text
stringlengths 1
93.6k
|
|---|
else:
|
xrate = get_exchange_rates([args.currency], data['default_currency'], data['dates'],
|
start=args.start, end=args.end)[args.currency][-num_days]
|
args.capital *= xrate
|
# Volatile specifics
|
num_stocks, num_records = logp.shape
|
order = 2
|
horizon = 5
|
t = num_records - num_days
|
# extract hierarchical info
|
info = extract_hierarchical_info(data['sectors'], data['industries'])
|
info['order_scale'] = np.linspace(1 / (order + 1), 1, order + 1)[::-1].astype('float32')[None, :]
|
info['tt'] = (np.linspace(1 / t, 1, t) ** np.arange(order + 1).reshape(-1, 1)).astype('float32')
|
tt_pred = ((1 + (np.arange(1 + horizon) / t)) ** np.arange(order + 1).reshape(-1, 1)).astype('float32')
|
# tournament participants
|
names = ["Adam", "Betty", "Chris", "Dany", "Eddy", "Flora"]
|
tournament = {name: globals()[name](args.capital) for name in names}
|
# initialize capitals
|
uninvested = np.zeros((len(names), num_days))
|
invested = np.zeros((len(names), num_days))
|
capitals = np.zeros((len(names), num_days))
|
risks = np.zeros((len(names), num_days))
|
str_format = "{:<11} {:<20} {:<20} {:<20} {:<60} {:<20}"
|
num_dashes = 143
|
separator = num_dashes * "-"
|
print("\n*** LET'S THE BOT-TOURNAMENT BEGINS! ***\n")
|
for j in range(num_days, 0, -1):
|
phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi = train_msis_mcs(logp[:, -t - j:-j], info)
|
logp_est, std_logp_est = estimate_logprice_statistics(phi.numpy(), psi.numpy(), info['tt'])
|
logp_pred, std_logp_pred = estimate_logprice_statistics(phi.numpy(), psi.numpy(), tt_pred)
|
logp_ind_est, std_logp_ind_est = estimate_logprice_statistics(phi_i.numpy(), psi_i.numpy(), info['tt'])
|
logp_sec_est, std_logp_sec_est = estimate_logprice_statistics(phi_s.numpy(), psi_s.numpy(), info['tt'])
|
logp_mkt_est, std_logp_mkt_est = estimate_logprice_statistics(phi_m.numpy(), psi_m.numpy(), info['tt'])
|
p_est, std_p_est = estimate_price_statistics(logp_est, std_logp_est)
|
p_ind_est, std_p_ind_est = estimate_price_statistics(logp_ind_est, std_logp_ind_est)
|
p_sec_est, std_p_sec_est = estimate_price_statistics(logp_sec_est, std_logp_sec_est)
|
p_mkt_est, std_p_mkt_est = estimate_price_statistics(logp_mkt_est, std_logp_mkt_est)
|
variances = {}
|
for i, ticker in enumerate(tickers):
|
variances[ticker] = {"stock": std_p_est[i, -1] ** 2,
|
"industry": std_p_ind_est[info['industries_id'][i], -1] ** 2,
|
"sector": std_p_sec_est[info['sectors_id'][i], -1] ** 2,
|
"market": std_p_mkt_est[0, -1] ** 2}
|
scores = (logp_pred[:, horizon] - logp[:, -j - 1]) / std_logp_pred.squeeze()
|
rates = rate(scores)
|
growth = np.dot(phi.numpy()[:, 1:], np.arange(1, order + 1))
|
bot_info = {tickers[i]: {"price": price[i, -j - 1], "rate": rates[i], "growth": growth[i], "scores": scores[i]} for i in range(num_stocks)}
|
next_price = {tickers[i]: price[i, -j] for i in range(num_stocks)}
|
print()
|
print("DATE:", data['dates'].date[-j].strftime("%Y-%m-%d"))
|
print(separator)
|
print(str_format.format("BOT", "CAPITAL", "UNINVESTED", "INVESTED", "OWNED", "RISK"))
|
print(separator)
|
for i, (name, bot) in enumerate(tournament.items()):
|
bot.trade(bot_info)
|
bot.compute_capital(next_price)
|
risks[i, num_days - j] = compute_risk(bot.portfolio, variances, data['sectors'], data['industries'])
|
capitals[i, num_days - j] = bot.capital / xrate
|
print(str_format.format(name,
|
"{} {}".format(np.round(bot.capital / xrate, 2), args.currency),
|
"{} {}".format(np.round(bot.uninvested / xrate, 2), args.currency),
|
"{} {}".format(np.round(bot.invested / xrate, 2), args.currency),
|
' '.join(map(str, list(bot.portfolio.keys())[:10])) + ("..." if len(bot.portfolio.keys()) > 10 else ""),
|
np.round(risks[i, num_days - j], 2)))
|
print(separator)
|
print(separator)
|
# plot capitals
|
fig = plt.figure(figsize=(15, 8))
|
plt.title("Capitals over time", fontsize=15)
|
plt.plot(data['dates'][-num_days:], capitals.T)
|
plt.legend(names, loc="upper left", fontsize=12)
|
plt.xticks(rotation=45)
|
plt.ylabel("capital in {}".format(args.currency))
|
if not os.path.exists('plots'):
|
os.mkdir('plots')
|
fig_name = 'plots/tournament_capitals.png'
|
fig.savefig(fig_name, dpi=fig.dpi)
|
print('Plot of capitals over time has been saved in {}/{}.'.format(os.getcwd(), fig_name))
|
fig = plt.figure(figsize=(15, 8))
|
plt.title("Portfolio risk over time", fontsize=15)
|
plt.plot(data['dates'][-num_days:], risks.T)
|
plt.legend(names, loc="upper left", fontsize=12)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.