actual_apps = [] plugins = [] disabled_plugins = set() def install_plugin(app_name, needed_by=None): # print("20170505 install_plugin({})".format(app_name)) # Django does not accept newstr, and we don't want to see # ``u'applabel'`` in doctests. app_name = six.text_type(app_name) # print("20160524 install_plugin(%r)" % app_name) app_mod = import_module(app_name) # print "Loading plugin", app_name k = app_name.rsplit('.')[-1] x = apps_modifiers.pop(k, 42) if x is None: return elif x == 42: pass else: raise Exception("20160712") if k in self.plugins: other = self.plugins[k] if other.app_name == app_name: # If a plugin is installed more than once, only # the first one counts and all others are ignored # silently. Happens e.g. in Lino Noi where # lino_noi.lib.noi is both a required plugin and # the default_ui. return raise Exception("Tried to install {} where {} " "is already installed.".format( app_name, other)) # Can an `__init__.py` file explicitly set ``Plugin = # None``? Is that feature being used? app_class = getattr(app_mod, 'Plugin', None) if app_class is None: app_class = Plugin p = app_class(self, k, app_name, app_mod, needed_by) cfg = PLUGIN_CONFIGS.pop(k, None) if cfg: p.configure(**cfg) needed_by = p while needed_by.needed_by is not None: needed_by = needed_by.needed_by for dep in p.needs_plugins: k2 = dep.rsplit('.')[-1] if k2 not in self.plugins: install_plugin(dep, needed_by=needed_by) # plugins.append(dep) # actual_apps.append(app_name) plugins.append(p) self.plugins.define(k, p) for dp in p.disables_plugins: disabled_plugins.add(dp) # lino_startup is always the first plugin: # install_plugin(str('lino.modlib.lino_startup')) install_plugin(str('lino')) for app_name in requested_apps: install_plugin(app_name) if apps_modifiers: raise Exception( "Invalid app_label '{0}' in your get_apps_modifiers!".format( list(apps_modifiers.keys())[0])) # The return value of get_auth_method() may depend on a # plugin, so if needed we must add the django.contrib.sessions # afterwards. # if self.get_auth_method() == 'session': if self.user_model: k = str('django.contrib.sessions') if not k in self.plugins: install_plugin(k) for p in plugins: if p.app_label in disabled_plugins \ or p.app_name in disabled_plugins: plugins.remove(p) del self.plugins[p.app_label] # self.update_settings(INSTALLED_APPS=tuple(actual_apps)) self.update_settings( INSTALLED_APPS=tuple([p.app_name for p in plugins])) self.installed_plugins = tuple(plugins) if self.override_modlib_models is not None: raise ChangedAPI("override_modlib_models no longer allowed") self.override_modlib_models = dict() # def reg(p, pp, m): # name = pp.__module__ + '.' + m # self.override_modlib_models[name] = p def plugin_parents(pc): for pp in pc.__mro__: if issubclass(pp, Plugin): # if pp not in (Plugin, p.__class__): if pp is not Plugin: yield pp def reg(pc): # If plugin p extends some models, then tell all parent # plugins to make their definition of each model abstract. extends_models = pc.__dict__.get('extends_models') if extends_models is not None: for m in extends_models: if "." in m: raise Exception( "extends_models in %s still uses '.'" % pc) for pp in plugin_parents(pc): if pp is pc: continue name = pp.__module__ + '.' + m self.override_modlib_models[name] = pc # if m == "Company": # print("20160524 tell %s that %s extends %s" % ( # pp, p.app_name, m)) for pp in plugin_parents(pc): if pp is pc: continue reg(pp) # msg = "{0} declares to extend_models {1}, but " \ # "cannot find parent plugin".format(p, m) # raise Exception(msg) for p in self.installed_plugins: reg(p.__class__) # for pp in plugin_parents(p.__class__): # if p.app_label == 'contacts': # print("20160524c %s" % pp) # reg(p.__class__) # for m, p in self.override_modlib_models.items(): # print("20160524 %s : %s" % (m, p)) self.installed_plugin_modules = set() for p in self.installed_plugins: self.installed_plugin_modules.add(p.app_module.__name__) for pp in plugin_parents(p.__class__): self.installed_plugin_modules.add(pp.__module__) # print("20160524 %s", self.installed_plugin_modules) # raise Exception("20140825 %s", self.override_modlib_models) # Tried to prevent accidental calls to configure_plugin() # *after* Site initialization. # global PLUGIN_CONFIGS # PLUGIN_CONFIGS = None def load_help_texts(self): """Collect :xfile:`help_texts.py` modules""" for p in self.installed_plugins: mn = p.app_name + '.help_texts' try: m = import_module(mn) # print("20160725 Loading help texts from", mn) self._help_texts.update(m.help_texts) except ImportError: pass def load_actors(self): """Collect :xfile:`desktop.py` modules. Note the situation when a :xfile:`desktop.py` module exists but causes itself an ImportError because it contains a programming mistake. In that case we want the traceback to occur, not to silently do as if no :xfile:`desktop.py` module existed. """ for p in self.installed_plugins: mn = p.app_name + '.' + self.design_name fn = join( dirname(p.app_module.__file__), self.design_name + '.py') if exists(fn): # self.actors[p.app_label] = import_module(mn) m = import_module(mn) self.models[p.app_label].__dict__.update(m.__dict__) # try: # # print("20160725 Loading actors from", mn) # self.actors[p.app_label] = import_module(mn) # except ImportError: # pass def install_help_text(self, fld, cls=None, attrname=None): """Install a `help_text` from collected :xfile:`help_texts.py` for this field. """ if cls is None: cls = fld debug = False # if attrname.startswith('mun'): # debug = True # from lino.core.actions import Action # if isinstance(fld, Action) and fld.__class__.__name__ == 'ChangePassword': # debug = True # if isinstance(fld, type) and fld.__name__ == 'ChangePassword': # # if isinstance(fld, Action) and fld.__class__.__name__ == 'ChangePassword': # debug = True if not hasattr(fld, 'help_text'): # e.g. virtual fields don't # have a help_text attribute if debug: print("20170824 {!r} has no help_text".format(fld)) return # if fld.help_text: # # if debug: # # print("20170824 {} on {} has already a help_text {}".format( # # attrname, cls, repr(fld.help_text))) # return # if debug: # print(20160829, cls) # if isinstance(fld, type): # cls = fld # else: # cls = fld.model for m in cls.mro(): # useless = ['lino.core', 'lino.mixins'] # if m.__module__.startswith(useless): # continue # if m in self.unhelpful_classes: # continue k = m.__module__ + '.' + m.__name__ k = simplify_name(k) # debug = k.startswith('users') if attrname: k += '.' + attrname txt = self._help_texts.get(k, None) # if attrname == "nationality": # print("20180313 {} {}".format(k, txt)) if txt is None: if debug: print("20170824 {}.{} : no help_text using {!r}".format( cls, attrname, k)) if fld.help_text: # coded help text gets overridden only if docs # provide a more specific help text. return else: if debug: print("20170824 {}.{}.help_text found using {}".format( cls, attrname, k)) fld.help_text = txt return if debug: print("20170824 {}.{} : no help_text".format( cls, attrname)) def setup_plugins(self): """This method is called exactly once during site startup, after :meth:`load_plugins` but before populating the models registry. See :ref:`dev.plugins`. """ pass def install_settings(self): assert not self.help_url.endswith('/') # import django # django.setup() if self.cache_dir is not None: if self.webdav_url is None: self.webdav_url = self.site_prefix + 'media/webdav/' if self.webdav_root is None: self.webdav_root = join(self.cache_dir, 'media', 'webdav') self.django_settings.update( MEDIA_ROOT=join(self.cache_dir, 'media')) self.update_settings(ROOT_URLCONF=self.root_urlconf) self.update_settings(MEDIA_URL='/media/') if not self.django_settings.get('STATIC_ROOT', False): cache_root = os.environ.get('LINO_CACHE_ROOT', None) if cache_root: self.django_settings.update( STATIC_ROOT=Path(cache_root).child('collectstatic')) else: self.django_settings.update( STATIC_ROOT=self.cache_dir.child('static')) if not self.django_settings.get('STATIC_URL', False): self.update_settings(STATIC_URL='/static/') # loaders = [ # 'lino.modlib.jinja.loader.Loader', # 'django.template.loaders.filesystem.Loader', # 'django.template.loaders.app_directories.Loader', # #~ 'django.template.loaders.eggs.Loader', # ] tcp = [] tcp += [ 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ] # self.update_settings(TEMPLATE_LOADERS=tuple(loaders)) # self.update_settings(TEMPLATE_CONTEXT_PROCESSORS=tuple(tcp)) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': tcp, # 'loaders': loaders }, }, ] TEMPLATES.append( { 'BACKEND': 'django.template.backends.jinja2.Jinja2', 'DIRS': [], 'OPTIONS': { 'environment': 'lino.modlib.jinja.get_environment' }, }) self.update_settings(TEMPLATES=TEMPLATES) if self.user_model: self.update_settings(AUTH_USER_MODEL='users.User') if self.use_security_features: self.update_settings( CSRF_USE_SESSIONS=True, SESSION_COOKIE_SECURE=True, CSRF_COOKIE_SECURE=True) # self.define_settings(AUTH_USER_MODEL=self.user_model) self.define_settings( MIDDLEWARE_CLASSES=tuple(self.get_middleware_classes())) # if self.get_auth_method() == 'session': # self.define_settings(AUTHENTICATION_BACKENDS=[ # 'django.contrib.auth.backends.RemoteUserBackend' # ]) backends = [] # if self.use_ipdict: # backends.append('lino.modlib.ipdict.backends.Backend') if self.get_auth_method() == 'remote': backends.append('lino.core.auth.backends.RemoteUserBackend') else: backends.append('lino.core.auth.backends.ModelBackend') if self.social_auth_backends is not None: backends += self.social_auth_backends self.define_settings(AUTHENTICATION_BACKENDS=backends) self.update_settings( LOGIN_URL='/accounts/login/', LOGIN_REDIRECT_URL = '/', # LOGIN_REDIRECT_URL = '/accounts/profile/', LOGOUT_REDIRECT_URL = None) def collect_settings_subdirs(lst, name, max_count=None): def add(p): p = p.replace(os.sep, "/") if p not in lst: lst.append(p) for p in self.get_settings_subdirs(name): # if the parent of a settings subdir has a # `models.py`, then it is a plugin and we must not add # the subdir because Django does that. if exists(join(p, '..', 'models.py')): self.logger.debug( "Not loading %s %s because Django does that", p, name) else: add(p) if (max_count is not None) and len(lst) >= max_count: break # local_dir = self.cache_dir.child(name) # if local_dir.exists(): # print "20150427 adding local directory %s" % local_dir # add(local_dir) # The STATICFILES_DIRS setting should not contain the # STATIC_ROOT setting if False: # If a plugin has no "fixtures" ("config") directory # of its own, inherit it from parents. That would be # nice and it even works, but with a stud: these # fixtures will be loaded at the end. for ip in self.installed_plugins: if not ip.get_subdir(name): pc = ip.extends_from() while pc and issubclass(pc, Plugin): p = pc.get_subdir(name) if p: add(p) pc = pc.extends_from() fixture_dirs = list(self.django_settings.get('FIXTURE_DIRS', [])) locale_paths = list(self.django_settings.get('LOCALE_PATHS', [])) sfd = list(self.django_settings.get('STATICFILES_DIRS', [])) # sfd.append(self.cache_dir.child('genjs')) collect_settings_subdirs(fixture_dirs, 'fixtures', 1) collect_settings_subdirs(locale_paths, 'locale') collect_settings_subdirs(sfd, 'static') self.update_settings(FIXTURE_DIRS=tuple(fixture_dirs)) self.update_settings(LOCALE_PATHS=tuple(locale_paths)) self.update_settings(STATICFILES_DIRS=tuple(sfd)) # print(20150331, self.django_settings['FIXTURE_DIRS']) def setup_cache_directory(self): """When :envvar:`LINO_CACHE_ROOT` is set, Lino adds a stamp file called :xfile:`lino_cache.txt` to every project's cache directory in order to avoid duplicate use of same cache directory. .. xfile:: lino_cache.txt A small text file with one line of text which contains the path of the project which uses this cache directory. """ stamp = self.cache_dir.child('lino_cache.txt') this = class2str(self.__class__) if stamp.exists(): other = stamp.read_file() if other == this: ok = True else: ok = False for parent in self.__class__.__mro__: if other == class2str(parent): ok = True break if not ok: # Can happen e.g. when `python -m lino.hello` is # called. in certain conditions. msg = ("Cannot use {cache_dir} for {this} " "because it is used for {other}. (Settings {settings})") msg = msg.format( cache_dir=self.cache_dir, this=this, settings=self.django_settings.get('SETTINGS_MODULE'), other=other) if True: raise Exception(msg) else: # print(msg) self.cache_dir = None else: self.makedirs_if_missing(self.cache_dir) stamp.write_file(this) def set_user_model(self, spec): """This can be called during the :meth:`on_init <lino.core.plugin.Plugin.on_init>` of plugins which provide user management (the only plugin which does this is currently :mod:`lino.modlib.users`). """ # if self.user_model is not None: # msg = "Site.user_model was already set!" # Theoretically this should raise an exception. But in a # transitional phase after 20150116 we just ignore it. A # warning would be nice, but we cannot use the logger here # since it is not yet configured. # self.logger.warning(msg) # raise Exception(msg) self.user_model = spec if self.user_types_module is None: self.user_types_module = 'lino.core.user_types' def get_auth_method(self): """Returns the authentication method used on this site. This is one of `None`, `'remote'` or `'session'`. It depends on the values in :attr:`user_model`, :attr:`default_user` and :attr:`remote_user_header`. It influences the results of :meth:`get_middleware_classes` and :meth:`get_installed_apps`, and the content of :setting:`AUTHENTICATION_BACKENDS`. """ if self.user_model is None: return None if self.default_user is not None: return None if self.remote_user_header is None: return 'session' # model backend return 'remote' # remote user backend def get_apps_modifiers(self, **kw): """Override or hide individual plugins of an existing application. For example, if your site inherits from :mod:`lino.projects.min2`:: def get_apps_modifiers(self, **kw): kw.update(sales=None) kw.update(courses='my.modlib.courses') return kw The default implementation returns an empty dict. This method adds an additional level of customization because it lets you remove or replace individual plugins from :setting:`INSTALLED_APPS` without rewriting your own :meth:`get_installed_apps`. This will be called during Site instantiation and is expected to return a dict of `app_label` to `full_python_path` mappings which you want to override in the list of plugins returned by :meth:`get_installed_apps`. Mapping an `app_label` to `None` will remove that plugin from :setting:`INSTALLED_APPS`. It is theoretically possible but not recommended to replace an existing `app_label` by an app with a different `app_label`. For example, the following might work but is not recommended:: kw.update(courses='my.modlib.mycourses') """ return kw def is_hidden_app(self, app_label): """ Return True if the app is known, but has been disabled using :meth:`get_apps_modifiers`. """ am = self.get_apps_modifiers() if am.get(app_label, 1) is None: return True def update_settings(self, **kw): """This may be called from within a :xfile:`lino_local.py`. """ self.django_settings.update(**kw) def define_settings(self, **kwargs): """Same as :meth:`update_settings`, but raises an exception if a setting already exists. TODO: Currently this exception is deactivated. Because it doesn't work as expected. For some reason (maybe because settings is being imported twice on a devserver) it raises a false exception when :meth:`override_defaults` tries to use it on :setting:`MIDDLEWARE_CLASSES`... """ if False: for name in list(kwargs.keys()): if name in self.django_settings: raise Exception( "Tried to define existing Django setting %s" % name) self.django_settings.update(kwargs) def startup(self): """Start up this Site. You probably don't want to override this method as it might be called several times. e.g. under mod_wsgi: another thread has started and not yet finished `startup()`. If you want to run custom code on site startup, override :meth:`do_site_startup`. """ from lino.core.kernel import site_startup site_startup(self) self.clear_site_config() def do_site_startup(self): """This method is called exactly once during site startup, just between the pre_startup and the post_startup signals. A hook for subclasses. TODO: rename this to `on_startup`? If you override it, don't forget to call the super method. """ # self.logger.info("20160526 %s do_site_startup() a", self.__class__) # self.logger.info("20160526 %s do_site_startup() b", self.__class__) @property def logger(self): """This must not be used before Django has done it logging config. For example don't use it in a :xfile:`settings.py` module. """ if self._logger is None: import logging self._logger = logging.getLogger(__name__) return self._logger def get_settings_subdirs(self, subdir_name): """Yield all (existing) directories named `subdir_name` of this Site's project directory and it's inherited project directories. """ # if local settings.py doesn't subclass Site: if self.project_dir != normpath(dirname( inspect.getfile(self.__class__))): pth = join(self.project_dir, subdir_name) if isdir(pth): yield pth for cl in self.__class__.__mro__: #~ logger.info("20130109 inspecting class %s",cl) if cl is not object and not inspect.isbuiltin(cl): pth = join(dirname(inspect.getfile(cl)), subdir_name) if isdir(pth): yield pth def makedirs_if_missing(self, dirname): """Make missing directories if they don't exist and if :attr:`make_missing_dirs` is `True`. """ if dirname and not isdir(dirname): if self.make_missing_dirs: os.makedirs(dirname) else: raise Exception("Please create yourself directory %s" % dirname) def is_abstract_model(self, module_name, model_name): """ Return True if the named model is declared as being extended by :attr:`lino.core.plugin.Plugin.extends_models`. Typical usage:: class MyModel(dd.Model): class Meta: abstract = dd.is_abstract_model(__name__, 'MyModel') See :doc:`/dev/plugin_inheritance`. """ app_name = '.'.join(module_name.split('.')[:-1]) model_name = app_name + '.' + model_name # if 'avanti' in model_name: # print("20170120", model_name, # self.override_modlib_models, # [m for m in self.installed_plugin_modules]) rv = model_name in self.override_modlib_models if not rv: if app_name not in self.installed_plugin_modules: return True # if model_name.endswith('Company'): # self.logger.info( # "20160524 is_abstract_model(%s) -> %s", model_name, rv) # self.logger.info( # "20160524 is_abstract_model(%s) -> %s (%s, %s)", # model_name, rv, self.override_modlib_models.keys(), # os.getenv('DJANGO_SETTINGS_MODULE')) return rv def is_installed_model_spec(self, model_spec): """ Deprecated. This feature was a bit too automagic and caused bugs to pass silently. See e.g. :blogref:`20131025`. """ if False: # mod_wsgi interprets them as error warnings.warn("is_installed_model_spec is deprecated.", category=DeprecationWarning) if model_spec == 'self': return True app_label, model_name = model_spec.split(".") return self.is_installed(app_label) def is_installed(self, app_label): """ Return `True` if :setting:`INSTALLED_APPS` contains an item which ends with the specified `app_label`. """ return app_label in self.plugins def setup_model_spec(self, obj, name): """ If the value of the named attribute of `obj` is a string, replace it by the model specified by that string. Example usage:: # library code: class ThingBase(object): the_model = None def __init__(self): settings.SITE.setup_model_spec(self, 'the_model') # user code: class MyThing(ThingBase): the_model = "contacts.Partner" """ spec = getattr(obj, name) if spec and isinstance(spec, six.string_types): if not self.is_installed_model_spec(spec): setattr(obj, name, None) return from lino.core.utils import resolve_model msg = "Unresolved model '%s' in {0}.".format(name) msg += " ({})".format(str(self.installed_plugins)) setattr(obj, name, resolve_model(spec, strict=msg)) def on_each_app(self, methname, *args): """ Call the named method on the :xfile:`models.py` module of each installed app. Note that this mechanism is deprecated. It is still used (on names like ``setup_workflows`` and ``setup_site``) for historical reasons but will disappear one day. """ from django.apps import apps apps = [a.models_module for a in apps.get_app_configs()] for mod in apps: meth = getattr(mod, methname, None) if meth is not None: if False: # 20150925 once we will do it for good... raise ChangedAPI("{0} still has a function {1}".format( mod, methname)) meth(self, *args) def for_each_app(self, func, *args, **kw): """ Call the given function on each installed plugin. Successor of :meth:`on_each_app`. This also loops over plugins that don't have a models module and the base plugins of plugins which extend some plugin. """ from importlib import import_module done = set() for p in self.installed_plugins: for b in p.__class__.__mro__: if b not in (object, Plugin): if b.__module__ not in done: done.add(b.__module__) parent = import_module(b.__module__) func(b.__module__, parent, *args, **kw) if p.app_name not in done: func(p.app_name, p.app_module, *args, **kw) def demo_date(self, *args, **kwargs): """ Deprecated. Should be replaced by :meth:`today`. Compute a date using :func:`atelier.utils.date_offset` based on the process startup time (or :attr:`the_demo_date` if this is set). Used in Python fixtures and unit tests. """ base = self.the_demo_date or self.startup_time.date() return date_offset(base, *args, **kwargs) def today(self, *args, **kwargs): """ Almost the same as :func:`datetime.date.today`. One difference is that the system's *today* is replaced by :attr:`the_demo_date` if that attribute is set. Another difference is that arguments can be passed to add some offset. See :func:`atelier.utils.date_offset`. This feature is being used in many test cases where e.g. the age of people would otherwise change. """ if self.site_config is not None: base = self.site_config.simulate_today \ or self.the_demo_date or datetime.date.today() else: base = self.the_demo_date or datetime.date.today() return date_offset(base, *args, **kwargs) def welcome_text(self): """ Returns the text to display in a console window when this application starts. """ return "This is %s using %s." % ( self.site_version(), self.using_text()) def using_text(self): """ Text to display in a console window when Lino starts. """ return ', '.join([u"%s %s" % (n, v) for n, v, u in self.get_used_libs()]) def site_version(self): """ Used in footnote or header of certain printed documents. """ if self.version: return self.verbose_name + ' ' + self.version return self.verbose_name def configure_plugin(self, app_label, **kw): raise Exception("Replace SITE.configure_plugin by ad.configure_plugin") def install_migrations(self, *args): """ See :func:`lino.utils.dpy.install_migrations`. """ from lino.utils.dpy import install_migrations install_migrations(self, *args) def parse_date(self, s): """ Convert a string formatted using :attr:`date_format_strftime` or :attr:`date_format_extjs` into a `(y,m,d)` tuple (not a `datetime.date` instance). See `/blog/2010/1130`. """ ymd = tuple(reversed(list(map(int, s.split('.'))))) assert len(ymd) == 3 return ymd #~ return datetime.date(*ymd) def parse_time(self, s): """ Convert a string formatted using :attr:`time_format_strftime` or :attr:`time_format_extjs` into a `datetime.time` instance. """ hms = list(map(int, s.split(':'))) return datetime.time(*hms) def parse_datetime(self, s): """ Convert a string formatted using :attr:`datetime_format_strftime` or :attr:`datetime_format_extjs` into a `datetime.datetime` instance. """ #~ print "20110701 parse_datetime(%r)" % s #~ s2 = s.split() s2 = s.split('T') if len(s2) != 2: raise Exception("Invalid datetime string %r" % s) ymd = list(map(int, s2[0].split('-'))) hms = list(map(int, s2[1].split(':'))) return datetime.datetime(*(ymd + hms)) #~ d = datetime.date(*self.parse_date(s[0])) #~ return datetime.combine(d,t) def strftime(self, t): if t is None: return '' return t.strftime(self.time_format_strftime) def resolve_virtual_fields(self): for vf in self.VIRTUAL_FIELDS: vf.lino_resolve_type() self.VIRTUAL_FIELDS = [] def register_virtual_field(self, vf): self.VIRTUAL_FIELDS.append(vf) def find_config_file(self, *args, **kwargs): return self.confdirs.find_config_file(*args, **kwargs) def find_template_config_files(self, *args, **kwargs): return self.confdirs.find_template_config_files(*args, **kwargs) def setup_actions(self): """ Hook for subclasses to add or modify actions. """ from lino.core.merge import MergeAction for m in get_models(): if m.allow_merge_action: m.define_action(merge_row=MergeAction(m)) def setup_layouts(self): ''' Hook for subclasses to add or modify layouts. Usage example:: def setup_layouts(self): super(Site, self).setup_layouts() self.models.system.SiteConfigs.set_detail_layout(""" site_company next_partner_id:10 default_build_method clients_account sales_account suppliers_account purchases_account """) self.models.accounts.Accounts.set_detail_layout(""" ref:10 name id:5 seqno group type clearable ledger.MovementsByAccount """) ''' pass def add_user_field(self, name, fld): if self.user_model: from lino.api import dd dd.inject_field(self.user_model, name, fld) def get_used_libs(self, html=None): """ Yield a list of (name, version, url) tuples describing the third-party software used on this site. This function is used by :meth:`using_text` and :meth:`welcome_html`. """ import lino yield ("Lino", lino.SETUP_INFO['version'], lino.SETUP_INFO['url']) try: import mod_wsgi version = "{0}.{1}".format(*mod_wsgi.version) yield ("mod_wsgi", version, "http://www.modwsgi.org/") except ImportError: pass import django yield ("Django", django.get_version(), "http://www.djangoproject.com") import sys version = "%d.%d.%d" % sys.version_info[:3] yield ("Python", version, "http://www.python.org/") import babel yield ("Babel", babel.__version__, "http://babel.edgewall.org/") #~ import tidylib #~ version = getattr(tidylib,'__version__','') #~ yield ("tidylib",version,"http://countergram.com/open-source/pytidylib") #~ import pyPdf #~ version = getattr(pyPdf,'__version__','') #~ yield ("pyPdf",version,"http://countergram.com/open-source/pytidylib") import jinja2 version = getattr(jinja2, '__version__', '') yield ("Jinja", version, "http://jinja.pocoo.org/") # import sphinx # version = getattr(sphinx, '__version__', '') # yield ("Sphinx", version, "http://sphinx-doc.org/") import dateutil version = getattr(dateutil, '__version__', '') yield ("python-dateutil", version, "http://labix.org/python-dateutil") #~ try: #~ import Cheetah #~ version = Cheetah.Version #~ yield ("Cheetah",version ,"http://cheetahtemplate.org/") #~ except ImportError: #~ pass # try: # from odf import opendocument # version = opendocument.__version__ # except ImportError: # version = self.not_found_msg # yield ("OdfPy", version, "http://pypi.python.org/pypi/odfpy") # try: # import docutils # version = docutils.