code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
from timeit import timeit
def lowerCamelCase__ (__lowerCamelCase ):
if number < 0:
raise ValueError("the value of input must not be negative" )
_SCREAMING_SNAKE_CASE : str = 0
while number:
number &= number - 1
result += 1
return result
def lowerCamelCase__ (__lowerCamelCase ):
if number < 0:
raise ValueError("the value of input must not be negative" )
_SCREAMING_SNAKE_CASE : str = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def lowerCamelCase__ ():
def do_benchmark(__lowerCamelCase ) -> None:
_SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z"
print(f"""Benchmark when {number = }:""" )
print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" )
_SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase )
print(f"""timeit() runs in {timing} seconds""" )
print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" )
_SCREAMING_SNAKE_CASE : int = timeit(
"z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, )
print(f"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__lowerCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 363
|
from __future__ import annotations
import typing
from collections import Counter
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1 ):
for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ):
_SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def lowerCamelCase__ (__lowerCamelCase = 1000 ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f"Perimeter {solution()} has maximum solutions")
| 325
| 0
|
from __future__ import annotations
class lowerCAmelCase__:
'''simple docstring'''
def __init__( self , __lowerCamelCase = 0 ) -> int:
_SCREAMING_SNAKE_CASE : int = key
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> list[str]:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_5_5
return [chr(ord(__lowerCamelCase ) ^ key ) for ch in content]
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> list[str]:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_5_5
return [chr(ord(__lowerCamelCase ) ^ key ) for ch in content]
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 0 ) -> str:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = key or self.__key or 1
# make sure key can be any size
while key > 2_5_5:
key -= 2_5_5
# This will be returned
_SCREAMING_SNAKE_CASE : Tuple = ""
for ch in content:
ans += chr(ord(__lowerCamelCase ) ^ key )
return ans
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 0 ) -> str:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = key or self.__key or 1
# make sure key can be any size
while key > 2_5_5:
key -= 2_5_5
# This will be returned
_SCREAMING_SNAKE_CASE : int = ""
for ch in content:
ans += chr(ord(__lowerCamelCase ) ^ key )
return ans
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 0 ) -> bool:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )
try:
with open(__lowerCamelCase ) as fin, open("encrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(__lowerCamelCase , __lowerCamelCase ) )
except OSError:
return False
return True
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> bool:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )
try:
with open(__lowerCamelCase ) as fin, open("decrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(__lowerCamelCase , __lowerCamelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 364
|
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket" )
@patch("builtins.open" )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
# ===== initialization =====
_SCREAMING_SNAKE_CASE : List[Any] = Mock()
_SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock()
_SCREAMING_SNAKE_CASE : Dict = iter([1, None] )
_SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase )
# ===== invoke =====
send_file(filename="mytext.txt", testing=__lowerCamelCase )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 325
| 0
|
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class lowerCAmelCase__( unittest.TestCase ):
@slow
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" )
_SCREAMING_SNAKE_CASE : List[str] = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" )
model.to(__lowerCamelCase )
from datasets import load_dataset
_SCREAMING_SNAKE_CASE : int = load_dataset("nielsr/rvlcdip-demo" )
_SCREAMING_SNAKE_CASE : Optional[Any] = dataset["train"][0]["image"].convert("RGB" )
_SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
_SCREAMING_SNAKE_CASE : List[Any] = model(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = outputs.logits
_SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1_6) )
self.assertEqual(logits.shape , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(
[-0.4158, -0.4092, -0.4347] , device=__lowerCamelCase , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
| 365
|
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = ['image_processor', 'tokenizer']
__snake_case = 'BlipImageProcessor'
__snake_case = 'AutoTokenizer'
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
_SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer
def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
_SCREAMING_SNAKE_CASE : Any = BatchFeature()
if text is not None:
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" )
_SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
_SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
_SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 325
| 0
|
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ (__lowerCamelCase ):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> str:
super().__init__()
_SCREAMING_SNAKE_CASE : Any = module
_SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Sequential(
nn.Linear(module.in_features , __lowerCamelCase , bias=__lowerCamelCase ) , nn.Linear(__lowerCamelCase , module.out_features , bias=__lowerCamelCase ) , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=__lowerCamelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCamelCase_ ( self , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) -> List[Any]:
return self.module(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) + self.adapter(__lowerCamelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'bigscience/bloom-1b7'
# Constant values
__snake_case = 2.109_6595_5269_2574
__snake_case = 'Hello my name is'
__snake_case = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
__snake_case = 1_0
def UpperCamelCase_ ( self ) -> List[Any]:
# Models and tokenizer
_SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(self.model_name )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> int:
super().setUp()
# Models and tokenizer
_SCREAMING_SNAKE_CASE : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="auto" )
_SCREAMING_SNAKE_CASE : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
def UpperCamelCase_ ( self ) -> Any:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : List[str] = self.model_abit.config
self.assertTrue(hasattr(__lowerCamelCase , "quantization_config" ) )
_SCREAMING_SNAKE_CASE : Optional[Any] = config.to_dict()
_SCREAMING_SNAKE_CASE : int = config.to_diff_dict()
_SCREAMING_SNAKE_CASE : List[Any] = config.to_json_string()
def UpperCamelCase_ ( self ) -> Optional[Any]:
from bitsandbytes.nn import Paramsabit
_SCREAMING_SNAKE_CASE : str = self.model_fpaa.get_memory_footprint()
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
_SCREAMING_SNAKE_CASE : List[str] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCamelCase_ ( self ) -> Dict:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(__lowerCamelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCamelCase_ ( self ) -> Any:
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" )
_SCREAMING_SNAKE_CASE : List[Any] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowerCamelCase ) , self.EXPECTED_OUTPUTS )
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : int = BitsAndBytesConfig()
_SCREAMING_SNAKE_CASE : str = True
_SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__lowerCamelCase , device_map="auto" )
_SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(self.input_text , return_tensors="pt" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = model_abit_from_config.generate(
input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowerCamelCase ) , self.EXPECTED_OUTPUTS )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
with self.assertRaises(__lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : str = BitsAndBytesConfig()
with self.assertRaises(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__lowerCamelCase , load_in_abit=__lowerCamelCase , device_map="auto" , bnb_abit_quant_type="nf4" , )
def UpperCamelCase_ ( self ) -> str:
with self.assertRaises(__lowerCamelCase ):
# Tries with `str`
self.model_abit.to("cpu" )
with self.assertRaises(__lowerCamelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(__lowerCamelCase ):
# Tries with a `device`
self.model_abit.to(torch.device("cuda:0" ) )
with self.assertRaises(__lowerCamelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(__lowerCamelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" )
_SCREAMING_SNAKE_CASE : Any = self.model_fpaa.to(torch.floataa )
_SCREAMING_SNAKE_CASE : int = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
_SCREAMING_SNAKE_CASE : Any = self.model_fpaa.to("cpu" )
# Check this does not throw an error
_SCREAMING_SNAKE_CASE : int = self.model_fpaa.half()
# Check this does not throw an error
_SCREAMING_SNAKE_CASE : Dict = self.model_fpaa.float()
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=__lowerCamelCase , device_map="auto" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = "t5-small"
_SCREAMING_SNAKE_CASE : Union[str, Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
_SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained(cls.model_name )
_SCREAMING_SNAKE_CASE : List[Any] = "Translate in German: Hello, my dog is cute"
def UpperCamelCase_ ( self ) -> Union[str, Any]:
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ) -> Union[str, Any]:
from transformers import TaForConditionalGeneration
_SCREAMING_SNAKE_CASE : List[str] = TaForConditionalGeneration._keep_in_fpaa_modules
_SCREAMING_SNAKE_CASE : Optional[Any] = None
# test with `t5-small`
_SCREAMING_SNAKE_CASE : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
_SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
_SCREAMING_SNAKE_CASE : Optional[int] = model.generate(**__lowerCamelCase )
# test with `flan-t5-small`
_SCREAMING_SNAKE_CASE : Union[str, Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
_SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
_SCREAMING_SNAKE_CASE : Any = model.generate(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = modules
def UpperCamelCase_ ( self ) -> str:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
_SCREAMING_SNAKE_CASE : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
_SCREAMING_SNAKE_CASE : int = model.generate(**__lowerCamelCase )
# test with `flan-t5-small`
_SCREAMING_SNAKE_CASE : int = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
_SCREAMING_SNAKE_CASE : int = model.generate(**__lowerCamelCase )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> Dict:
super().setUp()
# model_name
_SCREAMING_SNAKE_CASE : str = "bigscience/bloom-560m"
_SCREAMING_SNAKE_CASE : List[Any] = "t5-small"
# Different types of model
_SCREAMING_SNAKE_CASE : int = AutoModel.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
# Sequence classification model
_SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
# CausalLM model
_SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map="auto" )
# Seq2seq model
_SCREAMING_SNAKE_CASE : Tuple = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=__lowerCamelCase , device_map="auto" )
def UpperCamelCase_ ( self ) -> str:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ) -> List[Any]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> int:
super().setUp()
def UpperCamelCase_ ( self ) -> Optional[Any]:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : int = pipeline(
"text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
_SCREAMING_SNAKE_CASE : Optional[Any] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> Optional[int]:
super().setUp()
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : int = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=__lowerCamelCase , device_map="balanced" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" )
# Second real batch
_SCREAMING_SNAKE_CASE : Optional[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__lowerCamelCase ) , self.EXPECTED_OUTPUTS )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : str = "facebook/opt-350m"
super().setUp()
def UpperCamelCase_ ( self ) -> int:
if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ):
return
# Step 1: freeze all parameters
_SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
_SCREAMING_SNAKE_CASE : Tuple = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
_SCREAMING_SNAKE_CASE : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(__lowerCamelCase ) ):
_SCREAMING_SNAKE_CASE : List[Any] = LoRALayer(module.q_proj , rank=1_6 )
_SCREAMING_SNAKE_CASE : Any = LoRALayer(module.k_proj , rank=1_6 )
_SCREAMING_SNAKE_CASE : Any = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
_SCREAMING_SNAKE_CASE : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
_SCREAMING_SNAKE_CASE : Tuple = model.forward(**__lowerCamelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(__lowerCamelCase , __lowerCamelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(__lowerCamelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'gpt2-xl'
__snake_case = 3.3191_8548_5415_2187
| 366
|
from maths.prime_check import is_prime
def lowerCamelCase__ (__lowerCamelCase ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__lowerCamelCase )
if is_prime(__lowerCamelCase ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325
| 0
|
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]:
with open(__lowerCamelCase , encoding="utf-8" ) as input_file:
_SCREAMING_SNAKE_CASE : Tuple = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
_SCREAMING_SNAKE_CASE : List[Any] = input_file.read()
_SCREAMING_SNAKE_CASE : List[Any] = regexp.search(__lowerCamelCase )
return match
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any:
with open(__lowerCamelCase , encoding="utf-8" ) as input_file:
_SCREAMING_SNAKE_CASE : Tuple = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
_SCREAMING_SNAKE_CASE : Any = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
_SCREAMING_SNAKE_CASE : Union[str, Any] = regexp.finditer(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : List[Any] = Path("./datasets" )
_SCREAMING_SNAKE_CASE : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(__lowerCamelCase ) ):
raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" )
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Union[str, Any] = Path("./datasets" )
_SCREAMING_SNAKE_CASE : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(__lowerCamelCase ) ):
raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 367
|
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCamelCase__ (__lowerCamelCase ):
return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" )
download_parser.add_argument(
"--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" )
download_parser.add_argument(
"--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" )
download_parser.add_argument(
"--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , )
download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" )
download_parser.set_defaults(func=__lowerCamelCase )
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Any = model
_SCREAMING_SNAKE_CASE : Optional[int] = cache
_SCREAMING_SNAKE_CASE : str = force
_SCREAMING_SNAKE_CASE : str = trust_remote_code
def UpperCamelCase_ ( self ) -> Optional[Any]:
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 325
| 0
|
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
_SCREAMING_SNAKE_CASE : Optional[Any] = [p / w for p, w in zip(__lowerCamelCase, __lowerCamelCase )]
# Creating a copy of the list and sorting profit/weight in ascending order
_SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(__lowerCamelCase )
# declaring useful variables
_SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = 0
_SCREAMING_SNAKE_CASE : Tuple = 0
_SCREAMING_SNAKE_CASE : List[str] = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
_SCREAMING_SNAKE_CASE : Any = sorted_profit_by_weight[length - i - 1]
_SCREAMING_SNAKE_CASE : Dict = profit_by_weight.index(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
'Input profits, weights, and then max_weight (all positive ints) separated by '
'spaces.'
)
UpperCamelCase__ =[int(x) for x in input('Input profits separated by spaces: ').split()]
UpperCamelCase__ =[int(x) for x in input('Input weights separated by spaces: ').split()]
UpperCamelCase__ =int(input('Max weight allowed: '))
# Function Call
calc_profit(profit, weight, max_weight)
| 368
|
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class lowerCAmelCase__:
'''simple docstring'''
__snake_case = BlenderbotSmallConfig
__snake_case = {}
__snake_case = 'gelu'
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]:
_SCREAMING_SNAKE_CASE : int = parent
_SCREAMING_SNAKE_CASE : Tuple = batch_size
_SCREAMING_SNAKE_CASE : Dict = seq_length
_SCREAMING_SNAKE_CASE : List[str] = is_training
_SCREAMING_SNAKE_CASE : List[str] = use_labels
_SCREAMING_SNAKE_CASE : Dict = vocab_size
_SCREAMING_SNAKE_CASE : Dict = hidden_size
_SCREAMING_SNAKE_CASE : int = num_hidden_layers
_SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
_SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
_SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id
_SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id
_SCREAMING_SNAKE_CASE : List[str] = bos_token_id
def UpperCamelCase_ ( self ) -> List[str]:
_SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
_SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return config, inputs_dict
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
_SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder()
_SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"]
_SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :]
_SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :]
_SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"]
_SCREAMING_SNAKE_CASE : int = 1
# first forward pass
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx]
_SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ):
if attention_mask is None:
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
_SCREAMING_SNAKE_CASE : List[str] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
_SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
__snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'conversational': TFBlenderbotSmallForConditionalGeneration,
'feature-extraction': TFBlenderbotSmallModel,
'summarization': TFBlenderbotSmallForConditionalGeneration,
'text2text-generation': TFBlenderbotSmallForConditionalGeneration,
'translation': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self )
_SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Tuple:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase )
@require_tokenizers
@require_tf
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
__snake_case = [
'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '
' i\'m going to throw up.\nand why is that?'
]
__snake_case = 'facebook/blenderbot_small-90M'
@cached_property
def UpperCamelCase_ ( self ) -> List[Any]:
# use "old" tokenizer here because of bug when downloading new tokenizer
return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
@cached_property
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" )
_SCREAMING_SNAKE_CASE : Dict = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 325
| 0
|
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
UpperCamelCase__ =TypeVar('T')
class lowerCAmelCase__( Generic[T] ):
'''simple docstring'''
def __init__( self , __lowerCamelCase = True ) -> None:
_SCREAMING_SNAKE_CASE : dict[T, list[T]] = {} # dictionary of lists
_SCREAMING_SNAKE_CASE : Any = directed
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> GraphAdjacencyList[T]:
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCamelCase )
self.adj_list[destination_vertex].append(__lowerCamelCase )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = [destination_vertex]
_SCREAMING_SNAKE_CASE : Dict = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCamelCase )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
_SCREAMING_SNAKE_CASE : Union[str, Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
_SCREAMING_SNAKE_CASE : Union[str, Any] = [destination_vertex]
_SCREAMING_SNAKE_CASE : List[Any] = []
return self
def __repr__( self ) -> str:
return pformat(self.adj_list )
| 369
|
from math import isqrt, loga
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number
for i in range(2, isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2, __lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = False
return [i for i in range(2, __lowerCamelCase ) if is_prime[i]]
def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ):
_SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = 0
_SCREAMING_SNAKE_CASE : int = 0
_SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(f"{solution() = }")
| 325
| 0
|
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
UpperCamelCase__ =logging.getLogger()
UpperCamelCase__ =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]:
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = {"source": "What is love ?", "target": "life"}
_SCREAMING_SNAKE_CASE : Union[str, Any] = {"train": 1_2, "val": 2, "test": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
_SCREAMING_SNAKE_CASE : Tuple = "\n".join([contents[field]] * n_lines[split] )
with open(os.path.join(__lowerCamelCase , F"""{split}.{field}""" ) , "w" ) as f:
f.write(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = "pytorch" ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_auto_remove_tmp_dir()
_SCREAMING_SNAKE_CASE : int = os.path.join(__lowerCamelCase , "output" )
_SCREAMING_SNAKE_CASE : str = os.path.join(__lowerCamelCase , "data" )
self._create_dummy_data(data_dir=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = F"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(F"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("--fp16" )
else:
testargs.append("--gpus=0" )
testargs.append("--distributed_backend=ddp_cpu" )
testargs.append("--num_processes=2" )
_SCREAMING_SNAKE_CASE : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(__lowerCamelCase , env=self.get_env() )
_SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "metrics.json" )
with open(__lowerCamelCase ) as f:
_SCREAMING_SNAKE_CASE : Tuple = json.load(__lowerCamelCase )
return result
@require_torch_gpu
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_multi_gpu
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : List[str] = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_gpu
@require_ray
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Optional[int] = self._run_finetune(gpus=1 , distributed_retriever="ray" )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
@require_torch_multi_gpu
@require_ray
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : str = self._run_finetune(gpus=1 , distributed_retriever="ray" )
self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
| 370
|
from math import factorial
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k" )
return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k ))
if __name__ == "__main__":
print(
'The number of five-card hands possible from a standard',
f"fifty-two card deck is: {combinations(52, 5)}\n",
)
print(
'If a class of 40 students must be arranged into groups of',
f"4 for group projects, there are {combinations(40, 4)} ways",
'to arrange them.\n',
)
print(
'If 10 teams are competing in a Formula One race, there',
f"are {combinations(10, 3)} ways that first, second and",
'third place can be awarded.',
)
| 325
| 0
|
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Any = generate_pascal_triangle(__lowerCamelCase )
for row_idx in range(__lowerCamelCase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=" " )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx], end=" " )
else:
print(triangle[row_idx][col_idx], end="" )
print()
def lowerCamelCase__ (__lowerCamelCase ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
_SCREAMING_SNAKE_CASE : list[list[int]] = []
for current_row_idx in range(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : str = populate_current_row(__lowerCamelCase, __lowerCamelCase )
triangle.append(__lowerCamelCase )
return triangle
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
_SCREAMING_SNAKE_CASE : Union[str, Any] = 1, 1
for current_col_idx in range(1, __lowerCamelCase ):
calculate_current_element(
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
return current_row
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ):
_SCREAMING_SNAKE_CASE : Dict = triangle[current_row_idx - 1][current_col_idx - 1]
_SCREAMING_SNAKE_CASE : List[Any] = triangle[current_row_idx - 1][current_col_idx]
_SCREAMING_SNAKE_CASE : List[Any] = above_to_left_elt + above_to_right_elt
def lowerCamelCase__ (__lowerCamelCase ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
_SCREAMING_SNAKE_CASE : list[list[int]] = [[1]]
for row_index in range(1, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = [0] + result[-1] + [0]
_SCREAMING_SNAKE_CASE : Union[str, Any] = row_index + 1
# Calculate the number of distinct elements in a row
_SCREAMING_SNAKE_CASE : str = sum(divmod(__lowerCamelCase, 2 ) )
_SCREAMING_SNAKE_CASE : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1, distinct_elements + 1 )
]
_SCREAMING_SNAKE_CASE : Tuple = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
_SCREAMING_SNAKE_CASE : str = row_first_half + row_second_half
result.append(__lowerCamelCase )
return result
def lowerCamelCase__ ():
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowerCamelCase, __lowerCamelCase ) -> None:
_SCREAMING_SNAKE_CASE : List[str] = f"""{func.__name__}({value})"""
_SCREAMING_SNAKE_CASE : List[str] = timeit(f"""__main__.{call}""", setup="import __main__" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"""{call:38} -- {timing:.4f} seconds""" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__lowerCamelCase, __lowerCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 371
|
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class lowerCAmelCase__( __lowercase , __lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int:
super().__init__()
_SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential(
nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , )
_SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList()
for lyr_num in range(__lowerCamelCase ):
# FiLM conditional T5 decoder
_SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase )
self.decoders.append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
_SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
_SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to(
torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase )
inputs += position_encodings
_SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase )
# decoder: No padding present.
_SCREAMING_SNAKE_CASE : Any = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
_SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
_SCREAMING_SNAKE_CASE : Optional[Any] = lyr(
__lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0]
_SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase )
return spec_out
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict:
super().__init__()
_SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : int = self.layer[0](
__lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , )
if encoder_hidden_states is not None:
_SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
_SCREAMING_SNAKE_CASE : Tuple = self.layer[1](
__lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , )
# Apply Film Conditional Feed Forward layer
_SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase )
return (hidden_states,)
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]:
# pre_self_attention_layer_norm
_SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase )
if conditioning_emb is not None:
_SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase )
# Self-attention block
_SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase )
return hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
super().__init__()
_SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = self.attention(
__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase )
return layer_output
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]:
_SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase )
if conditioning_emb is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase )
return hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation()
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any:
_SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear
_SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase )
return hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int:
super().__init__()
_SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : str = eps
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
_SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) ))
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 )
_SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift
return x
| 325
| 0
|
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__( __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = GPTaTokenizer
__snake_case = GPTaTokenizerFast
__snake_case = True
__snake_case = {'add_prefix_space': True}
__snake_case = False
def UpperCamelCase_ ( self ) -> Optional[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_SCREAMING_SNAKE_CASE : Union[str, Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
_SCREAMING_SNAKE_CASE : List[str] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
_SCREAMING_SNAKE_CASE : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
_SCREAMING_SNAKE_CASE : str = {"unk_token": "<unk>"}
_SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCamelCase ) )
def UpperCamelCase_ ( self , **__lowerCamelCase ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def UpperCamelCase_ ( self , **__lowerCamelCase ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> int:
_SCREAMING_SNAKE_CASE : int = "lower newer"
_SCREAMING_SNAKE_CASE : str = "lower newer"
return input_text, output_text
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : str = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_SCREAMING_SNAKE_CASE : Union[str, Any] = "lower newer"
_SCREAMING_SNAKE_CASE : Any = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
_SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = tokens + [tokenizer.unk_token]
_SCREAMING_SNAKE_CASE : Union[str, Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
_SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer()
_SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = "lower newer"
# Testing tokenization
_SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing conversion to ids without special tokens
_SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing conversion to ids with special tokens
_SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing the unknown token
_SCREAMING_SNAKE_CASE : Tuple = tokens + [rust_tokenizer.unk_token]
_SCREAMING_SNAKE_CASE : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]:
# It's very difficult to mix/test pretokenization with byte-level
# And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def UpperCamelCase_ ( self , __lowerCamelCase=1_5 ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
# Simple input
_SCREAMING_SNAKE_CASE : Tuple = "This is a simple input"
_SCREAMING_SNAKE_CASE : Dict = ["This is a simple input 1", "This is a simple input 2"]
_SCREAMING_SNAKE_CASE : Optional[int] = ("This is a simple input", "This is a pair")
_SCREAMING_SNAKE_CASE : int = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Simple input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Simple input
self.assertRaises(
__lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , )
# Pair input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Pair input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Pair input
self.assertRaises(
__lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , )
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" )
# Simple input
_SCREAMING_SNAKE_CASE : str = "This is a simple input"
_SCREAMING_SNAKE_CASE : int = ["This is a simple input looooooooong", "This is a simple input"]
_SCREAMING_SNAKE_CASE : Tuple = ("This is a simple input", "This is a pair")
_SCREAMING_SNAKE_CASE : Dict = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
_SCREAMING_SNAKE_CASE : List[Any] = tokenizer.pad_token_id
_SCREAMING_SNAKE_CASE : List[str] = tokenizer(__lowerCamelCase , padding="max_length" , max_length=3_0 , return_tensors="np" )
_SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" )
_SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=6_0 , return_tensors="np" )
_SCREAMING_SNAKE_CASE : Any = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] , 3_0 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] , 3_3 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] , 6_0 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] , 5_2 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def UpperCamelCase_ ( self ) -> Any:
_SCREAMING_SNAKE_CASE : List[Any] = "$$$"
_SCREAMING_SNAKE_CASE : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = "This is a simple input"
_SCREAMING_SNAKE_CASE : List[Any] = ["This is a simple input 1", "This is a simple input 2"]
_SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id
_SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = tokenizer(__lowerCamelCase )
self.assertEqual(out_s.input_ids[0] , __lowerCamelCase )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
_SCREAMING_SNAKE_CASE : int = tokenizer.decode(out_s.input_ids )
_SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , __lowerCamelCase )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def UpperCamelCase_ ( self ) -> str:
pass
def UpperCamelCase_ ( self ) -> List[Any]:
# TODO: change to self.get_tokenizers() when the fast version is implemented
_SCREAMING_SNAKE_CASE : List[str] = [self.get_tokenizer(do_lower_case=__lowerCamelCase , add_bos_token=__lowerCamelCase )]
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_SCREAMING_SNAKE_CASE : int = "Encode this."
_SCREAMING_SNAKE_CASE : List[Any] = "This one too please."
