code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __lowerCamelCase ( lowerCamelCase_ ): __UpperCamelCase = '''layoutlmv3''' def __init__(self , lowerCamelCase=50_265 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=1_024 , lowerCamelCase=128 , lowerCamelCase=128 , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=128 , lowerCamelCase=64 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=224 , lowerCamelCase=3 , lowerCamelCase=16 , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__( vocab_size=__snake_case , hidden_size=__snake_case , num_hidden_layers=__snake_case , num_attention_heads=__snake_case , intermediate_size=__snake_case , hidden_act=__snake_case , hidden_dropout_prob=__snake_case , attention_probs_dropout_prob=__snake_case , max_position_embeddings=__snake_case , type_vocab_size=__snake_case , initializer_range=__snake_case , layer_norm_eps=__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) _lowerCAmelCase = max_ad_position_embeddings _lowerCAmelCase = coordinate_size _lowerCAmelCase = shape_size _lowerCAmelCase = has_relative_attention_bias _lowerCAmelCase = rel_pos_bins _lowerCAmelCase = max_rel_pos _lowerCAmelCase = has_spatial_attention_bias _lowerCAmelCase = rel_ad_pos_bins _lowerCAmelCase = max_rel_ad_pos _lowerCAmelCase = text_embed _lowerCAmelCase = visual_embed _lowerCAmelCase = input_size _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = classifier_dropout class __lowerCamelCase ( lowerCamelCase_ ): __UpperCamelCase = version.parse('1.12' ) @property def A__ (self ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ (self ): '''simple docstring''' return 1e-5 @property def A__ (self ): '''simple docstring''' return 12 def A__ (self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = 3 , lowerCamelCase = 40 , lowerCamelCase = 40 , ): '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , __snake_case ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = processor.tokenizer.num_special_tokens_to_add(__snake_case ) _lowerCAmelCase = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _lowerCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _lowerCAmelCase = self._generate_dummy_images(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCAmelCase = dict( processor( __snake_case , text=__snake_case , boxes=__snake_case , return_tensors=__snake_case , ) ) return inputs
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = {'''vocab_file''': '''vocab.json'''} SCREAMING_SNAKE_CASE : int = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } SCREAMING_SNAKE_CASE : List[str] = {'''mgp-str''': 2_7} class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , lowerCamelCase , lowerCamelCase="[GO]" , lowerCamelCase="[GO]" , lowerCamelCase="[s]" , lowerCamelCase="[GO]" , **lowerCamelCase ): '''simple docstring''' super().__init__( unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase = json.load(lowerCamelCase ) _lowerCAmelCase = {v: k for k, v in self.vocab.items()} @property def A__ (self ): '''simple docstring''' return len(self.vocab ) def A__ (self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] for s in text: char_tokens.extend(lowerCamelCase ) return char_tokens def A__ (self , lowerCamelCase ): '''simple docstring''' return self.vocab.get(lowerCamelCase , self.vocab.get(self.unk_token ) ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCamelCase ) ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + """\n""" ) return (vocab_file,)
351
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import string import numpy def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , snake_case_ ) class __lowerCamelCase : __UpperCamelCase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __UpperCamelCase = numpy.vectorize(lambda __lowercase : x % 36 ) __UpperCamelCase = numpy.vectorize(__lowercase ) def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.modulus(lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCAmelCase = encrypt_key.shape[0] def A__ (self , lowerCamelCase ): '''simple docstring''' return self.key_string.index(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.key_string[round(lowerCamelCase )] def A__ (self ): '''simple docstring''' _lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase = det % len(self.key_string ) _lowerCAmelCase = len(self.key_string ) if greatest_common_divisor(lowerCamelCase , len(self.key_string ) ) != 1: _lowerCAmelCase = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [char for char in text.upper() if char in self.key_string] _lowerCAmelCase = chars[-1] while len(lowerCamelCase ) % self.break_key != 0: chars.append(lowerCamelCase ) return "".join(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.process_text(text.upper() ) _lowerCAmelCase = """""" for i in range(0 , len(lowerCamelCase ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase = text[i : i + self.break_key] _lowerCAmelCase = [self.replace_letters(lowerCamelCase ) for char in batch] _lowerCAmelCase = numpy.array([vec] ).T _lowerCAmelCase = self.modulus(self.encrypt_key.dot(lowerCamelCase ) ).T.tolist()[ 0 ] _lowerCAmelCase = """""".join( self.replace_digits(lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A__ (self ): '''simple docstring''' _lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase = det % len(self.key_string ) _lowerCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCAmelCase = i break _lowerCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowerCamelCase ) ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.make_decrypt_key() _lowerCAmelCase = self.process_text(text.upper() ) _lowerCAmelCase = """""" for i in range(0 , len(lowerCamelCase ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase = text[i : i + self.break_key] _lowerCAmelCase = [self.replace_letters(lowerCamelCase ) for char in batch] _lowerCAmelCase = numpy.array([vec] ).T _lowerCAmelCase = self.modulus(decrypt_key.dot(lowerCamelCase ) ).T.tolist()[0] _lowerCAmelCase = """""".join( self.replace_digits(lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ) -> None: _lowerCAmelCase = int(input("""Enter the order of the encryption key: """ ) ) _lowerCAmelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(snake_case_ ): _lowerCAmelCase = [int(snake_case_ ) for x in input().split()] hill_matrix.append(snake_case_ ) _lowerCAmelCase = HillCipher(numpy.array(snake_case_ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _lowerCAmelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _lowerCAmelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(snake_case_ ) ) elif option == "2": _lowerCAmelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
