text
stringlengths 1
93.6k
|
|---|
return [base_seed + i for i in range(num_seeds)]
|
def load_seeds(seed_path):
|
seed_path = os.path.expandvars(os.path.expanduser(seed_path))
|
seeds = open(seed_path).readlines()
|
return [int(s) for s in seeds]
|
def eval_policy(
|
args,
|
policy,
|
num_episodes,
|
num_processes=1,
|
deterministic=False,
|
start_level=0,
|
num_levels=0,
|
seeds=None,
|
level_sampler=None,
|
progressbar=None,
|
record=False,
|
print_score=True,
|
advanced_test=False,
|
exploration_coeff=1.0
|
):
|
if level_sampler:
|
start_level = level_sampler.seed_range()[0]
|
num_levels = 1
|
eval_envs, level_sampler = make_dqn_lr_venv(
|
num_envs=num_processes,
|
env_name=args.env_name,
|
seeds=seeds,
|
device=args.device,
|
num_levels=num_levels,
|
start_level=start_level,
|
no_ret_normalization=args.no_ret_normalization,
|
distribution_mode=args.distribution_mode,
|
paint_vel_info=args.paint_vel_info,
|
level_sampler=level_sampler,
|
record_runs=record,
|
attach_task_id=args.attach_task_id
|
)
|
############################################################
|
if args.record_td_error:
|
replay_buffer = make_buffer(args, eval_envs)
|
level_seeds = torch.zeros(args.num_processes)
|
state_deque: List[deque] = [deque(maxlen=args.multi_step) for _ in range(args.num_processes)]
|
reward_deque: List[deque] = [deque(maxlen=args.multi_step) for _ in range(args.num_processes)]
|
action_deque: List[deque] = [deque(maxlen=args.multi_step) for _ in range(args.num_processes)]
|
expect_new_seed: List[bool] = [False for _ in range(args.num_processes)]
|
############################################################
|
eval_episode_rewards: List[float] = []
|
if level_sampler:
|
state, _ = eval_envs.reset()
|
else:
|
state = eval_envs.reset()
|
while len(eval_episode_rewards) < num_episodes:
|
if advanced_test:
|
action = policy.sample_action(state, c=exploration_coeff)
|
elif not deterministic and np.random.uniform() < args.eval_eps:
|
action = (
|
torch.LongTensor([eval_envs.action_space.sample() for _ in range(num_processes)])
|
.reshape(-1, 1)
|
.to(args.device)
|
)
|
# if not deterministic:
|
# action, _ = policy.sample_action(state, temperature=0.05)
|
else:
|
with torch.no_grad():
|
action, _ = policy.select_action(state, eval=True)
|
next_state, reward, done, infos = eval_envs.step(action)
|
############################################################
|
if args.record_td_error:
|
for i, info in enumerate(infos):
|
if "bad_transition" in info.keys():
|
print("Bad transition")
|
state_deque[i].append(state[i])
|
reward_deque[i].append(reward[i])
|
action_deque[i].append(action[i])
|
if len(state_deque[i]) == args.multi_step or done[i]:
|
temp_reward = reward_deque[i]
|
# if args.reward_clip > 0:
|
# temp_reward = np.clip(temp_reward, -args.reward_clip, args.reward_clip)
|
n_reward = multi_step_reward(temp_reward, args.gamma)
|
n_state = state_deque[i][0]
|
n_action = action_deque[i][0]
|
replay_buffer.add(
|
n_state,
|
n_action,
|
next_state[i],
|
n_reward,
|
np.uint8(done[i]),
|
level_seeds[i],
|
)
|
if done[i]:
|
reward_deque_i = list(reward_deque[i])
|
for j in range(1, len(reward_deque_i)):
|
n_reward = multi_step_reward(reward_deque_i[j:], args.gamma)
|
n_state = state_deque[i][j]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.