__version__ # except ImportError: # version = self.not_found_msg # yield ("docutils", version, "http://docutils.sourceforge.net/") # import yaml # version = getattr(yaml, '__version__', '') # yield ("PyYaml", version, "http://pyyaml.org/") if self.social_auth_backends is not None: try: import social_django version = social_django.__version__ except ImportError: version = self.not_found_msg name = "social-django" yield (name, version, "https://github.com/python-social-auth") for p in self.installed_plugins: for u in p.get_used_libs(html): yield u def get_social_auth_links(self): # print("20171207 site.py") # elems = [] if self.social_auth_backends is None: return from social_core.backends.utils import load_backends # from collections import OrderedDict # from django.conf import settings # from social_core.backends.base import BaseAuth # backend = module_member(auth_backend) # if issubclass(backend, BaseAuth): for b in load_backends( self.social_auth_backends).values(): yield E.a(b.name, href="/oauth/login/"+b.name) # print("20171207 a", elems) # return E.div(*elems) def apply_languages(self): """This function is called when a Site object gets instantiated, i.e. while Django is still loading the settings. It analyzes the :attr:`languages` attribute and converts it to a tuple of :data:`LanguageInfo` objects. """ if isinstance(self.languages, tuple) \ and isinstance(self.languages[0], LanguageInfo): # e.g. override_defaults() has been called explicitly, without # specifying a languages keyword. return self.language_dict = dict() # maps simple_code -> LanguageInfo self.LANGUAGE_CHOICES = [] self.LANGUAGE_DICT = dict() # used in lino.modlib.users must_set_language_code = False #~ self.AVAILABLE_LANGUAGES = (to_locale(self.DEFAULT_LANGUAGE),) if self.languages is None: self.languages = [DJANGO_DEFAULT_LANGUAGE] #~ self.update_settings(USE_L10N = False) #~ info = LanguageInfo(DJANGO_DEFAULT_LANGUAGE,to_locale(DJANGO_DEFAULT_LANGUAGE),0,'') #~ self.DEFAULT_LANGUAGE = info #~ self.languages = (info,) #~ self.language_dict[info.name] = info else: if isinstance(self.languages, six.string_types): self.languages = str(self.languages).split() #~ lc = [x for x in self.django_settings.get('LANGUAGES' if x[0] in languages] #~ lc = language_choices(*self.languages) #~ self.update_settings(LANGUAGES = lc) #~ self.update_settings(LANGUAGE_CODE = lc[0][0]) #~ self.update_settings(LANGUAGE_CODE = self.languages[0]) self.update_settings(USE_L10N=True) must_set_language_code = True languages = [] for i, django_code in enumerate(self.languages): assert_django_code(django_code) name = str(to_locale(django_code)) if name in self.language_dict: raise Exception("Duplicate name %s for language code %r" % (name, django_code)) if i == 0: suffix = '' else: suffix = '_' + name info = LanguageInfo(str(django_code), str(name), i, str(suffix)) self.language_dict[name] = info languages.append(info) new_languages = languages for info in tuple(new_languages): if '-' in info.django_code: base, loc = info.django_code.split('-') if not base in self.language_dict: self.language_dict[base] = info # replace the complicated info by a simplified one #~ newinfo = LanguageInfo(info.django_code,base,info.index,info.suffix) #~ new_languages[info.index] = newinfo #~ del self.language_dict[info.name] #~ self.language_dict[newinfo.name] = newinfo #~ for base,lst in simple_codes.items(): #~ if len(lst) == 1 and and not base in self.language_dict: #~ self.language_dict[base] = lst[0] self.languages = tuple(new_languages) self.DEFAULT_LANGUAGE = self.languages[0] self.BABEL_LANGS = tuple(self.languages[1:]) if must_set_language_code: self.update_settings(LANGUAGE_CODE=self.languages[0].django_code) # Note: LANGUAGE_CODE is what *Django* believes to be the # default language. This should be some variant of # English ('en' or 'en-us') if you use # `django.contrib.humanize` # https://code.djangoproject.com/ticket/20059 self.setup_languages() def setup_languages(self): """ Reduce Django's :setting:`LANGUAGES` to my `languages`. Note that lng.name are not yet translated, we take these from `django.conf.global_settings`. """ from django.conf.global_settings import LANGUAGES def langtext(code): for k, v in LANGUAGES: if k == code: return v # returns None if not found def _add_language(code, lazy_text): self.LANGUAGE_DICT[code] = lazy_text self.LANGUAGE_CHOICES.append((code, lazy_text)) if self.languages is None: _add_language(DJANGO_DEFAULT_LANGUAGE, _("English")) else: for lang in self.languages: code = lang.django_code text = langtext(code) if text is None: # Django doesn't know these if code == 'de-be': text = gettext_noop("German (Belgium)") elif code == 'de-ch': text = gettext_noop("German (Swiss)") elif code == 'de-at': text = gettext_noop("German (Austria)") elif code == 'en-us': text = gettext_noop("American English") else: raise Exception( "Unknown language code %r (must be one of %s)" % ( lang.django_code, [x[0] for x in LANGUAGES])) text = _(text) _add_language(lang.django_code, text) """ Cannot activate the site's default language because some test cases in django.contrib.humanize rely on en-us as default language """ #~ set_language(self.get_default_language()) """ reduce Django's LANGUAGES to my babel languages: """ self.update_settings( LANGUAGES=[x for x in LANGUAGES if x[0] in self.LANGUAGE_DICT]) def get_language_info(self, code): """Use this in Python fixtures or tests to test whether a Site instance supports a given language. `code` must be a Django-style language code. On a site with only one locale of a language (and optionally some other languages), you can use only the language code to get a tuple of :data:`LanguageInfo` objects. >>> from lino.core.site import TestSite as Site >>> Site(languages="en-us fr de-be de").get_language_info('en') LanguageInfo(django_code='en-us', name='en_US', index=0, suffix='') On a site with two locales of a same language (e.g. 'en-us' and 'en-gb'), the simple code 'en' yields that first variant: >>> site = Site(languages="en-us en-gb") >>> print(site.get_language_info('en')) LanguageInfo(django_code='en-us', name='en_US', index=0, suffix='') """ return self.language_dict.get(code, None) def resolve_languages(self, languages): """ This is used by `UserType`. Examples: >>> from lino.core.site import TestSite as Site >>> lst = Site(languages="en fr de nl et pt").resolve_languages('en fr') >>> [i.name for i in lst] ['en', 'fr'] You may not specify languages which don't exist on this site: >>> Site(languages="en fr de").resolve_languages('en nl') Traceback (most recent call last): ... Exception: Unknown language code 'nl' (must be one of ['en', 'fr', 'de']) """ rv = [] if isinstance(languages, six.string_types): languages = str(languages).split() for k in languages: if isinstance(k, six.string_types): li = self.get_language_info(k) if li is None: raise Exception( "Unknown language code %r (must be one of %s)" % ( str(k), [i.name for i in self.languages])) rv.append(li) else: assert k in self.languages rv.append(k) return tuple(rv) def language_choices(self, language, choices): l = choices.get(language, None) if l is None: l = choices.get(self.DEFAULT_LANGUAGE) return l def get_default_language(self): """ The django code of the default language to use in every :class:`dd.LanguageField`. """ return self.DEFAULT_LANGUAGE.django_code def str2kw(self, name, txt, **kw): """ Return a dictionary which maps the internal field names for babelfield `name` to their respective translation of the given lazy translatable string `text`. >>> from django.utils.translation import ugettext_lazy as _ >>> from lino.core.site import TestSite as Site >>> site = Site(languages='de fr es') >>> site.str2kw('name', _("January")) == {'name_fr': 'janvier', 'name': 'Januar', 'name_es': 'Enero'} True >>> site = Site(languages='fr de es') >>> site.str2kw('name', _("January")) == {'name_de': 'Januar', 'name': 'janvier', 'name_es': 'Enero'} True """ from django.utils import translation for simple, info in self.language_dict.items(): with translation.override(simple): kw[name + info.suffix] = six.text_type(txt) return kw def babelkw(self, name, **kw): """ Return a dict with appropriate resolved field names for a BabelField `name` and a set of hard-coded values. You have some hard-coded multilingual content in a fixture: >>> from lino.core.site import TestSite as Site >>> kw = dict(de="Hallo", en="Hello", fr="Salut") The field names where this info gets stored depends on the Site's `languages` distribution. >>> Site(languages="de-be en").babelkw('name',**kw) == {'name_en': 'Hello', 'name': 'Hallo'} True >>> Site(languages="en de-be").babelkw('name',**kw) == {'name_de_BE': 'Hallo', 'name': 'Hello'} True >>> Site(languages="en-gb de").babelkw('name',**kw) == {'name_de': 'Hallo', 'name': 'Hello'} True >>> Site(languages="en").babelkw('name',**kw) == {'name': 'Hello'} True >>> Site(languages="de-be en").babelkw('name',de="Hallo",en="Hello") == {'name_en': 'Hello', 'name': 'Hallo'} True In the following example `babelkw` attributes the keyword `de` to the *first* language variant: >>> Site(languages="de-ch de-be").babelkw('name',**kw) == {'name': 'Hallo'} True """ d = dict() for simple, info in self.language_dict.items(): v = kw.get(simple, None) if v is not None: d[name + info.suffix] = six.text_type(v) return d def args2kw(self, name, *args): """ Takes the basename of a BabelField and the values for each language. Returns a `dict` mapping the actual fieldnames to their values. """ assert len(args) == len(self.languages) kw = {name: args[0]} for i, lang in enumerate(self.BABEL_LANGS): kw[name + '_' + lang] = args[i + 1] return kw def field2kw(self, obj, name, **known_values): """Return a `dict` with all values of the BabelField `name` in the given object `obj`. The dict will have one key for each :attr:`languages`. Examples: >>> from lino.core.site import TestSite as Site >>> from atelier.utils import AttrDict >>> def testit(site_languages): ... site = Site(languages=site_languages) ... obj = AttrDict(site.babelkw( ... 'name', de="Hallo", en="Hello", fr="Salut")) ... return site,obj >>> site, obj = testit('de en') >>> site.field2kw(obj, 'name') == {'de': 'Hallo', 'en': 'Hello'} True >>> site, obj = testit('fr et') >>> site.field2kw(obj, 'name') == {'fr': 'Salut'} True """ # d = { self.DEFAULT_LANGUAGE.name : getattr(obj,name) } for lng in self.languages: v = getattr(obj, name + lng.suffix, None) if v: known_values[lng.name] = v return known_values def field2args(self, obj, name): """ Return a list of the babel values of this field in the order of this Site's :attr:`Site.languages` attribute. """ return [str(getattr(obj, name + li.suffix)) for li in self.languages] #~ l = [ getattr(obj,name) ] #~ for lang in self.BABEL_LANGS: #~ l.append(getattr(obj,name+'_'+lang)) #~ return l def babelitem(self, *args, **values): """ Given a dictionary with babel values, return the value corresponding to the current language. This is available in templates as a function `tr`. >>> kw = dict(de="Hallo", en="Hello", fr="Salut") >>> from lino.core.site import TestSite as Site >>> from django.utils import translation A Site with default language "de": >>> site = Site(languages="de en") >>> tr = site.babelitem >>> with translation.override('de'): ... print(tr(**kw)) Hallo >>> with translation.override('en'): ... print(tr(**kw)) Hello If the current language is not found in the specified `values`, then it returns the site's default language: >>> with translation.override('jp'): ... print(tr(en="Hello", de="Hallo", fr="Salut")) Hallo Testing detail: default language should be "de" in our example, but we are playing here with more than one Site instance while Django knows only one "default language" which is the one specified in `lino.projects.docs.settings`. Another way is to specify an explicit default value using a positional argument. In that case the language's default language doesn'n matter: >>> with translation.override('jp'): ... print(tr("Tere", de="Hallo", fr="Salut")) Tere >>> with translation.override('de'): ... print(tr("Tere", de="Hallo", fr="Salut")) Hallo You may not specify more than one default value: >>> tr("Hello", "Hallo") Traceback (most recent call last): ... ValueError: ('Hello', 'Hallo') is more than 1 default value. """ if len(args) == 0: info = self.language_dict.get( get_language(), self.DEFAULT_LANGUAGE) default_value = None if info == self.DEFAULT_LANGUAGE: return values.get(info.name) x = values.get(info.name, None) if x is None: return values.get(self.DEFAULT_LANGUAGE.name) return x elif len(args) == 1: info = self.language_dict.get(get_language(), None) if info is None: return args[0] default_value = args[0] return values.get(info.name, default_value) args = tuple_py2(args) # print(type(args)) raise ValueError("%(values)s is more than 1 default value." % dict(values=args)) # babel_get(v) = babelitem(**v) def babeldict_getitem(self, d, k): v = d.get(k, None) if v is not None: assert type(v) is dict return self.babelitem(**v) def babelattr(self, obj, attrname, default=NOT_PROVIDED, language=None): """ Return the value of the specified babel field `attrname` of `obj` in the current language. This is to be used in multilingual document templates. For example in a document template of a Contract you may use the following expression:: babelattr(self.type, 'name') This will return the correct value for the current language. Examples: >>> from __future__ import unicode_literals >>> from django.utils import translation >>> from lino.core.site import TestSite as Site >>> from atelier.utils import AttrDict >>> def testit(site_languages): ... site = Site(languages=site_languages) ... obj = AttrDict(site.babelkw( ... 'name', de="Hallo", en="Hello", fr="Salut")) ... return site, obj >>> site,obj = testit('de en') >>> with translation.override('de'): ... print(site.babelattr(obj,'name')) Hallo >>> with translation.override('en'): ... print(site.babelattr(obj,'name')) Hello If the object has no translation for a given language, return the site's default language. Two possible cases: The language exists on the site, but the object has no translation for it: >>> site,obj = testit('en es') >>> with translation.override('es'): ... print(site.babelattr(obj, 'name')) Hello Or a language has been activated which doesn't exist on the site: >>> with translation.override('fr'): ... print(site.babelattr(obj, 'name')) Hello """ if language is None: language = get_language() info = self.language_dict.get(language, self.DEFAULT_LANGUAGE) if info.index != 0: v = getattr(obj, attrname + info.suffix, None) if v: return v if default is NOT_PROVIDED: return getattr(obj, attrname) else: return getattr(obj, attrname, default) #~ if lang is not None and lang != self.DEFAULT_LANGUAGE: #~ v = getattr(obj,attrname+"_"+lang,None) #~ if v: #~ return v #~ return getattr(obj,attrname,*args) def diagnostic_report_rst(self, *args): """Returns a string with a diagnostic report about this site. :manage:`diag` is a command-line shortcut to this. """ s = '' s += rstgen.header(1, "Plugins") for n, kp in enumerate(self.plugins.items()): s += "%d. " % (n + 1) s += "%s : %s\n" % kp # s += "config_dirs: %s\n" % repr(self.confdirs.config_dirs) s += "\n" s += rstgen.header(1, "Config directories") for n, cd in enumerate(self.confdirs.config_dirs): s += "%d. " % (n + 1) ln = relpath(cd.name) if cd.writeable: ln += " [writeable]" s += ln + '\n' # for arg in args: # p = self.plugins[arg] return s # def get_db_overview_rst(self): # from lino.utils.diag import analyzer # analyzer.show_db_overview() def override_defaults(self, **kwargs): self.override_settings(**kwargs) self.install_settings() def is_imported_partner(self, obj): """ Return whether the specified :class:`Partner <ml.contacts.Partner>` instance `obj` is to be considered as imported from some legacy database. """ #~ return obj.id is not None and (obj.id < 200000 or obj.id > 299999) return False #~ return obj.id is not None and (obj.id > 10 and obj.id < 21) def site_header(self): """Used in footnote or header of certain printed documents. The convention is to call it as follows from an appy.pod template (use the `html` function, not `xhtml`) :: do text from html(settings.SITE.site_header()) Note that this is expected to return a unicode string possibly containing valid HTML (not XHTML) tags for formatting. """ if self.is_installed('contacts'): if self.site_config.site_company: return self.site_config.site_company.get_address('<br/>') #~ s = unicode(self.site_config.site_company) + " / " + s #~ return '' # def setup_main_menu(self): # """ # To be implemented by applications. # """ # pass def get_dashboard_items(self, user): """Expected to yield a sequence of items to be rendered on the dashboard (:xfile:`admin_main.html`). The default implementation calls :meth:`get_dashboard_items <lino.core.plugin.Plugin.get_dashboard_items>` on every installed plugin and yields all items. The items will be rendered in that order, except if :mod:`lino.modlib.dashboard` is installed to enable per-user customized dashboard. """ if user: for p in self.installed_plugins: for i in p.get_dashboard_items(user): yield i @property def site_config(self): """ This property holds a cached version of the one and only :class:`SiteConfig <lino.modlib.system.models.SiteConfig>` row that holds site-wide database-stored and web-editable Site configuration parameters. If no instance exists (which happens in a virgin database), we create it using default values from :attr:`site_config_defaults`. This is always `None` when :mod:`lino.modlib.system` is not installed. """ if 'system' not in self.models: return None if not self._startup_done: return None if self._site_config is None: #~ raise Exception(20130301) #~ print '20130320 create _site_config' #~ from lino.core.utils import resolve_model from lino.core.utils import obj2str SiteConfig = self.models.system.SiteConfig #~ from django.db.utils import DatabaseError try: self._site_config = SiteConfig.real_objects.get( id=self.config_id) # print("20180502 loaded SiteConfig {}", # obj2str(self._site_config, True)) #~ except (SiteConfig.DoesNotExist,DatabaseError): except SiteConfig.DoesNotExist: #~ except Exception,e: kw = dict(id=self.config_id) #~ kw.update(settings.SITE.site_config_defaults) kw.update(self.site_config_defaults) self._site_config = SiteConfig(**kw) # print("20180502 Created SiteConfig {}".format( # obj2str(self._site_config, True))) # 20120725 # polls_tutorial menu selection `Config --> Site Parameters` # said "SiteConfig 1 does not exist" # cannot save the instance here because the db table possibly doesn't yet exit. #~ self._site_config.save() return self._site_config #~ site_config = property(get_site_config) #~ def shutdown(self): #~ self.clear_site_config() #~ return super(Site,self).shutdown() def clear_site_config(self): """ Clear the cached SiteConfig instance. This is needed e.g. when the test runner has created a new test database. """ from lino.core.utils import obj2str # print("20180502 clear_site_config {}".format( # obj2str(self._site_config, True))) self._site_config = None def get_quicklinks(self, user): from lino.core import menus m = menus.Toolbar(user.user_type, 'quicklinks') self.setup_quicklinks(user, m) return m def setup_quicklinks(self, user, m): """Override this in application-specific (or even local) :xfile:`settings.py` files to define a series of *quick links* to appear below the main menu bar. """ self.on_each_app('setup_quicklinks', user, m) def get_site_menu(self, ui, user_type): """ Return this site's main menu for the given UserType. Must be a :class:`lino.core.menus.Toolbar` instance. Applications usually should not need to override this. """ from lino.core import menus main = menus.Toolbar(user_type, 'main') self.setup_menu(user_type, main) main.compress() return main def setup_menu(self, user_type, main): """Set up the application's menu structure. The default implementation uses a system of *predefined top-level items* that are filled by the different installed plugins. - `setup_master_menu` - `setup_main_menu` - `setup_reports_menu` - `setup_config_menu` - `setup_explorer_menu` - `setup_site_menu` These predefined top-level items ("Master", "Main", "Reports", "Configuration"... are themselves configurable in :attr:`top_level_menus`) """ from django.apps import apps apps = [a.models_module for a in apps.get_app_configs()] for k, label in self.top_level_menus: methname = "setup_{0}_menu".format(k) for mod in apps: if hasattr(mod, methname): msg = "{0} still has a function {1}(). \ Please convert to Plugin method".format(mod, methname) raise ChangedAPI(msg) if label is None: menu = main else: menu = main.add_menu(k, label) for p in self.installed_plugins: meth = getattr(p, methname, None) if meth is not None: meth(self, user_type, menu) def get_middleware_classes(self): """Yields the strings to be stored in the :setting:`MIDDLEWARE_CLASSES` setting. In case you don't want to use this method for defining :setting:`MIDDLEWARE_CLASSES`, you can simply set :setting:`MIDDLEWARE_CLASSES` in your :xfile:`settings.py` after the :class:`Site` has been instantiated. `Django and standard HTTP authentication <http://stackoverflow.com/questions/152248/can-i-use-http-basic-authentication-with-django>`_ """ yield 'django.middleware.common.CommonMiddleware' if self.languages and len(self.languages) > 1: yield 'django.middleware.locale.LocaleMiddleware' if self.user_model: yield 'django.contrib.sessions.middleware.SessionMiddleware' # yield 'django.contrib.auth.middleware.AuthenticationMiddleware' yield 'lino.core.auth.middleware.AuthenticationMiddleware' yield 'lino.core.auth.middleware.WithUserMiddleware' yield 'lino.core.auth.middleware.DeviceTypeMiddleware' else: yield 'lino.core.auth.middleware.NoUserMiddleware' if self.get_auth_method() == 'remote': # yield 'django.contrib.auth.middleware.RemoteUserMiddleware' yield 'lino.core.auth.middleware.RemoteUserMiddleware' if self.use_ipdict: yield 'lino.modlib.ipdict.middleware.Middleware' if self.social_auth_backends: yield 'social_django.middleware.SocialAuthExceptionMiddleware' if True: yield 'lino.utils.ajax.AjaxExceptionResponse' if self.use_security_features: yield 'django.middleware.security.SecurityMiddleware' yield 'django.middleware.clickjacking.XFrameOptionsMiddleware' # yield 'django.middleware.csrf.CsrfViewMiddleware' if False: #~ yield 'lino.utils.sqllog.ShortSQLLogToConsoleMiddleware' yield 'lino.utils.sqllog.SQLLogToConsoleMiddleware' #~ yield 'lino.utils.sqllog.SQLLogMiddleware' # def get_main_action(self, user_type): # """No longer used. # Return the action to show as top-level "index.html". # The default implementation returns `None`, which means # that Lino will call :meth:`get_main_html`. # """ # return None def __deepcopy__(self): raise Exception("Who is copying me?!") def __copy__(self): raise Exception("Who is copying me?!") def get_main_html(self, request, **context): """Return a chunk of html to be displayed in the main area of the admin index. This is being called only if :meth:`get_main_action` returns `None`. The default implementation renders the :xfile:`admin_main.html` template. """ return self.plugins.jinja.render_from_request( request, 'admin_main.html', **context) def get_welcome_messages(self, ar): """ Yields a list of "welcome messages" (see :meth:`lino.core.actors.Actor.get_welcome_messages`) of all actors. This is being called from :xfile:`admin_main.html`. """ for h in self._welcome_handlers: for msg in h(ar): yield msg # for a in self._welcome_actors: # for msg in a.get_welcome_messages(ar): # yield msg def add_welcome_handler(self, func, actor=None, msg=None): """Add the given callable as a "welcome handler". Lino will call every welcome handler for every incoming request, passing them a :class:`BaseRequest <lino.core.requests.BaseRequest>` instance representing this request as positional argument. The callable is expected to yield a series of messages (usually either 0 or 1). Each message must be either a string or a :class:`E.span <etgen.html.E>` element. """ # print( # "20161219 add_welcome_handler {} {} {}".format( # actor, msg, func)) self._welcome_handlers.append(func) def get_installed_apps(self): """Yield the list of apps to be installed on this site. Each item must be either a string (unicode being converted to str) or a *generator* which will be iterated recursively (again expecting either strings or generators of strings). Lino will call this method exactly once when the :class:`Site` instantiates. The resulting list of names will then possibly altered by the :meth:`get_apps_modifiers` method before being assigned to the :setting:`INSTALLED_APPS` setting. """ if self.django_admin_prefix: yield 'django.contrib.admin' # not tested yield 'django.contrib.staticfiles' yield 'lino.modlib.about' if self.use_ipdict: yield 'lino.modlib.ipdict' if self.social_auth_backends: yield 'social_django' yield self.default_ui if self.admin_ui is not None: if self.admin_ui == self.default_ui: raise Exception( "admin_ui (if specified) must be different " "from default_ui") yield self.admin_ui # if self.default_ui == "extjs": # yield 'lino.modlib.extjs' # yield 'lino.modlib.bootstrap3' # elif self.default_ui == "bootstrap3": # yield 'lino.modlib.bootstrap3' # yield "lino.modlib.lino_startup" site_prefix = '/' """The string to prefix to every URL of the Lino web interface. This must *start and end with a *slash*. Default value is ``'/'``. This must be set if your project is not being served at the "root" URL of your server. If this is different from the default value, Lino also sets :setting:`SESSION_COOKIE_PATH`. When this Site is running under something else than a development server, this setting must correspond to your web server's configuration. For example if you have:: WSGIScriptAlias /foo /home/luc/mypy/lino_sites/foo/wsgi.py Then your :xfile:`settings.py` should specify:: site_prefix = '/foo/' See also :ref:`mass_hosting`. """ def buildurl(self, *args, **kw): url = self.site_prefix + ("/".join(args)) if len(kw): url += "?" + urlencode(kw, True) return url def build_media_url(self, *args, **kw): from django.conf import settings url = settings.MEDIA_URL + ("/".join(args)) if len(kw): url += "?" + urlencode(kw, True) return url def build_static_url(self, *args, **kw): from django.conf import settings url = settings.STATIC_URL + ("/".join(args)) if len(kw): url += "?" + urlencode(kw, True) return url def send_email(self, subject, sender, body, recipients): """Send an email message with the specified arguments (the same signature as `django.core.mail.EmailMessage`. `recipients` is an iterator over a list of strings with email addresses. Any address containing '@example.com' will be removed. Does nothing if the resulting list of recipients is empty. If `body` starts with "<", then it is considered to be HTML. """ if '@example.com' in sender: self.logger.debug( "Ignoring email '%s' because sender is %s", subject, sender) print(PRINT_EMAIL.format( subject=subject, sender=sender, body=body, recipients=u', '.join(recipients)).encode( 'ascii', 'replace').decode()) return recipients = [a for a in recipients if '@example.com' not in a] if not len(recipients): self.logger.info( "Ignoring email '%s' because there is no recipient", subject) return self.logger.info( "Send email '%s' from %s to %s", subject, sender, recipients) from django.core.mail import send_mail kw = {} if body.startswith('<'): kw['html_message'] = body body = html2text(body) # self.logger.info("20161008b %r %r %r %r", subject, sender, recipients, body) try: send_mail(subject, body, sender, recipients, **kw) except Exception as e: self.logger.warning("send_mail() failed : %s", e) # msg = EmailMessage(subject=subject, # from_email=sender, body=body, to=recipients) # from django.core.mail import EmailMessage # msg = EmailMessage(subject=subject, # from_email=sender, body=body, to=recipients) # self.logger.info( # "Send email '%s' from %s to %s", subject, sender, recipients) # msg.send() def welcome_html(self, ui=None): """ Return a HTML version of the "This is APPLICATION version VERSION using ..." text. to be displayed in the About dialog, in the plain html footer, and maybe at other places. """ from django.utils.translation import ugettext as _ p = [] sep = '' if self.verbose_name: p.append(_("This is ")) if self.url: p.append( E.a(str(self.verbose_name), href=self.url, target='_blank')) else: p.append(E.b(str(self.verbose_name))) if self.version: p.append(' ') p.append(self.version) sep = _(' using ') for name, version, url in self.get_used_libs(html=E): p.append(sep) p.append(E.a(name, href=url, target='_blank')) p.append(' ') p.append(version) sep = ', ' return E.span(*p) def login(self, username=None, **kw): """Open a session as the user with the given `username`. For usage from a shell or a tested document. Does not require any password because when somebody has command-line access we trust that she has already authenticated. It returns a :class:`BaseRequest <lino.core.requests.BaseRequest>` object. """ from lino.core import requests self.startup() User = self.user_model if User and username: try: kw.update(user=User.objects.get(username=username)) except User.DoesNotExist: raise Exception("'{0}' : no such user".format(username)) # if not 'renderer' in kw: # kw.update(renderer=self.ui.text_renderer) # import lino.core.urls # hack: trigger ui instantiation return requests.BaseRequest(**kw) def get_letter_date_text(self, today=None): """ Returns a string like "Eupen, den 26. August 2013". """ sc = self.site_config.site_company if today is None: today = self.today() from lino.utils.format_date import fdl if sc and sc.city: return _("%(place)s, %(date)s") % dict( place=str(sc.city.name), date=fdl(today)) return fdl(today) def decfmt(self, v, places=2, **kw): """ Format a Decimal value using :func:`lino.utils.moneyfmt`, but applying the site settings :attr:`lino.Lino.decimal_group_separator` and :attr:`lino.Lino.decimal_separator`. >>> from lino.core.site import TestSite as Site >>> from decimal import Decimal >>> self = Site() >>> print(self.decimal_group_separator) \xa0 >>> print(self.decimal_separator) , >>> x = Decimal(1234) >>> print(self.decfmt(x)) 1\xa0234,00 >>> print(self.decfmt(x, sep=".")) 