code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ =logging.getLogger() UpperCamelCase__ =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"source": "What is love ?", "target": "life"} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"train": 1_2, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _SCREAMING_SNAKE_CASE : Tuple = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowerCamelCase , F"""{split}.{field}""" ) , "w" ) as f: f.write(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = "pytorch" ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE : int = os.path.join(__lowerCamelCase , "output" ) _SCREAMING_SNAKE_CASE : str = os.path.join(__lowerCamelCase , "data" ) self._create_dummy_data(data_dir=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) _SCREAMING_SNAKE_CASE : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "metrics.json" ) with open(__lowerCamelCase ) as f: _SCREAMING_SNAKE_CASE : Tuple = json.load(__lowerCamelCase ) return result @require_torch_gpu def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
325
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ =[0, 25, 50] UpperCamelCase__ =[25, 50, 75] UpperCamelCase__ =fuzz.membership.trimf(X, abca) UpperCamelCase__ =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ =np.ones(75) UpperCamelCase__ =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
325
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'dandelin/vilt-b32-finetuned-vqa' __snake_case = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) __snake_case = 'image_qa' __snake_case = AutoProcessor __snake_case = AutoModelForVisualQuestionAnswering __snake_case = ['image', 'text'] __snake_case = ['text'] def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> int: requires_backends(self , ["vision"] ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> str: return self.pre_processor(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]: with torch.no_grad(): return self.model(**__lowerCamelCase ).logits def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
325
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
1
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase ): # preprocessing the first row for i in range(1, len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1, len(__lowerCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1, len(__lowerCamelCase ) ): for j in range(1, len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j], matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'ChineseCLIPImageProcessor' __snake_case = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("feature_extractor" ) _SCREAMING_SNAKE_CASE : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self.image_processor def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase ) -> Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _SCREAMING_SNAKE_CASE : int = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if images is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Tuple: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> List[Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : int = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class
325
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase__ =10 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for i in range(__lowerCamelCase, __lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = (left + right) // 3 + 1 _SCREAMING_SNAKE_CASE : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _SCREAMING_SNAKE_CASE : int = one_third - 1 elif array[two_third] < target: _SCREAMING_SNAKE_CASE : Optional[Any] = two_third + 1 else: _SCREAMING_SNAKE_CASE : Union[str, Any] = one_third + 1 _SCREAMING_SNAKE_CASE : Optional[int] = two_third - 1 else: return -1 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if left < right: if right - left < precision: return lin_search(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = (left + right) // 3 + 1 _SCREAMING_SNAKE_CASE : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCamelCase, one_third - 1, __lowerCamelCase, __lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: return rec_ternary_search(one_third + 1, two_third - 1, __lowerCamelCase, __lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ =input('Enter numbers separated by comma:\n').strip() UpperCamelCase__ =[int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCamelCase__ =int(input('Enter the number to be found in the list:\n').strip()) UpperCamelCase__ =ite_ternary_search(collection, target) UpperCamelCase__ =rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"Iterative search: {target} found at positions: {resulta}") print(f"Recursive search: {target} found at positions: {resulta}") else: print('Not found')
325
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase__ =TypeVar('T') class lowerCAmelCase__( Generic[T] ): '''simple docstring''' __snake_case = 42 # Cache store of keys __snake_case = 42 # References of the keys in cache __snake_case = 1_0 # Maximum capacity of cache def __init__( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Dict = deque() _SCREAMING_SNAKE_CASE : Tuple = set() if not n: _SCREAMING_SNAKE_CASE : List[Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _SCREAMING_SNAKE_CASE : List[str] = n def UpperCamelCase_ ( self , __lowerCamelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _SCREAMING_SNAKE_CASE : List[Any] = self.dq_store.pop() self.key_reference.remove(__lowerCamelCase ) else: self.dq_store.remove(__lowerCamelCase ) self.dq_store.appendleft(__lowerCamelCase ) self.key_reference.add(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> None: for k in self.dq_store: print(__lowerCamelCase ) def __repr__( self ) -> str: return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ =LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
325
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
1
def lowerCamelCase__ (__lowerCamelCase = 1, __lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List[str] = 0 for divide_by_number in range(__lowerCamelCase, digit + 1 ): _SCREAMING_SNAKE_CASE : list[int] = [] _SCREAMING_SNAKE_CASE : Dict = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = divide_by_number else: has_been_divided.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
325
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'xlm-roberta' def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Union[str, Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : Dict = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings _SCREAMING_SNAKE_CASE : Any = type_vocab_size _SCREAMING_SNAKE_CASE : List[str] = initializer_range _SCREAMING_SNAKE_CASE : Any = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = position_embedding_type _SCREAMING_SNAKE_CASE : Tuple = use_cache _SCREAMING_SNAKE_CASE : Tuple = classifier_dropout class lowerCAmelCase__( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
325
from math import isqrt, loga def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = False return [i for i in range(2, __lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ): _SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
325
1
import requests UpperCamelCase__ ='https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def lowerCamelCase__ (__lowerCamelCase ): # fetching a list of articles in json format _SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"], 1 ): print(f"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
325
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)] ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , config_name=__a ) _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig.from_pretrained(__a , config_name=__a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , __a ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained("gpt2" ) _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig.from_model_config(__a ) _SCREAMING_SNAKE_CASE : str = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__a , __a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig() _SCREAMING_SNAKE_CASE : Any = { 'max_new_tokens': 1_0_2_4, 'foo': 'bar', } _SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(__a ) _SCREAMING_SNAKE_CASE : Tuple = generation_config.update(**__a ) # update_kwargs was not modified (no side effects) self.assertEqual(__a , __a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__a , {"foo": "bar"} ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = GenerationConfig() _SCREAMING_SNAKE_CASE : Tuple = 'bar' with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(__a ) _SCREAMING_SNAKE_CASE : List[str] = GenerationConfig.from_pretrained(__a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) _SCREAMING_SNAKE_CASE : List[str] = GenerationConfig.from_model_config(__a ) assert not hasattr(__a , "foo" ) # no new kwargs should be initialized if from config def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __a ) self.assertEqual(default_config.num_beams , 1 ) _SCREAMING_SNAKE_CASE : List[Any] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) _SCREAMING_SNAKE_CASE : List[str] = GenerationConfig.from_pretrained(__a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = TOKEN HfFolder.save_token(__a ) @classmethod def UpperCamelCase_ ( cls ) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : str = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="test-generation-config" , push_to_hub=__a , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : List[str] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Dict = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="valid_org/test-generation-config-org" , push_to_hub=__a , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Dict = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) )
350
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase__( A__ , A__ , A__ ): '''simple docstring''' __snake_case = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = 5_0_2_5_7 , __lowerCamelCase = 1_0_2_4 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = None , __lowerCamelCase = "gelu_new" , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 1E-5 , __lowerCamelCase = 0.02 , __lowerCamelCase = True , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = False , ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim _SCREAMING_SNAKE_CASE : str = prefix_hidden_dim _SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _SCREAMING_SNAKE_CASE : List[Any] = ( nn.Linear(self.prefix_hidden_dim , __A ) if self.prefix_hidden_dim is not None else nn.Identity() ) _SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=__A , n_positions=__A , n_embd=__A , n_layer=__A , n_head=__A , n_inner=__A , activation_function=__A , resid_pdrop=__A , embd_pdrop=__A , attn_pdrop=__A , layer_norm_epsilon=__A , initializer_range=__A , scale_attn_weights=__A , use_cache=__A , scale_attn_by_inverse_layer_idx=__A , reorder_and_upcast_attn=__A , ) _SCREAMING_SNAKE_CASE : Any = GPTaLMHeadModel(__A ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , ) -> List[str]: _SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(__A ) _SCREAMING_SNAKE_CASE : Any = self.encode_prefix(__A ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.decode_prefix(__A ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _SCREAMING_SNAKE_CASE : int = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) _SCREAMING_SNAKE_CASE : Tuple = self.transformer(inputs_embeds=__A , labels=__A , attention_mask=__A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: return torch.zeros(__A , self.prefix_length , dtype=torch.intaa , device=__A ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: return self.encode_prefix(__A ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = torch.split(__A , 1 , dim=0 ) _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : List[str] = [] for feature in features: _SCREAMING_SNAKE_CASE : Tuple = self.decode_prefix(feature.to(__A ) ) # back to the clip feature # Only support beam search for now _SCREAMING_SNAKE_CASE : Optional[Any] = self.generate_beam( input_embeds=__A , device=__A , eos_token_id=__A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _SCREAMING_SNAKE_CASE : Tuple = torch.stack(__A ) _SCREAMING_SNAKE_CASE : int = torch.stack(__A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase = 5 , __lowerCamelCase = 6_7 , __lowerCamelCase = 1.0 , __lowerCamelCase = None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Any = None _SCREAMING_SNAKE_CASE : int = torch.ones(__A , device=__A , dtype=torch.int ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(__A , device=__A , dtype=torch.bool ) if input_embeds is not None: _SCREAMING_SNAKE_CASE : List[str] = input_embeds else: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer.transformer.wte(__A ) for i in range(__A ): _SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=__A ) _SCREAMING_SNAKE_CASE : str = outputs.logits _SCREAMING_SNAKE_CASE : str = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _SCREAMING_SNAKE_CASE : Dict = logits.softmax(-1 ).log() if scores is None: _SCREAMING_SNAKE_CASE : Any = logits.topk(__A , -1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = generated.expand(__A , *generated.shape[1:] ) _SCREAMING_SNAKE_CASE : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _SCREAMING_SNAKE_CASE : List[str] = next_tokens else: _SCREAMING_SNAKE_CASE : List[Any] = tokens.expand(__A , *tokens.shape[1:] ) _SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) else: _SCREAMING_SNAKE_CASE : List[Any] = -float(np.inf ) _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _SCREAMING_SNAKE_CASE : List[Any] = scores_sum / seq_lengths[:, None] _SCREAMING_SNAKE_CASE : Tuple = scores_sum_average.view(-1 ).topk(__A , -1 ) _SCREAMING_SNAKE_CASE : Optional[Any] = next_tokens // scores_sum.shape[1] _SCREAMING_SNAKE_CASE : Dict = seq_lengths[next_tokens_source] _SCREAMING_SNAKE_CASE : Tuple = next_tokens % scores_sum.shape[1] _SCREAMING_SNAKE_CASE : Optional[Any] = next_tokens.unsqueeze(1 ) _SCREAMING_SNAKE_CASE : str = tokens[next_tokens_source] _SCREAMING_SNAKE_CASE : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) _SCREAMING_SNAKE_CASE : Dict = generated[next_tokens_source] _SCREAMING_SNAKE_CASE : Dict = scores_sum_average * seq_lengths _SCREAMING_SNAKE_CASE : Tuple = is_stopped[next_tokens_source] _SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _SCREAMING_SNAKE_CASE : List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) _SCREAMING_SNAKE_CASE : Optional[int] = is_stopped + next_tokens.eq(__A ).squeeze() if is_stopped.all(): break _SCREAMING_SNAKE_CASE : str = scores / seq_lengths _SCREAMING_SNAKE_CASE : Optional[int] = scores.argsort(descending=__A ) # tokens tensors are already padded to max_seq_length _SCREAMING_SNAKE_CASE : Optional[Any] = [tokens[i] for i in order] _SCREAMING_SNAKE_CASE : Dict = torch.stack(__A , dim=0 ) _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
351
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=3 , __lowerCamelCase=1_8 , __lowerCamelCase=3_0 , __lowerCamelCase=4_0_0 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=[0.4814_5466, 0.457_8275, 0.4082_1073] , __lowerCamelCase=[0.2686_2954, 0.2613_0258, 0.2757_7711] , __lowerCamelCase=True , ) -> str: _SCREAMING_SNAKE_CASE : int = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} _SCREAMING_SNAKE_CASE : Optional[Any] = parent _SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : Dict = image_size _SCREAMING_SNAKE_CASE : List[str] = min_resolution _SCREAMING_SNAKE_CASE : int = max_resolution _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Dict = size _SCREAMING_SNAKE_CASE : List[Any] = do_center_crop _SCREAMING_SNAKE_CASE : Optional[int] = crop_size _SCREAMING_SNAKE_CASE : int = do_normalize _SCREAMING_SNAKE_CASE : Dict = image_mean _SCREAMING_SNAKE_CASE : Optional[int] = image_std _SCREAMING_SNAKE_CASE : Optional[int] = do_convert_rgb def UpperCamelCase_ ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase_ ( self , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False ) -> List[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _SCREAMING_SNAKE_CASE : List[str] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(self.batch_size ): _SCREAMING_SNAKE_CASE : List[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] if torchify: _SCREAMING_SNAKE_CASE : Dict = [torch.from_numpy(_UpperCAmelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCAmelCase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=_UpperCAmelCase ) @property def UpperCamelCase_ ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "center_crop" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_convert_rgb" ) ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 2_2_4, "width": 2_2_4} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def UpperCamelCase_ ( self ) -> List[str]: pass def UpperCamelCase_ ( self ) -> int: # Initialize image_processing _SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Any = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase_ ( self ) -> List[Any]: # Initialize image_processing _SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Tuple = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase_ ( self ) -> List[str]: # Initialize image_processing _SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE : str = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : List[Any] = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class lowerCAmelCase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : str = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_UpperCAmelCase ) _SCREAMING_SNAKE_CASE : int = 3 @property def UpperCamelCase_ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "center_crop" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_convert_rgb" ) ) def UpperCamelCase_ ( self ) -> Optional[int]: pass def UpperCamelCase_ ( self ) -> int: # Initialize image_processing _SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Any = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
352
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
0
from __future__ import annotations from cmath import sqrt def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _SCREAMING_SNAKE_CASE : Tuple = b * b - 4 * a * c _SCREAMING_SNAKE_CASE : Tuple = (-b + sqrt(__lowerCAmelCase )) / (2 * a) _SCREAMING_SNAKE_CASE : Any = (-b - sqrt(__lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = quadratic_roots(a=5, b=6, c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase__ =' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) _SCREAMING_SNAKE_CASE : Dict = self.transformer_dir shutil.copy( os.path.join(_lowerCamelCase , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> str: _SCREAMING_SNAKE_CASE : int = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _SCREAMING_SNAKE_CASE : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _SCREAMING_SNAKE_CASE : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) _SCREAMING_SNAKE_CASE : Optional[int] = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.transformer_dir , "new_code.py" ) with open(_lowerCamelCase , "w" , newline="\n" ) as f: f.write(_lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCamelCase ) with open(_lowerCamelCase , "r" ) as f: self.assertTrue(f.read() , _lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , _lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , _lowerCamelCase ) , ) # Copy consistency with a really long name _SCREAMING_SNAKE_CASE : List[Any] = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , _lowerCamelCase , _lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , _lowerCamelCase , overwrite_result=re.sub("Bert" , "TestModel" , _lowerCamelCase ) , ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] _SCREAMING_SNAKE_CASE : List[str] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) _SCREAMING_SNAKE_CASE : int = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _SCREAMING_SNAKE_CASE : Optional[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) _SCREAMING_SNAKE_CASE : Optional[Any] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme["format_model_list"] ) self.assertFalse(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) _SCREAMING_SNAKE_CASE : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _SCREAMING_SNAKE_CASE : str = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _SCREAMING_SNAKE_CASE : Dict = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_lowerCamelCase , _lowerCamelCase )
354
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
325
0
from manim import * class lowerCAmelCase__( lowercase__ ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 ) _SCREAMING_SNAKE_CASE : Dict = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Tuple = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Tuple = VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : List[str] = VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : List[Any] = VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : List[str] = Text("CPU" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE : Optional[Any] = [mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : Tuple = Text("GPU" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Optional[int] = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : str = VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : int = Text("Model" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Dict = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Any = [] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE : List[Any] = fill.copy().set_fill(_a , opacity=0.8 ) target.move_to(_a ) model_arr.append(_a ) _SCREAMING_SNAKE_CASE : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_a ) self.add(*_a , *_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : List[Any] = [meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Tuple = VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : Tuple = VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : List[Any] = VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE : List[Any] = Text("Disk" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Any = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4, -1.25, 0] ) self.add(_a , _a ) _SCREAMING_SNAKE_CASE : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE : int = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _SCREAMING_SNAKE_CASE : List[Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _SCREAMING_SNAKE_CASE : Dict = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_a ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 ) input.set_fill(_a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _a , buff=0.5 ) self.play(Write(_a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_a , buff=0.02 ) self.play(MoveToTarget(_a ) ) self.play(FadeOut(_a ) ) _SCREAMING_SNAKE_CASE : List[Any] = Arrow(start=_a , end=_a , color=_a , buff=0.5 ) a.next_to(model_arr[0].get_left() , _a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _SCREAMING_SNAKE_CASE : int = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) _SCREAMING_SNAKE_CASE : List[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_a ) , Circumscribe(model_arr[0] , color=_a , **_a ) , Circumscribe(model_cpu_arr[0] , color=_a , **_a ) , Circumscribe(gpu_rect[0] , color=_a , **_a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _SCREAMING_SNAKE_CASE : str = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AnimationGroup( FadeOut(_a , run_time=0.5 ) , MoveToTarget(_a , run_time=0.5 ) , FadeIn(_a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _SCREAMING_SNAKE_CASE : Any = 0.7 self.play( Circumscribe(model_arr[i] , **_a ) , Circumscribe(cpu_left_col_base[i] , **_a ) , Circumscribe(cpu_left_col_base[i + 1] , color=_a , **_a ) , Circumscribe(gpu_rect[0] , color=_a , **_a ) , Circumscribe(model_arr[i + 1] , color=_a , **_a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_a , **_a ) , Circumscribe(cpu_left_col_base[-1] , color=_a , **_a ) , Circumscribe(gpu_rect[0] , color=_a , **_a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = a_c _SCREAMING_SNAKE_CASE : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_a ) , FadeOut(_a , run_time=0.5 ) , ) _SCREAMING_SNAKE_CASE : Optional[int] = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) , MoveToTarget(_a ) ) self.wait()
355
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = [] create_all_state(1, __snake_case, __snake_case, [], __snake_case ) return result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if level == 0: total_list.append(current_list[:] ) return for i in range(__snake_case, total_number - level + 2 ): current_list.append(__snake_case ) create_all_state(i + 1, __snake_case, level - 1, __snake_case, __snake_case ) current_list.pop() def lowerCamelCase__ (__lowerCamelCase ): for i in total_list: print(*__snake_case ) if __name__ == "__main__": UpperCamelCase__ =4 UpperCamelCase__ =2 UpperCamelCase__ =generate_all_combinations(n, k) print_all_state(total_list)
356
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ ={ "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
from itertools import product def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = sides_number _SCREAMING_SNAKE_CASE : List[Any] = max_face_number * dice_number _SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * (max_total + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = 1 _SCREAMING_SNAKE_CASE : Any = range(lowerCamelCase_, max_face_number + 1 ) for dice_numbers in product(lowerCamelCase_, repeat=lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = sum(lowerCamelCase_ ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : str = total_frequency_distribution( sides_number=4, dice_number=9 ) _SCREAMING_SNAKE_CASE : List[str] = total_frequency_distribution( sides_number=6, dice_number=6 ) _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = 9 _SCREAMING_SNAKE_CASE : str = 4 * 9 _SCREAMING_SNAKE_CASE : Any = 6 for peter_total in range(lowerCamelCase_, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (4**9) * (6**6) _SCREAMING_SNAKE_CASE : Union[str, Any] = peter_wins_count / total_games_number _SCREAMING_SNAKE_CASE : Union[str, Any] = round(lowerCamelCase_, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"{solution() = }")
