text
stringlengths 1
93.6k
|
|---|
rollouts.insert(next_state, action, value.unsqueeze(1), torch.Tensor(reward), masks, level_seeds)
|
state = next_state
|
if args.autodrq and (t + 1) % 256 == 0:
|
with torch.no_grad():
|
obs_id = rollouts.obs[-1]
|
next_value = agent.get_value(obs_id).unsqueeze(1).detach()
|
rollouts.compute_returns(next_value, args.gamma, args.gae_lambda)
|
replay_buffer.update_ucb_values(rollouts)
|
rollouts.after_update()
|
# Train agent after collecting sufficient data
|
if t % args.train_freq == 0 and t >= args.start_timesteps:
|
for _ in range(args.opt_step_per_interaction):
|
loss, grad_magnitude, weight = agent.train(replay_buffer)
|
if t % 500 == 0:
|
wandb.log(
|
{"Value Loss": loss,
|
"Gradient magnitude": grad_magnitude,
|
},
|
step=t * args.num_processes,
|
)
|
if args.qrdqn and args.qrdqn_bootstrap and not args.PER:
|
wandb.log(
|
{"weights": torch.mean(weight).item()},
|
step=t * args.num_processes,
|
)
|
if t % 500 == 0:
|
effective_rank = agent.Q.effective_rank()
|
wandb.log({"Effective Rank of DQN": effective_rank}, step=t * args.num_processes)
|
if (t + 1) % int((num_steps - 1) / 10) == 0:
|
if args.track_seed_weights and not args.PER:
|
count_data = [
|
[seed, count]
|
for (seed, count) in zip(agent.seed_weights.keys(), agent.seed_weights.values())
|
]
|
total_weight = sum(agent.seed_weights.values())
|
count_data = [[i[0], i[1] / total_weight] for i in count_data]
|
table = wandb.Table(data=count_data, columns=["Seed", "Weight"])
|
wandb.log(
|
{
|
f"Seed Sampling Distribution at time {t}": wandb.plot.bar(
|
table, "Seed", "Weight", title="Sampling distribution of levels"
|
)
|
}
|
)
|
correlation1 = np.corrcoef(gaps, list(agent.seed_weights.values()))[0][1]
|
correlation2 = np.corrcoef(returns, list(agent.seed_weights.values()))[0][1]
|
wandb.log(
|
{
|
"Correlation between value error and number of samples": correlation1,
|
"Correlation between empirical return and number of samples": correlation2,
|
}
|
)
|
else:
|
seed2weight = replay_buffer.weights_per_seed()
|
weight_data = [
|
[seed, weight] for (seed, weight) in zip(seed2weight.keys(), seed2weight.values())
|
]
|
correlation1 = np.corrcoef(gaps, list(seed2weight.values()))[0][1]
|
correlation2 = np.corrcoef(returns, list(seed2weight.values()))[0][1]
|
if t >= args.start_timesteps and t % args.eval_freq == 0:
|
if args.record_td_error:
|
test_reward, train_td_loss = eval_policy(args, agent, args.num_test_seeds, print_score=False)
|
train_reward, test_td_loss = eval_policy(args,
|
agent,
|
args.num_test_seeds,
|
start_level=0,
|
num_levels=args.num_train_seeds,
|
seeds=seeds,
|
print_score=False)
|
mean_test_rewards = np.mean(test_reward)
|
mean_train_rewards = np.mean(train_reward)
|
wandb.log(
|
{
|
"Train / td loss": train_td_loss,
|
"Test / td loss": test_td_loss,
|
"td loss difference": test_td_loss - train_td_loss
|
},
|
step=t * args.num_processes
|
)
|
else:
|
mean_test_rewards = np.mean(eval_policy(args, agent, args.num_test_seeds, print_score=False))
|
mean_train_rewards = np.mean(
|
eval_policy(
|
args,
|
agent,
|
args.num_test_seeds,
|
start_level=0,
|
num_levels=args.num_train_seeds,
|
seeds=seeds,
|
print_score=False
|
)
|
)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.