1.234,00 >>> self.decimal_group_separator = '.' >>> print(self.decfmt(x)) 1.234,00 >>> self.decimal_group_separator = "oops" >>> print(self.decfmt(x)) 1oops234,00 """ kw.setdefault('sep', self.decimal_group_separator) kw.setdefault('dp', self.decimal_separator) from lino.utils import moneyfmt return moneyfmt(v, places=places, **kw) LOOKUP_OP = '__iexact' def lookup_filter(self, fieldname, value, **kw): """ Return a `models.Q` to be used if you want to search for a given string in any of the languages for the given babel field. """ from django.db.models import Q kw[fieldname + self.LOOKUP_OP] = value #~ kw[fieldname] = value flt = Q(**kw) del kw[fieldname + self.LOOKUP_OP] for lng in self.BABEL_LANGS: kw[fieldname + lng.suffix + self.LOOKUP_OP] = value flt = flt | Q(**kw) del kw[fieldname + lng.suffix + self.LOOKUP_OP] return flt # def relpath(self, p): # """Used by :class:`lino.mixins.printable.EditTemplate` in order to # write a testable message... # """ # if p.startswith(self.project_dir): # p = "$(PRJ)" + p[len(self.project_dir):] # return p class TestSite(Site): """Used to simplify doctest strings because it inserts default values for the two first arguments that are mandatory but not used in our examples. Example:: >> from lino.core.site import Site >> Site(globals(), ...) >> from lino.core.site import TestSite as Site >> Site(...) """ def __init__(self, *args, **kwargs): # kwargs.update(no_local=True) g = dict(__file__=__file__) g.update(SECRET_KEY="20227") # see :djangoticket:`20227` super(TestSite, self).__init__(g, *args, **kwargs) # 20140913 Hack needed for doctests in :mod:`ad`. from django.utils import translation translation._default = None def _test(): # we want to raise an Exception if there is a failure, but # doctest's raise_on_error=True option is not useful because it # does not report the traceback if some test fails. import doctest res = doctest.testmod() if res.failed > 0: raise Exception("{0} (see earlier output)".format(res)) if __name__ == "__main__": _test()
2.046875
2
tools/generate-readme.py
adamsqi/python-scripts
1
12776217
__author__ = '[<NAME>](https://github.com/adamsqi)' __date__ = '2020.06.21' """ This is a script for auto generation of README.md content. The script parses all .py script files within the repository and creates a README.md file. Inspired by: [<NAME>](https://github.com/bamos/python-scripts/blob/master/README.md) """ import ast import os import re from typing import List, Set UNPARSABLE_FILES = ['.git', '.gitignore', 'README.md', 'generate_readme.py', 'LICENSE'] README_TEMPLATE = """<h1 align="center">Python scripts</h1> <div align="center"> ![Python version](https://img.shields.io/badge/python-3.7+-blue.svg) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) </div> This is a collection of short Python scripts I use as utility tools or just for testing of various features. {content} """ def main(): generator = ReadmeGenerator() generator.generate() class ReadmeGenerator(): def __init__(self): pass def generate(self): content = self._prepare_content() parent_dir = self._get_parent_dir_path() with open(os.path.join(parent_dir, 'README.md'), mode='w') as f: ready_content = README_TEMPLATE.format(content=content) f.write(ready_content) def _prepare_content(self) -> str: scripts_finder = ValidScriptsFinder() valid_script_names = scripts_finder.find() content = self._get_all_content_from_scripts(script_names=valid_script_names) return content def _get_all_content_from_scripts(self, script_names: List[str]) -> str: content = '' script_names = sorted(script_names) for name in script_names: script_link = self._generate_script_link(script_name=name) meta_text = self._parse_single_file(name=name) content += '### ' + script_link + '\n\n' + meta_text + '\n\n\n' return content def _generate_script_link(self, script_name: str) -> str: url_base = 'https://github.com/adamsqi/python-scripts/blob/master/scripts/' url = url_base + script_name return f'[{script_name}]({url})' def _parse_single_file(self, name: str) -> str: content = self._read_file(file_path=name) meta_text = self._extract_doc_string(content) return meta_text def _read_file(self, file_path: str) -> str: parent_dir = self._get_parent_dir_path() with open(os.path.join(parent_dir, 'scripts', file_path), mode='r') as f: return f.read() def _get_parent_dir_path(self) -> str: dir_path = os.path.dirname(os.getcwd()) return dir_path def _extract_doc_string(self, content: str) -> str: ast_module = ast.parse(content) ast_f = ast.literal_eval author, date, doc_string = [ast_f(m.value) for m in ast_module.body[0:3]] return f""" + Author: {author} + Created at: {date} #### Description: {doc_string} """ class ValidScriptsFinder(): def __init__(self): pass def find(self) -> List[str]: script_names = self._get_valid_script_names_within_cwd() return script_names def _get_valid_script_names_within_cwd(self) -> List[str]: all_file_names = self._get_all_files_within_parent_dir() file_names = set(all_file_names) - set(UNPARSABLE_FILES) valid_file_names = self._exclude_files_with_ignored_extensions(file_names) return valid_file_names def _get_all_files_within_parent_dir(self) -> List[str]: files = [file for file in os.listdir(os.path.join(self._get_parent_dir_path(), 'scripts'))] return files def _get_parent_dir_path(self) -> str: dir_path = os.path.dirname(os.getcwd()) return dir_path def _exclude_files_with_ignored_extensions(self, file_names: Set[str]) -> List[str]: ignored_extensions = self._read_git_ignore() result = [name for name in file_names if not any(sub in name for sub in ignored_extensions)] # only files without ignored extensions return result def _read_git_ignore(self) -> List[str]: parent_dir = self._get_parent_dir_path() with open(os.path.join(parent_dir,'.gitignore'), mode='r') as f: data = f.read() data = data.split('\n') data = [el.replace('*', '') for el in data] return data if __name__ == '__main__': main()
2.203125
2
ch06/ch0602_recurrent_neural_network.py
zhuyuanxiang/deep-learning-with-python-notebooks
6
12776218
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : <EMAIL> @site : https://zhuyuanxiang.github.io --------------------------- @Software : PyCharm @Project : deep-learning-with-python-notebooks @File : ch0602_recurrent_neural_network.py @Version : v0.1 @Time : 2019-11-24 16:00 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《Python 深度学习,Francois Chollet》, Sec0602,P162 @Desc : 深度学习用于文本和序列,理解循环神经网络(并不适用于情感分析,建议看0603进一步理解RNN) """ import os import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import winsound from keras.activations import relu, sigmoid from keras.datasets import imdb from keras.layers import Dense from keras.layers import Embedding, LSTM, SimpleRNN from keras.losses import binary_crossentropy from keras.metrics import binary_accuracy from keras.models import Sequential from keras.optimizers import rmsprop from keras.preprocessing.sequence import pad_sequences # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA from tools import plot_classes_results os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 3, suppress = True, threshold = np.inf, linewidth = 200) # to make this notebook's output stable across runs seed = 42 np.random.seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # ---------------------------------------------------------------------- # Listing 6-21:简单 RNN 的 Numpy 实现 def simple_rnn_use_numpy(): timesteps = 100 # 输入序列的时间步数 input_features = 32 # 输入特征空间的维度 output_features = 64 # 输出特征空间的维度 # 输入数据:随机噪声,仅仅作为示例 inputs = np.random.random((timesteps, input_features)) state_t = np.zeros((output_features,)) # 初始状态:全零向量 # 创建随机的权重矩阵 W = np.random.random((output_features, input_features)) / 10 U = np.random.random((output_features, output_features)) / 10 b = np.random.random((output_features,)) / 10 successive_outputs = [] for input_t in inputs: # 当前输出 = 当前输入 + 前一个输出 output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t), +b) successive_outputs.append(output_t) # 将输出保存到一个列表中 # 更新网络的状态,用于下一个时间步 state_t = output_t pass # 最终的输出是一个形状为(timesteps,output_features)的二维张量 # np.stack() 把数组组成的列表转换成一个二维数组 final_output_sequence = np.stack(successive_outputs, axis = 0) return final_output_sequence # ---------------------------------------------------------------------- # 简单 RNN 的 Keras 实现 def keras_simplernn(): model = Sequential(name = "完整的状态序列") model.add(Embedding(10000, 32)) model.add(SimpleRNN(32, return_sequences = True)) model.summary() model = Sequential(name = "最后一个时间步的输出") model.add(Embedding(10000, 32)) model.add(SimpleRNN(32)) model.summary() model = Sequential(name = "多个循环层的逐个堆叠") model.add(Embedding(10000, 32)) model.add(SimpleRNN(32, return_sequences = True)) model.add(SimpleRNN(32, return_sequences = True)) model.add(SimpleRNN(32, return_sequences = True)) model.add(SimpleRNN(32)) model.summary() pass # 使用 RNN 和 LSTM 模型应用于 IMDB 电影评论分类问题 max_features = 10000 max_len = 500 batch_size = 128 epochs = 10 # 数据集的详细说明参考 ch0304 print("Listing 6.22:加载数据集...") (train_data, y_train), (test_data, y_test) = imdb.load_data(num_words = max_features) x_train = pad_sequences(train_data, maxlen = max_len) x_test = pad_sequences(test_data, maxlen = max_len) def train_model(model, data, labels): return model.fit(data, labels, epochs = epochs, batch_size = batch_size, validation_split = 0.2, verbose = 2, use_multiprocessing = True) # ---------------------------------------------------------------------- def definite_rnn(): title = "将 SimpleRNN 应用于 IMDB " model = Sequential(name = title) model.add(Embedding(max_features, 64)) model.add(SimpleRNN(64)) model.add(Dense(1, activation = sigmoid)) model.summary() model.compile(optimizer = rmsprop(lr = 0.001), loss = binary_crossentropy, metrics = [binary_accuracy]) history = train_model(model, x_train, y_train) plot_classes_results(history, title, epochs) print(title + "评估测试集", model.evaluate(x_test, y_test, verbose = 2, use_multiprocessing = True)) pass # ---------------------------------------------------------------------- def definite_lstm(): title = "将 LSTM 应用于 IMDB" model = Sequential(name = title) model.add(Embedding(max_features, 64)) model.add(LSTM(64)) model.add(Dense(1, activation = sigmoid)) model.summary() model.compile(optimizer = rmsprop(lr = 0.001), loss = binary_crossentropy, metrics = [binary_accuracy]) model = definite_rnn(title) history = train_model(model, x_train, y_train) plot_classes_results(history, title, epochs) print(title + "评估测试集", model.evaluate(x_test, y_test, verbose = 2, use_multiprocessing = True)) pass # ---------------------------------------------------------------------- # 重构 ch0304 的二分类问题 def vectorize_sequences(sequences, dimension = 10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1. pass return results vector_train_data = vectorize_sequences(train_data, max_features) vector_test_data = vectorize_sequences(test_data, max_features) vector_train_labels = np.asarray(y_train) vector_test_labels = np.asarray(y_test) # 将数据进行 One-Hot 编码后,准确率比 RNN 和 LSTM 的质量还好(ch0304确认了密集层的效果确实很好) def definite_dense_for_one_hot(): title = "将 Dense+One-Hot 应用于 IMDB" model = Sequential(name = title) model.add(Dense(16, activation = relu, input_shape = (10000,))) model.add(Dense(16, activation = relu)) model.add(Dense(1, activation = sigmoid)) model.summary() model.compile(optimizer = rmsprop(lr = 0.001), loss = binary_crossentropy, metrics = [binary_accuracy]) history = train_model(model, vector_train_data, vector_train_labels) plot_classes_results(history, title, epochs) print(title + "评估测试集", model.evaluate(vector_test_data, vector_test_labels, verbose = 2, use_multiprocessing = True)) pass # 没有将数据进行 One-Hot 编码,准确率下降的会很厉害 def definite_dense(): title = "将 Dense 应用于 IMDB" model = Sequential(name = title) model.add(Dense(16, activation = relu, input_shape = (500,))) model.add(Dense(16, activation = relu)) model.add(Dense(1, activation = sigmoid)) model.summary() model.compile(optimizer = rmsprop(lr = 0.001), loss = binary_crossentropy, metrics = [binary_accuracy]) history = train_model(model, x_train, y_train) plot_classes_results(history, title, epochs) print(title + "评估测试集", model.evaluate(x_test, y_test, verbose = 2, use_multiprocessing = True)) pass # ---------------------------------------------------------------------- definite_rnn() definite_lstm() definite_dense_for_one_hot() definite_dense() # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
2.21875
2
Problems/String/71. Simplify Path.py
BYJRK/LeetCode-Solutions
0
12776219
# https://leetcode.com/problems/simplify-path/ class Solution: def simplifyPath(self, path: str) -> str: stack = [] for d in path.split('/'): if d == '..': if len(stack) > 0: stack.pop() elif d == '.' or d == '': continue else: stack.append(d) return '/' + '/'.join(stack) s = Solution() tests = [ '/home/', '/../', '/home//foo/', '/a/./b/../../c/' ] for test in tests: print(s.simplifyPath(test))
3.671875
4
autodrp/utils.py
rcj0003/django-autodrp
1
12776220
<filename>autodrp/utils.py from django.db.models.signals import class_prepared from django.dispatch import receiver ALWAYS_TRUE = lambda *args, **kwargs: True class CheckPermissions: def __init__(self, *checks): self.checks = checks def __call__(self, request): for permission in self.checks: if permission.has_permission(request): return True return False class CheckObjectPermissions: def __init__(self, *checks): self.checks = checks def __call__(self, obj, request): for permission in self.checks: if permission.has_object_permission(request, obj): return True return False class Filter: def __init__(self, *checks): self.checks = checks def __call__(self, request, queryset): for filter in self.checks: if hasattr(filter, 'has_permission') and not filter.has_permission(request): continue queryset, filtered = filter.filter(request, queryset) if filtered: break return queryset def _bake_global_permissions(sender, permission_data): for actions, check_data in permission_data.items(): if not hasattr(check_data, '__iter__'): check_data = [check_data] checks = [check for check in check_data if hasattr(check, 'has_permission')] actions = [actions] if isinstance(actions, str) else actions if len(checks) > 0: permission_function = staticmethod(CheckPermissions(*checks)) else: permission_function = staticmethod(ALWAYS_TRUE) for action in actions: setattr(sender, f'has_{action}_permission', permission_function) def _bake_object_permissions(sender, permission_data): for actions, check_data in permission_data.items(): if not hasattr(check_data, '__iter__') and not isinstance(check_data, str): check_data = [check_data] checks = [check for check in check_data if hasattr(check, 'has_object_permission')] filters = [check for check in check_data if hasattr(check, 'filter')] actions = [actions] if isinstance(actions, str) else actions if len(checks) > 0: permission_function = CheckPermissions(*checks) else: permission_function = ALWAYS_TRUE for action in actions: setattr(sender, f'has_object_{action}_permission', permission_function) if len(filters) > 0: filter_function = staticmethod(Filter(*filters)) for action in actions: setattr(sender, f'filter_for_{action}', filter_function) def bake_permissions(sender): if hasattr(sender, '_bake_permission_data'): _bake_global_permissions(sender, sender._bake_permission_data()) elif hasattr(sender, 'DRY_GLOBAL_PERMISSIONS'): _bake_global_permissions(sender, sender.DRY_GLOBAL_PERMISSIONS) if hasattr(sender, '_bake_object_permission_data'): _bake_object_permissions(sender, sender._bake_object_permission_data()) elif hasattr(sender, 'DRY_OBJECT_PERMISSIONS'): _bake_object_permissions(sender, sender.DRY_OBJECT_PERMISSIONS)
2.234375
2
Classes/QAData.py
usgsdsm/qrevpy
0
12776221
import numpy as np from Classes.Uncertainty import Uncertainty from Classes.QComp import QComp class QAData(object): """Evaluates and stores quality assurance characteristics and messages. Attributes ---------- q_run_threshold_caution: int Caution threshold for interpolated discharge for a run of invalid ensembles, in percent. q_run_threshold_warning: int Warning threshold for interpolated discharge for a run of invalid ensembles, in percent. q_total_threshold_caution: int Caution threshold for total interpolated discharge for invalid ensembles, in percent. q_total_threshold_warning: int Warning threshold for total interpolated discharge for invalid ensembles, in percent. transects: dict Dictionary of quality assurance checks for transects system_tst: dict Dictionary of quality assurance checks on the system test(s) compass: dict Dictionary of quality assurance checks on compass calibration and evaluations temperature: dict Dictionary of quality assurance checks on temperature comparions and variation moving_bed: dict Dictionary of quality assurance checks on moving-bed tests user: dict Dictionary of quality assurance checks on user input data bt_vel: dict Dictionary of quality assurance checks on bottom track velocities gga_vel: dict Dictionary of quality assurance checks on gga boat velocities vtg_vel: dict Dictionary of quality assurance checks on vtg boat velocities w_vel: dict Dictionary of quality assurance checks on water track velocities extrapolation: dict Dictionary of quality assurance checks on extrapolations edges: dict Dictionary of quality assurance checks on edges """ def __init__(self, meas): """Checks the measurement for all quality assurance issues. Parameters ---------- meas: Measurement Object of class Measurement """ # Set default thresholds self.q_run_threshold_caution = 3 self.q_run_threshold_warning = 5 self.q_total_threshold_caution = 10 self.q_total_threshold_warning = 25 # Initialize instance variables self.transects = dict() self.system_tst = dict() self.compass = dict() self.temperature = dict() self.moving_bed = dict() self.user = dict() self.depths = dict() self.bt_vel = dict() self.gga_vel = dict() self.vtg_vel = dict() self.w_vel = dict() self.extrapolation = dict() self.edges = dict() # Apply QA checks self.transects_qa(meas) self.system_tst_qa(meas) self.compass_qa(meas) self.temperature_qa(meas) self.moving_bed_qa(meas) self.user_qa(meas) self.depths_qa(meas) self.boat_qa(meas) self.water_qa(meas) self.extrapolation_qa(meas) self.edges_qa(meas) def transects_qa(self, meas): """Apply quality checks to transects Parameters ---------- meas: Measurement Object of class Measurement """ # Assume good results self.transects['status'] = 'good' # Initialize keys self.transects['messages'] = [] self.transects['recip'] = 0 self.transects['sign'] = 0 self.transects['duration'] = 0 self.transects['number'] = 0 self.transects['uncertainty'] = 0 checked = [] discharges = [] start_edge = [] for n in range(len(meas.transects)): checked.append(meas.transects[n].checked) if meas.transects[n].checked: discharges.append(meas.discharge[n]) start_edge.append(meas.transects[n].start_edge) num_checked = np.nansum(np.asarray(checked)) # Check duration total_duration = 0 if num_checked >= 1: for transect in meas.transects: if transect.checked: total_duration += transect.date_time.transect_duration_sec # Check duration against USGS policy if total_duration < 720: self.transects['status'] = 'caution' self.transects['messages'].append( ['Transects: Duration of selected transects is less than 720 seconds;', 2, 0]) self.transects['duration'] = 1 # Check transects for missing ensembles for transect in meas.transects: if transect.checked: # Determine number of missing ensembles if transect.adcp.manufacturer == 'SonTek': # Determine number of missing ensembles for SonTek data idx_missing = np.where(transect.date_time.ens_duration_sec > 1.5)[0] if len(idx_missing) > 0: average_ensemble_duration = (np.nansum(transect.date_time.ens_duration_sec) - np.nansum(transect.date_time.ens_duration_sec[idx_missing]) / (len(transect.date_time.ens_duration_sec) - len(idx_missing))) num_missing = np.round(np.nansum(transect.date_time.ens_duration_sec[idx_missing]) / average_ensemble_duration) - len(idx_missing) else: num_missing = 0 else: # Determine number of lost ensembles for TRDI data idx_missing = np.where(np.isnan(transect.date_time.ens_duration_sec) == True)[0] num_missing = len(idx_missing) - 1 # Save caution message if num_missing > 0: self.transects['messages'].append([['Transects: ' + str(transect.file_name) + ' is missing' + str(int(num_missing)) + ' ensembles;'], 2, 0]) self.transects['status'] = 'caution' # Check number of transects checked if num_checked == 0: # No transects selected self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: No transects selected;', 1, 0]) self.transects['number'] = 2 elif num_checked == 1: # Only one transect selected self.transects['status'] = 'caution' self.transects['messages'].append(['Transects: Only one transect selected;', 2, 0]) self.transects['number'] = 2 else: self.transects['number'] = num_checked if num_checked == 2: # Only 2 transects selected cov, _ = Uncertainty.uncertainty_q_random(discharges, 'total') # Check uncertainty if cov > 2: self.transects['status'] = 'caution' self.transects['messages'].append( ['Transects: Uncertainty would be reduced by additional transects;', 2, 0]) # Check for consistent sign q_positive = [] for q in discharges: if q.total >= 0: q_positive.append(True) else: q_positive.append(False) if len(np.unique(q_positive)) > 1: self.transects['status'] = 'warning' self.transects['messages'].append( ['Transects: Sign of total Q is not consistent. One or more start banks may be incorrect;', 1, 0]) # Check for reciprocal transects num_left = start_edge.count('Left') num_right = start_edge.count('Right') if not num_left == num_right: self.transects['status'] = 'warning' self.transects['messages'].append(['Transects: Transects selected are not reciprocal transects;', 1, 0]) # Check for zero discharge transects q_zero = False for q in discharges: if q.total == 0: q_zero = True if q_zero: self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: One or more transects have zero Q;', 1, 0]) def system_tst_qa(self, meas): """Apply QA checks to system test. Parameters ---------- meas: Measurement Object of class Measurement """ self.system_tst['messages'] = [] self.system_tst['status'] = 'good' # Determine is a system test was recorded if not meas.system_test: # No system test data recorded self.system_tst['status'] = 'warning' self.system_tst['messages'].append(['SYSTEM TEST: No system test;', 1, 3]) else: pt3_fail = False num_tests_with_failure = 0 for test in meas.system_test: if hasattr(test, 'result'): if 'pt3' in test.result and test.result['pt3'] is not None: # Check hard_limit, high gain, wide bandwidth if 'hard_limit' in test.result['pt3']: if 'high_wide' in test.result['pt3']['hard_limit']: corr_table = test.result['pt3']['hard_limit']['high_wide']['corr_table'] if len(corr_table) > 0: # All lags past lag 2 should be less than 50% of lag 0 qa_threshold = corr_table[0, :] * 0.5 all_lag_check = np.greater(corr_table[3::, :], qa_threshold) # Lag 7 should be less than 25% of lag 0 lag_7_check = np.greater(corr_table[7, :], corr_table[0, :] * 0.25) # If either condition is met for any beam the test fails if np.sum(np.sum(all_lag_check)) + np.sum(lag_7_check) > 1: pt3_fail = True if test.result['n_failed'] is not None and test.result['n_failed'] > 0: num_tests_with_failure += 1 if pt3_fail: self.system_tst['status'] = 'caution' self.system_tst['messages'].append( ['System Test: One or more PT3 tests in the system test indicate potential EMI;', 2, 3]) # Check for failed tests if num_tests_with_failure == len(meas.system_test): # All tests had a failure self.system_tst['status'] = 'warning' self.system_tst['messages'].append( ['SYSTEM TEST: All system test sets have at least one test that failed;', 1, 3]) elif num_tests_with_failure > 0: self.system_tst['status'] = 'caution' self.system_tst['messages'].append( ['System Test: One or more system test sets have at least one test that failed;', 2, 3]) def compass_qa(self, meas): """Apply QA checks to compass calibration and evaluation. Parameters ---------- meas: Measurement Object of class Measurement """ self.compass['messages'] = [] checked = [] for transect in meas.transects: checked.append(transect.checked) if np.any(checked): heading = np.unique(meas.transects[checked.index(1)].sensors.heading_deg.internal.data) else: heading = np.array([0]) # Intialize variable as if ADCP has no compass self.compass['status'] = 'inactive' self.compass['status1'] = 'good' self.compass['status2'] = 'good' self.compass['magvar'] = 0 self.compass['magvar_idx'] = 0 if len(heading) > 1 and np.any(np.not_equal(heading, 0)): # ADCP has a compass # A compass calibration is required is a loop test or GPS are used # Check for loop test loop = False for test in meas.mb_tests: if test.type == 'Loop': loop = True # Check for GPS data gps = False if meas.transects[checked.index(True)].boat_vel.gga_vel is not None or \ meas.transects[checked.index(True)].boat_vel.vtg_vel is not None: gps = True if gps or loop: # Compass calibration is required # Determine the ADCP manufacturer if meas.transects[checked.index(True)].adcp.manufacturer == 'SonTek': # SonTek ADCP if not meas.compass_cal: # No compass calibration self.compass['status1'] = 'warning' self.compass['messages'].append(['COMPASS: No compass calibration;', 1, 4]) elif meas.compass_cal[-1].result['compass']['error'] == 'N/A': # If the error cannot be decoded from the calibration assume the calibration is good self.compass['status1'] = 'good' else: if meas.compass_cal[-1].result['compass']['error'] <= 0.2: self.compass['status1'] = 'good' else: self.compass['status1'] = 'caution' self.compass['messages'].append(['COMPASS: Calibration result > 0.2 deg;', 2, 4]) elif meas.transects[checked.index(True)].adcp.manufacturer == 'TRDI': # TRDI ADCP if not meas.compass_cal: # No compass calibration if not meas.compass_eval: # No calibration or evaluation self.compass['status1'] = 'warning' self.compass['messages'].append(['COMPASS: No compass calibration or evaluation;', 1, 4]) else: # No calibration but an evaluation was completed self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: No compass calibration;', 2, 4]) else: # Compass was calibrated if not meas.compass_eval: # No compass evaluation self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: No compass evaluation;', 2, 4]) else: # Check results of evaluation try: if float(meas.compass_eval[-1].result['compass']['error']) <= 1: self.compass['status1'] = 'good' else: self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: Evaluation result > 1 deg;', 2, 4]) except ValueError: self.compass['status1'] = 'good' else: # Compass not required if (not meas.compass_cal) and (not meas.compass_eval): # No compass calibration or evaluation self.compass['status1'] = 'default' else: # Compass was calibrated and evaluated self.compass['status1'] = 'good' # Check for consistent magvar magvar = [] mag_error_exceeded = [] pitch_mean = [] pitch_std = [] pitch_exceeded = [] roll_mean = [] roll_std = [] roll_exceeded = [] for transect in meas.transects: if transect.checked: heading_source_selected = getattr( transect.sensors.heading_deg, transect.sensors.heading_deg.selected) pitch_source_selected = getattr(transect.sensors.pitch_deg, transect.sensors.pitch_deg.selected) roll_source_selected = getattr(transect.sensors.roll_deg, transect.sensors.roll_deg.selected) magvar.append(heading_source_selected.mag_var_deg) pitch_mean.append(np.nanmean(pitch_source_selected.data)) pitch_std.append(np.nanstd(pitch_source_selected.data)) roll_mean.append(np.nanmean(roll_source_selected.data)) roll_std.append(np.nanstd(roll_source_selected.data)) # SonTek G3 compass provides pitch, roll, and magnetic error parameters that can be checked if meas.transects[checked.index(True)].adcp.manufacturer == 'SonTek': if heading_source_selected.pitch_limit is not None: # Check for bug in SonTek data where pitch and roll was n x 3 use n x 1 if len(pitch_source_selected.data.shape) == 1: pitch_data = pitch_source_selected.data else: pitch_data = pitch_source_selected.data[:, 0] idx_max = np.where(pitch_data > heading_source_selected.pitch_limit[0])[0] idx_min = np.where(pitch_data < heading_source_selected.pitch_limit[1])[0] if len(idx_max) > 0 or len(idx_min) > 0: pitch_exceeded.append(True) else: pitch_exceeded.append(False) if heading_source_selected.roll_limit is not None: if len(roll_source_selected.data.shape) == 1: roll_data = roll_source_selected.data else: roll_data = roll_source_selected.data[:, 0] idx_max = np.where(roll_data > heading_source_selected.pitch_limit[0])[0] idx_min = np.where(roll_data < heading_source_selected.pitch_limit[1])[0] if len(idx_max) > 0 or len(idx_min) > 0: roll_exceeded.append(True) else: roll_exceeded.append(False) if heading_source_selected.mag_error is not None: idx_max = np.where(heading_source_selected.mag_error > 2)[0] if len(idx_max) > 0: mag_error_exceeded.append(True) else: mag_error_exceeded.append(False) if len(np.unique(magvar)) > 1: self.compass['status2'] = 'caution' self.compass['messages'].append( ['Compass: Magnetic variation is not consistent among transects;', 2, 4]) self.compass['magvar'] = 1 # Check that magvar was set if GPS data are available if gps: if 0 in magvar: self.compass['status2'] = 'warning' self.compass['messages'].append( ['COMPASS: Magnetic variation is 0 and GPS data are present;', 1, 4]) self.compass['magvar'] = 2 self.compass['magvar_idx'] = magvar.index(0) # Check pitch mean if np.any(np.asarray(pitch_mean) > 8): self.compass['status2'] = 'warning' self.compass['messages'].append(['PITCH: One or more transects have a mean pitch > 8 deg;', 1, 4]) elif np.any(np.asarray(pitch_mean) > 4): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append(['Pitch: One or more transects have a mean pitch > 4 deg;', 2, 4]) # Check roll mean if np.any(np.asarray(roll_mean) > 8): self.compass['status2'] = 'warning' self.compass['messages'].append(['ROLL: One or more transects have a mean roll > 8 deg;', 1, 4]) elif np.any(np.asarray(roll_mean) > 4): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append(['Roll: One or more transects have a mean roll > 4 deg;', 2, 4]) # Check pitch standard deviation if np.any(np.asarray(pitch_std) > 5): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append(['Pitch: One or more transects have a pitch std dev > 5 deg;', 2, 4]) # Check roll standard deviation if np.any(np.asarray(roll_std) > 5): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append(['Roll: One or more transects have a roll std dev > 5 deg;', 2, 4]) # Additional checks for SonTek G3 compass if meas.transects[checked.index(True)].adcp.manufacturer == 'SonTek': # Check if pitch limits were exceeded if any(pitch_exceeded): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append( ['Compass: One or more transects have pitch exceeding calibration limits;', 2, 4]) # Check if roll limits were exceeded if any(roll_exceeded): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append( ['Compass: One or more transects have roll exceeding calibration limits;', 2, 4]) # Check if magnetic error was exceeded if any(mag_error_exceeded): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append( ['Compass: One or more transects have a change in mag field exceeding 2%;', 2, 4]) if self.compass['status1'] == 'warning' or self.compass['status2'] == 'warning': self.compass['status'] = 'warning' elif self.compass['status1'] == 'caution' or self.compass['status2'] == 'caution': self.compass['status'] = 'caution' else: self.compass['status'] = 'good' def temperature_qa(self, meas): """Apply QA checks to temperature. Parameters ---------- meas: Measurement Object of class Measurement """ self.temperature['messages'] = [] check = [0, 0] # Create array of all temperatures temp = np.array([]) checked = [] for transect in meas.transects: if transect.checked: checked.append(transect.checked) temp_selected = getattr(transect.sensors.temperature_deg_c, transect.sensors.temperature_deg_c.selected) if len(temp) == 0: temp = temp_selected.data else: temp = np.hstack((temp, temp_selected.data)) # Check temperature range if np.any(checked): temp_range = np.nanmax(temp) - np.nanmin(temp) else: temp_range = 0 if temp_range > 2: check[0] = 3 self.temperature['messages'].append(['TEMPERATURE: Temperature range is ' + '%3.1f % temp_range' + 'degrees C which is greater than 2 degrees;', 1, 5]) elif temp_range > 1: check[0] = 2 self.temperature['messages'].append(['TEMPERATURE: Temperature range is ' + '%3.1f % temp_range' + 'degrees C which is greater than 1 degrees;', 2, 5]) else: check[0] = 1 # Check for independent temperature reading if 'user' in meas.ext_temp_chk: try: user = float(meas.ext_temp_chk['user']) except (ValueError, TypeError) as e: user = None if user is None: # No independent temperature reading check[1] = 2 self.temperature['messages'].append(['Temperature: No independent temperature reading;', 2, 5]) elif meas.ext_temp_chk['adcp']: # Compare user to manually entered ADCP temperature diff = np.abs(user - meas.ext_temp_chk['adcp']) if diff < 2: check[1] = 1 else: check[1] = 3 self.temperature['messages'].append( ['TEMP.: The difference between ADCP and reference is > 2: ' + '%3.1f % diff' + ' C;', 1, 5]) else: # Compare user to mean of all temperature data diff = np.abs(user - np.nanmean(temp)) if diff < 2: check[1] = 1 else: check[1] = 3 self.temperature['messages'].append( ['TEMP.: The difference between ADCP and reference is > 2: ' + '%3.1f % diff' + ' C;', 1, 5]) # Assign temperature status max_check = max(check) if max_check == 1: self.temperature['status'] = 'good' elif max_check == 2: self.temperature['status'] = 'caution' elif max_check == 3: self.temperature['status'] = 'warning' def moving_bed_qa(self, meas): """Applies quality checks to moving-bed tests. Parameters ---------- meas: Measurement Object of class Measurement """ self.moving_bed['messages'] = [] self.moving_bed['code'] = 0 # Are there moving-bed tests? if len(meas.mb_tests) < 1: # No moving-bed test self.moving_bed['messages'].append(['MOVING-BED TEST: No moving bed test;', 1, 6]) self.moving_bed['status'] = 'warning' self.moving_bed['code'] = 3 else: # Moving-bed tests available mb_data = meas.mb_tests # Are tests valid according to the user user_valid_test = [] file_names = [] idx_selected = [] test_quality = [] mb_tests = [] mb = [] mb_test_type = [] loop = [] for n, test in enumerate(mb_data): if test.user_valid: user_valid_test.append(True) file_names.append(test.transect.file_name) if test.type == 'Loop' and not test.test_quality == 'Errors': loop.append(test.moving_bed) # Selected test if test.selected: idx_selected.append(n) test_quality.append(test.test_quality) mb_tests.append(test) mb.append(test.moving_bed) mb_test_type.append(test.type) else: user_valid_test.append(False) if not any(user_valid_test): # No valid test according to user self.moving_bed['messages'].append(['MOVING-BED TEST: No valid moving-bed test based on user input;', 1, 6]) self.moving_bed['status'] = 'warning' self.moving_bed['code'] = 3 else: # Check for duplicate valid moving-bed tests if len(np.unique(file_names)) < len(file_names): self.moving_bed['messages'].append([ 'MOVING-BED TEST: Duplicate moving-bed test files marked valid;', 1, 6]) self.moving_bed['status'] = 'warning' self.moving_bed['code'] = 3 if self.moving_bed['code'] == 0: # Check test quality if len(test_quality) > 0 and sum(np.array(test_quality) == 'Good') > 0: self.moving_bed['status'] = 'good' self.moving_bed['code'] = 1 # Check if there is a moving-bed if any(mb): # Moving-bed present self.moving_bed['messages'].append( ['Moving-Bed Test: A moving-bed is present, use GPS or moving-bed correction;', 2, 6]) self.moving_bed['code'] = 2 self.moving_bed['status'] = 'caution' # Check for test type if sum(np.array(mb_test_type) == 'Stationary'): # Check for GPS or 3 stationary tests if len(mb_tests) < 3: gps = [] for transect in meas.transects: if transect.checked: if transect.gps is None: gps.append(False) else: gps.append(True) if not all(gps): # GPS not available for all selected transects self.moving_bed['messages'].append([ 'Moving-Bed Test: ' + 'Less than 3 stationary tests available for moving-bed correction;', 2, 6]) elif len(test_quality) > 0 and sum(np.array(test_quality) == 'Warnings') > 0: # Quality check has warnings self.moving_bed['messages'].append(['Moving-Bed Test: The moving-bed test(s) has warnings, ' + 'please review tests to determine validity;', 2, 6]) self.moving_bed['status'] = 'caution' self.moving_bed['code'] = 2 elif len(test_quality) > 0 and sum(np.array(test_quality) == 'Manual') > 0: # Manual override used self.moving_bed['messages'].append(['MOVING-BED TEST: ' + 'The user has manually forced the use of some tests;', 1, 6]) self.moving_bed['status'] = 'warning' self.moving_bed['code'] = 3 else: # Test has critical errors self.moving_bed['messages'].append(['MOVING-BED TEST: The moving-bed test(s) have critical errors ' + 'and will not be used;', 1, 6]) self.moving_bed['status'] = 'warning' self.moving_bed['code'] = 3 # Check multiple loops for consistency if len(np.unique(loop)) > 1: self.moving_bed['messages'].append(['Moving-Bed Test: Results of valid loops are not consistent, ' + 'review moving-bed tests;', 2, 6]) if self.moving_bed['code'] < 3: self.moving_bed['code'] = 2 self.moving_bed['status'] = 'caution' def user_qa(self, meas): """Apply quality checks to user input data. Parameters ---------- meas: Measurement Object of class Measurement """ self.user['messages'] = [] self.user['status'] = 'good' # Check for Station Name self.user['sta_name'] = False if meas.station_name is None: self.user['messages'].append(['Site Info: Station name not entered;', 2, 2]) self.user['status'] = 'caution' self.user['sta_name'] = True # Check for Station Number self.user['sta_number'] = False if meas.station_number is None: self.user['messages'].append(['Site Info: Station number not entered;', 2, 2]) self.user['status'] = 'caution' self.user['sta_name'] = True def depths_qa(self, meas): """Apply quality checks to depth data. Parameters ---------- meas: Measurement Object of class Measurement """ # Initialize variables n_transects = len(meas.transects) self.depths['q_total'] = np.tile(np.nan, n_transects) self.depths['q_max_run'] = np.tile(np.nan, n_transects) self.depths['q_total_caution'] = np.tile(False, n_transects) self.depths['q_run_caution'] = np.tile(False, n_transects) self.depths['q_total_warning'] = np.tile(False, n_transects) self.depths['q_run_warning'] = np.tile(False, n_transects) self.depths['all_invalid'] = np.tile(False, n_transects) self.depths['messages'] = [] self.depths['status'] = 'good' self.depths['draft'] = 0 checked = [] drafts = [] for n, transect in enumerate(meas.transects): checked.append(transect.checked) if transect.checked: in_transect_idx = transect.in_transect_idx depths_selected = getattr(transect.depths, transect.depths.selected) drafts.append(depths_selected.draft_use_m) # Determine valid measured depths if transect.depths.composite: depth_na = depths_selected.depth_source_ens[in_transect_idx] != 'NA' depth_in = depths_selected.depth_source_ens[in_transect_idx] != 'IN' depth_valid = np.all(np.vstack((depth_na, depth_in)), 0) else: depth_valid_temp = depths_selected.valid_data[in_transect_idx] depth_nan = depths_selected.depth_processed_m[in_transect_idx] != np.nan depth_valid = np.all(np.vstack((depth_nan, depth_valid_temp)), 0) if not np.any(depth_valid): self.depths['all_invalid'][n] = True # Compute QA characteristics q_total, q_max_run, number_invalid_ensembles = QAData.invalid_qa(depth_valid, meas.discharge[n]) self.depths['q_total'][n] = q_total self.depths['q_max_run'][n] = q_max_run # Compute percentage compared to total q_total_percent = np.abs((q_total / meas.discharge[n].total) * 100) q_max_run_percent = np.abs((q_max_run / meas.discharge[n].total) * 100) # Apply total interpolated discharge threshold if q_total_percent > self.q_total_threshold_warning: self.depths['q_total_warning'][n] = True elif q_total_percent > self.q_total_threshold_caution: self.depths['q_total_caution'][n] = True # Apply interpolated discharge run thresholds if q_max_run_percent > self.q_run_threshold_warning: self.depths['q_run_warning'][n] = True elif q_max_run_percent > self.q_run_threshold_caution: self.depths['q_run_caution'][n] = True if checked: # Create array of all unique draft values draft_check = np.unique(np.round(drafts, 3)) # Check draft consistency if len(draft_check) > 1: self.depths['status'] = 'caution' self.depths['draft'] = 1 self.depths['messages'].append(['Depth: Transducer depth is not consistent among transects;', 2, 10]) # Check for zero draft if np.any(np.less(draft_check, 0.01)): self.depths['status'] = 'warning' self.depths['draft'] = 2 self.depths['messages'].append(['DEPTH: Transducer depth is too shallow, likely 0;', 1, 10]) # Check consecutive interpolated discharge criteria if np.any(self.depths['q_run_warning']): self.depths['messages'].append(['DEPTH: Int. Q for consecutive invalid ensembles exceeds ' + '%2.0f % self.q_run_threshold_warning' + '%;', 1, 10]) self.depths['status'] = 'warning' elif np.any(self.depths['q_run_caution']): self.depths['messages'].append(['Depth: Int. Q for consecutive invalid ensembles exceeds ' + '%2.0f % self.q_run_threshold_caution' + '%;', 2, 10]) self.depths['status'] = 'caution' # Check total interpolated discharge criteria if np.any(self.depths['q_total_warning']): self.depths['messages'].append(['DEPTH: Int. Q for invalid ensembles in a transect exceeds ' + '%2.0f % self.q_total_threshold_warning' + '%;', 1, 10]) self.depths['status'] = 'warning' elif np.any(self.depths['q_total_caution']): self.depths['messages'].append(['Depth: Int. Q for invalid ensembles in a transect exceeds ' + '%2.0f % self.q_total_threshold_caution' + '%;', 2, 10]) self.depths['status'] = 'caution' # Check if all depths are invalid if np.any(self.depths['all_invalid']): self.depths['messages'].append(['DEPTH: There are no valid depths for one or more transects.', 2, 10]) self.depths['status'] = 'warning' else: self.depths['status'] = 'inactive' def boat_qa(self, meas): """Apply quality checks to boat data. Parameters ---------- meas: Measurement Object of class Measurement """ # Initialize variables n_transects = len(meas.transects) data_type = {'BT': {'class': 'bt_vel', 'warning': 'BT-', 'caution': 'bt-', 'filter': [('All: ', 0), ('Original: ', 1), ('ErrorVel: ', 2), ('VertVel: ', 3), ('Other: ', 4), ('3Beams: ', 5)]}, 'GGA': {'class': 'gga_vel', 'warning': 'GGA-', 'caution': 'gga-', 'filter': [('All: ', 0), ('Original: ', 1), ('DGPS: ', 2), ('Altitude: ', 3), ('Other: ', 4), ('HDOP: ', 5)]}, 'VTG': {'class': 'vtg_vel', 'warning': 'VTG-', 'caution': 'vtg-', 'filter': [('All: ', 0), ('Original: ', 1), ('HDOP: ', 5)]}} for dt_key, dt_value in data_type.items(): boat = getattr(self, dt_value['class']) # Initialize dictionaries for each data type boat['q_total_caution'] = np.tile(False, (n_transects, 6)) boat['q_max_run_caution'] = np.tile(False, (n_transects, 6)) boat['q_total_warning'] = np.tile(False, (n_transects, 6)) boat['q_max_run_warning'] = np.tile(False, (n_transects, 6)) boat['all_invalid'] = np.tile(False, n_transects) boat['q_total'] = np.tile(np.nan, (n_transects, 6)) boat['q_max_run'] = np.tile(np.nan, (n_transects, 6)) boat['messages'] = [] status_switch = 0 avg_speed_check = 0 # Check the results of each filter for dt_filter in dt_value['filter']: boat['status'] = 'inactive' # Quality check each transect for n, transect in enumerate(meas.transects): # Evaluate on transects used in the discharge computation if transect.checked: in_transect_idx = transect.in_transect_idx # Check to see if data are available for the data_type if getattr(transect.boat_vel, dt_value['class']) is not None: boat['status'] = 'good' # Compute quality characteristics valid = getattr(transect.boat_vel, dt_value['class']).valid_data[dt_filter[1], in_transect_idx] q_total, q_max_run, number_invalid_ens = QAData.invalid_qa(valid, meas.discharge[n]) boat['q_total'][n, dt_filter[1]] = q_total boat['q_max_run'][n, dt_filter[1]] = q_max_run # Compute percentage compared to total q_total_percent = np.abs((q_total / meas.discharge[n].total) * 100) q_max_run_percent = np.abs((q_max_run / meas.discharge[n].total) * 100) # Check if all invalid if dt_filter[1] == 0 and not np.any(valid): boat['all_invalid'][n] = True # Apply total interpolated discharge threshold if q_total_percent > self.q_total_threshold_warning: boat['q_total_warning'][n, dt_filter[1]] = True elif q_total_percent > self.q_total_threshold_caution: boat['q_total_caution'][n, dt_filter[1]] = True # Apply interpolated discharge run thresholds if q_max_run_percent > self.q_run_threshold_warning: boat['q_max_run_warning'][n, dt_filter[1]] = True elif q_max_run_percent > self.q_run_threshold_caution: boat['q_max_run_caution'][n, dt_filter[1]] = True # Check boat velocity for vtg data if dt_key is 'VTG' and transect.boat_vel.selected is 'vtg_vel' and avg_speed_check == 0: avg_speed = np.nanmean((transect.boat_vel.vtg_vel.u_mps**2 + transect.boat_vel.vtg_vel.v_mps**2)**0.5) if avg_speed < 0.24: boat['q_total_caution'][n, dt_filter[1]] = True boat['messages'].append( ['vtg-AvgSpeed: VTG data may not be accurate for average boat speed less than' + '0.24 m/s (0.8 ft/s);', 2, 8]) avg_speed_check = 1 # Create message for consecutive invalid discharge if boat['q_max_run_warning'][:, dt_filter[1]].any(): if dt_key is 'BT': module_code = 7 else: module_code = 8 boat['messages'].append( [dt_value['warning'] + dt_filter[0] + 'Int. Q for consecutive invalid ensembles exceeds ' + '%3.1f' % self.q_run_threshold_warning + '%;', 1, module_code]) status_switch = 2 elif boat['q_max_run_caution'][:, dt_filter[1]].any(): if dt_key is 'BT': module_code = 7 else: module_code = 8 boat['messages'].append( [dt_value['caution'] + dt_filter[0] + 'Int. Q for consecutive invalid ensembles exceeds ' + '%3.1f' % self.q_run_threshold_caution + '%;', 2, module_code]) if status_switch < 1: status_switch = 1 # Create message for total invalid discharge if boat['q_total_warning'][:, dt_filter[1]].any(): if dt_key is 'BT': module_code = 7 else: module_code = 8 boat['messages'].append( [dt_value['warning'] + dt_filter[0] + 'Int. Q for invalid ensembles in a transect exceeds ' + '%3.1f' % self.q_total_threshold_warning + '%;', 1, module_code]) status_switch = 2 elif boat['q_max_run_caution'][:, dt_filter[1]].any(): if dt_key is 'BT': module_code = 7 else: module_code = 8 boat['messages'].append( [dt_value['caution'] + dt_filter[0] + 'Int. Q for invalid ensembles in a transect exceeds ' + '%3.1f' % self.q_total_threshold_caution + '%;', 2, module_code]) if status_switch < 1: status_switch = 1 # Create message for all data invalid if boat['all_invalid'].any(): boat['status'] = 'warning' if dt_key is 'BT': module_code = 7 else: module_code = 8 boat['messages'].append( [dt_value['warning'] + dt_value['filter'][0][0] + 'There are no valid data for one or more transects.;', 1, module_code]) # Set status if status_switch == 2: boat['status'] = 'warning' elif status_switch == 1: boat['status'] = 'caution' setattr(self, dt_value['class'], boat) def water_qa(self, meas): """Apply quality checks to water data. Parameters ---------- meas: Measurement Object of class Measurement """ # Initialize filter labels and indices prefix = ['All: ', 'Original: ', 'ErrorVel: ', 'VertVel: ', 'Other: ', '3Beams: ', 'SNR:'] if meas.transects[0].adcp.manufacturer is 'TRDI': filter_index = [0, 1, 2, 3, 4, 5] else: filter_index = [0, 1, 2, 3, 4, 5, 7] n_transects = len(meas.transects) n_filters = len(filter_index) + 1 # Initialize dictionaries for each data type self.w_vel['q_total_caution'] = np.tile(False, (n_transects, n_filters)) self.w_vel['q_max_run_caution'] = np.tile(False, (n_transects, n_filters)) self.w_vel['q_total_warning'] = np.tile(False, (n_transects, n_filters)) self.w_vel['q_max_run_warning'] = np.tile(False, (n_transects, n_filters)) self.w_vel['all_invalid'] = np.tile(False, n_transects) self.w_vel['q_total'] = np.tile(np.nan, (n_transects, n_filters)) self.w_vel['q_max_run'] = np.tile(np.nan, (n_transects, n_filters)) self.w_vel['messages'] = [] status_switch = 0 # TODO if meas had a property checked as list it would save creating that list multiple times checked = [] for transect in meas.transects: checked.append(transect.checked) # At least one transect is being used to compute discharge if any(checked): # Loop through filters for prefix_idx, filter_idx in enumerate(filter_index): # Loop through transects for n, transect in enumerate(meas.transects): if transect.checked: valid_original = np.any(transect.w_vel.valid_data[1, :, transect.in_transect_idx].T, 0) # Determine what data each filter have marked invalid. Original invalid data are excluded valid = np.any(transect.w_vel.valid_data[filter_idx, :, transect.in_transect_idx].T, 0) if filter_idx > 1: valid_int = valid.astype(int) - valid_original.astype(int) valid = valid_int != -1 # Check if all data are invalid if filter_idx == 0: if np.nansum(valid.astype(int)) < 1: self.w_vel['all_invalid'][n] = True # TODO seems like the rest of this should be under else of all invalid or multiple messages # generated. # Compute characteristics q_total, q_max_run, number_invalid_ens = QAData.invalid_qa(valid, meas.discharge[n]) self.w_vel['q_total'][n, filter_idx] = q_total self.w_vel['q_max_run'][n, filter_idx] = q_max_run # Compute percentage compared to total q_total_percent = np.abs((q_total / meas.discharge[n].total) * 100) q_max_run_percent = np.abs((q_max_run / meas.discharge[n].total) * 100) # Check total invalid discharge in ensembles for warning if q_total_percent > self.q_total_threshold_warning: self.w_vel['q_total_warning'][n, filter_idx] = True # Apply run or cluster thresholds if q_max_run_percent > self.q_run_threshold_warning: self.w_vel['q_max_run_warning'][n, filter_idx] = True elif q_max_run_percent > self.q_run_threshold_caution: self.w_vel['q_max_run_caution'][n, filter_idx] = True # Compute percent discharge interpolated for both cells and ensembles # This approach doesn't exclude original data valid_cells = transect.w_vel.valid_data[filter_idx, :, transect.in_transect_idx].T q_invalid_total = np.nansum(meas.discharge[n].middle_cells[np.logical_not(valid_cells)]) \ + np.nansum(meas.discharge[n].top_ens[np.logical_not(valid)]) \ + np.nansum(meas.discharge[n].bottom_ens[np.logical_not(valid)]) q_invalid_total_percent = (q_invalid_total / meas.discharge[n].total) * 100 if q_invalid_total_percent > self.q_total_threshold_caution: self.w_vel['q_total_caution'][n, filter_idx] = True # Generate messages for ensemble run or clusters if