text
stringlengths 1
93.6k
|
|---|
plt.xticks(rotation=45)
|
plt.ylabel("risk")
|
if not os.path.exists('plots'):
|
os.mkdir('plots')
|
fig_name = 'plots/tournament_risks.png'
|
fig.savefig(fig_name, dpi=fig.dpi)
|
print('Plot of portfolio risk over time has been saved in {}/{}.'.format(os.getcwd(), fig_name))
|
# <FILESEP>
|
# Copyright Niantic 2019. Patent Pending. All rights reserved.
|
#
|
# This software is licensed under the terms of the Monodepth2 licence
|
# which allows for non-commercial use only, the full terms of which are made
|
# available in the LICENSE file.
|
from __future__ import absolute_import, division, print_function
|
import numpy as np
|
import torch
|
import torch.nn as nn
|
import torch.nn.functional as F
|
def disp_to_depth(disp, min_depth, max_depth):
|
"""Convert network's sigmoid output into depth prediction
|
The formula for this conversion is given in the 'additional considerations'
|
section of the paper.
|
"""
|
min_disp = 1 / max_depth
|
max_disp = 1 / min_depth
|
scaled_disp = min_disp + (max_disp - min_disp) * disp
|
depth = 1 / scaled_disp
|
return scaled_disp, depth
|
def transformation_from_parameters(axisangle, translation, invert=False):
|
"""Convert the network's (axisangle, translation) output into a 4x4 matrix"""
|
R = rot_from_axisangle(axisangle)
|
t = translation.clone()
|
if invert:
|
R = R.transpose(1, 2)
|
t *= -1
|
T = get_translation_matrix(t)
|
M = torch.matmul(R, T) if invert else torch.matmul(T, R)
|
return M
|
def get_translation_matrix(translation_vector):
|
"""Convert a translation vector into a 4x4 transformation matrix"""
|
T = torch.zeros(translation_vector.shape[0], 4, 4).to(device=translation_vector.device)
|
t = translation_vector.contiguous().view(-1, 3, 1)
|
T[:, 0, 0] = 1
|
T[:, 1, 1] = 1
|
T[:, 2, 2] = 1
|
T[:, 3, 3] = 1
|
T[:, :3, 3, None] = t
|
return T
|
def rot_from_axisangle(vec):
|
"""Convert an axisangle rotation into a 4x4 transformation matrix
|
(adapted from https://github.com/Wallacoloo/printipi)
|
Input 'vec' has to be Bx1x3
|
"""
|
angle = torch.norm(vec, 2, 2, True)
|
axis = vec / (angle + 1e-7)
|
ca = torch.cos(angle)
|
sa = torch.sin(angle)
|
C = 1 - ca
|
x = axis[..., 0].unsqueeze(1)
|
y = axis[..., 1].unsqueeze(1)
|
z = axis[..., 2].unsqueeze(1)
|
xs = x * sa
|
ys = y * sa
|
zs = z * sa
|
xC = x * C
|
yC = y * C
|
zC = z * C
|
xyC = x * yC
|
yzC = y * zC
|
zxC = z * xC
|
rot = torch.zeros((vec.shape[0], 4, 4)).to(device=vec.device)
|
rot[:, 0, 0] = torch.squeeze(x * xC + ca)
|
rot[:, 0, 1] = torch.squeeze(xyC - zs)
|
rot[:, 0, 2] = torch.squeeze(zxC + ys)
|
rot[:, 1, 0] = torch.squeeze(xyC + zs)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.