_SCREAMING_SNAKE_CASE : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
encoded_sequence += tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = tokenizer.encode_plus(
__lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : Tuple = encoded_sequence_dict["input_ids"]
_SCREAMING_SNAKE_CASE : Optional[Any] = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : List[Any] = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCamelCase )
]
_SCREAMING_SNAKE_CASE : Dict = [x for x in filtered_sequence if x is not None]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
@require_tokenizers
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> Tuple:
# More context:
# https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1
# https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519
# https://github.com/huggingface/transformers/pull/17088#discussion_r871246439
_SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = "A photo of a cat"
_SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(
__lowerCamelCase , )
self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
tokenizer.save_pretrained("test_opt" )
_SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("./test_opt" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(
__lowerCamelCase , )
self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = "A photo of a cat"
_SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(
__lowerCamelCase , )
# Same as above
self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
@unittest.skip("This test is failing because of a bug in the fast tokenizer" )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = "bos"
_SCREAMING_SNAKE_CASE : Dict = tokenizer.get_vocab()["bos"]
_SCREAMING_SNAKE_CASE : Optional[int] = "A photo of a cat"
_SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(
__lowerCamelCase , )
# We changed the bos token
self.assertEqual(__lowerCamelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
tokenizer.save_pretrained("./tok" )
_SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("./tok" )
self.assertTrue(tokenizer.is_fast )
_SCREAMING_SNAKE_CASE : Any = tokenizer.encode(
__lowerCamelCase , )
self.assertEqual(__lowerCamelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
| 350
|
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )]
# nc0 = 1
_SCREAMING_SNAKE_CASE : Optional[int] = 1
for i in range(1, n + 1 ):
# to compute current row from previous row.
_SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325
| 0
|
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = " " ):
_SCREAMING_SNAKE_CASE : Dict = []
_SCREAMING_SNAKE_CASE : List[Any] = 0
for index, char in enumerate(__lowerCamelCase ):
if char == separator:
split_words.append(string[last_index:index] )
_SCREAMING_SNAKE_CASE : List[Any] = index + 1
elif index + 1 == len(__lowerCamelCase ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 351
|
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
UpperCamelCase__ =logging.getLogger(__name__)
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]:
super().__init__(
__lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : List[Any] = None
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any:
logger.info("initializing retrieval" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("dist initialized" )
# needs to be set manually
_SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname()
# avoid clash with the NCCL port
_SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 )
_SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("dist not initialized / main" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def UpperCamelCase_ ( self ) -> Optional[Any]:
return dist.get_rank(group=self.process_group ) == 0
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase )
dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group )
return target_tensor
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
_SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase )
return ifname
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase )
# distributed training
_SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
_SCREAMING_SNAKE_CASE : Any = None
if self._is_main():
_SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )]
dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group )
# scatter logic
_SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0]
_SCREAMING_SNAKE_CASE : Optional[Any] = []
_SCREAMING_SNAKE_CASE : Optional[int] = []
if self._is_main():
assert len(__lowerCamelCase ) == world_size
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa )
_SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
| 325
| 0
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCamelCase__ =logging.getLogger(__name__)
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
return (preds == labels).mean()
@dataclass
class lowerCAmelCase__:
'''simple docstring'''
__snake_case = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__snake_case = field(
default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__snake_case = field(
default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__snake_case = field(
default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
@dataclass
class lowerCAmelCase__:
'''simple docstring'''
__snake_case = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} )
__snake_case = field(metadata={'help': 'Should contain the data files for the task.'} )
__snake_case = field(
default=1_2_8 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__snake_case = field(
default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def lowerCamelCase__ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", __lowerCamelCase )
# Set seed
set_seed(training_args.seed )
try:
_SCREAMING_SNAKE_CASE : List[Any] = processors[data_args.task_name]()
_SCREAMING_SNAKE_CASE : Tuple = processor.get_labels()
_SCREAMING_SNAKE_CASE : str = len(__lowerCamelCase )
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=__lowerCamelCase, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, )
_SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, )
_SCREAMING_SNAKE_CASE : List[str] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, )
# Get datasets
_SCREAMING_SNAKE_CASE : Any = (
MultipleChoiceDataset(
data_dir=data_args.data_dir, tokenizer=__lowerCamelCase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, )
if training_args.do_train
else None
)
_SCREAMING_SNAKE_CASE : int = (
MultipleChoiceDataset(
data_dir=data_args.data_dir, tokenizer=__lowerCamelCase, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, )
if training_args.do_eval
else None
)
def compute_metrics(__lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[int] = np.argmax(p.predictions, axis=1 )
return {"acc": simple_accuracy(__lowerCamelCase, p.label_ids )}
# Data collator
_SCREAMING_SNAKE_CASE : List[str] = DataCollatorWithPadding(__lowerCamelCase, pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_SCREAMING_SNAKE_CASE : List[str] = Trainer(
model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=__lowerCamelCase, eval_dataset=__lowerCamelCase, compute_metrics=__lowerCamelCase, data_collator=__lowerCamelCase, )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_SCREAMING_SNAKE_CASE : Optional[int] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_SCREAMING_SNAKE_CASE : str = trainer.evaluate()
_SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir, "eval_results.txt" )
if trainer.is_world_master():
with open(__lowerCamelCase, "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s", __lowerCamelCase, __lowerCamelCase )
writer.write("%s = %s\n" % (key, value) )
results.update(__lowerCamelCase )
return results
def lowerCamelCase__ (__lowerCamelCase ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 352
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ =logging.get_logger(__name__)
UpperCamelCase__ ={
'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json',
}
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'timesformer'
def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]:
super().__init__(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = image_size
_SCREAMING_SNAKE_CASE : str = patch_size
_SCREAMING_SNAKE_CASE : str = num_channels
_SCREAMING_SNAKE_CASE : str = num_frames
_SCREAMING_SNAKE_CASE : Dict = hidden_size
_SCREAMING_SNAKE_CASE : Any = num_hidden_layers
_SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
_SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size
_SCREAMING_SNAKE_CASE : Optional[int] = hidden_act
_SCREAMING_SNAKE_CASE : int = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : int = initializer_range
_SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps
_SCREAMING_SNAKE_CASE : List[str] = qkv_bias
_SCREAMING_SNAKE_CASE : Tuple = attention_type
_SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
| 325
| 0
|
from __future__ import annotations
def lowerCamelCase__ (__lowerCamelCase = 4 ):
_SCREAMING_SNAKE_CASE : List[str] = abs(__lowerCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__lowerCamelCase )] for y in range(__lowerCamelCase )]
def lowerCamelCase__ (__lowerCamelCase ):
return reverse_row(transpose(__lowerCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def lowerCamelCase__ (__lowerCamelCase ):
return reverse_row(reverse_column(__lowerCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def lowerCamelCase__ (__lowerCamelCase ):
return reverse_column(transpose(__lowerCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : str = [list(__lowerCamelCase ) for x in zip(*__lowerCamelCase )]
return matrix
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : str = matrix[::-1]
return matrix
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Dict = [x[::-1] for x in matrix]
return matrix
def lowerCamelCase__ (__lowerCamelCase ):
for i in matrix:
print(*__lowerCamelCase )
if __name__ == "__main__":
UpperCamelCase__ =make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
UpperCamelCase__ =make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
UpperCamelCase__ =make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 353
|
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__ =logging.get_logger(__name__)
UpperCamelCase__ ={'vocab_file': 'spiece.model'}
UpperCamelCase__ ={
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
UpperCamelCase__ ={
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
UpperCamelCase__ ='▁'
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_SCREAMING_SNAKE_CASE : List[Any] = (
AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase )
else mask_token
)
_SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : Dict = do_lower_case
_SCREAMING_SNAKE_CASE : List[Any] = remove_space
_SCREAMING_SNAKE_CASE : str = keep_accents
_SCREAMING_SNAKE_CASE : Optional[int] = vocab_file
_SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCamelCase )
@property
def UpperCamelCase_ ( self ) -> Optional[Any]:
return len(self.sp_model )
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : str = self.__dict__.copy()
_SCREAMING_SNAKE_CASE : Optional[Any] = None
return state
def __setstate__( self , __lowerCamelCase ) -> Tuple:
_SCREAMING_SNAKE_CASE : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_SCREAMING_SNAKE_CASE : Optional[int] = {}
_SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]:
if self.remove_space:
_SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() )
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = inputs
_SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] )
if self.do_lower_case:
_SCREAMING_SNAKE_CASE : Dict = outputs.lower()
return outputs
def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]:
_SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = []
for piece in pieces:
if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:]
else:
_SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__lowerCamelCase )
else:
new_pieces.append(__lowerCamelCase )
return new_pieces
def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]:
return self.sp_model.PieceToId(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> str:
return self.sp_model.IdToPiece(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE : Dict = []
_SCREAMING_SNAKE_CASE : List[str] = ""
_SCREAMING_SNAKE_CASE : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__lowerCamelCase ) + token
_SCREAMING_SNAKE_CASE : str = True
_SCREAMING_SNAKE_CASE : Optional[Any] = []
else:
current_sub_tokens.append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = False
out_string += self.sp_model.decode(__lowerCamelCase )
return out_string.strip()
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id]
_SCREAMING_SNAKE_CASE : int = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is not None:
return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1]
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]:
_SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id]
_SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCamelCase , "wb" ) as fi:
_SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (out_vocab_file,)
| 325
| 0
|
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase__ =get_tests_dir('fixtures/test_sentencepiece.model')
if is_sentencepiece_available():
import sentencepiece as sp
UpperCamelCase__ =5
UpperCamelCase__ =10
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__( __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = SpeechaTextTokenizer
__snake_case = False
__snake_case = True
def UpperCamelCase_ ( self ) -> List[str]:
super().setUp()
_SCREAMING_SNAKE_CASE : Union[str, Any] = sp.SentencePieceProcessor()
spm_model.Load(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__lowerCamelCase ) )]
_SCREAMING_SNAKE_CASE : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
_SCREAMING_SNAKE_CASE : Tuple = Path(self.tmpdirname )
save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] )
_SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Any = "<pad>"
_SCREAMING_SNAKE_CASE : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def UpperCamelCase_ ( self ) -> Any:
_SCREAMING_SNAKE_CASE : Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__lowerCamelCase ) , 1_0_0_1 )
def UpperCamelCase_ ( self ) -> str:
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 )
def UpperCamelCase_ ( self ) -> List[str]:
_SCREAMING_SNAKE_CASE : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
_SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize("This is a test" )
self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
_SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] )
_SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def UpperCamelCase_ ( self ) -> str:
# fmt: off
_SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'valhalla/s2t_mustc_multilinguial_medium'
__snake_case = 'C\'est trop cool'
__snake_case = 'Esto es genial'
@classmethod
def UpperCamelCase_ ( cls ) -> Dict:
_SCREAMING_SNAKE_CASE : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def UpperCamelCase_ ( self ) -> int:
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 1_1 )
def UpperCamelCase_ ( self ) -> List[Any]:
self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 )
def UpperCamelCase_ ( self ) -> Any:
self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids )
_SCREAMING_SNAKE_CASE : Optional[Any] = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2]
_SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase )
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : Tuple = "fr"
_SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __lowerCamelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[int] = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
_SCREAMING_SNAKE_CASE : List[Any] = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 354
|
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
UpperCamelCase__ =logging.get_logger(__name__)
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None:
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
| 325
| 0
|
def lowerCamelCase__ (__lowerCamelCase = 1000 ):
_SCREAMING_SNAKE_CASE : Any = -1
_SCREAMING_SNAKE_CASE : List[str] = 0
for a in range(1, n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
_SCREAMING_SNAKE_CASE : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a)
_SCREAMING_SNAKE_CASE : int = n - a - b
if c * c == (a * a + b * b):
_SCREAMING_SNAKE_CASE : str = a * b * c
if candidate >= product:
_SCREAMING_SNAKE_CASE : List[str] = candidate
return product
if __name__ == "__main__":
print(f"{solution() = }")
| 355
|
import numpy as np
import datasets
UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n'
UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n'
UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int:
# convert to numpy arrays
_SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
_SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T )
try:
_SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase )
except np.linalg.LinAlgError:
_SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 325
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__ ={
'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =['LlamaTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =['LlamaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =[
'LlamaForCausalLM',
'LlamaModel',
'LlamaPreTrainedModel',
'LlamaForSequenceClassification',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 356
|
from __future__ import annotations
import math
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if depth < 0:
raise ValueError("Depth cannot be less than 0" )
if len(__lowerCamelCase ) == 0:
raise ValueError("Scores cannot be empty" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), )
return min(
minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), )
def lowerCamelCase__ ():
_SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423]
_SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 )
print("Optimal value : ", end="" )
print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 325
| 0
|
def lowerCamelCase__ (__lowerCamelCase = 1000 ):
return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) )
if __name__ == "__main__":
print(solution())
| 357
|
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
UpperCamelCase__ ='src/diffusers'
UpperCamelCase__ ='.'
# This is to make sure the diffusers module imported is the one in the repo.
UpperCamelCase__ =importlib.util.spec_from_file_location(
'diffusers',
os.path.join(DIFFUSERS_PATH, '__init__.py'),
submodule_search_locations=[DIFFUSERS_PATH],
)
UpperCamelCase__ =spec.loader.load_module()
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Any = object_name.split("." )
_SCREAMING_SNAKE_CASE : List[Any] = 0
# First let's find the module where our object lives.
_SCREAMING_SNAKE_CASE : Any = parts[i]
while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ):
i += 1
if i < len(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] )
if i >= len(__lowerCamelCase ):
raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" )
with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f:
_SCREAMING_SNAKE_CASE : int = f.readlines()
# Now let's find the class / func in the code!
_SCREAMING_SNAKE_CASE : Union[str, Any] = ""
_SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for name in parts[i + 1 :]:
while (
line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(__lowerCamelCase ):
raise ValueError(f""" {object_name} does not match any function or class in {module}.""" )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
_SCREAMING_SNAKE_CASE : Optional[int] = line_index
while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index]
return "".join(__lowerCamelCase )
UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)')
UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)')
UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>')
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = 0
while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(__lowerCamelCase ):
return re.search(R"^(\s*)\S", lines[idx] ).groups()[0]
return ""
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0
if has_indent:
_SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}"""
_SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase )
return result[len("class Bla:\n" ) :] if has_indent else result
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ):
with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f:
_SCREAMING_SNAKE_CASE : int = f.readlines()
_SCREAMING_SNAKE_CASE : Dict = []
_SCREAMING_SNAKE_CASE : Tuple = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups()
_SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2
_SCREAMING_SNAKE_CASE : int = theoretical_indent
_SCREAMING_SNAKE_CASE : str = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
_SCREAMING_SNAKE_CASE : Any = True
while line_index < len(__lowerCamelCase ) and should_continue:
line_index += 1
if line_index >= len(__lowerCamelCase ):
break
_SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index]
_SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index]
_SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase )
# Remove any nested `Copied from` comments to avoid circular copies
_SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None]
_SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase )
# Before comparing, use the `replace_pattern` on the original code.
if len(__lowerCamelCase ) > 0:
_SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," )
_SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups()
_SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
if option.strip() == "all-casing":
_SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
_SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code )
_SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
_SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:]
_SCREAMING_SNAKE_CASE : int = start_index + 1
if overwrite and len(__lowerCamelCase ) > 0:
# Warn the user a file has been modified.
print(f"""Detected changes, rewriting {filename}.""" )
with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f:
f.writelines(__lowerCamelCase )
return diffs
def lowerCamelCase__ (__lowerCamelCase = False ):
_SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = []
for filename in all_files:
_SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase )
diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs]
if not overwrite and len(__lowerCamelCase ) > 0:
_SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase )
raise Exception(
"Found the following copy inconsistencies:\n"
+ diff
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." )
if __name__ == "__main__":
UpperCamelCase__ =argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
UpperCamelCase__ =parser.parse_args()
check_copies(args.fix_and_overwrite)
| 325
| 0
|
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class lowerCAmelCase__:
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=[1, 1, 2] , __lowerCamelCase=1 , __lowerCamelCase=3_2 , __lowerCamelCase=4 , __lowerCamelCase=8 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=5_1_2 , __lowerCamelCase=3 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , __lowerCamelCase=False , ) -> List[Any]:
_SCREAMING_SNAKE_CASE : int = parent
_SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size
_SCREAMING_SNAKE_CASE : Optional[Any] = seq_length
_SCREAMING_SNAKE_CASE : Any = is_training
_SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask
_SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids
_SCREAMING_SNAKE_CASE : List[str] = use_labels
_SCREAMING_SNAKE_CASE : str = vocab_size
_SCREAMING_SNAKE_CASE : Tuple = block_sizes
_SCREAMING_SNAKE_CASE : List[str] = num_decoder_layers
_SCREAMING_SNAKE_CASE : Tuple = d_model
_SCREAMING_SNAKE_CASE : str = n_head
_SCREAMING_SNAKE_CASE : str = d_head
_SCREAMING_SNAKE_CASE : Optional[int] = d_inner
_SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
_SCREAMING_SNAKE_CASE : Any = hidden_dropout
_SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout
_SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout
_SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings
_SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size
_SCREAMING_SNAKE_CASE : List[Any] = 2
_SCREAMING_SNAKE_CASE : Tuple = num_labels
_SCREAMING_SNAKE_CASE : int = num_choices
_SCREAMING_SNAKE_CASE : Union[str, Any] = scope
_SCREAMING_SNAKE_CASE : List[str] = initializer_std
# Used in the tests to check the size of the first attention layer
_SCREAMING_SNAKE_CASE : Dict = n_head
# Used in the tests to check the size of the first hidden state
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.d_model
# Used in the tests to check the number of output hidden states/attentions
_SCREAMING_SNAKE_CASE : Union[str, Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
_SCREAMING_SNAKE_CASE : Any = self.num_hidden_layers + 2
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE : List[str] = None
if self.use_input_mask:
_SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_SCREAMING_SNAKE_CASE : str = None
if self.use_token_type_ids:
_SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_SCREAMING_SNAKE_CASE : Union[str, Any] = None
_SCREAMING_SNAKE_CASE : Any = None
_SCREAMING_SNAKE_CASE : Union[str, Any] = None
if self.use_labels:
_SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices )
_SCREAMING_SNAKE_CASE : int = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[str]:
_SCREAMING_SNAKE_CASE : Tuple = TFFunnelModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : Optional[int] = model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = [input_ids, input_mask]
_SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
_SCREAMING_SNAKE_CASE : str = False
_SCREAMING_SNAKE_CASE : Dict = TFFunnelModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
_SCREAMING_SNAKE_CASE : Tuple = False
_SCREAMING_SNAKE_CASE : Any = TFFunnelModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = TFFunnelBaseModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = [input_ids, input_mask]
_SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
_SCREAMING_SNAKE_CASE : Union[str, Any] = False
_SCREAMING_SNAKE_CASE : Dict = TFFunnelBaseModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
_SCREAMING_SNAKE_CASE : Any = False
_SCREAMING_SNAKE_CASE : int = TFFunnelBaseModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Any:
_SCREAMING_SNAKE_CASE : Union[str, Any] = TFFunnelForPreTraining(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> str:
_SCREAMING_SNAKE_CASE : Dict = TFFunnelForMaskedLM(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Any = self.num_labels
_SCREAMING_SNAKE_CASE : Any = TFFunnelForSequenceClassification(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Dict:
_SCREAMING_SNAKE_CASE : List[str] = self.num_choices
_SCREAMING_SNAKE_CASE : str = TFFunnelForMultipleChoice(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : Any = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : int = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : List[Any] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
_SCREAMING_SNAKE_CASE : Union[str, Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> str:
_SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
_SCREAMING_SNAKE_CASE : Any = TFFunnelForTokenClassification(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : List[str] = TFFunnelForQuestionAnswering(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs()
(
_SCREAMING_SNAKE_CASE
) : Dict = config_and_inputs
_SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
__snake_case = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : List[str] = TFFunnelModelTester(self )
_SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
@require_tf
class lowerCAmelCase__( __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : List[str] = TFFunnelModelTester(self , base=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
| 358
|
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowerCAmelCase__:
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any:
_SCREAMING_SNAKE_CASE : str = parent
_SCREAMING_SNAKE_CASE : List[Any] = 1_3
_SCREAMING_SNAKE_CASE : List[str] = 7
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : List[str] = True
_SCREAMING_SNAKE_CASE : int = True
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : int = 9_9
_SCREAMING_SNAKE_CASE : str = 3_8_4
_SCREAMING_SNAKE_CASE : List[Any] = 2
_SCREAMING_SNAKE_CASE : Dict = 4
_SCREAMING_SNAKE_CASE : Dict = 3_7
_SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu"
_SCREAMING_SNAKE_CASE : str = 0.1
_SCREAMING_SNAKE_CASE : str = 0.1
_SCREAMING_SNAKE_CASE : List[Any] = 5_1_2
_SCREAMING_SNAKE_CASE : Tuple = 1_6
_SCREAMING_SNAKE_CASE : Dict = 2
_SCREAMING_SNAKE_CASE : Any = 0.02
_SCREAMING_SNAKE_CASE : Any = 3
_SCREAMING_SNAKE_CASE : List[str] = 4
_SCREAMING_SNAKE_CASE : List[Any] = 1_2_8
_SCREAMING_SNAKE_CASE : Optional[int] = 2
_SCREAMING_SNAKE_CASE : int = 9
_SCREAMING_SNAKE_CASE : List[str] = 1
_SCREAMING_SNAKE_CASE : List[Any] = None
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE : List[str] = None
if self.use_input_mask:
_SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] )
_SCREAMING_SNAKE_CASE : Dict = None
if self.use_token_type_ids:
_SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_SCREAMING_SNAKE_CASE : List[Any] = None
_SCREAMING_SNAKE_CASE : Union[str, Any] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
if self.use_labels:
_SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices )
_SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : str = [input_ids, input_mask]
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : int = self.num_labels
_SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices
_SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : List[Any] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
_SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Dict = self.num_labels
_SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
_SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs()
(
(
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) ,
) : List[Any] = config_and_inputs
_SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__snake_case = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self )
_SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 )
def UpperCamelCase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase )
@slow
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : Any = True
if hasattr(__lowerCamelCase , "use_cache" ):
_SCREAMING_SNAKE_CASE : List[str] = True
_SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
_SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase )
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" )
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
if self.is_encoder_decoder:
_SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"]
else:
_SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"]
_SCREAMING_SNAKE_CASE : Dict = outputs["attentions"]
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
_SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
_SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase )
def check_decoder_attentions_output(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase )
self.assertEqual(out_len % 2 , 0 )
_SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Any = True
_SCREAMING_SNAKE_CASE : Any = False
_SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
if self.is_encoder_decoder:
_SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_decoder_attentions_output(__lowerCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
# Check attention is always last and order is fine
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : Any = True
_SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) )
self.assertEqual(model.config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
@require_tf
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
_SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] )
_SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8]
self.assertEqual(output.shape , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
| 325
| 0
|
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def lowerCamelCase__ ():
_SCREAMING_SNAKE_CASE : List[str] = [randint(-1000, 1000 ) for i in range(10 )]
_SCREAMING_SNAKE_CASE : Union[str, Any] = randint(-5000, 5000 )
return (arr, r)
UpperCamelCase__ =make_dataset()
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
for triplet in permutations(__lowerCamelCase, 3 ):
if sum(__lowerCamelCase ) == target:
return tuple(sorted(__lowerCamelCase ) )
return (0, 0, 0)
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
arr.sort()
_SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase )
for i in range(n - 1 ):
_SCREAMING_SNAKE_CASE : int = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def lowerCamelCase__ ():
_SCREAMING_SNAKE_CASE : List[Any] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n"
_SCREAMING_SNAKE_CASE : Dict = "\ntriplet_sum1(*dataset)\n"
_SCREAMING_SNAKE_CASE : Any = "\ntriplet_sum2(*dataset)\n"
_SCREAMING_SNAKE_CASE : List[str] = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 )
_SCREAMING_SNAKE_CASE : Tuple = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 )
return (min(__lowerCamelCase ), min(__lowerCamelCase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCamelCase__ =solution_times()
print(f"The time for naive implementation is {times[0]}.")
print(f"The time for optimized implementation is {times[1]}.")
| 359
|
from timeit import timeit
def lowerCamelCase__ (__lowerCamelCase ):
if number < 0:
raise ValueError("the value of input must not be negative" )
_SCREAMING_SNAKE_CASE : str = 0
while number:
number &= number - 1
result += 1
return result
def lowerCamelCase__ (__lowerCamelCase ):
if number < 0:
raise ValueError("the value of input must not be negative" )
_SCREAMING_SNAKE_CASE : str = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def lowerCamelCase__ ():
def do_benchmark(__lowerCamelCase ) -> None:
_SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z"
print(f"""Benchmark when {number = }:""" )
print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" )
_SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase )
print(f"""timeit() runs in {timing} seconds""" )
print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" )
_SCREAMING_SNAKE_CASE : int = timeit(
"z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, )
print(f"""timeit() runs in {timing} seconds""" )
for number in (25, 37, 58, 0):
do_benchmark(__lowerCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 325
| 0
|
def lowerCamelCase__ (__lowerCamelCase ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
raise ValueError("check_bouncy() accepts only integer arguments" )
_SCREAMING_SNAKE_CASE : List[Any] = str(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = "".join(sorted(__lowerCamelCase ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def lowerCamelCase__ (__lowerCamelCase = 99 ):
if not 0 < percent < 100:
raise ValueError("solution() only accepts values from 0 to 100" )
_SCREAMING_SNAKE_CASE : Any = 0
_SCREAMING_SNAKE_CASE : Optional[int] = 1
while True:
if check_bouncy(__lowerCamelCase ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{solution(99)}")
| 360
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCamelCase__ ={
'configuration_swiftformer': [
'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SwiftFormerConfig',
'SwiftFormerOnnxConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =[
'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'SwiftFormerForImageClassification',
'SwiftFormerModel',
'SwiftFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 325
| 0
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'naver-clova-ix/donut-base-finetuned-docvqa'
__snake_case = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__snake_case = 'document_qa'
__snake_case = AutoProcessor
__snake_case = VisionEncoderDecoderModel
__snake_case = ['image', 'text']
__snake_case = ['text']
def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]:
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
_SCREAMING_SNAKE_CASE : Any = task_prompt.replace("{user_input}" , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = self.pre_processor.tokenizer(
__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" ).input_ids
_SCREAMING_SNAKE_CASE : List[Any] = self.pre_processor(__lowerCamelCase , return_tensors="pt" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Tuple:
return self.model.generate(
inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Tuple:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.pre_processor.batch_decode(__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : Tuple = sequence.replace(self.pre_processor.tokenizer.eos_token , "" )
_SCREAMING_SNAKE_CASE : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "" )
_SCREAMING_SNAKE_CASE : Any = re.sub(r"<.*?>" , "" , __lowerCamelCase , count=1 ).strip() # remove first task start token
_SCREAMING_SNAKE_CASE : Optional[int] = self.pre_processor.tokenajson(__lowerCamelCase )
return sequence["answer"]
| 361
|
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
UpperCamelCase__ =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
UpperCamelCase__ =[0, 25, 50]
UpperCamelCase__ =[25, 50, 75]
UpperCamelCase__ =fuzz.membership.trimf(X, abca)
UpperCamelCase__ =fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
UpperCamelCase__ =np.ones(75)
UpperCamelCase__ =np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
UpperCamelCase__ =fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
UpperCamelCase__ =fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
UpperCamelCase__ =young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
UpperCamelCase__ =young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
UpperCamelCase__ =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
UpperCamelCase__ =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('Young')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('Middle aged')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('union')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('intersection')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('complement_a')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('difference a/b')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('alg_sum')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('alg_product')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('bdd_sum')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('bdd_difference')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 325
| 0
|
UpperCamelCase__ ={
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Dict = set()
# keep track of all the paths to be checked
_SCREAMING_SNAKE_CASE : Union[str, Any] = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
_SCREAMING_SNAKE_CASE : List[Any] = queue.pop(0 )
# get the last node from the path
_SCREAMING_SNAKE_CASE : Union[str, Any] = path[-1]
if node not in explored:
_SCREAMING_SNAKE_CASE : Union[str, Any] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
_SCREAMING_SNAKE_CASE : Optional[int] = list(__lowerCamelCase )
new_path.append(__lowerCamelCase )
queue.append(__lowerCamelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(__lowerCamelCase )
# in case there's no path between the 2 nodes
return []
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
_SCREAMING_SNAKE_CASE : Any = [start]
_SCREAMING_SNAKE_CASE : Dict = set(__lowerCamelCase )