np.any(self.w_vel['q_max_run_warning'][:, filter_idx]): self.w_vel['messages'].append(['WT-' + prefix[prefix_idx] + 'Int. Q for consecutive invalid ensembles exceeds ' + '%3.0f' % self.q_run_threshold_warning + '%;', 1, 11]) status_switch = 2 elif np.any(self.w_vel['q_max_run_caution'][:, filter_idx]): self.w_vel['messages'].append(['wt-' + prefix[prefix_idx] + 'Int. Q for consecutive invalid ensembles exceeds ' + '%3.0f' % self.q_run_threshold_caution + '%;', 2, 11]) if status_switch < 1: status_switch = 1 # Generate message for total_invalid Q if np.any(self.w_vel['q_total_warning'][:, filter_idx]): self.w_vel['messages'].append(['WT-' + prefix[prefix_idx] + 'Int. Q for invalid ensembles in a transect exceeds ' + '%3.0f' % self.q_total_threshold_warning + '%;', 1, 11]) status_switch = 2 elif np.any(self.w_vel['q_total_caution'][:, filter_idx]): self.w_vel['messages'].append(['wt-' + prefix[prefix_idx] + 'Int. Q for invalid cells and ensembles in a transect exceeds ' + '%3.0f' % self.q_total_threshold_caution + '%;', 2, 11]) if status_switch < 1: status_switch = 1 # Generate message for all invalid if np.any(self.w_vel['all_invalid']): self.w_vel['messages'].append(['WT-', prefix[0], 'There are no valid data for one or more transects.', 1, 11]) status_switch = 2 # Set status self.w_vel['status'] = 'good' if status_switch == 2: self.w_vel['status'] = 'warning' elif status_switch == 1: self.w_vel['status'] = 'caution' else: self.w_vel['status'] = 'inactive' def extrapolation_qa(self, meas): """Apply quality checks to extrapolation methods Parameters ---------- meas: Measurement Object of class Measurement """ self.extrapolation['messages'] = [] checked = [] discharges = [] for n, transect in enumerate(meas.transects): checked.append(transect.checked) if transect.checked: discharges.append(meas.discharge[n]) if any(checked): self.extrapolation['status'] = 'good' extrap_uncertainty = Uncertainty.uncertainty_extrapolation(meas, discharges) if np.abs(extrap_uncertainty) > 2: self.extrapolation['messages'].append(['Extrapolation: The extrapolation uncertainty is more than ' + '2 percent;', 2, 12]) self.extrapolation['messages'].append([' Carefully review the extrapolation;', 2, 12]) self.extrapolation['status'] = 'caution' else: self.extrapolation['status'] = 'inactive' def edges_qa(self, meas): """Apply quality checks to edge estimates Parameters ---------- meas: Measurement Object of class Measurement """ # Intialize variables self.edges['messages'] = [] checked = [] left_q = [] right_q = [] total_q = [] edge_dist_left = [] edge_dist_right = [] dist_moved_left = [] dist_moved_right = [] dist_made_good = [] left_type = [] right_type = [] for n, transect in enumerate(meas.transects): checked.append(transect.checked) if transect.checked: left_q.append(meas.discharge[n].left) right_q.append(meas.discharge[n].right) total_q.append(meas.discharge[n].total) dmr, dml, dmg = QAData.edge_distance_moved(transect) dist_moved_right.append(dmr) dist_moved_left.append(dml) dist_made_good.append(dmg) edge_dist_left.append(transect.edges.left.distance_m) edge_dist_right.append(transect.edges.right.distance_m) left_type.append(transect.edges.left.type) right_type.append(transect.edges.right.type) if any(checked): # Set default status to good self.edges['status'] = 'good' # Check left edge q > 5% self.edges['left_q'] = 0 left_q_percent = (np.nanmean(left_q) / np.nanmean(total_q)) * 100 if np.abs(left_q_percent) > 5: self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: Left edge Q is greater than 5%;', 2, 13]) self.edges['left_q'] = 1 # Check right edge q > 5% self.edges['right_q'] = 0 right_q_percent = (np.nanmean(right_q) / np.nanmean(total_q)) * 100 if np.abs(right_q_percent) > 5: self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: Right edge Q is greater than 5%;', 2, 13]) self.edges['right_q'] = 1 # Check for consistent sign q_positive = [] self.edges['left_sign'] = 0 for q in left_q: if q >= 0: q_positive.append(True) else: q_positive.append(False) if len(np.unique(q_positive)) > 1 and left_q_percent > 0.5: self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: Sign of left edge Q is not consistent;', 2, 13]) self.edges['left_sign'] = 1 q_positive = [] self.edges['right_sign'] = 0 for q in right_q: if q >= 0: q_positive.append(True) else: q_positive.append(False) if len(np.unique(q_positive)) > 1 and right_q_percent > 0.5: self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: Sign of right edge Q is not consistent;', 2, 13]) self.edges['right_sign'] = 1 # Check distance moved dmg_5_percent = 0.05 * np.nanmean(dist_made_good) avg_right_edge_dist = np.nanmean(edge_dist_right) right_threshold = np.nanmin([dmg_5_percent, avg_right_edge_dist]) self.edges['right_dist_moved_idx'] = np.where(dist_moved_right > right_threshold)[0] if np.any(self.edges['right_dist_moved_idx']): self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: Excessive boat movement in right edge ensembles;', 2, 13]) avg_left_edge_dist = np.nanmean(edge_dist_left) left_threshold = np.nanmin([dmg_5_percent, avg_left_edge_dist]) self.edges['left_dist_moved_idx'] = np.where(dist_moved_left > left_threshold)[0] if np.any(self.edges['left_dist_moved_idx']): self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: Excessive boat movement in left edge ensembles;', 2, 13]) # Check for edge ensembles marked invalid due to excluded distance for transect in meas.transects: if transect.checked: ens_sum_excluded_data = np.nansum(transect.w_vel.valid_data[6, :, :], 0) cells_above_sl = np.nansum(transect.w_vel.cells_above_sl, 0) ens_excluded_data = np.not_equal(ens_sum_excluded_data, cells_above_sl) if any(ens_excluded_data): self.edges['status'] = 'caution' self.edges['messages'].append(['Edges: The excluded distance caused invalid ensembles ' + 'in an edge, check edge distance;', 2, 13]) break # Check edges for zero discharge self.edges['left_zero'] = 0 left_zero_idx = np.where(left_q == 0)[0] if left_zero_idx: self.edges['status'] = 'warning' self.edges['messages'].append(['EDGES: Left edge has zero Q;', 1, 13]) self.edges['left_zero'] = 2 self.edges['right_zero'] = 0 right_zero_idx = np.where(right_q == 0)[0] if right_zero_idx: self.edges['status'] = 'warning' self.edges['messages'].append(['EDGES: Right edge has zero Q;', 1, 13]) self.edges['right_zero'] = 2 # Check consistent edge type self.edges['left_type'] = 0 if len(np.unique(left_type)) > 1: self.edges['status'] = 'warning' self.edges['messages'].append(['EDGES: Left edge type is not consistent;', 1, 13]) self.edges['left_type'] = 2 self.edges['right_type'] = 0 if len(np.unique(right_type)) > 1: self.edges['status'] = 'warning' self.edges['messages'].append(['EDGES: Right edge type is not consistent;', 1, 13]) self.edges['right_type'] = 2 else: self.edges['status'] = 'inactive' @staticmethod def invalid_qa(valid, discharge): """Computes the total invalid discharge in ensembles that have invalid data. The function also computes the maximum run or cluster of ensembles with the maximum interpolated discharge. Parameters ---------- valid: np.array(bool) Array identifying valid and invalid ensembles. discharge: QComp Object of class QComp Returns ------- q_invalid_total: float Total interpolated discharge in invalid ensembles q_invalid_max_run: float Maximum interpolated discharge in a run or cluster of invalid ensembles ens_invalid: int Total number of invalid ensembles """ # Create bool for invalid data invalid = np.logical_not(valid) q_invalid_total = np.nansum(discharge.middle_ens[invalid]) + np.nansum(discharge.top_ens[invalid]) \ + np.nansum(discharge.bottom_ens[invalid]) # Compute total number of invalid ensembles ens_invalid = np.sum(invalid) # Compute the indices of where changes occur valid_int = np.insert(valid.astype(int), 0, -1) valid_int = np.append(valid_int, -1) valid_run = np.where(np.diff(valid_int) != 0)[0] run_length = np.diff(valid_run) run_length0 = run_length[(valid[0] == 1)::2] n_runs = len(run_length0) if valid[0] is True: n_start = 1 else: n_start = 0 n_end = len(valid_run)-1 if n_runs > 1: m = 0 q_invalid_run = [] for n in range(n_start, n_end, 2): m += 1 idx_start = valid_run[n] idx_end = valid_run[n+1] q_invalid_run.append(np.nansum(discharge.middle_ens[idx_start:idx_end]) + np.nansum(discharge.top_ens[idx_start:idx_end]) + np.nansum(discharge.bottom_ens[idx_start:idx_end])) # Determine the maximum discharge in a single run q_invalid_max_run = np.nanmax(np.abs(q_invalid_run)) else: q_invalid_max_run = 0 return q_invalid_total, q_invalid_max_run, ens_invalid @staticmethod def edge_distance_moved(transect): """Computes the boat movement during edge ensemble collection. Parameters ---------- transect: Transect Object of class Transect Returns ------- right_dist_moved: float Distance in m moved during collection of right edge samples left_dist_moved: float Distance in m moved during collection of left edge samples dmg: float Distance made good for the entire transect """ boat_selected = getattr(transect.boat_vel, transect.boat_vel.selected) ens_duration = transect.date_time.ens_duration_sec # Get boat velocities if boat_selected is not None: u_processed = boat_selected.u_processed_mps v_processed = boat_selected.v_processed_mps else: u_processed = np.tile(np.nan, transect.boat_vel.bt_vel.u_processed_mps.shape) v_processed = np.tile(np.nan, transect.boat_vel.bt_vel.v_processed_mps.shape) # Compute boat coordinates x_processed = np.nancumsum(u_processed * ens_duration) y_processed = np.nancumsum(v_processed * ens_duration) dmg = (x_processed[-1]**2 + y_processed[-1]**2)**0.5 # Compute left distance moved # TODO should be a dist moved function left_edge_idx = QComp.edge_ensembles('left', transect) if len(left_edge_idx) > 0: boat_x = x_processed[left_edge_idx[-1]] - x_processed[left_edge_idx[0]] boat_y = y_processed[left_edge_idx[-1]] - y_processed[left_edge_idx[0]] left_dist_moved = (boat_x**2 + boat_y**2)**0.5 else: left_dist_moved = np.nan # Compute right distance moved right_edge_idx = QComp.edge_ensembles('right', transect) if len(right_edge_idx) > 0: boat_x = x_processed[right_edge_idx[-1]] - x_processed[right_edge_idx[0]] boat_y = y_processed[right_edge_idx[-1]] - y_processed[right_edge_idx[0]] right_dist_moved = (boat_x ** 2 + boat_y ** 2) ** 0.5 else: right_dist_moved = np.nan return right_dist_moved, left_dist_moved, dmg
2.75
3
readimc/_txt_file.py
BodenmillerGroup/readimc
0
12776222
<filename>readimc/_txt_file.py import numpy as np import pandas as pd import re from os import PathLike from typing import BinaryIO, List, Optional, Sequence, Tuple, Union from ._imc_file import IMCFile from .data import AcquisitionBase class TXTFile(IMCFile, AcquisitionBase): _CHANNEL_REGEX = re.compile( r"^(?P<label>.*)\((?P<metal>[a-zA-Z]+)(?P<mass>[0-9]+)[^0-9]*\)$" ) def __init__(self, path: Union[str, PathLike]) -> None: """A class for reading IMC .txt files :param path: path to the IMC .txt file """ super(TXTFile, self).__init__(path) self._fh: Optional[BinaryIO] = None self._num_channels: Optional[int] = None self._channel_metals: Optional[List[str]] = None self._channel_masses: Optional[List[int]] = None self._channel_labels: Optional[List[str]] = None @property def num_channels(self) -> int: if self._num_channels is None: raise IOError(f"TXT file '{self.path.name}' has not been opened") return self._num_channels @property def channel_metals(self) -> Sequence[str]: if self._channel_metals is None: raise IOError(f"TXT file '{self.path.name}' has not been opened") return self._channel_metals @property def channel_masses(self) -> Sequence[int]: if self._channel_masses is None: raise IOError(f"TXT file '{self.path.name}' has not been opened") return self._channel_masses @property def channel_labels(self) -> Sequence[str]: if self._channel_labels is None: raise IOError(f"TXT file '{self.path.name}' has not been opened") return self._channel_labels def __enter__(self) -> "TXTFile": self.open() return self def __exit__(self, exc_type, exc_value, traceback) -> None: self.close() def open(self) -> None: """Opens the IMC .txt file for reading. It is good practice to use context managers whenever possible: .. code-block:: python with TXTFile("/path/to/file.txt") as f: pass """ if self._fh is not None: self._fh.close() self._fh = open(self._path, mode="r") ( self._num_channels, self._channel_metals, self._channel_masses, self._channel_labels, ) = self._read_channels() def close(self) -> None: """Closes the IMC .txt file. It is good practice to use context managers whenever possible: .. code-block:: python with TXTFile("/path/to/file.txt") as f: pass """ if self._fh is not None: self._fh.close() self._fh = None def read_acquisition(self, *args) -> np.ndarray: """Reads IMC acquisition data as numpy array. .. note:: This function takes a variable number of arguments for compatibility with ``MCDFile``. :return: the acquisition data as 32-bit floating point array, shape: (c, y, x) """ self._fh.seek(0) df = pd.read_table(self._fh, dtype=np.float32) if tuple(df.columns[:3]) != ( "Start_push", "End_push", "Pushes_duration", ): raise IOError( f"TXT file '{self.path.name}' corrupted: " "push columns not found in tabular data" ) if tuple(df.columns[3:6]) != ("X", "Y", "Z"): raise IOError( f"TXT file '{self.path.name}' corrupted: " "XYZ channels not found in tabular data" ) width, height = df[["X", "Y"]].add(1).max(axis=0).astype(int) if width * height != len(df.index): raise IOError( f"TXT file '{self.path.name}' corrupted: " "inconsistent acquisition image data size" ) img = np.zeros((height, width, self.num_channels), dtype=np.float32) img[df["Y"].astype(int), df["X"].astype(int), :] = df.values[:, 6:] return np.moveaxis(img, -1, 0) def _read_channels(self) -> Tuple[int, List[str], List[int], List[str]]: self._fh.seek(0) columns = self._fh.readline().split("\t") if tuple(columns[:3]) != ("Start_push", "End_push", "Pushes_duration"): raise IOError( f"TXT file '{self.path.name}' corrupted: " "push columns not found in tabular data" ) if tuple(columns[3:6]) != ("X", "Y", "Z"): raise IOError( f"TXT file '{self.path.name}' corrupted: " "XYZ channels not found in tabular data" ) channel_metals: List[str] = [] channel_masses: List[int] = [] channel_labels: List[str] = [] for column in columns[6:]: m = re.match(self._CHANNEL_REGEX, column) if m is None: raise IOError( f"TXT file '{self.path.name}' corrupted: " f"cannot extract channel information from text '{column}'" ) channel_metals.append(m.group("metal")) channel_masses.append(int(m.group("mass"))) channel_labels.append(m.group("label")) return len(columns[6:]), channel_metals, channel_masses, channel_labels def __repr__(self) -> str: return str(self._path)
2.640625
3
src/video_player_test.py
Joao-Nogueira-gh/video-compressin
0
12776223
## @brief # Module for testing of the VideoPlayer class # from VideoPlayer import * import sys if __name__ == "__main__": if len(sys.argv)!=2: print('\nUsage: python3 video_player_test.py <frameNumber>\n\nframeNumber->Number of video frames to play OR \'all\' for all frames in video\n\nWarning: Higher number of frames will take longer to complete!') exit(0) else: fn=sys.argv[1] if fn=='all': fn=None else: fn=int(fn) v1="../res/ducks_take_off_444_720p50.y4m" v2="../res/ducks_take_off_422_720p50.y4m" v3="../res/ducks_take_off_420_720p50.y4m" ans=input('There are 3 videos in our repository,\n1)ducks_take_off_444\n2)ducks_take_off_422\n3)ducks_take_off_420\nEach in the respective format, choose the desired one (1,2,3) : ') if ans=='1': video=v1 elif ans=='2': video=v2 elif ans=='3': video=v3 else: print('Invalid answer') exit(0) v=VideoPlayer(video) v.play_video(frameNumber=fn)
3.25
3
migrations/sqlite_versions/2020-07-10_b7fc1ab24c92_add_checkconstraints_for_non_nullable_.py
debrief/pepys-import
4
12776224
"""Add CheckConstraints for non-nullable string cols Revision ID: b7fc1ab24c92 Revises: <PASSWORD> Create Date: 2020-07-10 13:24:56.007611 """ from datetime import datetime from uuid import uuid4 from alembic import op from geoalchemy2 import Geometry from sqlalchemy import DATE, Column, DateTime, ForeignKey, Integer, MetaData, String, Text from sqlalchemy.dialects.sqlite import REAL, TIMESTAMP from sqlalchemy.orm import declarative_base, deferred from sqlalchemy.sql.schema import CheckConstraint, UniqueConstraint from pepys_import.core.store import constants from pepys_import.core.store.common_db import ( CommentMixin, ElevationPropertyMixin, LocationPropertyMixin, LogMixin, MediaMixin, ReferenceRepr, SynonymMixin, ) from pepys_import.core.store.db_base import sqlite_naming_convention from pepys_import.core.store.db_status import TableTypes from pepys_import.utils.sqlalchemy_utils import UUIDType # revision identifiers, used by Alembic. revision = "b7fc1ab24c92" down_revision = "d5d740c76aa3" branch_labels = None depends_on = None def upgrade(): with op.batch_alter_table("Tasks", schema=None) as batch_op: batch_op.create_check_constraint("ck_Tasks_name", condition="name <> ''") with op.batch_alter_table("Synonyms", schema=None) as batch_op: batch_op.create_check_constraint("ck_Synonyms_table", condition="\"table\" <> ''") batch_op.create_check_constraint("ck_Synonyms_synonym", condition="synonym <> ''") with op.batch_alter_table("Changes", schema=None) as batch_op: batch_op.create_check_constraint("ck_Changes_user", condition="user <> ''") batch_op.create_check_constraint("ck_Changes_reason", condition="reason <> ''") with op.batch_alter_table("Logs", schema=None) as batch_op: batch_op.create_check_constraint("ck_Logs_table", condition="\"table\" <> ''") with op.batch_alter_table("PlatformTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_PlatformTypes_name", condition="name <> ''") with op.batch_alter_table("Nationalities", schema=None) as batch_op: batch_op.create_check_constraint("ck_Nationalities_name", condition="name <> ''") with op.batch_alter_table("GeometryTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_GeometryTypes_name", condition="name <> ''") with op.batch_alter_table("GeometrySubTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_GeometrySubTypes_name", condition="name <> ''") with op.batch_alter_table("Users", schema=None) as batch_op: batch_op.create_check_constraint("ck_Users_name", condition="name <> ''") with op.batch_alter_table("UnitTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_UnitTypes_name", condition="name <> ''") with op.batch_alter_table("ClassificationTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_ClassificationTypes_name", condition="name <> ''") with op.batch_alter_table("ContactTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_ContactTypes_name", condition="name <> ''") with op.batch_alter_table("SensorTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_SensorTypes_name", condition="name <> ''") with op.batch_alter_table("Privacies", schema=None) as batch_op: batch_op.create_check_constraint("ck_Privacies_name", condition="name <> ''") with op.batch_alter_table("DatafileTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_DatafileTypes_name", condition="name <> ''") with op.batch_alter_table("MediaTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_MediaTypes_name", condition="name <> ''") with op.batch_alter_table("CommentTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_CommentTypes_name", condition="name <> ''") with op.batch_alter_table("CommodityTypes", schema=None) as batch_op: batch_op.create_check_constraint("ck_CommodityTypes_name", condition="name <> ''") with op.batch_alter_table("ConfidenceLevels", schema=None) as batch_op: batch_op.create_check_constraint("ck_ConfidenceLevels_name", condition="name <> ''") with op.batch_alter_table("Comments", schema=None) as batch_op: batch_op.create_check_constraint("ck_Comments_content", condition="content <> ''") with op.batch_alter_table("Media", schema=None) as batch_op: batch_op.create_check_constraint("ck_Media_url", condition="url <> ''") def downgrade(): Metadata = MetaData(naming_convention=sqlite_naming_convention) BaseSpatiaLite = declarative_base(metadata=Metadata) class Task(BaseSpatiaLite): __tablename__ = constants.TASK table_type = TableTypes.METADATA table_type_id = 4 task_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) parent_id = Column( UUIDType, ForeignKey("Tasks.task_id", onupdate="cascade"), nullable=False ) start = Column(TIMESTAMP, nullable=False) end = Column(TIMESTAMP, nullable=False) environment = deferred(Column(String(150))) location = deferred(Column(String(150))) privacy_id = Column( UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade"), nullable=False ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_Tasks_name"),) class Synonym(BaseSpatiaLite, SynonymMixin): __tablename__ = constants.SYNONYM table_type = TableTypes.METADATA table_type_id = 7 synonym_id = Column(UUIDType, primary_key=True, default=uuid4) table = Column(String(150), nullable=False) entity = Column(UUIDType, nullable=False) synonym = Column(String(150), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = ( CheckConstraint("\"table\" <> ''", name="ck_Synonyms_table"), CheckConstraint("synonym <> ''", name="ck_Synonyms_synonym"), ) class Change(BaseSpatiaLite): __tablename__ = constants.CHANGE table_type = TableTypes.METADATA table_type_id = 8 change_id = Column(UUIDType, primary_key=True, default=uuid4) user = Column(String(150), nullable=False) modified = Column(DATE, nullable=False) reason = Column(String(500), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = ( CheckConstraint("user <> ''", name="ck_Changes_user"), CheckConstraint("reason <> ''", name="ck_Changes_reason"), ) class Log(BaseSpatiaLite, LogMixin): __tablename__ = constants.LOG table_type = TableTypes.METADATA table_type_id = 9 log_id = Column(UUIDType, primary_key=True, default=uuid4) table = Column(String(150), nullable=False) id = Column(UUIDType, nullable=False) field = Column(String(150)) new_value = Column(String(150)) change_id = Column( UUIDType, ForeignKey("Changes.change_id", onupdate="cascade"), nullable=False ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("\"table\" <> ''", name="ck_Logs_table"),) class PlatformType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.PLATFORM_TYPE table_type = TableTypes.REFERENCE table_type_id = 13 platform_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_PlatformTypes_name"),) class Nationality(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.NATIONALITY table_type = TableTypes.REFERENCE table_type_id = 14 nationality_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) priority = Column(Integer) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_Nationalities_name"),) class GeometryType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.GEOMETRY_TYPE table_type = TableTypes.REFERENCE table_type_id = 15 geo_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_GeometryTypes_name"),) class GeometrySubType(BaseSpatiaLite): __tablename__ = constants.GEOMETRY_SUBTYPE table_type = TableTypes.REFERENCE table_type_id = 16 geo_sub_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) parent = Column( UUIDType, ForeignKey("GeometryTypes.geo_type_id", onupdate="cascade"), nullable=False ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = ( UniqueConstraint("name", "parent", name="uq_GeometrySubTypes_name_parent"), CheckConstraint("name <> ''", name="ck_GeometrySubTypes_name"), ) class User(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.USER table_type = TableTypes.REFERENCE table_type_id = 17 user_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_Users_name"),) class UnitType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.UNIT_TYPE table_type = TableTypes.REFERENCE table_type_id = 18 unit_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_UnitTypes_name"),) class ClassificationType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.CLASSIFICATION_TYPE table_type = TableTypes.REFERENCE table_type_id = 19 class_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_ClassificationTypes_name"),) class ContactType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.CONTACT_TYPE table_type = TableTypes.REFERENCE table_type_id = 20 contact_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_ContactTypes_name"),) class SensorType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.SENSOR_TYPE table_type = TableTypes.REFERENCE table_type_id = 21 sensor_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_SensorTypes_name"),) class Privacy(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.PRIVACY table_type = TableTypes.REFERENCE table_type_id = 22 privacy_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) level = Column(Integer, nullable=False) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_Privacies_name"),) class DatafileType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.DATAFILE_TYPE table_type = TableTypes.REFERENCE table_type_id = 23 datafile_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_DatafileTypes_name"),) class MediaType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.MEDIA_TYPE table_type = TableTypes.REFERENCE table_type_id = 24 media_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_MediaTypes_name"),) class CommentType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.COMMENT_TYPE table_type = TableTypes.REFERENCE table_type_id = 25 comment_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_CommentTypes_name"),) class CommodityType(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.COMMODITY_TYPE table_type = TableTypes.REFERENCE table_type_id = 26 commodity_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_CommodityTypes_name"),) class ConfidenceLevel(BaseSpatiaLite, ReferenceRepr): __tablename__ = constants.CONFIDENCE_LEVEL table_type = TableTypes.REFERENCE table_type_id = 27 confidence_level_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), nullable=False, unique=True, ) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("name <> ''", name="ck_ConfidenceLevels_name"),) class Comment(BaseSpatiaLite, CommentMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.sensor_name = "N/A" __tablename__ = constants.COMMENT table_type = TableTypes.MEASUREMENT table_type_id = 32 comment_id = Column(UUIDType, primary_key=True, default=uuid4) platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id", onupdate="cascade")) time = Column(TIMESTAMP, nullable=False) comment_type_id = Column( UUIDType, ForeignKey("CommentTypes.comment_type_id", onupdate="cascade"), nullable=False ) content = Column(Text, nullable=False) source_id = Column( UUIDType, ForeignKey("Datafiles.datafile_id", onupdate="cascade"), nullable=False ) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade")) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("content <> ''", name="ck_Comments_content"),) class Media(BaseSpatiaLite, MediaMixin, ElevationPropertyMixin, LocationPropertyMixin): __tablename__ = constants.MEDIA table_type = TableTypes.MEASUREMENT table_type_id = 34 media_id = Column(UUIDType, primary_key=True, default=uuid4) platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id", onupdate="cascade")) subject_id = Column(UUIDType, ForeignKey("Platforms.platform_id", onupdate="cascade")) sensor_id = Column(UUIDType, ForeignKey("Sensors.sensor_id", onupdate="cascade")) _location = deferred( Column( "location", Geometry(geometry_type="POINT", srid=4326, management=True, spatial_index=False), ) ) _elevation = deferred(Column("elevation", REAL)) time = Column(TIMESTAMP) media_type_id = Column( UUIDType, ForeignKey("MediaTypes.media_type_id", onupdate="cascade"), nullable=False ) url = deferred(Column(String(150), nullable=False)) source_id = Column( UUIDType, ForeignKey("Datafiles.datafile_id", onupdate="cascade"), nullable=False ) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade")) remarks = Column(Text) created_date = Column(DateTime, default=datetime.utcnow) __table_args__ = (CheckConstraint("url <> ''", name="ck_Media_url"),) with op.batch_alter_table("Tasks", schema=None, copy_from=Task.