code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_02_17_66_34e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.3_5_5_8_1_8,
}
def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str , snake_case_ : float ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
_lowerCAmelCase = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {", ".join(snake_case_ )}"""
)
raise ValueError(snake_case_ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361
|
"""simple docstring"""
import math
def __UpperCAmelCase ( snake_case_ : int ) -> list[int]:
"""simple docstring"""
_lowerCAmelCase = []
_lowerCAmelCase = 2
_lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment
_lowerCAmelCase = [True] * (end + 1)
_lowerCAmelCase = []
while start <= end:
if temp[start] is True:
in_prime.append(snake_case_ )
for i in range(start * start , end + 1 , snake_case_ ):
_lowerCAmelCase = False
start += 1
prime += in_prime
_lowerCAmelCase = end + 1
_lowerCAmelCase = min(2 * end , snake_case_ )
while low <= n:
_lowerCAmelCase = [True] * (high - low + 1)
for each in in_prime:
_lowerCAmelCase = math.floor(low / each ) * each
if t < low:
t += each
for j in range(snake_case_ , high + 1 , snake_case_ ):
_lowerCAmelCase = False
for j in range(len(snake_case_ ) ):
if temp[j] is True:
prime.append(j + low )
_lowerCAmelCase = high + 1
_lowerCAmelCase = min(high + end , snake_case_ )
return prime
print(sieve(1_0**6))
| 317
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
@slow
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" )
_lowerCAmelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" )
_lowerCAmelCase = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids
_lowerCAmelCase = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids
_lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ).loss
_lowerCAmelCase = -tf.math.reduce_mean(lowerCamelCase ).numpy()
_lowerCAmelCase = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 362
|
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width
SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it.
SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0
SCREAMING_SNAKE_CASE : Optional[Any] = ''''''
SCREAMING_SNAKE_CASE : Dict = ''''''
SCREAMING_SNAKE_CASE : List[Any] = ''''''
SCREAMING_SNAKE_CASE : Dict = 2_5_0
def __UpperCAmelCase ( ) -> None:
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ )
for index in range(snake_case_ ):
_lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_lowerCAmelCase = random_chars(32 )
_lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
_lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"""
cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" )
_lowerCAmelCase = []
for anno in new_annos:
_lowerCAmelCase = anno[3] - anno[1]
_lowerCAmelCase = anno[4] - anno[2]
_lowerCAmelCase = anno[1] + width / 2
_lowerCAmelCase = anno[2] + height / 2
_lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}"""
annos_list.append(snake_case_ )
with open(F"""{file_root}.txt""" , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]:
"""simple docstring"""
_lowerCAmelCase = []
_lowerCAmelCase = []
for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ):
_lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(snake_case_ ) as in_file:
_lowerCAmelCase = in_file.readlines()
_lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" )
_lowerCAmelCase = []
for obj_list in obj_lists:
_lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ )
_lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2
_lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2
_lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2
_lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(snake_case_ )
labels.append(snake_case_ )
return img_paths, labels
def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]:
"""simple docstring"""
_lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
_lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
_lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
_lowerCAmelCase = int(scale_x * output_size[1] )
_lowerCAmelCase = int(scale_y * output_size[0] )
_lowerCAmelCase = []
_lowerCAmelCase = []
for i, index in enumerate(snake_case_ ):
_lowerCAmelCase = all_img_list[index]
path_list.append(snake_case_ )
_lowerCAmelCase = all_annos[index]
_lowerCAmelCase = cva.imread(snake_case_ )
if i == 0: # top-left
_lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) )
_lowerCAmelCase = img
for bbox in img_annos:
_lowerCAmelCase = bbox[1] * scale_x
_lowerCAmelCase = bbox[2] * scale_y
_lowerCAmelCase = bbox[3] * scale_x
_lowerCAmelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
_lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) )
_lowerCAmelCase = img
for bbox in img_annos:
_lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x)
_lowerCAmelCase = bbox[2] * scale_y
_lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x)
_lowerCAmelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
_lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) )
_lowerCAmelCase = img
for bbox in img_annos:
_lowerCAmelCase = bbox[1] * scale_x
_lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y)
_lowerCAmelCase = bbox[3] * scale_x
_lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
_lowerCAmelCase = cva.resize(
snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
_lowerCAmelCase = img
for bbox in img_annos:
_lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x)
_lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y)
_lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x)
_lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
_lowerCAmelCase = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __UpperCAmelCase ( snake_case_ : int ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_lowerCAmelCase = ascii_lowercase + digits
return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 317
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : int=False ) -> Dict:
"""simple docstring"""
if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ):
_lowerCAmelCase = len(set_a.intersection(snake_case_ ) )
if alternative_union:
_lowerCAmelCase = len(snake_case_ ) + len(snake_case_ )
else:
_lowerCAmelCase = len(set_a.union(snake_case_ ) )
return intersection / union
if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ):
_lowerCAmelCase = [element for element in set_a if element in set_b]
if alternative_union:
_lowerCAmelCase = len(snake_case_ ) + len(snake_case_ )
return len(snake_case_ ) / union
else:
_lowerCAmelCase = set_a + [element for element in set_b if element not in set_a]
return len(snake_case_ ) / len(snake_case_ )
return len(snake_case_ ) / len(snake_case_ )
return None
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = {'''a''', '''b''', '''c''', '''d''', '''e'''}
SCREAMING_SNAKE_CASE : Union[str, Any] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''}
print(jaccard_similarity(set_a, set_b))
| 363
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_terminal_summary_main
_lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 317
| 0
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __UpperCAmelCase ( snake_case_ : List[Any] ) -> List[str]:
"""simple docstring"""
_lowerCAmelCase = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2]
_lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False
_lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False
_lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
_lowerCAmelCase = [3, 3, 3, 3]
_lowerCAmelCase = [5, 5, 5, 5]
elif "fl4" in model_name:
_lowerCAmelCase = [4, 4, 4, 4]
_lowerCAmelCase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
_lowerCAmelCase = [3, 3, 3, 3]
if "lrf" in model_name:
_lowerCAmelCase = [3, 3, 3, 3]
else:
_lowerCAmelCase = [2, 2, 2, 2]
if "tiny" in model_name:
_lowerCAmelCase = 96
elif "small" in model_name:
_lowerCAmelCase = 96
elif "base" in model_name:
_lowerCAmelCase = 128
elif "large" in model_name:
_lowerCAmelCase = 192
elif "xlarge" in model_name:
_lowerCAmelCase = 256
elif "huge" in model_name:
_lowerCAmelCase = 352
# set label information
_lowerCAmelCase = """huggingface/label-files"""
if "large" in model_name or "huge" in model_name:
_lowerCAmelCase = """imagenet-22k-id2label.json"""
else:
_lowerCAmelCase = """imagenet-1k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()}
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
_lowerCAmelCase = FocalNetConfig(
embed_dim=snake_case_ , depths=snake_case_ , focal_levels=snake_case_ , focal_windows=snake_case_ , use_conv_embed=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , use_post_layernorm=snake_case_ , use_layerscale=snake_case_ , )
return config
def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> Any:
"""simple docstring"""
if "patch_embed.proj" in name:
_lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
_lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
_lowerCAmelCase = """encoder.""" + name
if "encoder.layers" in name:
_lowerCAmelCase = name.replace("""encoder.layers""" , """encoder.stages""" )
if "downsample.proj" in name:
_lowerCAmelCase = name.replace("""downsample.proj""" , """downsample.projection""" )
if "blocks" in name:
_lowerCAmelCase = name.replace("""blocks""" , """layers""" )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
_lowerCAmelCase = name.replace("""modulation.f""" , """modulation.projection_in""" )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
_lowerCAmelCase = name.replace("""modulation.h""" , """modulation.projection_context""" )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
_lowerCAmelCase = name.replace("""modulation.proj""" , """modulation.projection_out""" )
if name == "norm.weight":
_lowerCAmelCase = """layernorm.weight"""
if name == "norm.bias":
_lowerCAmelCase = """layernorm.bias"""
if "head" in name:
_lowerCAmelCase = name.replace("""head""" , """classifier""" )
else:
_lowerCAmelCase = """focalnet.""" + name
return name
def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[str]=False ) -> int:
"""simple docstring"""
_lowerCAmelCase = {
"""focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""",
"""focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""",
"""focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""",
"""focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""",
"""focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""",
"""focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""",
"""focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""",
"""focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""",
"""focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""",
"""focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""",
}
# fmt: on
_lowerCAmelCase = model_name_to_url[model_name]
print("""Checkpoint URL: """ , snake_case_ )
_lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" )["""model"""]
# rename keys
for key in state_dict.copy().keys():
_lowerCAmelCase = state_dict.pop(snake_case_ )
_lowerCAmelCase = val
_lowerCAmelCase = get_focalnet_config(snake_case_ )
_lowerCAmelCase = FocalNetForImageClassification(snake_case_ )
model.eval()
# load state dict
model.load_state_dict(snake_case_ )
# verify conversion
_lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_lowerCAmelCase = BitImageProcessor(
do_resize=snake_case_ , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case_ , crop_size=224 , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , )
_lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
_lowerCAmelCase = processor(images=snake_case_ , return_tensors="""pt""" )
_lowerCAmelCase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowerCAmelCase = image_transforms(snake_case_ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , snake_case_ , atol=1e-4 )
_lowerCAmelCase = model(**snake_case_ )
_lowerCAmelCase = outputs.logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
print("""First values of logits:""" , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
_lowerCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
_lowerCAmelCase = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
_lowerCAmelCase = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
_lowerCAmelCase = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
_lowerCAmelCase = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
_lowerCAmelCase = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(snake_case_ )
processor.save_pretrained(snake_case_ )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''focalnet-tiny''',
type=str,
help='''Name of the FocalNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub.''',
)
SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 364
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
SCREAMING_SNAKE_CASE : Optional[Any] = {
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class __lowerCamelCase ( __lowercase ):
__UpperCamelCase = 'facebook/nllb-200-distilled-600M'
__UpperCamelCase = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
__UpperCamelCase = 'translator'
__UpperCamelCase = AutoTokenizer
__UpperCamelCase = AutoModelForSeqaSeqLM
__UpperCamelCase = LANGUAGE_CODES
__UpperCamelCase = ['text', 'text', 'text']
__UpperCamelCase = ['text']
def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
_lowerCAmelCase = self.lang_to_code[src_lang]
_lowerCAmelCase = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase )
def A__ (self , lowerCamelCase ):
'''simple docstring'''
return self.model.generate(**lowerCamelCase )
def A__ (self , lowerCamelCase ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
| 317
| 0
|
"""simple docstring"""
import math
from datetime import datetime, timedelta
def __UpperCAmelCase ( snake_case_ : int ) -> datetime:
"""simple docstring"""
_lowerCAmelCase = year % 19
_lowerCAmelCase = year % 4
_lowerCAmelCase = year % 7
_lowerCAmelCase = math.floor(year / 100 )
_lowerCAmelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_lowerCAmelCase = leap_day_inhibits / 4
_lowerCAmelCase = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_lowerCAmelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_lowerCAmelCase = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_lowerCAmelCase = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(snake_case_ , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(snake_case_ , 4 , 18 )
else:
return datetime(snake_case_ , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3):
SCREAMING_SNAKE_CASE : Dict = '''will be''' if year > datetime.now().year else '''was'''
print(F'Easter in {year} {tense} {gauss_easter(year)}')
| 365
|
"""simple docstring"""
from math import isqrt
def __UpperCAmelCase ( snake_case_ : int ) -> list[int]:
"""simple docstring"""
_lowerCAmelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , snake_case_ , snake_case_ ):
_lowerCAmelCase = False
return [i for i in range(2 , snake_case_ ) if is_prime[i]]
def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int:
"""simple docstring"""
_lowerCAmelCase = calculate_prime_numbers(max_number // 2 )
_lowerCAmelCase = 0
_lowerCAmelCase = 0
_lowerCAmelCase = len(snake_case_ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F'{solution() = }')
| 317
| 0
|
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Optional[Any] ):
"""simple docstring"""
_lowerCAmelCase = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
_lowerCAmelCase = DatasetInfosDict.from_directory(snake_case_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ),
] , )
def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : DatasetInfo ):
"""simple docstring"""
_lowerCAmelCase = str(snake_case_ )
dataset_info.write_to_directory(snake_case_ )
_lowerCAmelCase = DatasetInfo.from_directory(snake_case_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(snake_case_ , """dataset_info.json""" ) )
def __UpperCAmelCase ( ):
"""simple docstring"""
_lowerCAmelCase = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , )
_lowerCAmelCase = dataset_info._to_yaml_dict()
assert sorted(snake_case_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
_lowerCAmelCase = yaml.safe_dump(snake_case_ )
_lowerCAmelCase = yaml.safe_load(snake_case_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
"""simple docstring"""
_lowerCAmelCase = DatasetInfo()
_lowerCAmelCase = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=42 ),
"""v2""": DatasetInfo(dataset_size=1337 ),
} ),
] , )
def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : DatasetInfosDict ):
"""simple docstring"""
_lowerCAmelCase = str(snake_case_ )
dataset_infos_dict.write_to_directory(snake_case_ )
_lowerCAmelCase = DatasetInfosDict.from_directory(snake_case_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_lowerCAmelCase = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_lowerCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(snake_case_ , """README.md""" ) )
| 366
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class __lowerCamelCase ( __lowercase ):
__UpperCamelCase = (
'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'
'It takes two arguments named `image` which should be the original image, and `label` which should be a text '
'describing the elements what should be identified in the segmentation mask. The tool returns the mask.'
)
__UpperCamelCase = 'CIDAS/clipseg-rd64-refined'
__UpperCamelCase = 'image_segmenter'
__UpperCamelCase = CLIPSegForImageSegmentation
__UpperCamelCase = ['image', 'text']
__UpperCamelCase = ['image']
def __init__(self , *lowerCamelCase , **lowerCamelCase ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*lowerCamelCase , **lowerCamelCase )
def A__ (self , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" )
def A__ (self , lowerCamelCase ):
'''simple docstring'''
with torch.no_grad():
_lowerCAmelCase = self.model(**lowerCamelCase ).logits
return logits
def A__ (self , lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase = outputs.cpu().detach().numpy()
_lowerCAmelCase = 0
_lowerCAmelCase = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 317
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Any = {
'''configuration_speecht5''': [
'''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''',
'''SpeechT5Config''',
'''SpeechT5HifiGanConfig''',
],
'''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''],
'''processing_speecht5''': ['''SpeechT5Processor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : List[str] = ['''SpeechT5Tokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Any = [
'''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SpeechT5ForSpeechToText''',
'''SpeechT5ForSpeechToSpeech''',
'''SpeechT5ForTextToSpeech''',
'''SpeechT5Model''',
'''SpeechT5PreTrainedModel''',
'''SpeechT5HifiGan''',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 367
|
"""simple docstring"""
from __future__ import annotations
import queue
class __lowerCamelCase :
def __init__(self , lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase = data
_lowerCAmelCase = None
_lowerCAmelCase = None
def __UpperCAmelCase ( ) -> TreeNode:
"""simple docstring"""
print("""\n********Press N to stop entering at any point of time********\n""" )
_lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower()
_lowerCAmelCase = queue.Queue()
_lowerCAmelCase = TreeNode(int(snake_case_ ) )
q.put(snake_case_ )
while not q.empty():
_lowerCAmelCase = q.get()
_lowerCAmelCase = F"""Enter the left node of {node_found.data}: """
_lowerCAmelCase = input(snake_case_ ).strip().lower() or """n"""
if check == "n":
return tree_node
_lowerCAmelCase = TreeNode(int(snake_case_ ) )
_lowerCAmelCase = left_node
q.put(snake_case_ )
_lowerCAmelCase = F"""Enter the right node of {node_found.data}: """
_lowerCAmelCase = input(snake_case_ ).strip().lower() or """n"""
if check == "n":
return tree_node
_lowerCAmelCase = TreeNode(int(snake_case_ ) )
_lowerCAmelCase = right_node
q.put(snake_case_ )
raise
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
print(node.data , end=""",""" )
pre_order(node.left )
pre_order(node.right )
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
in_order(node.left )
print(node.data , end=""",""" )
in_order(node.right )
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=""",""" )
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
_lowerCAmelCase = queue.Queue()
q.put(snake_case_ )
while not q.empty():
_lowerCAmelCase = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
_lowerCAmelCase = queue.Queue()
q.put(snake_case_ )
while not q.empty():
_lowerCAmelCase = []
while not q.empty():
_lowerCAmelCase = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(snake_case_ )
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
_lowerCAmelCase = []
_lowerCAmelCase = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=""",""" )
stack.append(snake_case_ )
_lowerCAmelCase = n.left
# end of while means current node doesn't have left child
_lowerCAmelCase = stack.pop()
# start to traverse its right child
_lowerCAmelCase = n.right
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
_lowerCAmelCase = []
_lowerCAmelCase = node
while n or stack:
while n:
stack.append(snake_case_ )
_lowerCAmelCase = n.left
_lowerCAmelCase = stack.pop()
print(n.data , end=""",""" )
_lowerCAmelCase = n.right
def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not node:
return
_lowerCAmelCase , _lowerCAmelCase = [], []
_lowerCAmelCase = node
stacka.append(snake_case_ )
while stacka: # to find the reversed order of post order, store it in stack2
_lowerCAmelCase = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(snake_case_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=""",""" )
def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
_lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 )
return F"""{left * char} {s} {(left + extra) * char}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
SCREAMING_SNAKE_CASE : TreeNode = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 5_0 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 317
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Any ) -> Optional[int]:
"""simple docstring"""
_lowerCAmelCase = """"""
for i in table:
res += inp[i - 1]
return res
def __UpperCAmelCase ( snake_case_ : str ) -> Tuple:
"""simple docstring"""
return data[1:] + data[0]
def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> Any:
"""simple docstring"""
_lowerCAmelCase = """"""
for i in range(len(snake_case_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : str ) -> List[str]:
"""simple docstring"""
_lowerCAmelCase = int("""0b""" + data[0] + data[-1] , 2 )
_lowerCAmelCase = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Dict ) -> str:
"""simple docstring"""
_lowerCAmelCase = message[:4]
_lowerCAmelCase = message[4:]
_lowerCAmelCase = apply_table(snake_case_ , snake_case_ )
_lowerCAmelCase = xor(snake_case_ , snake_case_ )
_lowerCAmelCase = apply_sbox(snake_case_ , temp[:4] ) # noqa: E741
_lowerCAmelCase = apply_sbox(snake_case_ , temp[4:] )
_lowerCAmelCase = """0""" * (2 - len(snake_case_ )) + l # noqa: E741
_lowerCAmelCase = """0""" * (2 - len(snake_case_ )) + r
_lowerCAmelCase = apply_table(l + r , snake_case_ )
_lowerCAmelCase = xor(snake_case_ , snake_case_ )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : str = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE : Optional[int] = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE : str = [6, 3, 7, 4, 8, 5, 1_0, 9]
SCREAMING_SNAKE_CASE : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE : str = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE : Tuple = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE : List[str] = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE : Dict = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE : Optional[int] = temp[:5]
SCREAMING_SNAKE_CASE : str = temp[5:]
SCREAMING_SNAKE_CASE : List[Any] = left_shift(left)
SCREAMING_SNAKE_CASE : int = left_shift(right)
SCREAMING_SNAKE_CASE : Optional[Any] = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE : int = left_shift(left)
SCREAMING_SNAKE_CASE : Dict = left_shift(right)
SCREAMING_SNAKE_CASE : int = left_shift(left)
SCREAMING_SNAKE_CASE : str = left_shift(right)
SCREAMING_SNAKE_CASE : Union[str, Any] = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE : int = apply_table(message, IP)
SCREAMING_SNAKE_CASE : Optional[int] = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE : int = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE : Tuple = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE : List[str] = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE : Dict = apply_table(CT, IP)
SCREAMING_SNAKE_CASE : Optional[int] = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE : Optional[Any] = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE : Tuple = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE : Optional[Any] = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 368
|
"""simple docstring"""
from __future__ import annotations
class __lowerCamelCase :
def __init__(self , lowerCamelCase , lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase = text, pattern
_lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase )
def A__ (self , lowerCamelCase ):
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def A__ (self , lowerCamelCase ):
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = []
for i in range(self.textLen - self.patLen + 1 ):
_lowerCAmelCase = self.mismatch_in_text(lowerCamelCase )
if mismatch_index == -1:
positions.append(lowerCamelCase )
else:
_lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] )
_lowerCAmelCase = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
SCREAMING_SNAKE_CASE : Any = '''ABAABA'''
SCREAMING_SNAKE_CASE : Optional[int] = '''AB'''
SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern)
SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic()
if len(positions) == 0:
print('''No match found''')
else:
print('''Pattern found in following positions: ''')
print(positions)
| 317
| 0
|
"""simple docstring"""
from math import factorial
SCREAMING_SNAKE_CASE : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)}
def __UpperCAmelCase ( snake_case_ : int ) -> int:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(snake_case_ ) )
def __UpperCAmelCase ( snake_case_ : int = 60 , snake_case_ : int = 1000000 ) -> int:
"""simple docstring"""
if not isinstance(snake_case_ , snake_case_ ) or not isinstance(snake_case_ , snake_case_ ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
_lowerCAmelCase = 0
# the cached sizes of the previous chains
_lowerCAmelCase = {}
for start_chain_element in range(1 , snake_case_ ):
# The temporary set will contain the elements of the chain
_lowerCAmelCase = set()
_lowerCAmelCase = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
_lowerCAmelCase = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(snake_case_ )
chain_set_length += 1
_lowerCAmelCase = digit_factorial_sum(snake_case_ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
_lowerCAmelCase = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution()}')
| 369
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
SCREAMING_SNAKE_CASE : List[str] = False
class __lowerCamelCase ( unittest.TestCase ):
pass
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
_lowerCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(
image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
_lowerCAmelCase = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 317
| 0
|
"""simple docstring"""
import requests
SCREAMING_SNAKE_CASE : int = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='''
def __UpperCAmelCase ( snake_case_ : str ) -> None:
"""simple docstring"""
_lowerCAmelCase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["""articles"""] , 1 ):
print(F"""{i}.) {article["title"]}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
| 370
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( __lowercase , unittest.TestCase ):
__UpperCamelCase = DiTPipeline
__UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__UpperCamelCase = PipelineTesterMixin.required_optional_params - {
'latents',
'num_images_per_prompt',
'callback',
'callback_steps',
}
__UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__UpperCamelCase = False
def A__ (self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def A__ (self , lowerCamelCase , lowerCamelCase=0 ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("""mps""" ):
_lowerCAmelCase = torch.manual_seed(lowerCamelCase )
else:
_lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
_lowerCAmelCase = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = """cpu"""
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase )
_lowerCAmelCase = pipe(**lowerCamelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowerCamelCase , 1e-3 )
def A__ (self ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def A__ (self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class __lowerCamelCase ( unittest.TestCase ):
def A__ (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
_lowerCAmelCase = pipe.get_label_ids(lowerCamelCase )
_lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images
for word, image in zip(lowerCamelCase , lowerCamelCase ):
_lowerCAmelCase = load_numpy(
f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-2
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella"""]
_lowerCAmelCase = pipe.get_label_ids(lowerCamelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images
for word, image in zip(lowerCamelCase , lowerCamelCase ):
_lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
f"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 317
| 0
|
"""simple docstring"""
import math
import qiskit
def __UpperCAmelCase ( snake_case_ : int = 1 , snake_case_ : int = 1 , snake_case_ : int = 1 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if (
isinstance(snake_case_ , snake_case_ )
or isinstance(snake_case_ , snake_case_ )
or isinstance(snake_case_ , snake_case_ )
):
raise TypeError("""inputs must be integers.""" )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("""inputs must be positive.""" )
if (
(math.floor(snake_case_ ) != input_a)
or (math.floor(snake_case_ ) != input_a)
or (math.floor(snake_case_ ) != carry_in)
):
raise ValueError("""inputs must be exact integers.""" )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("""inputs must be less or equal to 2.""" )
# build registers
_lowerCAmelCase = qiskit.QuantumRegister(4 , """qr""" )
_lowerCAmelCase = qiskit.ClassicalRegister(2 , """cr""" )
# list the entries
_lowerCAmelCase = [input_a, input_a, carry_in]
_lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , snake_case_ )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(snake_case_ ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(snake_case_ ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(snake_case_ ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , snake_case_ ) # measure the last two qbits
_lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" )
_lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1000 )
return job.result().get_counts(snake_case_ )
if __name__ == "__main__":
print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
| 371
|
"""simple docstring"""
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict:
"""simple docstring"""
return getitem, k
def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return setitem, k, v
def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]:
"""simple docstring"""
return delitem, k
def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str:
"""simple docstring"""
try:
return fun(snake_case_ , *snake_case_ ), None
except Exception as e:
return None, e
SCREAMING_SNAKE_CASE : int = (
_set('''key_a''', '''val_a'''),
_set('''key_b''', '''val_b'''),
)
SCREAMING_SNAKE_CASE : List[Any] = [
_set('''key_a''', '''val_a'''),
_set('''key_a''', '''val_b'''),
]
SCREAMING_SNAKE_CASE : Any = [
_set('''key_a''', '''val_a'''),
_set('''key_b''', '''val_b'''),
_del('''key_a'''),
_del('''key_b'''),
_set('''key_a''', '''val_a'''),
_del('''key_a'''),
]
SCREAMING_SNAKE_CASE : Union[str, Any] = [
_get('''key_a'''),
_del('''key_a'''),
_set('''key_a''', '''val_a'''),
_del('''key_a'''),
_del('''key_a'''),
_get('''key_a'''),
]
SCREAMING_SNAKE_CASE : Optional[Any] = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
SCREAMING_SNAKE_CASE : Optional[int] = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('''key_a''', '''val_b'''),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple:
"""simple docstring"""
_lowerCAmelCase = HashMap(initial_block_size=4 )
_lowerCAmelCase = {}
for _, (fun, *args) in enumerate(snake_case_ ):
_lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ )
_lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ )
assert my_res == py_res
assert str(snake_case_ ) == str(snake_case_ )
assert set(snake_case_ ) == set(snake_case_ )
assert len(snake_case_ ) == len(snake_case_ )
assert set(my.items() ) == set(py.items() )
def __UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
def is_public(snake_case_ : str ) -> bool:
return not name.startswith("""_""" )
_lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )}
_lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )}
assert dict_public_names > hash_public_names
| 317
| 0
|
"""simple docstring"""
def _A (__a ) -> int:
"""simple docstring"""
if not isinstance(__a , __a ) or number < 0:
raise ValueError('''Input must be a non-negative integer''' )
SCREAMING_SNAKE_CASE_ : int = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
UpperCAmelCase_ : List[Any] = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
UpperCAmelCase_ : Optional[int] = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
UpperCAmelCase_ : Tuple = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float'''),
'''references''': datasets.Value('''float'''),
}) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
| 318
| 1
|
"""simple docstring"""
def _A (__a = 10_00 ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = 2**power
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0
while n:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 318
|
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : str = pad_token_id
SCREAMING_SNAKE_CASE_ : Optional[int] = max_length
SCREAMING_SNAKE_CASE_ : Dict = vocab
SCREAMING_SNAKE_CASE_ : Dict = merges
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab()
return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_)
return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]):
'''simple docstring'''
return cls(**lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_)
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs(
lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id)
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318
| 1
|
"""simple docstring"""
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def _A (__a , __a ) -> Any:
"""simple docstring"""
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
SCREAMING_SNAKE_CASE_ : int = flax_key_tuple[:-1] + ('''weight''',)
SCREAMING_SNAKE_CASE_ : str = torch.permute(__a , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__a ):
# linear layer
SCREAMING_SNAKE_CASE_ : int = flax_key_tuple[:-1] + ('''weight''',)
SCREAMING_SNAKE_CASE_ : List[str] = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def _A (__a , __a , __a ) -> Dict:
"""simple docstring"""
if "metadata" in layer:
SCREAMING_SNAKE_CASE_ : List[Any] = layer.split('''metadata''' )
SCREAMING_SNAKE_CASE_ : Tuple = ''''''.join(split_layer[0] )[:-1]
SCREAMING_SNAKE_CASE_ : List[Any] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
SCREAMING_SNAKE_CASE_ : Optional[int] = layer.split('''kvstore''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(split_layer[0] )[:-1]
SCREAMING_SNAKE_CASE_ : List[str] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer.split('''/''' )
SCREAMING_SNAKE_CASE_ : Dict = '''/'''.join(split_layer[:-1] )
SCREAMING_SNAKE_CASE_ : List[str] = (split_layer[-1],)
if "kvstore/path" in layer:
SCREAMING_SNAKE_CASE_ : int = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
SCREAMING_SNAKE_CASE_ : str = '''file'''
else:
SCREAMING_SNAKE_CASE_ : str = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def _A (__a , __a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = rename_keys(__a )
SCREAMING_SNAKE_CASE_ : str = {}
for k, v in current_block.items():
SCREAMING_SNAKE_CASE_ : int = v
SCREAMING_SNAKE_CASE_ : Tuple = new_current_block
torch.save(__a , __a )
def _A (__a , __a , __a , __a , __a = WEIGHTS_NAME ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = convert_file_size_to_int(__a )
SCREAMING_SNAKE_CASE_ : List[str] = []
SCREAMING_SNAKE_CASE_ : List[Any] = {}
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Any = 0
os.makedirs(__a , exist_ok=__a )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
SCREAMING_SNAKE_CASE_ : List[str] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
SCREAMING_SNAKE_CASE_ : Optional[int] = flatten_dict(__a , sep='''/''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = {}
for layer in checkpoint_info.keys():
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = get_key_and_tensorstore_dict(
__a , __a , __a )
if curr_real_layer_name in all_layers:
SCREAMING_SNAKE_CASE_ : Dict = content
else:
SCREAMING_SNAKE_CASE_ : Tuple = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(__a )
SCREAMING_SNAKE_CASE_ : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = rename_base_flax_keys(tuple(key.split('''/''' ) ) , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = '''/'''.join(__a )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
SCREAMING_SNAKE_CASE_ : Dict = os.path.join(
__a , weights_name.replace('''.bin''' , f'-{len(__a )+1:05d}-of-???.bin' ) )
rename_and_save_block(__a , __a )
sharded_state_dicts.append(current_block.keys() )
del current_block
SCREAMING_SNAKE_CASE_ : Dict = {}
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = raw_weights.to(getattr(__a , __a ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
SCREAMING_SNAKE_CASE_ : str = os.path.join(__a , weights_name.replace('''.bin''' , f'-{len(__a )+1:05d}-of-???.bin' ) )
rename_and_save_block(__a , __a )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__a ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE_ : Tuple = {}
SCREAMING_SNAKE_CASE_ : Tuple = {}
for idx, shard in enumerate(__a ):
SCREAMING_SNAKE_CASE_ : str = weights_name.replace(
'''.bin''' , f'-{idx+1:05d}-of-{len(__a ):05d}.bin' ) # len(sharded_state_dicts):05d}
SCREAMING_SNAKE_CASE_ : int = os.path.join(__a , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__a , os.path.join(__a , __a ) )
SCREAMING_SNAKE_CASE_ : str = shard
for key in shard:
SCREAMING_SNAKE_CASE_ : Optional[Any] = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE_ : Tuple = {'''total_size''': total_size}
SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__a , __a ) , '''w''' , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE_ : List[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + '''\n'''
f.write(__a )
return metadata, index
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--switch_t5x_checkpoint_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""")
parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
UpperCAmelCase_ : List[Any] = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def _A () -> Dict:
"""simple docstring"""
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
SCREAMING_SNAKE_CASE_ : Tuple = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