358
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = 9_9 _SCREAMING_SNAKE_CASE : str = 3_8_4 _SCREAMING_SNAKE_CASE : List[Any] = 2 _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Dict = 3_7 _SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu" _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : List[Any] = 5_1_2 _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Dict = 2 _SCREAMING_SNAKE_CASE : Any = 0.02 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 1_2_8 _SCREAMING_SNAKE_CASE : Optional[int] = 2 _SCREAMING_SNAKE_CASE : int = 9 _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True if hasattr(__lowerCamelCase , "use_cache" ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"] else: _SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"] _SCREAMING_SNAKE_CASE : Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
325
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = nn.functional.normalize(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(__lowerCamelCase ) return torch.mm(__lowerCamelCase, normalized_text_embeds.t() ) class lowerCAmelCase__( __A ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self , __lowerCamelCase ) -> int: super().__init__(__lowercase ) _SCREAMING_SNAKE_CASE : List[str] = CLIPVisionModel(config.vision_config ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__lowercase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=__lowercase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__lowercase ) _SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.ones(1_7 ) , requires_grad=__lowercase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=__lowercase ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : int = self.vision_model(__lowercase )[1] # pooled_output _SCREAMING_SNAKE_CASE : Tuple = self.visual_projection(__lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _SCREAMING_SNAKE_CASE : Tuple = cosine_distance(__lowercase , self.special_care_embeds ).cpu().float().numpy() _SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(__lowercase , self.concept_embeds ).cpu().float().numpy() _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Union[str, Any] = image_embeds.shape[0] for i in range(__lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _SCREAMING_SNAKE_CASE : Dict = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _SCREAMING_SNAKE_CASE : Optional[Any] = special_cos_dist[i][concept_idx] _SCREAMING_SNAKE_CASE : Tuple = self.special_care_embeds_weights[concept_idx].item() _SCREAMING_SNAKE_CASE : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) _SCREAMING_SNAKE_CASE : Tuple = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _SCREAMING_SNAKE_CASE : str = cos_dist[i][concept_idx] _SCREAMING_SNAKE_CASE : List[Any] = self.concept_embeds_weights[concept_idx].item() _SCREAMING_SNAKE_CASE : Optional[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowercase ) result.append(__lowercase ) _SCREAMING_SNAKE_CASE : str = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Tuple = self.vision_model(__lowercase )[1] # pooled_output _SCREAMING_SNAKE_CASE : str = self.visual_projection(__lowercase ) _SCREAMING_SNAKE_CASE : Tuple = cosine_distance(__lowercase , self.special_care_embeds ) _SCREAMING_SNAKE_CASE : Tuple = cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _SCREAMING_SNAKE_CASE : int = 0.0 _SCREAMING_SNAKE_CASE : Optional[int] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) _SCREAMING_SNAKE_CASE : Any = special_care * 0.01 _SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _SCREAMING_SNAKE_CASE : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _SCREAMING_SNAKE_CASE : List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowercase__ =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowercase__ ='main' # Default branch name lowercase__ ='f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowercase__ ='aaaaaaa' # This commit does not exist, so we should 404. lowercase__ ='d9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowercase__ ='4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def lowerCamelCase__ (): print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def lowerCamelCase__ (): print("Bonjour!" ) yield print("Au revoir!" ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def UpperCamelCase_ ( self ) -> Optional[int]: self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class lowerCAmelCase__( A_ ): '''simple docstring''' pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_tf def UpperCamelCase_ ( self ) -> Any: self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class lowerCAmelCase__( A_ ): '''simple docstring''' pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_flax def UpperCamelCase_ ( self ) -> Any: self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class lowerCAmelCase__( A_ ): '''simple docstring''' pass self.assertEqual(find_labels(snake_case__ ) , [] )
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCamelCase__ =object() # For specifying empty leaf dict `{}` UpperCamelCase__ =object() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(lowerCAmelCase__ ) - len(lowerCAmelCase__ ) + 1 ): _SCREAMING_SNAKE_CASE : Optional[Any] = [x.match(lowerCAmelCase__ ) for x, y in zip(lowerCAmelCase__, ks[i:] )] if matches and all(lowerCAmelCase__ ): return True return False def lowerCamelCase__ (__lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(lowerCAmelCase__, lowerCAmelCase__ ): return replacement return val return replace def lowerCamelCase__ (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", lowerCAmelCase__ )), (("transformer", "wte", "embedding"), P("mp", lowerCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase__, "mp" )), (("attention", "out_proj", "kernel"), P("mp", lowerCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase__, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", lowerCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = _get_partition_rules() _SCREAMING_SNAKE_CASE : Dict = _replacement_rules(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Any = {k: _unmatched for k in flatten_dict(lowerCAmelCase__ )} _SCREAMING_SNAKE_CASE : List[Any] = {k: replace(lowerCAmelCase__, lowerCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase__ ) )
361
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ =[0, 25, 50] UpperCamelCase__ =[25, 50, 75] UpperCamelCase__ =fuzz.membership.trimf(X, abca) UpperCamelCase__ =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ =np.ones(75) UpperCamelCase__ =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
325
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__ =logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Dict = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _SCREAMING_SNAKE_CASE : int = torch.zeros(__lowerCamelCase , __lowerCamelCase ) else: _SCREAMING_SNAKE_CASE : Tuple = None _SCREAMING_SNAKE_CASE : List[str] = torch.nn.Parameter(__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 __snake_case = 4_2 def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Union[str, Any]: super().__init__() self.register_modules( vqvae=__lowerCamelCase , transformer=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , scheduler=__lowerCamelCase , learned_classifier_free_sampling_embeddings=__lowerCamelCase , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Tuple = len(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else 1 # get prompt text embeddings _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _SCREAMING_SNAKE_CASE : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] _SCREAMING_SNAKE_CASE : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _SCREAMING_SNAKE_CASE : Optional[int] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__lowerCamelCase ) # duplicate text embeddings for each generation per prompt _SCREAMING_SNAKE_CASE : Optional[int] = prompt_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _SCREAMING_SNAKE_CASE : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings _SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(__lowerCamelCase , 1 , 1 ) else: _SCREAMING_SNAKE_CASE : Optional[int] = [''] * batch_size _SCREAMING_SNAKE_CASE : Optional[int] = text_input_ids.shape[-1] _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" , ) _SCREAMING_SNAKE_CASE : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE : List[str] = negative_prompt_embeds.shape[1] _SCREAMING_SNAKE_CASE : int = negative_prompt_embeds.repeat(1 , __lowerCamelCase , 1 ) _SCREAMING_SNAKE_CASE : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __lowerCamelCase , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 5.0 , __lowerCamelCase = 1.0 , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = 1 , ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = 1 elif isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = len(__lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}""" ) _SCREAMING_SNAKE_CASE : str = batch_size * num_images_per_prompt _SCREAMING_SNAKE_CASE : List[Any] = guidance_scale > 1.0 _SCREAMING_SNAKE_CASE : List[str] = self._encode_prompt(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCamelCase , __lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__lowerCamelCase )}.""" ) # get the initial completely masked latents unless the user supplied it _SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: _SCREAMING_SNAKE_CASE : Tuple = self.transformer.num_vector_embeds - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.full(__lowerCamelCase , __lowerCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _SCREAMING_SNAKE_CASE : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) _SCREAMING_SNAKE_CASE : int = self.scheduler.timesteps.to(self.device ) _SCREAMING_SNAKE_CASE : Tuple = latents for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the sample if we are doing classifier free guidance _SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _SCREAMING_SNAKE_CASE : str = self.transformer(__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , timestep=__lowerCamelCase ).sample if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE : str = model_output.chunk(2 ) _SCREAMING_SNAKE_CASE : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__lowerCamelCase , dim=1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.truncate(__lowerCamelCase , __lowerCamelCase ) # remove `log(0)`'s (`-inf`s) _SCREAMING_SNAKE_CASE : Optional[int] = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE : Any = self.scheduler.step(__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.vqvae.config.vq_embed_dim _SCREAMING_SNAKE_CASE : Dict = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _SCREAMING_SNAKE_CASE : Optional[int] = self.vqvae.quantize.get_codebook_entry(__lowerCamelCase , shape=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.vqvae.decode(__lowerCamelCase , force_not_quantize=__lowerCamelCase ).sample _SCREAMING_SNAKE_CASE : Any = (image / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE : Union[str, Any] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.sort(__lowerCamelCase , 1 , descending=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = torch.exp(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _SCREAMING_SNAKE_CASE : List[str] = torch.full_like(keep_mask[:, 0:1, :] , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = torch.cat((all_true, keep_mask) , dim=1 ) _SCREAMING_SNAKE_CASE : List[Any] = keep_mask[:, :-1, :] _SCREAMING_SNAKE_CASE : str = keep_mask.gather(1 , indices.argsort(1 ) ) _SCREAMING_SNAKE_CASE : List[str] = log_p_x_0.clone() _SCREAMING_SNAKE_CASE : List[str] = -torch.inf # -inf = log(0) return rv
362
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
0
from math import sqrt def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" _SCREAMING_SNAKE_CASE : Optional[Any] = True # 0 and 1 are none primes. if number <= 1: _SCREAMING_SNAKE_CASE : Dict = False for divisor in range(2, int(round(sqrt(_lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _SCREAMING_SNAKE_CASE : Any = False break # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'status' must been from type bool" return status def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _SCREAMING_SNAKE_CASE : int = list(range(2, n + 1 ) ) _SCREAMING_SNAKE_CASE : int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCamelCase ) ): for j in range(i + 1, len(_lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _SCREAMING_SNAKE_CASE : str = 0 # filters actual prime numbers. _SCREAMING_SNAKE_CASE : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" _SCREAMING_SNAKE_CASE : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(_lowerCamelCase ): ans.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" _SCREAMING_SNAKE_CASE : int = [] # this list will be returns of the function. # potential prime number factors. _SCREAMING_SNAKE_CASE : List[str] = 2 _SCREAMING_SNAKE_CASE : List[Any] = number if number == 0 or number == 1: ans.append(_lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCamelCase ): while quotient != 1: if is_prime(_lowerCamelCase ) and (quotient % factor == 0): ans.append(_lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _SCREAMING_SNAKE_CASE : List[str] = 0 # prime factorization of 'number' _SCREAMING_SNAKE_CASE : Any = prime_factorization(_lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = max(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _SCREAMING_SNAKE_CASE : List[Any] = 0 # prime factorization of 'number' _SCREAMING_SNAKE_CASE : int = prime_factorization(_lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = min(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0, _lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0, _lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase__ (__lowerCamelCase ): assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and (number > 2) and is_even(_lowerCamelCase ) ), "'number' must been an int, even and > 2" _SCREAMING_SNAKE_CASE : List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _SCREAMING_SNAKE_CASE : Tuple = get_prime_numbers(_lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = len(_lowerCamelCase ) # run variable for while-loops. _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : Dict = None # exit variable. for break up the loops _SCREAMING_SNAKE_CASE : int = True while i < len_pn and loop: _SCREAMING_SNAKE_CASE : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _SCREAMING_SNAKE_CASE : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and (len(_lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and isinstance(_lowerCamelCase, _lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _SCREAMING_SNAKE_CASE : Optional[Any] = 0 while numbera != 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = numbera % numbera _SCREAMING_SNAKE_CASE : Any = numbera _SCREAMING_SNAKE_CASE : Dict = rest # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and isinstance(_lowerCamelCase, _lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _SCREAMING_SNAKE_CASE : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _SCREAMING_SNAKE_CASE : int = prime_factorization(_lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(_lowerCamelCase ) elif numbera == 1 or numbera == 1: _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : Dict = max(_lowerCamelCase, _lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _SCREAMING_SNAKE_CASE : Optional[Any] = prime_fac_a.count(_lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = prime_fac_a.count(_lowerCamelCase ) for _ in range(max(_lowerCamelCase, _lowerCamelCase ) ): ans *= n else: _SCREAMING_SNAKE_CASE : Union[str, Any] = prime_fac_a.count(_lowerCamelCase ) for _ in range(_lowerCamelCase ): ans *= n done.append(_lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _SCREAMING_SNAKE_CASE : List[str] = prime_fac_a.count(_lowerCamelCase ) for _ in range(_lowerCamelCase ): ans *= n done.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and (n >= 0), "'number' must been a positive int" _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCamelCase ): ans += 1 # precondition assert isinstance(_lowerCamelCase, _lowerCamelCase ) and is_prime( _lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): assert ( is_prime(_lowerCamelCase ) and is_prime(_lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _SCREAMING_SNAKE_CASE : List[str] = p_number_a + 1 # jump to the next number _SCREAMING_SNAKE_CASE : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCamelCase ): number += 1 while number < p_number_a: ans.append(_lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCamelCase ): number += 1 # precondition assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and ans[0] != p_number_a and ans[len(_lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" _SCREAMING_SNAKE_CASE : Any = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(_lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _SCREAMING_SNAKE_CASE : Optional[int] = get_divisors(_lowerCamelCase ) # precondition assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and isinstance(_lowerCamelCase, _lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _SCREAMING_SNAKE_CASE : Tuple = gcd(abs(_lowerCamelCase ), abs(_lowerCamelCase ) ) # precondition assert ( isinstance(_lowerCamelCase, _lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" _SCREAMING_SNAKE_CASE : Tuple = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_lowerCamelCase, _lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : Tuple = 1 _SCREAMING_SNAKE_CASE : str = 1 # this will be return for _ in range(n - 1 ): _SCREAMING_SNAKE_CASE : Any = ans ans += fiba _SCREAMING_SNAKE_CASE : Any = tmp return ans
363
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__: '''simple docstring''' __snake_case = 42 __snake_case = None __snake_case = None UpperCamelCase__ =namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ (__lowerCamelCase ): if root is None: return 0 # Validation def count_nodes(__lowerCamelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCamelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(__lowerCamelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0, 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = get_distrib(node.left ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = get_distrib(node.right ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - left_distrib_excess _SCREAMING_SNAKE_CASE : Optional[int] = 1 - right_distrib_excess _SCREAMING_SNAKE_CASE : str = ( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) _SCREAMING_SNAKE_CASE : List[str] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_, a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase__: def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=6_4 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = parent _SCREAMING_SNAKE_CASE : int = batch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length _SCREAMING_SNAKE_CASE : Dict = is_training _SCREAMING_SNAKE_CASE : List[Any] = use_input_mask _SCREAMING_SNAKE_CASE : str = use_token_type_ids _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Tuple = vocab_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_size _SCREAMING_SNAKE_CASE : Dict = embedding_size _SCREAMING_SNAKE_CASE : Dict = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = intermediate_size _SCREAMING_SNAKE_CASE : Any = hidden_act _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Any = max_position_embeddings _SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range _SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels _SCREAMING_SNAKE_CASE : List[str] = num_choices _SCREAMING_SNAKE_CASE : Union[str, Any] = scope def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : Tuple = None _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : str = None if self.use_labels: _SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> Optional[Any]: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = MobileBertModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : Dict = model(_a , attention_mask=_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(_a , token_type_ids=_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = MobileBertForMaskedLM(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Any = MobileBertForNextSentencePrediction(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = MobileBertForPreTraining(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : Optional[int] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , next_sentence_label=_a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = MobileBertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = self.num_labels _SCREAMING_SNAKE_CASE : Optional[int] = MobileBertForSequenceClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = MobileBertForTokenClassification(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.num_choices _SCREAMING_SNAKE_CASE : Tuple = MobileBertForMultipleChoice(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Optional[int] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( _SCREAMING_SNAKE_CASE ) : Any = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): __snake_case = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> int: _SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): _SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a ) _SCREAMING_SNAKE_CASE : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = MobileBertModelTester(self ) _SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_a ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_a ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_a ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_a ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_a ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_a ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_a ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_a ) def lowerCamelCase__ (__lowerCamelCase ): return torch.tensor( __a, dtype=torch.long, device=__a, ) UpperCamelCase__ =1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(_a ) _SCREAMING_SNAKE_CASE : int = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Tuple = model(_a )[0] _SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [ [ [-2.4_736_526E07, 8.2_691_656E04, 1.6_521_838E05], [-5.7_541_704E-01, 3.9_056_022E00, 4.4_011_507E00], [2.6_047_359E00, 1.5_677_652E00, -1.7_324_188E-01], ] ] , device=_a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _SCREAMING_SNAKE_CASE : str = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
365
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase__( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __snake_case = "wavlm" def __init__( self , __lowerCamelCase=3_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-5 , __lowerCamelCase="group" , __lowerCamelCase="gelu" , __lowerCamelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCamelCase=False , __lowerCamelCase=1_2_8 , __lowerCamelCase=1_6 , __lowerCamelCase=3_2_0 , __lowerCamelCase=8_0_0 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.05 , __lowerCamelCase=1_0 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=1_0 , __lowerCamelCase=3_2_0 , __lowerCamelCase=2 , __lowerCamelCase=0.1 , __lowerCamelCase=1_0_0 , __lowerCamelCase=2_5_6 , __lowerCamelCase=2_5_6 , __lowerCamelCase=0.1 , __lowerCamelCase="mean" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=2_5_6 , __lowerCamelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __lowerCamelCase=(5, 3, 3, 1, 1) , __lowerCamelCase=(1, 2, 3, 1, 1) , __lowerCamelCase=5_1_2 , __lowerCamelCase=8_0 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , __lowerCamelCase=False , __lowerCamelCase=3 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : int = hidden_size _SCREAMING_SNAKE_CASE : Optional[int] = feat_extract_norm _SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_activation _SCREAMING_SNAKE_CASE : List[str] = list(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : Tuple = list(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : List[str] = list(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : List[str] = conv_bias _SCREAMING_SNAKE_CASE : Any = num_buckets _SCREAMING_SNAKE_CASE : List[Any] = max_bucket_distance _SCREAMING_SNAKE_CASE : List[Any] = num_conv_pos_embeddings _SCREAMING_SNAKE_CASE : Optional[Any] = num_conv_pos_embedding_groups _SCREAMING_SNAKE_CASE : List[Any] = len(self.conv_dim ) _SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : Tuple = hidden_act _SCREAMING_SNAKE_CASE : str = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout _SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout _SCREAMING_SNAKE_CASE : Any = activation_dropout _SCREAMING_SNAKE_CASE : Optional[int] = feat_proj_dropout _SCREAMING_SNAKE_CASE : List[Any] = final_dropout _SCREAMING_SNAKE_CASE : str = layerdrop _SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = num_ctc_classes _SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = do_stable_layer_norm _SCREAMING_SNAKE_CASE : Dict = use_weighted_layer_sum _SCREAMING_SNAKE_CASE : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _SCREAMING_SNAKE_CASE : Dict = apply_spec_augment _SCREAMING_SNAKE_CASE : Union[str, Any] = mask_time_prob _SCREAMING_SNAKE_CASE : List[str] = mask_time_length _SCREAMING_SNAKE_CASE : Union[str, Any] = mask_time_min_masks _SCREAMING_SNAKE_CASE : Dict = mask_feature_prob _SCREAMING_SNAKE_CASE : Any = mask_feature_length # parameters for pretraining with codevector quantized representations _SCREAMING_SNAKE_CASE : int = num_codevectors_per_group _SCREAMING_SNAKE_CASE : Tuple = num_codevector_groups _SCREAMING_SNAKE_CASE : List[str] = contrastive_logits_temperature _SCREAMING_SNAKE_CASE : List[str] = num_negatives _SCREAMING_SNAKE_CASE : Any = codevector_dim _SCREAMING_SNAKE_CASE : str = proj_codevector_dim _SCREAMING_SNAKE_CASE : Any = diversity_loss_weight # ctc loss _SCREAMING_SNAKE_CASE : Dict = ctc_loss_reduction _SCREAMING_SNAKE_CASE : List[str] = ctc_zero_infinity # adapter _SCREAMING_SNAKE_CASE : Optional[Any] = add_adapter _SCREAMING_SNAKE_CASE : List[Any] = adapter_kernel_size _SCREAMING_SNAKE_CASE : int = adapter_stride _SCREAMING_SNAKE_CASE : List[Any] = num_adapter_layers _SCREAMING_SNAKE_CASE : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _SCREAMING_SNAKE_CASE : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _SCREAMING_SNAKE_CASE : List[Any] = list(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = list(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = list(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = xvector_output_dim @property def UpperCamelCase_ ( self ) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1 )