352
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import os SCREAMING_SNAKE_CASE : List[Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def __UpperCAmelCase ( snake_case_ : str ) -> int: """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 0 while index < len(snake_case_ ) - 1: _lowerCAmelCase = SYMBOLS[numerals[index]] _lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" _lowerCAmelCase = """""" _lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __UpperCAmelCase ( snake_case_ : str = "/p089_roman.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 0 with open(os.path.dirname(snake_case_ ) + roman_numerals_filename ) as filea: _lowerCAmelCase = filea.readlines() for line in lines: _lowerCAmelCase = line.strip() _lowerCAmelCase = parse_roman_numerals(snake_case_ ) _lowerCAmelCase = generate_roman_numerals(snake_case_ ) savings += len(snake_case_ ) - len(snake_case_ ) return savings if __name__ == "__main__": print(F'{solution() = }')
353
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCamelCase ( __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class in get_values(lowerCamelCase ): _lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = embedding_size def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertModel(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(lowerCamelCase ) _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForMaskedLM(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForNextSentencePrediction(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForPreTraining(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFMobileBertForSequenceClassification(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFMobileBertForMultipleChoice(config=lowerCamelCase ) _lowerCAmelCase = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFMobileBertForTokenClassification(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForQuestionAnswering(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def A__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase = TFMobileBertModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(lowerCamelCase )[0] _lowerCAmelCase = [1, 6, 30_522] self.assertEqual(output.shape , lowerCamelCase ) _lowerCAmelCase = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1e-4 )
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( snake_case_ : Dict ) -> Union[str, Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" _lowerCAmelCase = [1, 2, 3] with pytest.raises(snake_case_ ): with parallel_backend("""unsupported backend""" ): map_nested(snake_case_ , snake_case_ , num_proc=2 ) with pytest.raises(snake_case_ ): with parallel_backend("""unsupported backend""" ): map_nested(snake_case_ , snake_case_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __UpperCAmelCase ( snake_case_ : int ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = [1, 2] _lowerCAmelCase = {"""a""": 1, """b""": 2} _lowerCAmelCase = {"""a""": [1, 2], """b""": [3, 4]} _lowerCAmelCase = {"""a""": {"""1""": 1}, """b""": 2} _lowerCAmelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} _lowerCAmelCase = [2, 3] _lowerCAmelCase = {"""a""": 2, """b""": 3} _lowerCAmelCase = {"""a""": [2, 3], """b""": [4, 5]} _lowerCAmelCase = {"""a""": {"""1""": 2}, """b""": 3} _lowerCAmelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
355
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase = 1 _lowerCAmelCase = 1 while repunit: _lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
import torch from diffusers import StableDiffusionPipeline SCREAMING_SNAKE_CASE : Tuple = '''path-to-your-trained-model''' SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') SCREAMING_SNAKE_CASE : Any = '''A photo of sks dog in a bucket''' SCREAMING_SNAKE_CASE : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
358
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
0
"""simple docstring""" from statistics import mean, stdev def __UpperCAmelCase ( snake_case_ : list , snake_case_ : int = 3 ) -> list: """simple docstring""" _lowerCAmelCase = min(snake_case_ ) _lowerCAmelCase = max(snake_case_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case_ ) for x in data] def __UpperCAmelCase ( snake_case_ : list , snake_case_ : int = 3 ) -> list: """simple docstring""" _lowerCAmelCase = mean(snake_case_ ) _lowerCAmelCase = stdev(snake_case_ ) # standardize data return [round((x - mu) / (sigma) , snake_case_ ) for x in data]
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ (self , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = {} if top_k is not None: _lowerCAmelCase = top_k return {}, {}, postprocess_params def __call__(self , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return super().__call__(lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = load_image(lowerCamelCase ) _lowerCAmelCase = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.model(**lowerCamelCase ) return model_outputs def A__ (self , lowerCamelCase , lowerCamelCase=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: _lowerCAmelCase = self.model.config.num_labels if self.framework == "pt": _lowerCAmelCase = model_outputs.logits.softmax(-1 )[0] _lowerCAmelCase , _lowerCAmelCase = probs.topk(lowerCamelCase ) elif self.framework == "tf": _lowerCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] _lowerCAmelCase = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) _lowerCAmelCase = scores.tolist() _lowerCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
0
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py SCREAMING_SNAKE_CASE : int = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') SCREAMING_SNAKE_CASE : List[str] = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. SCREAMING_SNAKE_CASE : Any = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) SCREAMING_SNAKE_CASE : Union[str, Any] = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def __UpperCAmelCase ( snake_case_ : Any ) -> str: """simple docstring""" _lowerCAmelCase = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , snake_case_ ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowerCAmelCase = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _lowerCAmelCase = collections.defaultdict(snake_case_ ) _lowerCAmelCase = collections.defaultdict(snake_case_ ) _lowerCAmelCase = collections.defaultdict(snake_case_ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(snake_case_ ): _lowerCAmelCase = None if _re_tf_models.match(snake_case_ ) is not None: _lowerCAmelCase = tf_models _lowerCAmelCase = _re_tf_models.match(snake_case_ ).groups()[0] elif _re_flax_models.match(snake_case_ ) is not None: _lowerCAmelCase = flax_models _lowerCAmelCase = _re_flax_models.match(snake_case_ ).groups()[0] elif _re_pt_models.match(snake_case_ ) is not None: _lowerCAmelCase = pt_models _lowerCAmelCase = _re_pt_models.match(snake_case_ ).groups()[0] if lookup_dict is not None: while len(snake_case_ ) > 0: if attr_name in model_prefix_to_model_type: _lowerCAmelCase = True break # Try again after removing the last word in the name _lowerCAmelCase = """""".join(camel_case_split(snake_case_ )[:-1] ) _lowerCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _lowerCAmelCase = list(snake_case_ ) all_models.sort() _lowerCAmelCase = {"""model_type""": all_models} _lowerCAmelCase = [pt_models[t] for t in all_models] _lowerCAmelCase = [tf_models[t] for t in all_models] _lowerCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _lowerCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _lowerCAmelCase = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _lowerCAmelCase = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _lowerCAmelCase = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _lowerCAmelCase = """AutoTokenizer""" _lowerCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _lowerCAmelCase = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _lowerCAmelCase = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(snake_case_ , snake_case_ , snake_case_ ): # The type of pipeline may not exist in this framework if not hasattr(snake_case_ , snake_case_ ): continue # First extract all model_names _lowerCAmelCase = [] for name in getattr(snake_case_ , snake_case_ ).values(): if isinstance(snake_case_ , snake_case_ ): model_names.append(snake_case_ ) else: model_names.extend(list(snake_case_ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Union[str, Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase = get_frameworks_table() _lowerCAmelCase = Dataset.from_pandas(snake_case_ ) _lowerCAmelCase = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=snake_case_ ) _lowerCAmelCase = Dataset.from_json(snake_case_ ) _lowerCAmelCase = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(snake_case_ ) ) } _lowerCAmelCase = update_pipeline_and_auto_class_table(snake_case_ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _lowerCAmelCase = sorted(table.keys() ) _lowerCAmelCase = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _lowerCAmelCase = Dataset.from_pandas(snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(snake_case_ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(snake_case_ , """pipeline_tags.json""" ) ) if commit_sha is not None: _lowerCAmelCase = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _lowerCAmelCase = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=snake_case_ , repo_type="""dataset""" , token=snake_case_ , commit_message=snake_case_ , ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _lowerCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS _lowerCAmelCase = [] for key in pipeline_tasks: if key not in in_table: _lowerCAmelCase = pipeline_tasks[key]["""pt"""] if isinstance(snake_case_ , (list, tuple) ): _lowerCAmelCase = model[0] _lowerCAmelCase = model.__name__ if model not in in_table.values(): missing.append(snake_case_ ) if len(snake_case_ ) > 0: _lowerCAmelCase = """, """.join(snake_case_ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
361
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration SCREAMING_SNAKE_CASE : Tuple = pytest.mark.integration SCREAMING_SNAKE_CASE : Any = {'''comet'''} SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.util.find_spec('''fairseq''') is not None SCREAMING_SNAKE_CASE : str = {'''code_eval'''} SCREAMING_SNAKE_CASE : Dict = os.name == '''nt''' SCREAMING_SNAKE_CASE : str = {'''bertscore''', '''frugalscore''', '''perplexity'''} SCREAMING_SNAKE_CASE : Optional[int] = importlib.util.find_spec('''transformers''') is not None def __UpperCAmelCase ( snake_case_ : List[str] ) -> int: """simple docstring""" @wraps(snake_case_ ) def wrapper(self : Optional[Any] , snake_case_ : Tuple ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , snake_case_ ) return wrapper def __UpperCAmelCase ( snake_case_ : List[Any] ) -> List[Any]: """simple docstring""" @wraps(snake_case_ ) def wrapper(self : Any , snake_case_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , snake_case_ ) return wrapper def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> Dict: """simple docstring""" @wraps(snake_case_ ) def wrapper(self : Dict , snake_case_ : Union[str, Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , snake_case_ ) return wrapper def __UpperCAmelCase ( ) -> Any: """simple docstring""" _lowerCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __lowercase , __lowercase , __lowercase ) @local class __lowerCamelCase ( parameterized.TestCase ): __UpperCamelCase = {} __UpperCamelCase = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = """[...]""" _lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowerCamelCase ) ).module_path ) _lowerCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase ) # check parameters _lowerCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: _lowerCAmelCase = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = """[...]""" _lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): _lowerCAmelCase = doctest.testmod(lowerCamelCase , verbose=lowerCamelCase , raise_on_error=lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase ): yield else: yield @contextmanager def A__ (self ): '''simple docstring''' def load_local_metric(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): return load_metric(os.path.join("""metrics""" , lowerCamelCase ) , *lowerCamelCase , **lowerCamelCase ) with patch("""datasets.load_metric""" ) as mock_load_metric: _lowerCAmelCase = load_local_metric yield @classmethod def A__ (cls , lowerCamelCase ): '''simple docstring''' def wrapper(lowerCamelCase ): _lowerCAmelCase = contextmanager(lowerCamelCase ) _lowerCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Any: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class __lowerCamelCase ( __lowercase ): def A__ (self , lowerCamelCase ): '''simple docstring''' assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _lowerCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Any: """simple docstring""" import torch def bert_cos_score_idf(snake_case_ : Dict , snake_case_ : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : Optional[Any] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _lowerCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def __UpperCAmelCase ( snake_case_ : List[str] ) -> List[Any]: """simple docstring""" def load_from_checkpoint(snake_case_ : int ): class __lowerCamelCase : def A__ (self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' assert len(lowerCamelCase ) == 2 _lowerCAmelCase = [0.19, 0.92] return scores, sum(lowerCamelCase ) / len(lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _lowerCAmelCase = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _lowerCAmelCase = load_from_checkpoint yield def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _lowerCAmelCase = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _lowerCAmelCase = """ERROR""" _lowerCAmelCase = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(snake_case_ , match=re.escape(snake_case_ ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case_ )