# Keep tab on distances from `start` node.
_SCREAMING_SNAKE_CASE : Tuple = {start: 0, target: -1}
while queue:
_SCREAMING_SNAKE_CASE : List[Any] = queue.pop(0 )
if node == target:
_SCREAMING_SNAKE_CASE : Dict = (
dist[node] if dist[target] == -1 else min(dist[target], dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(__lowerCamelCase )
queue.append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 362
|
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = ['vqvae']
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]:
super().__init__()
self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase )
def UpperCamelCase_ ( self ) -> int:
return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0
@torch.no_grad()
def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
_SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps()
self.scheduler.set_timesteps(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
_SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=__lowerCamelCase , device=self.device , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = noise
_SCREAMING_SNAKE_CASE : Optional[int] = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape(
(input_image.height, input_image.width) )
_SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1
_SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample(
generator=__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
_SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] )
_SCREAMING_SNAKE_CASE : int = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
_SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second )
_SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second )
_SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"]
else:
_SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"]
if isinstance(self.scheduler , __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step(
model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"]
else:
_SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step(
model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"]
if mask is not None:
if mask_start > 0:
_SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start]
if mask_end > 0:
_SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
_SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images
_SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 )
_SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
_SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" )
_SCREAMING_SNAKE_CASE : Tuple = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) )
_SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) )
@torch.no_grad()
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray:
assert isinstance(self.scheduler , __lowerCamelCase )
self.scheduler.set_timesteps(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = np.array(
[np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] )
_SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1
_SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
_SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
_SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t]
_SCREAMING_SNAKE_CASE : List[str] = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
_SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t
_SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"]
_SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output
_SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
_SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor:
_SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
| 325
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__ ={
'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'],
'convert_funnel_original_tf_checkpoint_to_pytorch': [],
'tokenization_funnel': ['FunnelTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =['FunnelTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =[
'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST',
'FunnelBaseModel',
'FunnelForMaskedLM',
'FunnelForMultipleChoice',
'FunnelForPreTraining',
'FunnelForQuestionAnswering',
'FunnelForSequenceClassification',
'FunnelForTokenClassification',
'FunnelModel',
'FunnelPreTrainedModel',
'load_tf_weights_in_funnel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ =[
'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFFunnelBaseModel',
'TFFunnelForMaskedLM',
'TFFunnelForMultipleChoice',
'TFFunnelForPreTraining',
'TFFunnelForQuestionAnswering',
'TFFunnelForSequenceClassification',
'TFFunnelForTokenClassification',
'TFFunnelModel',
'TFFunnelPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 363
|
from __future__ import annotations
import typing
from collections import Counter
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1 ):
for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ):
_SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def lowerCamelCase__ (__lowerCamelCase = 1000 ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f"Perimeter {solution()} has maximum solutions")
| 325
| 0
|
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ =logging.get_logger(__name__)
# General docstring
UpperCamelCase__ ='RegNetConfig'
# Base docstring
UpperCamelCase__ ='facebook/regnet-y-040'
UpperCamelCase__ =[1, 1088, 7, 7]
# Image classification docstring
UpperCamelCase__ ='facebook/regnet-y-040'
UpperCamelCase__ ='tabby, tabby cat'
UpperCamelCase__ =[
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 3 , __lowerCamelCase = 1 , __lowerCamelCase = 1 , __lowerCamelCase = "relu" , ) -> List[str]:
super().__init__()
_SCREAMING_SNAKE_CASE : Dict = nn.Convad(
__lowerCamelCase , __lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=kernel_size // 2 , groups=__lowerCamelCase , bias=__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : Any = nn.BatchNormad(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]:
_SCREAMING_SNAKE_CASE : List[Any] = self.convolution(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = self.normalization(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = self.activation(__lowerCamelCase )
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase ) -> List[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : int = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
_SCREAMING_SNAKE_CASE : int = config.num_channels
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
_SCREAMING_SNAKE_CASE : List[Any] = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 2 ) -> Dict:
super().__init__()
_SCREAMING_SNAKE_CASE : Dict = nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=1 , stride=__lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = nn.BatchNormad(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Tensor:
_SCREAMING_SNAKE_CASE : str = self.convolution(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.normalization(__lowerCamelCase )
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Dict:
super().__init__()
_SCREAMING_SNAKE_CASE : str = nn.AdaptiveAvgPoolad((1, 1) )
_SCREAMING_SNAKE_CASE : Tuple = nn.Sequential(
nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=1 ) , nn.Sigmoid() , )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> str:
# b c h w -> b c 1 1
_SCREAMING_SNAKE_CASE : str = self.pooler(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = self.attention(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = hidden_state * attention
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 ) -> Any:
super().__init__()
_SCREAMING_SNAKE_CASE : Union[str, Any] = in_channels != out_channels or stride != 1
_SCREAMING_SNAKE_CASE : str = max(1 , out_channels // config.groups_width )
_SCREAMING_SNAKE_CASE : Dict = (
RegNetShortCut(__lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase ) if should_apply_shortcut else nn.Identity()
)
_SCREAMING_SNAKE_CASE : Tuple = nn.Sequential(
RegNetConvLayer(__lowerCamelCase , __lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase , groups=__lowerCamelCase , activation=config.hidden_act ) , RegNetConvLayer(__lowerCamelCase , __lowerCamelCase , kernel_size=1 , activation=__lowerCamelCase ) , )
_SCREAMING_SNAKE_CASE : Dict = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self , __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : Dict = hidden_state
_SCREAMING_SNAKE_CASE : Tuple = self.layer(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.shortcut(__lowerCamelCase )
hidden_state += residual
_SCREAMING_SNAKE_CASE : int = self.activation(__lowerCamelCase )
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 ) -> Optional[int]:
super().__init__()
_SCREAMING_SNAKE_CASE : Any = in_channels != out_channels or stride != 1
_SCREAMING_SNAKE_CASE : Optional[Any] = max(1 , out_channels // config.groups_width )
_SCREAMING_SNAKE_CASE : int = (
RegNetShortCut(__lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase ) if should_apply_shortcut else nn.Identity()
)
_SCREAMING_SNAKE_CASE : str = nn.Sequential(
RegNetConvLayer(__lowerCamelCase , __lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase , groups=__lowerCamelCase , activation=config.hidden_act ) , RegNetSELayer(__lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__lowerCamelCase , __lowerCamelCase , kernel_size=1 , activation=__lowerCamelCase ) , )
_SCREAMING_SNAKE_CASE : str = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]:
_SCREAMING_SNAKE_CASE : Any = hidden_state
_SCREAMING_SNAKE_CASE : Optional[Any] = self.layer(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = self.shortcut(__lowerCamelCase )
hidden_state += residual
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.activation(__lowerCamelCase )
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 2 , __lowerCamelCase = 2 , ) -> Tuple:
super().__init__()
_SCREAMING_SNAKE_CASE : str = RegNetXLayer if config.layer_type == "x" else RegNetYLayer
_SCREAMING_SNAKE_CASE : str = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase , ) , *[layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for _ in range(depth - 1 )] , )
def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.layers(__lowerCamelCase )
return hidden_state
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase ) -> Tuple:
super().__init__()
_SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
__lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_SCREAMING_SNAKE_CASE : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(__lowerCamelCase , config.depths[1:] ):
self.stages.append(RegNetStage(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , depth=__lowerCamelCase ) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = False , __lowerCamelCase = True ) -> BaseModelOutputWithNoAttention:
_SCREAMING_SNAKE_CASE : str = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_SCREAMING_SNAKE_CASE : Tuple = hidden_states + (hidden_state,)
_SCREAMING_SNAKE_CASE : List[Any] = stage_module(__lowerCamelCase )
if output_hidden_states:
_SCREAMING_SNAKE_CASE : Dict = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = RegNetConfig
__snake_case = 'regnet'
__snake_case = 'pixel_values'
__snake_case = True
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Tuple:
if isinstance(__lowerCamelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" )
elif isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=False ) -> Dict:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = value
UpperCamelCase__ =R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
UpperCamelCase__ =R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , __lowercase , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def __init__( self , __lowerCamelCase ) -> Dict:
super().__init__(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = config
_SCREAMING_SNAKE_CASE : Union[str, Any] = RegNetEmbeddings(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = RegNetEncoder(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention:
_SCREAMING_SNAKE_CASE : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_SCREAMING_SNAKE_CASE : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
_SCREAMING_SNAKE_CASE : Tuple = self.embedder(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = self.encoder(
__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_outputs[0]
_SCREAMING_SNAKE_CASE : Optional[Any] = self.pooler(__lowerCamelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowercase , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def __init__( self , __lowerCamelCase ) -> Union[str, Any]:
super().__init__(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = config.num_labels
_SCREAMING_SNAKE_CASE : Any = RegNetModel(__lowerCamelCase )
# classification head
_SCREAMING_SNAKE_CASE : Any = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase_ ( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , ) -> ImageClassifierOutputWithNoAttention:
_SCREAMING_SNAKE_CASE : Any = return_dict if return_dict is not None else self.config.use_return_dict
_SCREAMING_SNAKE_CASE : Tuple = self.regnet(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = outputs.pooler_output if return_dict else outputs[1]
_SCREAMING_SNAKE_CASE : Tuple = self.classifier(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_SCREAMING_SNAKE_CASE : List[Any] = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_SCREAMING_SNAKE_CASE : Dict = "single_label_classification"
else:
_SCREAMING_SNAKE_CASE : List[Any] = "multi_label_classification"
if self.config.problem_type == "regression":
_SCREAMING_SNAKE_CASE : Union[str, Any] = MSELoss()
if self.num_labels == 1:
_SCREAMING_SNAKE_CASE : Tuple = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(__lowerCamelCase , __lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
_SCREAMING_SNAKE_CASE : List[Any] = CrossEntropyLoss()
_SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_SCREAMING_SNAKE_CASE : Tuple = BCEWithLogitsLoss()
_SCREAMING_SNAKE_CASE : Any = loss_fct(__lowerCamelCase , __lowerCamelCase )
if not return_dict:
_SCREAMING_SNAKE_CASE : Optional[int] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
| 364
|
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket" )
@patch("builtins.open" )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
# ===== initialization =====
_SCREAMING_SNAKE_CASE : List[Any] = Mock()
_SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock()
_SCREAMING_SNAKE_CASE : Dict = iter([1, None] )
_SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase )
# ===== invoke =====
send_file(filename="mytext.txt", testing=__lowerCamelCase )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 325
| 0
|
from __future__ import annotations
import typing
from collections import Counter
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1 ):
for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ):
_SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def lowerCamelCase__ (__lowerCamelCase = 1000 ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f"Perimeter {solution()} has maximum solutions")
| 365
|
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = ['image_processor', 'tokenizer']
__snake_case = 'BlipImageProcessor'
__snake_case = 'AutoTokenizer'
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
_SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer
def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
_SCREAMING_SNAKE_CASE : Any = BatchFeature()
if text is not None:
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" )
_SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
_SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
_SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 325
| 0
|
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
UpperCamelCase__ =datasets.logging.get_logger(__name__)
UpperCamelCase__ ='\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
UpperCamelCase__ ='\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
UpperCamelCase__ ='\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase=False, __lowerCamelCase=True, __lowerCamelCase=False, __lowerCamelCase="dummy_doc" ):
_SCREAMING_SNAKE_CASE : Optional[int] = {doc: key_lines}
_SCREAMING_SNAKE_CASE : List[str] = {doc: sys_lines}
_SCREAMING_SNAKE_CASE : List[Any] = {}
_SCREAMING_SNAKE_CASE : Optional[int] = 0
_SCREAMING_SNAKE_CASE : Tuple = 0
_SCREAMING_SNAKE_CASE : Tuple = 0
_SCREAMING_SNAKE_CASE : Dict = 0
_SCREAMING_SNAKE_CASE : int = 0
_SCREAMING_SNAKE_CASE : int = 0
_SCREAMING_SNAKE_CASE : Optional[int] = reader.get_doc_mentions(__lowerCamelCase, key_doc_lines[doc], __lowerCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_SCREAMING_SNAKE_CASE : List[Any] = reader.set_annotated_parse_trees(__lowerCamelCase, key_doc_lines[doc], __lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = reader.get_doc_mentions(__lowerCamelCase, sys_doc_lines[doc], __lowerCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_SCREAMING_SNAKE_CASE : Tuple = reader.set_annotated_parse_trees(__lowerCamelCase, key_doc_lines[doc], __lowerCamelCase, __lowerCamelCase )
if remove_nested:
_SCREAMING_SNAKE_CASE : List[Any] = reader.remove_nested_coref_mentions(__lowerCamelCase, __lowerCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_SCREAMING_SNAKE_CASE : Any = reader.remove_nested_coref_mentions(__lowerCamelCase, __lowerCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_SCREAMING_SNAKE_CASE : Optional[Any] = reader.get_mention_assignments(__lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = reader.get_mention_assignments(__lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" )
logger.info(
"Number of resulting singleton clusters in the key "
f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" )
if not keep_singletons:
logger.info(
f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """
"files, respectively" )
return doc_coref_infos
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Dict = get_coref_infos(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = {}
_SCREAMING_SNAKE_CASE : List[Any] = 0
_SCREAMING_SNAKE_CASE : Tuple = 0
for name, metric in metrics:
_SCREAMING_SNAKE_CASE : str = evaluator.evaluate_documents(__lowerCamelCase, __lowerCamelCase, beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} )
logger.info(
name.ljust(10 ), f"""Recall: {recall * 100:.2f}""", f""" Precision: {precision * 100:.2f}""", f""" F1: {fa * 100:.2f}""", )
if conll_subparts_num == 3:
_SCREAMING_SNAKE_CASE : Optional[Any] = (conll / 3) * 100
logger.info(f"""CoNLL score: {conll:.2f}""" )
output_scores.update({"conll_score": conll} )
return output_scores
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : str = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
_SCREAMING_SNAKE_CASE : Any = line.split()[5]
if not parse_col == "-":
_SCREAMING_SNAKE_CASE : Optional[Any] = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[str] = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
_SCREAMING_SNAKE_CASE : Dict = util.check_gold_parse_annotation(__lowerCamelCase )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_SCREAMING_SNAKE_CASE : List[str] = evaluate(
key_lines=__lowerCamelCase , sys_lines=__lowerCamelCase , metrics=__lowerCamelCase , NP_only=__lowerCamelCase , remove_nested=__lowerCamelCase , keep_singletons=__lowerCamelCase , min_span=__lowerCamelCase , )
return score
| 366
|
from maths.prime_check import is_prime
def lowerCamelCase__ (__lowerCamelCase ):
if not isinstance(__lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__lowerCamelCase )
if is_prime(__lowerCamelCase ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ =logging.get_logger(__name__)
UpperCamelCase__ ={
'edbeeching/decision-transformer-gym-hopper-medium': (
'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'decision_transformer'
__snake_case = ['past_key_values']
__snake_case = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __lowerCamelCase=1_7 , __lowerCamelCase=4 , __lowerCamelCase=1_2_8 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=True , __lowerCamelCase=1 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=3 , __lowerCamelCase=1 , __lowerCamelCase=None , __lowerCamelCase="relu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1E-5 , __lowerCamelCase=0.02 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=5_0_2_5_6 , __lowerCamelCase=5_0_2_5_6 , __lowerCamelCase=False , __lowerCamelCase=False , **__lowerCamelCase , ) -> int:
_SCREAMING_SNAKE_CASE : Optional[Any] = state_dim
_SCREAMING_SNAKE_CASE : List[Any] = act_dim
_SCREAMING_SNAKE_CASE : Any = hidden_size
_SCREAMING_SNAKE_CASE : List[Any] = max_ep_len
_SCREAMING_SNAKE_CASE : Any = action_tanh
_SCREAMING_SNAKE_CASE : Any = vocab_size
_SCREAMING_SNAKE_CASE : Any = n_positions
_SCREAMING_SNAKE_CASE : Optional[int] = n_layer
_SCREAMING_SNAKE_CASE : List[Any] = n_head
_SCREAMING_SNAKE_CASE : Dict = n_inner
_SCREAMING_SNAKE_CASE : str = activation_function
_SCREAMING_SNAKE_CASE : Tuple = resid_pdrop
_SCREAMING_SNAKE_CASE : Union[str, Any] = embd_pdrop
_SCREAMING_SNAKE_CASE : Dict = attn_pdrop
_SCREAMING_SNAKE_CASE : List[Any] = layer_norm_epsilon
_SCREAMING_SNAKE_CASE : List[str] = initializer_range
_SCREAMING_SNAKE_CASE : Any = scale_attn_weights
_SCREAMING_SNAKE_CASE : Tuple = use_cache
_SCREAMING_SNAKE_CASE : Tuple = scale_attn_by_inverse_layer_idx
_SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn
_SCREAMING_SNAKE_CASE : int = bos_token_id
_SCREAMING_SNAKE_CASE : str = eos_token_id
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
| 367
|
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCamelCase__ (__lowerCamelCase ):
return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" )
download_parser.add_argument(
"--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" )
download_parser.add_argument(
"--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" )
download_parser.add_argument(
"--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , )
download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" )
download_parser.set_defaults(func=__lowerCamelCase )
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Any = model
_SCREAMING_SNAKE_CASE : Optional[int] = cache
_SCREAMING_SNAKE_CASE : str = force
_SCREAMING_SNAKE_CASE : str = trust_remote_code
def UpperCamelCase_ ( self ) -> Optional[Any]:
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 325
| 0
|
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=4 , ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : Optional[Any] = parent
_SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
_SCREAMING_SNAKE_CASE : Any = seq_length
_SCREAMING_SNAKE_CASE : Optional[Any] = is_training
_SCREAMING_SNAKE_CASE : Any = use_attention_mask
_SCREAMING_SNAKE_CASE : Any = use_token_type_ids
_SCREAMING_SNAKE_CASE : str = use_labels
_SCREAMING_SNAKE_CASE : Optional[int] = vocab_size
_SCREAMING_SNAKE_CASE : List[str] = hidden_size
_SCREAMING_SNAKE_CASE : str = num_hidden_layers
_SCREAMING_SNAKE_CASE : List[str] = num_attention_heads
_SCREAMING_SNAKE_CASE : Any = intermediate_size
_SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act
_SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : Dict = max_position_embeddings
_SCREAMING_SNAKE_CASE : List[str] = type_vocab_size
_SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size
_SCREAMING_SNAKE_CASE : Dict = initializer_range
_SCREAMING_SNAKE_CASE : str = num_choices
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE : Dict = None
if self.use_attention_mask:
_SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_SCREAMING_SNAKE_CASE : int = None
if self.use_token_type_ids:
_SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_SCREAMING_SNAKE_CASE : List[Any] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs()
_SCREAMING_SNAKE_CASE : Tuple = config_and_inputs
_SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class lowerCAmelCase__( __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = True
__snake_case = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Any = FlaxRoFormerModelTester(self )
@slow
def UpperCamelCase_ ( self ) -> Dict:
for model_class_name in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Dict = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : str = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" )
_SCREAMING_SNAKE_CASE : List[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] )
_SCREAMING_SNAKE_CASE : Union[str, Any] = model(__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : List[str] = 5_0_0_0_0
_SCREAMING_SNAKE_CASE : Any = (1, 6, vocab_size)
self.assertEqual(output.shape , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
| 368
|
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class lowerCAmelCase__:
'''simple docstring'''
__snake_case = BlenderbotSmallConfig
__snake_case = {}
__snake_case = 'gelu'
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]:
_SCREAMING_SNAKE_CASE : int = parent
_SCREAMING_SNAKE_CASE : Tuple = batch_size
_SCREAMING_SNAKE_CASE : Dict = seq_length
_SCREAMING_SNAKE_CASE : List[str] = is_training
_SCREAMING_SNAKE_CASE : List[str] = use_labels
_SCREAMING_SNAKE_CASE : Dict = vocab_size
_SCREAMING_SNAKE_CASE : Dict = hidden_size
_SCREAMING_SNAKE_CASE : int = num_hidden_layers
_SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
_SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
_SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id
_SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id
_SCREAMING_SNAKE_CASE : List[str] = bos_token_id
def UpperCamelCase_ ( self ) -> List[str]:
_SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
_SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return config, inputs_dict
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
_SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder()
_SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"]
_SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :]
_SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :]
_SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"]
_SCREAMING_SNAKE_CASE : int = 1
# first forward pass
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx]
_SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ):
if attention_mask is None:
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
_SCREAMING_SNAKE_CASE : List[str] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
_SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
__snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'conversational': TFBlenderbotSmallForConditionalGeneration,
'feature-extraction': TFBlenderbotSmallModel,
'summarization': TFBlenderbotSmallForConditionalGeneration,
'text2text-generation': TFBlenderbotSmallForConditionalGeneration,
'translation': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self )
_SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Tuple:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase )
@require_tokenizers
@require_tf
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
__snake_case = [
'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '
' i\'m going to throw up.\nand why is that?'
]
__snake_case = 'facebook/blenderbot_small-90M'
@cached_property
def UpperCamelCase_ ( self ) -> List[Any]:
# use "old" tokenizer here because of bug when downloading new tokenizer
return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
@cached_property
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" )
_SCREAMING_SNAKE_CASE : Dict = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , )
_SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 325
| 0
|
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "tf_padding" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "depth_multiplier" ) )
class lowerCAmelCase__:
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3 , __lowerCamelCase=3_2 , __lowerCamelCase=0.25 , __lowerCamelCase=8 , __lowerCamelCase=True , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=3_2 , __lowerCamelCase="relu6" , __lowerCamelCase=0.1 , __lowerCamelCase=0.02 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=None , ) -> int:
_SCREAMING_SNAKE_CASE : Any = parent
_SCREAMING_SNAKE_CASE : Optional[int] = batch_size
_SCREAMING_SNAKE_CASE : int = num_channels
_SCREAMING_SNAKE_CASE : Any = image_size
_SCREAMING_SNAKE_CASE : Optional[Any] = depth_multiplier
_SCREAMING_SNAKE_CASE : Optional[Any] = min_depth
_SCREAMING_SNAKE_CASE : Union[str, Any] = tf_padding
_SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier )
_SCREAMING_SNAKE_CASE : Dict = output_stride
_SCREAMING_SNAKE_CASE : Any = hidden_act
_SCREAMING_SNAKE_CASE : Any = classifier_dropout_prob
_SCREAMING_SNAKE_CASE : int = use_labels
_SCREAMING_SNAKE_CASE : Optional[Any] = is_training
_SCREAMING_SNAKE_CASE : Dict = num_labels
_SCREAMING_SNAKE_CASE : Optional[int] = initializer_range
_SCREAMING_SNAKE_CASE : Optional[int] = scope
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE : List[Any] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
if self.use_labels:
_SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
_SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_SCREAMING_SNAKE_CASE : int = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ) -> List[str]:
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels
_SCREAMING_SNAKE_CASE : int = MobileNetVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs()
_SCREAMING_SNAKE_CASE : List[str] = config_and_inputs
_SCREAMING_SNAKE_CASE : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
__snake_case = (
{'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = MobileNetVaModelTester(self )
_SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def UpperCamelCase_ ( self ) -> str:
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self ) -> Optional[int]:
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self ) -> Any:
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self ) -> Any:
pass
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Any = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
_SCREAMING_SNAKE_CASE : str = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Optional[int]:
def check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
_SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states
_SCREAMING_SNAKE_CASE : Optional[Any] = 2_6
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_SCREAMING_SNAKE_CASE : str = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def UpperCamelCase_ ( self ) -> Dict:
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def lowerCamelCase__ ():
_SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ) -> Tuple:
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor
_SCREAMING_SNAKE_CASE : str = prepare_img()
_SCREAMING_SNAKE_CASE : List[str] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
_SCREAMING_SNAKE_CASE : int = model(**__lowerCamelCase )
# verify the logits
_SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1_0_0_1) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
| 369
|
from math import isqrt, loga
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number
for i in range(2, isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2, __lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = False
return [i for i in range(2, __lowerCamelCase ) if is_prime[i]]
def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ):
_SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = 0
_SCREAMING_SNAKE_CASE : int = 0
_SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(f"{solution() = }")
| 325
| 0
|
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase__ (__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Dict = [False] * len(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = [-1] * len(__lowerCamelCase )
def dfs(__lowerCamelCase, __lowerCamelCase ):
_SCREAMING_SNAKE_CASE : List[Any] = True
_SCREAMING_SNAKE_CASE : Optional[int] = c
for u in graph[v]:
if not visited[u]:
dfs(__lowerCamelCase, 1 - c )
for i in range(len(__lowerCamelCase ) ):
if not visited[i]:
dfs(__lowerCamelCase, 0 )
for i in range(len(__lowerCamelCase ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
UpperCamelCase__ ={0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 370
|
from math import factorial
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k" )
return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k ))
if __name__ == "__main__":
print(
'The number of five-card hands possible from a standard',
f"fifty-two card deck is: {combinations(52, 5)}\n",
)
print(
'If a class of 40 students must be arranged into groups of',
f"4 for group projects, there are {combinations(40, 4)} ways",
'to arrange them.\n',
)
print(
'If 10 teams are competing in a Formula One race, there',
f"are {combinations(10, 3)} ways that first, second and",
'third place can be awarded.',
)
| 325
| 0
|
from __future__ import annotations
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
if len(__lowerCamelCase ) == 0:
return False
_SCREAMING_SNAKE_CASE : List[Any] = len(__lowerCamelCase ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint], __lowerCamelCase )
else:
return binary_search(a_list[midpoint + 1 :], __lowerCamelCase )
if __name__ == "__main__":
UpperCamelCase__ =input('Enter numbers separated by comma:\n').strip()
UpperCamelCase__ =[int(item.strip()) for item in user_input.split(',')]
UpperCamelCase__ =int(input('Enter the number to be found in the list:\n').strip())
UpperCamelCase__ ='' if binary_search(sequence, target) else 'not '
print(f"{target} was {not_str}found in {sequence}")
| 371
|
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class lowerCAmelCase__( __lowercase , __lowercase ):
'''simple docstring'''
@register_to_config
def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int:
super().__init__()
_SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential(
nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , )
_SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = False
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList()
for lyr_num in range(__lowerCamelCase ):
# FiLM conditional T5 decoder
_SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase )
self.decoders.append(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
_SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
_SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to(
torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase )
inputs += position_encodings
_SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase )
# decoder: No padding present.
_SCREAMING_SNAKE_CASE : Any = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
_SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
_SCREAMING_SNAKE_CASE : Optional[Any] = lyr(
__lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0]
_SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase )
return spec_out
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict:
super().__init__()
_SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : int = self.layer[0](
__lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , )
if encoder_hidden_states is not None:
_SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
_SCREAMING_SNAKE_CASE : Tuple = self.layer[1](
__lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , )
# Apply Film Conditional Feed Forward layer
_SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase )
return (hidden_states,)
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]:
# pre_self_attention_layer_norm
_SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase )
if conditioning_emb is not None:
_SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase )
# Self-attention block
_SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase )
return hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
super().__init__()
_SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = self.attention(
__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , )
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase )
return layer_output
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]:
_SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase )
if conditioning_emb is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase )
return hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation()
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any:
_SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear
_SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase )
return hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int:
super().__init__()
_SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : str = eps
def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
_SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) ))
class lowerCAmelCase__( nn.Module ):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
super().__init__()
_SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict:
_SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 )
_SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift
return x
| 325
| 0
|
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class _a :
"""simple docstring"""
def __init__( self : Any , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : str=None )->Tuple:
# Input as list
_UpperCAmelCase = list(poly_a or [0] )[:]
_UpperCAmelCase = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
_UpperCAmelCase = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
_UpperCAmelCase = len(self.polyB )
# Add 0 to make lengths equal a power of 2
_UpperCAmelCase = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
_UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
_UpperCAmelCase = self.__multiply()
def lowercase__ ( self : List[str] , __UpperCamelCase : List[str] )->List[str]:
_UpperCAmelCase = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(__UpperCamelCase ) <= 1:
return dft[0]
#
_UpperCAmelCase = self.c_max_length // 2
while next_ncol > 0:
_UpperCAmelCase = [[] for i in range(__UpperCamelCase )]
_UpperCAmelCase = self.root**next_ncol
# First half of next step
_UpperCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(__UpperCamelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
_UpperCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(__UpperCamelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
_UpperCAmelCase = new_dft
_UpperCAmelCase = next_ncol // 2
return dft[0]
def lowercase__ ( self : Optional[int] )->Union[str, Any]:
_UpperCAmelCase = self.__dft('''A''' )
_UpperCAmelCase = self.__dft('''B''' )
_UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
_UpperCAmelCase = 2
while next_ncol <= self.c_max_length:
_UpperCAmelCase = [[] for i in range(__UpperCamelCase )]
_UpperCAmelCase = self.root ** (next_ncol // 2)
_UpperCAmelCase = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
_UpperCAmelCase = new_inverse_c
next_ncol *= 2
# Unpack
_UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Tuple )->List[str]:
_UpperCAmelCase = '''A = ''' + ''' + '''.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
_UpperCAmelCase = '''B = ''' + ''' + '''.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
_UpperCAmelCase = '''A*B = ''' + ''' + '''.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
UpperCamelCase__ = None
__A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess")
def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right )
_UpperCAmelCase = 1 - left_distrib_excess
_UpperCAmelCase = 1 - right_distrib_excess
_UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import requests
__A : int = "YOUR API KEY"
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = giphy_api_key ):
'''simple docstring'''
_UpperCAmelCase = '''+'''.join(query.split() )
_UpperCAmelCase = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_UpperCAmelCase = requests.get(_SCREAMING_SNAKE_CASE ).json()['''data''']
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print("\n".join(get_gifs("space ship")))
| 326
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
"""feature-extraction""": TFMobileBertModel,
"""fill-mask""": TFMobileBertForMaskedLM,
"""question-answering""": TFMobileBertForQuestionAnswering,
"""text-classification""": TFMobileBertForSequenceClassification,
"""token-classification""": TFMobileBertForTokenClassification,
"""zero-shot""": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]:
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any:
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = embedding_size
def lowercase__ ( self : Optional[int] )->int:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = [input_ids, input_mask]
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple:
_UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]:
_UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]:
_UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]:
_UpperCAmelCase = self.num_choices
_UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : List[str] )->Optional[Any]:
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def lowercase__ ( self : List[Any] )->str:
_UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 )
def lowercase__ ( self : List[Any] )->List[str]:
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def lowercase__ ( self : Any )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def lowercase__ ( self : List[Any] )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def lowercase__ ( self : str )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def lowercase__ ( self : Any )->List[str]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def lowercase__ ( self : Dict )->Any:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def lowercase__ ( self : Any )->Optional[Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def lowercase__ ( self : List[str] )->Tuple:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
@slow
def lowercase__ ( self : Tuple )->List[str]:
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class _a ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase__ ( self : str )->Dict:
_UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
_UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase = model(__UpperCamelCase )[0]
_UpperCAmelCase = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , __UpperCamelCase )
_UpperCAmelCase = tf.constant(
[
[
[-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6],
[-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7],
[-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
| 326
| 1
|
"""simple docstring"""
import math
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = 0
_UpperCAmelCase = 0
while num > 0:
_UpperCAmelCase = num % 8
_UpperCAmelCase = octal + (remainder * math.floor(math.pow(10 , _SCREAMING_SNAKE_CASE ) ))
counter += 1
_UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'0o{int(_SCREAMING_SNAKE_CASE )}'
def lowercase ( ):
'''simple docstring'''
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(216 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(512 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError('''Input value must be a \'int\' type''' )
return bin(_SCREAMING_SNAKE_CASE ).count('''1''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import json
import os
import tempfile
from transformers.testing_utils import check_json_file_has_correct_format
class _a :
"""simple docstring"""
UpperCamelCase__ = None
def lowercase__ ( self : int )->List[str]:
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = json.loads(feat_extract.to_json_string() )
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key] , __UpperCamelCase )
def lowercase__ ( self : int )->Optional[int]:
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(__UpperCamelCase , '''feat_extract.json''' )
feat_extract_first.to_json_file(__UpperCamelCase )
_UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def lowercase__ ( self : Any )->str:
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0]
check_json_file_has_correct_format(__UpperCamelCase )
_UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def lowercase__ ( self : Union[str, Any] )->Optional[Any]:
_UpperCAmelCase = self.feature_extraction_class()
self.assertIsNotNone(__UpperCamelCase )
| 326
|
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__A : Tuple = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""")
@require_torch
@require_tf
@slow
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple:
_UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )]
if identifier is not None:
_UpperCAmelCase = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__UpperCamelCase , __UpperCamelCase ):
for n_ in n_identifier:
_UpperCAmelCase = [file for file in files if n_ not in file]
else:
_UpperCAmelCase = [file for file in files if n_identifier not in file]
_UpperCAmelCase = ignore_files or []
ignore_files.append('''__init__.py''' )
_UpperCAmelCase = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , __UpperCamelCase )
if only_modules:
_UpperCAmelCase = file.split('''.''' )[0]
try:
_UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase )
_UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
_UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def lowercase__ ( self : str )->int:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''modeling'''
_UpperCAmelCase = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase )
def lowercase__ ( self : List[Any] )->int:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''tokenization'''
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase )
def lowercase__ ( self : str )->Any:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''configuration'''
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase )
def lowercase__ ( self : int )->Optional[Any]:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->Any:
_UpperCAmelCase = Path('''docs/source''' )
_UpperCAmelCase = ['''favicon.ico''']
self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(_SCREAMING_SNAKE_CASE ) < 2:
return collection
def circle_sort_util(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool:
_UpperCAmelCase = False
if low == high:
return swapped
_UpperCAmelCase = low
_UpperCAmelCase = high
while left < right:
if collection[left] > collection[right]:
_UpperCAmelCase , _UpperCAmelCase = (
collection[right],
collection[left],
)
_UpperCAmelCase = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
_UpperCAmelCase , _UpperCAmelCase = (
collection[right + 1],
collection[left],
)
_UpperCAmelCase = True
_UpperCAmelCase = low + int((high - low) / 2 )
_UpperCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE )
return swapped or left_swap or right_swap
_UpperCAmelCase = True
while is_not_sorted is True:
_UpperCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 )
return collection
if __name__ == "__main__":
__A : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip()
__A : Tuple = [int(item) for item in user_input.split(",")]
print(circle_sort(unsorted))
| 326
|
"""simple docstring"""
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' )
_UpperCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = i / num_diffusion_timesteps
_UpperCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class _a ( lowerCAmelCase , lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 1
@register_to_config
def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict:
if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None:
_UpperCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase )
_UpperCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_UpperCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase )
else:
raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' )
_UpperCAmelCase = 1.0 - self.betas
_UpperCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_UpperCAmelCase = 1.0
# setable values
_UpperCAmelCase = None
_UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) )
def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor:
return sample
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'
F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'
F' maximal {self.config.num_train_timesteps} timesteps.' )
_UpperCAmelCase = num_inference_steps
_UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa )
_UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase )
self.timesteps += self.config.steps_offset
def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]:
# 1. get previous step value (=t+1)
_UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_UpperCAmelCase = self.alphas_cumprod[timestep]
_UpperCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_UpperCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_UpperCAmelCase = model_output
elif self.config.prediction_type == "sample":
_UpperCAmelCase = model_output
_UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_UpperCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase )
def __len__( self : Any )->str:
return self.config.num_train_timesteps
| 326
| 1
|
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
# setable values
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = None
@classmethod
def lowercase__ ( cls : Tuple , __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray )->int:
return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase )
@dataclass
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 42
class _a ( lowerCAmelCase , lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = [e.name for e in FlaxKarrasDiffusionSchedulers]
UpperCamelCase__ = 42
@property
def lowercase__ ( self : str )->Any:
return True
@register_to_config
def __init__( self : str , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[jnp.ndarray] = None , __UpperCamelCase : str = "fixed_small" , __UpperCamelCase : bool = True , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : jnp.dtype = jnp.floataa , )->int:
_UpperCAmelCase = dtype
def lowercase__ ( self : int , __UpperCamelCase : Optional[CommonSchedulerState] = None )->DDPMSchedulerState:
if common is None:
_UpperCAmelCase = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_UpperCAmelCase = jnp.array(1.0 , dtype=self.dtype )
_UpperCAmelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : DDPMSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Optional[int] = None )->jnp.ndarray:
return sample
def lowercase__ ( self : str , __UpperCamelCase : DDPMSchedulerState , __UpperCamelCase : int , __UpperCamelCase : Tuple = () )->DDPMSchedulerState:
_UpperCAmelCase = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_UpperCAmelCase = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , )
def lowercase__ ( self : str , __UpperCamelCase : DDPMSchedulerState , __UpperCamelCase : Dict , __UpperCamelCase : Any=None , __UpperCamelCase : Dict=None )->int:
_UpperCAmelCase = state.common.alphas_cumprod[t]
_UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_UpperCAmelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_UpperCAmelCase = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_UpperCAmelCase = jnp.clip(__UpperCamelCase , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_UpperCAmelCase = jnp.log(jnp.clip(__UpperCamelCase , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_UpperCAmelCase = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_UpperCAmelCase = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_UpperCAmelCase = variance
_UpperCAmelCase = state.common.betas[t]
_UpperCAmelCase = (predicted_variance + 1) / 2
_UpperCAmelCase = frac * max_log + (1 - frac) * min_log
return variance
def lowercase__ ( self : Optional[int] , __UpperCamelCase : DDPMSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : int , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Optional[jax.random.KeyArray] = None , __UpperCamelCase : bool = True , )->Union[FlaxDDPMSchedulerOutput, Tuple]:
_UpperCAmelCase = timestep
if key is None:
_UpperCAmelCase = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_UpperCAmelCase , _UpperCAmelCase = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 )
else:
_UpperCAmelCase = None
# 1. compute alphas, betas
_UpperCAmelCase = state.common.alphas_cumprod[t]
_UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_UpperCAmelCase = 1 - alpha_prod_t
_UpperCAmelCase = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_UpperCAmelCase = model_output
elif self.config.prediction_type == "v_prediction":
_UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
''' for the FlaxDDPMScheduler.''' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_UpperCAmelCase = jnp.clip(__UpperCamelCase , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_UpperCAmelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_UpperCAmelCase = jax.random.split(__UpperCamelCase , num=1 )
_UpperCAmelCase = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise
_UpperCAmelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_UpperCAmelCase = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase )
def lowercase__ ( self : Any , __UpperCamelCase : DDPMSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , )->jnp.ndarray:
return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Dict , __UpperCamelCase : DDPMSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , )->jnp.ndarray:
return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def __len__( self : Any )->Union[str, Any]:
return self.config.num_train_timesteps
| 326
|
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(number**0.5 )
return number == sq * sq
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
_UpperCAmelCase = x_den * y_den * z_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
top //= hcf
bottom //= hcf
return top, bottom
def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ):
'''simple docstring'''
_UpperCAmelCase = set()
_UpperCAmelCase = 42
_UpperCAmelCase = Fraction(0 )
_UpperCAmelCase = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
_UpperCAmelCase = x_num * y_den + x_den * y_num
_UpperCAmelCase = x_den * y_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_UpperCAmelCase = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
_UpperCAmelCase = x_den * x_den * y_den * y_den
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=-1
_UpperCAmelCase = x_num * y_num
_UpperCAmelCase = x_den * y_num + x_num * y_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_UpperCAmelCase = x_num * x_num * y_num * y_num
_UpperCAmelCase = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
for num, den in unique_s:
total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f'''{solution() = }''')
| 326
| 1
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Dict )->List[Any]:
_UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
_UpperCAmelCase = get_activation('''gelu''' )
self.assertTrue(torch.allclose(gelu_python(__UpperCamelCase ) , torch_builtin(__UpperCamelCase ) ) )
self.assertFalse(torch.allclose(gelu_python(__UpperCamelCase ) , gelu_new(__UpperCamelCase ) ) )
def lowercase__ ( self : List[Any] )->List[Any]:
_UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
_UpperCAmelCase = get_activation('''gelu''' )
_UpperCAmelCase = get_activation('''gelu_10''' )
_UpperCAmelCase = torch_builtin(__UpperCamelCase )
_UpperCAmelCase = geluaa(__UpperCamelCase )
_UpperCAmelCase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 )
self.assertTrue(torch.max(__UpperCamelCase ).item() == 1_0.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def lowercase__ ( self : Tuple )->int:
get_activation('''gelu''' )
get_activation('''gelu_10''' )
get_activation('''gelu_fast''' )
get_activation('''gelu_new''' )
get_activation('''gelu_python''' )
get_activation('''gelu_pytorch_tanh''' )
get_activation('''linear''' )
get_activation('''mish''' )
get_activation('''quick_gelu''' )
get_activation('''relu''' )
get_activation('''sigmoid''' )
get_activation('''silu''' )
get_activation('''swish''' )
get_activation('''tanh''' )
with self.assertRaises(__UpperCamelCase ):
get_activation('''bogus''' )
with self.assertRaises(__UpperCamelCase ):
get_activation(__UpperCamelCase )
def lowercase__ ( self : Optional[Any] )->Union[str, Any]:
_UpperCAmelCase = get_activation('''gelu''' )
_UpperCAmelCase = 1
_UpperCAmelCase = get_activation('''gelu''' )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = acta.a
| 326
|
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE ) as metadata_file:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] )
# Load in the weights from the checkpoint_path
_UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module''']
# Load the entity vocab file
_UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
_UpperCAmelCase = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
_UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] )
# Add special tokens to the token vocabulary for downstream tasks
_UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'Saving tokenizer to {pytorch_dump_folder_path}' )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''MLukeTokenizer'''
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0]
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0]
_UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight''']
_UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
_UpperCAmelCase = state_dict[bias_name]
_UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.'