366
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # load base model _SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline.from_pretrained(a_, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _SCREAMING_SNAKE_CASE : List[str] = load_file(a_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _SCREAMING_SNAKE_CASE : Tuple = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) _SCREAMING_SNAKE_CASE : int = pipeline.text_encoder else: _SCREAMING_SNAKE_CASE : Optional[Any] = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) _SCREAMING_SNAKE_CASE : Tuple = pipeline.unet # find the target layer _SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(a_ ) > -1: try: _SCREAMING_SNAKE_CASE : List[Any] = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: _SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _SCREAMING_SNAKE_CASE : str = layer_infos.pop(0 ) _SCREAMING_SNAKE_CASE : Dict = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down", "lora_up" ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace("lora_up", "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _SCREAMING_SNAKE_CASE : Dict = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_, a_ ).unsqueeze(2 ).unsqueeze(3 ) else: _SCREAMING_SNAKE_CASE : List[str] = state_dict[pair_keys[0]].to(torch.floataa ) _SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_, a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') UpperCamelCase__ =parser.parse_args() UpperCamelCase__ =args.base_model_path UpperCamelCase__ =args.checkpoint_path UpperCamelCase__ =args.dump_path UpperCamelCase__ =args.lora_prefix_unet UpperCamelCase__ =args.lora_prefix_text_encoder UpperCamelCase__ =args.alpha UpperCamelCase__ =convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCamelCase__ =pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
367
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
0
UpperCamelCase__ ={str(digit): digit**5 for digit in range(10)} def lowerCamelCase__ (__lowerCamelCase ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_UpperCamelCase ) ) def lowerCamelCase__ (): return sum( number for number in range(1000, 1000000 ) if number == digits_fifth_powers_sum(_UpperCamelCase ) ) if __name__ == "__main__": print(solution())
368
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = len(a__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(a__ ) - pat_len + 1 ): _SCREAMING_SNAKE_CASE : Dict = True for j in range(a__ ): if s[i + j] != pattern[j]: _SCREAMING_SNAKE_CASE : Any = False break if match_found: position.append(a__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
369
from math import isqrt, loga def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = False return [i for i in range(2, __lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ): _SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
325
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase__ ='pt' elif is_tf_available(): UpperCamelCase__ ='tf' else: UpperCamelCase__ ='jax' class lowerCAmelCase__( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ByTaTokenizer __snake_case = False def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() _SCREAMING_SNAKE_CASE : int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: return ByTaTokenizer.from_pretrained("google/byt5-small" ) def UpperCamelCase_ ( self , **__lowerCamelCase ) -> Optional[Any]: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=2_0 , __lowerCamelCase=5 ) -> Optional[Any]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _SCREAMING_SNAKE_CASE : Dict = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _SCREAMING_SNAKE_CASE : Optional[int] = list(filter(lambda __lowerCamelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _SCREAMING_SNAKE_CASE : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _SCREAMING_SNAKE_CASE : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] _SCREAMING_SNAKE_CASE : int = [t[0] for t in toks] # Ensure consistency _SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _SCREAMING_SNAKE_CASE : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _SCREAMING_SNAKE_CASE : List[str] = """ """ + output_txt _SCREAMING_SNAKE_CASE : str = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = self.ta_base_tokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Dict = self.ta_base_tokenizer _SCREAMING_SNAKE_CASE : Any = """Unicode €.""" _SCREAMING_SNAKE_CASE : Dict = tokenizer(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["input_ids"] , _lowerCAmelCase ) # decoding _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , "Unicode €.</s>" ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer("e è é ê ë" ) _SCREAMING_SNAKE_CASE : Any = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["input_ids"] , _lowerCAmelCase ) # decoding _SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.ta_base_tokenizer _SCREAMING_SNAKE_CASE : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _SCREAMING_SNAKE_CASE : Optional[int] = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on _SCREAMING_SNAKE_CASE : int = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _SCREAMING_SNAKE_CASE : Optional[int] = list(batch.input_ids.numpy()[0] ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self.ta_base_tokenizer _SCREAMING_SNAKE_CASE : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertNotIn("decoder_input_ids" , _lowerCAmelCase ) self.assertNotIn("decoder_attention_mask" , _lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self.ta_base_tokenizer _SCREAMING_SNAKE_CASE : int = [ """Summary of the text.""", """Another summary.""", ] _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = self.ta_base_tokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = ["""A long paragraph for summarization. </s>"""] _SCREAMING_SNAKE_CASE : Dict = ["""Summary of the text. </s>"""] # fmt: off _SCREAMING_SNAKE_CASE : List[str] = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] _SCREAMING_SNAKE_CASE : str = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on _SCREAMING_SNAKE_CASE : List[Any] = tokenizer(_lowerCAmelCase , text_target=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , batch["input_ids"][0] ) self.assertEqual(_lowerCAmelCase , batch["labels"][0] ) def UpperCamelCase_ ( self ) -> Dict: # safety check on max_len default value so we are sure the test works _SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : int = """ He is very happy, UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Any = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["bim", "bambam"] ) _SCREAMING_SNAKE_CASE : Any = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) _SCREAMING_SNAKE_CASE : str = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _SCREAMING_SNAKE_CASE : Any = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: _SCREAMING_SNAKE_CASE : Optional[int] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: _SCREAMING_SNAKE_CASE : str = json.load(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _SCREAMING_SNAKE_CASE : str = added_tokens_extra_ids + [ """an_additional_special_token""" ] _SCREAMING_SNAKE_CASE : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _SCREAMING_SNAKE_CASE : Any = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _SCREAMING_SNAKE_CASE : Optional[Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=_lowerCAmelCase )] _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_class.from_pretrained(_lowerCAmelCase ) self.assertTrue(tokenizer.decode([2_5_5] ) == "" ) def UpperCamelCase_ ( self ) -> List[Any]: pass def UpperCamelCase_ ( self ) -> str: pass def UpperCamelCase_ ( self ) -> Dict: pass def UpperCamelCase_ ( self ) -> Dict: pass def UpperCamelCase_ ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _SCREAMING_SNAKE_CASE : int = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _SCREAMING_SNAKE_CASE : Optional[int] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _SCREAMING_SNAKE_CASE : str = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _SCREAMING_SNAKE_CASE : int = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
370
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCamelCase__ =parser.parse_args() if args.model_type == "bert": UpperCamelCase__ =BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ ="bert" else: raise ValueError('args.model_type should be \"bert\".') UpperCamelCase__ =model.state_dict() UpperCamelCase__ ={} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase__ =state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCamelCase__ =state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCamelCase__ =0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCamelCase__ =state_dict["cls.predictions.decoder.weight"] UpperCamelCase__ =state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ =state_dict[f"cls.predictions.transform.dense.{w}"] UpperCamelCase__ =state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
371
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'sentencepiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCamelCase__ ={ 'google/rembert': 256, } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="[UNK]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="[PAD]" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , **__lowerCamelCase , ) -> str: super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) _SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : Optional[int] = keep_accents _SCREAMING_SNAKE_CASE : Tuple = vocab_file _SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(_a ) @property def UpperCamelCase_ ( self ) -> List[str]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.__dict__.copy() _SCREAMING_SNAKE_CASE : List[str] = None return state def __setstate__( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : str = d _SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=False ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(_a ) return pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: return self.sp_model.PieceToId(_a ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.IdToPiece(_a ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.decode_pieces(_a ) return out_string def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return _SCREAMING_SNAKE_CASE : Any = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
350
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__( lowercase__ , unittest.TestCase ): '''simple docstring''' __snake_case = MobileBertTokenizer __snake_case = MobileBertTokenizerFast __snake_case = True __snake_case = True __snake_case = filter_non_english __snake_case = """google/mobilebert-uncased""" def UpperCamelCase_ ( self ) -> str: super().setUp() _SCREAMING_SNAKE_CASE : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[Any] = "UNwant\u00E9d,running" _SCREAMING_SNAKE_CASE : List[str] = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowercase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def UpperCamelCase_ ( self ) -> str: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Dict = "UNwant\u00E9d,running" _SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(lowercase_ ) _SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # With lower casing _SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer(do_lower_case=lowercase_ ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_rust_tokenizer(do_lower_case=lowercase_ ) _SCREAMING_SNAKE_CASE : Tuple = "UNwant\u00E9d,running" _SCREAMING_SNAKE_CASE : int = tokenizer.tokenize(lowercase_ ) _SCREAMING_SNAKE_CASE : int = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowercase_ ) _SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : str = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=lowercase_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _SCREAMING_SNAKE_CASE : List[str] = {} for i, token in enumerate(lowercase_ ): _SCREAMING_SNAKE_CASE : Optional[Any] = i _SCREAMING_SNAKE_CASE : List[str] = WordpieceTokenizer(vocab=lowercase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCamelCase_ ( self ) -> Dict: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase_ ( self ) -> int: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase_ ( self ) -> Tuple: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) _SCREAMING_SNAKE_CASE : str = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def UpperCamelCase_ ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus( lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(lowercase_ , "do_lower_case" ) else False _SCREAMING_SNAKE_CASE : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[str] = ["的", "人", "有"] _SCREAMING_SNAKE_CASE : Any = "".join(lowercase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : str = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowercase_ ) _SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE : Any = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase_ ) ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
351
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCamelCase__ ="""src/transformers""" UpperCamelCase__ ="""docs/source/en""" UpperCamelCase__ =""".""" def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with open(_snake_case, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : List[Any] = f.readlines() # Find the start prompt. _SCREAMING_SNAKE_CASE : Dict = 0 while not lines[start_index].startswith(_snake_case ): start_index += 1 start_index += 1 _SCREAMING_SNAKE_CASE : Optional[int] = start_index while not lines[end_index].startswith(_snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCamelCase__ ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. UpperCamelCase__ =re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') UpperCamelCase__ =re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCamelCase__ =re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ =direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", _snake_case ) return [m.group(0 ) for m in matches] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = 2 if text == '''✅''' or text == '''❌''' else len(_snake_case ) _SCREAMING_SNAKE_CASE : str = (width - text_length) // 2 _SCREAMING_SNAKE_CASE : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _SCREAMING_SNAKE_CASE : Union[str, Any] = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _SCREAMING_SNAKE_CASE : List[Any] = collections.defaultdict(_snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = collections.defaultdict(_snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = collections.defaultdict(_snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = collections.defaultdict(_snake_case ) _SCREAMING_SNAKE_CASE : Any = collections.defaultdict(_snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(_snake_case ): _SCREAMING_SNAKE_CASE : List[str] = None if attr_name.endswith("Tokenizer" ): _SCREAMING_SNAKE_CASE : Tuple = slow_tokenizers _SCREAMING_SNAKE_CASE : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _SCREAMING_SNAKE_CASE : List[Any] = fast_tokenizers _SCREAMING_SNAKE_CASE : Optional[int] = attr_name[:-13] elif _re_tf_models.match(_snake_case ) is not None: _SCREAMING_SNAKE_CASE : List[Any] = tf_models _SCREAMING_SNAKE_CASE : int = _re_tf_models.match(_snake_case ).groups()[0] elif _re_flax_models.match(_snake_case ) is not None: _SCREAMING_SNAKE_CASE : Tuple = flax_models _SCREAMING_SNAKE_CASE : Optional[int] = _re_flax_models.match(_snake_case ).groups()[0] elif _re_pt_models.match(_snake_case ) is not None: _SCREAMING_SNAKE_CASE : Optional[Any] = pt_models _SCREAMING_SNAKE_CASE : List[Any] = _re_pt_models.match(_snake_case ).groups()[0] if lookup_dict is not None: while len(_snake_case ) > 0: if attr_name in model_name_to_prefix.values(): _SCREAMING_SNAKE_CASE : Optional[int] = True break # Try again after removing the last word in the name _SCREAMING_SNAKE_CASE : Dict = ''''''.join(camel_case_split(_snake_case )[:-1] ) # Let's build that table! _SCREAMING_SNAKE_CASE : int = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _SCREAMING_SNAKE_CASE : List[Any] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _SCREAMING_SNAKE_CASE : int = [len(_snake_case ) + 2 for c in columns] _SCREAMING_SNAKE_CASE : List[Any] = max([len(_snake_case ) for name in model_names] ) + 2 # Build the table per se _SCREAMING_SNAKE_CASE : Optional[int] = '''|''' + '''|'''.join([_center_text(_snake_case, _snake_case ) for c, w in zip(_snake_case, _snake_case )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _SCREAMING_SNAKE_CASE : Optional[int] = {True: '''✅''', False: '''❌'''} for name in model_names: _SCREAMING_SNAKE_CASE : Optional[Any] = model_name_to_prefix[name] _SCREAMING_SNAKE_CASE : Optional[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_snake_case, _snake_case ) for l, w in zip(_snake_case, _snake_case )] ) + "|\n" return table def lowerCamelCase__ (__lowerCamelCase=False ): _SCREAMING_SNAKE_CASE : int = _find_text_in_file( filename=os.path.join(_snake_case, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", ) _SCREAMING_SNAKE_CASE : Optional[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_snake_case, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_model_table(args.fix_and_overwrite)
352
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
0
import math import unittest def lowerCamelCase__ (__lowerCamelCase ): assert isinstance(_A, _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(_A ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> str: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def UpperCamelCase_ ( self ) -> Optional[int]: with self.assertRaises(snake_case__ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , "Zero doesn\'t have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 0, __lowerCamelCase = 0 ): _SCREAMING_SNAKE_CASE : Any = right or len(__lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__lowerCamelCase, __lowerCamelCase, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
354
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
325
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = BertTokenizer __snake_case = BertTokenizerFast __snake_case = True __snake_case = True __snake_case = filter_non_english def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() _SCREAMING_SNAKE_CASE : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE : Tuple = """unwanted, running""" return input_text, output_text def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def UpperCamelCase_ ( self ) -> List[str]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : List[str] = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : str = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # With lower casing _SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : str = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : int = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = BasicTokenizer() _SCREAMING_SNAKE_CASE : Any = """a\n'll !!to?'d of, can't.""" _SCREAMING_SNAKE_CASE : Dict = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE : int = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE : str = i _SCREAMING_SNAKE_CASE : Dict = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCamelCase_ ( self ) -> Any: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase_ ( self ) -> Any: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase_ ( self ) -> Tuple: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : str = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Dict = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def UpperCamelCase_ ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , "do_lower_case" ) else False _SCREAMING_SNAKE_CASE : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE : Tuple = """""".join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : Any = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE : Tuple = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
355
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase__( __UpperCamelCase ): '''simple docstring''' __snake_case = 42 __snake_case = 42 class lowerCAmelCase__( nn.Module ): '''simple docstring''' __snake_case = 42 __snake_case = (1_6, 3_2, 9_6, 2_5_6) __snake_case = jnp.floataa def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _SCREAMING_SNAKE_CASE : int = [] for i in range(len(self.block_out_channels ) - 1 ): _SCREAMING_SNAKE_CASE : Optional[Any] = self.block_out_channels[i] _SCREAMING_SNAKE_CASE : Union[str, Any] = self.block_out_channels[i + 1] _SCREAMING_SNAKE_CASE : Dict = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = blocks _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.conv_in(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(__lowerCamelCase ) for block in self.blocks: _SCREAMING_SNAKE_CASE : str = block(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = nn.silu(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.conv_out(__lowerCamelCase ) return embedding @flax_register_to_config class lowerCAmelCase__( nn.Module , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __snake_case = 3_2 __snake_case = 4 __snake_case = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case = False __snake_case = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __snake_case = 2 __snake_case = 8 __snake_case = None __snake_case = 1_2_8_0 __snake_case = 0.0 __snake_case = False __snake_case = jnp.floataa __snake_case = True __snake_case = 0 __snake_case = "rgb" __snake_case = (1_6, 3_2, 9_6, 2_5_6) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]: # init input tensors _SCREAMING_SNAKE_CASE : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) _SCREAMING_SNAKE_CASE : Tuple = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.split(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["params"] def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.block_out_channels _SCREAMING_SNAKE_CASE : Dict = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _SCREAMING_SNAKE_CASE : int = self.num_attention_heads or self.attention_head_dim # input _SCREAMING_SNAKE_CASE : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _SCREAMING_SNAKE_CASE : List[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _SCREAMING_SNAKE_CASE : List[Any] = FlaxTimestepEmbedding(__lowerCamelCase , dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _SCREAMING_SNAKE_CASE : Any = self.only_cross_attention if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = (num_attention_heads,) * len(self.down_block_types ) # down _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] _SCREAMING_SNAKE_CASE : int = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): _SCREAMING_SNAKE_CASE : int = output_channel _SCREAMING_SNAKE_CASE : int = block_out_channels[i] _SCREAMING_SNAKE_CASE : int = i == len(__lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxCrossAttnDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCamelCase ) for _ in range(self.layers_per_block ): _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) if not is_final_block: _SCREAMING_SNAKE_CASE : str = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = down_blocks _SCREAMING_SNAKE_CASE : List[str] = controlnet_down_blocks # mid _SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[-1] _SCREAMING_SNAKE_CASE : str = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _SCREAMING_SNAKE_CASE : str = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1.0 , __lowerCamelCase = True , __lowerCamelCase = False , ) -> Tuple: _SCREAMING_SNAKE_CASE : str = self.controlnet_conditioning_channel_order if channel_order == "bgr": _SCREAMING_SNAKE_CASE : int = jnp.flip(__lowerCamelCase , axis=1 ) # 1. time if not isinstance(__lowerCamelCase , jnp.ndarray ): _SCREAMING_SNAKE_CASE : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE : Any = jnp.expand_dims(__lowerCamelCase , 0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.time_proj(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self.time_embedding(__lowerCamelCase ) # 2. pre-process _SCREAMING_SNAKE_CASE : List[Any] = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) _SCREAMING_SNAKE_CASE : Tuple = self.conv_in(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) _SCREAMING_SNAKE_CASE : Dict = self.controlnet_cond_embedding(__lowerCamelCase ) sample += controlnet_cond # 3. down _SCREAMING_SNAKE_CASE : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = down_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) else: _SCREAMING_SNAKE_CASE : str = down_block(__lowerCamelCase , __lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) # 5. contronet blocks _SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, controlnet_block in zip(__lowerCamelCase , self.controlnet_down_blocks ): _SCREAMING_SNAKE_CASE : str = controlnet_block(__lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) _SCREAMING_SNAKE_CASE : Any = controlnet_down_block_res_samples _SCREAMING_SNAKE_CASE : Union[str, Any] = self.controlnet_mid_block(__lowerCamelCase ) # 6. scaling _SCREAMING_SNAKE_CASE : Union[str, Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCamelCase , mid_block_res_sample=__lowerCamelCase )
356
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = " " ): _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = 0 for index, char in enumerate(A__ ): if char == separator: split_words.append(string[last_index:index] ) _SCREAMING_SNAKE_CASE : Any = index + 1 elif index + 1 == len(A__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