362
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate SCREAMING_SNAKE_CASE : Tuple = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} SCREAMING_SNAKE_CASE : str = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] SCREAMING_SNAKE_CASE : Optional[int] = 0 for log in Path().glob('''*.log'''): SCREAMING_SNAKE_CASE : Tuple = 0 with open(log, '''r''') as f: for line in f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(line) if line.get('''nodeid''', '''''') != "": SCREAMING_SNAKE_CASE : Optional[int] = line['''nodeid'''] if line.get('''duration''', None) is not None: SCREAMING_SNAKE_CASE : Any = F'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) SCREAMING_SNAKE_CASE : List[Any] = [] log.unlink() SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Optional[int] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[Any] = {} for test in failed_tests: SCREAMING_SNAKE_CASE : List[Any] = test[0].split('''::''') SCREAMING_SNAKE_CASE : Dict = data[0].split('''/''')[-1] if data[0] not in filesafailed: SCREAMING_SNAKE_CASE : Optional[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) SCREAMING_SNAKE_CASE : List[str] = [test[0] for test in failed_table] SCREAMING_SNAKE_CASE : int = list(set(files)) # Count number of instances in failed_tests SCREAMING_SNAKE_CASE : List[str] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) SCREAMING_SNAKE_CASE : Optional[int] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: SCREAMING_SNAKE_CASE : str = '''Too many failed tests, please see the full report in the Action results.''' SCREAMING_SNAKE_CASE : List[str] = len(err) + 1_0 SCREAMING_SNAKE_CASE : Optional[Any] = message[: 3_0_0_0 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: SCREAMING_SNAKE_CASE : Optional[Any] = '''No failed tests! 🤗''' print(F'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient SCREAMING_SNAKE_CASE : List[Any] = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": SCREAMING_SNAKE_CASE : Any = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) SCREAMING_SNAKE_CASE : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) SCREAMING_SNAKE_CASE : List[str] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) SCREAMING_SNAKE_CASE : List[str] = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) SCREAMING_SNAKE_CASE : Dict = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name SCREAMING_SNAKE_CASE : List[Any] = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: SCREAMING_SNAKE_CASE : Tuple = row[0] else: SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ['image_processor', 'feature_extractor'] __UpperCamelCase = 'TvltImageProcessor' __UpperCamelCase = 'TvltFeatureExtractor' def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' super().__init__(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) _lowerCAmelCase = image_processor _lowerCAmelCase = feature_extractor def __call__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=False , *lowerCamelCase , **lowerCamelCase , ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _lowerCAmelCase = None if images is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase , mask_pixel=lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if images_mixed is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase , is_mixed=lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if audio is not None: _lowerCAmelCase = self.feature_extractor( lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , mask_audio=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = {} if audio is not None: output_dict.update(lowerCamelCase ) if images is not None: output_dict.update(lowerCamelCase ) if images_mixed_dict is not None: output_dict.update(lowerCamelCase ) return output_dict @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processor.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
365
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def A__ (*lowerCamelCase , **lowerCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) _lowerCAmelCase = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = object_detector(examples[0] , threshold=0.0 ) _lowerCAmelCase = len(lowerCamelCase ) self.assertGreater(lowerCamelCase , 0 ) self.assertEqual( lowerCamelCase , [ { """score""": ANY(lowerCamelCase ), """label""": ANY(lowerCamelCase ), """box""": {"""xmin""": ANY(lowerCamelCase ), """ymin""": ANY(lowerCamelCase ), """xmax""": ANY(lowerCamelCase ), """ymax""": ANY(lowerCamelCase )}, } for i in range(lowerCamelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def A__ (self ): '''simple docstring''' pass @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) _lowerCAmelCase = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) _lowerCAmelCase = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = pipeline("""zero-shot-object-detection""" ) _lowerCAmelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) _lowerCAmelCase = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def A__ (self ): '''simple docstring''' pass @require_torch @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = 0.2 _lowerCAmelCase = pipeline("""zero-shot-object-detection""" ) _lowerCAmelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCamelCase , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = 2 _lowerCAmelCase = pipeline("""zero-shot-object-detection""" ) _lowerCAmelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCamelCase , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
366
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
367
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
0
