text
stringlengths 1
93.6k
|
|---|
style=f'qn1:+l"{road.Name}"+f8p,Palatino-BoldItalic,gray10+i+jBC+v',
|
)
|
# Plot towns as squares
|
fig.plot(
|
x=gdf_shire_towns.geometry.x,
|
y=gdf_shire_towns.geometry.y,
|
style="s0.3c",
|
color="black",
|
)
|
# Overlay town names one by one
|
for _, town in gdf_shire_towns.iterrows():
|
justify = "TL" if town.Name == "Bywater" else "BR"
|
text = town.Name.split()[0]
|
fig.text(
|
x=town.geometry.x,
|
y=town.geometry.y,
|
text=text,
|
justify=justify,
|
offset="j0.1c/0.2c",
|
font="12p,NewCenturySchlbk-BoldItalic",
|
)
|
# Plot title text on top left corner
|
fig.text(
|
position="TL",
|
text="The Shire",
|
offset="0.7c/-0.7c",
|
font="36p,ZapfChancery-MediumItalic,black",
|
)
|
# Plot directional rose on top right corner
|
# https://docs.generic-mapping-tools.org/6.2/cookbook/features.html#placing-dir-map-roses
|
with pygmt.config(FONT_TITLE="10p,ZapfChancery-MediumItalic"):
|
fig.basemap(rose="jTR+w1.5c+f3+l+o1c")
|
# Plot a scalebar on bottom left corner, need to give
|
# a random projection and region for fancy scale to work
|
# https://docs.generic-mapping-tools.org/6.2/cookbook/features.html#placing-map-scales
|
with pygmt.config(FONT_LABEL="ZapfChancery-MediumItalic"):
|
fig.basemap(
|
region=[-130, -70, 24, 52],
|
projection="EPSG:3034",
|
map_scale="jBL+w500M+lMiles+f+o0.5c",
|
)
|
fig.savefig(fname="day24_historical.png")
|
fig.show()
|
# <FILESEP>
|
#!/usr/bin/env python
|
import numpy as np
|
import pandas as pd
|
import click as ck
|
from tensorflow.keras.models import Sequential, Model, load_model
|
from tensorflow.keras.layers import (
|
Dense, Dropout, Activation, Input, Reshape,
|
Flatten, BatchNormalization, Embedding,
|
Conv1D, MaxPooling1D, Add, Concatenate)
|
from tensorflow.keras.optimizers import Adam, RMSprop, Adadelta, SGD
|
from sklearn.metrics import classification_report
|
from sklearn.metrics.pairwise import cosine_similarity
|
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
import sys
|
from collections import deque
|
import time
|
import logging
|
import tensorflow as tf
|
from sklearn.metrics import roc_curve, auc, matthews_corrcoef
|
from scipy.spatial import distance
|
from scipy import sparse
|
import math
|
from utils import FUNC_DICT, Ontology, NAMESPACES
|
from matplotlib import pyplot as plt
|
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
|
@ck.command()
|
@ck.option(
|
'--train-data-file', '-trdf', default='data/train_data.pkl',
|
help='Data file with training features')
|
@ck.option(
|
'--test-data-file', '-tsdf', default='data/test_data.pkl',
|
help='Data file with test')
|
@ck.option(
|
'--diamond-scores-file', '-dsf', default='data/test_diamond.res',
|
help='Diamond output')
|
@ck.option(
|
'--ont', '-o', default='mf',
|
help='GO subontology (bp, mf, cc)')
|
def main(train_data_file, test_data_file, diamond_scores_file, ont):
|
go_rels = Ontology('data/go.obo', with_rels=True)
|
train_df = pd.read_pickle(train_data_file)
|
annotations = train_df['prop_annotations'].values
|
annotations = list(map(lambda x: set(x), annotations))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.