import argparse import json import subprocess def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Optional[int] = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" " https://api.github.com/repos/huggingface/transformers/actions/runners" ) _SCREAMING_SNAKE_CASE : Optional[int] = subprocess.run(__lowerCamelCase, shell=__lowerCamelCase, stdout=subprocess.PIPE ) _SCREAMING_SNAKE_CASE : Tuple = output.stdout.decode("utf-8" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowerCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt", "w" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : int = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def lowerCamelCase__ (__lowerCamelCase ): return values.split("," ) UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) UpperCamelCase__ =parser.parse_args() get_runner_status(args.target_runners, args.token)
358
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = 9_9 _SCREAMING_SNAKE_CASE : str = 3_8_4 _SCREAMING_SNAKE_CASE : List[Any] = 2 _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Dict = 3_7 _SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu" _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : List[Any] = 5_1_2 _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Dict = 2 _SCREAMING_SNAKE_CASE : Any = 0.02 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 1_2_8 _SCREAMING_SNAKE_CASE : Optional[int] = 2 _SCREAMING_SNAKE_CASE : int = 9 _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True if hasattr(__lowerCamelCase , "use_cache" ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"] else: _SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"] _SCREAMING_SNAKE_CASE : Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
325
0
def lowerCamelCase__ (__lowerCamelCase ): if n == 1 or not isinstance(_UpperCamelCase, _UpperCamelCase ): return 0 elif n == 2: return 1 else: _SCREAMING_SNAKE_CASE : Tuple = [0, 1] for i in range(2, n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : Optional[int] = 2 while digits < n: index += 1 _SCREAMING_SNAKE_CASE : int = len(str(fibonacci(_UpperCamelCase ) ) ) return index def lowerCamelCase__ (__lowerCamelCase = 1000 ): return fibonacci_digits_index(_UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ ="""platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase__: '''simple docstring''' __snake_case = PegasusConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : Optional[int] = batch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length _SCREAMING_SNAKE_CASE : Tuple = is_training _SCREAMING_SNAKE_CASE : Dict = use_labels _SCREAMING_SNAKE_CASE : int = vocab_size _SCREAMING_SNAKE_CASE : List[str] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : int = num_attention_heads _SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : List[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : int = np.concatenate([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : Any = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = 2_0 _SCREAMING_SNAKE_CASE : List[Any] = model_class_name(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = model.encode(inputs_dict["input_ids"] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _SCREAMING_SNAKE_CASE : Tuple = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE : str = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _SCREAMING_SNAKE_CASE : Dict = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = model.decode(__lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Any = 2_0 _SCREAMING_SNAKE_CASE : List[str] = model_class_name(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Tuple = model.encode(inputs_dict["input_ids"] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _SCREAMING_SNAKE_CASE : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE : str = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE : List[str] = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _SCREAMING_SNAKE_CASE : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Any = np.not_equal(lowerCAmelCase__, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __snake_case = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __snake_case = True __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxPegasusModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(__lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest("JIT Enabled" ): _SCREAMING_SNAKE_CASE : Any = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Dict = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : str = model_class(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _SCREAMING_SNAKE_CASE : str = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest("JIT Enabled" ): _SCREAMING_SNAKE_CASE : Any = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Optional[int] = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase_ ( self ) -> str: for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE : Tuple = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((1, 1) ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : str = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _SCREAMING_SNAKE_CASE : Optional[Any] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _SCREAMING_SNAKE_CASE : str = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _SCREAMING_SNAKE_CASE : List[str] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _SCREAMING_SNAKE_CASE : List[str] = tokenizer(__lowerCAmelCase , return_tensors="np" , truncation=__lowerCAmelCase , max_length=5_1_2 , padding=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[str] = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences _SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert tgt_text == decoded
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self , __lowerCamelCase ) -> Dict: super().__init__(_snake_case ) _SCREAMING_SNAKE_CASE : List[str] = CLIPVisionModelWithProjection(config.vision_config ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) _SCREAMING_SNAKE_CASE : Tuple = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.5 , __lowerCamelCase=0.5 ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.vision_model(_snake_case )[0] _SCREAMING_SNAKE_CASE : int = self.p_head(_snake_case ) _SCREAMING_SNAKE_CASE : Any = nsfw_detected.flatten() _SCREAMING_SNAKE_CASE : Union[str, Any] = nsfw_detected > p_threshold _SCREAMING_SNAKE_CASE : List[Any] = nsfw_detected.tolist() if any(_snake_case ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(_snake_case ): if nsfw_detected_: _SCREAMING_SNAKE_CASE : Any = np.zeros(images[idx].shape ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.w_head(_snake_case ) _SCREAMING_SNAKE_CASE : int = watermark_detected.flatten() _SCREAMING_SNAKE_CASE : Union[str, Any] = watermark_detected > w_threshold _SCREAMING_SNAKE_CASE : List[str] = watermark_detected.tolist() if any(_snake_case ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(_snake_case ): if watermark_detected_: _SCREAMING_SNAKE_CASE : int = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
361
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ =[0, 25, 50] UpperCamelCase__ =[25, 50, 75] UpperCamelCase__ =fuzz.membership.trimf(X, abca) UpperCamelCase__ =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ =np.ones(75) UpperCamelCase__ =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
325
0
from PIL import Image def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = (259 * (level + 255)) / (255 * (259 - level)) def contrast(__lowerCamelCase ) -> int: return int(128 + factor * (c - 128) ) return img.point(lowercase_ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 UpperCamelCase__ =change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
362
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = IFImgaImgSuperResolutionPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase_ ( self ) -> Union[str, Any]: return self._get_superresolution_dummy_components() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=0 ) -> int: if str(_a ).startswith("mps" ): _SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase_ ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase_ ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase_ ( self ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase_ ( self ) -> Optional[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase_ ( self ) -> List[str]: self._test_save_load_local() def UpperCamelCase_ ( self ) -> Tuple: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
363
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=2_4 , __lowerCamelCase=2 , __lowerCamelCase=6 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=None , __lowerCamelCase=1_0_0_0 , ) -> int: _SCREAMING_SNAKE_CASE : Union[str, Any] = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : Optional[Any] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_input_mask _SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids _SCREAMING_SNAKE_CASE : str = use_labels _SCREAMING_SNAKE_CASE : List[str] = vocab_size _SCREAMING_SNAKE_CASE : str = hidden_size _SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = num_attention_heads _SCREAMING_SNAKE_CASE : List[Any] = intermediate_size _SCREAMING_SNAKE_CASE : List[str] = hidden_act _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings _SCREAMING_SNAKE_CASE : Any = type_vocab_size _SCREAMING_SNAKE_CASE : int = type_sequence_label_size _SCREAMING_SNAKE_CASE : Tuple = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = num_labels _SCREAMING_SNAKE_CASE : Tuple = scope _SCREAMING_SNAKE_CASE : str = range_bbox def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE : List[Any] = bbox[i, j, 3] _SCREAMING_SNAKE_CASE : Union[str, Any] = bbox[i, j, 1] _SCREAMING_SNAKE_CASE : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 2] _SCREAMING_SNAKE_CASE : Dict = bbox[i, j, 0] _SCREAMING_SNAKE_CASE : Dict = t _SCREAMING_SNAKE_CASE : Tuple = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self ) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Any: _SCREAMING_SNAKE_CASE : Dict = LiltModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _SCREAMING_SNAKE_CASE : int = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[str] = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : Optional[Any] = LiltForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _SCREAMING_SNAKE_CASE : Any = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = LiltForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( _SCREAMING_SNAKE_CASE ) : Any = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = False def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: return True def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Dict = LiltModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> str: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Union[str, Any] = LiltModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch @slow class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[1, 2]] , device=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : str = torch.Size([1, 2, 7_6_8] ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(outputs.last_hidden_state.shape , _SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) )
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ ={ "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ =False, False, False @dataclass class lowerCAmelCase__: '''simple docstring''' __snake_case = None __snake_case = True __snake_case = True __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __snake_case = field(default='Audio' , init=lowerCamelCase_ , repr=lowerCamelCase_ ) def __call__( self ) -> int: return self.pa_type def UpperCamelCase_ ( self , __lowerCamelCase ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install \'soundfile\'." ) from err if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"bytes": None, "path": value} elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _SCREAMING_SNAKE_CASE : Union[str, Any] = BytesIO() sf.write(lowerCAmelCase__ , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a \'sampling_rate\' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _SCREAMING_SNAKE_CASE : Dict = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _SCREAMING_SNAKE_CASE : List[str] = BytesIO(bytes() ) sf.write(lowerCAmelCase__ , lowerCAmelCase__ , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> dict: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install \'librosa\' and \'soundfile\'." ) from err _SCREAMING_SNAKE_CASE : Optional[int] = xsplitext(lowerCAmelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _SCREAMING_SNAKE_CASE : Dict = token_per_repo_id or {} _SCREAMING_SNAKE_CASE : List[Any] = path.split("::" )[-1] try: _SCREAMING_SNAKE_CASE : Any = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"] _SCREAMING_SNAKE_CASE : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): _SCREAMING_SNAKE_CASE : List[str] = None with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = sf.read(lowerCAmelCase__ ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = sf.read(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Any = array.T if self.mono: _SCREAMING_SNAKE_CASE : Optional[int] = librosa.to_mono(lowerCAmelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _SCREAMING_SNAKE_CASE : str = librosa.resample(lowerCAmelCase__ , orig_sr=lowerCAmelCase__ , target_sr=self.sampling_rate ) _SCREAMING_SNAKE_CASE : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def UpperCamelCase_ ( self , __lowerCamelCase ) -> pa.StructArray: if pa.types.is_string(storage.type ): _SCREAMING_SNAKE_CASE : int = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) _SCREAMING_SNAKE_CASE : Dict = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _SCREAMING_SNAKE_CASE : str = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _SCREAMING_SNAKE_CASE : str = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _SCREAMING_SNAKE_CASE : Dict = pa.array([Audio().encode_example(lowerCAmelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _SCREAMING_SNAKE_CASE : List[Any] = storage.field("bytes" ) else: _SCREAMING_SNAKE_CASE : List[Any] = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _SCREAMING_SNAKE_CASE : List[Any] = storage.field("path" ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _SCREAMING_SNAKE_CASE : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase ): with xopen(lowerCAmelCase__ , "rb" ) as f: _SCREAMING_SNAKE_CASE : Dict = f.read() return bytes_ _SCREAMING_SNAKE_CASE : Optional[int] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _SCREAMING_SNAKE_CASE : List[Any] = pa.array( [os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) _SCREAMING_SNAKE_CASE : str = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type )
366
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCAmelCase__( UpperCamelCase__ ): '''simple docstring''' __snake_case = 'MCTCTFeatureExtractor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: super().__init__(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor _SCREAMING_SNAKE_CASE : Dict = False def __call__( self , *__lowerCamelCase , **__lowerCamelCase ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _SCREAMING_SNAKE_CASE : Dict = kwargs.pop("raw_speech" ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("audio" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = kwargs.pop("sampling_rate" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("text" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = args[0] _SCREAMING_SNAKE_CASE : List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _SCREAMING_SNAKE_CASE : Any = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _SCREAMING_SNAKE_CASE : str = encodings["input_ids"] return inputs def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Dict: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = kwargs.pop("input_features" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = kwargs.pop("labels" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Tuple = args[0] _SCREAMING_SNAKE_CASE : Union[str, Any] = args[1:] if input_features is not None: _SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor.pad(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if labels is not None: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.pad(__lowerCamelCase , **__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: _SCREAMING_SNAKE_CASE : Any = labels["input_ids"] return input_features def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> List[Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @contextmanager def UpperCamelCase_ ( self ) -> Optional[int]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = self.tokenizer yield _SCREAMING_SNAKE_CASE : str = self.feature_extractor _SCREAMING_SNAKE_CASE : int = False
367
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ =logging.get_logger(__name__) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = 192 _SCREAMING_SNAKE_CASE : int = 768 _SCREAMING_SNAKE_CASE : Any = 12 _SCREAMING_SNAKE_CASE : Dict = 3 _SCREAMING_SNAKE_CASE : Optional[Any] = [800, 1333] _SCREAMING_SNAKE_CASE : int = False elif yolos_name == "yolos_s_dWr": _SCREAMING_SNAKE_CASE : List[str] = 330 _SCREAMING_SNAKE_CASE : Dict = 14 _SCREAMING_SNAKE_CASE : Dict = 6 _SCREAMING_SNAKE_CASE : Optional[int] = 1320 elif "yolos_s" in yolos_name: _SCREAMING_SNAKE_CASE : Optional[Any] = 384 _SCREAMING_SNAKE_CASE : Tuple = 1536 _SCREAMING_SNAKE_CASE : Any = 12 _SCREAMING_SNAKE_CASE : Dict = 6 elif "yolos_b" in yolos_name: _SCREAMING_SNAKE_CASE : List[str] = [800, 1344] _SCREAMING_SNAKE_CASE : Optional[Any] = 91 _SCREAMING_SNAKE_CASE : Optional[Any] = "huggingface/label-files" _SCREAMING_SNAKE_CASE : Any = "coco-detection-id2label.json" _SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : List[Any] = idalabel _SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE : Any = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[: config.hidden_size, :] _SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE : str = in_proj_weight[-config.hidden_size :, :] _SCREAMING_SNAKE_CASE : str = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ (__lowerCamelCase ): if "backbone" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("backbone", "vit" ) if "cls_token" in name: _SCREAMING_SNAKE_CASE : int = name.replace("cls_token", "embeddings.cls_token" ) if "det_token" in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace("det_token", "embeddings.detection_tokens" ) if "mid_pos_embed" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("mid_pos_embed", "encoder.mid_position_embeddings" ) if "pos_embed" in name: _SCREAMING_SNAKE_CASE : int = name.replace("pos_embed", "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "blocks" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("blocks", "encoder.layer" ) if "attn.proj" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: _SCREAMING_SNAKE_CASE : Any = name.replace("attn", "attention.self" ) if "norm1" in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("norm1", "layernorm_before" ) if "norm2" in name: _SCREAMING_SNAKE_CASE : str = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("mlp.fc2", "output.dense" ) if "class_embed" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace("class_embed", "class_labels_classifier" ) if "bbox_embed" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("bbox_embed", "bbox_predictor" ) if "vit.norm" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("vit.norm", "vit.layernorm" ) return name def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE : Any = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: _SCREAMING_SNAKE_CASE : Dict = key.split("." ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[2] ) _SCREAMING_SNAKE_CASE : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _SCREAMING_SNAKE_CASE : List[str] = val[:dim, :] _SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE : List[Any] = val[-dim:, :] else: _SCREAMING_SNAKE_CASE : Optional[int] = val[:dim] _SCREAMING_SNAKE_CASE : int = val[dim : dim * 2] _SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:] else: _SCREAMING_SNAKE_CASE : List[str] = val return orig_state_dict def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : List[Any] = get_yolos_config(__lowerCamelCase ) # load original state_dict _SCREAMING_SNAKE_CASE : str = torch.load(__lowerCamelCase, map_location="cpu" )["model"] # load 🤗 model _SCREAMING_SNAKE_CASE : Tuple = YolosForObjectDetection(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = convert_state_dict(__lowerCamelCase, __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor _SCREAMING_SNAKE_CASE : Any = 800 if yolos_name != "yolos_ti" else 512 _SCREAMING_SNAKE_CASE : Tuple = YolosImageProcessor(format="coco_detection", size=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = image_processor(images=prepare_img(), return_tensors="pt" ) _SCREAMING_SNAKE_CASE : int = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.logits, outputs.pred_boxes _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = None, None if yolos_name == "yolos_ti": _SCREAMING_SNAKE_CASE : str = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _SCREAMING_SNAKE_CASE : str = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _SCREAMING_SNAKE_CASE : str = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3], __lowerCamelCase, atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3], __lowerCamelCase, atol=1e-4 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: _SCREAMING_SNAKE_CASE : Any = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _SCREAMING_SNAKE_CASE : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__lowerCamelCase, organization="hustvl" ) model.push_to_hub(__lowerCamelCase, organization="hustvl" ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase__ =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
368
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ =get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = SpeechTaTokenizer __snake_case = False __snake_case = True def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaTokenizer(_a ) _SCREAMING_SNAKE_CASE : Tuple = AddedToken("<mask>" , lstrip=_a , rstrip=_a ) _SCREAMING_SNAKE_CASE : Optional[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = "this is a test" _SCREAMING_SNAKE_CASE : Optional[Any] = "this is a test" return input_text, output_text def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=2_0 , __lowerCamelCase=5 ) -> str: _SCREAMING_SNAKE_CASE : str = self.get_input_output_texts(_a ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(_a , add_special_tokens=_a ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = "<pad>" _SCREAMING_SNAKE_CASE : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(_a ) , 8_1 ) def UpperCamelCase_ ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.vocab_size _SCREAMING_SNAKE_CASE : List[Any] = len(_a ) self.assertNotEqual(_a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _SCREAMING_SNAKE_CASE : int = ["aaaaa bbbbbb", "cccccccccdddddddd"] _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.add_tokens(_a ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer.vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size + len(_a ) ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _SCREAMING_SNAKE_CASE : Tuple = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _SCREAMING_SNAKE_CASE : Tuple = tokenizer.add_special_tokens(_a ) _SCREAMING_SNAKE_CASE : Any = tokenizer.vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size_a + len(_a ) ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase_ ( self ) -> str: pass def UpperCamelCase_ ( self ) -> Optional[int]: pass def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(_a , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) _SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(_a ) # fmt: off self.assertListEqual(_a , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on _SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: # Use custom sequence because this tokenizer does not handle numbers. _SCREAMING_SNAKE_CASE : Dict = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=_a , )
369
from math import isqrt, loga def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = False return [i for i in range(2, __lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ): _SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
325
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return [sentence[i : i + ngram_size] for i in range(len(__lowerCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
370
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__ =logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__( _a ): '''simple docstring''' __snake_case = ['pixel_values'] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = PILImageResampling.BICUBIC , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = 1 / 2_5_5 , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , **__lowerCamelCase , ) -> List[Any]: super().__init__(**snake_case_ ) _SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {"""shortest_edge""": 2_2_4} _SCREAMING_SNAKE_CASE : int = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name="crop_size" ) _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Optional[int] = size _SCREAMING_SNAKE_CASE : Optional[int] = resample _SCREAMING_SNAKE_CASE : Dict = do_center_crop _SCREAMING_SNAKE_CASE : List[str] = crop_size _SCREAMING_SNAKE_CASE : List[Any] = do_rescale _SCREAMING_SNAKE_CASE : Dict = rescale_factor _SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize _SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE : Tuple = do_convert_rgb def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = PILImageResampling.BICUBIC , __lowerCamelCase = None , **__lowerCamelCase , ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _SCREAMING_SNAKE_CASE : Dict = get_resize_output_image_size(snake_case_ , size=size["shortest_edge"] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> Tuple: _SCREAMING_SNAKE_CASE : str = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(snake_case_ , size=(size["height"], size["width"]) , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> Optional[Any]: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> Optional[int]: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size _SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(snake_case_ , param_name="size" , default_to_square=snake_case_ ) _SCREAMING_SNAKE_CASE : int = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : str = get_size_dict(snake_case_ , param_name="crop_size" , default_to_square=snake_case_ ) _SCREAMING_SNAKE_CASE : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE : Tuple = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE : Tuple = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : int = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Optional[int] = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : str = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE : List[Any] = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _SCREAMING_SNAKE_CASE : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