__table__) as batch_op: batch_op.drop_constraint("ck_Tasks_name", type_="check") with op.batch_alter_table("Synonyms", schema=None, copy_from=Synonym.__table__) as batch_op: batch_op.drop_constraint("ck_Synonyms_table", type_="check") batch_op.drop_constraint("ck_Synonyms_synonym", type_="check") with op.batch_alter_table("Changes", schema=None, copy_from=Change.__table__) as batch_op: batch_op.drop_constraint("ck_Changes_user", type_="check") batch_op.drop_constraint("ck_Changes_reason", type_="check") with op.batch_alter_table("Logs", schema=None, copy_from=Log.__table__) as batch_op: batch_op.drop_constraint("ck_Logs_table", type_="check") with op.batch_alter_table( "PlatformTypes", schema=None, copy_from=PlatformType.__table__ ) as batch_op: batch_op.drop_constraint("ck_PlatformTypes_name", type_="check") with op.batch_alter_table( "Nationalities", schema=None, copy_from=Nationality.__table__ ) as batch_op: batch_op.drop_constraint("ck_Nationalities_name", type_="check") with op.batch_alter_table( "GeometryTypes", schema=None, copy_from=GeometryType.__table__ ) as batch_op: batch_op.drop_constraint("ck_GeometryTypes_name", type_="check") with op.batch_alter_table( "GeometrySubTypes", schema=None, copy_from=GeometrySubType.__table__ ) as batch_op: batch_op.drop_constraint("ck_GeometrySubTypes_name", type_="check") with op.batch_alter_table("Users", schema=None, copy_from=User.__table__) as batch_op: batch_op.drop_constraint("ck_Users_name", type_="check") with op.batch_alter_table("UnitTypes", schema=None, copy_from=UnitType.__table__) as batch_op: batch_op.drop_constraint("ck_UnitTypes_name", type_="check") with op.batch_alter_table( "ClassificationTypes", schema=None, copy_from=ClassificationType.__table__ ) as batch_op: batch_op.drop_constraint("ck_ClassificationTypes_name", type_="check") with op.batch_alter_table( "ContactTypes", schema=None, copy_from=ContactType.__table__ ) as batch_op: batch_op.drop_constraint("ck_ContactTypes_name", type_="check") with op.batch_alter_table( "SensorTypes", schema=None, copy_from=SensorType.__table__ ) as batch_op: batch_op.drop_constraint("ck_SensorTypes_name", type_="check") with op.batch_alter_table("Privacies", schema=None, copy_from=Privacy.__table__) as batch_op: batch_op.drop_constraint("ck_Privacies_name", type_="check") with op.batch_alter_table( "DatafileTypes", schema=None, copy_from=DatafileType.__table__ ) as batch_op: batch_op.drop_constraint("ck_DatafileTypes_name", type_="check") with op.batch_alter_table("MediaTypes", schema=None, copy_from=MediaType.__table__) as batch_op: batch_op.drop_constraint("ck_MediaTypes_name", type_="check") with op.batch_alter_table( "CommentTypes", schema=None, copy_from=CommentType.__table__ ) as batch_op: batch_op.drop_constraint("ck_CommentTypes_name", type_="check") with op.batch_alter_table( "CommodityTypes", schema=None, copy_from=CommodityType.__table__ ) as batch_op: batch_op.drop_constraint("ck_CommodityTypes_name", type_="check") with op.batch_alter_table( "ConfidenceLevels", schema=None, copy_from=ConfidenceLevel.__table__ ) as batch_op: batch_op.drop_constraint("ck_ConfidenceLevels_name", type_="check") with op.batch_alter_table("Comments", schema=None, copy_from=Comment.__table__) as batch_op: batch_op.drop_constraint("ck_Comments_content", type_="check") with op.batch_alter_table("Media", schema=None, copy_from=Media.__table__) as batch_op: batch_op.drop_constraint("ck_Media_url", type_="check")
1.867188
2
castellan/common/objects/key.py
vakwetu/castellan
0
12776225
# Copyright (c) 2015 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base Key Class This module defines the Key class. The Key class is the base class to represent all encryption keys. The basis for this class was copied from Java. """ from castellan.common.objects import managed_object import abc import six @six.add_metaclass(abc.ABCMeta) class Key(managed_object.ManagedObject): """Base class to represent all keys.""" @abc.abstractproperty def algorithm(self): """Returns the key's algorithm. Returns the key's algorithm. For example, "DSA" indicates that this key is a DSA key and "AES" indicates that this key is an AES key. """ pass @abc.abstractproperty def bit_length(self): """Returns the key's bit length. Returns the key's bit length. For example, for AES symmetric keys, this refers to the length of the key, and for RSA keys, this refers to the length of the modulus. """ pass
3.015625
3
play.py
davidschulte/alpha-thesis
0
12776226
from utils import * from chinese_checkers.TinyChineseCheckersGame import ChineseCheckersGame from chinese_checkers.tensorflow.ResNet import NNetWrapper as nn from chinese_checkers.Evaluator import Evaluator from MCTS import MCTS from chinese_checkers.InitializeAgent import InitializeAgent from chinese_checkers.GreedyAgent import GreedyAgent from chinese_checkers.TinyGUI import GUI import numpy as np args = dotdict({ 'numMCTSSims': 2, 'cpuct': 15, 'max_steps': 600, 'load_folder_file': ('checkpoint', 41), }) args2 = dotdict({ 'numMCTSSims': 200, 'cpuct': 15, 'max_steps': 600, 'load_folder_file': ('checkpoint', 12), }) game = ChineseCheckersGame() gui = GUI(1) nn1 = nn(game) nn1.load_first_checkpoint(args.load_folder_file[0], args.load_folder_file[1]) mcts1 = MCTS(game, nn1, args) # nn2 = nn(game) # nn2.load_first_checkpoint(args2.load_folder_file[0], args2.load_folder_file[1]) # mcts2 = MCTS(game, nn2, args2) actor = InitializeAgent(game) forward = GreedyAgent(game) evaluator = Evaluator(None, mcts1, mcts1, game, gui, True) scores_all = np.zeros((3, 3)) steps_all = 0 wrong_win_all = 0 for _ in range(20): scores, steps, wrong_win = evaluator.play_game(1, 1) for p in range(3): if scores[p] == 3: scores_all[p,0] += 1 elif scores[p] == 1: scores_all[p,1] += 1 else: scores_all[p,2] += 1 steps_all += steps wrong_win_all += wrong_win print(scores_all)
2
2
utils/load_custom_datasets.py
chansoopark98/MobileNet-SSD
2
12776227
from tensorflow.keras.utils import Sequence import os import pandas as pd import random import numpy as np class DataGenerator(Sequence): def __init__(self, path_args, batch_size: int, shuffle: bool, mode: str): self.x_img_path = './train/' self.x_label_path = './label/' self.mode = mode # train self.x_img = os.listdir(self.x_img_path) self.x_label = os.listdir(self.x_label_path) # TODO validation and test dataset self.x_list = [] self.y_list = [] self.load_dataset() self.batch_size = batch_size self.shuffle = shuffle self.on_epoch_end() def load_dataset(self): for i, j in enumerate(self.x_img): self.x_list.append(input_data) self.y_list.append(result_data.astype(np.float)) def get_data_len(self): return len(self.x_list), len(self.y_list) def __len__(self): return int(np.floor(len(self.x_list) / self.batch_size)) def on_epoch_end(self): self.indexes = np.arange(len(self.x_list)) if self.shuffle == True: np.random.shuffle(self.indexes) def get_input(self, index): return self.x_list[index * self.batch_size:(index + 1) * self.batch_size] def get_target(self, index): return self.y_list[index * self.batch_size:(index + 1) * self.batch_size] def __getitem__(self, i): # collect batch data start = i * self.batch_size stop = (i + 1) * self.batch_size data = [] y_data = [] for j in range(start, stop): data.append(self.x_list[j]) y_data.append(self.y_list[j]) # transpose list of lists batch = [np.stack(samples, axis=0) for samples in zip(*data)] y_batch = [np.stack(samples, axis=0) for samples in zip(*y_data)] # newer version of tf/keras want batch to be in tuple rather than list return tuple(batch), tuple(y_batch)
2.796875
3
evennia_extensions/character_extensions/storage_wrappers.py
dvoraen/arxcode
42
12776228
from evennia_extensions.object_extensions.storage_wrappers import StorageWrapper class RosterEntryWrapper(StorageWrapper): def get_storage(self, instance): return instance.obj.roster def create_new_storage(self, instance): raise AttributeError("This object does not have a RosterEntry to store that.") class CharacterSheetWrapper(StorageWrapper): def get_storage(self, instance): return instance.obj.charactersheet def create_new_storage(self, instance): from evennia_extensions.character_extensions.models import CharacterSheet return CharacterSheet.objects.create(objectdb=instance.obj) class CombatSettingsWrapper(StorageWrapper): def get_storage(self, instance): return instance.obj.charactercombatsettings def create_new_storage(self, instance): from evennia_extensions.character_extensions.models import ( CharacterCombatSettings, ) return CharacterCombatSettings.objects.create(objectdb=instance.obj) class MessengerSettingsWrapper(StorageWrapper): def get_storage(self, instance): return instance.obj.charactermessengersettings def create_new_storage(self, instance): from evennia_extensions.character_extensions.models import ( CharacterMessengerSettings, ) return CharacterMessengerSettings.objects.create(objectdb=instance.obj)
2.6875
3
tests/unit/test_translator.py
flatironhealth/aws-remediation-framework
22
12776229
import sys import os from importlib import reload from nose.tools import assert_equal, assert_true, assert_false from unittest import TestCase, mock from unittest.mock import MagicMock from resources.event_translator.main import translate_event class TestTranslator(TestCase): def test_sqs_SetQueueAttributes_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:<EMAIL>", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/abc@xyz.com", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-16T16:31:30Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-16T17:29:19Z", "eventSource": "sqs.amazonaws.com", "eventName": "SetQueueAttributes", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "console.amazonaws.com", "requestParameters": { "attributes": { "Policy": '{"Version":"2012-10-17", "Id":"sqspolicy", "Statement":[{"Sid":"Sid1576516421540", "Effect":"Allow", "Principal":"*", "Action":"SQS:SendMessage", "Resource":"arn:aws:sqs:us-east-1:123456789012:misconfiguration_maker-bad"}]}' }, "queueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/misconfiguration_maker-bad", }, "responseElements": None, "requestID": "8ab5b156-9e4f-5a82-91d4-e7275f60cd55", "eventID": "9b5808a9-7a05-429e-be70-6256b9a745af", "eventType": "AwsApiCall", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "https://sqs.us-east-1.amazonaws.com/123456789012/misconfiguration_maker-bad", "region": "us-east-1", "type": "sqs", } ], ) def test_sqs_CreateQueue_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1576513574938242000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1576513574938242000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-16T16:26:14Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-16T16:47:50Z", "eventSource": "sqs.amazonaws.com", "eventName": "CreateQueue", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.36 (go1.13.3; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "queueName": "remediator-resource-queue", "tags": { "App": "remediator", "system": "aws-remediation", "team": "security", }, "attribute": { "ReceiveMessageWaitTimeSeconds": "10", "DelaySeconds": "90", "MessageRetentionPeriod": "86400", "MaximumMessageSize": "2048", "VisibilityTimeout": "30", }, }, "responseElements": { "queueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/remediator-resource-queue" }, "requestID": "80c37425-0ef7-587d-ab6e-2254b981ad47", "eventID": "13c8a1f5-4b23-470b-9dfb-51479473287c", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "https://sqs.us-east-1.amazonaws.com/123456789012/remediator-resource-queue", "region": "us-east-1", "type": "sqs", } ], ) def test_sqs_AddPermission_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1576522229953466000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1576522229953466000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-16T18:50:30Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-16T18:51:15Z", "eventSource": "sqs.amazonaws.com", "eventName": "AddPermission", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-cli/1.16.286 Python/3.7.5 Darwin/18.7.0 botocore/1.13.25", "requestParameters": { "actions": ["SendMessage"], "aWSAccountIds": ["123456789012"], "label": "0", "queueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/misconfiguration_maker-bad", }, "responseElements": None, "requestID": "e1ede60f-0cd7-52f2-9520-b07ed8b4b30c", "eventID": "a8bdb7fb-66b0-45ed-a5e4-d13f1e91d26b", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "https://sqs.us-east-1.amazonaws.com/123456789012/misconfiguration_maker-bad", "region": "us-east-1", "type": "sqs", } ], ) def test_s3_PutBucketPolicy_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1575572476274064000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1575572476274064000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-05T19:01:16Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-05T19:02:08Z", "eventSource": "s3.amazonaws.com", "eventName": "PutBucketPolicy", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "[aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)]", "requestParameters": { "bucketName": "wkykdxpwwr67imj4-misconfig-maker", "bucketPolicy": { "Version": "2012-10-17", "Statement": [ { "Principal": "*", "Action": ["s3:GetObjectAcl"], "Effect": "Allow", "Resource": [ "arn:aws:s3:::wkykdxpwwr67imj4-misconfig-maker/*" ], } ], }, "host": ["wkykdxpwwr67imj4-misconfig-maker.s3.amazonaws.com"], "policy": [""], }, "responseElements": None, "additionalEventData": { "SignatureVersion": "SigV4", "CipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", "AuthenticationMethod": "AuthHeader", }, "requestID": "0E1152F10A561447", "eventID": "bc81ed34-b1d0-4a6c-987f-59f584db2173", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "wkykdxpwwr67imj4-misconfig-maker", "region": "us-east-1", "type": "s3_bucket", } ], ) def test_s3_PutBucketAcl_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:user-a", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/user-a", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "false", "creationDate": "2019-12-09T16:18:23Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-09T16:26:47Z", "eventSource": "s3.amazonaws.com", "eventName": "PutBucketAcl", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "[S3Console/0.4, aws-internal/3 aws-sdk-java/1.11.666 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 OpenJDK_64-Bit_Server_VM/25.232-b09 java/1.8.0_232 vendor/Oracle_Corporation]", "requestParameters": { "bucketName": "bucket-name", "AccessControlPolicy": { "AccessControlList": { "Grant": [ { "Grantee": { "xsi:type": "CanonicalUser", "DisplayName": "aws+account-name", "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance", "ID": "abcdefghijklmnop1234567890", }, "Permission": "FULL_CONTROL", }, { "Grantee": { "xsi:type": "Group", "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance", "URI": "http://acs.amazonaws.com/groups/s3/LogDelivery", }, "Permission": "READ_ACP", }, { "Grantee": { "xsi:type": "Group", "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance", "URI": "http://acs.amazonaws.com/groups/s3/LogDelivery", }, "Permission": "WRITE", }, ] }, "xmlns": "http://s3.amazonaws.com/doc/2006-03-01/", "Owner": { "DisplayName": "aws+account-name", "ID": "abcdefghijklmnop1234567890", }, }, "host": ["s3.amazonaws.com"], "acl": [""], }, "responseElements": None, "additionalEventData": { "SignatureVersion": "SigV4", "CipherSuite": "ECDHE-RSA-AES128-SHA", "AuthenticationMethod": "AuthHeader", "vpcEndpointId": "vpce-example", }, "requestID": "9C9E4CB44162228C", "eventID": "0655c8f0-0130-4659-acc0-e29a65aca2e5", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", "vpcEndpointId": "vpce-example", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "bucket-name", "region": "us-east-1", "type": "s3_bucket", } ], ) def test_s3_CreateBucket_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1577212321281084000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1577212321281084000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-24T18:32:01Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-24T18:32:23Z", "eventSource": "s3.amazonaws.com", "eventName": "CreateBucket", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "[aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)]", "requestParameters": { "x-amz-acl": ["private"], "host": ["o3hxotcqp2u9mbtl-misconfig-maker.s3.amazonaws.com"], "bucketName": "o3hxotcqp2u9mbtl-misconfig-maker", }, "responseElements": None, "additionalEventData": { "SignatureVersion": "SigV4", "CipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", "AuthenticationMethod": "AuthHeader", }, "requestID": "85C95550E930607C", "eventID": "5cc82958-1953-4945-aab5-bc114e920c33", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "o3hxotcqp2u9mbtl-misconfig-maker", "region": "us-east-1", "type": "s3_bucket", } ], ) def test_ec2_ModifyImageAttribute_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1234567890123456789", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1234567890123456789", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-05T23:00:31Z", }, }, }, "eventTime": "2019-12-05T23:05:15Z", "eventSource": "ec2.amazonaws.com", "eventName": "ModifyImageAttribute", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "imageId": "ami-1234a", "launchPermission": { "remove": {"items": [{"userId": "000000000000"}]} }, "attributeType": "launchPermission", }, "responseElements": {"_return": True}, "requestID": "88cf05ef-c844-4f75-8456-391c388cade0", "eventID": "b4469d10-a068-41eb-8d3f-ca36e5e8d06b", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "ami-1234a", "region": "us-east-1", "type": "ami", } ], ) def test_ec2_ModifySnapshotAttribute_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1234567890123456789", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1234567890123456789", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-05T23:00:31Z", }, }, }, "eventTime": "2019-12-05T23:05:15Z", "eventSource": "ec2.amazonaws.com", "eventName": "ModifySnapshotAttribute", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "snapshotId": "snap-abc123", "createVolumePermission": { "remove": {"items": [{"userId": "000000000000"}]} }, "attributeType": "CREATE_VOLUME_PERMISSION", }, "responseElements": { "requestId": "8009c9ff-d63e-4e0d-9d71-cd23c35cb649", "_return": True, }, "requestID": "8009c9ff-d63e-4e0d-9d71-cd23c35cb649", "eventID": "19e65b1e-2667-42da-82ff-84e8e032c41a", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "snap-abc123", "region": "us-east-1", "type": "ebs_snapshot", } ], ) def test_rds_ModifyDBSnapshotAttribute_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:<EMAIL>", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/<EMAIL>", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-04T21:52:47Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-04T22:27:29Z", "eventSource": "rds.amazonaws.com", "eventName": "ModifyDBSnapshotAttribute", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "console.amazonaws.com", "requestParameters": { "dBSnapshotIdentifier": "misconfiguration-maker", "attributeName": "restore", "valuesToAdd": ["000000000000"], }, "responseElements": { "dBSnapshotIdentifier": "misconfiguration-maker", "dBSnapshotAttributes": [ { "attributeName": "restore", "attributeValues": ["000000000000"], } ], }, "requestID": "4e2915f3-c8c9-47d1-a0c5-ac1d3d709753", "eventID": "19f5a1b0-c17e-4d1e-af69-bc42628dcde9", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "misconfiguration-maker", "region": "us-east-1", "type": "rds_snapshot", } ], ) def test_rds_ModifyDBInstance_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:role-name", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/role-name", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "false", "creationDate": "2019-11-14T04:59:24Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-11-14T04:59:26Z", "eventSource": "rds.amazonaws.com", "eventName": "ModifyDBInstance", "awsRegion": "us-east-1", "sourceIPAddress": "172.16.58.3", "userAgent": "Boto3/1.9.221 Python/3.6.9 Linux/4.14.138-99.102.amzn2.x86_64 exec-env/AWS_Lambda_python3.6 Botocore/1.12.221", "requestParameters": { "allowMajorVersionUpgrade": False, "applyImmediately": True, "publiclyAccessible": False, "dBInstanceIdentifier": "dbname", }, "responseElements": { "dBInstanceArn": "arn:aws:rds:us-east-1:123456789012:db:dbname", "storageEncrypted": False, "preferredBackupWindow": "04:27-04:57", "preferredMaintenanceWindow": "sat:09:34-sat:10:04", "backupRetentionPeriod": 7, "allocatedStorage": 20, "storageType": "gp2", "engineVersion": "5.7.22", "dbInstancePort": 0, "associatedRoles": [], "optionGroupMemberships": [ {"status": "in-sync", "optionGroupName": "default:mysql-5-7"} ], "dBParameterGroups": [ { "dBParameterGroupName": "default.mysql5.7", "parameterApplyStatus": "in-sync", } ], "instanceCreateTime": "Jul 17, 2019 7:31:39 PM", "maxAllocatedStorage": 1000, "monitoringInterval": 0, "dBInstanceClass": "db.t2.micro", "readReplicaDBInstanceIdentifiers": [], "dBSubnetGroup": { "dBSubnetGroupName": "default", "dBSubnetGroupDescription": "default", "subnets": [ { "subnetAvailabilityZone": {"name": "us-east-1b"}, "subnetIdentifier": "subnet-abcd", "subnetStatus": "Active", }, { "subnetAvailabilityZone": {"name": "us-east-1a"}, "subnetIdentifier": "subnet-abcd", "subnetStatus": "Active", }, { "subnetAvailabilityZone": {"name": "us-east-1c"}, "subnetIdentifier": "subnet-abcd", "subnetStatus": "Active", }, { "subnetAvailabilityZone": {"name": "us-east-1f"}, "subnetIdentifier": "subnet-abcd", "subnetStatus": "Active", }, { "subnetAvailabilityZone": {"name": "us-east-1d"}, "subnetIdentifier": "subnet-abcd", "subnetStatus": "Active", }, { "subnetAvailabilityZone": {"name": "us-east-1e"}, "subnetIdentifier": "subnet-abcd", "subnetStatus": "Active", }, ], "vpcId": "vpc-abcd", "subnetGroupStatus": "Complete", }, "masterUsername": "admin", "multiAZ": False, "autoMinorVersionUpgrade": True, "latestRestorableTime": "Nov 14, 2019 4:55:00 AM", "engine": "mysql", "httpEndpointEnabled": False, "cACertificateIdentifier": "rds-ca-2015", "dbiResourceId": "db-abcd", "deletionProtection": False, "endpoint": { "address": "dbname.xyz.us-east-1.rds.amazonaws.com", "port": 3306, "hostedZoneId": "ABCDEFGHIJKLMN", }, "dBSecurityGroups": [], "pendingModifiedValues": {}, "dBInstanceStatus": "available", "publiclyAccessible": True, "domainMemberships": [], "copyTagsToSnapshot": True, "dBInstanceIdentifier": "dbname", "licenseModel": "general-public-license", "iAMDatabaseAuthenticationEnabled": False, "performanceInsightsEnabled": False, "vpcSecurityGroups": [ {"status": "active", "vpcSecurityGroupId": "sg-abcd"} ], "dbname.xyz.us-east-1.rds.amazonaws.com"dbname", "availabilityZone": "us-east-1d", }, "requestID": "3ae00dda-20a9-45c7-b464-bf5b46ac97e7", "eventID": "f15b2ee4-6a74-425a-8629-e91f9e6fcc3a", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "dbname", "region": "us-east-1", "type": "rds", } ], ) def test_rds_CreateDBInstance_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1575491847268719000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1575491847268719000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-04T20:37:27Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, }, }, "eventTime": "2019-12-04T21:14:11Z", "eventSource": "rds.amazonaws.com", "eventName": "CreateDBInstance", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "dbname.xyz.us-east-1.rds.amazonaws.com", "dBInstanceIdentifier": "dbname", "allocatedStorage": 5, "dBInstanceClass": "db.t2.micro", "engine": "mysql", "masterUsername": "foo", "masterUserPassword": "****", "dBParameterGroupName": "default.mysql5.7", "backupRetentionPeriod": 0, "engineVersion": "5.7", "autoMinorVersionUpgrade": True, "publiclyAccessible": False, "tags": [ {"key": "team", "value": "security"}, {"key": "Name", "value": "misconfiguration_maker"}, {"key": "App", "value": "misconfiguration_maker"}, {"key": "system", "value": "aws-remediation"}, ], "storageEncrypted": False, "copyTagsToSnapshot": False, "deletionProtection": False, }, "responseElements": { "dBInstanceIdentifier": "dbname", "dBInstanceClass": "db.t2.micro", "engine": "mysql", "dBInstanceStatus": "creating", "masterUsername": "foo", "dbname.xyz.us-east-1.rds.amazonaws.com", "allocatedStorage": 5, "preferredBackupWindow": "04:37-05:07", "backupRetentionPeriod": 0, "dBSecurityGroups": [], "vpcSecurityGroups": [ {"vpcSecurityGroupId": "sg-abcd", "status": "active"} ], "dBParameterGroups": [ { "dBParameterGroupName": "default.mysql5.7", "parameterApplyStatus": "in-sync", } ], "dBSubnetGroup": { "dBSubnetGroupName": "default", "dBSubnetGroupDescription": "default", "vpcId": "vpc-abcd", "subnetGroupStatus": "Complete", "subnets": [ { "subnetIdentifier": "subnet-abcd", "subnetAvailabilityZone": {"name": "us-east-1b"}, "subnetOutpost": {}, "subnetStatus": "Active", }, { "subnetIdentifier": "subnet-abcd", "subnetAvailabilityZone": {"name": "us-east-1a"}, "subnetOutpost": {}, "subnetStatus": "Active", }, { "subnetIdentifier": "subnet-abcd", "subnetAvailabilityZone": {"name": "us-east-1c"}, "subnetOutpost": {}, "subnetStatus": "Active", }, { "subnetIdentifier": "subnet-abcd", "subnetAvailabilityZone": {"name": "us-east-1f"}, "subnetOutpost": {}, "subnetStatus": "Active", }, { "subnetIdentifier": "subnet-abcd", "subnetAvailabilityZone": {"name": "us-east-1d"}, "subnetOutpost": {}, "subnetStatus": "Active", }, { "subnetIdentifier": "subnet-abcd", "subnetAvailabilityZone": {"name": "us-east-1e"}, "subnetOutpost": {}, "subnetStatus": "Active", }, ], }, "preferredMaintenanceWindow": "mon:08:13-mon:08:43", "pendingModifiedValues": {"masterUserPassword": "****"}, "multiAZ": False, "engineVersion": "5.7.22", "autoMinorVersionUpgrade": True, "readReplicaDBInstanceIdentifiers": [], "licenseModel": "general-public-license", "optionGroupMemberships": [ {"optionGroupName": "default:mysql-5-7", "status": "in-sync"} ], "publiclyAccessible": False, "storageType": "gp2", "dbInstancePort": 0, "storageEncrypted": False, "dbiResourceId": "db-abcd", "cACertificateIdentifier": "rds-ca-2015", "domainMemberships": [], "copyTagsToSnapshot": False, "monitoringInterval": 0, "dBInstanceArn": "arn:aws:rds:us-east-1:123456789012:db:dbname", "iAMDatabaseAuthenticationEnabled": False, "performanceInsightsEnabled": False, "deletionProtection": False, "associatedRoles": [], "httpEndpointEnabled": False, }, "requestID": "5243cd91-8200-4f75-bfdf-73b0838cfe70", "eventID": "9899c3f4-5f18-4e91-8bbf-6748f1f0be67", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "dbname", "delay": 900, "region": "us-east-1", "type": "rds", } ], ) def test_redshift_ModifyCluster_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:role-name-123456789012", "arn": "arn:aws:sts::123456789012:assumed-role/local_remediator/role-name-123456789012", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-05T20:46:09Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/local_remediator", "accountId": "123456789012", "userName": "local_remediator", }, }, }, "eventTime": "2019-12-05T20:46:13Z", "eventSource": "redshift.amazonaws.com", "eventName": "ModifyCluster", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "Boto3/1.10.25 Python/3.7.5 Darwin/18.7.0 Botocore/1.13.25", "requestParameters": { "clusterIdentifier": "misconfig-maker", "masterUserPassword": "****", "encrypted": True, }, "responseElements": None, "requestID": "469e7fef-17a0-11ea-9532-f3c8251db4e6", "eventID": "754f30bf-a02c-49ab-9523-14c40d872979", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "misconfig-maker", "delay": 900, "region": "us-east-1", "type": "redshift", } ], ) def test_redshift_CreateCluster_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1577208946667274000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1577208946667274000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-24T17:35:47Z", }, "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-<PASSWORD>", }, }, }, "eventTime": "2019-12-24T17:36:59Z", "eventSource": "redshift.amazonaws.com", "eventName": "CreateCluster", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "clusterIdentifier": "misconfig-maker", "allowVersionUpgrade": True, "clusterVersion": "1.0", "tags": [ {"value": "misconfiguration_maker", "key": "App"}, {"value": "security", "key": "team"}, {"value": "misconfiguration_maker", "key": "Name"}, {"value": "aws-remediation", "key": "system"}, ], "masterUsername": "foo", "masterUserPassword": "****", "automatedSnapshotRetentionPeriod": 1, "port": 5439, "dbname.xyz.us-east-1.rds.amazonaws.com", "clusterType": "single-node", "nodeType": "dc1.large", "publiclyAccessible": True, }, "responseElements": { "nextMaintenanceWindowStartTime": "Dec 28, 2019 8:00:00 AM", "nodeType": "dc1.large", "clusterAvailabilityStatus": "Modifying", "preferredMaintenanceWindow": "sat:08:00-sat:08:30", "manualSnapshotRetentionPeriod": -1, "clusterStatus": "creating", "deferredMaintenanceWindows": [], "vpcId": "vpc-abcd", "enhancedVpcRouting": False, "masterUsername": "foo", "clusterSecurityGroups": [], "pendingModifiedValues": {"masterUserPassword": "****"}, "maintenanceTrackName": "current", "dbname.xyz.us-east-1.rds.amazonaws.com", "clusterVersion": "1.0", "encrypted": False, "publiclyAccessible": True, "tags": [ {"value": "misconfiguration_maker", "key": "App"}, {"value": "aws-remediation", "key": "system"}, {"value": "security", "key": "team"}, {"value": "misconfiguration_maker", "key": "Name"}, ], "clusterParameterGroups": [ { "parameterGroupName": "default.redshift-1.0", "parameterApplyStatus": "in-sync", } ], "allowVersionUpgrade": True, "automatedSnapshotRetentionPeriod": 1, "numberOfNodes": 1, "vpcSecurityGroups": [ {"status": "active", "vpcSecurityGroupId": "sg-abcd"} ], "iamRoles": [], "clusterIdentifier": "misconfig-maker", "clusterSubnetGroupName": "default", }, "requestID": "fc2e9ff2-2673-11ea-9caa-c956bec1ce87", "eventID": "8357728a-3df4-4604-aa5f-6ec57ead3371", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "misconfig-maker", "delay": 900, "region": "us-east-1", "type": "redshift", } ], ) def test_ec2_RunInstances_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1234567890123456789", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1234567890123456789", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-19T15:22:58Z", }, }, }, "eventTime": "2019-12-19T15:37:58Z", "eventSource": "ec2.amazonaws.com", "eventName": "RunInstances", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "instancesSet": { "items": [ { "imageId": "ami-1234", "minCount": 1, "maxCount": 1, } ] }, "instanceType": "t2.micro", "blockDeviceMapping": {}, "monitoring": {"enabled": False}, "disableApiTermination": False, "iamInstanceProfile": {}, "ebsOptimized": False, "tagSpecificationSet": { "items": [ { "resourceType": "instance", "tags": [ {"key": "App", "value": "misconfiguration_maker"}, {"key": "Name", "value": "misconfiguration_maker"}, {"key": "system", "value": "aws-remediation"}, {"key": "team", "value": "security"}, ], } ] }, }, "responseElements": { "requestId": "da2549b5-1cfa-4312-a9c5-2343cf561dd9", "reservationId": "r-abcd", "ownerId": "123456789012", "groupSet": {}, "instancesSet": { "items": [ { "instanceId": "i-abcd", "imageId": "ami-1234", "instanceState": {"code": 0, "name": "pending"}, "privateDnsName": "ip-192-168-1-1.ec2.internal", "amiLaunchIndex": 0, "productCodes": {}, "instanceType": "t2.micro", "launchTime": 1576769878000, "placement": { "availabilityZone": "us-east-1d", "tenancy": "default", }, "monitoring": {"state": "disabled"}, "subnetId": "subnet-abcd", "vpcId": "vpc-abcd", "privateIpAddress": "172.16.58.3", "stateReason": { "code": "pending", "message": "pending", }, "architecture": "x86_64", "rootDeviceType": "ebs", "rootDeviceName": "/dev/sda1", "blockDeviceMapping": {}, "virtualizationType": "hvm", "hypervisor": "xen", "tagSet": { "items": [ {"key": "team", "value": "security"}, { "key": "Name", "value": "misconfiguration_maker", }, {"key": "system", "value": "aws-remediation"}, { "key": "App", "value": "misconfiguration_maker", }, ] }, "groupSet": { "items": [ { "groupId": "sg-abcd", "groupName": "default", } ] }, "sourceDestCheck": True, "networkInterfaceSet": { "items": [ { "networkInterfaceId": "eni-abcd", "subnetId": "subnet-abcd", "vpcId": "vpc-abcd", "ownerId": "123456789012", "status": "in-use", "macAddress": "0e:89:82:29:40:d9", "privateIpAddress": "172.16.58.3", "privateDnsName": "ip-192-168-1-1.ec2.internal", "sourceDestCheck": True, "interfaceType": "interface", "groupSet": { "items": [ { "groupId": "sg-abcd", "groupName": "default", } ] }, "attachment": { "attachmentId": "eni-abcd", "deviceIndex": 0, "status": "attaching", "attachTime": 1576769878000, "deleteOnTermination": True, }, "privateIpAddressesSet": { "item": [ { "privateIpAddress": "172.16.58.3", "privateDnsName": "ip-192-168-1-1.ec2.internal", "primary": True, } ] }, "ipv6AddressesSet": {}, "tagSet": {}, } ] }, "ebsOptimized": False, "cpuOptions": {"coreCount": 1, "threadsPerCore": 1}, "capacityReservationSpecification": { "capacityReservationPreference": "open" }, "enclaveOptions": {"enabled": False}, "metadataOptions": { "state": "pending", "httpTokens": "optional", "httpPutResponseHopLimit": 1, "httpEndpoint": "enabled", }, } ] }, }, "requestID": "da2549b5-1cfa-4312-a9c5-2343cf561dd9", "eventID": "4fb65f01-3889-4ecf-8a79-65fda2efe348", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "i-abcd", "region": "us-east-1", "type": "ec2", } ], ) def test_ec2_ModifyInstanceMetadataOptions_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:role-name", "arn": "arn:aws:sts::123456789012:assumed-role/local_remediator/role-name", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/local_remediator", "accountId": "123456789012", "userName": "local_remediator", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-19T18:17:30Z", }, }, }, "eventTime": "2019-12-19T18:17:30Z", "eventSource": "ec2.amazonaws.com", "eventName": "ModifyInstanceMetadataOptions", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "Boto3/1.10.25 Python/3.7.5 Darwin/18.7.0 Botocore/1.13.25", "errorCode": "Client.InvalidParameterValue", "errorMessage": "The HttpEndpoint is not set to 'enabled' in this request. To specify a value for HttpTokens, set HttpEndpoint to 'enabled'.", "requestParameters": { "ModifyInstanceMetadataOptionsRequest": { "HttpTokens": "required", "InstanceId": "i-abcd", } }, "responseElements": None, "requestID": "9ed413bf-ff0d-485a-a245-a7a5f5b86627", "eventID": "c844317a-ba80-465e-aec9-65246f16062a", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "i-abcd", "region": "us-east-1", "type": "ec2", } ], ) def test_ec2_CreateSecurityGroup_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1577212321281084000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1577212321281084000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-24T18:32:01Z", }, }, }, "eventTime": "2019-12-24T19:12:56Z", "eventSource": "ec2.amazonaws.com", "eventName": "CreateSecurityGroup", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "groupName": "misconfiguration_maker", "groupDescription": "Created by misconfiguration maker for testing", }, "responseElements": { "requestId": "04b3590c-9bd0-438d-ac08-fc051183fc7a", "_return": True, "groupId": "sg-abcd", }, "requestID": "04b3590c-9bd0-438d-ac08-fc051183fc7a", "eventID": "fb84b07f-d850-47bd-8845-416d70417cc5", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "sg-abcd", "region": "us-east-1", "type": "security_group", } ], ) def test_ec2_AuthorizeSecurityGroupIngress_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1577212321281084000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1577212321281084000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-24T18:32:01Z", }, }, }, "eventTime": "2019-12-24T19:12:59Z", "eventSource": "ec2.amazonaws.com", "eventName": "AuthorizeSecurityGroupIngress", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "groupId": "sg-abcd", "ipPermissions": { "items": [ { "ipProtocol": "tcp", "fromPort": 443, "toPort": 443, "groups": {}, "ipRanges": {"items": [{"cidrIp": "0.0.0.0/0"}]}, "ipv6Ranges": {}, "prefixListIds": {}, } ] }, }, "responseElements": { "requestId": "3deb0532-605a-4b45-89cc-03ffa8362e41", "_return": True, }, "requestID": "3deb0532-605a-4b45-89cc-03ffa8362e41", "eventID": "717b1b7e-e94f-4283-adff-e822c1b2e153", "eventType": "AwsApiCall", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "sg-abcd", "region": "us-east-1", "type": "security_group", } ], ) def test_elb_RegisterInstancesWithLoadBalancer_translation(self): event = { "version": "0", "id": "c2a207fb-cb90-7068-d4a9-6240d2cdd127", "detail-type": "AWS API Call via CloudTrail", "source": "aws.sqs", "account": "123456789012", "time": "2019-12-16T17:29:19Z", "region": "us-east-1", "resources": [], "detail": { "eventVersion": "1.05", "userIdentity": { "type": "AssumedRole", "principalId": "ABCDEFGHIJKLMNOPQRSTU:1577386646470489000", "arn": "arn:aws:sts::123456789012:assumed-role/role-name/1577386646470489000", "accountId": "123456789012", "accessKeyId": "<KEY>", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "ABCDEFGHIJKLMNOPQRSTU", "arn": "arn:aws:iam::123456789012:role/role-name", "accountId": "123456789012", "userName": "role-name", }, "webIdFederationData": {}, "attributes": { "mfaAuthenticated": "true", "creationDate": "2019-12-26T18:57:26Z", }, }, }, "eventTime": "2019-12-26T19:45:07Z", "eventSource": "elasticloadbalancing.amazonaws.com", "eventName": "RegisterInstancesWithLoadBalancer", "awsRegion": "us-east-1", "sourceIPAddress": "1.1.1.1", "userAgent": "aws-sdk-go/1.25.38 (go1.13.4; darwin; amd64) APN/1.0 HashiCorp/1.0 Terraform/0.12.16 (+https://www.terraform.io)", "requestParameters": { "loadBalancerName": "misconfiguration-maker", "instances": [{"instanceId": "i-abcd"}], }, "responseElements": { "instances": [{"instanceId": "i-abcd"}] }, "requestID": "a896a473-55d0-4ece-b002-bfd4d60854e6", "eventID": "403f2d60-bc4f-4748-8738-1874f1d5d4a9", "eventType": "AwsApiCall", "apiVersion": "2012-06-01", "recipientAccountId": "123456789012", }, } assert_equal( translate_event(event), [ { "account": "123456789012", "id": "misconfiguration-maker", "region": "us-east-1", "type": "elb", } ], )
2.28125
2
blog/views/user.py
maxis1314/pyutils
2
12776230
# coding: utf-8 from flask import Flask,request,session,g,redirect,url_for,Blueprint from flask import abort,render_template,flash from helpers import getAvatar import config #from .base import BaseHandler import base config = config.rec() user = Blueprint('user', __name__) #class LoginHandler(BaseHandler): @user.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'GET': if base.isAdmin(): return redirect("/") else: return render_template("login.html",getAvatar=getAvatar) username = request.form['username'] password = request.form['password'] if base.userAuth(username, password): base.currentUserSet(username) return redirect("/") else: return redirect("/login") #class LogoutHandler(BaseHandler): @user.route('/logout') def logout(): session.pop('user',None) return redirect('/login')
2.3125
2
lesson16n3_projects/wcsc/auto_gen/code/states1/reply_agree.py
muzudho/py-state-machine-practice
0
12776231
class ReplyAgreeState(): def update(self, req): # TODO 入力 msg = "" # 分岐 if msg == 'start': return ['Game'] else: raise ValueError("Unexpected condition")
2.609375
3
display-patterns/Hierarchies/Pruebas/A62Tree_Map_Matplotlib.py
cimat/data-visualization-patterns
9
12776232
<reponame>cimat/data-visualization-patterns<gh_stars>1-10 import pylab import random import matplotlib.pyplot as plt from matplotlib.patches import Rectangle class Treemap: def __init__(self, tree, iter_method, size_method, color_method): self.ax = pylab.subplot(111,aspect='equal') pylab.subplots_adjust(left=0, right=1, top=1, bottom=0) self.ax.set_xticks([]) self.ax.set_yticks([]) self.size_method = size_method self.iter_method = iter_method self.color_method = color_method self.addnode(tree) def addnode(self, node, lower=[0,0], upper=[1,1], axis=0): axis = axis % 2 self.draw_rectangle(lower, upper, node) width = upper[axis] - lower[axis] try: for child in self.iter_method(node): upper[axis] = lower[axis] + (width * float(size(child))) / size(node) self.addnode(child, list(lower), list(upper), axis + 1) lower[axis] = upper[axis] except TypeError: pass def draw_rectangle(self, lower, upper, node): r = Rectangle( lower, upper[0]-lower[0], upper[1] - lower[1], edgecolor='k', facecolor= self.color_method(node)) self.ax.add_patch(r) if __name__ == '__main__': size_cache = {} def size(thing): if isinstance(thing, int): return thing if thing in size_cache: return size_cache[thing] else: size_cache[thing] = reduce(int.__add__, [size(x) for x in thing]) return size_cache[thing] def random_color(thing): return (random.random(),random.random(),random.random()) tree=((2,12),((4,(1,2)),(8,(1,2)))) Treemap(tree, iter, size, random_color) plt.show()
3.03125
3
service2/application/routes.py
K1610174/Multi-service-QA-SFIA2
0
12776233
<reponame>K1610174/Multi-service-QA-SFIA2 from flask import redirect, url_for, Response, request from application import app import requests import random @app.route('/') @app.route('/color', methods=['GET']) def color(): color_list=["red","orange","yellow","green","blue","indigo","violet","ivory","gray","black","pink"] color = random.choice(color_list) return Response(color, mimetype='text/plain')
2.796875
3
Python/ad63.py
AungWinnHtut/CStutorial
0
12776234
# Guess password and output the score chocolate = 2 playerlives = 1 playername = "Aung" # this loop clears the screen for i in range(1, 35): print() bonus = 0 numbercorrect = 0 # the player must try to guess the password print("Now you must ener each letter that you remember ") print("You will be given 3 times") # add code here for a while loop using that counts from 1 to 3, so player has 3 guesses: i = 0 while i < 3: i = i + 1 letter = input("Try number " + str(i)+" : ") if letter == "A" or letter == "R" or letter == "T": numbercorrect = numbercorrect + 1 print("CORRECT - welldone") else: print("Wrong - sorry") guess = input( "NOW try and guess the password **** - the clue is in this line four times. Use the letters you were gives to help : ") if guess == "star": print("You are a star - you have opened the treasure chest of sweets and earned 1000 points") bonus = 1000 score = (chocolate * 50) + (playerlives * 60) + bonus # add code here to output playername # add code here to output the number of bars of chocolate the player has # add code here to output number of lives he player has # add code here to output number of bonus points the player has # add code here to output the player's score print("Player Name : " + playername) print("Total Chocolate Bar = " + str(chocolate)) print("Playerlives = " + str(playerlives)) print("Bonus point = " + str(bonus)) print("Player's Score = " + str(score)) # end
4.125
4
startleft/config/paths.py
iriusrisk/startleft
9
12776235
import os default_cf_mapping_files = [os.path.dirname(__file__) + '/default-cloudformation-mapping.yaml']
1.304688
1
2_writeups/3_robot_exploitation/tutorial7/example5.py
araujorayza/robot_hacking_manual
141
12776236
#!/usr/bin/env python from pwn import * import os # Exploiting vulnerable code narnia1.c: # # #include <stdio.h> # # int main(){ # int (*ret)(); # # if(getenv("EGG")==NULL){ # printf("Give me something to execute at the env-variable EGG\n"); # exit(1); # } # # printf("Trying to execute EGG!\n"); # ret = getenv("EGG"); # ret(); # # return 0; # } # Define the context of the working machine context(arch='amd64', os='linux') # Compile the binary log.info("Compiling the binary narnia1_local") os.system('gcc narnia1.c -g -o narnia1_local -fno-stack-protector -z execstack') # os.system('gcc narnia1.c -g -m32 -o narnia1_local -fno-stack-protector -z execstack') # Get a simple shellcode log.info("Putting together simple shellcode") shellcode = asm(shellcraft.amd64.sh(), arch='amd64') # print(shellcode) log.info("Introduce shellcode in EGG env. variable") os.environ["EGG"] = shellcode log.info("Launching narnia1_local") sh = process('narnia1_local') sh.interactive()
2.84375
3
utils/georeferencer.py
DominikSpiljak/gis-backend
0
12776237
from geopy.geocoders import ArcGIS import pyproj class Georeferencer: def __init__(self, crs): self.georeferencer = ArcGIS() self.transformer = pyproj.Transformer.from_crs("EPSG:4326", f"EPSG:{crs}") def georeference(self, addresses): result = {} for address in addresses: location = self.georeferencer.geocode(address) x, y = self.transformer.transform(location.latitude, location.longitude) result[address] = {"x": x, "y": y} return result if __name__ == "__main__": refer = Georeferencer() print( refer.georeference( [ "Špičkovina", "Trg <NAME>", ] ) )
3.171875
3
metaflow/plugins/aws/aws_utils.py
Netflix/metaflow
5,821
12776238
<gh_stars>1000+ import re def get_docker_registry(image_uri): """ Explanation: (.+?(?:[:.].+?)\/)? - [GROUP 0] REGISTRY .+? - A registry must start with at least one character (?:[:.].+?)\/ - A registry must have ":" or "." and end with "/" ? - Make a registry optional (.*?) - [GROUP 1] REPOSITORY .*? - Get repository name until separator (?:[@:])? - SEPARATOR ?: - Don't capture separator [@:] - The separator must be either "@" or ":" ? - The separator is optional ((?<=[@:]).*)? - [GROUP 2] TAG / DIGEST (?<=[@:]) - A tag / digest must be preceeded by "@" or ":" .* - Capture rest of tag / digest ? - A tag / digest is optional Examples: image - None - image - None example/image - None - example/image - None example/image:tag - None - example/image - tag example.domain.com/example/image:tag - example.domain.com/ - example/image - tag 192.168.127.12:123/example/image:tag - 192.168.127.12:123/ - example/image - tag example.domain.com/example/image@sha256:45b23dee0 - example.domain.com/ - example/image - sha256:45b23dee0 """ pattern = re.compile(r"^(.+?(?:[:.].+?)\/)?(.*?)(?:[@:])?((?<=[@:]).*)?$") registry, repository, tag = pattern.match(image_uri).groups() if registry is not None: registry = registry.rstrip("/") return registry
2.90625
3
tests/test_hashlib_scrypt.py
isabella232/pynacl
0
12776239
# Copyright 2013 <NAME> and individual contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from binascii import unhexlify import pytest import nacl.bindings import nacl.encoding import nacl.hashlib from nacl.exceptions import UnavailableError # Test vectors from rfc 7914, Page 13 # scrypt (P="", S="", # N=16, r=1, p=1, dklen=64) = # 77 d6 57 62 38 65 7b 20 3b 19 ca 42 c1 8a 04 97 # f1 6b 48 44 e3 07 4a e8 df df fa 3f ed e2 14 42 # fc d0 06 9d ed 09 48 f8 32 6a 75 3a 0f c8 1f 17 # e8 d3 e0 fb 2e 0d 36 28 cf 35 e2 0c 38 d1 89 06 # # scrypt (P="password", S="NaCl", # N=1024, r=8, p=16, dkLen=64) = # fd ba be 1c 9d 34 72 00 78 56 e7 19 0d 01 e9 fe # 7c 6a d7 cb c8 23 78 30 e7 73 76 63 4b 37 31 62 # 2e af 30 d9 2e 22 a3 88 6f f1 09 27 9d 98 30 da # c7 27 af b9 4a 83 ee 6d 83 60 cb df a2 cc 06 40 # # scrypt (P="pleaseletmein", S="SodiumChloride", # N=16384, r=8, p=1, dkLen=64) = # 70 23 bd cb 3a fd 73 48 46 1c 06 cd 81 fd 38 eb # fd a8 fb ba 90 4f 8e 3e a9 b5 43 f6 54 5d a1 f2 # d5 43 29 55 61 3f 0f cf 62 d4 97 05 24 2a 9a f9 # e6 1e 85 dc 0d 65 1e 40 df cf 01 7b 45 57 58 87 # # scrypt (P="pleaseletmein", S="SodiumChloride", # N=1048576, r=8, p=1, dkLen=64) = # 21 01 cb 9b 6a 51 1a ae ad db be 09 cf 70 f8 81 # ec 56 8d 57 4a 2f fd 4d ab e5 ee 98 20 ad aa 47 # 8e 56 fd 8f 4b a5 d0 9f fa 1c 6d 92 7c 40 f4 c3 # 37 30 40 49 e8 a9 52 fb cb f4 5c 6f a7 7a 41 a4 RFC_7914_VECTORS = [ ( b"", b"", 16, 1, 1, 64, ( b"77 d6 57 62 38 65 7b 20 3b 19 ca 42 c1 8a 04 97" b"f1 6b 48 44 e3 07 4a e8 df df fa 3f ed e2 14 42" b"fc d0 06 9d ed 09 48 f8 32 6a 75 3a 0f c8 1f 17" b"e8 d3 e0 fb 2e 0d 36 28 cf 35 e2 0c 38 d1 89 06" ), ), ( b"password", b"NaCl", 1024, 8, 16, 64, ( b"fd ba be 1c 9d 34 72 00 78 56 e7 19 0d 01 e9 fe" b"7c 6a d7 cb c8 23 78 30 e7 73 76 63 4b 37 31 62" b"2e af 30 d9 2e 22 a3 88 6f f1 09 27 9d 98 30 da" b"c7 27 af b9 4a 83 ee 6d 83 60 cb df a2 cc 06 40" ), ), ( b"pleaseletmein", b"SodiumChloride", 16384, 8, 1, 64, ( b"70 23 bd cb 3a fd 73 48 46 1c 06 cd 81 fd 38 eb" b"fd a8 fb ba 90 4f 8e 3e a9 b5 43 f6 54 5d a1 f2" b"d5 43 29 55 61 3f 0f cf 62 d4 97 05 24 2a 9a f9" b"e6 1e 85 dc 0d 65 1e 40 df cf 01 7b 45 57 58 87" ), ), ( b"pleaseletmein", b"SodiumChloride", 1048576, 8, 1, 64, ( b"21 01 cb 9b 6a 51 1a ae ad db be 09 cf 70 f8 81" b"ec 56 8d 57 4a 2f fd 4d ab e5 ee 98 20 ad aa 47" b"8e 56 fd 8f 4b a5 d0 9f fa 1c 6d 92 7c 40 f4 c3" b"37 30 40 49 e8 a9 52 fb cb f4 5c 6f a7 7a 41 a4" ), ), ] @pytest.mark.skipif( not nacl.hashlib.SCRYPT_AVAILABLE, reason="Requires full build of libsodium", ) @pytest.mark.parametrize( ("password", "salt", "n", "r", "p", "dklen", "expected"), RFC_7914_VECTORS ) def test_hashlib_scrypt_api( password: bytes, salt: bytes, n: int, r: int, p: int, dklen: int, expected: bytes, ): _exp = unhexlify(expected.replace(b" ", b"")) dgst = nacl.hashlib.scrypt( password, salt=<PASSWORD>, n=n, r=r, p=p, dklen=dklen, maxmem=2 * (1024**3) ) assert _exp == dgst @pytest.mark.skipif( nacl.hashlib.SCRYPT_AVAILABLE, reason="Requires minimal build of libsodium" ) def test_hashlib_scrypt_unavailable(): with pytest.raises(UnavailableError): nacl.hashlib.scrypt(b"")
1.625
2
textx/scoping/__init__.py
stanislaw/textX
346
12776240