SCREAMING_SNAKE_CASE_ : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = TaTokenizer.from_pretrained('''t5-small''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(__a , return_tensors='''pt''' ).input_ids
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(__a , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 318
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE_ : Dict = {
'''do_resize''': True,
'''size''': {'''height''': 224, '''width''': 224},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_)
with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp:
json.dump(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str):
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_slow.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_fast.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowercase_)
self.assertIsInstance(processor_fast.tokenizer , lowercase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowercase_)
self.assertIsInstance(processor_fast.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''')
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowercase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase_):
processor()
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 318
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
UpperCAmelCase_ : Tuple = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int=7 , lowercase_ : str=3 , lowercase_ : str=18 , lowercase_ : Dict=30 , lowercase_ : int=400 , lowercase_ : Any=None , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = size if size is not None else {'''height''': 20, '''width''': 20}
SCREAMING_SNAKE_CASE_ : List[str] = parent
SCREAMING_SNAKE_CASE_ : int = batch_size
SCREAMING_SNAKE_CASE_ : str = num_channels
SCREAMING_SNAKE_CASE_ : Optional[int] = image_size
SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_resolution
SCREAMING_SNAKE_CASE_ : Dict = size
SCREAMING_SNAKE_CASE_ : Any = do_normalize
SCREAMING_SNAKE_CASE_ : str = do_convert_rgb
SCREAMING_SNAKE_CASE_ : Any = [512, 1024, 2048, 4096]
SCREAMING_SNAKE_CASE_ : Dict = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
SCREAMING_SNAKE_CASE_ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_).raw).convert('''RGB''')
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = PixaStructImageProcessor if is_vision_available() else None
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = PixaStructImageProcessingTester(self)
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase_ , '''do_normalize'''))
self.assertTrue(hasattr(lowercase_ , '''do_convert_rgb'''))
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.prepare_dummy_image()
SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict)
SCREAMING_SNAKE_CASE_ : Any = 2048
SCREAMING_SNAKE_CASE_ : Dict = image_processor(lowercase_ , return_tensors='''pt''' , max_patches=lowercase_)
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06) , atol=1e-3 , rtol=1e-3))
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
SCREAMING_SNAKE_CASE_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image)
# Test not batched input
SCREAMING_SNAKE_CASE_ : Tuple = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(
lowercase_ , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image)
# Test not batched input
SCREAMING_SNAKE_CASE_ : Optional[Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
SCREAMING_SNAKE_CASE_ : List[str] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowercase_):
SCREAMING_SNAKE_CASE_ : Tuple = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
SCREAMING_SNAKE_CASE_ : List[Any] = '''Hello'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase_ , header_text=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
SCREAMING_SNAKE_CASE_ : List[str] = image_processor(
lowercase_ , return_tensors='''pt''' , max_patches=lowercase_ , header_text=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
SCREAMING_SNAKE_CASE_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray)
SCREAMING_SNAKE_CASE_ : Optional[int] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
SCREAMING_SNAKE_CASE_ : Tuple = image_processor(
lowercase_ , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
SCREAMING_SNAKE_CASE_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor)
# Test not batched input
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
SCREAMING_SNAKE_CASE_ : Tuple = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
SCREAMING_SNAKE_CASE_ : Tuple = image_processor(
lowercase_ , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = PixaStructImageProcessor if is_vision_available() else None
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = PixaStructImageProcessingTester(self , num_channels=4)
SCREAMING_SNAKE_CASE_ : List[str] = 3
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase_ , '''do_normalize'''))
self.assertTrue(hasattr(lowercase_ , '''do_convert_rgb'''))
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
SCREAMING_SNAKE_CASE_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image)
# Test not batched input
SCREAMING_SNAKE_CASE_ : Optional[int] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
SCREAMING_SNAKE_CASE_ : Dict = image_processor(
lowercase_ , return_tensors='''pt''' , max_patches=lowercase_).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 318
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "rwkv"
__UpperCamelCase = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE_ : Any = context_length
SCREAMING_SNAKE_CASE_ : int = hidden_size
SCREAMING_SNAKE_CASE_ : int = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size
SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size
SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every
SCREAMING_SNAKE_CASE_ : Dict = use_cache
SCREAMING_SNAKE_CASE_ : Dict = bos_token_id
SCREAMING_SNAKE_CASE_ : Any = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE_ : Dict = {
'''do_resize''': True,
'''size''': {'''height''': 224, '''width''': 224},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_)
with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp:
json.dump(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str):
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_slow.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_fast.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowercase_)
self.assertIsInstance(processor_fast.tokenizer , lowercase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowercase_)
self.assertIsInstance(processor_fast.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''')
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowercase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase_):
processor()
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 318
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8
def _A (__a , __a ) -> float:
"""simple docstring"""
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
UpperCAmelCase_ : str = 300
UpperCAmelCase_ : str = 28
UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 318
| 1
|
"""simple docstring"""
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
UpperCAmelCase_ : Any = Lock()
def _A (__a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(__a )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
SCREAMING_SNAKE_CASE_ : int = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
SCREAMING_SNAKE_CASE_ : int = min(__a , __a )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(__a )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
SCREAMING_SNAKE_CASE_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
SCREAMING_SNAKE_CASE_ : Optional[Any] = max(__a , __a )
# after all swaps are performed, send the values back to main
result_pipe[1].send(__a )
def _A (__a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = []
SCREAMING_SNAKE_CASE_ : str = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
SCREAMING_SNAKE_CASE_ : Tuple = Pipe()
SCREAMING_SNAKE_CASE_ : str = Pipe()
process_array_.append(
Process(
target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
SCREAMING_SNAKE_CASE_ : Any = temp_rs
SCREAMING_SNAKE_CASE_ : Optional[Any] = temp_rr
for i in range(1 , len(__a ) - 1 ):
SCREAMING_SNAKE_CASE_ : Optional[int] = Pipe()
SCREAMING_SNAKE_CASE_ : Optional[int] = Pipe()
process_array_.append(
Process(
target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
SCREAMING_SNAKE_CASE_ : Tuple = temp_rs
SCREAMING_SNAKE_CASE_ : str = temp_rr
process_array_.append(
Process(
target=__a , args=(
len(__a ) - 1,
arr[len(__a ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(__a ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(__a ) ):
SCREAMING_SNAKE_CASE_ : Tuple = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def _A () -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*__a )
SCREAMING_SNAKE_CASE_ : Any = odd_even_transposition(__a )
print('''Sorted List\n''' )
print(*__a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""]
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
SCREAMING_SNAKE_CASE_ : Optional[int] = dataset
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks
SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies
def __iter__( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = []
for task in range(self.n_tasks):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip())
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''')
for task in range(self.n_tasks):
for _ in range(self.n_copies):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = start_length
SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
SCREAMING_SNAKE_CASE_ : Tuple = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings))
return all(lowercase_)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a )
# last string should be ""
return "".join(string_list[:-2] )
def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(__a ) ):
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1]
SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a )
# each task is generated batch_size times
SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes(
__a , dim=1 , pad_index=tokenizer.pad_token_id )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy()
SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(__a , __a ):
gen_token_dict[task].append(__a )
SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
code_gens[task].append(remove_last_block(__a ) )
return code_gens
def _A () -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
SCREAMING_SNAKE_CASE_ : str = '''false'''
if args.num_workers is None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
SCREAMING_SNAKE_CASE_ : Tuple = Accelerator()
set_seed(args.seed , device_specific=__a )
# Load model and tokenizer
SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt )
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token
SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
SCREAMING_SNAKE_CASE_ : List[str] = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ),
}
# Load evaluation dataset and metric
SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' )
SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' )
SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a )
# do not confuse args.batch_size, which is actually the num_return_sequences
SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = complete_code(
__a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , )
if accelerator.is_main_process:
SCREAMING_SNAKE_CASE_ : int = []
for task in tqdm(range(__a ) ):
SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test''']
SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})'
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute(
references=__a , predictions=__a , num_workers=args.num_workers )
print(f'Results: {pass_at_k}' )
# Save results to json file
with open(args.output_file , '''w''' ) as fp:
json.dump(__a , __a )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 318
| 1
|
"""simple docstring"""
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ : Tuple = {
"""configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""],
"""tokenization_cpmant""": ["""CpmAntTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : int = [
"""CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CpmAntForCausalLM""",
"""CpmAntModel""",
"""CpmAntPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["image_processor", "feature_extractor"]
__UpperCamelCase = "TvltImageProcessor"
__UpperCamelCase = "TvltFeatureExtractor"
def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor
SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor
def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''')
SCREAMING_SNAKE_CASE_ : Any = None
if images is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_)
if images_mixed is not None:
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_)
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(
lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = {}
if audio is not None:
output_dict.update(lowercase_)
if images is not None:
output_dict.update(lowercase_)
if images_mixed_dict is not None:
output_dict.update(lowercase_)
return output_dict
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 318
| 1
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase_ : Tuple = {"""vocab_file""": """spiece.model"""}
UpperCAmelCase_ : Tuple = {
"""vocab_file""": {
"""TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""",
}
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=False , lowercase_ : int=True , lowercase_ : Union[str, Any]=False , lowercase_ : int="<s>" , lowercase_ : int="</s>" , lowercase_ : Optional[int]="<unk>" , lowercase_ : Any="<sep>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Tuple="<cls>" , lowercase_ : List[str]="<mask>" , lowercase_ : Optional[Any]=["<eop>", "<eod>"] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Union[str, Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token
SCREAMING_SNAKE_CASE_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE_ : Any = do_lower_case
SCREAMING_SNAKE_CASE_ : List[str] = remove_space
SCREAMING_SNAKE_CASE_ : Any = keep_accents
SCREAMING_SNAKE_CASE_ : str = vocab_file
SCREAMING_SNAKE_CASE_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(lowercase_)
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
'''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. '''
'''See https://pypi.org/project/jieba/ for installation.''')
SCREAMING_SNAKE_CASE_ : List[Any] = jieba
SCREAMING_SNAKE_CASE_ : List[Any] = str.maketrans(''' \n''' , '''\u2582\u2583''')
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
return len(self.sp_model)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.__dict__.copy()
SCREAMING_SNAKE_CASE_ : Any = None
return state
def __setstate__( self : List[str] , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {}
SCREAMING_SNAKE_CASE_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : int):
'''simple docstring'''
if self.remove_space:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''' '''.join(inputs.strip().split())
else:
SCREAMING_SNAKE_CASE_ : str = inputs
SCREAMING_SNAKE_CASE_ : Tuple = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''')
if not self.keep_accents:
SCREAMING_SNAKE_CASE_ : int = unicodedata.normalize('''NFKD''' , lowercase_)
SCREAMING_SNAKE_CASE_ : str = ''''''.join([c for c in outputs if not unicodedata.combining(lowercase_)])
if self.do_lower_case:
SCREAMING_SNAKE_CASE_ : str = outputs.lower()
return outputs
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.preprocess_text(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.encode(lowercase_ , out_type=lowercase_)
SCREAMING_SNAKE_CASE_ : int = []
for piece in pieces:
if len(lowercase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit():
SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , ''''''))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
SCREAMING_SNAKE_CASE_ : Dict = cur_pieces[1:]
else:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(lowercase_)
else:
new_pieces.append(lowercase_)
return new_pieces
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[str]):
'''simple docstring'''
return self.sp_model.PieceToId(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Any):
'''simple docstring'''
return self.sp_model.IdToPiece(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip()
return out_string
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_)
if token_ids_a is not None:
return ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1, 1]
return ([0] * len(lowercase_)) + [1, 1]
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : str = [2]
if token_ids_a is None:
return len(token_ids_a + sep) * [0] + cls_segment_id
return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None):
'''simple docstring'''
if not os.path.isdir(lowercase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
SCREAMING_SNAKE_CASE_ : int = os.path.join(
lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , lowercase_)
elif not os.path.isfile(self.vocab_file):
with open(lowercase_ , '''wb''') as fi:
SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.serialized_model_proto()
fi.write(lowercase_)
return (out_vocab_file,)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = super()._decode(*lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''')
return text
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "SpeechT5FeatureExtractor"
__UpperCamelCase = "SpeechT5Tokenizer"
def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(lowercase_ , lowercase_)
def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
elif text is not None:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : Any = None
if audio_target is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values''']
elif text_target is not None:
SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : int = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_)
SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
elif input_ids is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : str = feature_size_hack
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values''']
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Dict = labels
SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]):
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=lowercase_).to(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained('''google/mt5-small''')
SCREAMING_SNAKE_CASE_ : Dict = tokenizer('''Hello there''' , return_tensors='''pt''').input_ids
SCREAMING_SNAKE_CASE_ : int = tokenizer('''Hi I am''' , return_tensors='''pt''').input_ids
SCREAMING_SNAKE_CASE_ : Dict = model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss
SCREAMING_SNAKE_CASE_ : str = -(labels.shape[-1] * loss.item())
SCREAMING_SNAKE_CASE_ : str = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
| 318
|
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = np.inf
def set_batch_size(__a ) -> None:
nonlocal batch_size
if isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__a , __a ) and feature.dtype == "binary":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__a , __a )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , )
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory)
return dataset
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = dataset
SCREAMING_SNAKE_CASE_ : Dict = path_or_buf
SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features)
SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , '''wb+''') as buffer:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs)
else:
SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs)
return written
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema
SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_)
for offset in logging.tqdm(
range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
SCREAMING_SNAKE_CASE_ : List[Any] = query_table(
table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(lowercase_)
written += batch.nbytes
writer.close()
return written
| 318
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = DDIMPipeline
__UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
__UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDIMScheduler()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler}
return components
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple=0):
'''simple docstring'''
if str(lowercase_).startswith('''mps'''):
SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(lowercase_)
else:
SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=lowercase_).manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''cpu'''
SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Dict = self.pipeline_class(**lowercase_)
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_inputs(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Optional[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3))
SCREAMING_SNAKE_CASE_ : List[str] = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04])
SCREAMING_SNAKE_CASE_ : Dict = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(lowercase_ , 1e-3)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
super().test_save_load_local(expected_max_difference=3e-3)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
super().test_save_load_optional_components(expected_max_difference=3e-3)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''google/ddpm-cifar10-32'''
SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDModel.from_pretrained(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = DDIMScheduler()
SCREAMING_SNAKE_CASE_ : Any = DDIMPipeline(unet=lowercase_ , scheduler=lowercase_)
ddim.to(lowercase_)
ddim.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : str = ddim(generator=lowercase_ , eta=0.0 , output_type='''numpy''').images
SCREAMING_SNAKE_CASE_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ : Dict = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''google/ddpm-ema-bedroom-256'''
SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDModel.from_pretrained(lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDIMScheduler.from_pretrained(lowercase_)
SCREAMING_SNAKE_CASE_ : int = DDIMPipeline(unet=lowercase_ , scheduler=lowercase_)
ddpm.to(lowercase_)
ddpm.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = ddpm(generator=lowercase_ , output_type='''numpy''').images
SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 318
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : str = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""]
def _A (__a ) -> Dict:
"""simple docstring"""
if "emb" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def _A (__a , __a ) -> Tuple[Dict, Dict]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() )
SCREAMING_SNAKE_CASE_ : int = {}
for key in keys:
SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a )
SCREAMING_SNAKE_CASE_ : int = rename_keys(__a )
if "in_proj_weight" in key:
# split fused qkv proj
SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :]
SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :]
SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
SCREAMING_SNAKE_CASE_ : int = val
else:
SCREAMING_SNAKE_CASE_ : Any = val
return state_dict, enc_dec_proj_state_dict
def _A (__a ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24
SCREAMING_SNAKE_CASE_ : Tuple = 24
SCREAMING_SNAKE_CASE_ : Optional[Any] = 16
elif checkpoint == "medium":
SCREAMING_SNAKE_CASE_ : List[str] = 15_36
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : Optional[int] = 24
elif checkpoint == "large":
SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : int = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig(
hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , )
return config
@torch.no_grad()
def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a )
SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict(
__a , hidden_size=decoder_config.hidden_size )
SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__a )
if len(__a ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(__a ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__a )
# check we can do a forward pass
SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits
if logits.shape != (8, 1, 20_48):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a )
# set the appropriate bos/pad token ids
SCREAMING_SNAKE_CASE_ : str = 20_48
SCREAMING_SNAKE_CASE_ : List[Any] = 20_48
# set other default generation config params
SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate )
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0
if pytorch_dump_folder is not None:
Path(__a ).mkdir(exist_ok=__a )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(__a )
processor.save_pretrained(__a )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(__a )
processor.push_to_hub(__a )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
UpperCAmelCase_ : Dict = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 318
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = BioGptTokenizer
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE_ : str = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_))))
SCREAMING_SNAKE_CASE_ : str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''])
with open(self.vocab_file , '''w''') as fp:
fp.write(json.dumps(lowercase_))
with open(self.merges_file , '''w''') as fp:
fp.write('''\n'''.join(lowercase_))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = '''lower newer'''
SCREAMING_SNAKE_CASE_ : str = '''lower newer'''
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file)
SCREAMING_SNAKE_CASE_ : int = '''lower'''
SCREAMING_SNAKE_CASE_ : List[str] = ['''low''', '''er</w>''']
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.tokenize(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = tokens + ['''<unk>''']
SCREAMING_SNAKE_CASE_ : List[str] = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_)
SCREAMING_SNAKE_CASE_ : int = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_)
self.assertTrue(encoded_sentence == [2] + text)
self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
| 318
|
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def _A (__a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _A (__a ) -> np.ndarray:
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def _A (__a , __a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path))
# kernel to be applied
UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 318
| 1
|
"""simple docstring"""
UpperCAmelCase_ : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def _A () -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = input('''Enter message: ''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = input('''Enter key [alphanumeric]: ''' )
SCREAMING_SNAKE_CASE_ : int = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''encrypt'''
SCREAMING_SNAKE_CASE_ : List[str] = encrypt_message(__a , __a )
elif mode.lower().startswith('''d''' ):
SCREAMING_SNAKE_CASE_ : Tuple = '''decrypt'''
SCREAMING_SNAKE_CASE_ : Dict = decrypt_message(__a , __a )
print(f'\n{mode.title()}ed message:' )
print(__a )
def _A (__a , __a ) -> str:
"""simple docstring"""
return translate_message(__a , __a , '''encrypt''' )
def _A (__a , __a ) -> str:
"""simple docstring"""
return translate_message(__a , __a , '''decrypt''' )
def _A (__a , __a , __a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = []
SCREAMING_SNAKE_CASE_ : Tuple = 0
SCREAMING_SNAKE_CASE_ : Dict = key.upper()
for symbol in message:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__a )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__a ):
SCREAMING_SNAKE_CASE_ : int = 0
else:
translated.append(__a )
return "".join(__a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
from collections import defaultdict
def _A (__a , __a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip()
SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip()
# Remove whitespace
SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase_ : Any = input("""Enter the first string """).strip()
UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip()
UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 318
| 1
|
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _A (__a , __a , __a ) -> float:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = x
SCREAMING_SNAKE_CASE_ : List[Any] = y
for step in range(__a ): # noqa: B007
SCREAMING_SNAKE_CASE_ : int = a * a - b * b + x
SCREAMING_SNAKE_CASE_ : Any = 2 * a * b + y
SCREAMING_SNAKE_CASE_ : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _A (__a ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_55, 2_55, 2_55)
def _A (__a ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__a , 1 , 1 ) )
def _A (__a = 8_00 , __a = 6_00 , __a = -0.6 , __a = 0 , __a = 3.2 , __a = 50 , __a = True , ) -> Image.Image:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = Image.new('''RGB''' , (image_width, image_height) )
SCREAMING_SNAKE_CASE_ : Dict = img.load()
# loop through the image-coordinates
for image_x in range(__a ):
for image_y in range(__a ):
# determine the figure-coordinates based on the image-coordinates
SCREAMING_SNAKE_CASE_ : Union[str, Any] = figure_width / image_width * image_height
SCREAMING_SNAKE_CASE_ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width
SCREAMING_SNAKE_CASE_ : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
SCREAMING_SNAKE_CASE_ : int = get_distance(__a , __a , __a )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
SCREAMING_SNAKE_CASE_ : Dict = get_color_coded_rgb(__a )
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = get_black_and_white_rgb(__a )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
UpperCAmelCase_ : str = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 318
|
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml"""
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = defaultdict(__a )
for doc in model_doc:
counts[doc["local"]] += 1
SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1]
SCREAMING_SNAKE_CASE_ : int = []
for duplicate_key in duplicates:
SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(__a ) > 1:
raise ValueError(
f'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(__a , key=lambda __a : s["title"].lower() )
def _A (__a=False ) -> Tuple:
"""simple docstring"""
with open(__a , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() )
# Get to the API doc
SCREAMING_SNAKE_CASE_ : Any = 0
while content[api_idx]["title"] != "API":
api_idx += 1
SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections''']
# Then to the model doc
SCREAMING_SNAKE_CASE_ : List[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections''']
SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section]
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
for idx, modality_doc in modalities_docs:
SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections''']
SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a )
if old_modality_doc != new_modality_doc:
SCREAMING_SNAKE_CASE_ : str = True
if overwrite:
SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc
if diff:
if overwrite:
SCREAMING_SNAKE_CASE_ : List[Any] = model_doc
SCREAMING_SNAKE_CASE_ : int = api_doc
with open(__a , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(__a , allow_unicode=__a ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
UpperCAmelCase_ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
UpperCAmelCase_ : Tuple = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 318
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = 1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE_ : Tuple = (32, 32)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase_)
return image
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : Dict = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , )
return RobertaSeriesModelWithTransformation(lowercase_)
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
def extract(*lowercase_ : List[Any] , **lowercase_ : List[Any]):
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = torch.ones([0])
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Any):
'''simple docstring'''
self.pixel_values.to(lowercase_)
return self
return Out()
return extract
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ : int = PNDMScheduler(skip_prk_steps=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_vae
SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''')
SCREAMING_SNAKE_CASE_ : List[Any] = 77
SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_image.to(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ : Dict = AltDiffusionImgaImgPipeline(
unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = alt_pipe.to(lowercase_)
alt_pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : str = '''A painting of a squirrel eating a burger'''
SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=lowercase_).manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = alt_pipe(
[prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase_ , )
SCREAMING_SNAKE_CASE_ : int = output.images
SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device=lowercase_).manual_seed(0)
SCREAMING_SNAKE_CASE_ : Optional[Any] = alt_pipe(
[prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase_ , return_dict=lowercase_ , )[0]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ : Tuple = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''')
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_vae
SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''')
SCREAMING_SNAKE_CASE_ : List[Any] = 77
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_image.to(lowercase_)
# put models in fp16
SCREAMING_SNAKE_CASE_ : str = unet.half()
SCREAMING_SNAKE_CASE_ : Any = vae.half()
SCREAMING_SNAKE_CASE_ : Dict = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ : str = AltDiffusionImgaImgPipeline(
unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = alt_pipe.to(lowercase_)
alt_pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = '''A painting of a squirrel eating a burger'''
SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : Any = alt_pipe(
[prompt] , generator=lowercase_ , num_inference_steps=2 , output_type='''np''' , image=lowercase_ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''')
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE_ : Optional[Any] = init_image.resize((760, 504))
SCREAMING_SNAKE_CASE_ : Tuple = '''BAAI/AltDiffusion'''
SCREAMING_SNAKE_CASE_ : Any = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , )
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : Any = pipe(
prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Tuple = output.images[0]
SCREAMING_SNAKE_CASE_ : Optional[int] = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : List[str] = init_image.resize((768, 512))
SCREAMING_SNAKE_CASE_ : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''')
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''BAAI/AltDiffusion'''
SCREAMING_SNAKE_CASE_ : Any = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , )
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ : str = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(
prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-2
| 318
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 318
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCAmelCase_ : Optional[int] = {
"""configuration_encodec""": [
"""ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EncodecConfig""",
],
"""feature_extraction_encodec""": ["""EncodecFeatureExtractor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : str = [
"""ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EncodecModel""",
"""EncodecPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 318
|
"""simple docstring"""
from __future__ import annotations
UpperCAmelCase_ : List[str] = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase_ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase_ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _A (__a , __a , __a , __a ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _A (__a ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _A (__a ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__a , __a , __a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = digit
if sudoku(__a ) is not None:
return grid
SCREAMING_SNAKE_CASE_ : Any = 0
return None
def _A (__a ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(__a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 20)
print_solution(example_grid)
print("""\nExample grid solution:""")
UpperCAmelCase_ : str = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 318
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = MgpstrTokenizer
__UpperCamelCase = False
__UpperCamelCase = {}
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
super().setUp()
# fmt: off
SCREAMING_SNAKE_CASE_ : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
SCREAMING_SNAKE_CASE_ : int = dict(zip(lowercase_ , range(len(lowercase_))))
SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp:
fp.write(json.dumps(lowercase_) + '''\n''')
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowercase_ : int):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = '''tester'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''')
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizers(do_lower_case=lowercase_)
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}'):
SCREAMING_SNAKE_CASE_ : int = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token})
SCREAMING_SNAKE_CASE_ : int = tokenizer.encode([special_token] , add_special_tokens=lowercase_)
self.assertEqual(len(lowercase_) , 1)
SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_)
self.assertTrue(special_token not in decoded)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}'):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.get_input_output_texts(lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.tokenize(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_tokens_to_ids(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : str = tokenizer.convert_ids_to_tokens(lowercase_)
self.assertNotEqual(len(lowercase_) , 0)
SCREAMING_SNAKE_CASE_ : Any = tokenizer.decode(lowercase_)
self.assertIsInstance(lowercase_ , lowercase_)
self.assertEqual(text_a.replace(''' ''' , '''''') , lowercase_)
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''')
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''')
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
pass
| 318
|
"""simple docstring"""
from itertools import permutations
def _A (__a ) -> bool:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def _A (__a = 10 ) -> int:
"""simple docstring"""
return sum(
int(''''''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 318
| 1
|
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _A (__a = 8 ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = ascii_letters + digits + punctuation
return "".join(secrets.choice(__a ) for _ in range(__a ) )
def _A (__a , __a ) -> str:
"""simple docstring"""
i -= len(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = i // 3
SCREAMING_SNAKE_CASE_ : List[str] = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (
chars_incl
+ random(__a , quotient + remainder )
+ random(__a , __a )
+ random(__a , __a )
)
SCREAMING_SNAKE_CASE_ : Any = list(__a )
shuffle(__a )
return "".join(__a )
# random is a generalised function for letters, characters and numbers
def _A (__a , __a ) -> str:
"""simple docstring"""
return "".join(secrets.choice(__a ) for _ in range(__a ) )
def _A (__a , __a ) -> List[Any]:
"""simple docstring"""
pass # Put your code here...