371
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = SwinvaConfig() _SCREAMING_SNAKE_CASE : int = swinva_name.split("_" ) _SCREAMING_SNAKE_CASE : str = name_split[1] if "to" in name_split[3]: _SCREAMING_SNAKE_CASE : Any = int(name_split[3][-3:] ) else: _SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[3] ) if "to" in name_split[2]: _SCREAMING_SNAKE_CASE : Dict = int(name_split[2][-2:] ) else: _SCREAMING_SNAKE_CASE : List[Any] = int(name_split[2][6:] ) if model_size == "tiny": _SCREAMING_SNAKE_CASE : Any = 96 _SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2, 6, 2) _SCREAMING_SNAKE_CASE : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": _SCREAMING_SNAKE_CASE : List[str] = 96 _SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE : Optional[Any] = (3, 6, 12, 24) elif model_size == "base": _SCREAMING_SNAKE_CASE : Any = 128 _SCREAMING_SNAKE_CASE : int = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE : Tuple = (4, 8, 16, 32) else: _SCREAMING_SNAKE_CASE : List[Any] = 192 _SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE : Union[str, Any] = (6, 12, 24, 48) if "to" in swinva_name: _SCREAMING_SNAKE_CASE : Tuple = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _SCREAMING_SNAKE_CASE : Optional[Any] = 21841 _SCREAMING_SNAKE_CASE : Optional[Any] = '''huggingface/label-files''' _SCREAMING_SNAKE_CASE : List[str] = '''imagenet-22k-id2label.json''' _SCREAMING_SNAKE_CASE : str = json.load(open(hf_hub_download(__lowerCAmelCase, __lowerCAmelCase, repo_type="dataset" ), "r" ) ) _SCREAMING_SNAKE_CASE : List[Any] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : int = idalabel _SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} else: _SCREAMING_SNAKE_CASE : Tuple = 1000 _SCREAMING_SNAKE_CASE : int = '''huggingface/label-files''' _SCREAMING_SNAKE_CASE : Union[str, Any] = '''imagenet-1k-id2label.json''' _SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(__lowerCAmelCase, __lowerCAmelCase, repo_type="dataset" ), "r" ) ) _SCREAMING_SNAKE_CASE : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel _SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : int = img_size _SCREAMING_SNAKE_CASE : Any = num_classes _SCREAMING_SNAKE_CASE : Tuple = embed_dim _SCREAMING_SNAKE_CASE : Any = depths _SCREAMING_SNAKE_CASE : str = num_heads _SCREAMING_SNAKE_CASE : Any = window_size return config def lowerCamelCase__ (__lowerCamelCase ): if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("patch_embed.norm", "embeddings.norm" ) if "layers" in name: _SCREAMING_SNAKE_CASE : List[Any] = '''encoder.''' + name if "attn.proj" in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: _SCREAMING_SNAKE_CASE : int = name.replace("attn", "attention.self" ) if "norm1" in name: _SCREAMING_SNAKE_CASE : Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("mlp.fc2", "output.dense" ) if "q_bias" in name: _SCREAMING_SNAKE_CASE : str = name.replace("q_bias", "query.bias" ) if "k_bias" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("k_bias", "key.bias" ) if "v_bias" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace("v_bias", "value.bias" ) if "cpb_mlp" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("cpb_mlp", "continuous_position_bias_mlp" ) if name == "norm.weight": _SCREAMING_SNAKE_CASE : Tuple = '''layernorm.weight''' if name == "norm.bias": _SCREAMING_SNAKE_CASE : Optional[Any] = '''layernorm.bias''' if "head" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("head", "classifier" ) else: _SCREAMING_SNAKE_CASE : Tuple = '''swinv2.''' + name return name def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE : Optional[int] = orig_state_dict.pop(__lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: _SCREAMING_SNAKE_CASE : Dict = key.split("." ) _SCREAMING_SNAKE_CASE : Any = int(key_split[1] ) _SCREAMING_SNAKE_CASE : List[Any] = int(key_split[3] ) _SCREAMING_SNAKE_CASE : List[str] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _SCREAMING_SNAKE_CASE : Any = val[:dim, :] _SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: _SCREAMING_SNAKE_CASE : Tuple = val[:dim] _SCREAMING_SNAKE_CASE : List[str] = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE : str = val[-dim:] else: _SCREAMING_SNAKE_CASE : Tuple = val return orig_state_dict def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = timm.create_model(__lowerCAmelCase, pretrained=__lowerCAmelCase ) timm_model.eval() _SCREAMING_SNAKE_CASE : List[str] = get_swinva_config(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : int = SwinvaForImageClassification(__lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE : Dict = convert_state_dict(timm_model.state_dict(), __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_", "-" ) ) ) _SCREAMING_SNAKE_CASE : str = Image.open(requests.get(__lowerCAmelCase, stream=__lowerCAmelCase ).raw ) _SCREAMING_SNAKE_CASE : Tuple = image_processor(images=__lowerCAmelCase, return_tensors="pt" ) _SCREAMING_SNAKE_CASE : Any = timm_model(inputs["pixel_values"] ) _SCREAMING_SNAKE_CASE : List[Any] = model(**__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase, __lowerCAmelCase, atol=1e-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase, __lowerCAmelCase ), organization="nandwalritik", commit_message="Add model", ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ =parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
350
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
UpperCamelCase__ =[4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase__ =[3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase__ ={ 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _SCREAMING_SNAKE_CASE : Optional[int] = year // 100 _SCREAMING_SNAKE_CASE : Any = (5 * (century % 4) + 2) % 7 _SCREAMING_SNAKE_CASE : str = year % 100 _SCREAMING_SNAKE_CASE : int = centurian % 12 _SCREAMING_SNAKE_CASE : Dict = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _SCREAMING_SNAKE_CASE : str = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _SCREAMING_SNAKE_CASE : List[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
351
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = old_name if "patch_embed" in old_name: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = old_name.split("." ) if layer == "0": _SCREAMING_SNAKE_CASE : Any = old_name.replace("0", "convolution1" ) elif layer == "1": _SCREAMING_SNAKE_CASE : Dict = old_name.replace("1", "batchnorm_before" ) elif layer == "3": _SCREAMING_SNAKE_CASE : List[Any] = old_name.replace("3", "convolution2" ) else: _SCREAMING_SNAKE_CASE : List[Any] = old_name.replace("4", "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d", __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = R"\b\d{2}\b" if bool(re.search(__lowerCamelCase, __lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : Optional[Any] = re.search(R"\d\.\d\d.", __lowerCamelCase ).group() else: _SCREAMING_SNAKE_CASE : List[Any] = re.search(R"\d\.\d.", __lowerCamelCase ).group() if int(match[0] ) < 6: _SCREAMING_SNAKE_CASE : Tuple = old_name.replace(__lowerCamelCase, "" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _SCREAMING_SNAKE_CASE : List[Any] = "intermediate_stages." + trimmed_name else: _SCREAMING_SNAKE_CASE : Union[str, Any] = old_name.replace(__lowerCamelCase, "" ) if int(match[2] ) < num_meta4D_last_stage: _SCREAMING_SNAKE_CASE : Dict = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2] ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = str(int(match[2] ) - num_meta4D_last_stage ) _SCREAMING_SNAKE_CASE : Any = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = trimmed_name.replace("norm1", "layernorm1" ) elif "norm2" in old_name: _SCREAMING_SNAKE_CASE : Optional[int] = trimmed_name.replace("norm2", "layernorm2" ) elif "fc1" in old_name: _SCREAMING_SNAKE_CASE : str = trimmed_name.replace("fc1", "linear_in" ) elif "fc2" in old_name: _SCREAMING_SNAKE_CASE : Optional[Any] = trimmed_name.replace("fc2", "linear_out" ) _SCREAMING_SNAKE_CASE : str = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d.", __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = old_name.replace("network", "intermediate_stages" ) if "fc" in new_name: _SCREAMING_SNAKE_CASE : str = new_name.replace("fc", "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _SCREAMING_SNAKE_CASE : Tuple = new_name.replace("norm1", "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _SCREAMING_SNAKE_CASE : Any = new_name.replace("norm2", "batchnorm_after" ) if "proj" in new_name: _SCREAMING_SNAKE_CASE : Any = new_name.replace("proj", "projection" ) if "dist_head" in new_name: _SCREAMING_SNAKE_CASE : Optional[int] = new_name.replace("dist_head", "distillation_classifier" ) elif "head" in new_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_name.replace("head", "classifier" ) elif "patch_embed" in new_name: _SCREAMING_SNAKE_CASE : str = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _SCREAMING_SNAKE_CASE : Any = new_name.replace("norm", "layernorm" ) _SCREAMING_SNAKE_CASE : int = "efficientformer." + new_name else: _SCREAMING_SNAKE_CASE : Optional[Any] = "efficientformer.encoder." + new_name return new_name def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for key in checkpoint.copy().keys(): _SCREAMING_SNAKE_CASE : Dict = checkpoint.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = val return checkpoint def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : str = "http://images.cocodataset.org/val2017/000000039769.jpg" _SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return image def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = torch.load(__lowerCamelCase, map_location="cpu" )["model"] _SCREAMING_SNAKE_CASE : Dict = EfficientFormerConfig.from_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _SCREAMING_SNAKE_CASE : List[Any] = config.depths[-1] - config.num_metaad_blocks + 1 _SCREAMING_SNAKE_CASE : List[str] = convert_torch_checkpoint(__lowerCamelCase, __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Tuple = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() _SCREAMING_SNAKE_CASE : Optional[int] = 256 _SCREAMING_SNAKE_CASE : List[Any] = 224 _SCREAMING_SNAKE_CASE : List[str] = EfficientFormerImageProcessor( size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], ) _SCREAMING_SNAKE_CASE : Tuple = processor(images=__lowerCamelCase, return_tensors="pt" ).pixel_values # original processing pipeline _SCREAMING_SNAKE_CASE : Any = Compose( [ Resize(__lowerCamelCase, interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowerCamelCase ), ToTensor(), Normalize(__lowerCamelCase, __lowerCamelCase ), ] ) _SCREAMING_SNAKE_CASE : Optional[int] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = outputs.logits _SCREAMING_SNAKE_CASE : Tuple = (1, 1000) if "l1" in model_name: _SCREAMING_SNAKE_CASE : int = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10], __lowerCamelCase, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _SCREAMING_SNAKE_CASE : int = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10], __lowerCamelCase, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _SCREAMING_SNAKE_CASE : Dict = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCamelCase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""", commit_message="Add model", use_temp_dir=__lowerCamelCase, ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""", commit_message="Add image processor", use_temp_dir=__lowerCamelCase, ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) UpperCamelCase__ =parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
352
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=6_4 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=6_4 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = parent _SCREAMING_SNAKE_CASE : List[str] = batch_size _SCREAMING_SNAKE_CASE : List[str] = seq_length _SCREAMING_SNAKE_CASE : str = is_training _SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask _SCREAMING_SNAKE_CASE : Optional[int] = use_token_type_ids _SCREAMING_SNAKE_CASE : Dict = use_labels _SCREAMING_SNAKE_CASE : int = vocab_size _SCREAMING_SNAKE_CASE : Any = hidden_size _SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads _SCREAMING_SNAKE_CASE : str = intermediate_size _SCREAMING_SNAKE_CASE : Tuple = hidden_act _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Tuple = type_vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Dict = initializer_range _SCREAMING_SNAKE_CASE : str = num_labels _SCREAMING_SNAKE_CASE : Optional[int] = num_choices _SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ) -> Optional[Any]: return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : Optional[Any] = None _SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> Union[str, Any]: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Tuple = self.num_labels _SCREAMING_SNAKE_CASE : str = MPNetForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : int = MPNetForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Tuple = model( __lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : List[str] = self.num_labels _SCREAMING_SNAKE_CASE : Optional[Any] = MPNetForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) : Union[str, Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __snake_case = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = True def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__lowerCamelCase ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : str = MPNetModel.from_pretrained("microsoft/mpnet-base" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase__ =TypeVar('T') class lowerCAmelCase__( Generic[T] ): '''simple docstring''' __snake_case = 4_2 # Cache store of keys __snake_case = 4_2 # References of the keys in cache __snake_case = 1_0 # Maximum capacity of cache def __init__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = deque() _SCREAMING_SNAKE_CASE : List[str] = set() if not n: _SCREAMING_SNAKE_CASE : str = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _SCREAMING_SNAKE_CASE : Optional[int] = n def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _SCREAMING_SNAKE_CASE : Optional[Any] = self.dq_store.pop() self.key_reference.remove(_lowerCAmelCase ) else: self.dq_store.remove(_lowerCAmelCase ) self.dq_store.appendleft(_lowerCAmelCase ) self.key_reference.add(_lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: for k in self.dq_store: print(_lowerCAmelCase ) def __repr__( self ) -> Any: return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ =LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
354
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
325
0
import functools def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = len(_A ) _SCREAMING_SNAKE_CASE : Any = len(_A ) @functools.cache def min_distance(__lowerCamelCase, __lowerCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _SCREAMING_SNAKE_CASE : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, _A ), 1 + min_distance(_A, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
355
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
0
"""simple docstring""" def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = " " ): _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = 0 for index, char in enumerate(__lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) _SCREAMING_SNAKE_CASE : List[str] = index + 1 elif index + 1 == len(__lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
356
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> int: super().tearDown() gc.collect() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : Any = controlnet_params _SCREAMING_SNAKE_CASE : List[str] = '''bird''' _SCREAMING_SNAKE_CASE : Dict = jax.device_count() _SCREAMING_SNAKE_CASE : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) _SCREAMING_SNAKE_CASE : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) _SCREAMING_SNAKE_CASE : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) _SCREAMING_SNAKE_CASE : str = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Dict = jax.random.split(lowerCamelCase__ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Union[str, Any] = replicate(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[str] = pipe( prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=5_0 , jit=lowerCamelCase__ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) _SCREAMING_SNAKE_CASE : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : Any = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : str = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : str = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : List[str] = controlnet_params _SCREAMING_SNAKE_CASE : Optional[Any] = '''Chef in the kitchen''' _SCREAMING_SNAKE_CASE : Tuple = jax.device_count() _SCREAMING_SNAKE_CASE : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _SCREAMING_SNAKE_CASE : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) _SCREAMING_SNAKE_CASE : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Dict = jax.random.split(lowerCamelCase__ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Any = replicate(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Dict = pipe( prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=5_0 , jit=lowerCamelCase__ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) _SCREAMING_SNAKE_CASE : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : str = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowerCAmelCase__( lowerCamelCase__ ): '''simple docstring''' __snake_case = 'bart' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=1_2 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=1_6 , __lowerCamelCase=1_2 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=1_6 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase="gelu" , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=0.0 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=3 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=True , __lowerCamelCase=2 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : str = d_model _SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim _SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers _SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads _SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim _SCREAMING_SNAKE_CASE : Optional[int] = decoder_layers _SCREAMING_SNAKE_CASE : Any = decoder_attention_heads _SCREAMING_SNAKE_CASE : Tuple = dropout _SCREAMING_SNAKE_CASE : str = attention_dropout _SCREAMING_SNAKE_CASE : List[Any] = activation_dropout _SCREAMING_SNAKE_CASE : Optional[int] = activation_function _SCREAMING_SNAKE_CASE : Union[str, Any] = init_std _SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop _SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop _SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache _SCREAMING_SNAKE_CASE : List[str] = encoder_layers _SCREAMING_SNAKE_CASE : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowercase__ ): _SCREAMING_SNAKE_CASE : List[Any] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class lowerCAmelCase__( lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Optional[int]: if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch"} _SCREAMING_SNAKE_CASE : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "decoder_sequence"} _SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _SCREAMING_SNAKE_CASE : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.num_layers for i in range(lowercase__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} _SCREAMING_SNAKE_CASE : str = {0: "batch", 2: "past_sequence + sequence"} else: _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def UpperCamelCase_ ( self ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE : int = super().outputs else: _SCREAMING_SNAKE_CASE : List[str] = super(lowercase__ , self ).outputs if self.use_past: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowercase__ ): _SCREAMING_SNAKE_CASE : int = {0: "batch", 2: "past_sequence + sequence"} _SCREAMING_SNAKE_CASE : Dict = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Generate decoder inputs _SCREAMING_SNAKE_CASE : str = seq_length if not self.use_past else 1 _SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _SCREAMING_SNAKE_CASE : Optional[int] = dict(**lowercase__ , **lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = common_inputs["input_ids"].shape _SCREAMING_SNAKE_CASE : Optional[Any] = common_inputs["decoder_input_ids"].shape[1] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads _SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _SCREAMING_SNAKE_CASE : Optional[int] = decoder_seq_length + 3 _SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowercase__ , lowercase__ )] , dim=1 ) _SCREAMING_SNAKE_CASE : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers _SCREAMING_SNAKE_CASE : Tuple = min(lowercase__ , lowercase__ ) _SCREAMING_SNAKE_CASE : Tuple = max(lowercase__ , lowercase__ ) - min_num_layers _SCREAMING_SNAKE_CASE : Optional[int] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. _SCREAMING_SNAKE_CASE : Tuple = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowercase__ , lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> int: _SCREAMING_SNAKE_CASE : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE : Optional[Any] = seqlen + 2 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.num_layers _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_attention_heads _SCREAMING_SNAKE_CASE : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _SCREAMING_SNAKE_CASE : Tuple = common_inputs["attention_mask"].dtype _SCREAMING_SNAKE_CASE : Dict = torch.cat( [common_inputs["attention_mask"], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) _SCREAMING_SNAKE_CASE : Tuple = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> List[str]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _SCREAMING_SNAKE_CASE : Optional[int] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _SCREAMING_SNAKE_CASE : Any = tokenizer.num_special_tokens_to_add(lowercase__ ) _SCREAMING_SNAKE_CASE : List[Any] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence _SCREAMING_SNAKE_CASE : Any = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _SCREAMING_SNAKE_CASE : int = dict(tokenizer(lowercase__ , return_tensors=lowercase__ ) ) return common_inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) elif self.task == "causal-lm": _SCREAMING_SNAKE_CASE : int = self._generate_dummy_inputs_for_causal_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) else: _SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) return common_inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE : str = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: _SCREAMING_SNAKE_CASE : Dict = super(lowercase__ , self )._flatten_past_key_values_( lowercase__ , lowercase__ , lowercase__ , lowercase__ )
358
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = 9_9 _SCREAMING_SNAKE_CASE : str = 3_8_4 _SCREAMING_SNAKE_CASE : List[Any] = 2 _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Dict = 3_7 _SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu" _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : List[Any] = 5_1_2 _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Dict = 2 _SCREAMING_SNAKE_CASE : Any = 0.02 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 1_2_8 _SCREAMING_SNAKE_CASE : Optional[int] = 2 _SCREAMING_SNAKE_CASE : int = 9 _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True if hasattr(__lowerCamelCase , "use_cache" ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"] else: _SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"] _SCREAMING_SNAKE_CASE : Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
325
0
import datasets from .evaluate import evaluate UpperCamelCase__ ='\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' UpperCamelCase__ ='\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' UpperCamelCase__ ='\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions} _SCREAMING_SNAKE_CASE : Any = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _SCREAMING_SNAKE_CASE : int = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase ) return score