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight''']
_UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
_UpperCAmelCase = state_dict['''entity_predictions.bias''']
_UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] )
_UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval()
state_dict.pop('''entity_predictions.decoder.weight''' )
state_dict.pop('''lm_head.decoder.weight''' )
state_dict.pop('''lm_head.decoder.bias''' )
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )):
_UpperCAmelCase = state_dict[key]
else:
_UpperCAmelCase = state_dict[key]
_UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' )
if set(_SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f'Unexpected missing_keys: {missing_keys}' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' )
_UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'''
_UpperCAmelCase = (0, 9)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 33, 768) )
_UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 1, 768) )
_UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'
f' {expected_shape}' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''Tokyo is the capital of <mask>.'''
_UpperCAmelCase = (24, 30)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = encoding['''input_ids'''][0].tolist()
_UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) )
_UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = outputs.entity_logits[0][0].argmax().item()
_UpperCAmelCase = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]''']
_UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )]
_UpperCAmelCase = {}
for entry in data:
_UpperCAmelCase = entry['''id''']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
_UpperCAmelCase = entity_id
break
_UpperCAmelCase = f'{language}:{entity_name}'
_UpperCAmelCase = entity_id
return new_mapping
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
__A : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326
| 1
|
"""simple docstring"""
import string
import numpy
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE )
class _a :
"""simple docstring"""
UpperCamelCase__ = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
UpperCamelCase__ = numpy.vectorize(lambda lowerCAmelCase: x % 36)
UpperCamelCase__ = numpy.vectorize(lowerCAmelCase)
def __init__( self : List[Any] , __UpperCamelCase : numpy.ndarray )->None:
_UpperCAmelCase = self.modulus(__UpperCamelCase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
_UpperCAmelCase = encrypt_key.shape[0]
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str )->int:
return self.key_string.index(__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int )->str:
return self.key_string[round(__UpperCamelCase )]
def lowercase__ ( self : Dict )->None:
_UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
_UpperCAmelCase = det % len(self.key_string )
_UpperCAmelCase = len(self.key_string )
if greatest_common_divisor(__UpperCamelCase , len(self.key_string ) ) != 1:
_UpperCAmelCase = (
F'determinant modular {req_l} of encryption key({det}) '
F'is not co prime w.r.t {req_l}.\nTry another key.'
)
raise ValueError(__UpperCamelCase )
def lowercase__ ( self : List[Any] , __UpperCamelCase : str )->str:
_UpperCAmelCase = [char for char in text.upper() if char in self.key_string]
_UpperCAmelCase = chars[-1]
while len(__UpperCamelCase ) % self.break_key != 0:
chars.append(__UpperCamelCase )
return "".join(__UpperCamelCase )
def lowercase__ ( self : List[Any] , __UpperCamelCase : str )->str:
_UpperCAmelCase = self.process_text(text.upper() )
_UpperCAmelCase = ''''''
for i in range(0 , len(__UpperCamelCase ) - self.break_key + 1 , self.break_key ):
_UpperCAmelCase = text[i : i + self.break_key]
_UpperCAmelCase = [self.replace_letters(__UpperCamelCase ) for char in batch]
_UpperCAmelCase = numpy.array([vec] ).T
_UpperCAmelCase = self.modulus(self.encrypt_key.dot(__UpperCamelCase ) ).T.tolist()[
0
]
_UpperCAmelCase = ''''''.join(
self.replace_digits(__UpperCamelCase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def lowercase__ ( self : Any )->numpy.ndarray:
_UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
_UpperCAmelCase = det % len(self.key_string )
_UpperCAmelCase = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
_UpperCAmelCase = i
break
_UpperCAmelCase = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__UpperCamelCase ) )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->str:
_UpperCAmelCase = self.make_decrypt_key()
_UpperCAmelCase = self.process_text(text.upper() )
_UpperCAmelCase = ''''''
for i in range(0 , len(__UpperCamelCase ) - self.break_key + 1 , self.break_key ):
_UpperCAmelCase = text[i : i + self.break_key]
_UpperCAmelCase = [self.replace_letters(__UpperCamelCase ) for char in batch]
_UpperCAmelCase = numpy.array([vec] ).T
_UpperCAmelCase = self.modulus(decrypt_key.dot(__UpperCamelCase ) ).T.tolist()[0]
_UpperCAmelCase = ''''''.join(
self.replace_digits(__UpperCamelCase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = int(input('''Enter the order of the encryption key: ''' ) )
_UpperCAmelCase = []
print('''Enter each row of the encryption key with space separated integers''' )
for _ in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) )
print('''Would you like to encrypt or decrypt some text? (1 or 2)''' )
_UpperCAmelCase = input('''\n1. Encrypt\n2. Decrypt\n''' )
if option == "1":
_UpperCAmelCase = input('''What text would you like to encrypt?: ''' )
print('''Your encrypted text is:''' )
print(hc.encrypt(_SCREAMING_SNAKE_CASE ) )
elif option == "2":
_UpperCAmelCase = input('''What text would you like to decrypt?: ''' )
print('''Your decrypted text is:''' )
print(hc.decrypt(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 326
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
__A : Tuple = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ):
'''simple docstring'''
_UpperCAmelCase = True
while ask_again:
_UpperCAmelCase = input(_SCREAMING_SNAKE_CASE )
try:
if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0:
return default
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ):
'''simple docstring'''
_UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE )
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _a ( argparse.RawDescriptionHelpFormatter):
"""simple docstring"""
def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]:
_UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' )
return usage
| 326
| 1
|
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowercase ( _SCREAMING_SNAKE_CASE : Any ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowercase ( ):
'''simple docstring'''
with parallel_backend('''spark''' ):
assert ParallelBackendConfig.backend_name == "spark"
_UpperCAmelCase = [1, 2, 3]
with pytest.raises(_SCREAMING_SNAKE_CASE ):
with parallel_backend('''unsupported backend''' ):
map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=2 )
with pytest.raises(_SCREAMING_SNAKE_CASE ):
with parallel_backend('''unsupported backend''' ):
map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('''num_proc''' , [2, -1] )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
_UpperCAmelCase = [1, 2]
_UpperCAmelCase = {'''a''': 1, '''b''': 2}
_UpperCAmelCase = {'''a''': [1, 2], '''b''': [3, 4]}
_UpperCAmelCase = {'''a''': {'''1''': 1}, '''b''': 2}
_UpperCAmelCase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
_UpperCAmelCase = [2, 3]
_UpperCAmelCase = {'''a''': 2, '''b''': 3}
_UpperCAmelCase = {'''a''': [2, 3], '''b''': [4, 5]}
_UpperCAmelCase = {'''a''': {'''1''': 2}, '''b''': 3}
_UpperCAmelCase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
with parallel_backend('''spark''' ):
assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
| 326
|
"""simple docstring"""
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' )
parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 )
parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 )
parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 )
parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 )
parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 )
parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' )
parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 )
parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 )
parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' )
return parser.parse_args()
__A : Union[str, Any] = load("accuracy")
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = eval_pred
_UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None:
super().__init__()
_UpperCAmelCase = trainer
def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any:
if control.should_evaluate:
_UpperCAmelCase = deepcopy(__UpperCamelCase )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' )
return control_copy
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = get_args()
set_seed(args.seed )
_UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' )
_UpperCAmelCase = dataset.train_test_split(test_size=0.2 )
_UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 )
_UpperCAmelCase = DatasetDict(
{
'''train''': train_test['''train'''],
'''test''': test_validation['''train'''],
'''valid''': test_validation['''test'''],
} )
print('''Loading tokenizer and model''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt )
_UpperCAmelCase = tokenizer.eos_token
_UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
_UpperCAmelCase = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
_UpperCAmelCase = False
_UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) )
def tokenize(_SCREAMING_SNAKE_CASE : Any ):
_UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 )
_UpperCAmelCase = labels.straint(example['''complexity'''] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
_UpperCAmelCase = train_test_validation.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , )
_UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , )
_UpperCAmelCase = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , )
print('''Training...''' )
trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) )
trainer.train()
if __name__ == "__main__":
main()
| 326
| 1
|
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
__A : Any = ["gpt2"]
__A : Optional[int] = "gpt2"
if is_tf_available():
class _a ( tf.Module):
"""simple docstring"""
def __init__( self : List[str] , __UpperCamelCase : Dict )->Any:
super().__init__()
_UpperCAmelCase = tokenizer
_UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase )
_UpperCAmelCase = TFGPTaLMHeadModel.from_config(__UpperCamelCase )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) )
def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] )->Optional[Any]:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase )
_UpperCAmelCase = tokenized['''input_ids'''].to_tensor()
_UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
_UpperCAmelCase = self.model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )['''logits''']
return outputs
@require_tf
@require_keras_nlp
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Any )->List[str]:
super().setUp()
_UpperCAmelCase = [GPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
_UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
_UpperCAmelCase = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
_UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def lowercase__ ( self : Optional[int] )->List[Any]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
_UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' )
_UpperCAmelCase = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
_UpperCAmelCase = python_outputs[key].numpy()
_UpperCAmelCase = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase , tf.intaa ) == tf_outputs_values ) )
@slow
def lowercase__ ( self : Tuple )->int:
for tf_tokenizer in self.tf_tokenizers:
_UpperCAmelCase = tf.function(__UpperCamelCase )
for test_inputs in self.test_sentences:
_UpperCAmelCase = tf.constant(__UpperCamelCase )
_UpperCAmelCase = compiled_tokenizer(__UpperCamelCase )
_UpperCAmelCase = tf_tokenizer(__UpperCamelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def lowercase__ ( self : List[Any] )->int:
for tf_tokenizer in self.tf_tokenizers:
_UpperCAmelCase = ModelToSave(tokenizer=__UpperCamelCase )
_UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_UpperCAmelCase = model.serving(__UpperCamelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
_UpperCAmelCase = Path(__UpperCamelCase ) / '''saved.model'''
tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'''serving_default''': model.serving} )
_UpperCAmelCase = tf.saved_model.load(__UpperCamelCase )
_UpperCAmelCase = loaded_model.signatures['''serving_default'''](__UpperCamelCase )['''output_0''']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def lowercase__ ( self : Any )->List[str]:
for tf_tokenizer in self.tf_tokenizers:
_UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_UpperCAmelCase = tf_tokenizer(__UpperCamelCase ) # Build model with some sample inputs
_UpperCAmelCase = tf_tokenizer.get_config()
_UpperCAmelCase = TFGPTaTokenizer.from_config(__UpperCamelCase )
_UpperCAmelCase = model_from_config(__UpperCamelCase )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def lowercase__ ( self : str )->Union[str, Any]:
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
_UpperCAmelCase = 1_2_3_1_2_3
for max_length in [3, 5, 1_0_2_4]:
_UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_UpperCAmelCase = tf_tokenizer(__UpperCamelCase , max_length=__UpperCamelCase )
_UpperCAmelCase = out['''input_ids'''].numpy().shape[1]
assert out_length == max_length
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return "\n".join(
f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 326
| 1
|
"""simple docstring"""
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
_UpperCAmelCase = OmegaConf.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model''']
_UpperCAmelCase = list(state_dict.keys() )
# extract state_dict for VQVAE
_UpperCAmelCase = {}
_UpperCAmelCase = '''first_stage_model.'''
for key in keys:
if key.startswith(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = state_dict[key]
# extract state_dict for UNetLDM
_UpperCAmelCase = {}
_UpperCAmelCase = '''model.diffusion_model.'''
for key in keys:
if key.startswith(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = state_dict[key]
_UpperCAmelCase = config.model.params.first_stage_config.params
_UpperCAmelCase = config.model.params.unet_config.params
_UpperCAmelCase = VQModel(**_SCREAMING_SNAKE_CASE ).eval()
vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = UNetLDMModel(**_SCREAMING_SNAKE_CASE ).eval()
unet.load_state_dict(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = LDMPipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
pipeline.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
__A : Dict = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 326
|
"""simple docstring"""
class _a :
"""simple docstring"""
def __init__( self : Tuple , __UpperCamelCase : list[int] )->None:
_UpperCAmelCase = len(__UpperCamelCase )
_UpperCAmelCase = [0] * len_array
if len_array > 0:
_UpperCAmelCase = array[0]
for i in range(1 , __UpperCamelCase ):
_UpperCAmelCase = self.prefix_sum[i - 1] + array[i]
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool:
_UpperCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__UpperCamelCase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int = 1000 ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = 1, 1
_UpperCAmelCase = 2
while True:
_UpperCAmelCase = 0
_UpperCAmelCase = fa + fa
_UpperCAmelCase , _UpperCAmelCase = fa, f
index += 1
for _ in str(_SCREAMING_SNAKE_CASE ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
from __future__ import annotations
from collections import deque
class _a :
"""simple docstring"""
def __init__( self : List[str] , __UpperCamelCase : list[str] )->int:
_UpperCAmelCase = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(__UpperCamelCase )
self.set_fail_transitions()
def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : str )->int | None:
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->None:
_UpperCAmelCase = 0
for character in keyword:
_UpperCAmelCase = self.find_next_state(__UpperCamelCase , __UpperCamelCase )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
_UpperCAmelCase = len(self.adlist ) - 1
else:
_UpperCAmelCase = next_state
self.adlist[current_state]["output"].append(__UpperCamelCase )
def lowercase__ ( self : Tuple )->None:
_UpperCAmelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(__UpperCamelCase )
_UpperCAmelCase = 0
while q:
_UpperCAmelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(__UpperCamelCase )
_UpperCAmelCase = self.adlist[r]['''fail_state''']
while (
self.find_next_state(__UpperCamelCase , self.adlist[child]['''value'''] ) is None
and state != 0
):
_UpperCAmelCase = self.adlist[state]['''fail_state''']
_UpperCAmelCase = self.find_next_state(
__UpperCamelCase , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
_UpperCAmelCase = 0
_UpperCAmelCase = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def lowercase__ ( self : int , __UpperCamelCase : str )->dict[str, list[int]]:
_UpperCAmelCase = {} # returns a dict with keywords and list of its occurrences
_UpperCAmelCase = 0
for i in range(len(__UpperCamelCase ) ):
while (
self.find_next_state(__UpperCamelCase , string[i] ) is None
and current_state != 0
):
_UpperCAmelCase = self.adlist[current_state]['''fail_state''']
_UpperCAmelCase = self.find_next_state(__UpperCamelCase , string[i] )
if next_state is None:
_UpperCAmelCase = 0
else:
_UpperCAmelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
_UpperCAmelCase = []
result[key].append(i - len(__UpperCamelCase ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
__A : Tuple = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
__A : Union[str, Any] = frozenset(["prompt", "negative_prompt"])
__A : str = frozenset([])
__A : List[str] = frozenset(["image"])
__A : Optional[Any] = frozenset(
[
"image",
"height",
"width",
"guidance_scale",
]
)
__A : Optional[int] = frozenset(["image"])
__A : Optional[int] = frozenset(
[
"prompt",
"image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
__A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"])
__A : str = frozenset(
[
# Text guided image variation with an image mask
"prompt",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
__A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"])
__A : List[str] = frozenset(
[
# image variation with an image mask
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
__A : List[Any] = frozenset(["image", "mask_image"])
__A : List[str] = frozenset(
[
"example_image",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
__A : Tuple = frozenset(["example_image", "image", "mask_image"])
__A : Dict = frozenset(["class_labels"])
__A : str = frozenset(["class_labels"])
__A : str = frozenset(["batch_size"])
__A : Union[str, Any] = frozenset([])
__A : str = frozenset(["batch_size"])
__A : Optional[int] = frozenset([])
__A : Any = frozenset(
[
"prompt",
"audio_length_in_s",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
__A : List[str] = frozenset(["prompt", "negative_prompt"])
__A : Tuple = frozenset(["input_tokens"])
__A : Optional[int] = frozenset(["input_tokens"])
| 326
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[str] = {
"configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ["AlbertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ["AlbertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"AlbertForMaskedLM",
"AlbertForMultipleChoice",
"AlbertForPreTraining",
"AlbertForQuestionAnswering",
"AlbertForSequenceClassification",
"AlbertForTokenClassification",
"AlbertModel",
"AlbertPreTrainedModel",
"load_tf_weights_in_albert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = [
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFAlbertForMaskedLM",
"TFAlbertForMultipleChoice",
"TFAlbertForPreTraining",
"TFAlbertForQuestionAnswering",
"TFAlbertForSequenceClassification",
"TFAlbertForTokenClassification",
"TFAlbertMainLayer",
"TFAlbertModel",
"TFAlbertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
"FlaxAlbertForMaskedLM",
"FlaxAlbertForMultipleChoice",
"FlaxAlbertForPreTraining",
"FlaxAlbertForQuestionAnswering",
"FlaxAlbertForSequenceClassification",
"FlaxAlbertForTokenClassification",
"FlaxAlbertModel",
"FlaxAlbertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Optional[Any] = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
__A : str = logging.get_logger(__name__)
__A : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A : Any = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
__A : Dict = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
__A : str = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = SqueezeBertTokenizer
def __init__( self : Dict , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : int="[UNK]" , __UpperCamelCase : List[str]="[SEP]" , __UpperCamelCase : List[Any]="[PAD]" , __UpperCamelCase : Any="[CLS]" , __UpperCamelCase : int="[MASK]" , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[str] , )->Any:
super().__init__(
__UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , )
_UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCamelCase ) != tokenize_chinese_chars
):
_UpperCAmelCase = getattr(__UpperCamelCase , normalizer_state.pop('''type''' ) )
_UpperCAmelCase = do_lower_case
_UpperCAmelCase = strip_accents
_UpperCAmelCase = tokenize_chinese_chars
_UpperCAmelCase = normalizer_class(**__UpperCamelCase )
_UpperCAmelCase = do_lower_case
def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None )->List[Any]:
_UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]:
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]:
_UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase )
return tuple(__UpperCamelCase )
| 326
|
"""simple docstring"""
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__A : Union[str, Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__A : Tuple = importlib.util.spec_from_file_location(
"transformers",
os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
__A : List[str] = spec.loader.load_module()
__A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)")
__A : List[str] = {
"CLIPConfigMixin",
"DecisionTransformerConfigMixin",
"EncoderDecoderConfigMixin",
"RagConfigMixin",
"SpeechEncoderDecoderConfigMixin",
"VisionEncoderDecoderConfigMixin",
"VisionTextDualEncoderConfigMixin",
}
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = []
for config_class in list(CONFIG_MAPPING.values() ):
_UpperCAmelCase = False
# source code of `config_class`
_UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
_UpperCAmelCase , _UpperCAmelCase = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
_UpperCAmelCase = f'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
_UpperCAmelCase = True
break
_UpperCAmelCase = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) )
raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 326
| 1
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
__A : Tuple = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ):
'''simple docstring'''
_UpperCAmelCase = True
while ask_again:
_UpperCAmelCase = input(_SCREAMING_SNAKE_CASE )
try:
if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0:
return default
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ):
'''simple docstring'''
_UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE )
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _a ( argparse.RawDescriptionHelpFormatter):
"""simple docstring"""
def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]:
_UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' )
return usage
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
_UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_UpperCAmelCase = int(sequence[i] , 2 )
return sequence
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
_UpperCAmelCase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
_UpperCAmelCase = gray_code_sequence_string(bit_count - 1 )
_UpperCAmelCase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
_UpperCAmelCase = '''0''' + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
_UpperCAmelCase = '''1''' + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import datasets
__A : List[str] = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n"
__A : Tuple = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n"
__A : Tuple = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n"
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _a ( datasets.Metric):
"""simple docstring"""
def lowercase__ ( self : Tuple )->Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , )
def lowercase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple )->Dict:
return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )}
| 326
|
"""simple docstring"""
import math
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ):
'''simple docstring'''
_UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = i
_UpperCAmelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCAmelCase = array[temp_index - 1]
temp_index -= 1
_UpperCAmelCase = temp_index_value
return array
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap
'''simple docstring'''
_UpperCAmelCase = index
_UpperCAmelCase = 2 * index + 1 # Left Node
_UpperCAmelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCAmelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCAmelCase = right_index
if largest != index:
_UpperCAmelCase , _UpperCAmelCase = array[largest], array[index]
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_UpperCAmelCase , _UpperCAmelCase = array[0], array[i]
heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE )
return array
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = low
_UpperCAmelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCAmelCase , _UpperCAmelCase = array[j], array[i]
i += 1
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(_SCREAMING_SNAKE_CASE ) == 0:
return array
_UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) )
_UpperCAmelCase = 16
return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(_SCREAMING_SNAKE_CASE )
max_depth -= 1
_UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = p
return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : List[str] = input("Enter numbers separated by a comma : ").strip()
__A : Optional[Any] = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return "\n".join(
f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 326
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE )
if rows != columns:
_UpperCAmelCase = (
'''\'table\' has to be of square shaped array but got a '''
f'{rows}x{columns} array:\n{table}'
)
raise ValueError(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = np.zeros((rows, columns) )
_UpperCAmelCase = np.zeros((rows, columns) )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) )
if upper[j][j] == 0:
raise ArithmeticError('''No LU decomposition exists''' )
_UpperCAmelCase = (table[i][j] - total) / upper[j][j]
_UpperCAmelCase = 1
for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A : Optional[int] = {
"configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"],
"configuration_data2vec_text": [
"DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Data2VecTextConfig",
"Data2VecTextOnnxConfig",
],
"configuration_data2vec_vision": [
"DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Data2VecVisionConfig",
"Data2VecVisionOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = [
"DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecAudioForAudioFrameClassification",
"Data2VecAudioForCTC",
"Data2VecAudioForSequenceClassification",
"Data2VecAudioForXVector",
"Data2VecAudioModel",
"Data2VecAudioPreTrainedModel",
]
__A : Optional[Any] = [
"DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecTextForCausalLM",
"Data2VecTextForMaskedLM",
"Data2VecTextForMultipleChoice",
"Data2VecTextForQuestionAnswering",
"Data2VecTextForSequenceClassification",
"Data2VecTextForTokenClassification",
"Data2VecTextModel",
"Data2VecTextPreTrainedModel",
]
__A : Any = [
"DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecVisionForImageClassification",
"Data2VecVisionForMaskedImageModeling",
"Data2VecVisionForSemanticSegmentation",
"Data2VecVisionModel",
"Data2VecVisionPreTrainedModel",
]
if is_tf_available():
__A : Tuple = [
"TFData2VecVisionForImageClassification",
"TFData2VecVisionForSemanticSegmentation",
"TFData2VecVisionModel",
"TFData2VecVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
__A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = CTRLTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Dict )->str:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
_UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
_UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
_UpperCAmelCase = {'''unk_token''': '''<unk>'''}
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__UpperCamelCase ) )
def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple:
_UpperCAmelCase = '''adapt react readapt apt'''
_UpperCAmelCase = '''adapt react readapt apt'''
return input_text, output_text
def lowercase__ ( self : Dict )->Optional[int]:
_UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_UpperCAmelCase = '''adapt react readapt apt'''
_UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokens + [tokenizer.unk_token]
_UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = BertTokenizer
UpperCamelCase__ = BertTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = filter_non_english
def lowercase__ ( self : List[Any] )->Any:
super().setUp()
_UpperCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int )->Any:
_UpperCAmelCase = '''UNwant\u00E9d,running'''
_UpperCAmelCase = '''unwanted, running'''
return input_text, output_text
def lowercase__ ( self : Dict )->List[str]:
_UpperCAmelCase = self.tokenizer_class(self.vocab_file )
_UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def lowercase__ ( self : Any )->List[str]:
if not self.test_rust_tokenizer:
return
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = '''UNwant\u00E9d,running'''
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
# With lower casing
_UpperCAmelCase = self.get_tokenizer(do_lower_case=__UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=__UpperCamelCase )
_UpperCAmelCase = '''UNwant\u00E9d,running'''
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : str )->Any:
_UpperCAmelCase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def lowercase__ ( self : Optional[int] )->Optional[int]:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowercase__ ( self : Dict )->int:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def lowercase__ ( self : Optional[int] )->Tuple:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowercase__ ( self : Union[str, Any] )->Any:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowercase__ ( self : Union[str, Any] )->Tuple:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowercase__ ( self : int )->Optional[int]:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowercase__ ( self : List[str] )->int:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowercase__ ( self : str )->Tuple:
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def lowercase__ ( self : Tuple )->str:
_UpperCAmelCase = BasicTokenizer()
_UpperCAmelCase = '''a\n\'ll !!to?\'d of, can\'t.'''