def _A (__a , __a ) -> Any:
"""simple docstring"""
pass # Put your code here...
def _A (__a , __a ) -> Optional[Any]:
"""simple docstring"""
pass # Put your code here...
def _A (__a , __a = 8 ) -> bool:
"""simple docstring"""
if len(__a ) < min_length:
# Your Password must be at least 8 characters long
return False
SCREAMING_SNAKE_CASE_ : Tuple = any(char in ascii_uppercase for char in password )
SCREAMING_SNAKE_CASE_ : Dict = any(char in ascii_lowercase for char in password )
SCREAMING_SNAKE_CASE_ : Tuple = any(char in digits for char in password )
SCREAMING_SNAKE_CASE_ : List[Any] = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _A () -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = int(input('''Please indicate the max length of your password: ''' ).strip() )
SCREAMING_SNAKE_CASE_ : List[str] = input(
'''Please indicate the characters that must be in your password: ''' ).strip()
print('''Password generated:''' , password_generator(__a ) )
print(
'''Alternative Password generated:''' , alternative_password_generator(__a , __a ) , )
print('''[If you are thinking of using this passsword, You better save it.]''' )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5
def _A (__a , __a , __a = g ) -> float:
"""simple docstring"""
if fluid_density <= 0:
raise ValueError('''Impossible fluid density''' )
if volume < 0:
raise ValueError('''Impossible Object volume''' )
if gravity <= 0:
raise ValueError('''Impossible Gravity''' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 318
| 1
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8
def _A (__a , __a ) -> float:
"""simple docstring"""
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
UpperCAmelCase_ : str = 300
UpperCAmelCase_ : str = 28
UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 318
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _A (__a ) -> Any:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 318
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : str=3 , lowercase_ : str=32 , lowercase_ : Optional[int]=3 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=[10, 20, 30, 40] , lowercase_ : List[str]=[1, 1, 2, 1] , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : Dict="relu" , lowercase_ : Dict=3 , lowercase_ : Union[str, Any]=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent
SCREAMING_SNAKE_CASE_ : Dict = batch_size
SCREAMING_SNAKE_CASE_ : str = image_size
SCREAMING_SNAKE_CASE_ : Tuple = num_channels
SCREAMING_SNAKE_CASE_ : List[str] = embeddings_size
SCREAMING_SNAKE_CASE_ : str = hidden_sizes
SCREAMING_SNAKE_CASE_ : Dict = depths
SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training
SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : List[str] = num_labels
SCREAMING_SNAKE_CASE_ : int = scope
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config()
return config, pixel_values
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[Any] , lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = FlaxRegNetModel(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = model(lowercase_)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[Any] , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.num_labels
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxRegNetForImageClassification(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs
SCREAMING_SNAKE_CASE_ : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = FlaxRegNetModelTester(self)
SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
return
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_)
@unittest.skip(reason='''RegNet does not use inputs_embeds''')
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''')
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Tuple = model_class(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ : Tuple = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
def check_hidden_states_output(lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple):
SCREAMING_SNAKE_CASE_ : List[str] = model_class(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = model(**self._prepare_for_class(lowercase_ , lowercase_))
SCREAMING_SNAKE_CASE_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.num_stages
self.assertEqual(len(lowercase_) , expected_num_stages + 1)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE_ : int = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_)
@jax.jit
def model_jitted(lowercase_ : Any , **lowercase_ : Optional[int]):
return model(pixel_values=lowercase_ , **lowercase_)
with self.subTest('''JIT Enabled'''):
SCREAMING_SNAKE_CASE_ : Optional[int] = model_jitted(**lowercase_).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
SCREAMING_SNAKE_CASE_ : Tuple = model_jitted(**lowercase_).to_tuple()
self.assertEqual(len(lowercase_) , len(lowercase_))
for jitted_output, output in zip(lowercase_ , lowercase_):
self.assertEqual(jitted_output.shape , output.shape)
def _A () -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''')
SCREAMING_SNAKE_CASE_ : List[str] = self.default_image_processor
SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=lowercase_ , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_)
# verify the logits
SCREAMING_SNAKE_CASE_ : Any = (1, 1000)
self.assertEqual(outputs.logits.shape , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36])
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
| 318
|
"""simple docstring"""
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ : Any = """examples/"""
UpperCAmelCase_ : Optional[int] = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
UpperCAmelCase_ : List[Any] = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
UpperCAmelCase_ : Optional[int] = """README.md"""
def _A (__a , __a , __a ) -> int:
"""simple docstring"""
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a )
SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a )
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(__a )
def _A (__a ) -> int:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' )
def _A (__a , __a=False ) -> List[str]:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a , __a , __a )
if not patch:
update_version_in_examples(__a )
def _A () -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?'''
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Tuple = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE_ : Tuple = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE_ : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__a )
def _A () -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : Any = f.read()
SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def _A (__a=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version
print(f'Updating version to {version}.' )
global_version_update(__a , patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def _A () -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = get_version()
SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version
print(f'Updating version to {version}.' )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
UpperCAmelCase_ : int = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase_ : str = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = PegasusTokenizer
__UpperCamelCase = PegasusTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE_ : Optional[Any] = PegasusTokenizer(lowercase_)
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
return PegasusTokenizer.from_pretrained('''google/pegasus-large''')
def _SCREAMING_SNAKE_CASE ( self : Dict , **lowercase_ : Union[str, Any]):
'''simple docstring'''
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Dict):
'''simple docstring'''
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = '''</s>'''
SCREAMING_SNAKE_CASE_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<pad>''')
self.assertEqual(vocab_keys[1] , '''</s>''')
self.assertEqual(vocab_keys[-1] , '''v''')
self.assertEqual(len(lowercase_) , 1103)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1103)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0]
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
SCREAMING_SNAKE_CASE_ : int = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
SCREAMING_SNAKE_CASE_ : Any = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
SCREAMING_SNAKE_CASE_ : List[str] = tokenizer([raw_input_str] , return_tensors=lowercase_).input_ids[0]
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
SCREAMING_SNAKE_CASE_ : Tuple = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
SCREAMING_SNAKE_CASE_ : Tuple = tokenizer([raw_input_str] , return_tensors=lowercase_).input_ids[0]
self.assertListEqual(lowercase_ , lowercase_)
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = ['''This is going to be way too long.''' * 150, '''short example''']
SCREAMING_SNAKE_CASE_ : List[Any] = ['''not super long but more than 5 tokens''', '''tiny''']
SCREAMING_SNAKE_CASE_ : Dict = self._large_tokenizer(lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''')
SCREAMING_SNAKE_CASE_ : int = self._large_tokenizer(
text_target=lowercase_ , max_length=5 , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''')
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(lowercase_) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = PegasusTokenizer
__UpperCamelCase = PegasusTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE_ : Optional[int] = PegasusTokenizer(lowercase_ , offset=0 , mask_token_sent=lowercase_ , mask_token='''[MASK]''')
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''')
def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowercase_ : str):
'''simple docstring'''
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Dict):
'''simple docstring'''
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class.from_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
SCREAMING_SNAKE_CASE_ : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0]
SCREAMING_SNAKE_CASE_ : List[Any] = py_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0]
self.assertListEqual(lowercase_ , lowercase_)
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = ['''This is going to be way too long.''' * 1000, '''short example''']
SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''not super long but more than 5 tokens''', '''tiny''']
SCREAMING_SNAKE_CASE_ : List[Any] = self._large_tokenizer(lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''')
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._large_tokenizer(
text_target=lowercase_ , max_length=5 , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''')
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(lowercase_) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._large_tokenizer(lowercase_).input_ids
self.assertListEqual(
lowercase_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 318
|
"""simple docstring"""
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _A (__a , __a , __a=1e-12 ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
return jnp.matmul(__a , norm_emb_a.T )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = jnp.floataa
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config)
SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype)
SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,))
def __call__( self : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds)
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
SCREAMING_SNAKE_CASE_ : Tuple = 0.0
SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_)
# Use a lower threshold if an image has any special care concept
SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01
SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1)
return has_nsfw_concepts
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = CLIPConfig
__UpperCamelCase = "clip_input"
__UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ):
'''simple docstring'''
if input_shape is None:
SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3)
SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_)
super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init)
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng}
SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params''']
return random_params
def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1))
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
| 318
| 1
|
"""simple docstring"""
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def _A (__a ) -> str:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , lowercase_ : nn.Module , lowercase_ : int):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : Dict = module
SCREAMING_SNAKE_CASE_ : Dict = nn.Sequential(
nn.Linear(module.in_features , lowercase_ , bias=lowercase_) , nn.Linear(lowercase_ , module.out_features , bias=lowercase_) , )
SCREAMING_SNAKE_CASE_ : str = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowercase_)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Any , *lowercase_ : Dict , **lowercase_ : Any):
'''simple docstring'''
return self.module(lowercase_ , *lowercase_ , **lowercase_) + self.adapter(lowercase_)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = "bigscience/bloom-1b7"
# Constant values
__UpperCamelCase = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
__UpperCamelCase = "Hello my name is"
__UpperCamelCase = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
__UpperCamelCase = 1_0
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained(self.model_name)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
super().setUp()
# Models and tokenizer
SCREAMING_SNAKE_CASE_ : Dict = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''')
SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase_ , device_map='''auto''')
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.model_abit.config
self.assertTrue(hasattr(lowercase_ , '''quantization_config'''))
SCREAMING_SNAKE_CASE_ : int = config.to_dict()
SCREAMING_SNAKE_CASE_ : Optional[Any] = config.to_diff_dict()
SCREAMING_SNAKE_CASE_ : Dict = config.to_json_string()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
SCREAMING_SNAKE_CASE_ : str = self.model_fpaa.get_memory_footprint()
SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
SCREAMING_SNAKE_CASE_ : List[Any] = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowercase_ , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''')
SCREAMING_SNAKE_CASE_ : int = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowercase_) , self.EXPECTED_OUTPUTS)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = BitsAndBytesConfig()
SCREAMING_SNAKE_CASE_ : Optional[int] = True
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowercase_ , device_map='''auto''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''')
SCREAMING_SNAKE_CASE_ : Optional[int] = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowercase_) , self.EXPECTED_OUTPUTS)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
with self.assertRaises(lowercase_), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = BitsAndBytesConfig()
with self.assertRaises(lowercase_):
SCREAMING_SNAKE_CASE_ : Any = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowercase_ , load_in_abit=lowercase_ , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
with self.assertRaises(lowercase_):
# Tries with `str`
self.model_abit.to('''cpu''')
with self.assertRaises(lowercase_):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(lowercase_):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0'''))
with self.assertRaises(lowercase_):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowercase_):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''')
SCREAMING_SNAKE_CASE_ : Dict = self.model_fpaa.to(torch.floataa)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10)
# Check this does not throw an error
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_fpaa.to('''cpu''')
# Check this does not throw an error
SCREAMING_SNAKE_CASE_ : Tuple = self.model_fpaa.half()
# Check this does not throw an error
SCREAMING_SNAKE_CASE_ : int = self.model_fpaa.float()
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=lowercase_ , device_map='''auto''')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''t5-small'''
SCREAMING_SNAKE_CASE_ : str = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name)
SCREAMING_SNAKE_CASE_ : str = '''Translate in German: Hello, my dog is cute'''
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
from transformers import TaForConditionalGeneration
SCREAMING_SNAKE_CASE_ : List[str] = TaForConditionalGeneration._keep_in_fpaa_modules
SCREAMING_SNAKE_CASE_ : List[str] = None
# test with `t5-small`
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowercase_ , device_map='''auto''')
SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''').to(0)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(**lowercase_)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE_ : Dict = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowercase_ , device_map='''auto''')
SCREAMING_SNAKE_CASE_ : str = self.tokenizer(self.input_text , return_tensors='''pt''').to(0)
SCREAMING_SNAKE_CASE_ : Dict = model.generate(**lowercase_)
SCREAMING_SNAKE_CASE_ : int = modules
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
SCREAMING_SNAKE_CASE_ : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowercase_ , device_map='''auto''')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''').to(0)
SCREAMING_SNAKE_CASE_ : int = model.generate(**lowercase_)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE_ : Tuple = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowercase_ , device_map='''auto''')
SCREAMING_SNAKE_CASE_ : str = self.tokenizer(self.input_text , return_tensors='''pt''').to(0)
SCREAMING_SNAKE_CASE_ : List[Any] = model.generate(**lowercase_)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
super().setUp()
# model_name
SCREAMING_SNAKE_CASE_ : Optional[int] = '''bigscience/bloom-560m'''
SCREAMING_SNAKE_CASE_ : Any = '''t5-small'''
# Different types of model
SCREAMING_SNAKE_CASE_ : str = AutoModel.from_pretrained(self.model_name , load_in_abit=lowercase_ , device_map='''auto''')
# Sequence classification model
SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowercase_ , device_map='''auto''')
# CausalLM model
SCREAMING_SNAKE_CASE_ : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase_ , device_map='''auto''')
# Seq2seq model
SCREAMING_SNAKE_CASE_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowercase_ , device_map='''auto''')
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
super().setUp()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
SCREAMING_SNAKE_CASE_ : int = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
super().setUp()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowercase_ , device_map='''balanced''')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer(self.input_text , return_tensors='''pt''')
# Second real batch
SCREAMING_SNAKE_CASE_ : Optional[Any] = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowercase_) , self.EXPECTED_OUTPUTS)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = '''facebook/opt-350m'''
super().setUp()
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
if version.parse(importlib.metadata.version('''bitsandbytes''')) < version.parse('''0.37.0'''):
return
# Step 1: freeze all parameters
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowercase_)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
SCREAMING_SNAKE_CASE_ : Optional[Any] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
SCREAMING_SNAKE_CASE_ : Dict = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowercase_)):
SCREAMING_SNAKE_CASE_ : int = LoRALayer(module.q_proj , rank=16)
SCREAMING_SNAKE_CASE_ : str = LoRALayer(module.k_proj , rank=16)
SCREAMING_SNAKE_CASE_ : str = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE_ : List[Any] = model.forward(**lowercase_)
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowercase_ , lowercase_):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(lowercase_ , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "gpt2-xl"
__UpperCamelCase = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318
|
"""simple docstring"""
from __future__ import annotations
import queue
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = data
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
def _A () -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower()
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) )
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Optional[int] = q.get()
SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node
q.put(__a )
SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : int = right_node
q.put(__a )
raise
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Tuple = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : str = []
while not q.empty():
SCREAMING_SNAKE_CASE_ : List[str] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__a )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE_ : Tuple = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE_ : str = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Any = node
while n or stack:
while n:
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left
SCREAMING_SNAKE_CASE_ : Any = stack.pop()
print(n.data , end=''',''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], []
SCREAMING_SNAKE_CASE_ : List[Any] = node
stacka.append(__a )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__a )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def _A (__a = "" , __a=50 , __a="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
UpperCAmelCase_ : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
UpperCAmelCase_ : List[str] = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase_ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase_ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _A (__a , __a , __a , __a ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _A (__a ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _A (__a ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__a , __a , __a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = digit
if sudoku(__a ) is not None:
return grid
SCREAMING_SNAKE_CASE_ : Any = 0
return None
def _A (__a ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(__a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 20)
print_solution(example_grid)
print("""\nExample grid solution:""")
UpperCAmelCase_ : str = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 318
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx"
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_))
SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Tuple = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions()
SCREAMING_SNAKE_CASE_ : Optional[int] = False
return options
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
# using the PNDM scheduler by default
SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''')
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 318
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
def _A (__a ) -> List[int]:
"""simple docstring"""
if isinstance(__a , np.ndarray ):
return list(tensor.shape )
SCREAMING_SNAKE_CASE_ : str = tf.shape(__a )
if tensor.shape == tf.TensorShape(__a ):
return dynamic
SCREAMING_SNAKE_CASE_ : Tuple = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(__a )]
def _A (__a , __a = None , __a = None ) -> tf.Tensor:
"""simple docstring"""
return tf.nn.softmax(logits=logits + 1e-9 , axis=__a , name=__a )
def _A (__a , __a , __a , __a=1e-5 , __a=-1 ) -> str:
"""simple docstring"""
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__a , __a ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = tf.nn.moments(__a , axes=[axis] , keepdims=__a )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
SCREAMING_SNAKE_CASE_ : str = [1] * inputs.shape.rank
SCREAMING_SNAKE_CASE_ : str = shape_list(__a )[axis]
SCREAMING_SNAKE_CASE_ : Dict = tf.reshape(__a , __a )
SCREAMING_SNAKE_CASE_ : str = tf.reshape(__a , __a )
# Compute layer normalization using the batch_normalization
# function.
SCREAMING_SNAKE_CASE_ : str = tf.nn.batch_normalization(
__a , __a , __a , offset=__a , scale=__a , variance_epsilon=__a , )
return outputs
def _A (__a , __a=0 , __a=-1 ) -> Tuple:
"""simple docstring"""
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
SCREAMING_SNAKE_CASE_ : Any = tf.shape(__a )
SCREAMING_SNAKE_CASE_ : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
SCREAMING_SNAKE_CASE_ : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(__a , __a )
def _A (__a ) -> tf.Tensor:
"""simple docstring"""
if not isinstance(__a , tf.Tensor ):
SCREAMING_SNAKE_CASE_ : List[Any] = tf.convert_to_tensor(__a ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
SCREAMING_SNAKE_CASE_ : List[str] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
SCREAMING_SNAKE_CASE_ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
SCREAMING_SNAKE_CASE_ : List[str] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def _A (__a , __a , __a = "input_ids" ) -> None:
"""simple docstring"""
tf.debugging.assert_less(
__a , tf.cast(__a , dtype=tensor.dtype ) , message=(
f'The maximum value of {tensor_name} ({tf.math.reduce_max(__a )}) must be smaller than the embedding '
f'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'
) , )
def _A (__a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = 6_45_12
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
SCREAMING_SNAKE_CASE_ : List[str] = [x for x in data if len(__a ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
f'they are larger than {HDF5_OBJECT_HEADER_LIMIT} '
f'bytes: {bad_attributes}' )
SCREAMING_SNAKE_CASE_ : int = np.asarray(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = 1
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array_split(__a , __a )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
SCREAMING_SNAKE_CASE_ : Optional[int] = np.array_split(__a , __a )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(__a ):
SCREAMING_SNAKE_CASE_ : Any = chunk_data
else:
SCREAMING_SNAKE_CASE_ : List[str] = data
def _A (__a , __a ) -> str:
"""simple docstring"""
if name in group.attrs:
SCREAMING_SNAKE_CASE_ : List[str] = [n.decode('''utf8''' ) if hasattr(__a , '''decode''' ) else n for n in group.attrs[name]]
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = []
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(__a , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def _A (__a ) -> List[str]:
"""simple docstring"""
def _expand_single_ad_tensor(__a ):
if isinstance(__a , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(__a , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , __a )
| 318
|
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
UpperCAmelCase_ : List[Any] = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
UpperCAmelCase_ : Optional[int] = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
UpperCAmelCase_ : Tuple = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float'''),
'''references''': datasets.Value('''float'''),
}) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
| 318
| 1
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx"
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_))
SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Tuple = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions()
SCREAMING_SNAKE_CASE_ : Optional[int] = False
return options
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
# using the PNDM scheduler by default
SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''')
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 318
|
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : str = pad_token_id
SCREAMING_SNAKE_CASE_ : Optional[int] = max_length
SCREAMING_SNAKE_CASE_ : Dict = vocab
SCREAMING_SNAKE_CASE_ : Dict = merges
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab()
return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_)
return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]):
'''simple docstring'''
return cls(**lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_)
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs(
lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id)
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318
| 1
|
"""simple docstring"""
import random
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = [ord(lowercase_) for i in text]
SCREAMING_SNAKE_CASE_ : List[str] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
for i in plain:
SCREAMING_SNAKE_CASE_ : Tuple = random.randint(1 , 300)
SCREAMING_SNAKE_CASE_ : int = (i + k) * k
cipher.append(lowercase_)
key.append(lowercase_)
return cipher, key
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowercase_ : list[int] , lowercase_ : list[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = []
for i in range(len(lowercase_)):
SCREAMING_SNAKE_CASE_ : int = int((cipher[i] - (key[i]) ** 2) / key[i])
plain.append(chr(lowercase_))
return "".join(lowercase_)
if __name__ == "__main__":
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = Onepad().encrypt("""Hello""")
print(c, k)
print(Onepad().decrypt(c, k))
| 318
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE_ : Dict = {
'''do_resize''': True,
'''size''': {'''height''': 224, '''width''': 224},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_)
with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp:
json.dump(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str):
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_slow.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_fast.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowercase_)
self.assertIsInstance(processor_fast.tokenizer , lowercase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowercase_)
self.assertIsInstance(processor_fast.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''')
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowercase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase_):
processor()
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 318
| 1
|
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Dict = 5
# Realm tok
SCREAMING_SNAKE_CASE_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(self.tmpdirname , '''realm_tokenizer''')
os.makedirs(lowercase_ , exist_ok=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(lowercase_ , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , '''realm_block_records''')
os.makedirs(lowercase_ , exist_ok=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer'''))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = RealmConfig(num_block_records=self.num_block_records)
return config
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
})
return dataset
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = np.array(
[
b'''This is the first record''',
b'''This is the second record''',
b'''This is the third record''',
b'''This is the fourth record''',
b'''This is the fifth record''',
b'''This is a longer longer longer record''',
] , dtype=lowercase_ , )
return block_records
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.get_config()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_retriever()
SCREAMING_SNAKE_CASE_ : Optional[int] = retriever.tokenizer
SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([0, 3] , dtype='''long''')
SCREAMING_SNAKE_CASE_ : str = tokenizer(['''Test question''']).input_ids
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(
['''the fourth'''] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids
SCREAMING_SNAKE_CASE_ : Optional[int] = config.reader_seq_len
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = retriever(
lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors='''np''')
self.assertEqual(len(lowercase_) , 2)
self.assertEqual(len(lowercase_) , 2)
self.assertEqual(len(lowercase_) , 2)
self.assertEqual(concat_inputs.input_ids.shape , (2, 10))
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10))
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10))
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10))
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.get_config()
SCREAMING_SNAKE_CASE_ : str = self.get_dummy_retriever()
SCREAMING_SNAKE_CASE_ : Optional[Any] = retriever.tokenizer
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0, 3, 5] , dtype='''long''')
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(['''Test question''']).input_ids
SCREAMING_SNAKE_CASE_ : int = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids
SCREAMING_SNAKE_CASE_ : Optional[int] = config.reader_seq_len
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = retriever(
lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors='''np''')
self.assertEqual([False, True, True] , lowercase_)
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase_)
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records'''))
# Test local path
SCREAMING_SNAKE_CASE_ : Tuple = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records'''))
self.assertEqual(retriever.block_records[0] , b'''This is the first record''')
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''') as mock_hf_hub_download:
SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''') , _REALM_BLOCK_RECORDS_FILENAME)
SCREAMING_SNAKE_CASE_ : Tuple = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''')
self.assertEqual(retriever.block_records[0] , b'''This is the first record''')
| 318
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "rwkv"
__UpperCamelCase = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE_ : Any = context_length
SCREAMING_SNAKE_CASE_ : int = hidden_size
SCREAMING_SNAKE_CASE_ : int = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size
SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size
SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every
SCREAMING_SNAKE_CASE_ : Dict = use_cache
SCREAMING_SNAKE_CASE_ : Dict = bos_token_id
SCREAMING_SNAKE_CASE_ : Any = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def _A (__a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = {}
SCREAMING_SNAKE_CASE_ : str = tokenizer(example['''content'''] , truncation=__a )['''input_ids''']
SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
UpperCAmelCase_ : Union[str, Any] = HfArgumentParser(PretokenizationArguments)
UpperCAmelCase_ : List[str] = parser.parse_args()
if args.num_workers is None:
UpperCAmelCase_ : str = multiprocessing.cpu_count()
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_dir)
UpperCAmelCase_ : List[Any] = time.time()
UpperCAmelCase_ : Tuple = load_dataset(args.dataset_name, split="""train""")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
UpperCAmelCase_ : Optional[Any] = time.time()
UpperCAmelCase_ : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
UpperCAmelCase_ : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 318
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8
def _A (__a , __a ) -> float:
"""simple docstring"""
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
UpperCAmelCase_ : str = 300
UpperCAmelCase_ : str = 28
UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 318
| 1
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _A (__a ) -> Any:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 318
|
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""]
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
SCREAMING_SNAKE_CASE_ : Optional[int] = dataset
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks
SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies
def __iter__( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = []
for task in range(self.n_tasks):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip())
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''')
for task in range(self.n_tasks):
for _ in range(self.n_copies):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = start_length
SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
SCREAMING_SNAKE_CASE_ : Tuple = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings))
return all(lowercase_)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a )
# last string should be ""
return "".join(string_list[:-2] )
def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(__a ) ):
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1]
SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a )
# each task is generated batch_size times
SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes(
__a , dim=1 , pad_index=tokenizer.pad_token_id )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy()
SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(__a , __a ):
gen_token_dict[task].append(__a )
SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
code_gens[task].append(remove_last_block(__a ) )
return code_gens
def _A () -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
SCREAMING_SNAKE_CASE_ : str = '''false'''
if args.num_workers is None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
SCREAMING_SNAKE_CASE_ : Tuple = Accelerator()
set_seed(args.seed , device_specific=__a )
# Load model and tokenizer
SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt )
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token
SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
SCREAMING_SNAKE_CASE_ : List[str] = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ),
}
# Load evaluation dataset and metric
SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' )
SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' )
SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a )
# do not confuse args.batch_size, which is actually the num_return_sequences
SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = complete_code(
__a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , )
if accelerator.is_main_process:
SCREAMING_SNAKE_CASE_ : int = []
for task in tqdm(range(__a ) ):
SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test''']
SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})'
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute(
references=__a , predictions=__a , num_workers=args.num_workers )
print(f'Results: {pass_at_k}' )
# Save results to json file
with open(args.output_file , '''w''' ) as fp:
json.dump(__a , __a )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
import os
from typing import Any
import requests
UpperCAmelCase_ : Optional[Any] = """https://api.github.com"""
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
UpperCAmelCase_ : int = BASE_URL + """/user"""
# https://github.com/settings/tokens
UpperCAmelCase_ : Union[str, Any] = os.environ.get("""USER_TOKEN""", """""")
def _A (__a ) -> dict[Any, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = {
'''Authorization''': f'token {auth_token}',
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(__a , headers=__a ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'''{key}: {value}''')
else:
raise ValueError("""'USER_TOKEN' field cannot be empty.""")