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=3_3 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = parent _SCREAMING_SNAKE_CASE : int = batch_size _SCREAMING_SNAKE_CASE : Tuple = seq_length _SCREAMING_SNAKE_CASE : Optional[int] = is_training _SCREAMING_SNAKE_CASE : Dict = use_input_mask _SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids _SCREAMING_SNAKE_CASE : str = use_labels _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers _SCREAMING_SNAKE_CASE : List[str] = num_attention_heads _SCREAMING_SNAKE_CASE : str = intermediate_size _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels _SCREAMING_SNAKE_CASE : Tuple = num_choices _SCREAMING_SNAKE_CASE : Any = scope def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> List[str]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) _SCREAMING_SNAKE_CASE : str = model(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : str = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Tuple = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Optional[Any] = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : str = config_and_inputs _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = False __snake_case = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case = () __snake_case = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = EsmModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> str: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE : List[str] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def UpperCamelCase_ ( self ) -> Any: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : str = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE : str = EsmEmbeddings(config=__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE : List[Any] = create_position_ids_from_input_ids(__UpperCamelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase , __UpperCamelCase ) ) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE : Union[str, Any] = EsmEmbeddings(config=__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.empty(2 , 4 , 3_0 ) _SCREAMING_SNAKE_CASE : Optional[int] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE : Any = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase , __UpperCamelCase ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def UpperCamelCase_ ( self ) -> int: pass @unittest.skip("Esm does not support embedding resizing" ) def UpperCamelCase_ ( self ) -> Optional[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self ) -> Dict: pass @require_torch class lowerCAmelCase__( _lowercase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[str]: with torch.no_grad(): _SCREAMING_SNAKE_CASE : int = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() _SCREAMING_SNAKE_CASE : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : Tuple = model(__UpperCamelCase )[0] _SCREAMING_SNAKE_CASE : Tuple = 3_3 _SCREAMING_SNAKE_CASE : int = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[8.9215, -1_0.5_8_9_8, -6.4671], [-6.3967, -1_3.9_1_1_4, -1.1212], [-7.7812, -1_3.9_5_1_6, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ) -> Dict: with torch.no_grad(): _SCREAMING_SNAKE_CASE : Dict = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _SCREAMING_SNAKE_CASE : Any = model(__UpperCamelCase )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" UpperCamelCase__ =[ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
361
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ =[0, 25, 50] UpperCamelCase__ =[25, 50, 75] UpperCamelCase__ =fuzz.membership.trimf(X, abca) UpperCamelCase__ =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ =np.ones(75) UpperCamelCase__ =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
325
0
from collections import deque from math import floor from random import random from time import time class lowerCAmelCase__: '''simple docstring''' def __init__( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = {} def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1 ) -> str: if self.graph.get(_a ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _SCREAMING_SNAKE_CASE : int = [[w, v]] if not self.graph.get(_a ): _SCREAMING_SNAKE_CASE : List[Any] = [] def UpperCamelCase_ ( self ) -> int: return list(self.graph ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: if self.graph.get(_a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_a ) def UpperCamelCase_ ( self , __lowerCamelCase=-2 , __lowerCamelCase=-1 ) -> List[str]: if s == d: return [] _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : List[Any] = [] if s == -2: _SCREAMING_SNAKE_CASE : Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_a ) != 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : Any = ss # check if se have reached the starting point if len(_a ) == 0: return visited def UpperCamelCase_ ( self , __lowerCamelCase=-1 ) -> Tuple: if c == -1: _SCREAMING_SNAKE_CASE : Optional[Any] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_a ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _SCREAMING_SNAKE_CASE : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(_a , _a , 1 ) def UpperCamelCase_ ( self , __lowerCamelCase=-2 ) -> int: _SCREAMING_SNAKE_CASE : List[str] = deque() _SCREAMING_SNAKE_CASE : Dict = [] if s == -2: _SCREAMING_SNAKE_CASE : int = list(self.graph )[0] d.append(_a ) visited.append(_a ) while d: _SCREAMING_SNAKE_CASE : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return len(self.graph[u] ) def UpperCamelCase_ ( self , __lowerCamelCase=-2 ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [] _SCREAMING_SNAKE_CASE : Union[str, Any] = [] if s == -2: _SCREAMING_SNAKE_CASE : int = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : Optional[int] = s _SCREAMING_SNAKE_CASE : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : Optional[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_a ) != 0: _SCREAMING_SNAKE_CASE : List[Any] = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : Any = ss # check if se have reached the starting point if len(_a ) == 0: return sorted_nodes def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = -2 _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Tuple = s _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(_a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE : Optional[Any] = True if len(_a ) != 0: _SCREAMING_SNAKE_CASE : Tuple = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : Optional[Any] = False indirect_parents.append(_a ) _SCREAMING_SNAKE_CASE : int = s _SCREAMING_SNAKE_CASE : Tuple = ss # check if se have reached the starting point if len(_a ) == 0: return list(_a ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : Optional[int] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : Dict = -2 _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : str = s _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE : Optional[int] = len(_a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE : Any = True if len(_a ) != 0: _SCREAMING_SNAKE_CASE : Dict = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : Optional[int] = False indirect_parents.append(_a ) _SCREAMING_SNAKE_CASE : int = s _SCREAMING_SNAKE_CASE : List[str] = ss # check if se have reached the starting point if len(_a ) == 0: return False def UpperCamelCase_ ( self , __lowerCamelCase=-2 , __lowerCamelCase=-1 ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = time() self.dfs(_a , _a ) _SCREAMING_SNAKE_CASE : str = time() return end - begin def UpperCamelCase_ ( self , __lowerCamelCase=-2 ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = time() self.bfs(_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = time() return end - begin class lowerCAmelCase__: '''simple docstring''' def __init__( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = {} def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1 ) -> Any: if self.graph.get(_a ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _SCREAMING_SNAKE_CASE : List[str] = [[w, v]] # add the other way if self.graph.get(_a ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _SCREAMING_SNAKE_CASE : int = [[w, u]] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: if self.graph.get(_a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_a ) # the other way round if self.graph.get(_a ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_a ) def UpperCamelCase_ ( self , __lowerCamelCase=-2 , __lowerCamelCase=-1 ) -> int: if s == d: return [] _SCREAMING_SNAKE_CASE : Any = [] _SCREAMING_SNAKE_CASE : int = [] if s == -2: _SCREAMING_SNAKE_CASE : Dict = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_a ) != 0: _SCREAMING_SNAKE_CASE : Optional[int] = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : int = ss # check if se have reached the starting point if len(_a ) == 0: return visited def UpperCamelCase_ ( self , __lowerCamelCase=-1 ) -> List[Any]: if c == -1: _SCREAMING_SNAKE_CASE : Dict = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_a ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _SCREAMING_SNAKE_CASE : Any = floor(random() * c ) + 1 if n != i: self.add_pair(_a , _a , 1 ) def UpperCamelCase_ ( self , __lowerCamelCase=-2 ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Tuple = deque() _SCREAMING_SNAKE_CASE : Optional[int] = [] if s == -2: _SCREAMING_SNAKE_CASE : Tuple = list(self.graph )[0] d.append(_a ) visited.append(_a ) while d: _SCREAMING_SNAKE_CASE : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: return len(self.graph[u] ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : int = -2 _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = s _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE : Any = len(_a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE : Dict = True if len(_a ) != 0: _SCREAMING_SNAKE_CASE : int = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : Dict = False indirect_parents.append(_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = s _SCREAMING_SNAKE_CASE : Any = ss # check if se have reached the starting point if len(_a ) == 0: return list(_a ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) _SCREAMING_SNAKE_CASE : List[str] = -2 _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : Dict = s _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE : str = len(_a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE : Optional[Any] = True if len(_a ) != 0: _SCREAMING_SNAKE_CASE : List[Any] = stack[len(_a ) - 1] else: _SCREAMING_SNAKE_CASE : List[Any] = False indirect_parents.append(_a ) _SCREAMING_SNAKE_CASE : Optional[int] = s _SCREAMING_SNAKE_CASE : List[str] = ss # check if se have reached the starting point if len(_a ) == 0: return False def UpperCamelCase_ ( self ) -> List[str]: return list(self.graph ) def UpperCamelCase_ ( self , __lowerCamelCase=-2 , __lowerCamelCase=-1 ) -> int: _SCREAMING_SNAKE_CASE : List[str] = time() self.dfs(_a , _a ) _SCREAMING_SNAKE_CASE : str = time() return end - begin def UpperCamelCase_ ( self , __lowerCamelCase=-2 ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = time() self.bfs(_a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = time() return end - begin
362
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
0
UpperCamelCase__ =[ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase__ =[ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase__ =[ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase__ =[ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase__ =[ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase__ =[ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase__ =[ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase__ =[ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
363
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCAmelCase__( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ) -> int: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Dict = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = self._create_example_records() _SCREAMING_SNAKE_CASE : Optional[Any] = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(_SCREAMING_SNAKE_CASE ): self.assertDictEqual(_SCREAMING_SNAKE_CASE , example_records[i] ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Tuple = self._create_example_records() _SCREAMING_SNAKE_CASE : int = Dataset.from_list(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCamelCase_ ( self ) -> Dict: # checks what happens with missing columns _SCREAMING_SNAKE_CASE : Optional[int] = [{"col_1": 1}, {"col_2": "x"}] _SCREAMING_SNAKE_CASE : List[str] = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def UpperCamelCase_ ( self ) -> Optional[int]: # checks if the type can be inferred from the second record _SCREAMING_SNAKE_CASE : Optional[Any] = [{"col_1": []}, {"col_1": [1, 2]}] _SCREAMING_SNAKE_CASE : Any = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_list([] ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual(dset.column_names , [] )
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _enforce_args(_a, _a ) if n == 0: return 0 _SCREAMING_SNAKE_CASE : int = float("-inf" ) for i in range(1, n + 1 ): _SCREAMING_SNAKE_CASE : str = max( _a, prices[i - 1] + naive_cut_rod_recursive(n - i, _a ) ) return max_revue def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _enforce_args(_a, _a ) _SCREAMING_SNAKE_CASE : Tuple = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_a, _a, _a ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _SCREAMING_SNAKE_CASE : Dict = float("-inf" ) for i in range(1, n + 1 ): _SCREAMING_SNAKE_CASE : Optional[int] = max( _a, prices[i - 1] + _top_down_cut_rod_recursive(n - i, _a, _a ), ) _SCREAMING_SNAKE_CASE : str = max_revenue return max_rev[n] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _enforce_args(_a, _a ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _SCREAMING_SNAKE_CASE : Tuple = [float("-inf" ) for _ in range(n + 1 )] _SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1, n + 1 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = max_rev[i] for j in range(1, i + 1 ): _SCREAMING_SNAKE_CASE : Optional[int] = max(_a, prices[j - 1] + max_rev[i - j] ) _SCREAMING_SNAKE_CASE : str = max_revenue_i return max_rev[n] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): if n < 0: _SCREAMING_SNAKE_CASE : int = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(_a ) if n > len(_a ): _SCREAMING_SNAKE_CASE : List[str] = ( """Each integral piece of rod must have a corresponding price. """ f"""Got n = {n} but length of prices = {len(_a )}""" ) raise ValueError(_a ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Dict = [6, 10, 12, 15, 20, 23] _SCREAMING_SNAKE_CASE : str = len(_a ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _SCREAMING_SNAKE_CASE : Any = 36 _SCREAMING_SNAKE_CASE : Optional[Any] = top_down_cut_rod(_a, _a ) _SCREAMING_SNAKE_CASE : str = bottom_up_cut_rod(_a, _a ) _SCREAMING_SNAKE_CASE : Dict = naive_cut_rod_recursive(_a, _a ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
365
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ =OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) UpperCamelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase__ (__lowerCamelCase ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _SCREAMING_SNAKE_CASE : List[Any] = model_type_to_module_name(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE : Optional[int] = importlib.import_module(f""".{module_name}""", "transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_, "__name__", SCREAMING_SNAKE_CASE_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return None def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = False, __lowerCamelCase = False, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = False, **__lowerCamelCase, ): _SCREAMING_SNAKE_CASE : Optional[Any] = get_file_from_repo( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, force_download=SCREAMING_SNAKE_CASE_, resume_download=SCREAMING_SNAKE_CASE_, proxies=SCREAMING_SNAKE_CASE_, use_auth_token=SCREAMING_SNAKE_CASE_, revision=SCREAMING_SNAKE_CASE_, local_files_only=SCREAMING_SNAKE_CASE_, ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE_, encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase__: '''simple docstring''' def __init__( self ) -> List[str]: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("config" , _lowercase ) _SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("trust_remote_code" , _lowercase ) _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) _SCREAMING_SNAKE_CASE : List[str] = config_dict.get("image_processor_type" , _lowercase ) _SCREAMING_SNAKE_CASE : Optional[Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _SCREAMING_SNAKE_CASE : int = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _SCREAMING_SNAKE_CASE : str = config_dict.pop("feature_extractor_type" , _lowercase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _SCREAMING_SNAKE_CASE : List[str] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _SCREAMING_SNAKE_CASE : Any = config_dict["auto_map"]["AutoFeatureExtractor"] _SCREAMING_SNAKE_CASE : Any = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): _SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` _SCREAMING_SNAKE_CASE : int = getattr(_lowercase , "image_processor_type" , _lowercase ) if hasattr(_lowercase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _SCREAMING_SNAKE_CASE : Optional[int] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _SCREAMING_SNAKE_CASE : Optional[int] = image_processor_class_from_name(_lowercase ) _SCREAMING_SNAKE_CASE : Any = image_processor_auto_map is not None _SCREAMING_SNAKE_CASE : Optional[Any] = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING _SCREAMING_SNAKE_CASE : Dict = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: _SCREAMING_SNAKE_CASE : Optional[int] = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) _SCREAMING_SNAKE_CASE : Any = kwargs.pop("code_revision" , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: _SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
366
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
0
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class lowerCAmelCase__( lowerCamelCase_ ): '''simple docstring''' __snake_case = """xlm-prophetnet""" __snake_case = ["""past_key_values"""] __snake_case = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self , __lowerCamelCase = 0.1 , __lowerCamelCase = "gelu" , __lowerCamelCase = 3_0_5_2_2 , __lowerCamelCase = 1_0_2_4 , __lowerCamelCase = 4_0_9_6 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_6 , __lowerCamelCase = 4_0_9_6 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_6 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 5_1_2 , __lowerCamelCase = 0.02 , __lowerCamelCase = True , __lowerCamelCase = True , __lowerCamelCase = 0 , __lowerCamelCase = 2 , __lowerCamelCase = 3_2 , __lowerCamelCase = 1_2_8 , __lowerCamelCase = False , __lowerCamelCase = 0.0 , __lowerCamelCase = True , __lowerCamelCase = 0 , __lowerCamelCase = 1 , __lowerCamelCase = 2 , **__lowerCamelCase , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_size _SCREAMING_SNAKE_CASE : int = encoder_ffn_dim _SCREAMING_SNAKE_CASE : Optional[Any] = num_encoder_layers _SCREAMING_SNAKE_CASE : Dict = num_encoder_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = decoder_ffn_dim _SCREAMING_SNAKE_CASE : Optional[int] = num_decoder_layers _SCREAMING_SNAKE_CASE : int = num_decoder_attention_heads _SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings _SCREAMING_SNAKE_CASE : Dict = init_std # Normal(0, this parameter) _SCREAMING_SNAKE_CASE : int = activation_function # parameters for xlmprophetnet _SCREAMING_SNAKE_CASE : Union[str, Any] = ngram _SCREAMING_SNAKE_CASE : List[str] = num_buckets _SCREAMING_SNAKE_CASE : Tuple = relative_max_distance _SCREAMING_SNAKE_CASE : List[Any] = disable_ngram_loss _SCREAMING_SNAKE_CASE : List[str] = eps # 3 Types of Dropout _SCREAMING_SNAKE_CASE : Tuple = attention_dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout _SCREAMING_SNAKE_CASE : List[str] = dropout _SCREAMING_SNAKE_CASE : Tuple = use_cache super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , add_cross_attention=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) @property def UpperCamelCase_ ( self ) -> List[Any]: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
367
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ =logging.getLogger(__name__) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = np.argmax(__lowerCamelCase, axis=1 ) return np.sum(outputs == labels ) def lowerCamelCase__ (__lowerCamelCase ): with open(__lowerCamelCase, encoding="utf_8" ) as f: _SCREAMING_SNAKE_CASE : Optional[int] = csv.reader(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = [] next(__lowerCamelCase ) # skip the first line for line in tqdm(__lowerCamelCase ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = [] for dataset in encoded_datasets: _SCREAMING_SNAKE_CASE : str = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) _SCREAMING_SNAKE_CASE : str = np.zeros((n_batch, 2), dtype=np.intaa ) _SCREAMING_SNAKE_CASE : List[str] = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _SCREAMING_SNAKE_CASE : Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _SCREAMING_SNAKE_CASE : Union[str, Any] = with_conta _SCREAMING_SNAKE_CASE : List[str] = with_conta _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) - 1 _SCREAMING_SNAKE_CASE : str = len(__lowerCamelCase ) - 1 _SCREAMING_SNAKE_CASE : List[Any] = with_conta _SCREAMING_SNAKE_CASE : Optional[Any] = with_conta _SCREAMING_SNAKE_CASE : Optional[Any] = mc_label _SCREAMING_SNAKE_CASE : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__lowerCamelCase ) for t in all_inputs ) ) return tensor_datasets def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument("--model_name", type=__lowerCamelCase, default="openai-gpt", help="pretrained model name" ) parser.add_argument("--do_train", action="store_true", help="Whether to run training." ) parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--train_dataset", type=__lowerCamelCase, default="" ) parser.add_argument("--eval_dataset", type=__lowerCamelCase, default="" ) parser.add_argument("--seed", type=__lowerCamelCase, default=42 ) parser.add_argument("--num_train_epochs", type=__lowerCamelCase, default=3 ) parser.add_argument("--train_batch_size", type=__lowerCamelCase, default=8 ) parser.add_argument("--eval_batch_size", type=__lowerCamelCase, default=16 ) parser.add_argument("--adam_epsilon", default=1e-8, type=__lowerCamelCase, help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm", type=__lowerCamelCase, default=1 ) parser.add_argument( "--max_steps", default=-1, type=__lowerCamelCase, help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ), ) parser.add_argument( "--gradient_accumulation_steps", type=__lowerCamelCase, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", type=__lowerCamelCase, default=6.25e-5 ) parser.add_argument("--warmup_steps", default=0, type=__lowerCamelCase, help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule", type=__lowerCamelCase, default="warmup_linear" ) parser.add_argument("--weight_decay", type=__lowerCamelCase, default=0.01 ) parser.add_argument("--lm_coef", type=__lowerCamelCase, default=0.9 ) parser.add_argument("--n_valid", type=__lowerCamelCase, default=374 ) parser.add_argument("--server_ip", type=__lowerCamelCase, default="", help="Can be used for distant debugging." ) parser.add_argument("--server_port", type=__lowerCamelCase, default="", help="Can be used for distant debugging." ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() print(__lowerCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=__lowerCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _SCREAMING_SNAKE_CASE : Any = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _SCREAMING_SNAKE_CASE : List[str] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(__lowerCamelCase, __lowerCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _SCREAMING_SNAKE_CASE : List[str] = ["""_start_""", """_delimiter_""", """_classify_"""] _SCREAMING_SNAKE_CASE : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__lowerCamelCase ) ) model.to(__lowerCamelCase ) # Load and encode the datasets def tokenize_and_encode(__lowerCamelCase ): if isinstance(__lowerCamelCase, __lowerCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__lowerCamelCase ) ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): return obj return [tokenize_and_encode(__lowerCamelCase ) for o in obj] logger.info("Encoding dataset..." ) _SCREAMING_SNAKE_CASE : Tuple = load_rocstories_dataset(args.train_dataset ) _SCREAMING_SNAKE_CASE : int = load_rocstories_dataset(args.eval_dataset ) _SCREAMING_SNAKE_CASE : str = (train_dataset, eval_dataset) _SCREAMING_SNAKE_CASE : Optional[int] = tokenize_and_encode(__lowerCamelCase ) # Compute the max input length for the Transformer _SCREAMING_SNAKE_CASE : Optional[Any] = model.config.n_positions // 2 - 2 _SCREAMING_SNAKE_CASE : Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _SCREAMING_SNAKE_CASE : List[str] = pre_process_datasets(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, *__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = tensor_datasets[0], tensor_datasets[1] _SCREAMING_SNAKE_CASE : Dict = TensorDataset(*__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = RandomSampler(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = DataLoader(__lowerCamelCase, sampler=__lowerCamelCase, batch_size=args.train_batch_size ) _SCREAMING_SNAKE_CASE : int = TensorDataset(*__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = SequentialSampler(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = DataLoader(__lowerCamelCase, sampler=__lowerCamelCase, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _SCREAMING_SNAKE_CASE : Dict = args.max_steps _SCREAMING_SNAKE_CASE : Dict = args.max_steps // (len(__lowerCamelCase ) // args.gradient_accumulation_steps) + 1 else: _SCREAMING_SNAKE_CASE : Optional[Any] = len(__lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs _SCREAMING_SNAKE_CASE : Tuple = list(model.named_parameters() ) _SCREAMING_SNAKE_CASE : Dict = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] _SCREAMING_SNAKE_CASE : Any = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] _SCREAMING_SNAKE_CASE : Dict = AdamW(__lowerCamelCase, lr=args.learning_rate, eps=args.adam_epsilon ) _SCREAMING_SNAKE_CASE : Any = get_linear_schedule_with_warmup( __lowerCamelCase, num_warmup_steps=args.warmup_steps, num_training_steps=__lowerCamelCase ) if args.do_train: _SCREAMING_SNAKE_CASE : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc="Epoch" ): _SCREAMING_SNAKE_CASE : List[Any] = 0 _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : Any = tqdm(__lowerCamelCase, desc="Training" ) for step, batch in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = tuple(t.to(__lowerCamelCase ) for t in batch ) _SCREAMING_SNAKE_CASE : Union[str, Any] = batch _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase, mc_token_ids=__lowerCamelCase, lm_labels=__lowerCamelCase, mc_labels=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _SCREAMING_SNAKE_CASE : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _SCREAMING_SNAKE_CASE : Dict = """Training loss: {:.2e} lr: {:.2e}""".format(__lowerCamelCase, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = model.module if hasattr(__lowerCamelCase, "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _SCREAMING_SNAKE_CASE : Any = os.path.join(args.output_dir, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = os.path.join(args.output_dir, __lowerCamelCase ) torch.save(model_to_save.state_dict(), __lowerCamelCase ) model_to_save.config.to_json_file(__lowerCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _SCREAMING_SNAKE_CASE : Any = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__lowerCamelCase ) if args.do_eval: model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = 0, 0 _SCREAMING_SNAKE_CASE : str = 0, 0 for batch in tqdm(__lowerCamelCase, desc="Evaluating" ): _SCREAMING_SNAKE_CASE : Optional[int] = tuple(t.to(__lowerCamelCase ) for t in batch ) _SCREAMING_SNAKE_CASE : Dict = batch with torch.no_grad(): _SCREAMING_SNAKE_CASE : Any = model( __lowerCamelCase, mc_token_ids=__lowerCamelCase, lm_labels=__lowerCamelCase, mc_labels=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = mc_logits.detach().cpu().numpy() _SCREAMING_SNAKE_CASE : int = mc_labels.to("cpu" ).numpy() _SCREAMING_SNAKE_CASE : str = accuracy(__lowerCamelCase, __lowerCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _SCREAMING_SNAKE_CASE : Optional[int] = eval_loss / nb_eval_steps _SCREAMING_SNAKE_CASE : Union[str, Any] = eval_accuracy / nb_eval_examples _SCREAMING_SNAKE_CASE : Any = tr_loss / nb_tr_steps if args.do_train else None _SCREAMING_SNAKE_CASE : Optional[Any] = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} _SCREAMING_SNAKE_CASE : int = os.path.join(args.output_dir, "eval_results.txt" ) with open(__lowerCamelCase, "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s", __lowerCamelCase, str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