_UpperCAmelCase = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(__UpperCamelCase ) , __UpperCamelCase )
def lowercase__ ( self : str )->Dict:
_UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
_UpperCAmelCase = {}
for i, token in enumerate(__UpperCamelCase ):
_UpperCAmelCase = i
_UpperCAmelCase = WordpieceTokenizer(vocab=__UpperCamelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def lowercase__ ( self : int )->Dict:
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def lowercase__ ( self : Tuple )->Dict:
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def lowercase__ ( self : List[Any] )->Dict:
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def lowercase__ ( self : List[str] )->Any:
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__UpperCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(__UpperCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def lowercase__ ( self : Optional[int] )->Tuple:
_UpperCAmelCase = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
_UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase )
_UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def lowercase__ ( self : Union[str, Any] )->List[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
_UpperCAmelCase = tokenizer_r.encode_plus(
__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase , )
_UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(__UpperCamelCase , '''do_lower_case''' ) else False
_UpperCAmelCase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def lowercase__ ( self : List[Any] )->Optional[int]:
_UpperCAmelCase = ['''的''', '''人''', '''有''']
_UpperCAmelCase = ''''''.join(__UpperCamelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = False
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCAmelCase = [
F'##{token}' if idx != 0 else token for idx, token in enumerate(__UpperCamelCase )
]
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
| 326
|
"""simple docstring"""
import logging
import os
from .state import PartialState
class _a ( logging.LoggerAdapter):
"""simple docstring"""
@staticmethod
def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int:
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase )
if self.isEnabledFor(__UpperCamelCase ):
if self._should_log(__UpperCamelCase ):
_UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
elif in_order:
_UpperCAmelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
state.wait_for_everyone()
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ):
'''simple docstring'''
if log_level is None:
_UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int = 100_0000 ):
'''simple docstring'''
_UpperCAmelCase = limit + 1
_UpperCAmelCase = [0] * limit
for first_term in range(1 , _SCREAMING_SNAKE_CASE ):
for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
_UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f'''{solution() = }''')
| 326
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__A : List[Any] = logging.get_logger(__name__)
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = ["""pixel_values"""]
def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None:
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6}
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray:
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase )
return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray:
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray:
return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray:
return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]:
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = make_list_of_images(__UpperCamelCase )
if not valid_images(__UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_UpperCAmelCase = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
_UpperCAmelCase = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
_UpperCAmelCase = subset[i - 1][j]
if arr[i - 1] <= j:
_UpperCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : List[Any] = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
__A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A : List[Any] = logging.get_logger(__name__)
__A : Any = {
"facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """detr"""
UpperCamelCase__ = ["""past_key_values"""]
UpperCamelCase__ = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=3 , __UpperCamelCase : List[str]=1_0_0 , __UpperCamelCase : str=6 , __UpperCamelCase : Optional[Any]=2_0_4_8 , __UpperCamelCase : Tuple=8 , __UpperCamelCase : Any=6 , __UpperCamelCase : str=2_0_4_8 , __UpperCamelCase : Any=8 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Dict="relu" , __UpperCamelCase : Union[str, Any]=2_5_6 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : int=False , __UpperCamelCase : List[Any]="sine" , __UpperCamelCase : int="resnet50" , __UpperCamelCase : str=True , __UpperCamelCase : Dict=False , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Optional[Any]=5 , __UpperCamelCase : int=2 , __UpperCamelCase : str=1 , __UpperCamelCase : Dict=1 , __UpperCamelCase : int=5 , __UpperCamelCase : str=2 , __UpperCamelCase : Any=0.1 , **__UpperCamelCase : List[Any] , )->List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = backbone_config.get('''model_type''' )
_UpperCAmelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCAmelCase = config_class.from_dict(__UpperCamelCase )
# set timm attributes to None
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None, None, None
_UpperCAmelCase = use_timm_backbone
_UpperCAmelCase = backbone_config
_UpperCAmelCase = num_channels
_UpperCAmelCase = num_queries
_UpperCAmelCase = d_model
_UpperCAmelCase = encoder_ffn_dim
_UpperCAmelCase = encoder_layers
_UpperCAmelCase = encoder_attention_heads
_UpperCAmelCase = decoder_ffn_dim
_UpperCAmelCase = decoder_layers
_UpperCAmelCase = decoder_attention_heads
_UpperCAmelCase = dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = activation_function
_UpperCAmelCase = init_std
_UpperCAmelCase = init_xavier_std
_UpperCAmelCase = encoder_layerdrop
_UpperCAmelCase = decoder_layerdrop
_UpperCAmelCase = encoder_layers
_UpperCAmelCase = auxiliary_loss
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = backbone
_UpperCAmelCase = use_pretrained_backbone
_UpperCAmelCase = dilation
# Hungarian matcher
_UpperCAmelCase = class_cost
_UpperCAmelCase = bbox_cost
_UpperCAmelCase = giou_cost
# Loss coefficients
_UpperCAmelCase = mask_loss_coefficient
_UpperCAmelCase = dice_loss_coefficient
_UpperCAmelCase = bbox_loss_coefficient
_UpperCAmelCase = giou_loss_coefficient
_UpperCAmelCase = eos_coefficient
super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase )
@property
def lowercase__ ( self : int )->int:
return self.encoder_attention_heads
@property
def lowercase__ ( self : int )->int:
return self.d_model
@classmethod
def lowercase__ ( cls : str , __UpperCamelCase : PretrainedConfig , **__UpperCamelCase : Dict )->str:
return cls(backbone_config=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Optional[int] )->Dict[str, any]:
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_UpperCAmelCase = self.backbone_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = version.parse("""1.11""")
@property
def lowercase__ ( self : List[str] )->Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def lowercase__ ( self : List[Any] )->float:
return 1e-5
@property
def lowercase__ ( self : List[Any] )->int:
return 1_2
| 326
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
UpperCamelCase__ = None
__A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess")
def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right )
_UpperCAmelCase = 1 - left_distrib_excess
_UpperCAmelCase = 1 - right_distrib_excess
_UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _a ( nn.Module):
"""simple docstring"""
def __init__( self : List[Any] , __UpperCamelCase : nn.Module , __UpperCamelCase : int )->Dict:
super().__init__()
_UpperCAmelCase = module
_UpperCAmelCase = nn.Sequential(
nn.Linear(module.in_features , __UpperCamelCase , bias=__UpperCamelCase ) , nn.Linear(__UpperCamelCase , module.out_features , bias=__UpperCamelCase ) , )
_UpperCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=__UpperCamelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , *__UpperCamelCase : List[str] , **__UpperCamelCase : Union[str, Any] )->Any:
return self.module(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) + self.adapter(__UpperCamelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _a ( unittest.TestCase):
"""simple docstring"""
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
UpperCamelCase__ = """bigscience/bloom-1b7"""
# Constant values
UpperCamelCase__ = 2.1_09_65_95_52_69_25_74
UpperCamelCase__ = """Hello my name is"""
UpperCamelCase__ = set()
EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""")
EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""")
EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""")
UpperCamelCase__ = 10
def lowercase__ ( self : List[Any] )->Optional[Any]:
# Models and tokenizer
_UpperCAmelCase = AutoTokenizer.from_pretrained(self.model_name )
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : Any )->Optional[int]:
super().setUp()
# Models and tokenizer
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
def lowercase__ ( self : Any )->Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : int )->Optional[Any]:
_UpperCAmelCase = self.model_abit.config
self.assertTrue(hasattr(__UpperCamelCase , '''quantization_config''' ) )
_UpperCAmelCase = config.to_dict()
_UpperCAmelCase = config.to_diff_dict()
_UpperCAmelCase = config.to_json_string()
def lowercase__ ( self : Union[str, Any] )->Tuple:
from bitsandbytes.nn import Paramsabit
_UpperCAmelCase = self.model_fpaa.get_memory_footprint()
_UpperCAmelCase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
_UpperCAmelCase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowercase__ ( self : Optional[int] )->Optional[Any]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(__UpperCamelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowercase__ ( self : Any )->Union[str, Any]:
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
_UpperCAmelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCamelCase ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Union[str, Any] )->str:
_UpperCAmelCase = BitsAndBytesConfig()
_UpperCAmelCase = True
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__UpperCamelCase , device_map='''auto''' )
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
_UpperCAmelCase = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCamelCase ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Optional[int] )->Union[str, Any]:
with self.assertRaises(__UpperCamelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(__UpperCamelCase )
def lowercase__ ( self : List[str] )->str:
_UpperCAmelCase = BitsAndBytesConfig()
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__UpperCamelCase , load_in_abit=__UpperCamelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def lowercase__ ( self : List[str] )->Tuple:
with self.assertRaises(__UpperCamelCase ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(__UpperCamelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(__UpperCamelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(__UpperCamelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(__UpperCamelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
_UpperCAmelCase = self.model_fpaa.to(torch.floataa )
_UpperCAmelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
_UpperCAmelCase = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
_UpperCAmelCase = self.model_fpaa.half()
# Check this does not throw an error
_UpperCAmelCase = self.model_fpaa.float()
def lowercase__ ( self : str )->Tuple:
_UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCamelCase , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _a ( unittest.TestCase):
"""simple docstring"""
@classmethod
def lowercase__ ( cls : Optional[Any] )->Optional[int]:
_UpperCAmelCase = '''t5-small'''
_UpperCAmelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
_UpperCAmelCase = AutoTokenizer.from_pretrained(cls.model_name )
_UpperCAmelCase = '''Translate in German: Hello, my dog is cute'''
def lowercase__ ( self : Union[str, Any] )->Union[str, Any]:
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[Any] )->Any:
from transformers import TaForConditionalGeneration
_UpperCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules
_UpperCAmelCase = None
# test with `t5-small`
_UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
_UpperCAmelCase = model.generate(**__UpperCamelCase )
# test with `flan-t5-small`
_UpperCAmelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
_UpperCAmelCase = model.generate(**__UpperCamelCase )
_UpperCAmelCase = modules
def lowercase__ ( self : Union[str, Any] )->List[str]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
_UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
_UpperCAmelCase = model.generate(**__UpperCamelCase )
# test with `flan-t5-small`
_UpperCAmelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
_UpperCAmelCase = model.generate(**__UpperCamelCase )
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : str )->Tuple:
super().setUp()
# model_name
_UpperCAmelCase = '''bigscience/bloom-560m'''
_UpperCAmelCase = '''t5-small'''
# Different types of model
_UpperCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
# Sequence classification model
_UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
# CausalLM model
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
# Seq2seq model
_UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=__UpperCamelCase , device_map='''auto''' )
def lowercase__ ( self : int )->List[Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] )->Any:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : Tuple )->Union[str, Any]:
super().setUp()
def lowercase__ ( self : str )->Optional[int]:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[Any] )->List[str]:
_UpperCAmelCase = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
_UpperCAmelCase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : Optional[int] )->str:
super().setUp()
def lowercase__ ( self : List[str] )->str:
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=__UpperCamelCase , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
_UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
_UpperCAmelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCamelCase ) , self.EXPECTED_OUTPUTS )
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : List[Any] )->List[Any]:
_UpperCAmelCase = '''facebook/opt-350m'''
super().setUp()
def lowercase__ ( self : List[Any] )->str:
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
_UpperCAmelCase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
_UpperCAmelCase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(__UpperCamelCase ) ):
_UpperCAmelCase = LoRALayer(module.q_proj , rank=1_6 )
_UpperCAmelCase = LoRALayer(module.k_proj , rank=1_6 )
_UpperCAmelCase = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
_UpperCAmelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
_UpperCAmelCase = model.forward(**__UpperCamelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(__UpperCamelCase , __UpperCamelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(__UpperCamelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """gpt2-xl"""
UpperCamelCase__ = 3.31_91_85_48_54_15_21_87
| 326
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
"""feature-extraction""": TFMobileBertModel,
"""fill-mask""": TFMobileBertForMaskedLM,
"""question-answering""": TFMobileBertForQuestionAnswering,
"""text-classification""": TFMobileBertForSequenceClassification,
"""token-classification""": TFMobileBertForTokenClassification,
"""zero-shot""": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]:
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any:
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = embedding_size
def lowercase__ ( self : Optional[int] )->int:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = [input_ids, input_mask]
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple:
_UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]:
_UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]:
_UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]:
_UpperCAmelCase = self.num_choices
_UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : List[str] )->Optional[Any]:
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def lowercase__ ( self : List[Any] )->str:
_UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 )
def lowercase__ ( self : List[Any] )->List[str]:
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def lowercase__ ( self : Any )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def lowercase__ ( self : List[Any] )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def lowercase__ ( self : str )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def lowercase__ ( self : Any )->List[str]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def lowercase__ ( self : Dict )->Any:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def lowercase__ ( self : Any )->Optional[Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def lowercase__ ( self : List[str] )->Tuple:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
@slow
def lowercase__ ( self : Tuple )->List[str]:
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class _a ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase__ ( self : str )->Dict:
_UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
_UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase = model(__UpperCamelCase )[0]
_UpperCAmelCase = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , __UpperCamelCase )
_UpperCAmelCase = tf.constant(
[
[
[-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6],
[-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7],
[-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
| 326
| 1
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError('''Input value must be a \'int\' type''' )
return bin(_SCREAMING_SNAKE_CASE ).count('''1''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : List[Any] = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
__A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
|
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__A : Tuple = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""")
@require_torch
@require_tf
@slow
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple:
_UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )]
if identifier is not None:
_UpperCAmelCase = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__UpperCamelCase , __UpperCamelCase ):
for n_ in n_identifier:
_UpperCAmelCase = [file for file in files if n_ not in file]
else:
_UpperCAmelCase = [file for file in files if n_identifier not in file]
_UpperCAmelCase = ignore_files or []
ignore_files.append('''__init__.py''' )
_UpperCAmelCase = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , __UpperCamelCase )
if only_modules:
_UpperCAmelCase = file.split('''.''' )[0]
try:
_UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase )
_UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
_UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def lowercase__ ( self : str )->int:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''modeling'''
_UpperCAmelCase = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase )
def lowercase__ ( self : List[Any] )->int:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''tokenization'''
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase )
def lowercase__ ( self : str )->Any:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''configuration'''
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase )
def lowercase__ ( self : int )->Optional[Any]:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->Any:
_UpperCAmelCase = Path('''docs/source''' )
_UpperCAmelCase = ['''favicon.ico''']
self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
import argparse
import datetime
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
_UpperCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_SCREAMING_SNAKE_CASE ) < 11:
raise ValueError('''Must be 10 characters long''' )
# Get month
_UpperCAmelCase = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('''Month must be between 1 - 12''' )
_UpperCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get day
_UpperCAmelCase = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('''Date must be between 1 - 31''' )
# Get second separator
_UpperCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get year
_UpperCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''' )
# Get datetime obj for validation
_UpperCAmelCase = datetime.date(int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) )
# Start math
if m <= 2:
_UpperCAmelCase = y - 1
_UpperCAmelCase = m + 12
# maths var
_UpperCAmelCase = int(str(_SCREAMING_SNAKE_CASE )[:2] )
_UpperCAmelCase = int(str(_SCREAMING_SNAKE_CASE )[2:] )
_UpperCAmelCase = int(2.6 * m - 5.39 )
_UpperCAmelCase = int(c / 4 )
_UpperCAmelCase = int(k / 4 )
_UpperCAmelCase = int(d + k )
_UpperCAmelCase = int(t + u + v + x )
_UpperCAmelCase = int(z - (2 * c) )
_UpperCAmelCase = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' )
# Response
_UpperCAmelCase = f'Your date {date_input}, is a {days[str(_SCREAMING_SNAKE_CASE )]}!'
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : Union[str, Any] = argparse.ArgumentParser(
description=(
"Find out what day of the week nearly any date is or was. Enter "
"date as a string in the mm-dd-yyyy or mm/dd/yyyy format"
)
)
parser.add_argument(
"date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)"
)
__A : Optional[Any] = parser.parse_args()
zeller(args.date_input)
| 326
|
"""simple docstring"""
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' )
_UpperCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = i / num_diffusion_timesteps
_UpperCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class _a ( lowerCAmelCase , lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 1
@register_to_config
def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict:
if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None:
_UpperCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase )
_UpperCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_UpperCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase )
else:
raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' )
_UpperCAmelCase = 1.0 - self.betas
_UpperCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_UpperCAmelCase = 1.0
# setable values
_UpperCAmelCase = None
_UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) )
def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor:
return sample
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'
F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'
F' maximal {self.config.num_train_timesteps} timesteps.' )
_UpperCAmelCase = num_inference_steps
_UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa )
_UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase )
self.timesteps += self.config.steps_offset
def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]:
# 1. get previous step value (=t+1)
_UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_UpperCAmelCase = self.alphas_cumprod[timestep]
_UpperCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_UpperCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_UpperCAmelCase = model_output
elif self.config.prediction_type == "sample":
_UpperCAmelCase = model_output
_UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_UpperCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase )
def __len__( self : Any )->str:
return self.config.num_train_timesteps
| 326
| 1
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 326
|
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(number**0.5 )
return number == sq * sq
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
_UpperCAmelCase = x_den * y_den * z_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
top //= hcf
bottom //= hcf
return top, bottom
def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ):
'''simple docstring'''
_UpperCAmelCase = set()
_UpperCAmelCase = 42
_UpperCAmelCase = Fraction(0 )
_UpperCAmelCase = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
_UpperCAmelCase = x_num * y_den + x_den * y_num
_UpperCAmelCase = x_den * y_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_UpperCAmelCase = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
_UpperCAmelCase = x_den * x_den * y_den * y_den
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=-1
_UpperCAmelCase = x_num * y_num
_UpperCAmelCase = x_den * y_num + x_num * y_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_UpperCAmelCase = x_num * x_num * y_num * y_num
_UpperCAmelCase = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
for num, den in unique_s:
total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f'''{solution() = }''')
| 326
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : Any )->int:
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = 8
# DPR tok
_UpperCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_UpperCAmelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase )
_UpperCAmelCase = os.path.join(__UpperCamelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
_UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
_UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_UpperCAmelCase = {'''unk_token''': '''<unk>'''}
_UpperCAmelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase )
_UpperCAmelCase = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
_UpperCAmelCase = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__UpperCamelCase ) )
def lowercase__ ( self : Tuple )->DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def lowercase__ ( self : Dict )->BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def lowercase__ ( self : Tuple )->List[Any]:
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def lowercase__ ( self : Union[str, Any] )->int:
_UpperCAmelCase = os.path.join(self.tmpdirname , '''rag_tokenizer''' )
_UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
_UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(__UpperCamelCase )
rag_tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = RagTokenizer.from_pretrained(__UpperCamelCase , config=__UpperCamelCase )
self.assertIsInstance(new_rag_tokenizer.question_encoder , __UpperCamelCase )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , __UpperCamelCase )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def lowercase__ ( self : Dict )->Optional[int]:
_UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' )
_UpperCAmelCase = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
_UpperCAmelCase = tokenizer(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@slow
def lowercase__ ( self : str )->List[Any]:
_UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' )
_UpperCAmelCase = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
_UpperCAmelCase = tokenizer(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
| 326
|
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE ) as metadata_file:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] )
# Load in the weights from the checkpoint_path
_UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module''']
# Load the entity vocab file
_UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
_UpperCAmelCase = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
_UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] )
# Add special tokens to the token vocabulary for downstream tasks
_UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'Saving tokenizer to {pytorch_dump_folder_path}' )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''MLukeTokenizer'''
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0]
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0]
_UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight''']
_UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
_UpperCAmelCase = state_dict[bias_name]
_UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.'
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight''']
_UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
_UpperCAmelCase = state_dict['''entity_predictions.bias''']
_UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] )
_UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval()
state_dict.pop('''entity_predictions.decoder.weight''' )
state_dict.pop('''lm_head.decoder.weight''' )
state_dict.pop('''lm_head.decoder.bias''' )
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )):
_UpperCAmelCase = state_dict[key]
else:
_UpperCAmelCase = state_dict[key]
_UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' )
if set(_SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f'Unexpected missing_keys: {missing_keys}' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' )
_UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'''
_UpperCAmelCase = (0, 9)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 33, 768) )
_UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 1, 768) )
_UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'
f' {expected_shape}' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''Tokyo is the capital of <mask>.'''