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["image_processor", "feature_extractor"]
__UpperCamelCase = "TvltImageProcessor"
__UpperCamelCase = "TvltFeatureExtractor"
def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor
SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor
def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''')
SCREAMING_SNAKE_CASE_ : Any = None
if images is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_)
if images_mixed is not None:
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_)
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(
lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = {}
if audio is not None:
output_dict.update(lowercase_)
if images is not None:
output_dict.update(lowercase_)
if images_mixed_dict is not None:
output_dict.update(lowercase_)
return output_dict
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 318
| 1
|
"""simple docstring"""
def _A (__a = 10 , __a = 22 ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = range(1 , __a )
SCREAMING_SNAKE_CASE_ : Tuple = range(1 , __a )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "SpeechT5FeatureExtractor"
__UpperCamelCase = "SpeechT5Tokenizer"
def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(lowercase_ , lowercase_)
def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
elif text is not None:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : Any = None
if audio_target is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values''']
elif text_target is not None:
SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : int = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_)
SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
elif input_ids is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : str = feature_size_hack
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values''']
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Dict = labels
SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]):
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
def _A (__a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = sum(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE_ : Dict = True
for i in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE_ : List[str] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE_ : Any = dp[i][j - 1]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE_ : List[Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = s - 2 * j
break
return diff
| 318
|
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = np.inf
def set_batch_size(__a ) -> None:
nonlocal batch_size
if isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__a , __a ) and feature.dtype == "binary":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__a , __a )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , )
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory)
return dataset
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = dataset
SCREAMING_SNAKE_CASE_ : Dict = path_or_buf
SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features)
SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , '''wb+''') as buffer:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs)
else:
SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs)
return written
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema
SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_)
for offset in logging.tqdm(
range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
SCREAMING_SNAKE_CASE_ : List[Any] = query_table(
table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(lowercase_)
written += batch.nbytes
writer.close()
return written
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def _SCREAMING_SNAKE_CASE ( *lowercase_ : List[str] , **lowercase_ : str):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
SCREAMING_SNAKE_CASE_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_classifier(lowercase_ , candidate_labels=['''a''', '''b''', '''c'''])
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(lowercase_) , [
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}],
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}],
] , )
SCREAMING_SNAKE_CASE_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2)
self.assertEqual(
nested_simplify(lowercase_) , [
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
] , )
@require_tf
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''')
SCREAMING_SNAKE_CASE_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
SCREAMING_SNAKE_CASE_ : int = image_classifier(lowercase_ , candidate_labels=['''a''', '''b''', '''c'''])
self.assertEqual(
nested_simplify(lowercase_) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , )
SCREAMING_SNAKE_CASE_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2)
self.assertEqual(
nested_simplify(lowercase_) , [
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
[
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
{'''score''': 0.3_33, '''label''': ANY(lowercase_)},
],
] , )
@slow
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
SCREAMING_SNAKE_CASE_ : int = image_classifier(lowercase_ , candidate_labels=['''cat''', '''plane''', '''remote'''])
self.assertEqual(
nested_simplify(lowercase_) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2)
self.assertEqual(
nested_simplify(lowercase_) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''')
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_classifier(lowercase_ , candidate_labels=['''cat''', '''plane''', '''remote'''])
self.assertEqual(
nested_simplify(lowercase_) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
SCREAMING_SNAKE_CASE_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2)
self.assertEqual(
nested_simplify(lowercase_) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
| 318
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : str = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""]
def _A (__a ) -> Dict:
"""simple docstring"""
if "emb" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def _A (__a , __a ) -> Tuple[Dict, Dict]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() )
SCREAMING_SNAKE_CASE_ : int = {}
for key in keys:
SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a )
SCREAMING_SNAKE_CASE_ : int = rename_keys(__a )
if "in_proj_weight" in key:
# split fused qkv proj
SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :]
SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :]
SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
SCREAMING_SNAKE_CASE_ : int = val
else:
SCREAMING_SNAKE_CASE_ : Any = val
return state_dict, enc_dec_proj_state_dict
def _A (__a ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24
SCREAMING_SNAKE_CASE_ : Tuple = 24
SCREAMING_SNAKE_CASE_ : Optional[Any] = 16
elif checkpoint == "medium":
SCREAMING_SNAKE_CASE_ : List[str] = 15_36
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : Optional[int] = 24
elif checkpoint == "large":
SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : int = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig(
hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , )
return config
@torch.no_grad()
def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a )
SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict(
__a , hidden_size=decoder_config.hidden_size )
SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__a )
if len(__a ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(__a ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__a )
# check we can do a forward pass
SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits
if logits.shape != (8, 1, 20_48):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a )
# set the appropriate bos/pad token ids
SCREAMING_SNAKE_CASE_ : str = 20_48
SCREAMING_SNAKE_CASE_ : List[Any] = 20_48
# set other default generation config params
SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate )
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0
if pytorch_dump_folder is not None:
Path(__a ).mkdir(exist_ok=__a )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(__a )
processor.save_pretrained(__a )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(__a )
processor.push_to_hub(__a )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
UpperCAmelCase_ : Dict = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 318
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : List[Any] = logging.get_logger(__name__)
def _A (__a , __a=False , __a=False , __a=False ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def _A (__a , __a ) -> Union[str, Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
SCREAMING_SNAKE_CASE_ : List[Any] = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE_ : Tuple = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' )
SCREAMING_SNAKE_CASE_ : Tuple = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE_ : int = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE_ : List[str] = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE_ : Dict = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE_ : Tuple = in_proj_bias[-config.hidden_size :]
def _A (__a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__a , __a )
def _A (__a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = dct.pop(__a )
SCREAMING_SNAKE_CASE_ : Any = val
@torch.no_grad()
def _A (__a , __a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=__a )
SCREAMING_SNAKE_CASE_ : Optional[int] = False
SCREAMING_SNAKE_CASE_ : Any = False
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
SCREAMING_SNAKE_CASE_ : Any = False
if "vqa" in checkpoint_url:
SCREAMING_SNAKE_CASE_ : Optional[int] = True
SCREAMING_SNAKE_CASE_ : Any = 31_29
SCREAMING_SNAKE_CASE_ : List[Any] = '''huggingface/label-files'''
SCREAMING_SNAKE_CASE_ : Tuple = '''vqa2-id2label.json'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) )
SCREAMING_SNAKE_CASE_ : List[str] = {int(__a ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE_ : List[str] = idalabel
SCREAMING_SNAKE_CASE_ : Optional[int] = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE_ : List[str] = ViltForQuestionAnswering(__a )
elif "nlvr" in checkpoint_url:
SCREAMING_SNAKE_CASE_ : List[Any] = True
SCREAMING_SNAKE_CASE_ : str = 2
SCREAMING_SNAKE_CASE_ : Tuple = {0: '''False''', 1: '''True'''}
SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in config.idalabel.items()}
SCREAMING_SNAKE_CASE_ : Any = 3
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViltForImagesAndTextClassification(__a )
elif "irtr" in checkpoint_url:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = True
SCREAMING_SNAKE_CASE_ : Dict = ViltForImageAndTextRetrieval(__a )
elif "mlm_itm" in checkpoint_url:
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
SCREAMING_SNAKE_CASE_ : Optional[int] = ViltForMaskedLM(__a )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.hub.load_state_dict_from_url(__a , map_location='''cpu''' )['''state_dict''']
SCREAMING_SNAKE_CASE_ : Optional[int] = create_rename_keys(__a , __a , __a , __a )
for src, dest in rename_keys:
rename_key(__a , __a , __a )
read_in_q_k_v(__a , __a )
if mlm_model or irtr_model:
SCREAMING_SNAKE_CASE_ : Any = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(__a , __a )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.load_state_dict(__a , strict=__a )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(__a )
# Define processor
SCREAMING_SNAKE_CASE_ : Any = ViltImageProcessor(size=3_84 )
SCREAMING_SNAKE_CASE_ : int = BertTokenizer.from_pretrained('''bert-base-uncased''' )
SCREAMING_SNAKE_CASE_ : int = ViltProcessor(__a , __a )
# Forward pass on example inputs (image + text)
if nlvr_model:
SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__a ).raw )
SCREAMING_SNAKE_CASE_ : Dict = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__a ).raw )
SCREAMING_SNAKE_CASE_ : List[str] = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
SCREAMING_SNAKE_CASE_ : str = processor(__a , __a , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ : List[Any] = processor(__a , __a , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ : Dict = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__a ).raw )
if mlm_model:
SCREAMING_SNAKE_CASE_ : int = '''a bunch of [MASK] laying on a [MASK].'''
else:
SCREAMING_SNAKE_CASE_ : Dict = '''How many cats are there?'''
SCREAMING_SNAKE_CASE_ : Any = processor(__a , __a , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**__a )
# Verify outputs
if mlm_model:
SCREAMING_SNAKE_CASE_ : Any = torch.Size([1, 11, 3_05_22] )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __a , atol=1e-4 )
# verify masked token prediction equals "cats"
SCREAMING_SNAKE_CASE_ : str = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size([1, 31_29] )
SCREAMING_SNAKE_CASE_ : str = torch.tensor([-15.94_95, -18.14_72, -10.30_41] )
assert torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __a , atol=1e-4 )
# verify vqa prediction equals "2"
SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 2] )
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] )
assert torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(__a ).mkdir(exist_ok=__a )
print(f'Saving model and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(__a )
processor.save_pretrained(__a )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
UpperCAmelCase_ : List[str] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 318
|
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def _A (__a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _A (__a ) -> np.ndarray:
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def _A (__a , __a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path))
# kernel to be applied
UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
def _A (__a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _A (__a ) -> list[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = str(__a )
SCREAMING_SNAKE_CASE_ : str = [n]
for i in range(1 , len(__a ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def _A (__a ) -> bool:
"""simple docstring"""
if len(str(__a ) ) > 3:
if not is_prime(int(str(__a )[-3:] ) ) or not is_prime(int(str(__a )[:3] ) ):
return False
return True
def _A (__a = 11 ) -> list[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : list[int] = []
SCREAMING_SNAKE_CASE_ : Optional[Any] = 13
while len(__a ) != count:
if validate(__a ):
SCREAMING_SNAKE_CASE_ : Tuple = list_truncated_nums(__a )
if all(is_prime(__a ) for i in list_nums ):
list_truncated_primes.append(__a )
num += 2
return list_truncated_primes
def _A () -> int:
"""simple docstring"""
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(f'''{sum(compute_truncated_primes(11)) = }''')
| 318
|
"""simple docstring"""
from collections import defaultdict
def _A (__a , __a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip()
SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip()
# Remove whitespace
SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase_ : Any = input("""Enter the first string """).strip()
UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip()
UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : List[str] , lowercase_ : Dict=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : List[str]=99 , lowercase_ : Optional[int]=32 , lowercase_ : List[str]=2 , lowercase_ : Optional[int]=4 , lowercase_ : Tuple=37 , lowercase_ : str="gelu" , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any=512 , lowercase_ : Optional[int]=16 , lowercase_ : Tuple=2 , lowercase_ : str=0.02 , lowercase_ : Union[str, Any]=False , lowercase_ : str=True , lowercase_ : Optional[int]="None" , lowercase_ : Optional[int]=3 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = parent
SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE_ : int = seq_length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training
SCREAMING_SNAKE_CASE_ : List[Any] = use_input_mask
SCREAMING_SNAKE_CASE_ : int = use_token_type_ids
SCREAMING_SNAKE_CASE_ : int = use_labels
SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size
SCREAMING_SNAKE_CASE_ : List[str] = hidden_size
SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE_ : Any = intermediate_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act
SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE_ : Any = initializer_range
SCREAMING_SNAKE_CASE_ : Any = num_labels
SCREAMING_SNAKE_CASE_ : Tuple = num_choices
SCREAMING_SNAKE_CASE_ : Tuple = relative_attention
SCREAMING_SNAKE_CASE_ : Dict = position_biased_input
SCREAMING_SNAKE_CASE_ : List[str] = pos_att_type
SCREAMING_SNAKE_CASE_ : Dict = scope
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE_ : List[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length])
SCREAMING_SNAKE_CASE_ : Optional[int] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : Any = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
SCREAMING_SNAKE_CASE_ : str = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowercase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = TFDebertaVaModel(config=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
SCREAMING_SNAKE_CASE_ : Tuple = [input_ids, input_mask]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = TFDebertaVaForMaskedLM(config=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.num_labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = TFDebertaVaForSequenceClassification(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : int , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.num_labels
SCREAMING_SNAKE_CASE_ : Any = TFDebertaVaForTokenClassification(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : str = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
__UpperCamelCase = (
{
"feature-extraction": TFDebertaVaModel,
"fill-mask": TFDebertaVaForMaskedLM,
"question-answering": TFDebertaVaForQuestionAnswering,
"text-classification": TFDebertaVaForSequenceClassification,
"token-classification": TFDebertaVaForTokenClassification,
"zero-shot": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = TFDebertaVaModelTester(self)
SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=lowercase_ , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''')
self.assertIsNotNone(lowercase_)
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='''Model not available yet''')
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
pass
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''')
SCREAMING_SNAKE_CASE_ : str = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
SCREAMING_SNAKE_CASE_ : List[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , attention_mask=lowercase_)[0]
SCREAMING_SNAKE_CASE_ : List[Any] = tf.constant(
[[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]])
tf.debugging.assert_near(output[:, 1:4, 1:4] , lowercase_ , atol=1e-4)
| 318
|
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml"""
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = defaultdict(__a )
for doc in model_doc:
counts[doc["local"]] += 1
SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1]
SCREAMING_SNAKE_CASE_ : int = []
for duplicate_key in duplicates:
SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(__a ) > 1:
raise ValueError(
f'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(__a , key=lambda __a : s["title"].lower() )
def _A (__a=False ) -> Tuple:
"""simple docstring"""
with open(__a , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() )
# Get to the API doc
SCREAMING_SNAKE_CASE_ : Any = 0
while content[api_idx]["title"] != "API":
api_idx += 1
SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections''']
# Then to the model doc
SCREAMING_SNAKE_CASE_ : List[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections''']
SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section]
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
for idx, modality_doc in modalities_docs:
SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections''']
SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a )
if old_modality_doc != new_modality_doc:
SCREAMING_SNAKE_CASE_ : str = True
if overwrite:
SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc
if diff:
if overwrite:
SCREAMING_SNAKE_CASE_ : List[Any] = model_doc
SCREAMING_SNAKE_CASE_ : int = api_doc
with open(__a , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(__a , allow_unicode=__a ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
UpperCAmelCase_ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
UpperCAmelCase_ : Tuple = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
import queue
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = data
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
def _A () -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower()
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) )
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Optional[int] = q.get()
SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node
q.put(__a )
SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : int = right_node
q.put(__a )
raise
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Tuple = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : str = []
while not q.empty():
SCREAMING_SNAKE_CASE_ : List[str] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__a )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE_ : Tuple = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE_ : str = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Any = node
while n or stack:
while n:
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left
SCREAMING_SNAKE_CASE_ : Any = stack.pop()
print(n.data , end=''',''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], []
SCREAMING_SNAKE_CASE_ : List[Any] = node
stacka.append(__a )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__a )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def _A (__a = "" , __a=50 , __a="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
UpperCAmelCase_ : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 318
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 318
| 1
|
"""simple docstring"""
from math import pow, sqrt
def _A (*__a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = len(__a ) > 0 and all(value > 0.0 for value in values )
return result
def _A (__a , __a ) -> float | ValueError:
"""simple docstring"""
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(__a , __a )
else ValueError('''Input Error: Molar mass values must greater than 0.''' )
)
def _A (__a , __a , __a ) -> float | ValueError:
"""simple docstring"""
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(__a , __a , __a )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def _A (__a , __a , __a ) -> float | ValueError:
"""simple docstring"""
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(__a , __a , __a )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def _A (__a , __a , __a ) -> float | ValueError:
"""simple docstring"""
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(__a , __a , __a )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def _A (__a , __a , __a ) -> float | ValueError:
"""simple docstring"""
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(__a , __a , __a )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
| 318
|
"""simple docstring"""
from __future__ import annotations
UpperCAmelCase_ : List[str] = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase_ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase_ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _A (__a , __a , __a , __a ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _A (__a ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _A (__a ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__a , __a , __a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = digit
if sudoku(__a ) is not None:
return grid
SCREAMING_SNAKE_CASE_ : Any = 0
return None
def _A (__a ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(__a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 20)
print_solution(example_grid)
print("""\nExample grid solution:""")
UpperCAmelCase_ : str = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 318
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = StableDiffusionInpaintPipeline
__UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCamelCase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__UpperCamelCase = frozenset([] )
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_)
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
SCREAMING_SNAKE_CASE_ : int = CLIPTextModel(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
SCREAMING_SNAKE_CASE_ : int = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : str=0):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_)).to(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1)[0]
SCREAMING_SNAKE_CASE_ : Optional[int] = Image.fromarray(np.uinta(lowercase_)).convert('''RGB''').resize((64, 64))
SCREAMING_SNAKE_CASE_ : Dict = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((64, 64))
if str(lowercase_).startswith('''mps'''):
SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_)
else:
SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device=lowercase_).manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : str = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionInpaintPipeline(**lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe.to(lowercase_)
sd_pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_inputs(lowercase_)
SCREAMING_SNAKE_CASE_ : int = sd_pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
SCREAMING_SNAKE_CASE_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''stabilityai/stable-diffusion-2-inpainting'''
SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_)
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ : Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Tuple = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 9e-3
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
SCREAMING_SNAKE_CASE_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''')
SCREAMING_SNAKE_CASE_ : int = '''stabilityai/stable-diffusion-2-inpainting'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , )
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ : Dict = '''Face of a yellow cat, high resolution, sitting on a park bench'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[str] = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : str = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
SCREAMING_SNAKE_CASE_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
SCREAMING_SNAKE_CASE_ : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
SCREAMING_SNAKE_CASE_ : Dict = '''stabilityai/stable-diffusion-2-inpainting'''
SCREAMING_SNAKE_CASE_ : List[Any] = PNDMScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''')
SCREAMING_SNAKE_CASE_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , )
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
SCREAMING_SNAKE_CASE_ : List[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = pipe(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 318
|
"""simple docstring"""
from itertools import permutations
def _A (__a ) -> bool:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def _A (__a = 10 ) -> int:
"""simple docstring"""
return sum(
int(''''''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 318
| 1
|
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : str = pad_token_id
SCREAMING_SNAKE_CASE_ : Optional[int] = max_length
SCREAMING_SNAKE_CASE_ : Dict = vocab
SCREAMING_SNAKE_CASE_ : Dict = merges
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab()
return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_)
return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]):
'''simple docstring'''
return cls(**lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_)
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs(
lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id)
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318
|
"""simple docstring"""
UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5
def _A (__a , __a , __a = g ) -> float:
"""simple docstring"""
if fluid_density <= 0:
raise ValueError('''Impossible fluid density''' )
if volume < 0:
raise ValueError('''Impossible Object volume''' )
if gravity <= 0:
raise ValueError('''Impossible Gravity''' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 318
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : int , lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = jnp.ones((batch_size, length)) / length
return scores
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : List[str] = 20
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=lowercase_)
# tweak scores to not be uniform anymore
SCREAMING_SNAKE_CASE_ : Tuple = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch
SCREAMING_SNAKE_CASE_ : str = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch
# compute softmax
SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(lowercase_ , axis=-1)
SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5)
SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3)
SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(lowercase_ , scores.copy() , cur_len=lowercase_) , axis=-1)
SCREAMING_SNAKE_CASE_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(lowercase_ , scores.copy() , cur_len=lowercase_) , axis=-1)
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3))
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3))
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max())
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min())
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max())
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min())
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Optional[int] = 10
SCREAMING_SNAKE_CASE_ : Any = 2
# create ramp distribution
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, vocab_size)).copy()
SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size
SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3)
SCREAMING_SNAKE_CASE_ : Optional[int] = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False])
self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True])
# check special case
SCREAMING_SNAKE_CASE_ : Optional[int] = 5
SCREAMING_SNAKE_CASE_ : str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3)
SCREAMING_SNAKE_CASE_ : List[str] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, length)).copy()
SCREAMING_SNAKE_CASE_ : Tuple = top_k_warp_safety_check(lowercase_ , lowercase_ , cur_len=lowercase_)
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2])
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : int = 10
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
SCREAMING_SNAKE_CASE_ : List[str] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]]))
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTopPLogitsWarper(0.8)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.exp(top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_))
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]])
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3))
# check edge cases with negative and extreme logits
SCREAMING_SNAKE_CASE_ : List[str] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, vocab_size)).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
SCREAMING_SNAKE_CASE_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0)
SCREAMING_SNAKE_CASE_ : int = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2])
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = 20
SCREAMING_SNAKE_CASE_ : Optional[Any] = 4
SCREAMING_SNAKE_CASE_ : Dict = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_)
# check that min length is applied at length 5
SCREAMING_SNAKE_CASE_ : str = ids_tensor((batch_size, 20) , vocab_size=20)
SCREAMING_SNAKE_CASE_ : Any = 5
SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_processor(lowercase_ , lowercase_ , cur_len=lowercase_)
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')])
# check that min length is not applied anymore at length 15
SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = 15
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min_dist_processor(lowercase_ , lowercase_ , cur_len=lowercase_)
self.assertFalse(jnp.isinf(lowercase_).any())
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = 20
SCREAMING_SNAKE_CASE_ : Optional[int] = 4
SCREAMING_SNAKE_CASE_ : Optional[int] = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_)
# check that all scores are -inf except the bos_token_id score
SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 1) , vocab_size=20)
SCREAMING_SNAKE_CASE_ : Dict = 1
SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_)
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all())
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_)
self.assertFalse(jnp.isinf(lowercase_).any())
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = 20
SCREAMING_SNAKE_CASE_ : str = 4
SCREAMING_SNAKE_CASE_ : Dict = 0
SCREAMING_SNAKE_CASE_ : List[str] = 5
SCREAMING_SNAKE_CASE_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_)
# check that all scores are -inf except the eos_token_id when max_length is reached
SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor((batch_size, 4) , vocab_size=20)
SCREAMING_SNAKE_CASE_ : Optional[Any] = 4
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_)
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all())
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
SCREAMING_SNAKE_CASE_ : Optional[int] = 3
SCREAMING_SNAKE_CASE_ : Any = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_)
self.assertFalse(jnp.isinf(lowercase_).any())
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = 4
SCREAMING_SNAKE_CASE_ : Optional[Any] = 10
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15
SCREAMING_SNAKE_CASE_ : Optional[int] = 2
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15
# dummy input_ids and scores
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((batch_size, sequence_length) , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.copy()
SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = scores.copy()
# instantiate all dist processors
SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5)
SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3)
SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.8)
# instantiate all logits processors
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 10
# no processor list
SCREAMING_SNAKE_CASE_ : Tuple = temp_dist_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : int = min_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = bos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : str = eos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_)
# with processor list
SCREAMING_SNAKE_CASE_ : List[str] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc])
SCREAMING_SNAKE_CASE_ : Dict = processor(lowercase_ , lowercase_ , cur_len=lowercase_)
# scores should be equal
self.assertTrue(jnp.allclose(lowercase_ , lowercase_ , atol=1e-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = 4
SCREAMING_SNAKE_CASE_ : int = 10
SCREAMING_SNAKE_CASE_ : List[Any] = 15
SCREAMING_SNAKE_CASE_ : str = 2
SCREAMING_SNAKE_CASE_ : List[str] = 1
SCREAMING_SNAKE_CASE_ : str = 15
# dummy input_ids and scores
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((batch_size, sequence_length) , lowercase_)
SCREAMING_SNAKE_CASE_ : int = input_ids.copy()
SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = scores.copy()
# instantiate all dist processors
SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5)
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTopKLogitsWarper(3)
SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopPLogitsWarper(0.8)
# instantiate all logits processors
SCREAMING_SNAKE_CASE_ : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : str = 10
# no processor list
def run_no_processor_list(lowercase_ : str , lowercase_ : Tuple , lowercase_ : str):
SCREAMING_SNAKE_CASE_ : Tuple = temp_dist_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : int = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = min_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = bos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = eos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_)
return scores
# with processor list
def run_processor_list(lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Any):
SCREAMING_SNAKE_CASE_ : int = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc])
SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(lowercase_ , lowercase_ , cur_len=lowercase_)
return scores
SCREAMING_SNAKE_CASE_ : List[str] = jax.jit(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.jit(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = jitted_run_no_processor_list(lowercase_ , lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : int = jitted_run_processor_list(lowercase_ , lowercase_ , lowercase_)
# scores should be equal
self.assertTrue(jnp.allclose(lowercase_ , lowercase_ , atol=1e-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
| 318
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _A (__a ) -> Any:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 318
| 1
|
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
UpperCAmelCase_ : List[str] = """
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = \"A Call for Clarity in Reporting {BLEU} Scores\",
author = \"Post, Matt\",
booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",
month = oct,
year = \"2018\",
address = \"Belgium, Brussels\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W18-6319\",
pages = \"186--191\",
}
"""
UpperCAmelCase_ : Optional[Any] = """\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
"""
UpperCAmelCase_ : str = """
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=[\"About 95 species are currently accepted .\"]
>>> predictions=[\"About 95 you now get in .\"]
>>> references=[[\"About 95 species are currently known .\"]]
>>> wiki_split = datasets.load_metric(\"wiki_split\")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
"""
def _A (__a ) -> int:
"""simple docstring"""
def remove_articles(__a ):
SCREAMING_SNAKE_CASE_ : Tuple = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(__a , ''' ''' , __a )
def white_space_fix(__a ):
return " ".join(text.split() )
def remove_punc(__a ):
SCREAMING_SNAKE_CASE_ : Dict = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__a ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) )
def _A (__a , __a ) -> Optional[int]:
"""simple docstring"""
return int(normalize_answer(__a ) == normalize_answer(__a ) )
def _A (__a , __a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = [any(compute_exact(__a , __a ) for ref in refs ) for pred, refs in zip(__a , __a )]
return (sum(__a ) / len(__a )) * 1_00
def _A (__a , __a , __a , __a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = [rgram for rgrams in rgramslist for rgram in rgrams]
SCREAMING_SNAKE_CASE_ : List[str] = Counter(__a )
SCREAMING_SNAKE_CASE_ : Tuple = Counter(__a )
SCREAMING_SNAKE_CASE_ : Dict = Counter()
for sgram, scount in sgramcounter.items():
SCREAMING_SNAKE_CASE_ : Any = scount * numref
SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(__a )
SCREAMING_SNAKE_CASE_ : int = Counter()
for cgram, ccount in cgramcounter.items():
SCREAMING_SNAKE_CASE_ : int = ccount * numref
# KEEP
SCREAMING_SNAKE_CASE_ : Union[str, Any] = sgramcounter_rep & cgramcounter_rep
SCREAMING_SNAKE_CASE_ : Any = keepgramcounter_rep & rgramcounter
SCREAMING_SNAKE_CASE_ : Optional[int] = sgramcounter_rep & rgramcounter
SCREAMING_SNAKE_CASE_ : Optional[int] = 0
SCREAMING_SNAKE_CASE_ : Tuple = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
SCREAMING_SNAKE_CASE_ : Dict = 1
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
if len(__a ) > 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = keeptmpscorea / len(__a )
if len(__a ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
SCREAMING_SNAKE_CASE_ : str = keeptmpscorea / sum(keepgramcounterall_rep.values() )
SCREAMING_SNAKE_CASE_ : Tuple = 0
if keepscore_precision > 0 or keepscore_recall > 0:
SCREAMING_SNAKE_CASE_ : int = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
SCREAMING_SNAKE_CASE_ : Optional[Any] = sgramcounter_rep - cgramcounter_rep
SCREAMING_SNAKE_CASE_ : str = delgramcounter_rep - rgramcounter
SCREAMING_SNAKE_CASE_ : int = sgramcounter_rep - rgramcounter
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : int = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
SCREAMING_SNAKE_CASE_ : Any = 1
if len(__a ) > 0:
SCREAMING_SNAKE_CASE_ : Dict = deltmpscorea / len(__a )
# ADDITION
SCREAMING_SNAKE_CASE_ : str = set(__a ) - set(__a )
SCREAMING_SNAKE_CASE_ : Optional[int] = set(__a ) & set(__a )
SCREAMING_SNAKE_CASE_ : Dict = set(__a ) - set(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
SCREAMING_SNAKE_CASE_ : Any = 1
SCREAMING_SNAKE_CASE_ : int = 1
if len(__a ) > 0:
SCREAMING_SNAKE_CASE_ : List[str] = addtmpscore / len(__a )
if len(__a ) > 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = addtmpscore / len(__a )
SCREAMING_SNAKE_CASE_ : str = 0
if addscore_precision > 0 or addscore_recall > 0:
SCREAMING_SNAKE_CASE_ : Tuple = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def _A (__a , __a , __a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = len(__a )
SCREAMING_SNAKE_CASE_ : Optional[int] = ssent.split(''' ''' )
SCREAMING_SNAKE_CASE_ : int = csent.split(''' ''' )
SCREAMING_SNAKE_CASE_ : int = []
SCREAMING_SNAKE_CASE_ : str = []
SCREAMING_SNAKE_CASE_ : int = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
SCREAMING_SNAKE_CASE_ : List[Any] = []
SCREAMING_SNAKE_CASE_ : List[str] = []
SCREAMING_SNAKE_CASE_ : int = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
SCREAMING_SNAKE_CASE_ : Dict = []
SCREAMING_SNAKE_CASE_ : Tuple = []
for rsent in rsents:
SCREAMING_SNAKE_CASE_ : Any = rsent.split(''' ''' )
SCREAMING_SNAKE_CASE_ : List[Any] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
SCREAMING_SNAKE_CASE_ : str = []
ragramslist.append(__a )
for i in range(0 , len(__a ) - 1 ):
if i < len(__a ) - 1:
SCREAMING_SNAKE_CASE_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(__a )
if i < len(__a ) - 2:
SCREAMING_SNAKE_CASE_ : Optional[int] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(__a )
if i < len(__a ) - 3:
SCREAMING_SNAKE_CASE_ : Tuple = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(__a )
ragramslist.append(__a )
ragramslist.append(__a )
ragramslist.append(__a )
for i in range(0 , len(__a ) - 1 ):
if i < len(__a ) - 1:
SCREAMING_SNAKE_CASE_ : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(__a )
if i < len(__a ) - 2:
SCREAMING_SNAKE_CASE_ : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(__a )
if i < len(__a ) - 3:
SCREAMING_SNAKE_CASE_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(__a )
for i in range(0 , len(__a ) - 1 ):
if i < len(__a ) - 1:
SCREAMING_SNAKE_CASE_ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(__a )
if i < len(__a ) - 2:
SCREAMING_SNAKE_CASE_ : Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(__a )
if i < len(__a ) - 3:
SCREAMING_SNAKE_CASE_ : List[str] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(__a )
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Any = SARIngram(__a , __a , __a , __a )
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : List[Any] = SARIngram(__a , __a , __a , __a )
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : List[Any] = SARIngram(__a , __a , __a , __a )
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : List[Any] = SARIngram(__a , __a , __a , __a )
SCREAMING_SNAKE_CASE_ : Dict = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
SCREAMING_SNAKE_CASE_ : Tuple = sum([delascore, delascore, delascore, delascore] ) / 4
SCREAMING_SNAKE_CASE_ : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4
SCREAMING_SNAKE_CASE_ : Optional[int] = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def _A (__a , __a = True , __a = "13a" , __a = True ) -> str:
"""simple docstring"""
if lowercase:
SCREAMING_SNAKE_CASE_ : Tuple = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
SCREAMING_SNAKE_CASE_ : Any = sacrebleu.metrics.bleu._get_tokenizer(__a )()(__a )
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(__a )
elif tokenizer == "moses":
SCREAMING_SNAKE_CASE_ : Tuple = sacremoses.MosesTokenizer().tokenize(__a , return_str=__a , escape=__a )
elif tokenizer == "penn":
SCREAMING_SNAKE_CASE_ : int = sacremoses.MosesTokenizer().penn_tokenize(__a , return_str=__a )
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = sentence
if not return_str:
SCREAMING_SNAKE_CASE_ : Dict = normalized_sent.split()
return normalized_sent
def _A (__a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if not (len(__a ) == len(__a ) == len(__a )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
SCREAMING_SNAKE_CASE_ : List[Any] = 0
for src, pred, refs in zip(__a , __a , __a ):
sari_score += SARIsent(normalize(__a ) , normalize(__a ) , [normalize(__a ) for sent in refs] )
SCREAMING_SNAKE_CASE_ : Dict = sari_score / len(__a )
return 1_00 * sari_score
def _A (__a , __a , __a="exp" , __a=None , __a=False , __a=False , __a=False , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = len(references[0] )
if any(len(__a ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[refs[i] for refs in references] for i in range(__a )]
SCREAMING_SNAKE_CASE_ : Any = sacrebleu.corpus_bleu(
__a , __a , smooth_method=__a , smooth_value=__a , force=__a , lowercase=__a , use_effective_order=__a , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''),
}) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = {}
result.update({'''sari''': compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_)})
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowercase_ , references=lowercase_)})
result.update({'''exact''': compute_em(predictions=lowercase_ , references=lowercase_)})
return result
| 318
|
"""simple docstring"""
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ : Any = """examples/"""
UpperCAmelCase_ : Optional[int] = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
UpperCAmelCase_ : List[Any] = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
UpperCAmelCase_ : Optional[int] = """README.md"""
def _A (__a , __a , __a ) -> int:
"""simple docstring"""
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a )
SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a )
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(__a )
def _A (__a ) -> int:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' )
def _A (__a , __a=False ) -> List[str]:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a , __a , __a )
if not patch:
update_version_in_examples(__a )
def _A () -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?'''