368
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=4 , ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = parent _SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size _SCREAMING_SNAKE_CASE : Optional[Any] = seq_length _SCREAMING_SNAKE_CASE : Union[str, Any] = is_training _SCREAMING_SNAKE_CASE : Any = use_attention_mask _SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids _SCREAMING_SNAKE_CASE : Optional[Any] = use_labels _SCREAMING_SNAKE_CASE : Tuple = vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers _SCREAMING_SNAKE_CASE : str = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings _SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Tuple = initializer_range _SCREAMING_SNAKE_CASE : Tuple = num_choices def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Tuple = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = True __snake_case = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase_ ( self ) -> str: for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE : Tuple = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowercase_ ) _SCREAMING_SNAKE_CASE : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ ) @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Tuple = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _SCREAMING_SNAKE_CASE : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : Tuple = model(lowercase_ )[0] _SCREAMING_SNAKE_CASE : List[str] = 5_0_0_0_0 _SCREAMING_SNAKE_CASE : int = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
369
from math import isqrt, loga def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = False return [i for i in range(2, __lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ): _SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
325
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = TaConfig.from_json_file(_lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) _SCREAMING_SNAKE_CASE : Dict = TaForConditionalGeneration(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase__ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
370
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
371
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ =r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class lowerCAmelCase__( a_ ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class lowerCAmelCase__( a_ ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = max_length _SCREAMING_SNAKE_CASE : int = max_position_embeddings @add_start_docstrings(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> bool: _SCREAMING_SNAKE_CASE : Dict = input_ids.shape[-1] _SCREAMING_SNAKE_CASE : Tuple = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class lowerCAmelCase__( a_ ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> str: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , __lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = start_length _SCREAMING_SNAKE_CASE : List[Any] = max_new_tokens _SCREAMING_SNAKE_CASE : Dict = start_length + max_new_tokens @add_start_docstrings(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> bool: return input_ids.shape[-1] >= self.max_length class lowerCAmelCase__( a_ ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = max_time _SCREAMING_SNAKE_CASE : Optional[int] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> bool: return time.time() - self.initial_timestamp > self.max_time class lowerCAmelCase__( a_ ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> bool: return any(criteria(__lowerCamelCase , __lowerCamelCase ) for criteria in self ) @property def UpperCamelCase_ ( self ) -> Optional[int]: for stopping_criterium in self: if isinstance(__lowerCamelCase , __lowerCamelCase ): return stopping_criterium.max_length elif isinstance(__lowerCamelCase , __lowerCamelCase ): return stopping_criterium.max_length return None def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = stopping_criteria.max_length _SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowerCamelCase__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter", lowerCamelCase__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCamelCase__ ) ) return new_stopping_criteria
350
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
from __future__ import annotations import requests UpperCamelCase__ =set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = 1, __lowerCamelCase = "new", __lowerCamelCase = None ): _SCREAMING_SNAKE_CASE : Dict = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_SCREAMING_SNAKE_CASE ) - valid_terms ) ): _SCREAMING_SNAKE_CASE : Optional[int] = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""", headers={"User-agent": "A random string"}, ) if response.status_code == 429: raise requests.HTTPError _SCREAMING_SNAKE_CASE : int = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_SCREAMING_SNAKE_CASE )} _SCREAMING_SNAKE_CASE : Union[str, Any] = {} for id_ in range(_SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
351
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : Tuple = 3 _SCREAMING_SNAKE_CASE : Any = (3_2, 3_2) _SCREAMING_SNAKE_CASE : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def UpperCamelCase_ ( self ) -> Dict: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def UpperCamelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Dict = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Tuple: def extract(*__lowerCamelCase , **__lowerCamelCase ): class lowerCAmelCase__: '''simple docstring''' def __init__( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = torch.ones([0] ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : List[str] = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : List[str] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae _SCREAMING_SNAKE_CASE : List[Any] = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : Dict = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _SCREAMING_SNAKE_CASE : int = 7_7 _SCREAMING_SNAKE_CASE : Tuple = self.dummy_image.to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : Any = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = '''A painting of a squirrel eating a burger''' _SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = output.images _SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _SCREAMING_SNAKE_CASE : int = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.dummy_vae _SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : Any = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _SCREAMING_SNAKE_CASE : Dict = 7_7 _SCREAMING_SNAKE_CASE : List[Any] = self.dummy_image.to(__lowerCamelCase ) # put models in fp16 _SCREAMING_SNAKE_CASE : Tuple = unet.half() _SCREAMING_SNAKE_CASE : List[Any] = vae.half() _SCREAMING_SNAKE_CASE : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = '''A painting of a squirrel eating a burger''' _SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe( [prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _SCREAMING_SNAKE_CASE : Dict = init_image.resize((7_6_0, 5_0_4) ) _SCREAMING_SNAKE_CASE : Any = '''BAAI/AltDiffusion''' _SCREAMING_SNAKE_CASE : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : Optional[int] = '''A fantasy landscape, trending on artstation''' _SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="np" , ) _SCREAMING_SNAKE_CASE : int = output.images[0] _SCREAMING_SNAKE_CASE : Tuple = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _SCREAMING_SNAKE_CASE : List[str] = init_image.resize((7_6_8, 5_1_2) ) _SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _SCREAMING_SNAKE_CASE : Any = '''BAAI/AltDiffusion''' _SCREAMING_SNAKE_CASE : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : Union[str, Any] = '''A fantasy landscape, trending on artstation''' _SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : int = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="np" , ) _SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
352
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase__ =0 UpperCamelCase__ =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase__ =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase__ =tuple[int, int] class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> str: _SCREAMING_SNAKE_CASE : Any = pos_x _SCREAMING_SNAKE_CASE : Dict = pos_y _SCREAMING_SNAKE_CASE : Dict = (pos_y, pos_x) _SCREAMING_SNAKE_CASE : List[str] = goal_x _SCREAMING_SNAKE_CASE : str = goal_y _SCREAMING_SNAKE_CASE : Tuple = g_cost _SCREAMING_SNAKE_CASE : Dict = parent _SCREAMING_SNAKE_CASE : Union[str, Any] = self.calculate_heuristic() _SCREAMING_SNAKE_CASE : Optional[Any] = self.g_cost + self.h_cost def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = self.pos_x - self.goal_x _SCREAMING_SNAKE_CASE : str = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__lowerCamelCase ) + abs(__lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , __lowerCamelCase ) -> Optional[Any]: return self.f_cost < other.f_cost class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = [self.start] _SCREAMING_SNAKE_CASE : Union[str, Any] = [] _SCREAMING_SNAKE_CASE : List[Any] = False def UpperCamelCase_ ( self ) -> Optional[Any]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path _SCREAMING_SNAKE_CASE : Dict = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) return [self.start.pos] def UpperCamelCase_ ( self , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[int] = [] for action in delta: _SCREAMING_SNAKE_CASE : List[str] = parent.pos_x + action[1] _SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Tuple = node _SCREAMING_SNAKE_CASE : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _SCREAMING_SNAKE_CASE : int = current_node.parent path.reverse() return path class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AStar(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = AStar(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCamelCase_ ( self ) -> Tuple: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.fwd_astar.open_nodes.pop(0 ) _SCREAMING_SNAKE_CASE : Tuple = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __lowerCamelCase , __lowerCamelCase ) self.fwd_astar.closed_nodes.append(__lowerCamelCase ) self.bwd_astar.closed_nodes.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = current_bwd_node _SCREAMING_SNAKE_CASE : List[str] = current_fwd_node _SCREAMING_SNAKE_CASE : Any = { self.fwd_astar: self.fwd_astar.get_successors(__lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(__lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path _SCREAMING_SNAKE_CASE : Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__lowerCamelCase ) else: astar.open_nodes.append(__lowerCamelCase ) return [self.fwd_astar.start.pos] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : str = self.fwd_astar.retrace_path(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.bwd_astar.retrace_path(__lowerCamelCase ) bwd_path.pop() bwd_path.reverse() _SCREAMING_SNAKE_CASE : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase__ =(0, 0) UpperCamelCase__ =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase__ =time.time() UpperCamelCase__ =AStar(init, goal) UpperCamelCase__ =a_star.search() UpperCamelCase__ =time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") UpperCamelCase__ =time.time() UpperCamelCase__ =BidirectionalAStar(init, goal) UpperCamelCase__ =time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCamelCase__ =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class lowerCAmelCase__( lowerCamelCase__ ): '''simple docstring''' __snake_case = 4_2 class lowerCAmelCase__( lowerCamelCase__ ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[Any]: super().__init__() self.register_modules( prior=__lowerCamelCase , image_encoder=__lowerCamelCase , image_processor=__lowerCamelCase , scheduler=__lowerCamelCase , renderer=__lowerCamelCase , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: if latents is None: _SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = latents.to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCamelCase_ ( self , __lowerCamelCase=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _SCREAMING_SNAKE_CASE : Any = torch.device(F"""cuda:{gpu_id}""" ) _SCREAMING_SNAKE_CASE : str = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Dict: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(image[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE : List[str] = torch.cat(__lowerCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(__lowerCamelCase , axis=0 ) if not isinstance(__lowerCamelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE : Dict = self.image_processor(__lowerCamelCase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _SCREAMING_SNAKE_CASE : List[str] = image.to(dtype=self.image_encoder.dtype , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.image_encoder(__lowerCamelCase )["last_hidden_state"] _SCREAMING_SNAKE_CASE : int = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _SCREAMING_SNAKE_CASE : Optional[Any] = image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros_like(__lowerCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase = 1 , __lowerCamelCase = 2_5 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 4.0 , __lowerCamelCase = 6_4 , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> str: if isinstance(__lowerCamelCase , PIL.Image.Image ): _SCREAMING_SNAKE_CASE : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE : List[Any] = image.shape[0] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _SCREAMING_SNAKE_CASE : str = len(__lowerCamelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCamelCase )}""" ) _SCREAMING_SNAKE_CASE : int = self._execution_device _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size * num_images_per_prompt _SCREAMING_SNAKE_CASE : Dict = guidance_scale > 1.0 _SCREAMING_SNAKE_CASE : Tuple = self._encode_image(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # prior self.scheduler.set_timesteps(__lowerCamelCase , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps _SCREAMING_SNAKE_CASE : List[Any] = self.prior.config.num_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = self.prior.config.embedding_dim _SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _SCREAMING_SNAKE_CASE : List[Any] = latents.reshape(latents.shape[0] , __lowerCamelCase , __lowerCamelCase ) for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.prior( __lowerCamelCase , timestep=__lowerCamelCase , proj_embedding=__lowerCamelCase , ).predicted_image_embedding # remove the variance _SCREAMING_SNAKE_CASE : Dict = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _SCREAMING_SNAKE_CASE : List[str] = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _SCREAMING_SNAKE_CASE : Any = self.scheduler.step( __lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, latent in enumerate(__lowerCamelCase ): print() _SCREAMING_SNAKE_CASE : str = self.renderer.decode( latent[None, :] , __lowerCamelCase , size=__lowerCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.stack(__lowerCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) _SCREAMING_SNAKE_CASE : str = images.cpu().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE : Any = [self.numpy_to_pil(__lowerCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCamelCase )
354
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
325
0
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [] create_all_state(1, __lowerCamelCase, __lowerCamelCase, [], __lowerCamelCase ) return result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCamelCase, total_number - level + 2 ): current_list.append(__lowerCamelCase ) create_all_state(i + 1, __lowerCamelCase, level - 1, __lowerCamelCase, __lowerCamelCase ) current_list.pop() def lowerCamelCase__ (__lowerCamelCase ): for i in total_list: print(*__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =4 UpperCamelCase__ =2 UpperCamelCase__ =generate_all_combinations(n, k) print_all_state(total_list)
355
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCamelCase__ =logging.get_logger(__name__) def lowerCamelCase__ (__lowerCamelCase=None, __lowerCamelCase=None ): return field(default_factory=lambda: default, metadata=__UpperCAmelCase ) @dataclass class lowerCAmelCase__: '''simple docstring''' __snake_case = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) __snake_case = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) __snake_case = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) __snake_case = field( default=_lowerCamelCase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) __snake_case = field( default=_lowerCamelCase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) __snake_case = field( default=_lowerCamelCase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Use FP16 to accelerate inference.'} ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Benchmark training of model'} ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Verbose memory tracing'} ) __snake_case = field( default=_lowerCamelCase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) __snake_case = field( default=_lowerCamelCase , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Trace memory line by line'} ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Save result to a CSV file'} ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Save all print statements in a log file'} ) __snake_case = field(default=_lowerCamelCase , metadata={'help': 'Whether to print environment information'} ) __snake_case = field( default=_lowerCamelCase , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) __snake_case = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) __snake_case = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) __snake_case = field( default=F"""train_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) __snake_case = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) __snake_case = field( default=F"""env_info_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving environment information.'} , ) __snake_case = field( default=F"""log_{round(time() )}.csv""" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) __snake_case = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) __snake_case = field( default=_lowerCamelCase , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def UpperCamelCase_ ( self ) -> str: warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , lowercase_ , ) def UpperCamelCase_ ( self ) -> Dict: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCamelCase_ ( self ) -> Any: if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = [\'bert-base-cased\']." ) return self.models @property def UpperCamelCase_ ( self ) -> Union[str, Any]: if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
356
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
0
from typing import Any import numpy as np def lowerCamelCase__ (__lowerCamelCase ): return np.array_equal(lowercase_, matrix.conjugate().T ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = v.conjugate().T _SCREAMING_SNAKE_CASE : Tuple = v_star.dot(lowercase_ ) assert isinstance(lowercase_, np.ndarray ) return (v_star_dot.dot(lowercase_ )) / (v_star.dot(lowercase_ )) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Tuple = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _SCREAMING_SNAKE_CASE : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase_ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(lowercase_, lowercase_ ) ) _SCREAMING_SNAKE_CASE : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase_ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(lowercase_, lowercase_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ =[ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] UpperCamelCase__ =[ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] UpperCamelCase__ =( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) UpperCamelCase__ =( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) UpperCamelCase__ =[ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for tf_name, hf_name in patterns: _SCREAMING_SNAKE_CASE : List[Any] = k.replace(A_, A_ ) return k def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = BigBirdPegasusConfig(**A_ ) _SCREAMING_SNAKE_CASE : Tuple = BigBirdPegasusForConditionalGeneration(A_ ) _SCREAMING_SNAKE_CASE : Dict = torch_model.state_dict() _SCREAMING_SNAKE_CASE : str = {} # separating decoder weights _SCREAMING_SNAKE_CASE : Optional[int] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _SCREAMING_SNAKE_CASE : Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): _SCREAMING_SNAKE_CASE : Any = [k.endswith(A_ ) for ending in KEYS_TO_IGNORE] if any(A_ ): continue _SCREAMING_SNAKE_CASE : List[Any] = DECODER_PATTERNS _SCREAMING_SNAKE_CASE : Optional[int] = rename_state_dict_key(A_, A_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _SCREAMING_SNAKE_CASE : List[Any] = v.T _SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(A_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [k.endswith(A_ ) for ending in KEYS_TO_IGNORE] if any(A_ ): continue _SCREAMING_SNAKE_CASE : List[Any] = REMAINING_PATTERNS _SCREAMING_SNAKE_CASE : Optional[int] = rename_state_dict_key(A_, A_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _SCREAMING_SNAKE_CASE : Optional[Any] = v.T _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(A_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''model.embed_positions.weight'''] _SCREAMING_SNAKE_CASE : Union[str, Any] = mapping.pop("model.embed_positions.weight" ) _SCREAMING_SNAKE_CASE : Dict = torch_model.load_state_dict(A_, strict=A_ ) _SCREAMING_SNAKE_CASE : Optional[int] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = tf.train.list_variables(A_ ) _SCREAMING_SNAKE_CASE : Any = {} _SCREAMING_SNAKE_CASE : List[Any] = ['''global_step'''] for name, shape in tqdm(A_, desc="converting tf checkpoint to dict" ): _SCREAMING_SNAKE_CASE : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue _SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.load_variable(A_, A_ ) _SCREAMING_SNAKE_CASE : Tuple = array return tf_weights def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = get_tf_weights_as_numpy(A_ ) _SCREAMING_SNAKE_CASE : str = convert_bigbird_pegasus(A_, A_ ) torch_model.save_pretrained(A_ ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase__ =parser.parse_args() UpperCamelCase__ ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
358
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = 9_9 _SCREAMING_SNAKE_CASE : str = 3_8_4 _SCREAMING_SNAKE_CASE : List[Any] = 2 _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Dict = 3_7 _SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu" _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : List[Any] = 5_1_2 _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Dict = 2 _SCREAMING_SNAKE_CASE : Any = 0.02 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 1_2_8 _SCREAMING_SNAKE_CASE : Optional[int] = 2 _SCREAMING_SNAKE_CASE : int = 9 _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True if hasattr(__lowerCamelCase , "use_cache" ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"] else: _SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"] _SCREAMING_SNAKE_CASE : Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
325
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = args.pruning_method _SCREAMING_SNAKE_CASE : Tuple = args.threshold _SCREAMING_SNAKE_CASE : str = args.model_name_or_path.rstrip("/" ) _SCREAMING_SNAKE_CASE : Tuple = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.load(os.path.join(_lowercase, "pytorch_model.bin" ) ) _SCREAMING_SNAKE_CASE : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _SCREAMING_SNAKE_CASE : Optional[int] = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _SCREAMING_SNAKE_CASE : int = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _SCREAMING_SNAKE_CASE : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _SCREAMING_SNAKE_CASE : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _SCREAMING_SNAKE_CASE : str = name[:-6] _SCREAMING_SNAKE_CASE : Dict = model[f"""{prefix_}mask_scores"""] _SCREAMING_SNAKE_CASE : Tuple = TopKBinarizer.apply(_lowercase, _lowercase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _SCREAMING_SNAKE_CASE : int = name[:-6] _SCREAMING_SNAKE_CASE : List[Any] = model[f"""{prefix_}mask_scores"""] _SCREAMING_SNAKE_CASE : Union[str, Any] = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _SCREAMING_SNAKE_CASE : int = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _SCREAMING_SNAKE_CASE : str = name[:-6] _SCREAMING_SNAKE_CASE : Tuple = model[f"""{prefix_}mask_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = -0.1, 1.1 _SCREAMING_SNAKE_CASE : Any = torch.sigmoid(_lowercase ) _SCREAMING_SNAKE_CASE : Optional[int] = s * (r - l) + l _SCREAMING_SNAKE_CASE : Tuple = s_bar.clamp(min=0.0, max=1.0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( os.path.dirname(_lowercase ), f"""bertarized_{os.path.basename(_lowercase )}""" ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowercase, os.path.join(_lowercase, "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) UpperCamelCase__ =parser.parse_args() main(args)