"""simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 # The first color of the flag. SCREAMING_SNAKE_CASE : Optional[int] = 1 # The second color of the flag. SCREAMING_SNAKE_CASE : List[str] = 2 # The third color of the flag. SCREAMING_SNAKE_CASE : Optional[Any] = (red, white, blue) def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" if not sequence: return [] if len(snake_case_ ) == 1: return list(snake_case_ ) _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 _lowerCAmelCase = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(snake_case_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : int = input('''Enter numbers separated by commas:\n''').strip() SCREAMING_SNAKE_CASE : Any = [int(item.strip()) for item in user_input.split(''',''')] print(F'{dutch_national_flag_sort(unsorted)}')
368
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE : Tuple = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE : Union[str, Any] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') SCREAMING_SNAKE_CASE : Dict = model.state_dict() SCREAMING_SNAKE_CASE : str = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE : int = state_dict[F'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F'{prefix}.embeddings.LayerNorm.{w}'] SCREAMING_SNAKE_CASE : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] SCREAMING_SNAKE_CASE : Tuple = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] SCREAMING_SNAKE_CASE : Any = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 SCREAMING_SNAKE_CASE : Tuple = state_dict['''cls.predictions.decoder.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Any = state_dict[F'cls.predictions.transform.dense.{w}'] SCREAMING_SNAKE_CASE : int = state_dict[F'cls.predictions.transform.LayerNorm.{w}'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
369
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Any ) -> List[str]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = [], [] while len(snake_case_ ) > 1: _lowerCAmelCase , _lowerCAmelCase = min(snake_case_ ), max(snake_case_ ) start.append(snake_case_ ) end.append(snake_case_ ) collection.remove(snake_case_ ) collection.remove(snake_case_ ) end.reverse() return start + collection + end if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : Any = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
370
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = [] create_all_state(1 , snake_case_ , snake_case_ , [] , snake_case_ ) return result def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(snake_case_ , total_number - level + 2 ): current_list.append(snake_case_ ) create_all_state(i + 1 , snake_case_ , level - 1 , snake_case_ , snake_case_ ) current_list.pop() def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = generate_all_combinations(n, k) print_all_state(total_list)
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'bert-generation' def __init__(self , lowerCamelCase=50_358 , lowerCamelCase=1_024 , lowerCamelCase=24 , lowerCamelCase=16 , lowerCamelCase=4_096 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase="absolute" , lowerCamelCase=True , **lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache
351
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
353
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowerCamelCase ( __lowercase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = """pt""" _lowerCAmelCase = """tf""" def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCamelCase ) model_tf.save_pretrained(lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = """mock_framework""" # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase ) self.assertEqual(lowerCamelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase ) self.assertEqual(lowerCamelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_torch_available""" , lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCamelCase ): with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
355
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = '''▁''' SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE : Optional[int] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } SCREAMING_SNAKE_CASE : str = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4, } # fmt: off SCREAMING_SNAKE_CASE : Tuple = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = [] __UpperCamelCase = [] def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase , tgt_lang=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ (self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ): '''simple docstring''' _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ (self , lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ (self , lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = """""" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(lowerCamelCase ) _lowerCAmelCase = False out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase )) + ([0] * len(lowerCamelCase )) + suffix_ones def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) _lowerCAmelCase = tgt_lang_id return inputs def A__ (self , lowerCamelCase , lowerCamelCase = "en_XX" , lowerCamelCase = None , lowerCamelCase = "ro_RO" , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def A__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.lang_code_to_id[src_lang] _lowerCAmelCase = [self.cur_lang_code_id] _lowerCAmelCase = [self.eos_token_id] def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.lang_code_to_id[tgt_lang] _lowerCAmelCase = [self.cur_lang_code_id] _lowerCAmelCase = [self.eos_token_id]
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] SCREAMING_SNAKE_CASE : List[Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) return sd def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[Any]=rename_keys_prefix ) -> Dict: """simple docstring""" _lowerCAmelCase = OrderedDict() _lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCAmelCase = key for name_pair in rename_keys_prefix: _lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCAmelCase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Union[str, Any] ) -> List[str]: """simple docstring""" assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _lowerCAmelCase = """pretraining""" if "vcr" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 512} _lowerCAmelCase = """multichoice""" elif "vqa_advanced" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048} _lowerCAmelCase = """vqa_advanced""" elif "vqa" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048, """num_labels""": 3129} _lowerCAmelCase = """vqa""" elif "nlvr" in checkpoint_path: _lowerCAmelCase = { """visual_embedding_dim""": 1024, """num_labels""": 2, } _lowerCAmelCase = """nlvr""" _lowerCAmelCase = VisualBertConfig(**snake_case_ ) # Load State Dict _lowerCAmelCase = load_state_dict(snake_case_ ) _lowerCAmelCase = get_new_dict(snake_case_ , snake_case_ ) if model_type == "pretraining": _lowerCAmelCase = VisualBertForPreTraining(snake_case_ ) elif model_type == "vqa": _lowerCAmelCase = VisualBertForQuestionAnswering(snake_case_ ) elif model_type == "nlvr": _lowerCAmelCase = VisualBertForVisualReasoning(snake_case_ ) elif model_type == "multichoice": _lowerCAmelCase = VisualBertForMultipleChoice(snake_case_ ) model.load_state_dict(snake_case_ ) # Save Checkpoints Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