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Tuple = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE_ : Tuple = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE_ : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__a )
def _A () -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : Any = f.read()
SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def _A (__a=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version
print(f'Updating version to {version}.' )
global_version_update(__a , patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def _A () -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = get_version()
SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version
print(f'Updating version to {version}.' )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
UpperCAmelCase_ : int = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 318
| 1
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase_ : Tuple = {"""vocab_file""": """spiece.model"""}
UpperCAmelCase_ : List[str] = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
}
}
UpperCAmelCase_ : int = {
"""google/bigbird-roberta-base""": 4096,
"""google/bigbird-roberta-large""": 4096,
"""google/bigbird-base-trivia-itc""": 4096,
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
__UpperCamelCase = []
def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : List[str]="<unk>" , lowercase_ : Any="<s>" , lowercase_ : Any="</s>" , lowercase_ : Tuple="<pad>" , lowercase_ : Dict="[SEP]" , lowercase_ : int="[MASK]" , lowercase_ : Dict="[CLS]" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Union[str, Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else bos_token
SCREAMING_SNAKE_CASE_ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else eos_token
SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else unk_token
SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else pad_token
SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else cls_token
SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token
SCREAMING_SNAKE_CASE_ : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , mask_token=lowercase_ , cls_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(lowercase_)
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
return self.sp_model.get_piece_size()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.__dict__.copy()
SCREAMING_SNAKE_CASE_ : Tuple = None
return state
def __setstate__( self : Dict , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
SCREAMING_SNAKE_CASE_ : Any = {}
SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str):
'''simple docstring'''
return self.sp_model.encode(lowercase_ , out_type=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[int]):
'''simple docstring'''
return self.sp_model.piece_to_id(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.IdToPiece(lowercase_)
return token
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''''''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase_) + token
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
SCREAMING_SNAKE_CASE_ : str = []
else:
current_sub_tokens.append(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = False
out_string += self.sp_model.decode(lowercase_)
return out_string.strip()
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[int] , lowercase_ : bool = False , lowercase_ : bool = None , lowercase_ : bool = True , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''use_source_tokenizer''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.convert_ids_to_tokens(lowercase_ , skip_special_tokens=lowercase_)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
SCREAMING_SNAKE_CASE_ : List[str] = []
SCREAMING_SNAKE_CASE_ : Optional[int] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowercase_))
SCREAMING_SNAKE_CASE_ : Dict = []
sub_texts.append(lowercase_)
else:
current_sub_text.append(lowercase_)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowercase_))
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
SCREAMING_SNAKE_CASE_ : Optional[int] = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowercase_))
else:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''''''.join(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.clean_up_tokenization(lowercase_)
return clean_text
else:
return text
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : str , lowercase_ : Optional[str] = None):
'''simple docstring'''
if not os.path.isdir(lowercase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
SCREAMING_SNAKE_CASE_ : str = os.path.join(
lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , lowercase_)
elif not os.path.isfile(self.vocab_file):
with open(lowercase_ , '''wb''') as fi:
SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.serialized_model_proto()
fi.write(lowercase_)
return (out_vocab_file,)
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id]
SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_)
if token_ids_a is None:
return [1] + ([0] * len(lowercase_)) + [1]
return [1] + ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1]
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
| 318
|
"""simple docstring"""
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _A (__a , __a , __a=1e-12 ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
return jnp.matmul(__a , norm_emb_a.T )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = jnp.floataa
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config)
SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype)
SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,))
def __call__( self : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds)
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
SCREAMING_SNAKE_CASE_ : Tuple = 0.0
SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_)
# Use a lower threshold if an image has any special care concept
SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01
SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1)
return has_nsfw_concepts
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = CLIPConfig
__UpperCamelCase = "clip_input"
__UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ):
'''simple docstring'''
if input_shape is None:
SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3)
SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_)
super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init)
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng}
SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params''']
return random_params
def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1))
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
| 318
| 1
|
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def _A (__a , __a , __a , __a , __a , __a = None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = {}
if train_file is not None:
SCREAMING_SNAKE_CASE_ : Optional[int] = [train_file]
if eval_file is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = [eval_file]
if test_file is not None:
SCREAMING_SNAKE_CASE_ : Dict = [test_file]
SCREAMING_SNAKE_CASE_ : List[Any] = datasets.load_dataset('''csv''' , data_files=__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() )
SCREAMING_SNAKE_CASE_ : int = features_name.pop(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(ds[list(files.keys() )[0]][label_name] ) )
SCREAMING_SNAKE_CASE_ : List[Any] = {label: i for i, label in enumerate(__a )}
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.model_input_names
SCREAMING_SNAKE_CASE_ : Any = {}
if len(__a ) == 1:
for k in files.keys():
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ds[k].map(
lambda __a : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=__a , max_length=__a , padding='''max_length''' ) , batched=__a , )
elif len(__a ) == 2:
for k in files.keys():
SCREAMING_SNAKE_CASE_ : Dict = ds[k].map(
lambda __a : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding='''max_length''' , ) , batched=__a , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names}
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
SCREAMING_SNAKE_CASE_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
SCREAMING_SNAKE_CASE_ : Any = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
SCREAMING_SNAKE_CASE_ : Any = {k: v for k, v in ex.items() if k in input_names}
SCREAMING_SNAKE_CASE_ : Any = labelaid[ex[label_name]]
yield (d, label)
SCREAMING_SNAKE_CASE_ : Any = (
tf.data.Dataset.from_generator(
__a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
SCREAMING_SNAKE_CASE_ : List[str] = (
tf.data.Dataset.from_generator(
__a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
SCREAMING_SNAKE_CASE_ : int = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
SCREAMING_SNAKE_CASE_ : int = (
tf.data.Dataset.from_generator(
__a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
UpperCAmelCase_ : Any = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__UpperCamelCase = field(metadata={"help": "Which column contains the label"} )
__UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "The path of the training file"} )
__UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "The path of the development file"} )
__UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "The path of the test file"} )
__UpperCamelCase = field(
default=1_2_8 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__UpperCamelCase = field(
default=UpperCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
__UpperCamelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__UpperCamelCase = field(
default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__UpperCamelCase = field(
default=UpperCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__UpperCamelCase = field(
default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def _A () -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
SCREAMING_SNAKE_CASE_ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , )
def compute_metrics(__a ) -> Dict:
SCREAMING_SNAKE_CASE_ : Any = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
SCREAMING_SNAKE_CASE_ : Optional[Any] = TFTrainer(
model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
SCREAMING_SNAKE_CASE_ : Optional[Any] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
SCREAMING_SNAKE_CASE_ : Dict = trainer.evaluate()
SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(__a , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(__a )
return results
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
from __future__ import annotations
import queue
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = data
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
def _A () -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower()
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) )
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Optional[int] = q.get()
SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node
q.put(__a )
SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : int = right_node
q.put(__a )
raise
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Tuple = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : str = []
while not q.empty():
SCREAMING_SNAKE_CASE_ : List[str] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__a )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE_ : Tuple = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE_ : str = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Any = node
while n or stack:
while n:
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left
SCREAMING_SNAKE_CASE_ : Any = stack.pop()
print(n.data , end=''',''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], []
SCREAMING_SNAKE_CASE_ : List[Any] = node
stacka.append(__a )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__a )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def _A (__a = "" , __a=50 , __a="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
UpperCAmelCase_ : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase_ : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = XLMProphetNetTokenizer
__UpperCamelCase = False
__UpperCamelCase = True
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE_ : str = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_)
tokenizer.save_pretrained(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''[PAD]'''
SCREAMING_SNAKE_CASE_ : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''[PAD]''')
self.assertEqual(vocab_keys[1] , '''[CLS]''')
self.assertEqual(vocab_keys[-1] , '''j''')
self.assertEqual(len(lowercase_) , 1012)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize('''This is a test''')
self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
lowercase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowercase_)
self.assertListEqual(
lowercase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_)
self.assertListEqual(
lowercase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''')
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = '''Hello World!'''
SCREAMING_SNAKE_CASE_ : int = [35389, 6672, 49, 2]
self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_))
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = {'''input_ids''': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 318
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx"
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_))
SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Tuple = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions()
SCREAMING_SNAKE_CASE_ : Optional[int] = False
return options
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
# using the PNDM scheduler by default
SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''')
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 318
| 1
|
"""simple docstring"""
import math
import flax.linen as nn
import jax.numpy as jnp
def _A (__a , __a , __a = 1 , __a = 1 , __a = 1.0e4 , __a = False , __a = 1.0 , ) -> jnp.ndarray:
"""simple docstring"""
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even'
SCREAMING_SNAKE_CASE_ : List[str] = float(embedding_dim // 2 )
SCREAMING_SNAKE_CASE_ : int = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
SCREAMING_SNAKE_CASE_ : Any = min_timescale * jnp.exp(jnp.arange(__a , dtype=jnp.floataa ) * -log_timescale_increment )
SCREAMING_SNAKE_CASE_ : Dict = jnp.expand_dims(__a , 1 ) * jnp.expand_dims(__a , 0 )
# scale embeddings
SCREAMING_SNAKE_CASE_ : Dict = scale * emb
if flip_sin_to_cos:
SCREAMING_SNAKE_CASE_ : int = jnp.concatenate([jnp.cos(__a ), jnp.sin(__a )] , axis=1 )
else:
SCREAMING_SNAKE_CASE_ : str = jnp.concatenate([jnp.sin(__a ), jnp.cos(__a )] , axis=1 )
SCREAMING_SNAKE_CASE_ : int = jnp.reshape(__a , [jnp.shape(__a )[0], embedding_dim] )
return signal
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
__UpperCamelCase = 3_2
__UpperCamelCase = jnp.floataa
@nn.compact
def __call__( self : Dict , lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''')(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = nn.silu(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''')(lowercase_)
return temb
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
__UpperCamelCase = 3_2
__UpperCamelCase = False
__UpperCamelCase = 1
@nn.compact
def __call__( self : str , lowercase_ : Optional[int]):
'''simple docstring'''
return get_sinusoidal_embeddings(
lowercase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift)
| 318
|
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
UpperCAmelCase_ : List[Any] = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
UpperCAmelCase_ : Optional[int] = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
UpperCAmelCase_ : Tuple = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float'''),
'''references''': datasets.Value('''float'''),
}) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
| 318
| 1
|
"""simple docstring"""
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def _A (__a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = [False] * len(__a )
SCREAMING_SNAKE_CASE_ : Any = [-1] * len(__a )
def dfs(__a , __a ):
SCREAMING_SNAKE_CASE_ : Optional[int] = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = c
for u in graph[v]:
if not visited[u]:
dfs(__a , 1 - c )
for i in range(len(__a ) ):
if not visited[i]:
dfs(__a , 0 )
for i in range(len(__a ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 318
|
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : str = pad_token_id
SCREAMING_SNAKE_CASE_ : Optional[int] = max_length
SCREAMING_SNAKE_CASE_ : Dict = vocab
SCREAMING_SNAKE_CASE_ : Dict = merges
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab()
return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_)
return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]):
'''simple docstring'''
return cls(**lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_)
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs(
lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id)
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers import DonutProcessor
UpperCAmelCase_ : Optional[Any] = """naver-clova-ix/donut-base"""
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = DonutProcessor.from_pretrained(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
SCREAMING_SNAKE_CASE_ : Any = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
SCREAMING_SNAKE_CASE_ : Any = self.processor.tokenajson(lowercase_)
self.assertDictEqual(lowercase_ , lowercase_)
| 318
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE_ : Dict = {
'''do_resize''': True,
'''size''': {'''height''': 224, '''width''': 224},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_)
with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp:
json.dump(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str):
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_slow.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_fast.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowercase_)
self.assertIsInstance(processor_fast.tokenizer , lowercase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowercase_)
self.assertIsInstance(processor_fast.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''')
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowercase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase_):
processor()
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 318
| 1
|
"""simple docstring"""
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
UpperCAmelCase_ : str = {
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
UpperCAmelCase_ : Any = {
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 )
SCREAMING_SNAKE_CASE_ : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
SCREAMING_SNAKE_CASE_ : str = numpy_to_pil(__a )
return images
def _A (__a ) -> List[str]:
"""simple docstring"""
if images.ndim == 3:
SCREAMING_SNAKE_CASE_ : Tuple = images[None, ...]
SCREAMING_SNAKE_CASE_ : Optional[Any] = (images * 2_55).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
SCREAMING_SNAKE_CASE_ : List[Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(__a ) for image in images]
return pil_images
| 318
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "rwkv"
__UpperCamelCase = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE_ : Any = context_length
SCREAMING_SNAKE_CASE_ : int = hidden_size
SCREAMING_SNAKE_CASE_ : int = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size
SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size
SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every
SCREAMING_SNAKE_CASE_ : Dict = use_cache
SCREAMING_SNAKE_CASE_ : Dict = bos_token_id
SCREAMING_SNAKE_CASE_ : Any = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
def _A (__a , __a , __a , __a = 1_00 , ) -> float:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = x_start
SCREAMING_SNAKE_CASE_ : Any = fnc(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.0
for _ in range(__a ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
SCREAMING_SNAKE_CASE_ : Any = (x_end - x_start) / steps + xa
SCREAMING_SNAKE_CASE_ : Optional[int] = fnc(__a )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
SCREAMING_SNAKE_CASE_ : str = xa
SCREAMING_SNAKE_CASE_ : Any = fxa
return area
if __name__ == "__main__":
def _A (__a ) -> List[Any]:
"""simple docstring"""
return x**3 + x**2
print("""f(x) = x^3 + x^2""")
print("""The area between the curve, x = -5, x = 5 and the x axis is:""")
UpperCAmelCase_ : int = 10
while i <= 100000:
print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''')
i *= 10
| 318
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8
def _A (__a , __a ) -> float:
"""simple docstring"""
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
UpperCAmelCase_ : str = 300
UpperCAmelCase_ : str = 28
UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 318
| 1
|
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
UpperCAmelCase_ : Union[str, Any] = 16
UpperCAmelCase_ : Any = 32
def _A (__a , __a = 16 , __a = "bert-base-cased" ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(__a )
SCREAMING_SNAKE_CASE_ : List[str] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__a ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ : Tuple = datasets.map(
__a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__a ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__a , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' )
return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ : int = DataLoader(
tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
SCREAMING_SNAKE_CASE_ : Any = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
return train_dataloader, eval_dataloader
def _A (__a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
model.eval()
SCREAMING_SNAKE_CASE_ : List[Any] = 0
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**__a )
SCREAMING_SNAKE_CASE_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(__a ) - 1:
SCREAMING_SNAKE_CASE_ : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen]
SCREAMING_SNAKE_CASE_ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=__a , references=__a , )
SCREAMING_SNAKE_CASE_ : List[Any] = metric.compute()
return eval_metric["accuracy"]
def _A (__a , __a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE_ : str = config['''lr''']
SCREAMING_SNAKE_CASE_ : int = int(config['''num_epochs'''] )
SCREAMING_SNAKE_CASE_ : Any = int(config['''seed'''] )
SCREAMING_SNAKE_CASE_ : str = int(config['''batch_size'''] )
SCREAMING_SNAKE_CASE_ : List[Any] = args.model_name_or_path
set_seed(__a )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_dataloaders(__a , __a , __a )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a )
# Instantiate optimizer
SCREAMING_SNAKE_CASE_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
SCREAMING_SNAKE_CASE_ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a )
if accelerator.state.deepspeed_plugin is not None:
SCREAMING_SNAKE_CASE_ : str = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
SCREAMING_SNAKE_CASE_ : List[str] = 1
SCREAMING_SNAKE_CASE_ : List[str] = (len(__a ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
SCREAMING_SNAKE_CASE_ : Optional[int] = get_linear_schedule_with_warmup(
optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , )
else:
SCREAMING_SNAKE_CASE_ : int = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = accelerator.prepare(
__a , __a , __a , __a , __a )
# We need to keep track of how many total steps we have iterated over
SCREAMING_SNAKE_CASE_ : Optional[int] = 0
# We also need to keep track of the stating epoch so files are named properly
SCREAMING_SNAKE_CASE_ : List[Any] = 0
SCREAMING_SNAKE_CASE_ : int = evaluate.load('''glue''' , '''mrpc''' )
SCREAMING_SNAKE_CASE_ : Tuple = num_epochs
if args.partial_train_epoch is not None:
SCREAMING_SNAKE_CASE_ : Dict = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
SCREAMING_SNAKE_CASE_ : Optional[int] = args.resume_from_checkpoint.split('''epoch_''' )[1]
SCREAMING_SNAKE_CASE_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
SCREAMING_SNAKE_CASE_ : List[Any] = int(__a ) + 1
SCREAMING_SNAKE_CASE_ : int = evaluation_loop(__a , __a , __a , __a )
accelerator.print('''resumed checkpoint performance:''' , __a )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : int = json.load(__a )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
SCREAMING_SNAKE_CASE_ : Dict = {}
for epoch in range(__a , __a ):
model.train()
for step, batch in enumerate(__a ):
SCREAMING_SNAKE_CASE_ : Tuple = model(**__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.loss
SCREAMING_SNAKE_CASE_ : Dict = loss / gradient_accumulation_steps
accelerator.backward(__a )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
SCREAMING_SNAKE_CASE_ : Dict = f'epoch_{epoch}'
SCREAMING_SNAKE_CASE_ : int = os.path.join(args.output_dir , __a )
accelerator.save_state(__a )
SCREAMING_SNAKE_CASE_ : Tuple = evaluation_loop(__a , __a , __a , __a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = accuracy
SCREAMING_SNAKE_CASE_ : Optional[Any] = lr_scheduler.get_lr()[0]
SCREAMING_SNAKE_CASE_ : List[Any] = optimizer.param_groups[0]['''lr''']
SCREAMING_SNAKE_CASE_ : Optional[int] = epoch
SCREAMING_SNAKE_CASE_ : Union[str, Any] = overall_step
accelerator.print(f'epoch {epoch}:' , __a )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f:
json.dump(__a , __a )
def _A () -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , )
parser.add_argument(
'''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE_ : str = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(__a , __a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""]
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
SCREAMING_SNAKE_CASE_ : Optional[int] = dataset
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks
SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies
def __iter__( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = []
for task in range(self.n_tasks):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip())
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''')
for task in range(self.n_tasks):
for _ in range(self.n_copies):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = start_length
SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
SCREAMING_SNAKE_CASE_ : Tuple = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings))
return all(lowercase_)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a )
# last string should be ""
return "".join(string_list[:-2] )
def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(__a ) ):
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1]
SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a )
# each task is generated batch_size times
SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes(
__a , dim=1 , pad_index=tokenizer.pad_token_id )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy()
SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(__a , __a ):
gen_token_dict[task].append(__a )
SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
code_gens[task].append(remove_last_block(__a ) )
return code_gens
def _A () -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
SCREAMING_SNAKE_CASE_ : str = '''false'''
if args.num_workers is None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
SCREAMING_SNAKE_CASE_ : Tuple = Accelerator()
set_seed(args.seed , device_specific=__a )
# Load model and tokenizer
SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt )
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token
SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
SCREAMING_SNAKE_CASE_ : List[str] = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ),
}
# Load evaluation dataset and metric
SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' )
SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' )
SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a )
# do not confuse args.batch_size, which is actually the num_return_sequences
SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = complete_code(
__a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , )
if accelerator.is_main_process:
SCREAMING_SNAKE_CASE_ : int = []
for task in tqdm(range(__a ) ):
SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test''']
SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})'
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute(
references=__a , predictions=__a , num_workers=args.num_workers )
print(f'Results: {pass_at_k}' )
# Save results to json file
with open(args.output_file , '''w''' ) as fp:
json.dump(__a , __a )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 318
| 1
|
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , lowercase_ : Any , lowercase_ : List[Any]=13 , lowercase_ : List[str]=2 , lowercase_ : Optional[int]=24 , lowercase_ : List[Any]=16 , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : Tuple=32 , lowercase_ : Tuple=5 , lowercase_ : Optional[Any]=4 , lowercase_ : Dict=37 , lowercase_ : int="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=10 , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=2 , lowercase_ : List[Any]=2 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = parent
SCREAMING_SNAKE_CASE_ : Tuple = batch_size
SCREAMING_SNAKE_CASE_ : Tuple = patch_size
SCREAMING_SNAKE_CASE_ : List[Any] = max_length
SCREAMING_SNAKE_CASE_ : Dict = num_mel_bins
SCREAMING_SNAKE_CASE_ : Dict = is_training
SCREAMING_SNAKE_CASE_ : Dict = use_labels
SCREAMING_SNAKE_CASE_ : Dict = hidden_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size
SCREAMING_SNAKE_CASE_ : Dict = hidden_act
SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE_ : str = initializer_range
SCREAMING_SNAKE_CASE_ : Union[str, Any] = scope
SCREAMING_SNAKE_CASE_ : int = frequency_stride
SCREAMING_SNAKE_CASE_ : Tuple = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
SCREAMING_SNAKE_CASE_ : int = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
SCREAMING_SNAKE_CASE_ : Dict = (self.max_length - self.patch_size) // self.time_stride + 1
SCREAMING_SNAKE_CASE_ : Any = frequency_out_dimension * time_out_dimension
SCREAMING_SNAKE_CASE_ : Optional[int] = num_patches + 2
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins])
SCREAMING_SNAKE_CASE_ : int = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config()
return config, input_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = ASTModel(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : str = config_and_inputs
SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''input_values''': input_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
__UpperCamelCase = (
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[str]):
'''simple docstring'''
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = ASTModelTester(self)
SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''AST does not use inputs_embeds''')
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : int = model_class(lowercase_)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
SCREAMING_SNAKE_CASE_ : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Dict = model_class(lowercase_)
SCREAMING_SNAKE_CASE_ : Any = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ : str = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ : List[Any] = ['''input_values''']
self.assertListEqual(arg_names[:1] , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ : Dict = ASTModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
def _A () -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = torchaudio.load(__a )
return audio, sampling_rate
@require_torch
@require_torchaudio
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return (
ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''')
if is_torchaudio_available()
else None
)
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.default_feature_extractor
SCREAMING_SNAKE_CASE_ : Optional[Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''').to(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.default_feature_extractor
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = prepare_audio()
SCREAMING_SNAKE_CASE_ : int = audio.squeeze().numpy()
SCREAMING_SNAKE_CASE_ : str = feature_extractor(lowercase_ , sampling_rate=lowercase_ , return_tensors='''pt''').to(lowercase_)
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = model(**lowercase_)
# verify the logits
SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size((1, 527))
self.assertEqual(outputs.logits.shape , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02]).to(lowercase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["image_processor", "feature_extractor"]
__UpperCamelCase = "TvltImageProcessor"
__UpperCamelCase = "TvltFeatureExtractor"
def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor
SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor
def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''')
SCREAMING_SNAKE_CASE_ : Any = None
if images is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_)
if images_mixed is not None:
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_)
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(
lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = {}
if audio is not None:
output_dict.update(lowercase_)
if images is not None:
output_dict.update(lowercase_)
if images_mixed_dict is not None:
output_dict.update(lowercase_)
return output_dict
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 318
| 1
|
"""simple docstring"""
from cva import destroyAllWindows, imread, imshow, waitKey
def _A (__a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(__a ):
for j in range(__a ):
SCREAMING_SNAKE_CASE_ : List[str] = [2_55, 2_55, 2_55] - img[i][j]
return img
if __name__ == "__main__":
# read original image
UpperCAmelCase_ : Dict = imread("""image_data/lena.jpg""", 1)
# convert to its negative
UpperCAmelCase_ : Dict = convert_to_negative(img)
# show result image
imshow("""negative of original image""", img)
waitKey(0)
destroyAllWindows()
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "SpeechT5FeatureExtractor"
__UpperCamelCase = "SpeechT5Tokenizer"
def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(lowercase_ , lowercase_)
def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
elif text is not None:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : Any = None
if audio_target is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values''']
elif text_target is not None:
SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : int = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_)
SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
elif input_ids is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : str = feature_size_hack
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values''']
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Dict = labels
SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]):
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = 42
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__( self : str , lowercase_ : int = 32 , lowercase_ : int = 64 , lowercase_ : int = 20 , lowercase_ : int = 768 , lowercase_ : Any=77 , lowercase_ : Optional[int]=4 , lowercase_ : float = 0.0 , lowercase_ : str = "silu" , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "linear" , lowercase_ : Optional[str] = "prd" , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_head_dim
SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads * attention_head_dim
SCREAMING_SNAKE_CASE_ : Union[str, Any] = additional_embeddings
SCREAMING_SNAKE_CASE_ : List[Any] = time_embed_dim or inner_dim
SCREAMING_SNAKE_CASE_ : Dict = embedding_proj_dim or embedding_dim
SCREAMING_SNAKE_CASE_ : Any = clip_embed_dim or embedding_dim
SCREAMING_SNAKE_CASE_ : Any = Timesteps(lowercase_ , lowercase_ , 0)
SCREAMING_SNAKE_CASE_ : List[str] = TimestepEmbedding(lowercase_ , lowercase_ , out_dim=lowercase_ , act_fn=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = nn.Linear(lowercase_ , lowercase_)
if embedding_proj_norm_type is None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = None
elif embedding_proj_norm_type == "layer":
SCREAMING_SNAKE_CASE_ : int = nn.LayerNorm(lowercase_)
else:
raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}')
SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(lowercase_ , lowercase_)
if encoder_hid_proj_type is None:
SCREAMING_SNAKE_CASE_ : List[str] = None
elif encoder_hid_proj_type == "linear":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Linear(lowercase_ , lowercase_)
else:
raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}')
SCREAMING_SNAKE_CASE_ : Tuple = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowercase_))
if added_emb_type == "prd":
SCREAMING_SNAKE_CASE_ : str = nn.Parameter(torch.zeros(1 , 1 , lowercase_))
elif added_emb_type is None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = None
else:
raise ValueError(
F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.')
SCREAMING_SNAKE_CASE_ : List[str] = nn.ModuleList(
[
BasicTransformerBlock(
lowercase_ , lowercase_ , lowercase_ , dropout=lowercase_ , activation_fn='''gelu''' , attention_bias=lowercase_ , )
for d in range(lowercase_)
])
if norm_in_type == "layer":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.LayerNorm(lowercase_)
elif norm_in_type is None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = None
else:
raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.')