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase = 4 ): _SCREAMING_SNAKE_CASE : Dict = abs(__lowerCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__lowerCamelCase )] for y in range(__lowerCamelCase )] def lowerCamelCase__ (__lowerCamelCase ): return reverse_row(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase__ (__lowerCamelCase ): return reverse_row(reverse_column(__lowerCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase__ (__lowerCamelCase ): return reverse_column(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [list(__lowerCamelCase ) for x in zip(*__lowerCamelCase )] return matrix def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = matrix[::-1] return matrix def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [x[::-1] for x in matrix] return matrix def lowerCamelCase__ (__lowerCamelCase ): for i in matrix: print(*__lowerCamelCase ) if __name__ == "__main__": lowercase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowercase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowercase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if len(_a ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_a ) or left < -len(_a ) or right >= len(_a ) or right < -len(_a ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] _SCREAMING_SNAKE_CASE : Optional[int] = (left + right) >> 1 # the middle _SCREAMING_SNAKE_CASE : List[str] = find_max(_a, _a, _a ) # find max in range[left, mid] _SCREAMING_SNAKE_CASE : str = find_max(_a, mid + 1, _a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
361
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ =np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ =[0, 25, 50] UpperCamelCase__ =[25, 50, 75] UpperCamelCase__ =fuzz.membership.trimf(X, abca) UpperCamelCase__ =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ =np.ones(75) UpperCamelCase__ =np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
325
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotConfig __snake_case = {} __snake_case = """gelu""" def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : Optional[int] = batch_size _SCREAMING_SNAKE_CASE : int = seq_length _SCREAMING_SNAKE_CASE : Optional[Any] = is_training _SCREAMING_SNAKE_CASE : Optional[Any] = use_labels _SCREAMING_SNAKE_CASE : int = vocab_size _SCREAMING_SNAKE_CASE : Tuple = hidden_size _SCREAMING_SNAKE_CASE : str = num_hidden_layers _SCREAMING_SNAKE_CASE : List[str] = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Tuple = eos_token_id _SCREAMING_SNAKE_CASE : List[Any] = pad_token_id _SCREAMING_SNAKE_CASE : Tuple = bos_token_id def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Tuple = TFBlenderbotModel(config=snake_case__ ).get_decoder() _SCREAMING_SNAKE_CASE : int = inputs_dict['''input_ids'''] _SCREAMING_SNAKE_CASE : Optional[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict['''attention_mask'''][:1, :] _SCREAMING_SNAKE_CASE : Dict = inputs_dict['''head_mask'''] _SCREAMING_SNAKE_CASE : Optional[Any] = 1 # first forward pass _SCREAMING_SNAKE_CASE : List[Any] = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = model(snake_case__ , attention_mask=snake_case__ )[0] _SCREAMING_SNAKE_CASE : Optional[int] = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Tuple = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.cast(tf.math.not_equal(__lowerCAmelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = TFBlenderbotModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase_ ( self ) -> str: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = ["""My friends are cool but they eat too many carbs."""] __snake_case = """facebook/blenderbot-400M-distill""" @cached_property def UpperCamelCase_ ( self ) -> int: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) _SCREAMING_SNAKE_CASE : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
362
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['vqvae'] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: return 5_0 if isinstance(self.scheduler , __lowerCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = noise _SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE : Optional[int] = (input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["sample"] else: _SCREAMING_SNAKE_CASE : str = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] if isinstance(self.scheduler , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] else: _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE : str = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(__lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE : List[str] = (images * 2_5_5).round().astype("uint8" ) _SCREAMING_SNAKE_CASE : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) _SCREAMING_SNAKE_CASE : Tuple = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE : Any = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE : List[str] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__lowerCamelCase , __lowerCamelCase )["sample"] _SCREAMING_SNAKE_CASE : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE : str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> torch.Tensor: _SCREAMING_SNAKE_CASE : Any = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
325
0
from typing import List import numpy as np def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = {key: len(_lowercase ) for key, value in gen_kwargs.items() if isinstance(_lowercase, _lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = max(lists_lengths.values(), default=0 ) return max(1, _lowercase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = [] for group_idx in range(_lowercase ): _SCREAMING_SNAKE_CASE : Any = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _SCREAMING_SNAKE_CASE : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _SCREAMING_SNAKE_CASE : str = range(_lowercase, start + num_shards_to_add ) shards_indices_per_group.append(_lowercase ) return shards_indices_per_group def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = _number_of_shards_in_gen_kwargs(_lowercase ) if num_shards == 1: return [dict(_lowercase )] else: _SCREAMING_SNAKE_CASE : Dict = _distribute_shards(num_shards=_lowercase, max_num_jobs=_lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_lowercase, _lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_lowercase ) ) ] def lowerCamelCase__ (__lowerCamelCase ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], _lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = {len(_lowercase ) for value in gen_kwargs.values() if isinstance(_lowercase, _lowercase )} _SCREAMING_SNAKE_CASE : List[str] = {} for size in list_sizes: _SCREAMING_SNAKE_CASE : List[Any] = list(range(_lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _SCREAMING_SNAKE_CASE : int = dict(_lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(_lowercase, _lowercase ): _SCREAMING_SNAKE_CASE : List[str] = [value[i] for i in indices_per_size[len(_lowercase )]] return shuffled_kwargs
363
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowerCAmelCase__( lowerCAmelCase__ ): '''simple docstring''' __snake_case = "mra" def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-5 , __lowerCamelCase="absolute" , __lowerCamelCase=4 , __lowerCamelCase="full" , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> Optional[Any]: super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : str = max_position_embeddings _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Dict = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : str = intermediate_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act _SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Dict = initializer_range _SCREAMING_SNAKE_CASE : Dict = type_vocab_size _SCREAMING_SNAKE_CASE : Any = layer_norm_eps _SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type _SCREAMING_SNAKE_CASE : Any = block_per_row _SCREAMING_SNAKE_CASE : Optional[Any] = approx_mode _SCREAMING_SNAKE_CASE : Optional[Any] = initial_prior_first_n_blocks _SCREAMING_SNAKE_CASE : int = initial_prior_diagonal_n_blocks
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ =OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) UpperCamelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase__ (__lowerCamelCase ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _SCREAMING_SNAKE_CASE : Optional[int] = model_type_to_module_name(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = importlib.import_module(f""".{module_name}""", "transformers.models" ) try: return getattr(snake_case__, snake_case__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case__, "__name__", snake_case__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _SCREAMING_SNAKE_CASE : Optional[int] = importlib.import_module("transformers" ) if hasattr(snake_case__, snake_case__ ): return getattr(snake_case__, snake_case__ ) return None def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = False, __lowerCamelCase = False, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = False, **__lowerCamelCase, ): _SCREAMING_SNAKE_CASE : Optional[Any] = get_file_from_repo( snake_case__, snake_case__, cache_dir=snake_case__, force_download=snake_case__, resume_download=snake_case__, proxies=snake_case__, use_auth_token=snake_case__, revision=snake_case__, local_files_only=snake_case__, ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(snake_case__, encoding="utf-8" ) as reader: return json.load(snake_case__ ) class lowerCAmelCase__: def __init__( self ) -> List[str]: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase_ ) def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("config" , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("trust_remote_code" , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = config_dict.get("image_processor_type" , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _SCREAMING_SNAKE_CASE : Union[str, Any] = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _SCREAMING_SNAKE_CASE : List[str] = config_dict.pop("feature_extractor_type" , lowerCAmelCase_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _SCREAMING_SNAKE_CASE : Any = config_dict["auto_map"]["AutoFeatureExtractor"] _SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # It could be in `config.image_processor_type`` _SCREAMING_SNAKE_CASE : str = getattr(lowerCAmelCase_ , "image_processor_type" , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _SCREAMING_SNAKE_CASE : int = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _SCREAMING_SNAKE_CASE : List[str] = image_processor_class_from_name(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = image_processor_auto_map is not None _SCREAMING_SNAKE_CASE : Any = image_processor_class is not None or type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = resolve_trust_remote_code( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if has_remote_code and trust_remote_code: _SCREAMING_SNAKE_CASE : str = get_class_from_dynamic_module( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop("code_revision" , lowerCAmelCase_ ) if os.path.isdir(lowerCAmelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING: _SCREAMING_SNAKE_CASE : Any = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase_ )] return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCamelCase_ ( __lowerCamelCase , __lowerCamelCase ) -> Dict: IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase_ , lowerCAmelCase_ )
365
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
0
def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = len(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Any = sum(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1, n + 1 ): _SCREAMING_SNAKE_CASE : str = True for i in range(1, s + 1 ): _SCREAMING_SNAKE_CASE : Optional[int] = False for i in range(1, n + 1 ): for j in range(1, s + 1 ): _SCREAMING_SNAKE_CASE : Optional[Any] = dp[i][j - 1] if arr[i - 1] <= j: _SCREAMING_SNAKE_CASE : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ), -1, -1 ): if dp[n][j] is True: _SCREAMING_SNAKE_CASE : List[str] = s - 2 * j break return diff
366
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
0
def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = [0] * len(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : int = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) while queue: _SCREAMING_SNAKE_CASE : Union[str, Any] = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) if cnt != len(SCREAMING_SNAKE_CASE__ ): print("Cycle exists" ) else: print(SCREAMING_SNAKE_CASE__ ) # Adjacency List of Graph UpperCamelCase__ ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
367
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ =datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase__( datasets.BuilderConfig ): '''simple docstring''' __snake_case = None def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, ): import pyspark def generate_fn(): _SCREAMING_SNAKE_CASE : List[Any] = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: _SCREAMING_SNAKE_CASE : Dict = df_with_partition_id.select("*" ).where(f"""part_id = {partition_id}""" ).drop("part_id" ) _SCREAMING_SNAKE_CASE : List[Any] = partition_df.collect() _SCREAMING_SNAKE_CASE : List[Any] = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCAmelCase__( _BaseExamplesIterable ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = df _SCREAMING_SNAKE_CASE : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) _SCREAMING_SNAKE_CASE : Optional[int] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Optional[int]: yield from self.generate_examples_fn() def UpperCamelCase_ ( self , __lowerCamelCase ) -> "SparkExamplesIterable": _SCREAMING_SNAKE_CASE : Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> "SparkExamplesIterable": _SCREAMING_SNAKE_CASE : List[str] = self.split_shard_indices_by_worker(__lowerCamelCase , __lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> int: return len(self.partition_order ) class lowerCAmelCase__( datasets.DatasetBuilder ): '''simple docstring''' __snake_case = SparkConfig def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> str: import pyspark _SCREAMING_SNAKE_CASE : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _SCREAMING_SNAKE_CASE : List[Any] = df _SCREAMING_SNAKE_CASE : List[str] = working_dir super().__init__( cache_dir=__lowerCamelCase , config_name=str(self.df.semanticHash() ) , **__lowerCamelCase , ) def UpperCamelCase_ ( self ) -> Tuple: def create_cache_and_write_probe(__lowerCamelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCamelCase , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _SCREAMING_SNAKE_CASE : Optional[int] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowerCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def UpperCamelCase_ ( self ) -> Dict: return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: import pyspark def get_arrow_batch_size(__lowerCamelCase ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.df.count() _SCREAMING_SNAKE_CASE : int = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _SCREAMING_SNAKE_CASE : int = ( self.df.limit(__lowerCamelCase ) .repartition(1 ) .mapInArrow(__lowerCamelCase , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _SCREAMING_SNAKE_CASE : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _SCREAMING_SNAKE_CASE : List[Any] = min(__lowerCamelCase , int(approx_total_size / max_shard_size ) ) _SCREAMING_SNAKE_CASE : Tuple = self.df.repartition(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark _SCREAMING_SNAKE_CASE : Optional[int] = ParquetWriter if file_format == 'parquet' else ArrowWriter _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self._working_dir , os.path.basename(__lowerCamelCase ) ) if self._working_dir else fpath _SCREAMING_SNAKE_CASE : str = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _SCREAMING_SNAKE_CASE : List[str] = self.config.features _SCREAMING_SNAKE_CASE : str = self._writer_batch_size _SCREAMING_SNAKE_CASE : Tuple = self._fs.storage_options def write_arrow(__lowerCamelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _SCREAMING_SNAKE_CASE : str = pyspark.TaskContext().taskAttemptId() _SCREAMING_SNAKE_CASE : Dict = next(__lowerCamelCase , __lowerCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : Any = writer_class( features=__lowerCamelCase , path=working_fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , writer_batch_size=__lowerCamelCase , storage_options=__lowerCamelCase , embed_local_files=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(__lowerCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _SCREAMING_SNAKE_CASE : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 _SCREAMING_SNAKE_CASE : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , writer_batch_size=__lowerCamelCase , storage_options=__lowerCamelCase , embed_local_files=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Any = pa.Table.from_batches([batch] ) writer.write_table(__lowerCamelCase ) if writer._num_bytes > 0: _SCREAMING_SNAKE_CASE : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : Any = os.path.join(os.path.dirname(__lowerCamelCase ) , os.path.basename(__lowerCamelCase ) ) shutil.move(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.df.mapInArrow(__lowerCamelCase , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = "arrow" , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> Any: self._validate_cache_dir() _SCREAMING_SNAKE_CASE : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = not is_remote_filesystem(self._fs ) _SCREAMING_SNAKE_CASE : Any = os.path.join if is_local else posixpath.join _SCREAMING_SNAKE_CASE : List[str] = '-TTTTT-SSSSS-of-NNNNN' _SCREAMING_SNAKE_CASE : List[Any] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _SCREAMING_SNAKE_CASE : Optional[int] = path_join(self._output_dir , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : Tuple = [] for task_id, content in self._prepare_split_single(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): ( _SCREAMING_SNAKE_CASE ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = total_num_examples _SCREAMING_SNAKE_CASE : List[Any] = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: _SCREAMING_SNAKE_CASE : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _SCREAMING_SNAKE_CASE : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): rename( __lowerCamelCase , fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , F"""{global_shard_id:05d}""" ).replace("NNNNN" , F"""{total_shards:05d}""" ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [] _SCREAMING_SNAKE_CASE : int = 0 for i in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : List[str] = task_id_and_num_shards[i] for shard_id in range(__lowerCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCamelCase , len(__lowerCamelCase ) ).map(lambda __lowerCamelCase : _rename_shard(*__lowerCamelCase ) ).collect() else: # don't use any pattern _SCREAMING_SNAKE_CASE : List[Any] = 0 _SCREAMING_SNAKE_CASE : int = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F"""{shard_id:05d}""" ).replace("TTTTT" , F"""{task_id:05d}""" ) , fpath.replace(__lowerCamelCase , "" ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
368
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
0
import warnings from functools import wraps from typing import Callable def lowerCamelCase__ (__lowerCamelCase ): @wraps(__UpperCamelCase ) def _inner_fn(*__lowerCamelCase, **__lowerCamelCase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future."""), __UpperCamelCase, ) return fn(*__UpperCamelCase, **__UpperCamelCase ) return _inner_fn
369
from math import isqrt, loga def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = False return [i for i in range(2, __lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ (__lowerCamelCase = 800800, __lowerCamelCase = 800800 ): _SCREAMING_SNAKE_CASE : Optional[int] = degree * loga(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = calculate_prime_numbers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Dict = len(__lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
325
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__( _lowerCAmelCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=2 , __lowerCamelCase=9_9 , __lowerCamelCase=0 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase="last" , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : str = batch_size _SCREAMING_SNAKE_CASE : Optional[int] = seq_length _SCREAMING_SNAKE_CASE : Tuple = is_training _SCREAMING_SNAKE_CASE : Optional[int] = use_input_lengths _SCREAMING_SNAKE_CASE : str = use_token_type_ids _SCREAMING_SNAKE_CASE : Optional[Any] = use_labels _SCREAMING_SNAKE_CASE : List[str] = gelu_activation _SCREAMING_SNAKE_CASE : Union[str, Any] = sinusoidal_embeddings _SCREAMING_SNAKE_CASE : int = causal _SCREAMING_SNAKE_CASE : Optional[int] = asm _SCREAMING_SNAKE_CASE : int = n_langs _SCREAMING_SNAKE_CASE : List[str] = vocab_size _SCREAMING_SNAKE_CASE : List[str] = n_special _SCREAMING_SNAKE_CASE : str = hidden_size _SCREAMING_SNAKE_CASE : Dict = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Optional[int] = initializer_range _SCREAMING_SNAKE_CASE : Optional[Any] = num_labels _SCREAMING_SNAKE_CASE : Any = num_choices _SCREAMING_SNAKE_CASE : Optional[int] = summary_type _SCREAMING_SNAKE_CASE : int = use_proj _SCREAMING_SNAKE_CASE : Dict = scope def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : str = None if self.use_input_lengths: _SCREAMING_SNAKE_CASE : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _SCREAMING_SNAKE_CASE : Optional[Any] = None _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , 2 ).float() _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self ) -> Optional[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Any = FlaubertModel(config=_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : str = model(_lowercase , lengths=_lowercase , langs=_lowercase ) _SCREAMING_SNAKE_CASE : int = model(_lowercase , langs=_lowercase ) _SCREAMING_SNAKE_CASE : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = FlaubertWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Dict = FlaubertForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : int = model(_lowercase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = FlaubertForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(_lowercase ) _SCREAMING_SNAKE_CASE : Dict = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) _SCREAMING_SNAKE_CASE : Dict = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((_SCREAMING_SNAKE_CASE ) , ) : str = result_with_labels.to_tuple() _SCREAMING_SNAKE_CASE : Optional[int] = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((_SCREAMING_SNAKE_CASE ) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Dict: _SCREAMING_SNAKE_CASE : int = FlaubertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model(_lowercase ) _SCREAMING_SNAKE_CASE : str = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.num_labels _SCREAMING_SNAKE_CASE : Dict = FlaubertForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Any: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = FlaubertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() _SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : List[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Dict = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = FlaubertModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_lowercase , emb_dim=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_lowercase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_lowercase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_lowercase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_lowercase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_lowercase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_lowercase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_lowercase ) @slow def UpperCamelCase_ ( self ) -> Any: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaubertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(config=_lowercase ) _SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.jit.trace( _lowercase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , "traced_model.pt" ) ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.jit.load(os.path.join(_lowercase , "traced_model.pt" ) , map_location=_lowercase ) loaded(inputs_dict["input_ids"].to(_lowercase ) , inputs_dict["attention_mask"].to(_lowercase ) ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(_lowercase )[0] _SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _lowercase ) _SCREAMING_SNAKE_CASE : Any = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
370
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) _SCREAMING_SNAKE_CASE : Tuple = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(__lowerCAmelCase ) from datasets import load_dataset _SCREAMING_SNAKE_CASE : Any = load_dataset("nielsr/rvlcdip-demo" ) _SCREAMING_SNAKE_CASE : Any = dataset["train"][0]["image"].convert("RGB" ) _SCREAMING_SNAKE_CASE : int = image_processor(__lowerCAmelCase , return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : int = model(**__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = outputs.logits _SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=__lowerCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
371
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
0
from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Optional[int] = value _SCREAMING_SNAKE_CASE : Node | None = None _SCREAMING_SNAKE_CASE : Node | None = None class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = tree def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
350
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0