357
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ['image_processor', 'tokenizer'] __UpperCamelCase = 'AutoImageProcessor' __UpperCamelCase = 'AutoTokenizer' def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' super().__init__(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self.image_processor def __call__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase = self.tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if images is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: _lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
358
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase = min(snake_case_ , snake_case_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'vit_mae' def __init__(self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=16 , lowerCamelCase=512 , lowerCamelCase=8 , lowerCamelCase=2_048 , lowerCamelCase=0.75 , lowerCamelCase=False , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = decoder_num_attention_heads _lowerCAmelCase = decoder_hidden_size _lowerCAmelCase = decoder_num_hidden_layers _lowerCAmelCase = decoder_intermediate_size _lowerCAmelCase = mask_ratio _lowerCAmelCase = norm_pix_loss
361
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'mgp-str' def __init__(self , lowerCamelCase=[32, 128] , lowerCamelCase=4 , lowerCamelCase=3 , lowerCamelCase=27 , lowerCamelCase=38 , lowerCamelCase=50_257 , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=4.0 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=1e-5 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=False , lowerCamelCase=0.02 , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = max_token_length _lowerCAmelCase = num_character_labels _lowerCAmelCase = num_bpe_labels _lowerCAmelCase = num_wordpiece_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = mlp_ratio _lowerCAmelCase = distilled _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = drop_rate _lowerCAmelCase = qkv_bias _lowerCAmelCase = attn_drop_rate _lowerCAmelCase = drop_path_rate _lowerCAmelCase = output_aa_attentions _lowerCAmelCase = initializer_range
362
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'funnel' __UpperCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__(self , lowerCamelCase=30_522 , lowerCamelCase=[4, 4, 4] , lowerCamelCase=None , lowerCamelCase=2 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=64 , lowerCamelCase=3_072 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=None , lowerCamelCase=1e-9 , lowerCamelCase="mean" , lowerCamelCase="relative_shift" , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = block_sizes _lowerCAmelCase = [1] * len(lowerCamelCase ) if block_repeats is None else block_repeats assert len(lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _lowerCAmelCase = num_decoder_layers _lowerCAmelCase = d_model _lowerCAmelCase = n_head _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = initializer_range _lowerCAmelCase = initializer_std _lowerCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _lowerCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _lowerCAmelCase = attention_type _lowerCAmelCase = separate_cls _lowerCAmelCase = truncate_seq _lowerCAmelCase = pool_q_only super().__init__(**lowerCamelCase ) @property def A__ (self ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def A__ (self ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : __UpperCamelCase = 42 __UpperCamelCase = None # Automatically constructed __UpperCamelCase = 'dict' __UpperCamelCase = None __UpperCamelCase = field(default='Translation' , init=__lowercase , repr=__lowercase ) def __call__(self ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ (self ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None # Automatically constructed __UpperCamelCase = 'dict' __UpperCamelCase = None __UpperCamelCase = field(default='TranslationVariableLanguages' , init=__lowercase , repr=__lowercase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase = len(self.languages ) if self.languages else None def __call__(self ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = set(self.languages ) if self.languages and set(lowerCamelCase ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(lowerCamelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCamelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCamelCase , lowerCamelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase = zip(*sorted(lowerCamelCase ) ) return {"language": languages, "translation": translations} def A__ (self ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> list: """simple docstring""" _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = [] for i in range(len(snake_case_ ) - pat_len + 1 ): _lowerCAmelCase = True for j in range(snake_case_ ): if s[i + j] != pattern[j]: _lowerCAmelCase = False break if match_found: position.append(snake_case_ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
365
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ): """simple docstring""" if not (isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _lowerCAmelCase = i _lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _lowerCAmelCase = torch.nn.Linear(2 , 4 ) _lowerCAmelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) _lowerCAmelCase = torch.optim.lr_scheduler.OneCycleLR(snake_case_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _lowerCAmelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCAmelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> Tuple: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(snake_case_ ) class __lowerCamelCase ( __lowercase ): @require_cuda def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = Accelerator(cpu=lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase = GradientState() assert state.num_steps == 1 _lowerCAmelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCAmelCase = False assert state.sync_gradients is False GradientState._reset_state() def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def A__ (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCamelCase , **lowerCamelCase ): pass with patch("""torch.cuda.set_device""" , lowerCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): _lowerCAmelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = get_signature(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = get_signature(lowerCamelCase ) # saving hook def save_config(lowerCamelCase , lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(lowerCamelCase , """data.json""" ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) # loading hook def load_config(lowerCamelCase , lowerCamelCase ): with open(os.path.join(lowerCamelCase , """data.json""" ) , """r""" ) as f: _lowerCAmelCase = json.load(lowerCamelCase ) _lowerCAmelCase = config["""class_name"""] _lowerCAmelCase = accelerator.register_save_state_pre_hook(lowerCamelCase ) _lowerCAmelCase = accelerator.register_load_state_pre_hook(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match with hooks load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase = """random""" # make sure loaded weights match with hooks accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() _lowerCAmelCase = None # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(dummy_obj is None ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() _lowerCAmelCase = [1, 2, 3] # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCamelCase , device_map={"""""": 0} , ) _lowerCAmelCase = Accelerator() # This should work _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) @slow @require_bnb def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase = Accelerator() with init_empty_weights(): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase = infer_auto_device_map(lowerCamelCase ) _lowerCAmelCase = """cpu""" _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=lowerCamelCase , load_in_abit=lowerCamelCase , llm_inta_enable_fpaa_cpu_offload=lowerCamelCase ) # This should not work and get value error with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) @slow @require_bnb @require_multi_gpu def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase = infer_auto_device_map(lowerCamelCase ) _lowerCAmelCase = 1 _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCamelCase , device_map=lowerCamelCase , ) _lowerCAmelCase = Accelerator() # This should not work and get value error with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _lowerCAmelCase = infer_auto_device_map(lowerCamelCase ) _lowerCAmelCase = 1 _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCamelCase , device_map=lowerCamelCase , ) _lowerCAmelCase = Accelerator() # This should work _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) @require_cuda def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.nn.Linear(10 , 10 ) _lowerCAmelCase = torch.optim.SGD(model.parameters() , lr=0.01 ) _lowerCAmelCase = Accelerator(cpu=lowerCamelCase ) _lowerCAmelCase = accelerator.prepare(lowerCamelCase )
367
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowerCamelCase ) model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase , streamer=lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=lowerCamelCase ) thread.start() _lowerCAmelCase = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowerCamelCase , skip_prompt=lowerCamelCase ) model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase , streamer=lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""distilgpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowerCamelCase , skip_special_tokens=lowerCamelCase ) model.generate(lowerCamelCase , max_new_tokens=1 , do_sample=lowerCamelCase , streamer=lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(lowerCamelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = TextIteratorStreamer(lowerCamelCase , timeout=0.001 ) _lowerCAmelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = """""" for new_text in streamer: streamer_text += new_text
368
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __UpperCAmelCase ( snake_case_ : Dict ) -> Optional[Any]: """simple docstring""" if hor == 128: _lowerCAmelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _lowerCAmelCase = (32, 128, 256) _lowerCAmelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: _lowerCAmelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _lowerCAmelCase = (32, 64, 128, 256) _lowerCAmelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") _lowerCAmelCase = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _lowerCAmelCase = model.state_dict() _lowerCAmelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } _lowerCAmelCase = UNetaDModel(**snake_case_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _lowerCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase = state_dict.pop(snake_case_ ) hf_value_function.load_state_dict(snake_case_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def __UpperCAmelCase ( ) -> str: """simple docstring""" _lowerCAmelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } _lowerCAmelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) _lowerCAmelCase = model _lowerCAmelCase = UNetaDModel(**snake_case_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _lowerCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase = state_dict.pop(snake_case_ ) hf_value_function.load_state_dict(snake_case_ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
369
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
0
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowerCamelCase : def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) _lowerCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) _lowerCAmelCase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _lowerCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = inputs["""prompt"""] _lowerCAmelCase = inputs["""generator"""] _lowerCAmelCase = inputs["""num_inference_steps"""] _lowerCAmelCase = inputs["""output_type"""] if "image" in inputs: _lowerCAmelCase = inputs["""image"""] else: _lowerCAmelCase = None if "mask_image" in inputs: _lowerCAmelCase = inputs["""mask_image"""] else: _lowerCAmelCase = None if "original_image" in inputs: _lowerCAmelCase = inputs["""original_image"""] else: _lowerCAmelCase = None _lowerCAmelCase , _lowerCAmelCase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings _lowerCAmelCase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: _lowerCAmelCase = image if mask_image is not None: _lowerCAmelCase = mask_image if original_image is not None: _lowerCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) _lowerCAmelCase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = inputs["""generator"""] _lowerCAmelCase = inputs["""num_inference_steps"""] _lowerCAmelCase = inputs["""output_type"""] # inputs with prompt converted to embeddings _lowerCAmelCase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: _lowerCAmelCase = image if mask_image is not None: _lowerCAmelCase = mask_image if original_image is not None: _lowerCAmelCase = original_image _lowerCAmelCase = pipe_loaded(**lowerCamelCase )[0] _lowerCAmelCase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) _lowerCAmelCase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe_loaded(**lowerCamelCase )[0] _lowerCAmelCase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