SCREAMING_SNAKE_CASE_ : List[str] = nn.LayerNorm(lowercase_)
SCREAMING_SNAKE_CASE_ : str = nn.Linear(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0)
causal_attention_mask.triu_(1)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = causal_attention_mask[None, ...]
self.register_buffer('''causal_attention_mask''' , lowercase_ , persistent=lowercase_)
SCREAMING_SNAKE_CASE_ : int = nn.Parameter(torch.zeros(1 , lowercase_))
SCREAMING_SNAKE_CASE_ : str = nn.Parameter(torch.zeros(1 , lowercase_))
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {}
def fn_recursive_add_processors(lowercase_ : str , lowercase_ : torch.nn.Module , lowercase_ : Dict[str, AttentionProcessor]):
if hasattr(lowercase_ , '''set_processor'''):
SCREAMING_SNAKE_CASE_ : str = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'{name}.{sub_name}' , lowercase_ , lowercase_)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_)
return processors
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = len(self.attn_processors.keys())
if isinstance(lowercase_ , lowercase_) and len(lowercase_) != count:
raise ValueError(
F'A dict of processors was passed, but the number of processors {len(lowercase_)} does not match the'
F' number of attention layers: {count}. Please make sure to pass {count} processor classes.')
def fn_recursive_attn_processor(lowercase_ : str , lowercase_ : torch.nn.Module , lowercase_ : List[str]):
if hasattr(lowercase_ , '''set_processor'''):
if not isinstance(lowercase_ , lowercase_):
module.set_processor(lowercase_)
else:
module.set_processor(processor.pop(F'{name}.processor'))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'{name}.{sub_name}' , lowercase_ , lowercase_)
for name, module in self.named_children():
fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
self.set_attn_processor(AttnProcessor())
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Union[torch.Tensor, float, int] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.BoolTensor] = None , lowercase_ : bool = True , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = hidden_states.shape[0]
SCREAMING_SNAKE_CASE_ : Dict = timestep
if not torch.is_tensor(lowercase_):
SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device)
elif torch.is_tensor(lowercase_) and len(timesteps.shape) == 0:
SCREAMING_SNAKE_CASE_ : List[Any] = timesteps[None].to(hidden_states.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
SCREAMING_SNAKE_CASE_ : List[Any] = timesteps * torch.ones(lowercase_ , dtype=timesteps.dtype , device=timesteps.device)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.time_proj(lowercase_)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
SCREAMING_SNAKE_CASE_ : int = timesteps_projected.to(dtype=self.dtype)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.time_embedding(lowercase_)
if self.embedding_proj_norm is not None:
SCREAMING_SNAKE_CASE_ : Optional[int] = self.embedding_proj_norm(lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.embedding_proj(lowercase_)
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
SCREAMING_SNAKE_CASE_ : int = self.encoder_hidden_states_proj(lowercase_)
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''')
SCREAMING_SNAKE_CASE_ : str = self.proj_in(lowercase_)
SCREAMING_SNAKE_CASE_ : int = self.positional_embedding.to(hidden_states.dtype)
SCREAMING_SNAKE_CASE_ : Any = []
SCREAMING_SNAKE_CASE_ : List[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowercase_)
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape) == 2:
SCREAMING_SNAKE_CASE_ : Optional[Any] = proj_embeddings[:, None, :]
if len(hidden_states.shape) == 2:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_states[:, None, :]
SCREAMING_SNAKE_CASE_ : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prd_embedding.to(hidden_states.dtype).expand(lowercase_ , -1 , -1)
additional_embeds.append(lowercase_)
SCREAMING_SNAKE_CASE_ : Any = torch.cat(
lowercase_ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
SCREAMING_SNAKE_CASE_ : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
SCREAMING_SNAKE_CASE_ : Tuple = F.pad(
lowercase_ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_states + positional_embeddings
if attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Any = (1 - attention_mask.to(hidden_states.dtype)) * -1_00_00.0
SCREAMING_SNAKE_CASE_ : Tuple = F.pad(lowercase_ , (0, self.additional_embeddings) , value=0.0)
SCREAMING_SNAKE_CASE_ : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0)
if self.norm_in is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = self.norm_in(lowercase_)
for block in self.transformer_blocks:
SCREAMING_SNAKE_CASE_ : Optional[int] = block(lowercase_ , attention_mask=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.norm_out(lowercase_)
if self.prd_embedding is not None:
SCREAMING_SNAKE_CASE_ : Tuple = hidden_states[:, -1]
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_states[:, additional_embeddings_len:]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.proj_to_clip_embeddings(lowercase_)
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 318
|
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = np.inf
def set_batch_size(__a ) -> None:
nonlocal batch_size
if isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__a , __a ) and feature.dtype == "binary":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__a , __a )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , )
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory)
return dataset
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = dataset
SCREAMING_SNAKE_CASE_ : Dict = path_or_buf
SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features)
SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , '''wb+''') as buffer:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs)
else:
SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs)
return written
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema
SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_)
for offset in logging.tqdm(
range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
SCREAMING_SNAKE_CASE_ : List[Any] = query_table(
table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(lowercase_)
written += batch.nbytes
writer.close()
return written
| 318
| 1
|
"""simple docstring"""
def _A (__a ) -> list:
"""simple docstring"""
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(__a ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 318
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : str = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""]
def _A (__a ) -> Dict:
"""simple docstring"""
if "emb" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def _A (__a , __a ) -> Tuple[Dict, Dict]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() )
SCREAMING_SNAKE_CASE_ : int = {}
for key in keys:
SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a )
SCREAMING_SNAKE_CASE_ : int = rename_keys(__a )
if "in_proj_weight" in key:
# split fused qkv proj
SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :]
SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :]
SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
SCREAMING_SNAKE_CASE_ : int = val
else:
SCREAMING_SNAKE_CASE_ : Any = val
return state_dict, enc_dec_proj_state_dict
def _A (__a ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24
SCREAMING_SNAKE_CASE_ : Tuple = 24
SCREAMING_SNAKE_CASE_ : Optional[Any] = 16
elif checkpoint == "medium":
SCREAMING_SNAKE_CASE_ : List[str] = 15_36
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : Optional[int] = 24
elif checkpoint == "large":
SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : int = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig(
hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , )
return config
@torch.no_grad()
def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a )
SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict(
__a , hidden_size=decoder_config.hidden_size )
SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__a )
if len(__a ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(__a ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__a )
# check we can do a forward pass
SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits
if logits.shape != (8, 1, 20_48):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a )
# set the appropriate bos/pad token ids
SCREAMING_SNAKE_CASE_ : str = 20_48
SCREAMING_SNAKE_CASE_ : List[Any] = 20_48
# set other default generation config params
SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate )
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0
if pytorch_dump_folder is not None:
Path(__a ).mkdir(exist_ok=__a )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(__a )
processor.save_pretrained(__a )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(__a )
processor.push_to_hub(__a )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
UpperCAmelCase_ : Dict = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 318
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[int] = {
"""google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "vit"
def __init__( self : Any , lowercase_ : Union[str, Any]=768 , lowercase_ : str=12 , lowercase_ : Any=12 , lowercase_ : Optional[int]=3072 , lowercase_ : Any="gelu" , lowercase_ : Optional[int]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : int=0.02 , lowercase_ : int=1e-12 , lowercase_ : Dict=224 , lowercase_ : Any=16 , lowercase_ : Any=3 , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=16 , **lowercase_ : Dict , ):
'''simple docstring'''
super().__init__(**lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size
SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : Any = hidden_act
SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : str = initializer_range
SCREAMING_SNAKE_CASE_ : Dict = layer_norm_eps
SCREAMING_SNAKE_CASE_ : List[str] = image_size
SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_size
SCREAMING_SNAKE_CASE_ : Any = num_channels
SCREAMING_SNAKE_CASE_ : Union[str, Any] = qkv_bias
SCREAMING_SNAKE_CASE_ : List[str] = encoder_stride
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = version.parse("1.11" )
@property
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
])
@property
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
return 1e-4
| 318
|
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def _A (__a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _A (__a ) -> np.ndarray:
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def _A (__a , __a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path))
# kernel to be applied
UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 318
| 1
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = {
"""A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""",
"""H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""",
"""O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""",
"""V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""",
"""2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""",
"""8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""",
""":""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""",
"""?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""",
"""(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/"""
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ : Any = {value: key for key, value in MORSE_CODE_DICT.items()}
def _A (__a ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def _A (__a ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def _A () -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Morse code here!'''
print(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = encrypt(__a )
print(__a )
SCREAMING_SNAKE_CASE_ : Any = decrypt(__a )
print(__a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
from collections import defaultdict
def _A (__a , __a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip()
SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip()
# Remove whitespace
SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase_ : Any = input("""Enter the first string """).strip()
UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip()
UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 318
| 1
|
"""simple docstring"""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase_ : str = """Hello, World!"""
UpperCAmelCase_ : Union[str, Any] = """en_XX"""
def _A (__a , __a , __a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = Path('''data_bin''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(__a ).parent ) , checkpoint_file=Path(__a ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__a ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__a ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(__a )
SCREAMING_SNAKE_CASE_ : int = xmod.model.encoder.sentence_encoder
SCREAMING_SNAKE_CASE_ : Optional[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , __a )
SCREAMING_SNAKE_CASE_ : Tuple = XmodForSequenceClassification(__a ) if classification_head else XmodForMaskedLM(__a )
model.eval()
# Now let's copy all the weights.
# Embeddings
SCREAMING_SNAKE_CASE_ : Tuple = xmod_sent_encoder.embed_tokens.weight
SCREAMING_SNAKE_CASE_ : Any = xmod_sent_encoder.embed_positions.weight
SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
SCREAMING_SNAKE_CASE_ : int = xmod_sent_encoder.layernorm_embedding.weight
SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
SCREAMING_SNAKE_CASE_ : List[str] = model.roberta.encoder.layer[i]
SCREAMING_SNAKE_CASE_ : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
SCREAMING_SNAKE_CASE_ : Any = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = xmod_layer.self_attn.q_proj.weight
SCREAMING_SNAKE_CASE_ : str = xmod_layer.self_attn.q_proj.bias
SCREAMING_SNAKE_CASE_ : List[Any] = xmod_layer.self_attn.k_proj.weight
SCREAMING_SNAKE_CASE_ : Optional[Any] = xmod_layer.self_attn.k_proj.bias
SCREAMING_SNAKE_CASE_ : Tuple = xmod_layer.self_attn.v_proj.weight
SCREAMING_SNAKE_CASE_ : Dict = xmod_layer.self_attn.v_proj.bias
# self-attention output
SCREAMING_SNAKE_CASE_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
SCREAMING_SNAKE_CASE_ : int = xmod_layer.self_attn.out_proj.weight
SCREAMING_SNAKE_CASE_ : Optional[int] = xmod_layer.self_attn.out_proj.bias
SCREAMING_SNAKE_CASE_ : Dict = xmod_layer.self_attn_layer_norm.weight
SCREAMING_SNAKE_CASE_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
SCREAMING_SNAKE_CASE_ : Dict = xmod_layer.fca.weight
SCREAMING_SNAKE_CASE_ : Tuple = xmod_layer.fca.bias
# output
SCREAMING_SNAKE_CASE_ : Optional[int] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
SCREAMING_SNAKE_CASE_ : Tuple = xmod_layer.fca.weight
SCREAMING_SNAKE_CASE_ : List[str] = xmod_layer.fca.bias
SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_layer.final_layer_norm.weight
SCREAMING_SNAKE_CASE_ : Any = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
SCREAMING_SNAKE_CASE_ : str = xmod_layer.adapter_layer_norm.weight
SCREAMING_SNAKE_CASE_ : int = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
SCREAMING_SNAKE_CASE_ : Union[str, Any] = bert_output.adapter_modules[lang_code]
SCREAMING_SNAKE_CASE_ : Dict = xmod_layer.adapter_modules[lang_code]
SCREAMING_SNAKE_CASE_ : Any = from_adapter.fca.weight
SCREAMING_SNAKE_CASE_ : Dict = from_adapter.fca.bias
SCREAMING_SNAKE_CASE_ : Optional[Any] = from_adapter.fca.weight
SCREAMING_SNAKE_CASE_ : Tuple = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
SCREAMING_SNAKE_CASE_ : str = xmod_sent_encoder.layer_norm.weight
SCREAMING_SNAKE_CASE_ : str = xmod_sent_encoder.layer_norm.bias
if classification_head:
SCREAMING_SNAKE_CASE_ : Any = xmod.model.classification_heads['''mnli'''].dense.weight
SCREAMING_SNAKE_CASE_ : List[Any] = xmod.model.classification_heads['''mnli'''].dense.bias
SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
SCREAMING_SNAKE_CASE_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
SCREAMING_SNAKE_CASE_ : Any = xmod.model.encoder.lm_head.dense.weight
SCREAMING_SNAKE_CASE_ : List[Any] = xmod.model.encoder.lm_head.dense.bias
SCREAMING_SNAKE_CASE_ : int = xmod.model.encoder.lm_head.layer_norm.weight
SCREAMING_SNAKE_CASE_ : str = xmod.model.encoder.lm_head.layer_norm.bias
SCREAMING_SNAKE_CASE_ : Optional[int] = xmod.model.encoder.lm_head.weight
SCREAMING_SNAKE_CASE_ : int = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
SCREAMING_SNAKE_CASE_ : int = xmod.encode(__a ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(__a )
SCREAMING_SNAKE_CASE_ : Optional[int] = model(__a )[0]
if classification_head:
SCREAMING_SNAKE_CASE_ : List[Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__a ) )
else:
SCREAMING_SNAKE_CASE_ : Dict = xmod.model(__a , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
SCREAMING_SNAKE_CASE_ : List[str] = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7
SCREAMING_SNAKE_CASE_ : int = torch.allclose(__a , __a , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(__a ).mkdir(parents=__a , exist_ok=__a )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(__a )
if __name__ == "__main__":
UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
UpperCAmelCase_ : Dict = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318
|
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml"""
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = defaultdict(__a )
for doc in model_doc:
counts[doc["local"]] += 1
SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1]
SCREAMING_SNAKE_CASE_ : int = []
for duplicate_key in duplicates:
SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(__a ) > 1:
raise ValueError(
f'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(__a , key=lambda __a : s["title"].lower() )
def _A (__a=False ) -> Tuple:
"""simple docstring"""
with open(__a , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() )
# Get to the API doc
SCREAMING_SNAKE_CASE_ : Any = 0
while content[api_idx]["title"] != "API":
api_idx += 1
SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections''']
# Then to the model doc
SCREAMING_SNAKE_CASE_ : List[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections''']
SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section]
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
for idx, modality_doc in modalities_docs:
SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections''']
SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a )
if old_modality_doc != new_modality_doc:
SCREAMING_SNAKE_CASE_ : str = True
if overwrite:
SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc
if diff:
if overwrite:
SCREAMING_SNAKE_CASE_ : List[Any] = model_doc
SCREAMING_SNAKE_CASE_ : int = api_doc
with open(__a , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(__a , allow_unicode=__a ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
UpperCAmelCase_ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
UpperCAmelCase_ : Tuple = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 318
| 1
|
"""simple docstring"""
from itertools import permutations
def _A (__a ) -> bool:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def _A (__a = 10 ) -> int:
"""simple docstring"""
return sum(
int(''''''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 318
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 318
| 1
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "SpeechT5FeatureExtractor"
__UpperCamelCase = "SpeechT5Tokenizer"
def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(lowercase_ , lowercase_)
def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
elif text is not None:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : Any = None
if audio_target is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values''']
elif text_target is not None:
SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : int = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_)
SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
elif input_ids is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : str = feature_size_hack
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values''']
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Dict = labels
SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]):
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_)
| 318
|
"""simple docstring"""
from __future__ import annotations
UpperCAmelCase_ : List[str] = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase_ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase_ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _A (__a , __a , __a , __a ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _A (__a ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _A (__a ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__a , __a , __a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = digit
if sudoku(__a ) is not None:
return grid
SCREAMING_SNAKE_CASE_ : Any = 0
return None
def _A (__a ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(__a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 20)
print_solution(example_grid)
print("""\nExample grid solution:""")
UpperCAmelCase_ : str = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 318
| 1
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase_ : int = """▁"""
UpperCAmelCase_ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""}
UpperCAmelCase_ : Any = {
"""vocab_file""": {
"""facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""",
}
}
UpperCAmelCase_ : Optional[int] = {
"""facebook/xglm-564M""": 2048,
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="</s>" , lowercase_ : Dict="</s>" , lowercase_ : Dict="<s>" , lowercase_ : List[Any]="<unk>" , lowercase_ : Tuple="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : int , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
SCREAMING_SNAKE_CASE_ : str = 7
SCREAMING_SNAKE_CASE_ : int = [F'<madeupword{i}>' for i in range(self.num_madeup_words)]
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.get('''additional_special_tokens''' , [])
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(lowercase_))
SCREAMING_SNAKE_CASE_ : Any = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE_ : List[str] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
SCREAMING_SNAKE_CASE_ : List[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.sp_model)
SCREAMING_SNAKE_CASE_ : str = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)}
self.fairseq_tokens_to_ids.update(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.__dict__.copy()
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : str , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
SCREAMING_SNAKE_CASE_ : List[Any] = {}
SCREAMING_SNAKE_CASE_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None):
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_)
if token_ids_a is None:
return [1] + ([0] * len(lowercase_))
return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_))
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a) * [0]
@property
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : str):
'''simple docstring'''
return self.sp_model.encode(lowercase_ , out_type=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Union[str, Any]):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE_ : int = self.sp_model.PieceToId(lowercase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Optional[Any]):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip()
return out_string
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None):
'''simple docstring'''
if not os.path.isdir(lowercase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(
lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , lowercase_)
elif not os.path.isfile(self.vocab_file):
with open(lowercase_ , '''wb''') as fi:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase_)
return (out_vocab_file,)
| 318
|
"""simple docstring"""
from itertools import permutations
def _A (__a ) -> bool:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def _A (__a = 10 ) -> int:
"""simple docstring"""
return sum(
int(''''''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 318
| 1
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def _A (__a=None ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser(add_help=__a , allow_abbrev=__a )
# The main config parser
SCREAMING_SNAKE_CASE_ : Optional[Any] = config_command_parser(__a )
# The subparser to add commands to
SCREAMING_SNAKE_CASE_ : List[Any] = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' )
# Then add other parsers with the parent parser
default_command_parser(__a , parents=[parent_parser] )
update_command_parser(__a , parents=[parent_parser] )
return config_parser
def _A () -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = get_config_parser()
SCREAMING_SNAKE_CASE_ : str = config_parser.parse_args()
if not hasattr(__a , '''func''' ):
config_parser.print_help()
exit(1 )
# Run
args.func(__a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5
def _A (__a , __a , __a = g ) -> float:
"""simple docstring"""
if fluid_density <= 0:
raise ValueError('''Impossible fluid density''' )
if volume < 0:
raise ValueError('''Impossible Object volume''' )
if gravity <= 0:
raise ValueError('''Impossible Gravity''' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 318
| 1
|
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def _A (__a , __a = True , __a = math.inf , __a = -math.inf , __a = math.inf , __a = -math.inf , __a = False , __a = 1_00 , __a = 0.01 , __a = 1 , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = False
SCREAMING_SNAKE_CASE_ : int = search_prob
SCREAMING_SNAKE_CASE_ : Tuple = start_temperate
SCREAMING_SNAKE_CASE_ : int = []
SCREAMING_SNAKE_CASE_ : List[Any] = 0
SCREAMING_SNAKE_CASE_ : List[Any] = None
while not search_end:
SCREAMING_SNAKE_CASE_ : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
SCREAMING_SNAKE_CASE_ : Tuple = current_state
scores.append(__a )
iterations += 1
SCREAMING_SNAKE_CASE_ : Any = None
SCREAMING_SNAKE_CASE_ : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
SCREAMING_SNAKE_CASE_ : str = random.randint(0 , len(__a ) - 1 ) # picking a random neighbor
SCREAMING_SNAKE_CASE_ : List[str] = neighbors.pop(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
SCREAMING_SNAKE_CASE_ : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
SCREAMING_SNAKE_CASE_ : List[Any] = picked_neighbor
else:
SCREAMING_SNAKE_CASE_ : List[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
SCREAMING_SNAKE_CASE_ : Any = picked_neighbor
SCREAMING_SNAKE_CASE_ : Optional[int] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
SCREAMING_SNAKE_CASE_ : Union[str, Any] = True
else:
SCREAMING_SNAKE_CASE_ : List[Any] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__a ) , __a )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def _A (__a , __a ) -> Tuple:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
UpperCAmelCase_ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase_ : Dict = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
UpperCAmelCase_ : int = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase_ : Any = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def _A (__a , __a ) -> Optional[int]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
UpperCAmelCase_ : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase_ : List[str] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
f'''{local_min.score()}'''
)
UpperCAmelCase_ : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase_ : Any = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
f'''{local_min.score()}'''
)
| 318
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _A (__a ) -> Any:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 318
| 1
|
"""simple docstring"""
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = CpmAntTokenizer
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
'''<d>''',
'''</d>''',
'''<s>''',
'''</s>''',
'''</_>''',
'''<unk>''',
'''<pad>''',
'''</n>''',
'''我''',
'''是''',
'''C''',
'''P''',
'''M''',
'''A''',
'''n''',
'''t''',
]
SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
@tooslow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''')
SCREAMING_SNAKE_CASE_ : List[str] = '''今天天气真好!'''
SCREAMING_SNAKE_CASE_ : Optional[int] = ['''今天''', '''天气''', '''真''', '''好''', '''!''']
SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = '''今天天气真好!'''
SCREAMING_SNAKE_CASE_ : List[str] = [tokenizer.bos_token] + tokens
SCREAMING_SNAKE_CASE_ : Optional[Any] = [6, 9802, 14962, 2082, 831, 244]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.decode(lowercase_)
self.assertEqual(lowercase_ , lowercase_)
| 318
|
"""simple docstring"""
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ : Any = """examples/"""
UpperCAmelCase_ : Optional[int] = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
UpperCAmelCase_ : List[Any] = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
UpperCAmelCase_ : Optional[int] = """README.md"""
def _A (__a , __a , __a ) -> int:
"""simple docstring"""
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a )
SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a )
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(__a )
def _A (__a ) -> int:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' )
def _A (__a , __a=False ) -> List[str]:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a , __a , __a )
if not patch:
update_version_in_examples(__a )
def _A () -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?'''
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Tuple = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE_ : Tuple = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE_ : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__a )
def _A () -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : Any = f.read()
SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def _A (__a=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version
print(f'Updating version to {version}.' )
global_version_update(__a , patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def _A () -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = get_version()
SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version
print(f'Updating version to {version}.' )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
UpperCAmelCase_ : int = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
def _A (__a , __a ) -> tuple[int, int]:
"""simple docstring"""
if b == 0:
return (1, 0)
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Optional[Any] = extended_euclid(__a , a % b )
SCREAMING_SNAKE_CASE_ : Any = a // b
return (y, x - k * y)
def _A (__a , __a , __a , __a ) -> int:
"""simple docstring"""
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : int = extended_euclid(__a , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = na * na
SCREAMING_SNAKE_CASE_ : str = ra * x * na + ra * y * na
return (n % m + m) % m
def _A (__a , __a ) -> int:
"""simple docstring"""
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : List[str] = extended_euclid(__a , __a )
if b < 0:
SCREAMING_SNAKE_CASE_ : int = (b % n + n) % n
return b
def _A (__a , __a , __a , __a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = invert_modulo(__a , __a ), invert_modulo(__a , __a )
SCREAMING_SNAKE_CASE_ : Any = na * na
SCREAMING_SNAKE_CASE_ : Any = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 318
|
"""simple docstring"""
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _A (__a , __a , __a=1e-12 ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
return jnp.matmul(__a , norm_emb_a.T )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = jnp.floataa
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config)
SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype)
SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,))
def __call__( self : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds)
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
SCREAMING_SNAKE_CASE_ : Tuple = 0.0
SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_)
# Use a lower threshold if an image has any special care concept
SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01
SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1)
return has_nsfw_concepts
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = CLIPConfig
__UpperCamelCase = "clip_input"
__UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ):
'''simple docstring'''
if input_shape is None:
SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3)
SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_)
super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init)
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng}
SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params''']
return random_params
def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1))
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
| 318
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : Any = logging.get_logger(__name__)
def _A (__a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1_44, 1_92, 2_40]
SCREAMING_SNAKE_CASE_ : Any = [16, 32, 64, 96, 1_28, 1_60, 6_40]
elif "mobilevit_xs" in mobilevit_name:
SCREAMING_SNAKE_CASE_ : str = [96, 1_20, 1_44]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 3_84]
elif "mobilevit_xxs" in mobilevit_name:
SCREAMING_SNAKE_CASE_ : Tuple = [64, 80, 96]
SCREAMING_SNAKE_CASE_ : str = [16, 16, 24, 48, 64, 80, 3_20]
SCREAMING_SNAKE_CASE_ : str = 0.05
SCREAMING_SNAKE_CASE_ : str = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
SCREAMING_SNAKE_CASE_ : str = 5_12
SCREAMING_SNAKE_CASE_ : Optional[Any] = 16
SCREAMING_SNAKE_CASE_ : str = 21
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''pascal-voc-id2label.json'''
else:
SCREAMING_SNAKE_CASE_ : List[str] = 10_00
SCREAMING_SNAKE_CASE_ : List[Any] = '''imagenet-1k-id2label.json'''
SCREAMING_SNAKE_CASE_ : str = '''huggingface/label-files'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) )
SCREAMING_SNAKE_CASE_ : Any = {int(__a ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE_ : Union[str, Any] = idalabel
SCREAMING_SNAKE_CASE_ : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def _A (__a , __a=False ) -> Any:
"""simple docstring"""
for i in range(1 , 6 ):
if f'layer_{i}.' in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace(f'layer_{i}.' , f'encoder.layer.{i - 1}.' )
if "conv_1." in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
SCREAMING_SNAKE_CASE_ : int = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if f'.{i}.{j}.' in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace(f'.{i}.{j}.' , f'.{i}.layer.{j}.' )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if f'.{i}.{j}.' in name:
SCREAMING_SNAKE_CASE_ : str = name.replace(f'.{i}.{j}.' , f'.{i}.' )
if "expand_1x1" in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if f'.global_rep.{i}.weight' in name:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace(f'.global_rep.{i}.weight' , '''.layernorm.weight''' )
if f'.global_rep.{i}.bias' in name:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace(f'.global_rep.{i}.bias' , '''.layernorm.bias''' )
if ".global_rep." in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
SCREAMING_SNAKE_CASE_ : str = '''mobilevit.''' + name
return name
def _A (__a , __a , __a=False ) -> Any:
"""simple docstring"""
if base_model:
SCREAMING_SNAKE_CASE_ : Optional[Any] = ''''''
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE_ : str = orig_state_dict.pop(__a )
if key[:8] == "encoder.":
SCREAMING_SNAKE_CASE_ : str = key[8:]
if "qkv" in key:
SCREAMING_SNAKE_CASE_ : Tuple = key.split('''.''' )
SCREAMING_SNAKE_CASE_ : int = int(key_split[0][6:] ) - 1
SCREAMING_SNAKE_CASE_ : Optional[int] = int(key_split[3] )
SCREAMING_SNAKE_CASE_ : Any = model.get_submodule(f'{model_prefix}encoder.layer.{layer_num}' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
SCREAMING_SNAKE_CASE_ : Dict = (
f'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'
)
if "weight" in key:
SCREAMING_SNAKE_CASE_ : str = val[:dim, :]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE_ : int = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE_ : int = val[:dim]
SCREAMING_SNAKE_CASE_ : Tuple = val[dim : dim * 2]
SCREAMING_SNAKE_CASE_ : List[str] = val[-dim:]
else:
SCREAMING_SNAKE_CASE_ : Tuple = val
return orig_state_dict
def _A () -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
SCREAMING_SNAKE_CASE_ : List[Any] = Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def _A (__a , __a , __a , __a=False ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = get_mobilevit_config(__a )
# load original state_dict
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(__a , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
SCREAMING_SNAKE_CASE_ : Dict = MobileViTForSemanticSegmentation(__a ).eval()
else:
SCREAMING_SNAKE_CASE_ : str = MobileViTForImageClassification(__a ).eval()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by MobileViTImageProcessor
SCREAMING_SNAKE_CASE_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
SCREAMING_SNAKE_CASE_ : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**__a )
SCREAMING_SNAKE_CASE_ : int = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
SCREAMING_SNAKE_CASE_ : str = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' )
assert torch.allclose(logits[0, :3, :3, :3] , __a , atol=1e-4 )
else:
assert logits.shape == (1, 10_00)
if mobilevit_name == "mobilevit_s":
SCREAMING_SNAKE_CASE_ : str = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
SCREAMING_SNAKE_CASE_ : str = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' )
assert torch.allclose(logits[0, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(f'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__a )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(__a )
if push_to_hub:
SCREAMING_SNAKE_CASE_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
SCREAMING_SNAKE_CASE_ : Tuple = model_mapping[mobilevit_name]
image_processor.push_to_hub(__a , organization='''apple''' )
model.push_to_hub(__a , organization='''apple''' )
if __name__ == "__main__":
UpperCAmelCase_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--mobilevit_name""",
default="""mobilevit_s""",
type=str,
help=(
"""Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"""
""" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."""