_UpperCAmelCase = (24, 30)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = encoding['''input_ids'''][0].tolist()
_UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) )
_UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = outputs.entity_logits[0][0].argmax().item()
_UpperCAmelCase = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]''']
_UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )]
_UpperCAmelCase = {}
for entry in data:
_UpperCAmelCase = entry['''id''']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
_UpperCAmelCase = entity_id
break
_UpperCAmelCase = f'{language}:{entity_name}'
_UpperCAmelCase = entity_id
return new_mapping
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
__A : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[str] | None = None ):
'''simple docstring'''
_UpperCAmelCase = word_bank or []
# create a table
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) + 1
_UpperCAmelCase = []
for _ in range(_SCREAMING_SNAKE_CASE ):
table.append([] )
# seed value
_UpperCAmelCase = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(_SCREAMING_SNAKE_CASE ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(_SCREAMING_SNAKE_CASE )] == word:
_UpperCAmelCase = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(_SCREAMING_SNAKE_CASE )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(_SCREAMING_SNAKE_CASE )]:
combination.reverse()
return table[len(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"]))
print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"]))
print(
all_construct(
"hexagonosaurus",
["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"],
)
)
| 326
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
__A : Tuple = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ):
'''simple docstring'''
_UpperCAmelCase = True
while ask_again:
_UpperCAmelCase = input(_SCREAMING_SNAKE_CASE )
try:
if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0:
return default
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ):
'''simple docstring'''
_UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE )
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _a ( argparse.RawDescriptionHelpFormatter):
"""simple docstring"""
def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]:
_UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' )
return usage
| 326
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class _a ( unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = ViTImageProcessor if is_vision_available() else None
@property
def lowercase__ ( self : int )->Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : List[str] )->Optional[Any]:
_UpperCAmelCase = (3, 3_2, 1_2_8)
_UpperCAmelCase = tempfile.mkdtemp()
# fmt: off
_UpperCAmelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
_UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '''\n''' )
_UpperCAmelCase = {
'''do_normalize''': False,
'''do_resize''': True,
'''image_processor_type''': '''ViTImageProcessor''',
'''resample''': 3,
'''size''': {'''height''': 3_2, '''width''': 1_2_8},
}
_UpperCAmelCase = os.path.join(self.tmpdirname , __UpperCamelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Optional[Any] , **__UpperCamelCase : Dict )->List[Any]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , **__UpperCamelCase : int )->Any:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->Optional[int]:
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Optional[Any] )->List[str]:
_UpperCAmelCase = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )
_UpperCAmelCase = Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) )
return image_input
def lowercase__ ( self : List[str] )->List[Any]:
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def lowercase__ ( self : str )->List[str]:
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_UpperCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 )
_UpperCAmelCase = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def lowercase__ ( self : Optional[int] )->Optional[int]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''np''' )
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase__ ( self : List[Any] )->Any:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = '''test'''
_UpperCAmelCase = processor(text=__UpperCamelCase )
_UpperCAmelCase = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : Optional[Any] )->Tuple:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = '''test'''
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def lowercase__ ( self : str )->List[Any]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.char_decode(__UpperCamelCase )
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
_UpperCAmelCase = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok]
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Dict )->List[Any]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = None
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def lowercase__ ( self : List[str] )->List[str]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = MgpstrProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = torch.randn(1 , 2_7 , 3_8 )
_UpperCAmelCase = torch.randn(1 , 2_7 , 5_0_2_5_7 )
_UpperCAmelCase = torch.randn(1 , 2_7 , 3_0_5_2_2 )
_UpperCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
| 326
|
"""simple docstring"""
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' )
parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 )
parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 )
parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 )
parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 )
parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 )
parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' )
parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 )
parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 )
parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' )
return parser.parse_args()
__A : Union[str, Any] = load("accuracy")
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = eval_pred
_UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None:
super().__init__()
_UpperCAmelCase = trainer
def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any:
if control.should_evaluate:
_UpperCAmelCase = deepcopy(__UpperCamelCase )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' )
return control_copy
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = get_args()
set_seed(args.seed )
_UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' )
_UpperCAmelCase = dataset.train_test_split(test_size=0.2 )
_UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 )
_UpperCAmelCase = DatasetDict(
{
'''train''': train_test['''train'''],
'''test''': test_validation['''train'''],
'''valid''': test_validation['''test'''],
} )
print('''Loading tokenizer and model''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt )
_UpperCAmelCase = tokenizer.eos_token
_UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
_UpperCAmelCase = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
_UpperCAmelCase = False
_UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) )
def tokenize(_SCREAMING_SNAKE_CASE : Any ):
_UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 )
_UpperCAmelCase = labels.straint(example['''complexity'''] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
_UpperCAmelCase = train_test_validation.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , )
_UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , )
_UpperCAmelCase = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , )
print('''Training...''' )
trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) )
trainer.train()
if __name__ == "__main__":
main()
| 326
| 1
|
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
__A : List[str] = TypeVar("KEY")
__A : List[Any] = TypeVar("VAL")
@dataclass(frozen=lowerCAmelCase , slots=lowerCAmelCase)
class _a ( Generic[KEY, VAL]):
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = 42
class _a ( _Item):
"""simple docstring"""
def __init__( self : List[Any] )->None:
super().__init__(__UpperCamelCase , __UpperCamelCase )
def __bool__( self : Any )->bool:
return False
__A : Union[str, Any] = _DeletedItem()
class _a ( MutableMapping[KEY, VAL]):
"""simple docstring"""
def __init__( self : int , __UpperCamelCase : int = 8 , __UpperCamelCase : float = 0.7_5 )->None:
_UpperCAmelCase = initial_block_size
_UpperCAmelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_UpperCAmelCase = capacity_factor
_UpperCAmelCase = 0
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : KEY )->int:
return hash(__UpperCamelCase ) % len(self._buckets )
def lowercase__ ( self : Any , __UpperCamelCase : int )->int:
return (ind + 1) % len(self._buckets )
def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : KEY , __UpperCamelCase : VAL )->bool:
_UpperCAmelCase = self._buckets[ind]
if not stored:
_UpperCAmelCase = _Item(__UpperCamelCase , __UpperCamelCase )
self._len += 1
return True
elif stored.key == key:
_UpperCAmelCase = _Item(__UpperCamelCase , __UpperCamelCase )
return True
else:
return False
def lowercase__ ( self : Optional[Any] )->bool:
_UpperCAmelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__UpperCamelCase )
def lowercase__ ( self : Tuple )->bool:
if len(self._buckets ) <= self._initial_block_size:
return False
_UpperCAmelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->None:
_UpperCAmelCase = self._buckets
_UpperCAmelCase = [None] * new_size
_UpperCAmelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def lowercase__ ( self : Any )->None:
self._resize(len(self._buckets ) * 2 )
def lowercase__ ( self : List[Any] )->None:
self._resize(len(self._buckets ) // 2 )
def lowercase__ ( self : Tuple , __UpperCamelCase : KEY )->Iterator[int]:
_UpperCAmelCase = self._get_bucket_index(__UpperCamelCase )
for _ in range(len(self._buckets ) ):
yield ind
_UpperCAmelCase = self._get_next_ind(__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : KEY , __UpperCamelCase : VAL )->None:
for ind in self._iterate_buckets(__UpperCamelCase ):
if self._try_set(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
break
def __setitem__( self : Any , __UpperCamelCase : KEY , __UpperCamelCase : VAL )->None:
if self._is_full():
self._size_up()
self._add_item(__UpperCamelCase , __UpperCamelCase )
def __delitem__( self : Any , __UpperCamelCase : KEY )->None:
for ind in self._iterate_buckets(__UpperCamelCase ):
_UpperCAmelCase = self._buckets[ind]
if item is None:
raise KeyError(__UpperCamelCase )
if item is _deleted:
continue
if item.key == key:
_UpperCAmelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Dict , __UpperCamelCase : KEY )->VAL:
for ind in self._iterate_buckets(__UpperCamelCase ):
_UpperCAmelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__UpperCamelCase )
def __len__( self : List[Any] )->int:
return self._len
def __iter__( self : int )->Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Union[str, Any] )->str:
_UpperCAmelCase = ''' ,'''.join(
F'{item.key}: {item.val}' for item in self._buckets if item )
return F'HashMap({val_string})'
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return "\n".join(
f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 326
| 1
|
"""simple docstring"""
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = FunnelTokenizer
UpperCamelCase__ = FunnelTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
def lowercase__ ( self : Optional[Any] )->str:
super().setUp()
_UpperCAmelCase = [
'''<unk>''',
'''<cls>''',
'''<sep>''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def lowercase__ ( self : Dict , **__UpperCamelCase : Tuple )->Optional[int]:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : str , **__UpperCamelCase : Optional[int] )->Tuple:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] )->Tuple:
_UpperCAmelCase = '''UNwant\u00E9d,running'''
_UpperCAmelCase = '''unwanted, running'''
return input_text, output_text
def lowercase__ ( self : List[str] )->str:
_UpperCAmelCase = self.tokenizer_class(self.vocab_file )
_UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [7, 4, 5, 1_0, 8, 9] )
def lowercase__ ( self : Optional[Any] )->Tuple:
_UpperCAmelCase = self.get_tokenizers(do_lower_case=__UpperCamelCase )
for tokenizer in tokenizers:
_UpperCAmelCase = tokenizer('''UNwant\u00E9d,running''' )
_UpperCAmelCase = len(inputs['''input_ids'''] ) - 1
self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len )
_UpperCAmelCase = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' )
self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
| 326
|
"""simple docstring"""
class _a :
"""simple docstring"""
def __init__( self : Tuple , __UpperCamelCase : list[int] )->None:
_UpperCAmelCase = len(__UpperCamelCase )
_UpperCAmelCase = [0] * len_array
if len_array > 0:
_UpperCAmelCase = array[0]
for i in range(1 , __UpperCamelCase ):
_UpperCAmelCase = self.prefix_sum[i - 1] + array[i]
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool:
_UpperCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__UpperCamelCase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
from __future__ import annotations
__A : Union[str, Any] = list[list[int]]
# assigning initial values to the grid
__A : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
__A : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def lowercase ( _SCREAMING_SNAKE_CASE : Matrix , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def lowercase ( _SCREAMING_SNAKE_CASE : Matrix ):
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def lowercase ( _SCREAMING_SNAKE_CASE : Matrix ):
'''simple docstring'''
if location := find_empty_location(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase , _UpperCAmelCase = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = digit
if sudoku(_SCREAMING_SNAKE_CASE ) is not None:
return grid
_UpperCAmelCase = 0
return None
def lowercase ( _SCREAMING_SNAKE_CASE : Matrix ):
'''simple docstring'''
for row in grid:
for cell in row:
print(_SCREAMING_SNAKE_CASE , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
__A : Optional[int] = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A : Dict = logging.get_logger(__name__)
__A : Any = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
__A : List[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split('''.''' ):
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if weight_type is not None:
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape
else:
_UpperCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_UpperCAmelCase = value
elif weight_type == "weight_g":
_UpperCAmelCase = value
elif weight_type == "weight_v":
_UpperCAmelCase = value
elif weight_type == "bias":
_UpperCAmelCase = value
elif weight_type == "running_mean":
_UpperCAmelCase = value
elif weight_type == "running_var":
_UpperCAmelCase = value
elif weight_type == "num_batches_tracked":
_UpperCAmelCase = value
elif weight_type == "inv_freq":
_UpperCAmelCase = value
else:
_UpperCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = fairseq_model.state_dict()
_UpperCAmelCase = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , )
_UpperCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
_UpperCAmelCase = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
_UpperCAmelCase = True
if "*" in mapped_key:
_UpperCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2]
_UpperCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE )
if "pos_bias_u" in name:
_UpperCAmelCase = None
elif "pos_bias_v" in name:
_UpperCAmelCase = None
elif "weight_g" in name:
_UpperCAmelCase = '''weight_g'''
elif "weight_v" in name:
_UpperCAmelCase = '''weight_v'''
elif "bias" in name:
_UpperCAmelCase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_UpperCAmelCase = '''weight'''
elif "running_mean" in name:
_UpperCAmelCase = '''running_mean'''
elif "inv_freq" in name:
_UpperCAmelCase = '''inv_freq'''
elif "running_var" in name:
_UpperCAmelCase = '''running_var'''
elif "num_batches_tracked" in name:
_UpperCAmelCase = '''num_batches_tracked'''
else:
_UpperCAmelCase = None
set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(_SCREAMING_SNAKE_CASE )
logger.warning(f'Unused weights: {unused_weights}' )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
_UpperCAmelCase = full_name.split('''conv_layers.''' )[-1]
_UpperCAmelCase = name.split('''.''' )
_UpperCAmelCase = int(items[0] )
_UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Optional[Any]=True ):
'''simple docstring'''
if config_path is not None:
_UpperCAmelCase = WavaVecaConformerConfig.from_pretrained(_SCREAMING_SNAKE_CASE , hidden_act='''swish''' )
else:
_UpperCAmelCase = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_UpperCAmelCase = '''rotary'''
if is_finetuned:
if dict_path:
_UpperCAmelCase = Dictionary.load(_SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_UpperCAmelCase = target_dict.pad_index
_UpperCAmelCase = target_dict.bos_index
_UpperCAmelCase = target_dict.eos_index
_UpperCAmelCase = len(target_dict.symbols )
_UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.json''' )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_SCREAMING_SNAKE_CASE ) )
return
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_UpperCAmelCase = 0
_UpperCAmelCase = 1
with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = WavaVecaCTCTokenizer(
_SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False
_UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = WavaVecaConformerForCTC(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = WavaVecaConformerForPreTraining(_SCREAMING_SNAKE_CASE )
if is_finetuned:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' )
_UpperCAmelCase = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model[0].eval()
recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned )
hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A : List[Any] = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 326
|
"""simple docstring"""
__A : Tuple = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
__A : Union[str, Any] = frozenset(["prompt", "negative_prompt"])
__A : str = frozenset([])
__A : List[str] = frozenset(["image"])
__A : Optional[Any] = frozenset(
[
"image",
"height",
"width",
"guidance_scale",
]
)
__A : Optional[int] = frozenset(["image"])
__A : Optional[int] = frozenset(
[
"prompt",
"image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
__A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"])
__A : str = frozenset(
[
# Text guided image variation with an image mask
"prompt",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
__A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"])
__A : List[str] = frozenset(
[
# image variation with an image mask
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
__A : List[Any] = frozenset(["image", "mask_image"])
__A : List[str] = frozenset(
[
"example_image",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
__A : Tuple = frozenset(["example_image", "image", "mask_image"])
__A : Dict = frozenset(["class_labels"])
__A : str = frozenset(["class_labels"])
__A : str = frozenset(["batch_size"])
__A : Union[str, Any] = frozenset([])
__A : str = frozenset(["batch_size"])
__A : Optional[int] = frozenset([])
__A : Any = frozenset(
[
"prompt",
"audio_length_in_s",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
__A : List[str] = frozenset(["prompt", "negative_prompt"])
__A : Tuple = frozenset(["input_tokens"])
__A : Optional[int] = frozenset(["input_tokens"])
| 326
| 1
|
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE ) as metadata_file:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] )
# Load in the weights from the checkpoint_path
_UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module''']
# Load the entity vocab file
_UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
_UpperCAmelCase = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
_UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] )
# Add special tokens to the token vocabulary for downstream tasks
_UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'Saving tokenizer to {pytorch_dump_folder_path}' )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''MLukeTokenizer'''
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0]
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0]
_UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight''']
_UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
_UpperCAmelCase = state_dict[bias_name]
_UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.'
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight''']
_UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
_UpperCAmelCase = state_dict['''entity_predictions.bias''']
_UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] )
_UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval()
state_dict.pop('''entity_predictions.decoder.weight''' )
state_dict.pop('''lm_head.decoder.weight''' )
state_dict.pop('''lm_head.decoder.bias''' )
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )):
_UpperCAmelCase = state_dict[key]
else:
_UpperCAmelCase = state_dict[key]
_UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' )
if set(_SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f'Unexpected missing_keys: {missing_keys}' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' )
_UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'''
_UpperCAmelCase = (0, 9)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 33, 768) )
_UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 1, 768) )
_UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'
f' {expected_shape}' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''Tokyo is the capital of <mask>.'''
_UpperCAmelCase = (24, 30)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = encoding['''input_ids'''][0].tolist()
_UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) )
_UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = outputs.entity_logits[0][0].argmax().item()
_UpperCAmelCase = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]''']
_UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )]
_UpperCAmelCase = {}
for entry in data:
_UpperCAmelCase = entry['''id''']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
_UpperCAmelCase = entity_id
break
_UpperCAmelCase = f'{language}:{entity_name}'
_UpperCAmelCase = entity_id
return new_mapping
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
__A : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Optional[Any] = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
from datetime import datetime
import requests
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
_UpperCAmelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(_SCREAMING_SNAKE_CASE ).content
if __name__ == "__main__":
__A : str = input("Enter Video/IGTV url: ").strip()
__A : str = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 326
|
"""simple docstring"""
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__A : Union[str, Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__A : Tuple = importlib.util.spec_from_file_location(
"transformers",
os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
__A : List[str] = spec.loader.load_module()
__A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)")
__A : List[str] = {
"CLIPConfigMixin",
"DecisionTransformerConfigMixin",
"EncoderDecoderConfigMixin",
"RagConfigMixin",
"SpeechEncoderDecoderConfigMixin",
"VisionEncoderDecoderConfigMixin",
"VisionTextDualEncoderConfigMixin",
}
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = []
for config_class in list(CONFIG_MAPPING.values() ):
_UpperCAmelCase = False
# source code of `config_class`
_UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
_UpperCAmelCase , _UpperCAmelCase = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
_UpperCAmelCase = f'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
_UpperCAmelCase = True
break
_UpperCAmelCase = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) )
raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 326
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Dict )->Dict:
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = BlipImageProcessor()
_UpperCAmelCase = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' )
_UpperCAmelCase = BlipaProcessor(__UpperCamelCase , __UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Any , **__UpperCamelCase : Dict )->Dict:
return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).tokenizer
def lowercase__ ( self : Tuple , **__UpperCamelCase : Any )->Optional[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor
def lowercase__ ( self : Tuple )->Tuple:
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[str] )->Optional[Any]:
_UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Tuple )->List[str]:
_UpperCAmelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_UpperCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 )
_UpperCAmelCase = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def lowercase__ ( self : Any )->Dict:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipaProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''np''' )
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase__ ( self : Any )->List[str]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipaProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = '''lower newer'''
_UpperCAmelCase = processor(text=__UpperCamelCase )
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_token_type_ids=__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase__ ( self : Union[str, Any] )->List[Any]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipaProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = '''lower newer'''
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def lowercase__ ( self : List[str] )->List[str]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipaProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.batch_decode(__UpperCamelCase )
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Dict )->Tuple:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipaProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = '''lower newer'''
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
_UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_UpperCAmelCase = int(sequence[i] , 2 )
return sequence
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
_UpperCAmelCase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
_UpperCAmelCase = gray_code_sequence_string(bit_count - 1 )
_UpperCAmelCase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
_UpperCAmelCase = '''0''' + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
_UpperCAmelCase = '''1''' + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int = 50 ):
'''simple docstring'''
_UpperCAmelCase = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 326
|
"""simple docstring"""
import math
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ):
'''simple docstring'''
_UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = i
_UpperCAmelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCAmelCase = array[temp_index - 1]
temp_index -= 1
_UpperCAmelCase = temp_index_value
return array
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap
'''simple docstring'''
_UpperCAmelCase = index
_UpperCAmelCase = 2 * index + 1 # Left Node
_UpperCAmelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCAmelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCAmelCase = right_index
if largest != index:
_UpperCAmelCase , _UpperCAmelCase = array[largest], array[index]
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_UpperCAmelCase , _UpperCAmelCase = array[0], array[i]
heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE )
return array
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = low
_UpperCAmelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCAmelCase , _UpperCAmelCase = array[j], array[i]
i += 1
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(_SCREAMING_SNAKE_CASE ) == 0:
return array
_UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) )
_UpperCAmelCase = 16
return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(_SCREAMING_SNAKE_CASE )
max_depth -= 1
_UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = p
return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : List[str] = input("Enter numbers separated by a comma : ").strip()
__A : Optional[Any] = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 326
| 1
|
"""simple docstring"""
class _a ( lowerCAmelCase):
"""simple docstring"""
pass
class _a ( lowerCAmelCase):
"""simple docstring"""
pass
class _a :
"""simple docstring"""
def __init__( self : Tuple )->Optional[int]:
_UpperCAmelCase = [
[],
[],
[],
]
def lowercase__ ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : int )->None:
try:
if len(self.queues[priority] ) >= 1_0_0:
raise OverflowError('''Maximum queue size is 100''' )
self.queues[priority].append(__UpperCamelCase )
except IndexError:
raise ValueError('''Valid priorities are 0, 1, and 2''' )
def lowercase__ ( self : List[Any] )->int:
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError('''All queues are empty''' )
def __str__( self : Optional[Any] )->str:
return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) )
class _a :
"""simple docstring"""
def __init__( self : Dict )->List[Any]:
_UpperCAmelCase = []
def lowercase__ ( self : int , __UpperCamelCase : int )->None:
if len(self.queue ) == 1_0_0:
raise OverFlowError('''Maximum queue size is 100''' )
self.queue.append(__UpperCamelCase )
def lowercase__ ( self : str )->int:
if not self.queue:
raise UnderFlowError('''The queue is empty''' )
else:
_UpperCAmelCase = min(self.queue )
self.queue.remove(__UpperCamelCase )
return data
def __str__( self : str )->str:
return str(self.queue )
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = FixedPriorityQueue()
fpq.enqueue(0 , 10 )
fpq.enqueue(1 , 70 )
fpq.enqueue(0 , 100 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 64 )
fpq.enqueue(0 , 128 )
print(_SCREAMING_SNAKE_CASE )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(_SCREAMING_SNAKE_CASE )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = ElementPriorityQueue()
epq.enqueue(10 )
epq.enqueue(70 )
epq.enqueue(100 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(64 )
epq.enqueue(128 )
print(_SCREAMING_SNAKE_CASE )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(_SCREAMING_SNAKE_CASE )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 326
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE )
if rows != columns:
_UpperCAmelCase = (
'''\'table\' has to be of square shaped array but got a '''
f'{rows}x{columns} array:\n{table}'
)
raise ValueError(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = np.zeros((rows, columns) )
_UpperCAmelCase = np.zeros((rows, columns) )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) )
if upper[j][j] == 0:
raise ArithmeticError('''No LU decomposition exists''' )
_UpperCAmelCase = (table[i][j] - total) / upper[j][j]
_UpperCAmelCase = 1
for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A : Dict = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
__A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = CTRLTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Dict )->str:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
_UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
_UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
_UpperCAmelCase = {'''unk_token''': '''<unk>'''}
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__UpperCamelCase ) )
def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple:
_UpperCAmelCase = '''adapt react readapt apt'''
_UpperCAmelCase = '''adapt react readapt apt'''
return input_text, output_text
def lowercase__ ( self : Dict )->Optional[int]:
_UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_UpperCAmelCase = '''adapt react readapt apt'''
_UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokens + [tokenizer.unk_token]
_UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
from __future__ import annotations
from scipy.special import comb # type: ignore
class _a :
"""simple docstring"""
def __init__( self : Union[str, Any] , __UpperCamelCase : list[tuple[float, float]] )->str:
_UpperCAmelCase = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
_UpperCAmelCase = len(__UpperCamelCase ) - 1
def lowercase__ ( self : str , __UpperCamelCase : float )->list[float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
_UpperCAmelCase = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , __UpperCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(__UpperCamelCase ) , 5 ) == 1
return output_values
def lowercase__ ( self : List[str] , __UpperCamelCase : float )->tuple[float, float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
_UpperCAmelCase = self.basis_function(__UpperCamelCase )
_UpperCAmelCase = 0.0
_UpperCAmelCase = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def lowercase__ ( self : int , __UpperCamelCase : float = 0.0_1 )->Any:
from matplotlib import pyplot as plt # type: ignore
_UpperCAmelCase = [] # x coordinates of points to plot
_UpperCAmelCase = [] # y coordinates of points to plot
_UpperCAmelCase = 0.0
while t <= 1:
_UpperCAmelCase = self.bezier_curve_function(__UpperCamelCase )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
_UpperCAmelCase = [i[0] for i in self.list_of_points]
_UpperCAmelCase = [i[1] for i in self.list_of_points]
plt.plot(
__UpperCamelCase , __UpperCamelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , )
plt.scatter(__UpperCamelCase , __UpperCamelCase , color='''red''' , label='''Control Points''' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 326
|
"""simple docstring"""
import logging
import os
from .state import PartialState
class _a ( logging.LoggerAdapter):
"""simple docstring"""
@staticmethod
def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int:
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase )
if self.isEnabledFor(__UpperCamelCase ):
if self._should_log(__UpperCamelCase ):
_UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
elif in_order:
_UpperCAmelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
state.wait_for_everyone()
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ):
'''simple docstring'''
if log_level is None:
_UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
| 326
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : str )->Tuple:
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = SamImageProcessor()
_UpperCAmelCase = SamProcessor(__UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
def lowercase__ ( self : List[str] , **__UpperCamelCase : str )->Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor
def lowercase__ ( self : List[Any] )->List[Any]:
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Optional[int] )->Dict:
_UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : int )->Tuple:
_UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 )
_UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def lowercase__ ( self : Any )->List[str]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=__UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''np''' )
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''np''' )
input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def lowercase__ ( self : Dict )->Union[str, Any]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=__UpperCamelCase )
_UpperCAmelCase = [torch.ones((1, 3, 5, 5) )]
_UpperCAmelCase = [[1_7_6_4, 2_6_4_6]]
_UpperCAmelCase = [[6_8_3, 1_0_2_4]]
_UpperCAmelCase = processor.post_process_masks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
_UpperCAmelCase = processor.post_process_masks(
__UpperCamelCase , torch.tensor(__UpperCamelCase ) , torch.tensor(__UpperCamelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
# should also work with np
_UpperCAmelCase = [np.ones((1, 3, 5, 5) )]
_UpperCAmelCase = processor.post_process_masks(__UpperCamelCase , np.array(__UpperCamelCase ) , np.array(__UpperCamelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
_UpperCAmelCase = [[1, 0], [0, 1]]
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = processor.post_process_masks(__UpperCamelCase , np.array(__UpperCamelCase ) , np.array(__UpperCamelCase ) )
@require_vision
@require_tf
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] )->str:
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = SamImageProcessor()
_UpperCAmelCase = SamProcessor(__UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Any , **__UpperCamelCase : Optional[int] )->Tuple:
return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor
def lowercase__ ( self : List[Any] )->Any:
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Tuple )->Tuple:
_UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self : Optional[Any] )->Optional[Any]:
_UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 )
_UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def lowercase__ ( self : Optional[int] )->Dict:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=__UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''np''' )
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''np''' )
input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def lowercase__ ( self : Union[str, Any] )->List[Any]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=__UpperCamelCase )
_UpperCAmelCase = [tf.ones((1, 3, 5, 5) )]
_UpperCAmelCase = [[1_7_6_4, 2_6_4_6]]
_UpperCAmelCase = [[6_8_3, 1_0_2_4]]
_UpperCAmelCase = processor.post_process_masks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , return_tensors='''tf''' )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
_UpperCAmelCase = processor.post_process_masks(
__UpperCamelCase , tf.convert_to_tensor(__UpperCamelCase ) , tf.convert_to_tensor(__UpperCamelCase ) , return_tensors='''tf''' , )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
# should also work with np
_UpperCAmelCase = [np.ones((1, 3, 5, 5) )]
_UpperCAmelCase = processor.post_process_masks(
__UpperCamelCase , np.array(__UpperCamelCase ) , np.array(__UpperCamelCase ) , return_tensors='''tf''' )
self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) )
_UpperCAmelCase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
_UpperCAmelCase = processor.post_process_masks(
__UpperCamelCase , np.array(__UpperCamelCase ) , np.array(__UpperCamelCase ) , return_tensors='''tf''' )
@require_vision
@require_torchvision
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : List[str] )->Union[str, Any]:
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = SamImageProcessor()
_UpperCAmelCase = SamProcessor(__UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[Any] , **__UpperCamelCase : Any )->Optional[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor
def lowercase__ ( self : Dict )->Any:
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Any )->int:
_UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def lowercase__ ( self : Optional[int] )->str:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=__UpperCamelCase )
_UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
_UpperCAmelCase = [tf.convert_to_tensor(__UpperCamelCase )]
_UpperCAmelCase = [torch.tensor(__UpperCamelCase )]
_UpperCAmelCase = [[1_7_6_4, 2_6_4_6]]
_UpperCAmelCase = [[6_8_3, 1_0_2_4]]
_UpperCAmelCase = processor.post_process_masks(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , return_tensors='''tf''' )
_UpperCAmelCase = processor.post_process_masks(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , return_tensors='''pt''' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def lowercase__ ( self : Optional[int] )->Optional[Any]:
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=__UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''pt''' )['''pixel_values'''].numpy()
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''pt''' )['''pixel_values'''].numpy()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''tf''' )['''pixel_values'''].numpy()
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''tf''' )['''pixel_values'''].numpy()
self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) )
self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) )
self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) )
| 326
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__A : List[Any] = logging.get_logger(__name__)
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = ["""pixel_values"""]
def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None:
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6}
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray:
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase )
return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray:
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray:
return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray:
return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]:
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = make_list_of_images(__UpperCamelCase )
if not valid_images(__UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
import csv
import tweepy
# Twitter API credentials
__A : Optional[int] = ""
__A : Union[str, Any] = ""
__A : Any = ""
__A : List[str] = ""
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = tweepy.API(_SCREAMING_SNAKE_CASE )
# initialize a list to hold all the tweepy Tweets
_UpperCAmelCase = []
# make initial request for most recent tweets (200 is the maximum allowed count)
_UpperCAmelCase = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=200 )
# save most recent tweets
alltweets.extend(_SCREAMING_SNAKE_CASE )
# save the id of the oldest tweet less one
_UpperCAmelCase = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(_SCREAMING_SNAKE_CASE ) > 0:
print(f'getting tweets before {oldest}' )
# all subsequent requests use the max_id param to prevent duplicates
_UpperCAmelCase = api.user_timeline(
screen_name=_SCREAMING_SNAKE_CASE , count=200 , max_id=_SCREAMING_SNAKE_CASE )
# save most recent tweets
alltweets.extend(_SCREAMING_SNAKE_CASE )
# update the id of the oldest tweet less one
_UpperCAmelCase = alltweets[-1].id - 1
print(f'...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far' )
# transform the tweepy tweets into a 2D array that will populate the csv
_UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f'new_{screen_name}_tweets.csv' , '''w''' ) as f:
_UpperCAmelCase = csv.writer(_SCREAMING_SNAKE_CASE )
writer.writerow(['''id''', '''created_at''', '''text'''] )
writer.writerows(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("FirePing32")
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : List[Any] = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
__A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
import functools
def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ):
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ):
raise ValueError('''The parameter days should be a list of integers''' )
if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ):
raise ValueError('''The parameter costs should be a list of three integers''' )
if len(_SCREAMING_SNAKE_CASE ) == 0:
return 0
if min(_SCREAMING_SNAKE_CASE ) <= 0:
raise ValueError('''All days elements should be greater than 0''' )
if max(_SCREAMING_SNAKE_CASE ) >= 366:
raise ValueError('''All days elements should be less than 366''' )
_UpperCAmelCase = set(_SCREAMING_SNAKE_CASE )
@functools.cache
def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
UpperCamelCase__ = None
__A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess")
def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right )
_UpperCAmelCase = 1 - left_distrib_excess
_UpperCAmelCase = 1 - right_distrib_excess
_UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' )
parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 )
parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 )
parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 )
parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 )
parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 )
parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' )
parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 )
parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 )
parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' )
return parser.parse_args()
__A : Union[str, Any] = load("accuracy")
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = eval_pred
_UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None:
super().__init__()
_UpperCAmelCase = trainer
def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any:
if control.should_evaluate:
_UpperCAmelCase = deepcopy(__UpperCamelCase )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' )
return control_copy
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = get_args()
set_seed(args.seed )
_UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' )
_UpperCAmelCase = dataset.train_test_split(test_size=0.2 )
_UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 )
_UpperCAmelCase = DatasetDict(
{
'''train''': train_test['''train'''],
'''test''': test_validation['''train'''],
'''valid''': test_validation['''test'''],
} )
print('''Loading tokenizer and model''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt )
_UpperCAmelCase = tokenizer.eos_token
_UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
_UpperCAmelCase = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
_UpperCAmelCase = False
_UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) )
def tokenize(_SCREAMING_SNAKE_CASE : Any ):
_UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 )
_UpperCAmelCase = labels.straint(example['''complexity'''] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
_UpperCAmelCase = train_test_validation.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , )
_UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , )
_UpperCAmelCase = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , )
print('''Training...''' )
trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) )
trainer.train()
if __name__ == "__main__":
main()
| 326
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
"""feature-extraction""": TFMobileBertModel,
"""fill-mask""": TFMobileBertForMaskedLM,
"""question-answering""": TFMobileBertForQuestionAnswering,
"""text-classification""": TFMobileBertForSequenceClassification,
"""token-classification""": TFMobileBertForTokenClassification,
"""zero-shot""": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]:
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any:
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = embedding_size
def lowercase__ ( self : Optional[int] )->int:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = [input_ids, input_mask]
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple:
_UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]:
_UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]:
_UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]:
_UpperCAmelCase = self.num_choices
_UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : List[str] )->Optional[Any]:
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def lowercase__ ( self : List[Any] )->str:
_UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 )
def lowercase__ ( self : List[Any] )->List[str]:
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def lowercase__ ( self : Any )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def lowercase__ ( self : List[Any] )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def lowercase__ ( self : str )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def lowercase__ ( self : Any )->List[str]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def lowercase__ ( self : Dict )->Any:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def lowercase__ ( self : Any )->Optional[Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def lowercase__ ( self : List[str] )->Tuple:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
@slow
def lowercase__ ( self : Tuple )->List[str]:
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class _a ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase__ ( self : str )->Dict:
_UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
_UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase = model(__UpperCamelCase )[0]
_UpperCAmelCase = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , __UpperCamelCase )
_UpperCAmelCase = tf.constant(
[
[
[-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6],
[-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7],
[-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
| 326
| 1
|
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__A : Optional[Any] = ""
__A : Tuple = ""
__A : Union[str, Any] = ""
__A : List[str] = 1 # (0 is vertical, 1 is horizontal)
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = get_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print('''Processing...''' )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for index, image in enumerate(_SCREAMING_SNAKE_CASE ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_UpperCAmelCase = random_chars(32 )
_UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
_UpperCAmelCase = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'
cva.imwrite(f'/{file_root}.jpg' , _SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Success {index+1}/{len(_SCREAMING_SNAKE_CASE )} with {file_name}' )
_UpperCAmelCase = []
for anno in new_annos[index]:
_UpperCAmelCase = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'
annos_list.append(_SCREAMING_SNAKE_CASE )
with open(f'/{file_root}.txt' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = []
for label_file in glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , '''*.txt''' ) ):
_UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(_SCREAMING_SNAKE_CASE ) as in_file:
_UpperCAmelCase = in_file.readlines()
_UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'{label_name}.jpg' )
_UpperCAmelCase = []
for obj_list in obj_lists:
_UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(_SCREAMING_SNAKE_CASE )
labels.append(_SCREAMING_SNAKE_CASE )
return img_paths, labels
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 1 ):
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = []
for idx in range(len(_SCREAMING_SNAKE_CASE ) ):
_UpperCAmelCase = []
_UpperCAmelCase = img_list[idx]
path_list.append(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = anno_list[idx]
_UpperCAmelCase = cva.imread(_SCREAMING_SNAKE_CASE )
if flip_type == 1:
_UpperCAmelCase = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for bbox in img_annos:
_UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_UpperCAmelCase = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for bbox in img_annos:
_UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(_SCREAMING_SNAKE_CASE )
new_imgs_list.append(_SCREAMING_SNAKE_CASE )
return new_imgs_list, new_annos_lists, path_list
def lowercase ( _SCREAMING_SNAKE_CASE : int = 32 ):
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
_UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError('''Input value must be a \'int\' type''' )
return bin(_SCREAMING_SNAKE_CASE ).count('''1''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A : Dict = logging.get_logger(__name__)
__A : int = "▁"
__A : int = {"vocab_file": "sentencepiece.bpe.model"}
__A : Any = {
"vocab_file": {
"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model",
}
}
__A : List[str] = {
"facebook/xglm-564M": 2048,
}
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="<s>" , __UpperCamelCase : List[Any]="</s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : int="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[Any] , )->None:
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
_UpperCAmelCase = 7
_UpperCAmelCase = [F'<madeupword{i}>' for i in range(self.num_madeup_words )]
_UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , )
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCamelCase ) )
_UpperCAmelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_UpperCAmelCase = 1
# Mimic fairseq token-to-id alignment for the first 4 token
_UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
_UpperCAmelCase = len(self.sp_model )
_UpperCAmelCase = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(__UpperCamelCase )
_UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[Any] )->List[str]:
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
_UpperCAmelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[Any] , __UpperCamelCase : str )->Union[str, Any]:
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def lowercase__ ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
_UpperCAmelCase = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def lowercase__ ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False )->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCamelCase ))
return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase ))
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]:
_UpperCAmelCase = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def lowercase__ ( self : Any )->Tuple:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def lowercase__ ( self : List[str] )->Any:
_UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase__ ( self : int , __UpperCamelCase : str )->List[str]:
return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] )->List[str]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def lowercase__ ( self : List[str] , __UpperCamelCase : Dict )->int:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def lowercase__ ( self : List[str] , __UpperCamelCase : int )->Tuple:
_UpperCAmelCase = ''''''.join(__UpperCamelCase ).replace(__UpperCamelCase , ''' ''' ).strip()
return out_string
def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]:
if not os.path.isdir(__UpperCamelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_UpperCAmelCase = os.path.join(
__UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCamelCase , '''wb''' ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__UpperCamelCase )
return (out_vocab_file,)
| 326
|
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__A : Tuple = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""")
@require_torch
@require_tf
@slow
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple:
_UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )]
if identifier is not None:
_UpperCAmelCase = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__UpperCamelCase , __UpperCamelCase ):
for n_ in n_identifier:
_UpperCAmelCase = [file for file in files if n_ not in file]
else:
_UpperCAmelCase = [file for file in files if n_identifier not in file]
_UpperCAmelCase = ignore_files or []
ignore_files.append('''__init__.py''' )
_UpperCAmelCase = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , __UpperCamelCase )
if only_modules:
_UpperCAmelCase = file.split('''.''' )[0]
try:
_UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase )
_UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
_UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def lowercase__ ( self : str )->int:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''modeling'''
_UpperCAmelCase = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase )
def lowercase__ ( self : List[Any] )->int:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''tokenization'''
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase )
def lowercase__ ( self : str )->Any:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = '''configuration'''
self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase )
def lowercase__ ( self : int )->Optional[Any]:
_UpperCAmelCase = Path('''src/transformers''' )
_UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->Any:
_UpperCAmelCase = Path('''docs/source''' )
_UpperCAmelCase = ['''favicon.ico''']
self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = VideoToVideoSDPipeline
UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""}) - {"""image""", """width""", """height"""}
UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""}) - {"""image"""}
UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""}
UpperCamelCase__ = False
# No `output_type`.
UpperCamelCase__ = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
])
def lowercase__ ( self : Optional[Any] )->Optional[int]:
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=3_2 , attention_head_dim=4 , )
_UpperCAmelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , )
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , )
_UpperCAmelCase = CLIPTextModel(__UpperCamelCase )
_UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int=0 )->List[str]:
# 3 frames
_UpperCAmelCase = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase )
if str(__UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(__UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
_UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''video''': video,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def lowercase__ ( self : Union[str, Any] )->Dict:
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = VideoToVideoSDPipeline(**__UpperCamelCase )
_UpperCAmelCase = sd_pipe.to(__UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(__UpperCamelCase )
_UpperCAmelCase = '''np'''
_UpperCAmelCase = sd_pipe(**__UpperCamelCase ).frames
_UpperCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (3_2, 3_2, 3)
_UpperCAmelCase = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def lowercase__ ( self : Optional[Any] )->int:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCamelCase , expected_max_diff=5e-3 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def lowercase__ ( self : Optional[int] )->Optional[Any]:
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def lowercase__ ( self : Union[str, Any] )->List[str]:
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def lowercase__ ( self : List[str] )->Optional[int]:
pass
def lowercase__ ( self : int )->List[Any]:
return super().test_progress_bar()
@slow
@skip_mps
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : Any )->int:
_UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
_UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
_UpperCAmelCase = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=__UpperCamelCase )
_UpperCAmelCase = video.to('''cuda''' )
_UpperCAmelCase = '''Spiderman is surfing'''
_UpperCAmelCase = pipe(__UpperCamelCase , video=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=3 , output_type='''pt''' ).frames
_UpperCAmelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 326
|
"""simple docstring"""
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' )
_UpperCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = i / num_diffusion_timesteps
_UpperCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class _a ( lowerCAmelCase , lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = 1
@register_to_config
def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict:
if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None:
_UpperCAmelCase = (
'''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'''
)
deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase )
_UpperCAmelCase = kwargs['''set_alpha_to_one''']
if trained_betas is not None:
_UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_UpperCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase )
else:
raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' )
_UpperCAmelCase = 1.0 - self.betas
_UpperCAmelCase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
_UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
_UpperCAmelCase = 1.0
# setable values
_UpperCAmelCase = None
_UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) )
def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor:
return sample
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:'
F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle'
F' maximal {self.config.num_train_timesteps} timesteps.' )
_UpperCAmelCase = num_inference_steps
_UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa )
_UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase )
self.timesteps += self.config.steps_offset
def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]:
# 1. get previous step value (=t+1)
_UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
_UpperCAmelCase = self.alphas_cumprod[timestep]
_UpperCAmelCase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
_UpperCAmelCase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
_UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
_UpperCAmelCase = model_output
elif self.config.prediction_type == "sample":
_UpperCAmelCase = model_output
_UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
_UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
_UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or'
''' `v_prediction`''' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
_UpperCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase )
def __len__( self : Any )->str:
return self.config.num_train_timesteps
| 326
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__A : str = {
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = ["MobileViTFeatureExtractor"]
__A : List[str] = ["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = [
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
|
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(number**0.5 )
return number == sq * sq
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
_UpperCAmelCase = x_den * y_den * z_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
top //= hcf
bottom //= hcf
return top, bottom
def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ):
'''simple docstring'''
_UpperCAmelCase = set()
_UpperCAmelCase = 42
_UpperCAmelCase = Fraction(0 )
_UpperCAmelCase = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
_UpperCAmelCase = x_num * y_den + x_den * y_num
_UpperCAmelCase = x_den * y_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_UpperCAmelCase = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
_UpperCAmelCase = x_den * x_den * y_den * y_den
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=-1
_UpperCAmelCase = x_num * y_num
_UpperCAmelCase = x_den * y_num + x_num * y_den
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
# n=2
_UpperCAmelCase = x_num * x_num * y_num * y_num
_UpperCAmelCase = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
_UpperCAmelCase = add_three(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
unique_s.add(_SCREAMING_SNAKE_CASE )
for num, den in unique_s:
total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f'''{solution() = }''')
| 326
| 1
|
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _a ( unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = JukeboxTokenizer
UpperCamelCase__ = {
"""artist""": """Zac Brown Band""",
"""genres""": """Country""",
"""lyrics""": """I met a traveller from an antique land,
Who said \"Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
@require_torch
def lowercase__ ( self : str )->Tuple:
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' )
_UpperCAmelCase = tokenizer(**self.metas )['''input_ids''']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7,
7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2,
4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3,
4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6,
7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5,
3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6,
2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5,
4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6,
4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1,
7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3,
7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9,
6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0,
3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8,
2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5,
3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5,
2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4,
4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9,
4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4,
7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1,
3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7,
4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6,
4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9,
3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7,
4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9,
3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8,
3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1,
4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1,
3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1,
7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9,
4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6,
2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4,
4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6,
4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5,
4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9,
4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6,
4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9,
2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3,
7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6,
4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4,
7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6,
2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6,
3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6,
4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7,
4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6,
4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7,
3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7,
4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8,
2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0,
7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5,
7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4,
7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
7_6, 7_6]] ),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def lowercase__ ( self : List[Any] )->int:
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' )
_UpperCAmelCase = tokenizer(**self.metas )['''input_ids''']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9,
3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8,
3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7,
4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4,
7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1,
7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8,
2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0,
3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1,
3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0,
7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3,
7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7,
4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1,
7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7,
7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0,
7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5,
6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9,
4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1,
4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7,
3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1,
3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9,
4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7,
4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6,
4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5,
3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4,
3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7,
4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2,
3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7,
3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5,
4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4,
2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4,
3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7,
3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2,
3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2,
3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1,
4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2,
3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7,
1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7,
1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3,
4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2,
4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1,
4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4,
4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2,
2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5,
3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3,
7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0,
3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8,
4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4,
7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7,
4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1,
7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5,
2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4,
7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326
|
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE ) as metadata_file:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] )
# Load in the weights from the checkpoint_path
_UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module''']
# Load the entity vocab file
_UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
_UpperCAmelCase = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
_UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] )
# Add special tokens to the token vocabulary for downstream tasks
_UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'Saving tokenizer to {pytorch_dump_folder_path}' )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''MLukeTokenizer'''
with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0]
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0]
_UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight''']
_UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
_UpperCAmelCase = state_dict[bias_name]
_UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 )
_UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 )
_UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.'
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
_UpperCAmelCase = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight''']
_UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
_UpperCAmelCase = state_dict['''entity_predictions.bias''']
_UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 )
_UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] )
_UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval()
state_dict.pop('''entity_predictions.decoder.weight''' )
state_dict.pop('''lm_head.decoder.weight''' )
state_dict.pop('''lm_head.decoder.bias''' )
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )):
_UpperCAmelCase = state_dict[key]
else:
_UpperCAmelCase = state_dict[key]
_UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' )
if set(_SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f'Unexpected missing_keys: {missing_keys}' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' )
_UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'''
_UpperCAmelCase = (0, 9)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 33, 768) )
_UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase = torch.Size((1, 1, 768) )
_UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'
f' {expected_shape}' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
_UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''Tokyo is the capital of <mask>.'''
_UpperCAmelCase = (24, 30)
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = encoding['''input_ids'''][0].tolist()
_UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) )
_UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = outputs.entity_logits[0][0].argmax().item()
_UpperCAmelCase = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]''']
_UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )]
_UpperCAmelCase = {}
for entry in data:
_UpperCAmelCase = entry['''id''']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
_UpperCAmelCase = entity_id
break
_UpperCAmelCase = f'{language}:{entity_name}'
_UpperCAmelCase = entity_id
return new_mapping
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
__A : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326
| 1
|
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _a ( unittest.TestCase):
"""simple docstring"""
def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict )->Tuple:
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for a, b in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertAlmostEqual(__UpperCamelCase , __UpperCamelCase , delta=__UpperCamelCase )
def lowercase__ ( self : List[Any] )->Tuple:
_UpperCAmelCase = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(__UpperCamelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def lowercase__ ( self : Optional[int] )->Tuple:
_UpperCAmelCase = None
ops.enable_eager_execution_internal()
_UpperCAmelCase = tf.config.list_physical_devices('''CPU''' )
if len(__UpperCamelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
_UpperCAmelCase = tf.config.list_logical_devices(device_type='''CPU''' )
_UpperCAmelCase = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
_UpperCAmelCase = GradientAccumulator()
_UpperCAmelCase = tf.Variable([4.0, 3.0] )
_UpperCAmelCase , _UpperCAmelCase = create_optimizer(5e-5 , 1_0 , 5 )
_UpperCAmelCase = tf.Variable([0.0, 0.0] , trainable=__UpperCamelCase )
def accumulate_on_replica(__UpperCamelCase : Tuple ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(__UpperCamelCase : Dict , __UpperCamelCase : List[str] ):
with strategy.scope():
_UpperCAmelCase = strategy.experimental_local_results(__UpperCamelCase )
local_variables[0].assign(__UpperCamelCase )
local_variables[1].assign(__UpperCamelCase )
strategy.run(__UpperCamelCase , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(__UpperCamelCase )
def _check_local_values(__UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ):
_UpperCAmelCase = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , __UpperCamelCase , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , __UpperCamelCase , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 326
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
__A : Tuple = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ):
'''simple docstring'''
_UpperCAmelCase = True
while ask_again:
_UpperCAmelCase = input(_SCREAMING_SNAKE_CASE )
try:
if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0:
return default
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ):
'''simple docstring'''
_UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE )
return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result
def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = int(_SCREAMING_SNAKE_CASE )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _a ( argparse.RawDescriptionHelpFormatter):
"""simple docstring"""
def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]:
_UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' )
return usage
| 326
| 1
|
"""simple docstring"""
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
__A : Optional[Any] = ["text", "image", "audio"]
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
_UpperCAmelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
inputs.append(create_inputs(_SCREAMING_SNAKE_CASE ) )
else:
raise ValueError(f'Invalid type requested: {input_type}' )
return inputs
def lowercase ( _SCREAMING_SNAKE_CASE : List ):
'''simple docstring'''
_UpperCAmelCase = []
for output in outputs:
if isinstance(_SCREAMING_SNAKE_CASE , (str, AgentText) ):
output_types.append('''text''' )
elif isinstance(_SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(f'Invalid output: {output}' )
return output_types
@is_tool_test
class _a :
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] )->Optional[Any]:
self.assertTrue(hasattr(self.tool , '''inputs''' ) )
self.assertTrue(hasattr(self.tool , '''outputs''' ) )
_UpperCAmelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input , __UpperCamelCase ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
_UpperCAmelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def lowercase__ ( self : Any )->int:
_UpperCAmelCase = create_inputs(self.tool.inputs )
_UpperCAmelCase = self.tool(*__UpperCamelCase )
# There is a single output
if len(self.tool.outputs ) == 1:
_UpperCAmelCase = [outputs]
self.assertListEqual(output_types(__UpperCamelCase ) , self.tool.outputs )
def lowercase__ ( self : Optional[int] )->Tuple:
self.assertTrue(hasattr(self.tool , '''description''' ) )
self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) )
self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) )
def lowercase__ ( self : Tuple )->int:
_UpperCAmelCase = create_inputs(self.tool.inputs )
_UpperCAmelCase = self.tool(*__UpperCamelCase )
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = [outputs]
self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) )
for output, output_type in zip(__UpperCamelCase , self.tool.outputs ):
_UpperCAmelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) )
def lowercase__ ( self : List[Any] )->List[Any]:
_UpperCAmelCase = create_inputs(self.tool.inputs )
_UpperCAmelCase = []
for _input, input_type in zip(__UpperCamelCase , self.tool.inputs ):
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
_UpperCAmelCase = self.tool(*__UpperCamelCase )
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = [outputs]
self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) )
| 326
|
"""simple docstring"""
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' )
parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 )
parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 )
parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 )
parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 )
parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 )
parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' )
parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 )
parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 )
parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' )
return parser.parse_args()
__A : Union[str, Any] = load("accuracy")
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = eval_pred
_UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 )
return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None:
super().__init__()
_UpperCAmelCase = trainer
def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any:
if control.should_evaluate:
_UpperCAmelCase = deepcopy(__UpperCamelCase )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' )
return control_copy
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = get_args()
set_seed(args.seed )
_UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' )
_UpperCAmelCase = dataset.train_test_split(test_size=0.2 )
_UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 )
_UpperCAmelCase = DatasetDict(
{
'''train''': train_test['''train'''],
'''test''': test_validation['''train'''],
'''valid''': test_validation['''test'''],
} )
print('''Loading tokenizer and model''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt )
_UpperCAmelCase = tokenizer.eos_token
_UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
_UpperCAmelCase = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
_UpperCAmelCase = False
_UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) )
def tokenize(_SCREAMING_SNAKE_CASE : Any ):
_UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 )
_UpperCAmelCase = labels.straint(example['''complexity'''] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
_UpperCAmelCase = train_test_validation.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , )
_UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , )
_UpperCAmelCase = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , )
print('''Training...''' )
trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) )
trainer.train()
if __name__ == "__main__":
main()
| 326
| 1
|
"""simple docstring"""
__A : List[Any] = 256
# Modulus to hash a string
__A : int = 1000003
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
if p_len > t_len:
return False
_UpperCAmelCase = 0
_UpperCAmelCase = 0
_UpperCAmelCase = 1
# Calculating the hash of pattern and substring of text
for i in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_UpperCAmelCase = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_UpperCAmelCase = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = '''abc1abc12'''
_UpperCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
_UpperCAmelCase = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 2)
_UpperCAmelCase = '''ABABX'''
_UpperCAmelCase = '''ABABZABABYABABX'''
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 3)
_UpperCAmelCase = '''AAAB'''
_UpperCAmelCase = '''ABAAAAAB'''
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 4)
_UpperCAmelCase = '''abcdabcy'''
_UpperCAmelCase = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Test 5)
_UpperCAmelCase = '''Lü'''
_UpperCAmelCase = '''Lüsai'''
assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''Lue'''
assert not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return "\n".join(
f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 326
| 1
|
"""simple docstring"""
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__A : List[str] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
__A : int = 5
__A : str = 10
@require_sentencepiece
@require_tokenizers
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = SpeechaTextTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = True
def lowercase__ ( self : Optional[int] )->List[Any]:
super().setUp()
_UpperCAmelCase = sp.SentencePieceProcessor()
spm_model.Load(__UpperCamelCase )
_UpperCAmelCase = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>''']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__UpperCamelCase ) )]
_UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
_UpperCAmelCase = Path(self.tmpdirname )
save_json(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['''spm_file'''] )
_UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Any )->Optional[int]:
_UpperCAmelCase = '''<pad>'''
_UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase )
def lowercase__ ( self : Union[str, Any] )->Optional[int]:
_UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(__UpperCamelCase ) , 1_0_0_1 )
def lowercase__ ( self : int )->Tuple:
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 )
def lowercase__ ( self : List[Any] )->List[Any]:
_UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
_UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__UpperCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , )
_UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__UpperCamelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] )
_UpperCAmelCase = tokenizer.convert_ids_to_tokens(__UpperCamelCase )
self.assertListEqual(
__UpperCamelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def lowercase__ ( self : Tuple )->Optional[int]:
# fmt: off
_UpperCAmelCase = {'''input_ids''': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCamelCase , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , )
@require_sentencepiece
class _a ( unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = """valhalla/s2t_mustc_multilinguial_medium"""
UpperCamelCase__ = """C'est trop cool"""
UpperCamelCase__ = """Esto es genial"""
@classmethod
def lowercase__ ( cls : Union[str, Any] )->str:
_UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def lowercase__ ( self : int )->Dict:
self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 1_1 )
def lowercase__ ( self : int )->str:
self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 )
def lowercase__ ( self : str )->List[str]:
self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids )
_UpperCAmelCase = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2]
_UpperCAmelCase = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
_UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase )
def lowercase__ ( self : str )->str:
_UpperCAmelCase = '''fr'''
_UpperCAmelCase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __UpperCamelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def lowercase__ ( self : Optional[int] )->Tuple:
_UpperCAmelCase = '''fr'''
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
_UpperCAmelCase = '''es'''
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 326
|
"""simple docstring"""
class _a :
"""simple docstring"""
def __init__( self : Tuple , __UpperCamelCase : list[int] )->None:
_UpperCAmelCase = len(__UpperCamelCase )
_UpperCAmelCase = [0] * len_array
if len_array > 0:
_UpperCAmelCase = array[0]
for i in range(1 , __UpperCamelCase ):
_UpperCAmelCase = self.prefix_sum[i - 1] + array[i]
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool:
_UpperCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__UpperCamelCase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int = 100 ):
'''simple docstring'''
_UpperCAmelCase = set()
_UpperCAmelCase = 0
_UpperCAmelCase = n + 1 # maximum limit
for a in range(2 , _SCREAMING_SNAKE_CASE ):
for b in range(2 , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = a**b # calculates the current power
collect_powers.add(_SCREAMING_SNAKE_CASE ) # adds the result to the set
return len(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , ):
'''simple docstring'''
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative in a semiconductor''' )
elif hole_conc < 0:
raise ValueError('''Hole concentration cannot be negative in a semiconductor''' )
elif intrinsic_conc < 0:
raise ValueError(
'''Intrinsic concentration cannot be negative in a semiconductor''' )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
__A : Tuple = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
__A : Union[str, Any] = frozenset(["prompt", "negative_prompt"])
__A : str = frozenset([])
__A : List[str] = frozenset(["image"])
__A : Optional[Any] = frozenset(
[
"image",
"height",
"width",
"guidance_scale",
]
)
__A : Optional[int] = frozenset(["image"])
__A : Optional[int] = frozenset(
[
"prompt",
"image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
__A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"])
__A : str = frozenset(
[
# Text guided image variation with an image mask
"prompt",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
__A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"])
__A : List[str] = frozenset(
[
# image variation with an image mask
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
__A : List[Any] = frozenset(["image", "mask_image"])
__A : List[str] = frozenset(
[
"example_image",
"image",
"mask_image",
"height",
"width",
"guidance_scale",
]
)
__A : Tuple = frozenset(["example_image", "image", "mask_image"])
__A : Dict = frozenset(["class_labels"])
__A : str = frozenset(["class_labels"])
__A : str = frozenset(["batch_size"])
__A : Union[str, Any] = frozenset([])
__A : str = frozenset(["batch_size"])
__A : Optional[int] = frozenset([])
__A : Any = frozenset(
[
"prompt",
"audio_length_in_s",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
"cross_attention_kwargs",
]
)
__A : List[str] = frozenset(["prompt", "negative_prompt"])
__A : Tuple = frozenset(["input_tokens"])
__A : Optional[int] = frozenset(["input_tokens"])
| 326
| 1
|
"""simple docstring"""
class _a :
"""simple docstring"""
def __init__( self : Tuple , __UpperCamelCase : list[int] )->None:
_UpperCAmelCase = len(__UpperCamelCase )
_UpperCAmelCase = [0] * len_array
if len_array > 0:
_UpperCAmelCase = array[0]
for i in range(1 , __UpperCamelCase ):
_UpperCAmelCase = self.prefix_sum[i - 1] + array[i]
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool:
_UpperCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__UpperCamelCase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Optional[Any] = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__A : str = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def lowercase ( _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
_UpperCAmelCase = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
if exitstatus == 5:
