text
stringlengths
1
93.6k
plt.savefig('aupr.pdf')
plt.show()
def compute_roc(labels, preds):
# Compute ROC curve and ROC area for each class
fpr, tpr, _ = roc_curve(labels.flatten(), preds.flatten())
roc_auc = auc(fpr, tpr)
return roc_auc
def compute_mcc(labels, preds):
# Compute ROC curve and ROC area for each class
mcc = matthews_corrcoef(labels.flatten(), preds.flatten())
return mcc
def evaluate_annotations(go, real_annots, pred_annots):
total = 0
p = 0.0
r = 0.0
p_total= 0
ru = 0.0
mi = 0.0
for i in range(len(real_annots)):
if len(real_annots[i]) == 0:
continue
tp = real_annots[i].intersection(pred_annots[i])
fp = pred_annots[i] - tp
fn = real_annots[i] - tp
for go_id in fp:
mi += go.get_ic(go_id)
for go_id in fn:
ru += go.get_ic(go_id)
tpn = len(tp)
fpn = len(fp)
fnn = len(fn)
total += 1
recall = tpn / (1.0 * (tpn + fnn))
r += recall
if len(pred_annots[i]) > 0:
p_total += 1
precision = tpn / (1.0 * (tpn + fpn))
p += precision
ru /= total
mi /= total
r /= total
if p_total > 0:
p /= p_total
f = 0.0
if p + r > 0:
f = 2 * p * r / (p + r)
s = math.sqrt(ru * ru + mi * mi)
return f, p, r, s
if __name__ == '__main__':
main()
# <FILESEP>
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
class ConditionalInstanceNorm2dPlus(nn.Module):
def __init__(self, num_features, num_classes, bias=True):
super().__init__()
self.num_features = num_features
self.bias = bias
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
if bias:
self.embed = nn.Embedding(num_classes, num_features * 3)
self.embed.weight.data[:, :2 * num_features].normal_(1, 0.02) # Initialise scale at N(1, 0.02)
self.embed.weight.data[:, 2 * num_features:].zero_() # Initialise bias at 0
else:
self.embed = nn.Embedding(num_classes, 2 * num_features)
self.embed.weight.data.normal_(1, 0.02)
def forward(self, x, y):
means = torch.mean(x, dim=(2, 3))
m = torch.mean(means, dim=-1, keepdim=True)
v = torch.var(means, dim=-1, keepdim=True)
means = (means - m) / (torch.sqrt(v + 1e-5))
h = self.instance_norm(x)
if self.bias:
gamma, alpha, beta = self.embed(y).chunk(3, dim=-1)