),
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
UpperCAmelCase_ : List[Any] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318
|
"""simple docstring"""
from __future__ import annotations
import queue
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = data
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
def _A () -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower()
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) )
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Optional[int] = q.get()
SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node
q.put(__a )
SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : int = right_node
q.put(__a )
raise
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Tuple = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : str = []
while not q.empty():
SCREAMING_SNAKE_CASE_ : List[str] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__a )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE_ : Tuple = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE_ : str = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Any = node
while n or stack:
while n:
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left
SCREAMING_SNAKE_CASE_ : Any = stack.pop()
print(n.data , end=''',''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], []
SCREAMING_SNAKE_CASE_ : List[Any] = node
stacka.append(__a )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__a )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def _A (__a = "" , __a=50 , __a="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
UpperCAmelCase_ : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Any , lowercase_ : Tuple , lowercase_ : Dict=13 , lowercase_ : Tuple=7 , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : str=99 , lowercase_ : Tuple=16 , lowercase_ : List[Any]=36 , lowercase_ : Optional[Any]=6 , lowercase_ : Union[str, Any]=6 , lowercase_ : List[str]=6 , lowercase_ : int=37 , lowercase_ : Dict="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=512 , lowercase_ : Union[str, Any]=16 , lowercase_ : int=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Tuple=3 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = parent
SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length
SCREAMING_SNAKE_CASE_ : int = is_training
SCREAMING_SNAKE_CASE_ : Tuple = use_input_mask
SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids
SCREAMING_SNAKE_CASE_ : str = use_labels
SCREAMING_SNAKE_CASE_ : Tuple = vocab_size
SCREAMING_SNAKE_CASE_ : List[str] = embedding_size
SCREAMING_SNAKE_CASE_ : List[str] = hidden_size
SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers
SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_groups
SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads
SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : Any = hidden_act
SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : int = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Any = type_vocab_size
SCREAMING_SNAKE_CASE_ : Dict = type_sequence_label_size
SCREAMING_SNAKE_CASE_ : str = initializer_range
SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels
SCREAMING_SNAKE_CASE_ : str = num_choices
SCREAMING_SNAKE_CASE_ : int = scope
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE_ : Optional[int] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length])
SCREAMING_SNAKE_CASE_ : str = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
SCREAMING_SNAKE_CASE_ : Any = None
SCREAMING_SNAKE_CASE_ : List[Any] = None
SCREAMING_SNAKE_CASE_ : Any = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.num_choices)
SCREAMING_SNAKE_CASE_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertModel(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , token_type_ids=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = AlbertForPreTraining(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : List[Any] = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , sentence_order_label=lowercase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels))
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str , lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = AlbertForMaskedLM(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForQuestionAnswering(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Tuple = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Dict , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels
SCREAMING_SNAKE_CASE_ : str = AlbertForTokenClassification(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices
SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForMultipleChoice(config=lowercase_)
model.to(lowercase_)
model.eval()
SCREAMING_SNAKE_CASE_ : Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE_ : Dict = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE_ : str = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : Dict = config_and_inputs
SCREAMING_SNAKE_CASE_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
__UpperCamelCase = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase = True
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int]=False):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_)
if return_labels:
if model_class in get_values(lowercase_):
SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_)
SCREAMING_SNAKE_CASE_ : str = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_)
return inputs_dict
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = AlbertModelTester(self)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE_ : Dict = type
self.model_tester.create_and_check_model(*lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ : Dict = AlbertModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = AlbertModel.from_pretrained('''albert-base-v2''')
SCREAMING_SNAKE_CASE_ : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_)[0]
SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 11, 768))
self.assertEqual(output.shape , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = torch.tensor(
[[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1e-4))
| 318
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx"
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_))
SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Tuple = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions()
SCREAMING_SNAKE_CASE_ : Optional[int] = False
return options
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
# using the PNDM scheduler by default
SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''')
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 318
| 1
|
"""simple docstring"""
def _A (__a , __a ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def _A () -> None:
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 318
|
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
UpperCAmelCase_ : List[Any] = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
UpperCAmelCase_ : Optional[int] = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
UpperCAmelCase_ : Tuple = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float'''),
'''references''': datasets.Value('''float'''),
}) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
| 318
| 1
|
"""simple docstring"""
def _A (__a , __a ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = str(bin(__a ) )[2:] # remove the leading "0b"
SCREAMING_SNAKE_CASE_ : Union[str, Any] = str(bin(__a ) )[2:]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(len(__a ) , len(__a ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(__a ) , b_binary.zfill(__a ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class lowerCAmelCase__ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : str = pad_token_id
SCREAMING_SNAKE_CASE_ : Optional[int] = max_length
SCREAMING_SNAKE_CASE_ : Dict = vocab
SCREAMING_SNAKE_CASE_ : Dict = merges
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()]
SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab()
return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_)
return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]):
'''simple docstring'''
return cls(**lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_)
if self.pad_token_id is not None:
# pad the tokens up to max length
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length
if max_length is not None:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs(
lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id)
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318
| 1
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
UpperCAmelCase_ : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
UpperCAmelCase_ : Dict = {
0: """Sunday""",
1: """Monday""",
2: """Tuesday""",
3: """Wednesday""",
4: """Thursday""",
5: """Friday""",
6: """Saturday""",
}
def _A (__a , __a , __a ) -> str:
"""simple docstring"""
assert len(str(__a ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
SCREAMING_SNAKE_CASE_ : Tuple = year // 1_00
SCREAMING_SNAKE_CASE_ : List[str] = (5 * (century % 4) + 2) % 7
SCREAMING_SNAKE_CASE_ : List[Any] = year % 1_00
SCREAMING_SNAKE_CASE_ : List[str] = centurian % 12
SCREAMING_SNAKE_CASE_ : Any = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
SCREAMING_SNAKE_CASE_ : List[Any] = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0)
else DOOMSDAY_LEAP[month - 1]
)
SCREAMING_SNAKE_CASE_ : str = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE_ : Dict = {
'''do_resize''': True,
'''size''': {'''height''': 224, '''width''': 224},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_)
with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp:
json.dump(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str):
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_slow.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
processor_fast.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowercase_)
self.assertIsInstance(processor_fast.tokenizer , lowercase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowercase_)
self.assertIsInstance(processor_fast.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''')
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowercase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase_):
processor()
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。'''
SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 318
| 1
|
"""simple docstring"""
UpperCAmelCase_ : int = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
UpperCAmelCase_ : Optional[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
UpperCAmelCase_ : Tuple = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 318
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "rwkv"
__UpperCamelCase = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE_ : Any = context_length
SCREAMING_SNAKE_CASE_ : int = hidden_size
SCREAMING_SNAKE_CASE_ : int = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size
SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size
SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every
SCREAMING_SNAKE_CASE_ : Dict = use_cache
SCREAMING_SNAKE_CASE_ : Dict = bos_token_id
SCREAMING_SNAKE_CASE_ : Any = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = np.inf
def set_batch_size(__a ) -> None:
nonlocal batch_size
if isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__a , __a ) and feature.dtype == "binary":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__a , __a )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , )
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory)
return dataset
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = dataset
SCREAMING_SNAKE_CASE_ : Dict = path_or_buf
SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features)
SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , '''wb+''') as buffer:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs)
else:
SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs)
return written
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema
SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_)
for offset in logging.tqdm(
range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
SCREAMING_SNAKE_CASE_ : List[Any] = query_table(
table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(lowercase_)
written += batch.nbytes
writer.close()
return written
| 318
|
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8
def _A (__a , __a ) -> float:
"""simple docstring"""
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
UpperCAmelCase_ : str = 300
UpperCAmelCase_ : str = 28
UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass)
print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
| 318
| 1
|
"""simple docstring"""
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Dict , **lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(**lowercase_)
requires_backends(self , '''vision''')
requires_backends(self , '''torch''')
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.')
self.check_model_type(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , **lowercase_ : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = {}
SCREAMING_SNAKE_CASE_ : Dict = {}
SCREAMING_SNAKE_CASE_ : List[str] = {}
# preprocess args
if "points_per_batch" in kwargs:
SCREAMING_SNAKE_CASE_ : Any = kwargs['''points_per_batch''']
if "points_per_crop" in kwargs:
SCREAMING_SNAKE_CASE_ : Dict = kwargs['''points_per_crop''']
if "crops_n_layers" in kwargs:
SCREAMING_SNAKE_CASE_ : int = kwargs['''crops_n_layers''']
if "crop_overlap_ratio" in kwargs:
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs['''crop_overlap_ratio''']
if "crop_n_points_downscale_factor" in kwargs:
SCREAMING_SNAKE_CASE_ : Tuple = kwargs['''crop_n_points_downscale_factor''']
# postprocess args
if "pred_iou_thresh" in kwargs:
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs['''pred_iou_thresh''']
if "stability_score_offset" in kwargs:
SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs['''stability_score_offset''']
if "mask_threshold" in kwargs:
SCREAMING_SNAKE_CASE_ : Any = kwargs['''mask_threshold''']
if "stability_score_thresh" in kwargs:
SCREAMING_SNAKE_CASE_ : Dict = kwargs['''stability_score_thresh''']
if "crops_nms_thresh" in kwargs:
SCREAMING_SNAKE_CASE_ : Tuple = kwargs['''crops_nms_thresh''']
if "output_rle_mask" in kwargs:
SCREAMING_SNAKE_CASE_ : int = kwargs['''output_rle_mask''']
if "output_bboxes_mask" in kwargs:
SCREAMING_SNAKE_CASE_ : List[str] = kwargs['''output_bboxes_mask''']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self : Optional[int] , lowercase_ : List[str] , *lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : int=None , **lowercase_ : Union[str, Any]):
'''simple docstring'''
return super().__call__(lowercase_ , *lowercase_ , num_workers=lowercase_ , batch_size=lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[str]=64 , lowercase_ : int = 0 , lowercase_ : float = 512 / 1500 , lowercase_ : Optional[int] = 32 , lowercase_ : Optional[int] = 1 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = load_image(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor.size['''longest_edge''']
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.generate_crop_boxes(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor(images=lowercase_ , return_tensors='''pt''')
with self.device_placement():
if self.framework == "pt":
SCREAMING_SNAKE_CASE_ : List[Any] = self.get_inference_context()
with inference_context():
SCREAMING_SNAKE_CASE_ : int = self._ensure_tensor_on_device(lowercase_ , device=self.device)
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model.get_image_embeddings(model_inputs.pop('''pixel_values'''))
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_embeddings
SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid_points.shape[1]
SCREAMING_SNAKE_CASE_ : Any = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '''
'''To return all points at once, set points_per_batch to None''')
for i in range(0 , lowercase_ , lowercase_):
SCREAMING_SNAKE_CASE_ : str = grid_points[:, i : i + points_per_batch, :, :]
SCREAMING_SNAKE_CASE_ : str = input_labels[:, i : i + points_per_batch]
SCREAMING_SNAKE_CASE_ : List[Any] = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int=0.88 , lowercase_ : int=0.95 , lowercase_ : Dict=0 , lowercase_ : List[str]=1 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_inputs.pop('''input_boxes''')
SCREAMING_SNAKE_CASE_ : Optional[int] = model_inputs.pop('''is_last''')
SCREAMING_SNAKE_CASE_ : str = model_inputs.pop('''original_sizes''').tolist()
SCREAMING_SNAKE_CASE_ : Optional[Any] = model_inputs.pop('''reshaped_input_sizes''').tolist()
SCREAMING_SNAKE_CASE_ : int = self.model(**lowercase_)
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
SCREAMING_SNAKE_CASE_ : Optional[Any] = model_outputs['''pred_masks''']
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor.post_process_masks(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , binarize=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = model_outputs['''iou_scores''']
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : List[str]=False , lowercase_ : Union[str, Any]=False , lowercase_ : Dict=0.7 , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = []
SCREAMING_SNAKE_CASE_ : Optional[int] = []
SCREAMING_SNAKE_CASE_ : int = []
for model_output in model_outputs:
all_scores.append(model_output.pop('''iou_scores'''))
all_masks.extend(model_output.pop('''masks'''))
all_boxes.append(model_output.pop('''boxes'''))
SCREAMING_SNAKE_CASE_ : int = torch.cat(lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat(lowercase_)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor.post_process_for_mask_generation(
lowercase_ , lowercase_ , lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = defaultdict(lowercase_)
for output in model_outputs:
for k, v in output.items():
extra[k].append(lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {}
if output_rle_mask:
SCREAMING_SNAKE_CASE_ : List[str] = rle_mask
if output_bboxes_mask:
SCREAMING_SNAKE_CASE_ : List[str] = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 318
|
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""]
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
SCREAMING_SNAKE_CASE_ : Optional[int] = dataset
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks
SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies
def __iter__( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = []
for task in range(self.n_tasks):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip())
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''')
for task in range(self.n_tasks):
for _ in range(self.n_copies):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = start_length
SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer
def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
SCREAMING_SNAKE_CASE_ : Tuple = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings))
return all(lowercase_)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a )
# last string should be ""
return "".join(string_list[:-2] )
def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(__a ) ):
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1]
SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a )
# each task is generated batch_size times
SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes(
__a , dim=1 , pad_index=tokenizer.pad_token_id )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy()
SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(__a , __a ):
gen_token_dict[task].append(__a )
SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
code_gens[task].append(remove_last_block(__a ) )
return code_gens
def _A () -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a )
SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
SCREAMING_SNAKE_CASE_ : str = '''false'''
if args.num_workers is None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
SCREAMING_SNAKE_CASE_ : Tuple = Accelerator()
set_seed(args.seed , device_specific=__a )
# Load model and tokenizer
SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt )
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token
SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
SCREAMING_SNAKE_CASE_ : List[str] = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ),
}
# Load evaluation dataset and metric
SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' )
SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' )
SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a )
# do not confuse args.batch_size, which is actually the num_return_sequences
SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = complete_code(
__a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , )
if accelerator.is_main_process:
SCREAMING_SNAKE_CASE_ : int = []
for task in tqdm(range(__a ) ):
SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test''']
SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})'
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute(
references=__a , predictions=__a , num_workers=args.num_workers )
print(f'Results: {pass_at_k}' )
# Save results to json file
with open(args.output_file , '''w''' ) as fp:
json.dump(__a , __a )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 318
| 1
|
"""simple docstring"""
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = graph
self._normalize_graph(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = None
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str):
'''simple docstring'''
if sources is int:
SCREAMING_SNAKE_CASE_ : str = [sources]
if sinks is int:
SCREAMING_SNAKE_CASE_ : Tuple = [sinks]
if len(lowercase_) == 0 or len(lowercase_) == 0:
return
SCREAMING_SNAKE_CASE_ : int = sources[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(lowercase_) > 1 or len(lowercase_) > 1:
SCREAMING_SNAKE_CASE_ : Dict = 0
for i in sources:
max_input_flow += sum(self.graph[i])
SCREAMING_SNAKE_CASE_ : int = len(self.graph) + 1
for room in self.graph:
room.insert(0 , 0)
self.graph.insert(0 , [0] * size)
for i in sources:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_input_flow
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0
SCREAMING_SNAKE_CASE_ : List[str] = len(self.graph) + 1
for room in self.graph:
room.append(0)
self.graph.append([0] * size)
for i in sinks:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_input_flow
SCREAMING_SNAKE_CASE_ : Tuple = size - 1
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''')
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = algorithm(self)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , lowercase_ : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = flow_network
SCREAMING_SNAKE_CASE_ : Tuple = flow_network.verticesCount
SCREAMING_SNAKE_CASE_ : Dict = flow_network.sourceIndex
SCREAMING_SNAKE_CASE_ : Any = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
SCREAMING_SNAKE_CASE_ : Dict = flow_network.graph
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
if not self.executed:
self._algorithm()
SCREAMING_SNAKE_CASE_ : Any = True
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
pass
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowercase_ : int):
'''simple docstring'''
super().__init__(lowercase_)
# use this to save your result
SCREAMING_SNAKE_CASE_ : Dict = -1
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''')
return self.maximum_flow
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , lowercase_ : Optional[int]):
'''simple docstring'''
super().__init__(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count)]
SCREAMING_SNAKE_CASE_ : int = [0] * self.verticies_count
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0] * self.verticies_count
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
SCREAMING_SNAKE_CASE_ : Optional[int] = [
i
for i in range(self.verticies_count)
if i != self.source_index and i != self.sink_index
]
# move through list
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
while i < len(lowercase_):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = vertices_list[i]
SCREAMING_SNAKE_CASE_ : Tuple = self.heights[vertex_index]
self.process_vertex(lowercase_)
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(lowercase_))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
else:
i += 1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(self.preflow[self.source_index])
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[Any]):
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(lowercase_ , lowercase_)
self.relabel(lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = None
for to_index in range(self.verticies_count):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.heights[to_index]
if min_height is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = min_height + 1
if __name__ == "__main__":
UpperCAmelCase_ : Union[str, Any] = [0]
UpperCAmelCase_ : str = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
UpperCAmelCase_ : List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
UpperCAmelCase_ : Optional[Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
UpperCAmelCase_ : Optional[Any] = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''')
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["image_processor", "feature_extractor"]
__UpperCamelCase = "TvltImageProcessor"
__UpperCamelCase = "TvltFeatureExtractor"
def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor
SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor
def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ):
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''')
SCREAMING_SNAKE_CASE_ : Any = None
if images is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_)
if images_mixed is not None:
SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_)
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(
lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = {}
if audio is not None:
output_dict.update(lowercase_)
if images is not None:
output_dict.update(lowercase_)
if images_mixed_dict is not None:
output_dict.update(lowercase_)
return output_dict
@property
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 318
| 1
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCAmelCase_ : int = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "facebook/nllb-200-distilled-600M"
__UpperCamelCase = (
"This is a tool that translates text from a language to another. It takes three inputs: `text`, which should "
"be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, "
"which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in "
"plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."
)
__UpperCamelCase = "translator"
__UpperCamelCase = AutoTokenizer
__UpperCamelCase = AutoModelForSeqaSeqLM
__UpperCamelCase = LANGUAGE_CODES
__UpperCamelCase = ["text", "text", "text"]
__UpperCamelCase = ["text"]
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : str):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.')
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.')
SCREAMING_SNAKE_CASE_ : Any = self.lang_to_code[src_lang]
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowercase_ , return_tensors='''pt''' , src_lang=lowercase_ , tgt_lang=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Any):
'''simple docstring'''
return self.model.generate(**lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : int):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase_)
| 318
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "SpeechT5FeatureExtractor"
__UpperCamelCase = "SpeechT5Tokenizer"
def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]):
'''simple docstring'''
super().__init__(lowercase_ , lowercase_)
def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
elif text is not None:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : Any = None
if audio_target is not None:
SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values''']
elif text_target is not None:
SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : int = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_)
SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
elif input_ids is not None:
SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_)
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids''']
else:
SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_)
SCREAMING_SNAKE_CASE_ : str = feature_size_hack
SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values''']
else:
SCREAMING_SNAKE_CASE_ : List[Any] = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE_ : Dict = labels
SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]):
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_)
| 318
| 1
|
"""simple docstring"""
def _A (__a , __a , __a , __a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(__a ), len(grid[0] )
if (
min(__a , __a ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
SCREAMING_SNAKE_CASE_ : Dict = 0
count += depth_first_search(__a , row + 1 , __a , __a )
count += depth_first_search(__a , row - 1 , __a , __a )
count += depth_first_search(__a , __a , col + 1 , __a )
count += depth_first_search(__a , __a , col - 1 , __a )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _A (__a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = np.inf
def set_batch_size(__a ) -> None:
nonlocal batch_size
if isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__a , __a ) and feature.dtype == "binary":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__a , __a )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ):
'''simple docstring'''
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , )
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
if self.streaming:
SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Optional[int] = None
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory)
return dataset
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = dataset
SCREAMING_SNAKE_CASE_ : Dict = path_or_buf
SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features)
SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , '''wb+''') as buffer:
SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs)
else:
SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs)
return written
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema
SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_)
for offset in logging.tqdm(
range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
SCREAMING_SNAKE_CASE_ : List[Any] = query_table(
table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(lowercase_)
written += batch.nbytes
writer.close()
return written
| 318
| 1
|
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = CLIPConfig
__UpperCamelCase = ["CLIPEncoderLayer"]
def __init__( self : str , lowercase_ : CLIPConfig):
'''simple docstring'''
super().__init__(lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = CLIPVisionModelWithProjection(config.vision_config)
SCREAMING_SNAKE_CASE_ : str = nn.Linear(config.vision_config.projection_dim , 1)
SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1)
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]=0.5 , lowercase_ : Optional[int]=0.5):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.vision_model(lowercase_)[0]
SCREAMING_SNAKE_CASE_ : Any = self.p_head(lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = nsfw_detected.flatten()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = nsfw_detected > p_threshold
SCREAMING_SNAKE_CASE_ : int = nsfw_detected.tolist()
if any(lowercase_):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''')
for idx, nsfw_detected_ in enumerate(lowercase_):
if nsfw_detected_:
SCREAMING_SNAKE_CASE_ : Optional[int] = np.zeros(images[idx].shape)
SCREAMING_SNAKE_CASE_ : List[str] = self.w_head(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = watermark_detected.flatten()
SCREAMING_SNAKE_CASE_ : str = watermark_detected > w_threshold
SCREAMING_SNAKE_CASE_ : Optional[int] = watermark_detected.tolist()
if any(lowercase_):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''')
for idx, watermark_detected_ in enumerate(lowercase_):
if watermark_detected_:
SCREAMING_SNAKE_CASE_ : Any = np.zeros(images[idx].shape)
return images, nsfw_detected, watermark_detected
| 318
|
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : str = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""]
def _A (__a ) -> Dict:
"""simple docstring"""
if "emb" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def _A (__a , __a ) -> Tuple[Dict, Dict]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() )
SCREAMING_SNAKE_CASE_ : int = {}
for key in keys:
SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a )
SCREAMING_SNAKE_CASE_ : int = rename_keys(__a )
if "in_proj_weight" in key:
# split fused qkv proj
SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :]
SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :]
SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
SCREAMING_SNAKE_CASE_ : int = val
else:
SCREAMING_SNAKE_CASE_ : Any = val
return state_dict, enc_dec_proj_state_dict
def _A (__a ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24
SCREAMING_SNAKE_CASE_ : Tuple = 24
SCREAMING_SNAKE_CASE_ : Optional[Any] = 16
elif checkpoint == "medium":
SCREAMING_SNAKE_CASE_ : List[str] = 15_36
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : Optional[int] = 24
elif checkpoint == "large":
SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48
SCREAMING_SNAKE_CASE_ : Optional[int] = 48
SCREAMING_SNAKE_CASE_ : int = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig(
hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , )
return config
@torch.no_grad()
def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a )
SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict(
__a , hidden_size=decoder_config.hidden_size )
SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__a )
if len(__a ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(__a ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__a )
# check we can do a forward pass
SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits
if logits.shape != (8, 1, 20_48):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' )
SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a )
# set the appropriate bos/pad token ids
SCREAMING_SNAKE_CASE_ : str = 20_48
SCREAMING_SNAKE_CASE_ : List[Any] = 20_48
# set other default generation config params
SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate )
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0
if pytorch_dump_folder is not None:
Path(__a ).mkdir(exist_ok=__a )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(__a )
processor.save_pretrained(__a )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(__a )
processor.push_to_hub(__a )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
UpperCAmelCase_ : Dict = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , lowercase_ : str , lowercase_ : Optional[Any]=13 , lowercase_ : Tuple=7 , lowercase_ : List[Any]=True , lowercase_ : List[str]=True , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : int=99 , lowercase_ : str=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[Any]=16 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Any=3 , lowercase_ : Dict=4 , lowercase_ : Tuple=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = parent
SCREAMING_SNAKE_CASE_ : str = 13
SCREAMING_SNAKE_CASE_ : Dict = 7
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : int = True
SCREAMING_SNAKE_CASE_ : Dict = True
SCREAMING_SNAKE_CASE_ : Any = True
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 99
SCREAMING_SNAKE_CASE_ : str = 32
SCREAMING_SNAKE_CASE_ : Optional[int] = 2
SCREAMING_SNAKE_CASE_ : int = 4
SCREAMING_SNAKE_CASE_ : Dict = 37
SCREAMING_SNAKE_CASE_ : List[str] = '''gelu'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1
SCREAMING_SNAKE_CASE_ : Tuple = 0.1
SCREAMING_SNAKE_CASE_ : str = 512
SCREAMING_SNAKE_CASE_ : str = 16
SCREAMING_SNAKE_CASE_ : Optional[int] = 2
SCREAMING_SNAKE_CASE_ : Optional[int] = 0.02
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE_ : List[str] = 4
SCREAMING_SNAKE_CASE_ : Optional[int] = None
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE_ : int = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length])
SCREAMING_SNAKE_CASE_ : Dict = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
SCREAMING_SNAKE_CASE_ : Any = None
SCREAMING_SNAKE_CASE_ : Union[str, Any] = None
SCREAMING_SNAKE_CASE_ : List[str] = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] , self.num_choices)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = TFRoFormerModel(config=lowercase_)
SCREAMING_SNAKE_CASE_ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
SCREAMING_SNAKE_CASE_ : List[Any] = [input_ids, input_mask]
SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_)
SCREAMING_SNAKE_CASE_ : Any = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = True
SCREAMING_SNAKE_CASE_ : str = TFRoFormerForCausalLM(config=lowercase_)
SCREAMING_SNAKE_CASE_ : int = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_)['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size])
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFRoFormerForMaskedLM(config=lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels
SCREAMING_SNAKE_CASE_ : List[str] = TFRoFormerForSequenceClassification(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.num_choices
SCREAMING_SNAKE_CASE_ : Dict = TFRoFormerForMultipleChoice(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1))
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1))
SCREAMING_SNAKE_CASE_ : Tuple = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels
SCREAMING_SNAKE_CASE_ : Tuple = TFRoFormerForTokenClassification(config=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : str = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : str , lowercase_ : str , lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = TFRoFormerForQuestionAnswering(config=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Any = model(lowercase_)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : Any = config_and_inputs
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
__UpperCamelCase = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : int):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = TFRoFormerModelTester(self)
SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self , config_class=lowercase_ , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''')
self.assertIsNotNone(lowercase_)
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''')
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]])
SCREAMING_SNAKE_CASE_ : Any = model(lowercase_)[0]
# TODO Replace vocab size
SCREAMING_SNAKE_CASE_ : List[str] = 50000
SCREAMING_SNAKE_CASE_ : Dict = [1, 6, vocab_size]
self.assertEqual(output.shape , lowercase_)
print(output[:, :3, :3])