_UpperCAmelCase = 0
# Doctest custom flag to ignore output.
__A : List[Any] = doctest.register_optionflag("IGNORE_RESULT")
__A : Any = doctest.OutputChecker
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] )->Dict:
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
__A : int = CustomOutputChecker
__A : List[Any] = HfDoctestModule
__A : List[str] = HfDocTestParser
| 326
|
"""simple docstring"""
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__A : Union[str, Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__A : Tuple = importlib.util.spec_from_file_location(
"transformers",
os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
__A : List[str] = spec.loader.load_module()
__A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)")
__A : List[str] = {
"CLIPConfigMixin",
"DecisionTransformerConfigMixin",
"EncoderDecoderConfigMixin",
"RagConfigMixin",
"SpeechEncoderDecoderConfigMixin",
"VisionEncoderDecoderConfigMixin",
"VisionTextDualEncoderConfigMixin",
}
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = []
for config_class in list(CONFIG_MAPPING.values() ):
_UpperCAmelCase = False
# source code of `config_class`
_UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
_UpperCAmelCase , _UpperCAmelCase = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
_UpperCAmelCase = f'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
_UpperCAmelCase = True
break
_UpperCAmelCase = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
_UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) )
raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 326
| 1
|
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
__A : Tuple = logging.get_logger(__name__)
__A : str = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
__A : List[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
_UpperCAmelCase = {}
with open(_SCREAMING_SNAKE_CASE , '''r''' ) as file:
for line_number, line in enumerate(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = line.strip()
if line:
_UpperCAmelCase = line.split()
_UpperCAmelCase = line_number
_UpperCAmelCase = words[0]
_UpperCAmelCase = value
return result
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
for attribute in key.split('''.''' ):
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]]
_UpperCAmelCase = '''param'''
if weight_type is not None and weight_type != "param":
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape
elif weight_type is not None and weight_type == "param":
_UpperCAmelCase = hf_pointer
for attribute in hf_param_name.split('''.''' ):
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shape_pointer.shape
# let's reduce dimension
_UpperCAmelCase = value[0]
else:
_UpperCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_UpperCAmelCase = value
elif weight_type == "weight_g":
_UpperCAmelCase = value
elif weight_type == "weight_v":
_UpperCAmelCase = value
elif weight_type == "bias":
_UpperCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = value
else:
_UpperCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
_UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]]
_UpperCAmelCase = '''param'''
if weight_type is not None and weight_type != "param":
_UpperCAmelCase = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_UpperCAmelCase = '''.'''.join([key, hf_param_name] )
else:
_UpperCAmelCase = key
_UpperCAmelCase = value if '''lm_head''' in full_key else value[0]
__A : Any = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=None ):
'''simple docstring'''
_UpperCAmelCase = False
for key, mapped_key in MAPPING.items():
_UpperCAmelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
_UpperCAmelCase = True
if "*" in mapped_key:
_UpperCAmelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2]
_UpperCAmelCase = mapped_key.replace('''*''' , _SCREAMING_SNAKE_CASE )
if "weight_g" in name:
_UpperCAmelCase = '''weight_g'''
elif "weight_v" in name:
_UpperCAmelCase = '''weight_v'''
elif "bias" in name:
_UpperCAmelCase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_UpperCAmelCase = '''weight'''
else:
_UpperCAmelCase = None
if hf_dict is not None:
rename_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return is_used
return is_used
def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = fairseq_model.state_dict()
_UpperCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , )
_UpperCAmelCase = True
else:
_UpperCAmelCase = load_wavaveca_layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not is_used:
unused_weights.append(_SCREAMING_SNAKE_CASE )
logger.warning(f'Unused weights: {unused_weights}' )
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
_UpperCAmelCase = full_name.split('''conv_layers.''' )[-1]
_UpperCAmelCase = name.split('''.''' )
_UpperCAmelCase = int(items[0] )
_UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_UpperCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[str]=False ):
'''simple docstring'''
if config_path is not None:
_UpperCAmelCase = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = WavaVecaConfig()
if is_seq_class:
_UpperCAmelCase = read_txt_into_dict(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = idalabel
_UpperCAmelCase = WavaVecaForSequenceClassification(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
elif is_finetuned:
if dict_path:
_UpperCAmelCase = Dictionary.load(_SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_UpperCAmelCase = target_dict.pad_index
_UpperCAmelCase = target_dict.bos_index
_UpperCAmelCase = target_dict.eos_index
_UpperCAmelCase = len(target_dict.symbols )
_UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.json''' )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_SCREAMING_SNAKE_CASE ) )
return
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
_UpperCAmelCase = 0
_UpperCAmelCase = 1
with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = WavaVecaCTCTokenizer(
_SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False
_UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = WavaVecaForCTC(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE )
if is_finetuned or is_seq_class:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' )
_UpperCAmelCase = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model[0].eval()
recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned )
hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
__A : List[Any] = parser.parse_args()
__A : Optional[Any] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
_UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
_UpperCAmelCase = int(sequence[i] , 2 )
return sequence
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
_UpperCAmelCase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
_UpperCAmelCase = gray_code_sequence_string(bit_count - 1 )
_UpperCAmelCase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
_UpperCAmelCase = '''0''' + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
_UpperCAmelCase = '''1''' + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowercase ( _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = position
_UpperCAmelCase = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_UpperCAmelCase = []
for position in positions:
_UpperCAmelCase , _UpperCAmelCase = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_SCREAMING_SNAKE_CASE )
return permissible_positions
def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] ):
'''simple docstring'''
return not any(elem == 0 for row in board for elem in row )
def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : tuple[int, int] , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if is_complete(_SCREAMING_SNAKE_CASE ):
return True
for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ):
_UpperCAmelCase , _UpperCAmelCase = position
if board[y][x] == 0:
_UpperCAmelCase = curr + 1
if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ):
return True
_UpperCAmelCase = 0
return False
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )]
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = 1
if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ):
return board
_UpperCAmelCase = 0
_UpperCAmelCase = f'Open Kight Tour cannot be performed on a board of size {n}'
raise ValueError(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
|
"""simple docstring"""
import math
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ):
'''simple docstring'''
_UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE )
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = i
_UpperCAmelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCAmelCase = array[temp_index - 1]
temp_index -= 1
_UpperCAmelCase = temp_index_value
return array
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap
'''simple docstring'''
_UpperCAmelCase = index
_UpperCAmelCase = 2 * index + 1 # Left Node
_UpperCAmelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCAmelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCAmelCase = right_index
if largest != index:
_UpperCAmelCase , _UpperCAmelCase = array[largest], array[index]
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_UpperCAmelCase , _UpperCAmelCase = array[0], array[i]
heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE )
return array
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = low
_UpperCAmelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCAmelCase , _UpperCAmelCase = array[j], array[i]
i += 1
def lowercase ( _SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
if len(_SCREAMING_SNAKE_CASE ) == 0:
return array
_UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) )
_UpperCAmelCase = 16
return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(_SCREAMING_SNAKE_CASE )
max_depth -= 1
_UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = p
return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : List[str] = input("Enter numbers separated by a comma : ").strip()
__A : Optional[Any] = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 326
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__A : str = logging.get_logger(__name__)
def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple=False ):
'''simple docstring'''
_UpperCAmelCase = []
# fmt: off
# stem:
rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') )
rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') )
rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') )
# backbone
rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') )
rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
# fmt: on
return rename_keys
def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_UpperCAmelCase = ''''''
else:
_UpperCAmelCase = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCAmelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
_UpperCAmelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase = in_proj_weight[
: config.hidden_size, :
]
_UpperCAmelCase = in_proj_bias[: config.hidden_size]
_UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
_UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
_UpperCAmelCase = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
_UpperCAmelCase = dct.pop(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = val
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_UpperCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any]=False ):
'''simple docstring'''
_UpperCAmelCase = BitConfig(
global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = ViTHybridConfig(backbone_config=_SCREAMING_SNAKE_CASE , image_size=384 , num_labels=1000 )
_UpperCAmelCase = False
# load original model from timm
_UpperCAmelCase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
_UpperCAmelCase = timm_model.state_dict()
if base_model:
remove_classification_head_(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = '''huggingface/label-files'''
_UpperCAmelCase = '''imagenet-1k-id2label.json'''
_UpperCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) )
_UpperCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
_UpperCAmelCase = ViTHybridModel(_SCREAMING_SNAKE_CASE ).eval()
else:
_UpperCAmelCase = ViTHybridForImageClassification(_SCREAMING_SNAKE_CASE ).eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# create image processor
_UpperCAmelCase = create_transform(**resolve_data_config({} , model=_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = transform.transforms
_UpperCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
_UpperCAmelCase = ViTHybridImageProcessor(
do_resize=_SCREAMING_SNAKE_CASE , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = transform(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
_UpperCAmelCase = processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
# verify pixel values
assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# verify logits
with torch.no_grad():
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = outputs.logits
print('''Predicted class:''' , logits.argmax(-1 ).item() )
if base_model:
_UpperCAmelCase = timm_model.forward_features(_SCREAMING_SNAKE_CASE )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 )
else:
_UpperCAmelCase = timm_model(_SCREAMING_SNAKE_CASE )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print(f'Pushing model and processor to the hub {vit_name}' )
model.push_to_hub(f'ybelkada/{vit_name}' )
processor.push_to_hub(f'ybelkada/{vit_name}' )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_r50_s16_384",
type=str,
help="Name of the hybrid ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
__A : Tuple = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 326
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE )
if rows != columns:
_UpperCAmelCase = (
'''\'table\' has to be of square shaped array but got a '''
f'{rows}x{columns} array:\n{table}'
)
raise ValueError(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = np.zeros((rows, columns) )
_UpperCAmelCase = np.zeros((rows, columns) )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) )
if upper[j][j] == 0:
raise ArithmeticError('''No LU decomposition exists''' )
_UpperCAmelCase = (table[i][j] - total) / upper[j][j]
_UpperCAmelCase = 1
for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Optional[Any] = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """data2vec-audio"""
def __init__( self : List[str] , __UpperCamelCase : Tuple=3_2 , __UpperCamelCase : int=7_6_8 , __UpperCamelCase : List[str]=1_2 , __UpperCamelCase : List[Any]=1_2 , __UpperCamelCase : List[Any]=3_0_7_2 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : List[Any]=1e-5 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : Union[str, Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCamelCase : str=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase : List[str]=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCamelCase : int=False , __UpperCamelCase : Dict=1_6 , __UpperCamelCase : Any=1_9 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Union[str, Any]=0.0_5 , __UpperCamelCase : int=1_0 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Union[str, Any]=1_0 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : int="sum" , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Tuple=2_5_6 , __UpperCamelCase : str=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __UpperCamelCase : Optional[int]=(5, 3, 3, 1, 1) , __UpperCamelCase : int=(1, 2, 3, 1, 1) , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : Dict=1 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Dict=2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Optional[int] , )->List[Any]:
super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = feat_extract_activation
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = conv_bias
_UpperCAmelCase = num_conv_pos_embeddings
_UpperCAmelCase = num_conv_pos_embedding_groups
_UpperCAmelCase = conv_pos_kernel_size
_UpperCAmelCase = len(self.conv_dim )
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = feat_proj_dropout
_UpperCAmelCase = final_dropout
_UpperCAmelCase = layerdrop
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = vocab_size
_UpperCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
_UpperCAmelCase = mask_feature_min_masks
# ctc loss
_UpperCAmelCase = ctc_loss_reduction
_UpperCAmelCase = ctc_zero_infinity
# adapter
_UpperCAmelCase = add_adapter
_UpperCAmelCase = adapter_kernel_size
_UpperCAmelCase = adapter_stride
_UpperCAmelCase = num_adapter_layers
_UpperCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_UpperCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = xvector_output_dim
@property
def lowercase__ ( self : Union[str, Any] )->Optional[int]:
return math.prod(self.conv_stride )
| 326
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _a ( lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = CTRLTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Dict )->str:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
_UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) )
_UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
_UpperCAmelCase = {'''unk_token''': '''<unk>'''}
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCamelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__UpperCamelCase ) )
def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple:
_UpperCAmelCase = '''adapt react readapt apt'''
_UpperCAmelCase = '''adapt react readapt apt'''
return input_text, output_text
def lowercase__ ( self : Dict )->Optional[int]:
_UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_UpperCAmelCase = '''adapt react readapt apt'''
_UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokens + [tokenizer.unk_token]
_UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__A : List[Any] = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = ["YolosFeatureExtractor"]
__A : Dict = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
__A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
|
"""simple docstring"""
import logging
import os
from .state import PartialState
class _a ( logging.LoggerAdapter):
"""simple docstring"""
@staticmethod
def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int:
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase )
if self.isEnabledFor(__UpperCamelCase ):
if self._should_log(__UpperCamelCase ):
_UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
elif in_order:
_UpperCAmelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
state.wait_for_everyone()
def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ):
'''simple docstring'''
if log_level is None:
_UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
| 326
| 1
|
"""simple docstring"""
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _a :
"""simple docstring"""
def __init__( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=1_3 , __UpperCamelCase : Optional[int]=3_0 , __UpperCamelCase : Any=2 , __UpperCamelCase : int=3 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str=3_2 , __UpperCamelCase : Dict=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[int]=3_7 , __UpperCamelCase : int="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Any=1_0 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=2 , )->str:
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = scope
_UpperCAmelCase = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 2
def lowercase__ ( self : List[str] )->str:
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Dict )->Optional[Any]:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] )->Dict:
_UpperCAmelCase = DeiTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : List[str] )->Tuple:
_UpperCAmelCase = DeiTForMaskedImageModeling(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_UpperCAmelCase = 1
_UpperCAmelCase = DeiTForMaskedImageModeling(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowercase__ ( self : int , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Dict )->Optional[Any]:
_UpperCAmelCase = self.type_sequence_label_size
_UpperCAmelCase = DeiTForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCAmelCase = 1
_UpperCAmelCase = DeiTForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Optional[int] )->List[Any]:
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{
"""feature-extraction""": DeiTModel,
"""image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Optional[int] )->int:
_UpperCAmelCase = DeiTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=3_7 )
def lowercase__ ( self : List[Any] )->List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def lowercase__ ( self : Dict )->str:
pass
def lowercase__ ( self : int )->List[Any]:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def lowercase__ ( self : Union[str, Any] )->List[str]:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def lowercase__ ( self : Optional[int] )->str:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def lowercase__ ( self : Optional[Any] )->Dict:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase )
def lowercase__ ( self : Optional[Any] )->List[Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : str=False )->Dict:
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def lowercase__ ( self : str )->Union[str, Any]:
if not self.model_tester.is_training:
return
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__UpperCamelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def lowercase__ ( self : List[Any] )->Tuple:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_UpperCAmelCase = False
_UpperCAmelCase = True
for model_class in self.all_model_classes:
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def lowercase__ ( self : Any )->Dict:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = [
{'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float},
{'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long},
{'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__UpperCamelCase ),
*get_values(__UpperCamelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ):
_UpperCAmelCase = problem_type['''title''']
_UpperCAmelCase = problem_type['''num_labels''']
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if problem_type["num_labels"] > 1:
_UpperCAmelCase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] )
_UpperCAmelCase = inputs['''labels'''].to(problem_type['''dtype'''] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list:
_UpperCAmelCase = model(**__UpperCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F'Something is going wrong in the regression problem: intercepted {w.message}' )
loss.backward()
@slow
def lowercase__ ( self : int )->Optional[Any]:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = DeiTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowercase__ ( self : Union[str, Any] )->Tuple:
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Dict )->List[Any]:
_UpperCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to(
__UpperCamelCase )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
# verify the logits
_UpperCAmelCase = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def lowercase__ ( self : Optional[int] )->str:
_UpperCAmelCase = DeiTModel.from_pretrained(
'''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' )
_UpperCAmelCase = inputs.pixel_values.to(__UpperCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase )
| 326
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__A : List[Any] = logging.get_logger(__name__)
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = ["""pixel_values"""]
def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None:
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6}
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray:
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase )
return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray:
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray:
return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray:
return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]:
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = make_list_of_images(__UpperCamelCase )
if not valid_images(__UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
| 326
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__A : Any = logging.get_logger(__name__)
__A : str = {"vocab_file": "vocab.txt"}
__A : str = {
"vocab_file": {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt",
}
}
__A : List[Any] = {
"YituTech/conv-bert-base": 512,
"YituTech/conv-bert-medium-small": 512,
"YituTech/conv-bert-small": 512,
}
__A : List[Any] = {
"YituTech/conv-bert-base": {"do_lower_case": True},
"YituTech/conv-bert-medium-small": {"do_lower_case": True},
"YituTech/conv-bert-small": {"do_lower_case": True},
}
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ConvBertTokenizer
def __init__( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : List[str]="[UNK]" , __UpperCamelCase : str="[SEP]" , __UpperCamelCase : Optional[Any]="[PAD]" , __UpperCamelCase : Dict="[CLS]" , __UpperCamelCase : List[str]="[MASK]" , __UpperCamelCase : Tuple=True , __UpperCamelCase : Tuple=None , **__UpperCamelCase : str , )->str:
super().__init__(
__UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , )
_UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCamelCase ) != tokenize_chinese_chars
):
_UpperCAmelCase = getattr(__UpperCamelCase , normalizer_state.pop('''type''' ) )
_UpperCAmelCase = do_lower_case
_UpperCAmelCase = strip_accents
_UpperCAmelCase = tokenize_chinese_chars
_UpperCAmelCase = normalizer_class(**__UpperCamelCase )
_UpperCAmelCase = do_lower_case
def lowercase__ ( self : int , __UpperCamelCase : Any , __UpperCamelCase : List[Any]=None )->Optional[int]:
_UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]:
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]:
_UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase )
return tuple(__UpperCamelCase )
| 326
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : List[Any] = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
__A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 326
| 1
|
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def lowercase__ ( *__UpperCamelCase : Tuple , **__UpperCamelCase : Dict )->List[str]:
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase):
"""simple docstring"""
@require_torch
def lowercase__ ( self : Dict )->str:
_UpperCAmelCase = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__UpperCamelCase ) , [
[{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}],
[{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}],
] , )
_UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
] , )
@require_tf
def lowercase__ ( self : Any )->Optional[Any]:
_UpperCAmelCase = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , )
_UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
[
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
{'''score''': 0.3_3_3, '''label''': ANY(__UpperCamelCase )},
],
] , )
@slow
@require_torch
def lowercase__ ( self : Optional[Any] )->Dict:
_UpperCAmelCase = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
] , )
_UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [
[
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def lowercase__ ( self : Tuple )->str:
_UpperCAmelCase = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCAmelCase = image_classifier(__UpperCamelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
] , )
_UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , [
[
{'''score''': 0.5_1_1, '''label''': '''remote'''},
{'''score''': 0.4_8_5, '''label''': '''cat'''},
{'''score''': 0.0_0_4, '''label''': '''plane'''},
],
]
* 5 , )
| 326
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _a :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = None
UpperCamelCase__ = None
__A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess")
def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ):
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left )
_UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right )
_UpperCAmelCase = 1 - left_distrib_excess
_UpperCAmelCase = 1 - right_distrib_excess
_UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class _a ( lowerCAmelCase):
"""simple docstring"""
def lowercase__ ( self : Optional[int] )->Any:
_UpperCAmelCase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCamelCase , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(__UpperCamelCase , '''num_attention_heads''' ) )
self.parent.assertTrue(hasattr(__UpperCamelCase , '''num_encoder_blocks''' ) )
class _a :
"""simple docstring"""
def __init__( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=1_3 , __UpperCamelCase : str=6_4 , __UpperCamelCase : int=3 , __UpperCamelCase : int=4 , __UpperCamelCase : int=[2, 2, 2, 2] , __UpperCamelCase : Optional[int]=[8, 4, 2, 1] , __UpperCamelCase : List[Any]=[1_6, 3_2, 6_4, 1_2_8] , __UpperCamelCase : str=[1, 4, 8, 1_6] , __UpperCamelCase : List[Any]=[1, 2, 4, 8] , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Union[str, Any]=None , )->Union[str, Any]:
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = num_encoder_blocks
_UpperCAmelCase = sr_ratios
_UpperCAmelCase = depths
_UpperCAmelCase = hidden_sizes
_UpperCAmelCase = downsampling_rates
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = scope
def lowercase__ ( self : int )->Tuple:
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : str )->Union[str, Any]:
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Tuple )->Optional[Any]:
_UpperCAmelCase = SegformerModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = _UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] )->int:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = SegformerForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] )->str:
_UpperCAmelCase = 1
_UpperCAmelCase = SegformerForSemanticSegmentation(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertGreater(result.loss , 0.0 )
def lowercase__ ( self : Optional[Any] )->List[str]:
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{
"""feature-extraction""": SegformerModel,
"""image-classification""": SegformerForImageClassification,
"""image-segmentation""": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : str )->Dict:
_UpperCAmelCase = SegformerModelTester(self )
_UpperCAmelCase = SegformerConfigTester(self , config_class=__UpperCamelCase )
def lowercase__ ( self : Dict )->str:
self.config_tester.run_common_tests()
def lowercase__ ( self : Dict )->Tuple:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def lowercase__ ( self : Dict )->List[str]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*__UpperCamelCase )
def lowercase__ ( self : Optional[Any] )->Optional[Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*__UpperCamelCase )
@unittest.skip('''SegFormer does not use inputs_embeds''' )
def lowercase__ ( self : int )->Optional[Any]:
pass
@unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' )
def lowercase__ ( self : Optional[int] )->Optional[Any]:
pass
def lowercase__ ( self : int )->Optional[int]:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def lowercase__ ( self : List[str] )->int:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
for model_class in self.all_model_classes:
_UpperCAmelCase = True
_UpperCAmelCase = False
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
_UpperCAmelCase = sum(self.model_tester.depths )
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
# verify the first attentions (first block, first layer)
_UpperCAmelCase = (self.model_tester.image_size // 4) ** 2
_UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
_UpperCAmelCase = (self.model_tester.image_size // 3_2) ** 2
_UpperCAmelCase = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
_UpperCAmelCase = len(__UpperCamelCase )
# Check attention is always last and order is fine
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(out_len + 1 , len(__UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
# verify the first attentions (first block, first layer)
_UpperCAmelCase = (self.model_tester.image_size // 4) ** 2
_UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def lowercase__ ( self : Optional[int] )->List[str]:
def check_hidden_states_output(__UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ):
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = self.model_tester.num_encoder_blocks
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Tuple )->int:
if not self.model_tester.is_training:
return
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
for model_class in self.all_model_classes:
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowercase__ ( self : Any )->Any:
pass
@slow
def lowercase__ ( self : List[Any] )->str:
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = SegformerModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def lowercase ( ):
'''simple docstring'''
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class _a ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase__ ( self : Dict )->int:
# only resize + normalize
_UpperCAmelCase = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=__UpperCamelCase , align=__UpperCamelCase , do_random_crop=__UpperCamelCase )
_UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' )
_UpperCAmelCase = encoded_inputs.pixel_values.to(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : str )->int:
# only resize + normalize
_UpperCAmelCase = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=__UpperCamelCase , align=__UpperCamelCase , do_random_crop=__UpperCamelCase )
_UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained(
'''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' )
_UpperCAmelCase = encoded_inputs.pixel_values.to(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCamelCase , atol=1e-1 ) )
@slow
def lowercase__ ( self : Any )->Optional[int]:
# only resize + normalize
_UpperCAmelCase = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=__UpperCamelCase , align=__UpperCamelCase , do_random_crop=__UpperCamelCase )
_UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' )
_UpperCAmelCase = encoded_inputs.pixel_values.to(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = outputs.logits.detach().cpu()
_UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(5_0_0, 3_0_0)] )
_UpperCAmelCase = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , __UpperCamelCase )
_UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase )
_UpperCAmelCase = torch.Size((1_2_8, 1_2_8) )
self.assertEqual(segmentation[0].shape , __UpperCamelCase )
| 326
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase):
"""simple docstring"""
UpperCamelCase__ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
"""feature-extraction""": TFMobileBertModel,
"""fill-mask""": TFMobileBertForMaskedLM,
"""question-answering""": TFMobileBertForQuestionAnswering,
"""text-classification""": TFMobileBertForSequenceClassification,
"""token-classification""": TFMobileBertForTokenClassification,
"""zero-shot""": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]:
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class _a ( lowerCAmelCase):
"""simple docstring"""
def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any:
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = embedding_size
def lowercase__ ( self : Optional[int] )->int:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = [input_ids, input_mask]
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple:
_UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]:
_UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]:
_UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]:
_UpperCAmelCase = self.num_choices
_UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict:
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]:
_UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase )
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : List[str] )->Optional[Any]:
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def lowercase__ ( self : List[Any] )->str:
_UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 )
def lowercase__ ( self : List[Any] )->List[str]:
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def lowercase__ ( self : Any )->Union[str, Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def lowercase__ ( self : List[Any] )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def lowercase__ ( self : str )->Optional[int]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def lowercase__ ( self : Any )->List[str]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def lowercase__ ( self : Dict )->Any:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def lowercase__ ( self : Any )->Optional[Any]:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def lowercase__ ( self : List[str] )->Tuple:
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
@slow
def lowercase__ ( self : Tuple )->List[str]:
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class _a ( unittest.TestCase):
"""simple docstring"""
@slow
def lowercase__ ( self : str )->Dict:
_UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
_UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase = model(__UpperCamelCase )[0]
_UpperCAmelCase = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , __UpperCamelCase )
_UpperCAmelCase = tf.constant(
[
[
[-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6],
[-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7],
[-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
| 326
| 1
|
"""simple docstring"""
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
__A : Tuple = logging.getLogger(__name__)
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """summarization"""
UpperCamelCase__ = ["""loss"""]
UpperCamelCase__ = ROUGE_KEYS
UpperCamelCase__ = """rouge2"""
def __init__( self : str , __UpperCamelCase : Any , **__UpperCamelCase : List[Any] )->List[Any]:
if hparams.sortish_sampler and hparams.gpus > 1:
_UpperCAmelCase = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' )
if hparams.sortish_sampler:
raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' )
super().__init__(__UpperCamelCase , num_labels=__UpperCamelCase , mode=self.mode , **__UpperCamelCase )
use_task_specific_params(self.model , '''summarization''' )
save_git_info(self.hparams.output_dir )
_UpperCAmelCase = Path(self.output_dir ) / '''metrics.json'''
_UpperCAmelCase = Path(self.output_dir ) / '''hparams.pkl'''
pickle_save(self.hparams , self.hparams_save_path )
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
_UpperCAmelCase = self.config.model_type
_UpperCAmelCase = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size
_UpperCAmelCase = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
_UpperCAmelCase = {
'''train''': self.hparams.n_train,
'''val''': self.hparams.n_val,
'''test''': self.hparams.n_test,
}
_UpperCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
_UpperCAmelCase = {
'''train''': self.hparams.max_target_length,
'''val''': self.hparams.val_max_target_length,
'''test''': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}'
assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}'
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
_UpperCAmelCase = get_git_info()['''repo_sha''']
_UpperCAmelCase = hparams.num_workers
_UpperCAmelCase = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __UpperCamelCase ):
_UpperCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
_UpperCAmelCase = self.decoder_start_token_id
_UpperCAmelCase = (
SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset
)
_UpperCAmelCase = False
_UpperCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
_UpperCAmelCase = self.hparams.eval_max_gen_length
else:
_UpperCAmelCase = self.model.config.max_length
_UpperCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def lowercase__ ( self : int , __UpperCamelCase : Dict[str, torch.Tensor] )->Dict[str, List[str]]:
_UpperCAmelCase = {
k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items()
}
save_json(__UpperCamelCase , Path(self.output_dir ) / '''text_batch.json''' )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' )
_UpperCAmelCase = True
return readable_batch
def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] , **__UpperCamelCase : int )->Optional[Any]:
return self.model(__UpperCamelCase , **__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] )->Optional[Any]:
_UpperCAmelCase = self.tokenizer.batch_decode(
__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )
return lmap(str.strip , __UpperCamelCase )
def lowercase__ ( self : Tuple , __UpperCamelCase : dict )->Tuple:
_UpperCAmelCase = self.tokenizer.pad_token_id
_UpperCAmelCase , _UpperCAmelCase = batch['''input_ids'''], batch['''attention_mask''']
_UpperCAmelCase = batch['''labels''']
if isinstance(self.model , __UpperCamelCase ):
_UpperCAmelCase = self.model._shift_right(__UpperCamelCase )
else:
_UpperCAmelCase = shift_tokens_right(__UpperCamelCase , __UpperCamelCase )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
_UpperCAmelCase = decoder_input_ids
self.save_readable_batch(__UpperCamelCase )
_UpperCAmelCase = self(__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCAmelCase = outputs['''logits''']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
_UpperCAmelCase = nn.CrossEntropyLoss(ignore_index=__UpperCamelCase )
assert lm_logits.shape[-1] == self.vocab_size
_UpperCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
_UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=-1 )
_UpperCAmelCase , _UpperCAmelCase = label_smoothed_nll_loss(
__UpperCamelCase , __UpperCamelCase , self.hparams.label_smoothing , ignore_index=__UpperCamelCase )
return (loss,)
@property
def lowercase__ ( self : Union[str, Any] )->int:
return self.tokenizer.pad_token_id
def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] )->Dict:
_UpperCAmelCase = self._step(__UpperCamelCase )
_UpperCAmelCase = dict(zip(self.loss_names , __UpperCamelCase ) )
# tokens per batch
_UpperCAmelCase = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum()
_UpperCAmelCase = batch['''input_ids'''].shape[0]
_UpperCAmelCase = batch['''input_ids'''].eq(self.pad ).sum()
_UpperCAmelCase = batch['''input_ids'''].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str )->Dict:
return self._generative_step(__UpperCamelCase )
def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]="val" )->Dict:
self.step_count += 1
_UpperCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
_UpperCAmelCase = losses['''loss''']
_UpperCAmelCase = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len''']
}
_UpperCAmelCase = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
_UpperCAmelCase = torch.tensor(__UpperCamelCase ).type_as(__UpperCamelCase )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(__UpperCamelCase )
_UpperCAmelCase = {F'{prefix}_avg_{k}': x for k, x in losses.items()}
_UpperCAmelCase = self.step_count
self.metrics[prefix].append(__UpperCamelCase ) # callback writes this to self.metrics_save_path
_UpperCAmelCase = flatten_list([x['''preds'''] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
F'{prefix}_loss': loss,
F'{prefix}_{self.val_metric}': metric_tensor,
}
def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict )->Dict:
return calculate_rouge(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : str , __UpperCamelCase : dict )->dict:
_UpperCAmelCase = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
_UpperCAmelCase = self.model.generate(
batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=__UpperCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
_UpperCAmelCase = (time.time() - ta) / batch['''input_ids'''].shape[0]
_UpperCAmelCase = self.ids_to_clean_text(__UpperCamelCase )
_UpperCAmelCase = self.ids_to_clean_text(batch['''labels'''] )
_UpperCAmelCase = self._step(__UpperCamelCase )
_UpperCAmelCase = dict(zip(self.loss_names , __UpperCamelCase ) )
_UpperCAmelCase = self.calc_generative_metrics(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = np.mean(lmap(__UpperCamelCase , __UpperCamelCase ) )
base_metrics.update(gen_time=__UpperCamelCase , gen_len=__UpperCamelCase , preds=__UpperCamelCase , target=__UpperCamelCase , **__UpperCamelCase )
return base_metrics
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str )->List[str]:
return self._generative_step(__UpperCamelCase )
def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] )->Optional[Any]:
return self.validation_epoch_end(__UpperCamelCase , prefix='''test''' )
def lowercase__ ( self : str , __UpperCamelCase : int )->SeqaSeqDataset:
_UpperCAmelCase = self.n_obs[type_path]
_UpperCAmelCase = self.target_lens[type_path]
_UpperCAmelCase = self.dataset_class(
self.tokenizer , type_path=__UpperCamelCase , n_obs=__UpperCamelCase , max_target_length=__UpperCamelCase , **self.dataset_kwargs , )
return dataset
def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : bool = False )->DataLoader:
_UpperCAmelCase = self.get_dataset(__UpperCamelCase )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
_UpperCAmelCase = dataset.make_sortish_sampler(__UpperCamelCase , distributed=self.hparams.gpus > 1 )
return DataLoader(
__UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=__UpperCamelCase , num_workers=self.num_workers , sampler=__UpperCamelCase , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
_UpperCAmelCase = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
__UpperCamelCase , batch_sampler=__UpperCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
__UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=__UpperCamelCase , num_workers=self.num_workers , sampler=__UpperCamelCase , )
def lowercase__ ( self : Dict )->DataLoader:
_UpperCAmelCase = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=__UpperCamelCase )
return dataloader
def lowercase__ ( self : List[Any] )->DataLoader:
return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size )
def lowercase__ ( self : List[Any] )->DataLoader:
return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size )
@staticmethod
def lowercase__ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] )->Optional[Any]:
BaseTransformer.add_model_specific_args(__UpperCamelCase , __UpperCamelCase )
add_generic_args(__UpperCamelCase , __UpperCamelCase )
parser.add_argument(
'''--max_source_length''' , default=1_0_2_4 , type=__UpperCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--max_target_length''' , default=5_6 , type=__UpperCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--val_max_target_length''' , default=1_4_2 , type=__UpperCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--test_max_target_length''' , default=1_4_2 , type=__UpperCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument('''--freeze_encoder''' , action='''store_true''' )
parser.add_argument('''--freeze_embeds''' , action='''store_true''' )
parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=__UpperCamelCase )
parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=__UpperCamelCase )
parser.add_argument('''--max_tokens_per_batch''' , type=__UpperCamelCase , default=__UpperCamelCase )
parser.add_argument('''--logger_name''' , type=__UpperCamelCase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' )
parser.add_argument('''--n_train''' , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument('''--n_val''' , type=__UpperCamelCase , default=5_0_0 , required=__UpperCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument('''--n_test''' , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument(
'''--task''' , type=__UpperCamelCase , default='''summarization''' , required=__UpperCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument('''--label_smoothing''' , type=__UpperCamelCase , default=0.0 , required=__UpperCamelCase )
parser.add_argument('''--src_lang''' , type=__UpperCamelCase , default='''''' , required=__UpperCamelCase )
parser.add_argument('''--tgt_lang''' , type=__UpperCamelCase , default='''''' , required=__UpperCamelCase )
parser.add_argument('''--eval_beams''' , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase )
parser.add_argument(
'''--val_metric''' , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , choices=['''bleu''', '''rouge2''', '''loss''', None] )
parser.add_argument('''--eval_max_gen_length''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''never generate more than n tokens''' )
parser.add_argument('''--save_top_k''' , type=__UpperCamelCase , default=1 , required=__UpperCamelCase , help='''How many checkpoints to save''' )
parser.add_argument(
'''--early_stopping_patience''' , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help=(
'''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So'''
''' val_check_interval will effect it.'''
) , )
return parser
class _a ( lowerCAmelCase):
"""simple docstring"""
UpperCamelCase__ = """translation"""
UpperCamelCase__ = ["""loss"""]
UpperCamelCase__ = ["""bleu"""]
UpperCamelCase__ = """bleu"""
def __init__( self : Any , __UpperCamelCase : List[str] , **__UpperCamelCase : List[str] )->Dict:
super().__init__(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = hparams.src_lang
_UpperCAmelCase = hparams.tgt_lang
def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : int )->dict:
return calculate_bleu(__UpperCamelCase , __UpperCamelCase )
def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any]=None ):
'''simple docstring'''
Path(args.output_dir ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
check_output_dir(_SCREAMING_SNAKE_CASE , expected_items=3 )
if model is None:
if "summarization" in args.task:
_UpperCAmelCase = SummarizationModule(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = TranslationModule(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith('''/tmp''' )
or str(args.output_dir ).startswith('''/var''' )
):
_UpperCAmelCase = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
_UpperCAmelCase = os.environ.get('''WANDB_PROJECT''' , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=_SCREAMING_SNAKE_CASE )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
_UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' )
if args.early_stopping_patience >= 0:
_UpperCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
_UpperCAmelCase = False
_UpperCAmelCase = args.val_metric == '''loss'''
_UpperCAmelCase = generic_train(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , _SCREAMING_SNAKE_CASE ) , early_stopping_callback=_SCREAMING_SNAKE_CASE , logger=_SCREAMING_SNAKE_CASE , )
pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' )
if not args.do_predict:
return model
_UpperCAmelCase = ''''''
_UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=_SCREAMING_SNAKE_CASE ) )
if checkpoints:
_UpperCAmelCase = checkpoints[-1]
_UpperCAmelCase = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
__A : str = argparse.ArgumentParser()
__A : str = pl.Trainer.add_argparse_args(parser)
__A : Optional[int] = SummarizationModule.add_model_specific_args(parser, os.getcwd())
__A : str = parser.parse_args()
main(args)
| 326
|
"""simple docstring"""
def lowercase ( _SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise TypeError('''Input value must be a \'int\' type''' )
return bin(_SCREAMING_SNAKE_CASE ).count('''1''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.