<reponame>stanislaw/textX ####################################################################### # Name: scoping.__init__.py # Purpose: Meta-model / scope providers. # Author: <NAME> # License: MIT License ####################################################################### import glob import os import errno from os.path import join, exists, abspath def metamodel_for_file_or_default_metamodel(filename, the_metamodel): from textx import metamodel_for_file from textx.exceptions import TextXRegistrationError try: return metamodel_for_file(filename) except TextXRegistrationError: return the_metamodel # ----------------------------------------------------------------------------- # Scope helper classes: # ----------------------------------------------------------------------------- class Postponed(object): """ Return an object of this class to postpone a reference resolution. If you get circular dependencies in resolution logic, an error is raised. """ class ModelRepository(object): """ This class has the responsibility to hold a set of (model-identifiers, model) pairs as dictionary. In case of some scoping providers the model-identifier is the absolute filename of the model. """ def __init__(self): self.name_idx = 1 self.filename_to_model = {} def has_model(self, filename): return abspath(filename) in self.filename_to_model def add_model(self, model): if model._tx_filename: filename = abspath(model._tx_filename) else: filename = 'builtin_model_{}'.format(self.name_idx) self.name_idx += 1 self.filename_to_model[filename] = model def remove_model(self, model): filename = None for f, m in self.filename_to_model.items(): if m == model: filename = f if filename: # print("*** delete {}".format(filename)) del self.filename_to_model[filename] def __contains__(self, filename): return self.has_model(filename) def __iter__(self): return iter(self.filename_to_model.values()) def __len__(self): return len(self.filename_to_model) def __getitem__(self, filename): return self.filename_to_model[filename] def __setitem__(self, filename, model): self.filename_to_model[filename] = model class GlobalModelRepository(object): """ This class has the responsibility to hold two ModelRepository objects: - one for model-local visible models - one for all models (globally, starting from some root model). The second `ModelRepository` `all_models` is to cache already loaded models and to prevent to load one model twice. The class allows loading local models visible to the current model. The current model is the model which references this `GlobalModelRepository` as attribute `_tx_model_repository` When loading a new local model, the current `GlobalModelRepository` forwards the embedded `ModelRepository` `all_models` to the new `GlobalModelRepository` of the next model. This is done using the `pre_ref_resolution_callback` to set the necessary information before resolving the references in the new loaded model. """ def __init__(self, all_models=None): """ Create a new repo for a model. Args: all_models: models to be added to this new repository. """ self.local_models = ModelRepository() # used for current model if all_models is not None: self.all_models = all_models # used to reuse already loaded models else: self.all_models = ModelRepository() def remove_model(self, model): self.all_models.remove_model(model) self.local_models.remove_model(model) def remove_models(self, models): for m in models: self.remove_model(m) def load_models_using_filepattern( self, filename_pattern, model, glob_args, is_main_model=False, encoding='utf-8', add_to_local_models=True, model_params=None): """ Add a new model to all relevant objects. Args: filename_pattern: models to be loaded model: model holding the loaded models in its _tx_model_repository field (may be None). glob_args: arguments passed to the glob.glob function. Returns: the list of loaded models """ from textx import get_metamodel if model is not None: self.update_model_in_repo_based_on_filename(model) the_metamodel = get_metamodel(model) # default metamodel else: the_metamodel = None filenames = glob.glob(filename_pattern, **glob_args) if len(filenames) == 0: raise IOError( errno.ENOENT, os.strerror(errno.ENOENT), filename_pattern) loaded_models = [] for filename in filenames: the_metamodel = metamodel_for_file_or_default_metamodel( filename, the_metamodel) loaded_models.append( self.load_model(the_metamodel, filename, is_main_model, encoding=encoding, add_to_local_models=add_to_local_models, model_params=model_params)) return loaded_models def load_model_using_search_path( self, filename, model, search_path, is_main_model=False, encoding='utf8', add_to_local_models=True, model_params=None): """ Add a new model to all relevant objects Args: filename: models to be loaded model: model holding the loaded models in its _tx_model_repository field (may be None). search_path: list of search directories. Returns: the loaded model """ from textx import get_metamodel if model: self.update_model_in_repo_based_on_filename(model) for the_path in search_path: full_filename = join(the_path, filename) # print(full_filename) if exists(full_filename): if model is not None: the_metamodel = get_metamodel(model) else: the_metamodel = None the_metamodel = metamodel_for_file_or_default_metamodel( filename, the_metamodel) return self.load_model(the_metamodel, full_filename, is_main_model, encoding=encoding, add_to_local_models=add_to_local_models, model_params=model_params) raise IOError( errno.ENOENT, os.strerror(errno.ENOENT), filename) def load_model( self, the_metamodel, filename, is_main_model, encoding='utf-8', add_to_local_models=True, model_params=None): """ Load a single model Args: the_metamodel: the metamodel used to load the model filename: the model to be loaded (if not cached) Returns: the loaded/cached model """ assert model_params is not None,\ "model_params needs to be specified" filename = abspath(filename) if not self.local_models.has_model(filename): if self.all_models.has_model(filename): # print("CACHED {}".format(filename)) new_model = self.all_models[filename] else: # print("LOADING {}".format(filename)) # all models loaded here get their references resolved from the # root model new_model = the_metamodel.internal_model_from_file( filename, pre_ref_resolution_callback=lambda other_model: self.pre_ref_resolution_callback(other_model), is_main_model=is_main_model, encoding=encoding, model_params=model_params) self.all_models[filename] = new_model # print("ADDING {}".format(filename)) if add_to_local_models: self.local_models[filename] = new_model else: # print("LOCALLY CACHED {}".format(filename)) pass assert filename in self.all_models # to be sure... return self.all_models[filename] def _add_model(self, model): filename = self.update_model_in_repo_based_on_filename(model) # print("ADDED {}".format(filename)) self.local_models[filename] = model def update_model_in_repo_based_on_filename(self, model): """ Adds a model to the repo (not initially visible) Args: model: the model to be added. If the model has no filename, a name is invented Returns: the filename of the model added to the repo """ if model._tx_filename is None: for fn in self.all_models.filename_to_model: if self.all_models.filename_to_model[fn] == model: # print("UPDATED/CACHED {}".format(fn)) return fn i = 0 while self.all_models.has_model("anonymous{}".format(i)): i += 1 myfilename = "anonymous{}".format(i) self.all_models[myfilename] = model else: myfilename = abspath(model._tx_filename) if (not self.all_models.has_model(myfilename)): self.all_models[myfilename] = model # print("UPDATED/ADDED/CACHED {}".format(myfilename)) return myfilename def pre_ref_resolution_callback(self, other_model): """ internal: used to store a model after parsing into the repository Args: other_model: the parsed model Returns: nothing """ filename = other_model._tx_filename # print("PRE-CALLBACK -> {}".format(filename)) assert (filename) filename = abspath(filename) other_model._tx_model_repository = \ GlobalModelRepository(self.all_models) self.all_models[filename] = other_model class ModelLoader(object): """ This class is an interface to mark a scope provider as an additional model loader. """ def __init__(self): pass def load_models(self, model): pass def get_all_models_including_attached_models(model): """ get a list of all models stored within a model (including the owning model). @deprecated (BIC): use model_object.get_included_models() Args: model: the owning model Returns: a list of all models """ return get_included_models(model) def get_included_models(model): """ get a list of all models stored within a model (including the owning model). Args: model: the owning model Returns: a list of all models """ if (hasattr(model, "_tx_model_repository")): models = list(model._tx_model_repository.all_models) if model not in models: models.append(model) else: models = [model] return models def is_file_included(filename, model): """ Determines if a file is included by a model. Also checks for indirect inclusions (files included by included files). Args: filename: the file to be checked (filename is normalized) model: the owning model Returns: True if the file is included, else False (Note: if no _tx_model_repository is present, the function always returns False) """ if (hasattr(model, "_tx_model_repository")): all_entries = model._tx_model_repository.all_models return all_entries.has_model(filename) else: return False def remove_models_from_repositories(models, models_to_be_removed): """ Remove models from all relevant repositories (_tx_model_repository of models and related metamodel(s), if applicable). Args: models: the list of models from which the models_to_be_removed have to be removed. models_to_be_removed: models to be removed Returns: None """ assert isinstance(models, list) for model in models: if hasattr(model._tx_metamodel, "_tx_model_repository"): model._tx_metamodel. \ _tx_model_repository.remove_models(models_to_be_removed) if hasattr(model, "_tx_model_repository"): model._tx_model_repository.remove_models(models_to_be_removed)
2.3125
2
python/runtime/pai/cluster_conf.py
lhw362950217/sqlflow
2
12776241
<gh_stars>1-10 # Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from runtime.diagnostics import SQLFlowDiagnostic def get_cluster_config(attrs): """Get PAI cluster config from attrs Args: attrs: input config Returns: The merged config by attrs and default """ default_map = { "train.num_ps": 0, "train.num_workers": 1, "train.worker_cpu": 400, "train.worker_gpu": 0, "train.ps_cpu": 200, "train.ps_gpu": 0, "train.num_evaluator": 0, "train.evaluator_cpu": 200, "train.evaluator_gpu": 0, } update = dict([(k, v) for (k, v) in attrs.items() if k in default_map]) if not all(isinstance(v, int) for v in update.values()): raise SQLFlowDiagnostic("value for cluster config should be int") default_map.update(attrs) ps = { "count": default_map["train.num_ps"], "cpu": default_map["train.ps_cpu"], "gpu": default_map["train.ps_gpu"], } worker = { "count": default_map["train.num_workers"], "cpu": default_map["train.worker_cpu"], "gpu": default_map["train.worker_gpu"], } # FIXME(weiguoz): adhoc for running distributed xgboost train on pai if worker["count"] > 1 and ps["count"] < 1: ps["count"] = 1 if default_map["train.num_evaluator"] == 0: evaluator = None elif default_map["train.num_evaluator"] == 1: evaluator = { "count": default_map["train.num_evaluator"], "cpu": default_map["train.evaluator_cpu"], "gpu": default_map["train.evaluator_gpu"], } else: raise SQLFlowDiagnostic("train.num_evaluator should only be 1 or 0") conf = {"ps": ps, "worker": worker} if evaluator is not None: conf["evaluator"] = evaluator return conf
2.015625
2
tests/integration/client_test.py
superdosh/betterreads
0
12776242
"""Client is the primary interface for interacting with the Goodreads API. This integration test makes live API calls and affirms that the correct objects are being returned. For a more comprehensive test that each of the interface objects is created and functions properly when given the correct inputs, check the unit test suite.""" import os import pytest from betterreads.author import GoodreadsAuthor from betterreads.book import GoodreadsBook from betterreads.client import GoodreadsClient, GoodreadsClientException from betterreads.comment import GoodreadsComment from betterreads.event import GoodreadsEvent from betterreads.group import GoodreadsGroup from betterreads.review import GoodreadsReview class TestClient: @pytest.fixture def test_client_fixture(self): return GoodreadsClient( os.environ.get("GOODREADS_KEY"), os.environ.get("GOODREADS_SECRET") ) def test_auth_user_no_session(self, test_client_fixture): with pytest.raises(GoodreadsClientException): test_client_fixture.auth_user() def test_author_by_id(self, test_client_fixture): author = test_client_fixture.author(8566992) assert isinstance(author, GoodreadsAuthor) def test_author_by_name(self, test_client_fixture): author = test_client_fixture.find_author("<NAME>") assert isinstance(author, GoodreadsAuthor) def test_book_by_id(self, test_client_fixture): book = test_client_fixture.book(123455) assert isinstance(book, GoodreadsBook) def test_search_books(self, test_client_fixture): books = test_client_fixture.search_books( q="<NAME>", search_field="author" ) assert len(books) > 1 assert all(isinstance(book, GoodreadsBook) for book in books) def test_book_no_options_given(self, test_client_fixture): with pytest.raises(GoodreadsClientException): test_client_fixture.book(None, None) def test_search_books_with_one_book(self, test_client_fixture): books = test_client_fixture.search_books( "Childhood, Boyhood, Truth: From an African Youth to the Selfish Gene" ) assert len(books) == 1 assert all(isinstance(book, GoodreadsBook) for book in books) def test_group_by_id(self, test_client_fixture): group = test_client_fixture.group(8095) assert isinstance(group, GoodreadsGroup) def test_find_groups(self, test_client_fixture): groups = test_client_fixture.find_groups("Goodreads Developers") assert len(groups) > 1 assert all(isinstance(group, GoodreadsGroup) for group in groups) def test_list_events(self, test_client_fixture): events = test_client_fixture.list_events(80126) assert len(events) > 0 assert all(isinstance(event, GoodreadsEvent) for event in events) def test_search_books_total_pages(self, test_client_fixture): num_pages = test_client_fixture.search_books_total_pages( q="<NAME>", search_field="author" ) assert isinstance(num_pages, int) def test_search_books_all_pages(self, test_client_fixture): books = test_client_fixture.search_books_all_pages( q="<NAME>", search_field="author" ) assert len(books) > 10 assert all(isinstance(book, GoodreadsBook) for book in books) def test_get_review(self, test_client_fixture): review = test_client_fixture.review(12345) assert isinstance(review, GoodreadsReview) def test_list_comments_review(self, test_client_fixture): comments = test_client_fixture.list_comments("review", 1618778364) assert all(isinstance(comment, GoodreadsComment) for comment in comments) def test_get_recent_reviews(self, test_client_fixture): reviews = test_client_fixture.recent_reviews() assert all(isinstance(review, GoodreadsReview) for review in reviews)
2.625
3
src/services/middleware/workers_io.py
www439198341/V2RayCloudSpider
0
12776243
# -*- coding: utf-8 -*- # Time : 2021/12/22 16:15 # Author : QIN2DIM # Github : https://github.com/QIN2DIM # Description: import ast from datetime import timedelta, datetime from typing import List, Optional, Union from redis.exceptions import ConnectionError, ResponseError from services.middleware.stream_io import RedisClient from services.settings import TIME_ZONE_CN, POOL_CAP class EntropyHeap(RedisClient): def __init__(self): super().__init__() def update(self, local_entropy: List[dict]): self.db.lpush(self.PREFIX_ENTROPY, str(local_entropy)) def sync(self) -> List[dict]: try: response = self.db.lrange(self.PREFIX_ENTROPY, 0, 1) if response: remote_entropy = ast.literal_eval( self.db.lrange(self.PREFIX_ENTROPY, 0, 1)[0] ) return remote_entropy return [] except ConnectionError: return [] def set_new_cap(self, new_cap: int): """ 设置新的统一队列容量 :param new_cap: :return: """ self.db.set(name=self.PREFIX_CAPACITY, value=new_cap) def get_unified_cap(self) -> int: """ 返回统一队列容量,若没有设置,则返回配置文件的设定 :return: """ _unified_cap = self.db.get(self.PREFIX_CAPACITY) return int(_unified_cap) if _unified_cap else POOL_CAP def is_empty(self) -> bool: return not bool(self.db.llen(self.PREFIX_ENTROPY)) class MessageQueue(RedisClient): def __init__(self): super().__init__() self.group_name = "tasks_group" self.consumer_name = "hexo" self.max_queue_size = 5600 self.SYNERGY_PROTOCOL = "SYNERGY" self.automated() def is_exists_group(self, group_name: str) -> bool: try: groups = self.db.xinfo_groups(self.PREFIX_STREAM) for group in groups: if group.get("name", "") == group_name: return True return False except ResponseError: return False def automated(self) -> None: if not self.is_exists_group(self.group_name): self.db.xgroup_create( self.PREFIX_STREAM, self.group_name, id="0", mkstream=True ) def ack(self, message_id: str) -> None: self.db.xack(self.PREFIX_STREAM, self.group_name, message_id) def broadcast_synergy_context(self, context: Union[dict, str]) -> None: context = str(context) if isinstance(context, dict) else context synergy_context = {self.SYNERGY_PROTOCOL: context} self.db.xadd( name=self.PREFIX_STREAM, fields=synergy_context, maxlen=self.max_queue_size, approximate=True, ) def listen(self, count: Optional[int] = None, block: Optional[int] = None): while True: try: task_queue = self.db.xreadgroup( groupname=self.group_name, consumername=self.consumer_name, streams={self.PREFIX_STREAM: ">"}, count=count, block=block, ) except ConnectionError: yield None else: if task_queue: _, message = task_queue[0] yield message class AccessControl(RedisClient): def __init__(self, token: Optional[str] = None): super().__init__() self.PREFIX_ACCESS_USER = "v2rss:access:user" self.PREFIX_ACCESS_LIMIT = "v2rss:access:limit" if token: self.init_tracer(token) def init_tracer(self, token: str) -> None: self.PREFIX_ACCESS_USER += f":{token}" self.PREFIX_ACCESS_LIMIT += f":{token}" # 自动注册 self._register() def _register(self) -> None: self.db.setnx(self.PREFIX_ACCESS_USER, 0) def update(self) -> None: self.db.setnx(self.PREFIX_ACCESS_LIMIT, 0) self.db.incr(self.PREFIX_ACCESS_LIMIT) self.db.incr(self.PREFIX_ACCESS_USER) def _capture_access_trace(self): _lifecycle = 10 self.db.setex( name=self.PREFIX_ACCESS_LIMIT, time=timedelta(seconds=_lifecycle), value=str(datetime.now(TIME_ZONE_CN) + timedelta(seconds=_lifecycle)), ) def is_user(self) -> bool: return bool(self.db.exists(self.PREFIX_ACCESS_USER)) def is_repeat(self) -> bool: return bool(self.db.exists(self.PREFIX_ACCESS_LIMIT))
2.359375
2
datahub/core/test/test_reversion.py
Staberinde/data-hub-api
6
12776244
<filename>datahub/core/test/test_reversion.py<gh_stars>1-10 from unittest import mock import pytest from datahub.core.reversion import EXCLUDED_BASE_MODEL_FIELDS, register_base_model class TestRegisterBaseModel: """Tests for the `register_base_model` decorator.""" @mock.patch('datahub.core.reversion.reversion') def test_without_args(self, mocked_reversion): """Test that the default exclude is used if no argument is passed in.""" register_base_model() assert mocked_reversion.register.call_args_list == [ mock.call(exclude=EXCLUDED_BASE_MODEL_FIELDS), ] @mock.patch('datahub.core.reversion.reversion') def test_with_extra_exclude(self, mocked_reversion): """Test that if extra_exclude is passed in, it is appended to the default exclude list.""" register_base_model(extra_exclude=('other',)) assert mocked_reversion.register.call_args_list == [ mock.call(exclude=(*EXCLUDED_BASE_MODEL_FIELDS, 'other')), ] @mock.patch('datahub.core.reversion.reversion') def test_with_explicit_exclude(self, mocked_reversion): """Test that if exclude is passed in, it overrides the default one.""" register_base_model(exclude=('other',)) assert mocked_reversion.register.call_args_list == [ mock.call(exclude=('other',)), ] @mock.patch('datahub.core.reversion.reversion') def test_fails_with_extra_exclude_and_exclude(self, mocked_reversion): """Test that extra_exclude and exclude cannot be passed in at the same time.""" with pytest.raises(AssertionError): register_base_model(exclude=('other',), extra_exclude=('other',)) @mock.patch('datahub.core.reversion.reversion') def test_with_other_args(self, mocked_reversion): """Test passing any other argument forwards it untouched.""" register_base_model(ignore_duplicates=False) assert mocked_reversion.register.call_args_list == [ mock.call( exclude=EXCLUDED_BASE_MODEL_FIELDS, ignore_duplicates=False, ), ]
2.75
3
backend/base/urls/order_urls.py
sasan-sohrabi/proshop-DjangoReact
0
12776245
from django.urls import path from base.views import order_views as views urlpatterns = [ ]
1.179688
1
knap_spo_relax.py
Patyrn/Divide-and-Learn
0
12776246
from Experiments import test_knapsack_SPO_unit, test_knapsack_SPO """ Example SPO-Relax experiments for knapsack benchmarks. Dependencies: gcc/8.3.0 openmpi/3.1.4 python/3.7.4 scikit-learn/0.23.1-python-3.7.4 gurobi/9.0.0 numpy/1.17.3-python-3.7.4 matplotlib/3.2.1-python-3.7.4 """ capacities = [12,24,48,72,96,120,144,172,196,220] kfolds = [0,1,2,3,4] dest_folder = 'Tests/Knapsack/weighted/spo' test_knapsack_SPO(capacities=capacities, is_shuffle=False, NUMBER_OF_RANDOM_TESTS=1, kfolds=kfolds, n_iter=5, dest_folder=dest_folder, noise_level=0) dest_folder = 'Tests/Knapsack/unit/spo' capacities = [5,10,15,20,25,30,35,40] test_knapsack_SPO_unit(capacities=capacities, is_shuffle=False, NUMBER_OF_RANDOM_TESTS=1, kfolds=kfolds, n_iter=5, dest_folder=dest_folder, noise_level=0)
2.109375
2
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/NV/transform_feedback.py
JE-Chen/je_old_repo
0
12776247
<gh_stars>0 '''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_NV_transform_feedback' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_NV_transform_feedback',error_checker=_errors._error_checker) GL_ACTIVE_VARYINGS_NV=_C('GL_ACTIVE_VARYINGS_NV',0x8C81) GL_ACTIVE_VARYING_MAX_LENGTH_NV=_C('GL_ACTIVE_VARYING_MAX_LENGTH_NV',0x8C82) GL_BACK_PRIMARY_COLOR_NV=_C('GL_BACK_PRIMARY_COLOR_NV',0x8C77) GL_BACK_SECONDARY_COLOR_NV=_C('GL_BACK_SECONDARY_COLOR_NV',0x8C78) GL_CLIP_DISTANCE_NV=_C('GL_CLIP_DISTANCE_NV',0x8C7A) GL_GENERIC_ATTRIB_NV=_C('GL_GENERIC_ATTRIB_NV',0x8C7D) GL_INTERLEAVED_ATTRIBS_NV=_C('GL_INTERLEAVED_ATTRIBS_NV',0x8C8C) GL_LAYER_NV=_C('GL_LAYER_NV',0x8DAA) GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV=_C('GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_NV',0x8C8A) GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV=_C('GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS_NV',0x8C8B) GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV=_C('GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_NV',0x8C80) GL_NEXT_BUFFER_NV=_C('GL_NEXT_BUFFER_NV',-2) GL_PRIMITIVES_GENERATED_NV=_C('GL_PRIMITIVES_GENERATED_NV',0x8C87) GL_PRIMITIVE_ID_NV=_C('GL_PRIMITIVE_ID_NV',0x8C7C) GL_RASTERIZER_DISCARD_NV=_C('GL_RASTERIZER_DISCARD_NV',0x8C89) GL_SEPARATE_ATTRIBS_NV=_C('GL_SEPARATE_ATTRIBS_NV',0x8C8D) GL_SKIP_COMPONENTS1_NV=_C('GL_SKIP_COMPONENTS1_NV',-6) GL_SKIP_COMPONENTS2_NV=_C('GL_SKIP_COMPONENTS2_NV',-5) GL_SKIP_COMPONENTS3_NV=_C('GL_SKIP_COMPONENTS3_NV',-4) GL_SKIP_COMPONENTS4_NV=_C('GL_SKIP_COMPONENTS4_NV',-3) GL_TEXTURE_COORD_NV=_C('GL_TEXTURE_COORD_NV',0x8C79) GL_TRANSFORM_FEEDBACK_ATTRIBS_NV=_C('GL_TRANSFORM_FEEDBACK_ATTRIBS_NV',0x8C7E) GL_TRANSFORM_FEEDBACK_BUFFER_BINDING_NV=_C('GL_TRANSFORM_FEEDBACK_BUFFER_BINDING_NV',0x8C8F) GL_TRANSFORM_FEEDBACK_BUFFER_MODE_NV=_C('GL_TRANSFORM_FEEDBACK_BUFFER_MODE_NV',0x8C7F) GL_TRANSFORM_FEEDBACK_BUFFER_NV=_C('GL_TRANSFORM_FEEDBACK_BUFFER_NV',0x8C8E) GL_TRANSFORM_FEEDBACK_BUFFER_SIZE_NV=_C('GL_TRANSFORM_FEEDBACK_BUFFER_SIZE_NV',0x8C85) GL_TRANSFORM_FEEDBACK_BUFFER_START_NV=_C('GL_TRANSFORM_FEEDBACK_BUFFER_START_NV',0x8C84) GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV=_C('GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV',0x8C88) GL_TRANSFORM_FEEDBACK_RECORD_NV=_C('GL_TRANSFORM_FEEDBACK_RECORD_NV',0x8C86) GL_TRANSFORM_FEEDBACK_VARYINGS_NV=_C('GL_TRANSFORM_FEEDBACK_VARYINGS_NV',0x8C83) GL_VERTEX_ID_NV=_C('GL_VERTEX_ID_NV',0x8C7B) @_f @_p.types(None,_cs.GLuint,arrays.GLcharArray) def glActiveVaryingNV(program,name):pass @_f @_p.types(None,_cs.GLenum) def glBeginTransformFeedbackNV(primitiveMode):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLuint) def glBindBufferBaseNV(target,index,buffer):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLuint,_cs.GLintptr) def glBindBufferOffsetNV(target,index,buffer,offset):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLuint,_cs.GLintptr,_cs.GLsizeiptr) def glBindBufferRangeNV(target,index,buffer,offset,size):pass @_f @_p.types(None,) def glEndTransformFeedbackNV():pass @_f @_p.types(None,_cs.GLuint,_cs.GLuint,_cs.GLsizei,arrays.GLsizeiArray,arrays.GLsizeiArray,arrays.GLuintArray,arrays.GLcharArray) def glGetActiveVaryingNV(program,index,bufSize,length,size,type,name):pass @_f @_p.types(None,_cs.GLuint,_cs.GLuint,arrays.GLintArray) def glGetTransformFeedbackVaryingNV(program,index,location):pass @_f @_p.types(_cs.GLint,_cs.GLuint,arrays.GLcharArray) def glGetVaryingLocationNV(program,name):pass @_f @_p.types(None,_cs.GLsizei,arrays.GLintArray,_cs.GLenum) def glTransformFeedbackAttribsNV(count,attribs,bufferMode):pass @_f @_p.types(None,_cs.GLsizei,arrays.GLintArray,_cs.GLsizei,arrays.GLintArray,_cs.GLenum) def glTransformFeedbackStreamAttribsNV(count,attribs,nbuffers,bufstreams,bufferMode):pass @_f @_p.types(None,_cs.GLuint,_cs.GLsizei,arrays.GLintArray,_cs.GLenum) def glTransformFeedbackVaryingsNV(program,count,locations,bufferMode):pass
1.398438
1
tests/conftest.py
f213/richtypo.py
9
12776248
<gh_stars>1-10 def pytest_generate_tests(metafunc): """ Generate tests for ruledefs in yaml files according to their specs defined in-place """ if 'rule_name' in metafunc.fixturenames: from richtypo.rules import load_from_file rules = [] for ruledef in ['generic', 'ru', 'en']: rules += [(name, rule) for name, rule in load_from_file(ruledef)] metafunc.parametrize('rule_name, rule', rules)
2.34375
2
datasets/__init__.py
jonasvj/TFDE
0
12776249
root = 'data/' import numpy as np from ffjord.datasets.power import POWER from ffjord.datasets.gas import GAS from ffjord.datasets.hepmass import HEPMASS from ffjord.datasets.miniboone import MINIBOONE from ffjord.datasets.bsds300 import BSDS300 from .synthetic import EightGaussians from .synthetic import Checkerboard from .synthetic import TwoSpirals from .mnist import MNIST_4x4, MNIST_7x7, MNIST_8x8, MNIST_16x16, MNIST_28x28 from utils import order_variables_partial_correlation all_datasets = [ 'power', 'gas', 'hepmass', 'miniboone', 'bsds300', '8gaussians', 'checkerboard', '2spirals', 'mnist_4x4', 'mnist_7x7', 'mnist_8x8', 'mnist_16x16', 'mnist_28x28'] def subsample_train_data(data, subsample_size): rng = np.random.RandomState(seed=42) rng.shuffle(data.trn.x) data.trn.x = data.trn.x[:subsample_size] def do_optimal_ordering(data, tr=False): ordering = order_variables_partial_correlation(data.trn.x, tr=tr) data.trn.x = data.trn.x[:, ordering] data.val.x = data.val.x[:, ordering] data.tst.x = data.tst.x[:, ordering] def load_data(name, optimal_order=False, subsample_size=None, tr=False): if name == 'power': data = POWER() if subsample_size is not None: subsample_train_data(data, subsample_size) if optimal_order: do_optimal_ordering(data, tr=tr) return data elif name == 'gas': data = GAS() if subsample_size is not None: subsample_train_data(data, subsample_size) if optimal_order: do_optimal_ordering(data, tr=tr) return data elif name == 'hepmass': data = HEPMASS() if subsample_size is not None: subsample_train_data(data, subsample_size) if optimal_order: do_optimal_ordering(data, tr=tr) return data elif name == 'miniboone': data = MINIBOONE() if subsample_size is not None: subsample_train_data(data, subsample_size) if optimal_order: do_optimal_ordering(data, tr=tr) return data elif name == 'bsds300': data = BSDS300() if subsample_size is not None: subsample_train_data(data, subsample_size) if optimal_order: do_optimal_ordering(data, tr=tr) return data elif name == '8gaussians': return EightGaussians() elif name == 'checkerboard': return Checkerboard() elif name == '2spirals': return TwoSpirals() elif name == 'mnist_4x4': return MNIST_4x4(optimal_order) elif name == 'mnist_7x7': return MNIST_7x7(optimal_order) elif name == 'mnist_8x8': return MNIST_8x8(optimal_order) elif name == 'mnist_16x16': return MNIST_16x16(optimal_order) elif name == 'mnist_28x28': return MNIST_28x28(optimal_order)
2.109375
2
museos/webapp/migrations/0001_initial.py
LopezAlonsoVictor/X-Serv-Practica-Museos
0
12776250
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.utils.timezone import utc import datetime from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Comentario', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('comentario', models.TextField()), ('fecha', models.DateTimeField(default=datetime.datetime(2018, 4, 30, 15, 35, 58, 398297, tzinfo=utc))), ], ), migrations.CreateModel( name='Museo', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('nombre', models.CharField(max_length=32)), ('direccion', models.CharField(max_length=64)), ('descripcion', models.TextField()), ('barrio', models.CharField(max_length=32)), ('distrito', models.CharField(max_length=32)), ('accesibilidad', models.IntegerField()), ('telefono', models.BigIntegerField()), ('fax', models.BigIntegerField()), ('email', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Seleccion', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('museo', models.ForeignKey(to='webapp.Museo')), ], ), migrations.CreateModel( name='Usuario', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('contraseña', models.CharField(max_length=16)), ('color', models.CharField(max_length=16)), ('tamaño', models.IntegerField()), ('fondo', models.CharField(max_length=16)), ('titulo', models.CharField(max_length=16)), ('nombre', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='seleccion', name='usuario', field=models.ForeignKey(to='webapp.Usuario'), ), migrations.AddField( model_name='comentario', name='museo', field=models.ForeignKey(to='webapp.Museo'), ), migrations.AddField( model_name='comentario', name='usuario', field=models.ForeignKey(to='webapp.Usuario'), ), ]
1.757813
2