# TODO Replace values below with what was printed above.
SCREAMING_SNAKE_CASE_ : Tuple = tf.constant(
[
[
[-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46],
[-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07],
[-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64],
]
])
tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4)
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = 1e-4
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = tf.constant([[4, 10]])
SCREAMING_SNAKE_CASE_ : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = emba(input_ids.shape)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(
[[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]])
tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(
[
[0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00],
[0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17],
[0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70],
])
SCREAMING_SNAKE_CASE_ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512)
emba([2, 16, 512])
SCREAMING_SNAKE_CASE_ : Any = emba.weight[:3, :5]
tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance)
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = 1e-4
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100
SCREAMING_SNAKE_CASE_ : List[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100
SCREAMING_SNAKE_CASE_ : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64)
SCREAMING_SNAKE_CASE_ : str = embed_positions([2, 16, 768])[None, None, :, :]
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
lowercase_ , lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = tf.constant(
[
[0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00],
[-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43],
[-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85],
[-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71],
[0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80],
[3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53],
])
SCREAMING_SNAKE_CASE_ : Any = tf.constant(
[
[0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00],
[0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43],
[1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85],
[2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71],
[-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80],
[-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53],
])
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance)
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance)
| 318
|
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def _A (__a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _A (__a ) -> np.ndarray:
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def _A (__a , __a ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path))
# kernel to be applied
UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 318
| 1
|
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=99 , lowercase_ : Optional[Any]=13 , lowercase_ : List[str]=16 , lowercase_ : Any=7 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Tuple=True , lowercase_ : List[Any]=False , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=32 , lowercase_ : int=4 , lowercase_ : Any=4 , lowercase_ : Any=30 , lowercase_ : int=0 , lowercase_ : str=1 , lowercase_ : str=2 , lowercase_ : Tuple=None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent
SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size
SCREAMING_SNAKE_CASE_ : str = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE_ : int = self.decoder_seq_length
SCREAMING_SNAKE_CASE_ : Tuple = is_training
SCREAMING_SNAKE_CASE_ : Any = use_attention_mask
SCREAMING_SNAKE_CASE_ : Tuple = use_labels
SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE_ : List[Any] = d_model
SCREAMING_SNAKE_CASE_ : List[str] = d_model
SCREAMING_SNAKE_CASE_ : int = decoder_layers
SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_layers
SCREAMING_SNAKE_CASE_ : List[str] = decoder_ffn_dim
SCREAMING_SNAKE_CASE_ : List[Any] = decoder_attention_heads
SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoder_attention_heads
SCREAMING_SNAKE_CASE_ : str = eos_token_id
SCREAMING_SNAKE_CASE_ : int = bos_token_id
SCREAMING_SNAKE_CASE_ : Dict = pad_token_id
SCREAMING_SNAKE_CASE_ : Tuple = decoder_start_token_id
SCREAMING_SNAKE_CASE_ : Any = use_cache
SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Union[str, Any] = None
SCREAMING_SNAKE_CASE_ : List[Any] = decoder_seq_length
SCREAMING_SNAKE_CASE_ : Any = 2
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE_ : str = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2)
SCREAMING_SNAKE_CASE_ : Tuple = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE_ : Tuple = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[str] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = True
SCREAMING_SNAKE_CASE_ : List[Any] = TrOCRDecoder(config=lowercase_).to(lowercase_).eval()
SCREAMING_SNAKE_CASE_ : Dict = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , use_cache=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , use_cache=lowercase_)
self.parent.assertTrue(len(lowercase_) == len(lowercase_))
self.parent.assertTrue(len(lowercase_) == len(lowercase_) + 1)
SCREAMING_SNAKE_CASE_ : List[str] = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((2, 1) , config.vocab_size - 1) + 1
# append to next input_ids and
SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1)
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_)['''last_hidden_state''']
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , past_key_values=lowercase_)['''last_hidden_state''']
# select random slice
SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) , output_from_past.shape[-1]).item()
SCREAMING_SNAKE_CASE_ : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE_ : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(lowercase_ , lowercase_ , atol=1e-3)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs
SCREAMING_SNAKE_CASE_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
__UpperCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
__UpperCamelCase = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
__UpperCamelCase = True
__UpperCamelCase = False
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = ConfigTester(self , config_class=lowercase_)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
pass
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*lowercase_)
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''') # and it's not used enough to be worth fixing :)
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
pass
| 318
|
"""simple docstring"""
from collections import defaultdict
def _A (__a , __a ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip()
SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip()
# Remove whitespace
SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase_ : Any = input("""Enter the first string """).strip()
UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip()
UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 318
| 1
|
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
UpperCAmelCase_ : List[Any] = [
"""cross_validation.py""",
"""gradient_accumulation.py""",
"""local_sgd.py""",
"""multi_process_metrics.py""",
"""memory.py""",
"""automatic_gradient_accumulation.py""",
"""fsdp_with_peak_mem_tracking.py""",
"""deepspeed_with_config_support.py""",
"""megatron_lm_gpt_pretraining.py""",
]
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : bool , lowercase_ : str = None , lowercase_ : list = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : List[Any] = os.path.abspath(os.path.join('''examples''' , '''by_feature'''))
SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.abspath('''examples''')
for item in os.listdir(lowercase_):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(lowercase_ , lowercase_)
if os.path.isfile(lowercase_) and ".py" in item_path:
with self.subTest(
tested_script=lowercase_ , feature_script=lowercase_ , tested_section='''main()''' if parser_only else '''training_function()''' , ):
SCREAMING_SNAKE_CASE_ : Dict = compare_against_test(
os.path.join(lowercase_ , lowercase_) , lowercase_ , lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : str = '''\n'''.join(lowercase_)
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE_ : Dict = diff.replace(lowercase_ , '''''')
self.assertEqual(lowercase_ , '''''')
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
self.one_complete_example('''complete_nlp_example.py''' , lowercase_)
self.one_complete_example('''complete_nlp_example.py''' , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = os.path.abspath(os.path.join('''examples''' , '''cv_example.py'''))
SCREAMING_SNAKE_CASE_ : int = [
''' ''' * 16 + '''{\n\n''',
''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 20 + '''"epoch": epoch,\n\n''',
''' ''' * 16 + '''},\n\n''',
''' ''' * 16 + '''step=epoch,\n''',
''' ''' * 12,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , lowercase_ , lowercase_ , lowercase_)
self.one_complete_example('''complete_cv_example.py''' , lowercase_ , lowercase_ , lowercase_)
@mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = False
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Tuple):
'''simple docstring'''
super().setUpClass()
SCREAMING_SNAKE_CASE_ : str = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(cls._tmpdir , '''default_config.yml''')
write_basic_config(save_location=cls.configPath)
SCREAMING_SNAKE_CASE_ : Any = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : str):
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''')))
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split()
SCREAMING_SNAKE_CASE_ : List[str] = run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''')))
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Dict = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0")}\n '.split()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=lowercase_)
self.assertNotIn('''epoch 0:''' , lowercase_)
self.assertIn('''epoch 1:''' , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Tuple):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2")}\n '.split()
SCREAMING_SNAKE_CASE_ : str = run_command(self._launch_args + testargs , return_stdout=lowercase_)
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE_ : Any = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , lowercase_)
self.assertIn('''epoch 1:''' , lowercase_)
else:
self.assertIn('''epoch 0:''' , lowercase_)
self.assertIn('''epoch 1:''' , lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''}):
SCREAMING_SNAKE_CASE_ : Tuple = run_command(self._launch_args + testargs , return_stdout=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall('''({.+})''' , lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = [r for r in results if '''accuracy''' in r][-1]
SCREAMING_SNAKE_CASE_ : Dict = ast.literal_eval(lowercase_)
self.assertGreaterEqual(results['''accuracy'''] , 0.75)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''})
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE_ : Tuple = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(lowercase_ , '''tracking''')))
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs)
| 318
|
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml"""
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = defaultdict(__a )
for doc in model_doc:
counts[doc["local"]] += 1
SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1]
SCREAMING_SNAKE_CASE_ : int = []
for duplicate_key in duplicates:
SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(__a ) > 1:
raise ValueError(
f'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(__a , key=lambda __a : s["title"].lower() )
def _A (__a=False ) -> Tuple:
"""simple docstring"""
with open(__a , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() )
# Get to the API doc
SCREAMING_SNAKE_CASE_ : Any = 0
while content[api_idx]["title"] != "API":
api_idx += 1
SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections''']
# Then to the model doc
SCREAMING_SNAKE_CASE_ : List[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections''']
SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section]
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
for idx, modality_doc in modalities_docs:
SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections''']
SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a )
if old_modality_doc != new_modality_doc:
SCREAMING_SNAKE_CASE_ : str = True
if overwrite:
SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc
if diff:
if overwrite:
SCREAMING_SNAKE_CASE_ : List[Any] = model_doc
SCREAMING_SNAKE_CASE_ : int = api_doc
with open(__a , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(__a , allow_unicode=__a ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
UpperCAmelCase_ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
UpperCAmelCase_ : Tuple = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 318
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase_ : Tuple = {
"""google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""",
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "pegasus"
__UpperCamelCase = ["past_key_values"]
__UpperCamelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Union[str, Any] , lowercase_ : Any=50265 , lowercase_ : Union[str, Any]=1024 , lowercase_ : Any=12 , lowercase_ : Optional[Any]=4096 , lowercase_ : Tuple=16 , lowercase_ : Dict=12 , lowercase_ : List[str]=4096 , lowercase_ : int=16 , lowercase_ : List[Any]=0.0 , lowercase_ : str=0.0 , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : int="gelu" , lowercase_ : Dict=1024 , lowercase_ : str=0.1 , lowercase_ : str=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[Any]=0 , lowercase_ : Union[str, Any]=False , lowercase_ : Dict=0 , lowercase_ : str=1 , lowercase_ : Tuple=1 , **lowercase_ : Union[str, Any] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = vocab_size
SCREAMING_SNAKE_CASE_ : str = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model
SCREAMING_SNAKE_CASE_ : int = encoder_ffn_dim
SCREAMING_SNAKE_CASE_ : List[str] = encoder_layers
SCREAMING_SNAKE_CASE_ : Dict = encoder_attention_heads
SCREAMING_SNAKE_CASE_ : Dict = decoder_ffn_dim
SCREAMING_SNAKE_CASE_ : List[str] = decoder_layers
SCREAMING_SNAKE_CASE_ : List[str] = decoder_attention_heads
SCREAMING_SNAKE_CASE_ : List[str] = dropout
SCREAMING_SNAKE_CASE_ : Dict = attention_dropout
SCREAMING_SNAKE_CASE_ : Tuple = activation_dropout
SCREAMING_SNAKE_CASE_ : Dict = activation_function
SCREAMING_SNAKE_CASE_ : Dict = init_std
SCREAMING_SNAKE_CASE_ : List[str] = encoder_layerdrop
SCREAMING_SNAKE_CASE_ : List[Any] = decoder_layerdrop
SCREAMING_SNAKE_CASE_ : str = use_cache
SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_layers
SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , )
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
return self.d_model
| 318
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 318
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase_ : int = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "ctrl"
__UpperCamelCase = ["past_key_values"]
__UpperCamelCase = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[Any] , lowercase_ : List[Any]=246534 , lowercase_ : List[str]=256 , lowercase_ : int=1280 , lowercase_ : int=8192 , lowercase_ : Any=48 , lowercase_ : Dict=16 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=1e-6 , lowercase_ : Any=0.02 , lowercase_ : Dict=True , **lowercase_ : Optional[int] , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE_ : str = n_positions
SCREAMING_SNAKE_CASE_ : List[Any] = n_embd
SCREAMING_SNAKE_CASE_ : Optional[Any] = n_layer
SCREAMING_SNAKE_CASE_ : Dict = n_head
SCREAMING_SNAKE_CASE_ : Any = dff
SCREAMING_SNAKE_CASE_ : Optional[int] = resid_pdrop
SCREAMING_SNAKE_CASE_ : Dict = embd_pdrop
SCREAMING_SNAKE_CASE_ : Any = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Dict = initializer_range
SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache
super().__init__(**lowercase_)
| 318
|
"""simple docstring"""
from __future__ import annotations
UpperCAmelCase_ : List[str] = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase_ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase_ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _A (__a , __a , __a , __a ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _A (__a ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _A (__a ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(__a ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__a , __a , __a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = digit
if sudoku(__a ) is not None:
return grid
SCREAMING_SNAKE_CASE_ : Any = 0
return None
def _A (__a ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(__a , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("""\nExample grid:\n""" + """=""" * 20)
print_solution(example_grid)
print("""\nExample grid solution:""")
UpperCAmelCase_ : str = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("""Cannot find a solution.""")
| 318
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ : Union[str, Any] = {
"""configuration_blenderbot""": [
"""BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlenderbotConfig""",
"""BlenderbotOnnxConfig""",
],
"""tokenization_blenderbot""": ["""BlenderbotTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : int = ["""BlenderbotTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : str = [
"""BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlenderbotForCausalLM""",
"""BlenderbotForConditionalGeneration""",
"""BlenderbotModel""",
"""BlenderbotPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : str = [
"""TFBlenderbotForConditionalGeneration""",
"""TFBlenderbotModel""",
"""TFBlenderbotPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Dict = [
"""FlaxBlenderbotForConditionalGeneration""",
"""FlaxBlenderbotModel""",
"""FlaxBlenderbotPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 318
|
"""simple docstring"""
from itertools import permutations
def _A (__a ) -> bool:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def _A (__a = 10 ) -> int:
"""simple docstring"""
return sum(
int(''''''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 318
| 1
|
"""simple docstring"""
def _A (__a = 10 , __a = 10_00 , __a = True ) -> int:
"""simple docstring"""
assert (
isinstance(__a , __a )
and isinstance(__a , __a )
and isinstance(__a , __a )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' )
return min_val if option else max_val
def _A (__a , __a ) -> int:
"""simple docstring"""
return int((number_a + number_a) / 2 )
def _A (__a , __a , __a ) -> None:
"""simple docstring"""
assert (
isinstance(__a , __a ) and isinstance(__a , __a ) and isinstance(__a , __a )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError('''argument value for lower and higher must be(lower > higher)''' )
if not lower < to_guess < higher:
raise ValueError(
'''guess value must be within the range of lower and higher value''' )
def answer(__a ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print('''started...''' )
SCREAMING_SNAKE_CASE_ : Any = lower
SCREAMING_SNAKE_CASE_ : str = higher
SCREAMING_SNAKE_CASE_ : List[str] = []
while True:
SCREAMING_SNAKE_CASE_ : int = get_avg(__a , __a )
last_numbers.append(__a )
if answer(__a ) == "low":
SCREAMING_SNAKE_CASE_ : Optional[int] = number
elif answer(__a ) == "high":
SCREAMING_SNAKE_CASE_ : List[str] = number
else:
break
print(f'guess the number : {last_numbers[-1]}' )
print(f'details : {last_numbers!s}' )
def _A () -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = int(input('''Enter lower value : ''' ).strip() )
SCREAMING_SNAKE_CASE_ : str = int(input('''Enter high value : ''' ).strip() )
SCREAMING_SNAKE_CASE_ : Optional[Any] = int(input('''Enter value to guess : ''' ).strip() )
guess_the_number(__a , __a , __a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5
def _A (__a , __a , __a = g ) -> float:
"""simple docstring"""
if fluid_density <= 0:
raise ValueError('''Impossible fluid density''' )
if volume < 0:
raise ValueError('''Impossible Object volume''' )
if gravity <= 0:
raise ValueError('''Impossible Gravity''' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 318
| 1
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 318
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _A (__a ) -> Any:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 318
| 1
|
"""simple docstring"""
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
UpperCAmelCase_ : Union[str, Any] = float("""nan""")
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowercase_ : List[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = sys.stdout
SCREAMING_SNAKE_CASE_ : str = open(lowercase_ , '''a''')
def __getattr__( self : Union[str, Any] , lowercase_ : Dict):
'''simple docstring'''
return getattr(self.stdout , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple):
'''simple docstring'''
self.stdout.write(lowercase_)
# strip tqdm codes
self.file.write(re.sub(r'''^.*\r''' , '''''' , lowercase_ , 0 , re.M))
def _A (__a=80 , __a=False ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = []
# deal with critical env vars
SCREAMING_SNAKE_CASE_ : List[str] = ['''CUDA_VISIBLE_DEVICES''']
for key in env_keys:
SCREAMING_SNAKE_CASE_ : int = os.environ.get(__a , __a )
if val is not None:
cmd.append(f'{key}={val}' )
# python executable (not always needed if the script is executable)
SCREAMING_SNAKE_CASE_ : Any = sys.executable if full_python_path else sys.executable.split('''/''' )[-1]
cmd.append(__a )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
SCREAMING_SNAKE_CASE_ : int = []
SCREAMING_SNAKE_CASE_ : Tuple = ''''''
while len(__a ) > 0:
current_line += f'{cmd.pop(0 )} '
if len(__a ) == 0 or len(__a ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(__a )
SCREAMING_SNAKE_CASE_ : Dict = ''''''
return "\\\n".join(__a )
def _A (__a , __a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd )
# remove --output_dir if any and set our own
SCREAMING_SNAKE_CASE_ : List[Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd )
args.base_cmd += f' --output_dir {output_dir}'
# ensure we have --overwrite_output_dir
SCREAMING_SNAKE_CASE_ : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def _A (__a , __a , __a , __a , __a , __a , __a ) -> str:
"""simple docstring"""
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , )
SCREAMING_SNAKE_CASE_ : List[Any] = subprocess.run(__a , capture_output=__a , text=__a )
if verbose:
print('''STDOUT''' , result.stdout )
print('''STDERR''' , result.stderr )
# save the streams
SCREAMING_SNAKE_CASE_ : Optional[Any] = variation.replace(''' ''' , '''-''' )
with open(Path(__a ) / f'log.{prefix}.stdout.txt' , '''w''' ) as f:
f.write(result.stdout )
with open(Path(__a ) / f'log.{prefix}.stderr.txt' , '''w''' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('''failed''' )
return {target_metric_key: nan}
with io.open(f'{output_dir}/all_results.json' , '''r''' , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE_ : Any = json.load(__a )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def _A (__a , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = []
SCREAMING_SNAKE_CASE_ : Optional[int] = []
SCREAMING_SNAKE_CASE_ : List[Any] = f'{id}: {variation:<{longest_variation_len}}'
SCREAMING_SNAKE_CASE_ : Any = f'{preamble}: '
SCREAMING_SNAKE_CASE_ : str = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(__a ) , desc=__a , leave=__a ):
SCREAMING_SNAKE_CASE_ : List[Any] = process_run_single(
__a , __a , __a , __a , __a , __a , __a )
SCREAMING_SNAKE_CASE_ : List[Any] = single_run_metrics[target_metric_key]
if not math.isnan(__a ):
metrics.append(__a )
results.append(__a )
outcome += "✓"
else:
outcome += "✘"
SCREAMING_SNAKE_CASE_ : List[str] = f'\33[2K\r{outcome}'
if len(__a ) > 0:
SCREAMING_SNAKE_CASE_ : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
SCREAMING_SNAKE_CASE_ : List[str] = round(mean_metrics[target_metric_key] , 2 )
SCREAMING_SNAKE_CASE_ : Tuple = f'{outcome} {mean_target}'
if len(__a ) > 1:
results_str += f' {tuple(round(__a , 2 ) for x in results )}'
print(__a )
SCREAMING_SNAKE_CASE_ : Any = variation
return mean_metrics
else:
print(__a )
return {variation_key: variation, target_metric_key: nan}
def _A () -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = torch.cuda.get_device_properties(torch.device('''cuda''' ) )
return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n'
def _A (__a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = pd.DataFrame(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''variation'''
SCREAMING_SNAKE_CASE_ : List[Any] = '''diff_%'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
SCREAMING_SNAKE_CASE_ : Optional[int] = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(__a ):
# as a fallback, use the minimal value as the sentinel
SCREAMING_SNAKE_CASE_ : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(__a ):
SCREAMING_SNAKE_CASE_ : Any = df.apply(
lambda __a : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='''columns''' , )
# re-order columns
SCREAMING_SNAKE_CASE_ : Dict = [variation_key, target_metric_key, diff_key, *report_metric_keys]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = df.reindex(__a , axis='''columns''' ) # reorder cols
# capitalize
SCREAMING_SNAKE_CASE_ : Union[str, Any] = df.rename(str.capitalize , axis='''columns''' )
# make the cols as narrow as possible
SCREAMING_SNAKE_CASE_ : Optional[Any] = df.rename(lambda __a : c.replace('''_''' , '''<br>''' ) , axis='''columns''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = df.rename(lambda __a : c.replace('''_''' , '''\n''' ) , axis='''columns''' )
SCREAMING_SNAKE_CASE_ : int = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum''']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=__a , floatfmt='''.2f''' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=__a , floatfmt='''.2f''' )]
print('''\n\n'''.join(__a ) )
def _A () -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'''--base-cmd''' , default=__a , type=__a , required=__a , help='''Base cmd''' , )
parser.add_argument(
'''--variations''' , default=__a , type=__a , nargs='''+''' , required=__a , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , )
parser.add_argument(
'''--base-variation''' , default=__a , type=__a , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , )
parser.add_argument(
'''--target-metric-key''' , default=__a , type=__a , required=__a , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , )
parser.add_argument(
'''--report-metric-keys''' , default='''''' , type=__a , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , )
parser.add_argument(
'''--repeat-times''' , default=1 , type=__a , help='''How many times to re-run each variation - an average will be reported''' , )
parser.add_argument(
'''--output_dir''' , default='''output_benchmark''' , type=__a , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , )
parser.add_argument(
'''--verbose''' , default=__a , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , )
SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args()
SCREAMING_SNAKE_CASE_ : Tuple = args.output_dir
Path(__a ).mkdir(exist_ok=__a )
SCREAMING_SNAKE_CASE_ : int = get_base_command(__a , __a )
# split each dimension into its --foo variations
SCREAMING_SNAKE_CASE_ : Dict = [list(map(str.strip , re.split(R'''\|''' , __a ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
SCREAMING_SNAKE_CASE_ : List[str] = list(map(str.strip , map(''' '''.join , itertools.product(*__a ) ) ) )
SCREAMING_SNAKE_CASE_ : Tuple = max(len(__a ) for x in variations )
# split wanted keys
SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.report_metric_keys.split()
# capture prints into a log file for convenience
SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt'
print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' )
print(f'and this script\'s output is also piped into {report_fn}' )
SCREAMING_SNAKE_CASE_ : int = Tee(__a )
print(f'\n*** Running {len(__a )} benchmarks:' )
print(f'Base command: {" ".join(__a )}' )
SCREAMING_SNAKE_CASE_ : Optional[int] = '''variation'''
SCREAMING_SNAKE_CASE_ : str = []
for id, variation in enumerate(tqdm(__a , desc='''Total completion: ''' , leave=__a ) ):
SCREAMING_SNAKE_CASE_ : str = base_cmd + variation.split()
results.append(
process_run(
id + 1 , __a , __a , __a , __a , args.target_metric_key , __a , args.repeat_times , __a , args.verbose , ) )
process_results(__a , args.target_metric_key , __a , args.base_variation , __a )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ : Any = """examples/"""
UpperCAmelCase_ : Optional[int] = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
UpperCAmelCase_ : List[Any] = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
UpperCAmelCase_ : Optional[int] = """README.md"""
def _A (__a , __a , __a ) -> int:
"""simple docstring"""
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a )
SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a )
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(__a )
def _A (__a ) -> int:
"""simple docstring"""
for folder, directories, fnames in os.walk(__a ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' )
def _A (__a , __a=False ) -> List[str]:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__a , __a , __a )
if not patch:
update_version_in_examples(__a )
def _A () -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures'''
SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?'''
with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
SCREAMING_SNAKE_CASE_ : Tuple = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE_ : Tuple = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE_ : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(__a )
def _A () -> List[str]:
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ : Any = f.read()
SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0]
return packaging.version.parse(__a )
def _A (__a=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version
print(f'Updating version to {version}.' )
global_version_update(__a , patch=__a )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def _A () -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = get_version()
SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' )
if len(__a ) == 0:
SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version
print(f'Updating version to {version}.' )
global_version_update(__a )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
UpperCAmelCase_ : int = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 318
| 1
|
"""simple docstring"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO
)
UpperCAmelCase_ : List[str] = logging.getLogger(__name__)
def _A () -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser(
description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' )
parser.add_argument('''--file_path''' , type=__a , default='''data/dump.txt''' , help='''The path to the data.''' )
parser.add_argument('''--tokenizer_type''' , type=__a , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] )
parser.add_argument('''--tokenizer_name''' , type=__a , default='''bert-base-uncased''' , help='''The tokenizer to use.''' )
parser.add_argument('''--dump_file''' , type=__a , default='''data/dump''' , help='''The dump file prefix.''' )
SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args()
logger.info(f'Loading Tokenizer ({args.tokenizer_name})' )
if args.tokenizer_type == "bert":
SCREAMING_SNAKE_CASE_ : int = BertTokenizer.from_pretrained(args.tokenizer_name )
SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]`
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]`
elif args.tokenizer_type == "roberta":
SCREAMING_SNAKE_CASE_ : str = RobertaTokenizer.from_pretrained(args.tokenizer_name )
SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map['''cls_token'''] # `<s>`
SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.special_tokens_map['''sep_token'''] # `</s>`
elif args.tokenizer_type == "gpt2":
SCREAMING_SNAKE_CASE_ : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name )
SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>`
SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>`
logger.info(f'Loading text from {args.file_path}' )
with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp:
SCREAMING_SNAKE_CASE_ : str = fp.readlines()
logger.info('''Start encoding''' )
logger.info(f'{len(__a )} examples to process.' )
SCREAMING_SNAKE_CASE_ : Tuple = []
SCREAMING_SNAKE_CASE_ : Optional[Any] = 0
SCREAMING_SNAKE_CASE_ : Tuple = 1_00_00
SCREAMING_SNAKE_CASE_ : List[Any] = time.time()
for text in data:
SCREAMING_SNAKE_CASE_ : int = f'{bos} {text.strip()} {sep}'
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode(__a , add_special_tokens=__a )
rslt.append(__a )
iter += 1
if iter % interval == 0:
SCREAMING_SNAKE_CASE_ : Optional[Any] = time.time()
logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' )
SCREAMING_SNAKE_CASE_ : Any = time.time()
logger.info('''Finished binarization''' )
logger.info(f'{len(__a )} examples processed.' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'{args.dump_file}.{args.tokenizer_name}.pickle'
SCREAMING_SNAKE_CASE_ : str = tokenizer.vocab_size
if vocab_size < (1 << 16):
SCREAMING_SNAKE_CASE_ : Any = [np.uintaa(__a ) for d in rslt]
else:
SCREAMING_SNAKE_CASE_ : Optional[Any] = [np.intaa(__a ) for d in rslt]
random.shuffle(rslt_ )
logger.info(f'Dump to {dp_file}' )
with open(__a , '''wb''' ) as handle:
pickle.dump(rslt_ , __a , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 318
|
"""simple docstring"""
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _A (__a , __a , __a=1e-12 ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T
return jnp.matmul(__a , norm_emb_a.T )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = jnp.floataa
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config)
SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype)
SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim))
SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,))
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,))
def __call__( self : Optional[Any] , lowercase_ : Optional[Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds)
SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds)
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
SCREAMING_SNAKE_CASE_ : Tuple = 0.0
SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_)
# Use a lower threshold if an image has any special care concept
SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01
SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3)
SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1)
return has_nsfw_concepts
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = CLIPConfig
__UpperCamelCase = "clip_input"
__UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ):
'''simple docstring'''
if input_shape is None:
SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3)
SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_)
super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init)
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng}
SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params''']
return random_params
def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1))
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
| 318
| 1
|
"""simple docstring"""
UpperCAmelCase_ : Tuple = """Input must be a string of 8 numbers plus letter"""
UpperCAmelCase_ : Dict = """TRWAGMYFPDXBNJZSQVHLCKE"""
def _A (__a ) -> bool:
"""simple docstring"""
if not isinstance(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = f'Expected string as input, found {type(__a ).__name__}'
raise TypeError(__a )
SCREAMING_SNAKE_CASE_ : str = spanish_id.replace('''-''' , '''''' ).upper()
if len(__a ) != 9:
raise ValueError(__a )
try:
SCREAMING_SNAKE_CASE_ : Optional[Any] = int(spanish_id_clean[0:8] )
SCREAMING_SNAKE_CASE_ : Dict = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__a ) from ex
if letter.isdigit():
raise ValueError(__a )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
"""simple docstring"""
from __future__ import annotations
import queue
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = data
SCREAMING_SNAKE_CASE_ : Tuple = None
SCREAMING_SNAKE_CASE_ : Dict = None
def _A () -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower()
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) )
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Optional[int] = q.get()
SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node
q.put(__a )
SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: '
SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n'''
if check == "n":
return tree_node
SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) )
SCREAMING_SNAKE_CASE_ : int = right_node
q.put(__a )
raise
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : Tuple = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue()
q.put(__a )
while not q.empty():
SCREAMING_SNAKE_CASE_ : str = []
while not q.empty():
SCREAMING_SNAKE_CASE_ : List[str] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__a )
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Union[str, Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
SCREAMING_SNAKE_CASE_ : Tuple = stack.pop()
# start to traverse its right child
SCREAMING_SNAKE_CASE_ : str = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ : list[TreeNode] = []
SCREAMING_SNAKE_CASE_ : Any = node
while n or stack:
while n:
stack.append(__a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left
SCREAMING_SNAKE_CASE_ : Any = stack.pop()
print(n.data , end=''',''' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right
def _A (__a ) -> None:
"""simple docstring"""
if not isinstance(__a , __a ) or not node:
return
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], []
SCREAMING_SNAKE_CASE_ : List[Any] = node
stacka.append(__a )
while stacka: # to find the reversed order of post order, store it in stack2
SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__a )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def _A (__a = "" , __a=50 , __a="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
UpperCAmelCase_ : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 318
| 1
|
"""simple docstring"""
def _A (__a = 50 ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 318
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx"
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_))
SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Any = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Tuple = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images
SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions()
SCREAMING_SNAKE_CASE_ : Optional[int] = False
return options
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
# using the PNDM scheduler by default
SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : List[Any] = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128))
SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''')
SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_)
SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation'''
SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0)
SCREAMING_SNAKE_CASE_ : int = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ : Optional[int] = output.images
SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE_ : List[str] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 318
| 1
|
"""simple docstring"""
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__a , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def _A (__a , __a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = _distribute_shards(**__a )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def _A (__a , __a , __a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = _split_gen_kwargs(__a , __a )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def _A (__a , __a ) -> Union[str, Any]:
"""simple docstring"""
if expected is RuntimeError:
with pytest.raises(__a ):
_number_of_shards_in_gen_kwargs(__a )
else:
SCREAMING_SNAKE_CASE_ : Any = _number_of_shards_in_gen_kwargs(__a )
assert out == expected
| 318
|
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
UpperCAmelCase_ : List[Any] = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
UpperCAmelCase_ : Optional[int] = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
UpperCAmelCase_ : Tuple = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float'''),
'''references''': datasets.Value('''float'''),
}) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
| 318
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.