370
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase = "▁" , lowerCamelCase = True , lowerCamelCase = "<unk>" , lowerCamelCase = "</s>" , lowerCamelCase = "<pad>" , ): '''simple docstring''' _lowerCAmelCase = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _lowerCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowerCAmelCase = token_dict["""token"""] _lowerCAmelCase = Tokenizer(Unigram() ) _lowerCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) _lowerCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCamelCase , add_prefix_space=lowerCamelCase ), pre_tokenizers.Digits(individual_digits=lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) _lowerCAmelCase = decoders.Metaspace(replacement=lowerCamelCase , add_prefix_space=lowerCamelCase ) _lowerCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) _lowerCAmelCase = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = 8_000 , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase , ) if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = [files] self._tokenizer.train(lowerCamelCase , trainer=lowerCamelCase ) self.add_unk_id() def A__ (self , lowerCamelCase , lowerCamelCase = 8_000 , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase , ) self._tokenizer.train_from_iterator(lowerCamelCase , trainer=lowerCamelCase ) self.add_unk_id() def A__ (self ): '''simple docstring''' _lowerCAmelCase = json.loads(self._tokenizer.to_str() ) _lowerCAmelCase = self.special_tokens["""unk"""]["""id"""] _lowerCAmelCase = Tokenizer.from_str(json.dumps(lowerCamelCase ) )
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.task_name.lower() class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'train' __UpperCamelCase = 'dev' __UpperCamelCase = 'test' class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = Split.train , lowerCamelCase = None , ): '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCamelCase , ) _lowerCAmelCase = args _lowerCAmelCase = glue_processors[args.task_name]() _lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(lowerCamelCase , lowerCamelCase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase , _lowerCAmelCase = label_list[2], label_list[1] _lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(lowerCamelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowerCAmelCase = examples[:limit_length] _lowerCAmelCase = glue_convert_examples_to_features( lowerCamelCase , lowerCamelCase , max_length=args.max_seq_length , label_list=lowerCamelCase , output_mode=self.output_mode , ) _lowerCAmelCase = time.time() torch.save(self.features , lowerCamelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , lowerCamelCase ): '''simple docstring''' return self.features[i] def A__ (self ): '''simple docstring''' return self.label_list
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : Dict = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list ) -> float: _validate_point(snake_case_ ) _validate_point(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(snake_case_ , snake_case_ ) ) ) def __UpperCAmelCase ( snake_case_ : list[float] ) -> None: if point: if isinstance(snake_case_ , snake_case_ ): for item in point: if not isinstance(snake_case_ , (int, float) ): _lowerCAmelCase = ( """Expected a list of numbers as input, found """ F"""{type(snake_case_ ).__name__}""" ) raise TypeError(snake_case_ ) else: _lowerCAmelCase = F"""Expected a list of numbers as input, found {type(snake_case_ ).__name__}""" raise TypeError(snake_case_ ) else: raise ValueError("""Missing an input""" ) def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list ) -> float: _validate_point(snake_case_ ) _validate_point(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(snake_case_ , snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'ctrl' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=246_534 , lowerCamelCase=256 , lowerCamelCase=1_280 , lowerCamelCase=8_192 , lowerCamelCase=48 , lowerCamelCase=16 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1e-6 , lowerCamelCase=0.02 , lowerCamelCase=True , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = dff _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache super().__init__(**lowerCamelCase )
353
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( __lowercase ): @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCamelCase ) BertModel.from_pretrained(lowerCamelCase ) BertTokenizer.from_pretrained(lowerCamelCase ) pipeline(task="""fill-mask""" , model=lowerCamelCase ) # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase = """1""" _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCamelCase ) BertModel.from_pretrained(lowerCamelCase ) BertTokenizer.from_pretrained(lowerCamelCase ) pipeline(task="""fill-mask""" , model=lowerCamelCase ) # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase = self.get_env() _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase = self.get_env() _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase = """1""" _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import pipeline """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _lowerCAmelCase = self.get_env() _lowerCAmelCase = """1""" _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import AutoModel """ _lowerCAmelCase = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase = self.get_env() _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase = """1""" _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = '''▁''' SCREAMING_SNAKE_CASE : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE : List[str] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } SCREAMING_SNAKE_CASE : Optional[int] = { '''google/pegasus-xsum''': 5_1_2, } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PegasusTokenizer __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(lowerCamelCase )}, but is""" f""" {type(lowerCamelCase )}""" ) _lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _lowerCAmelCase = additional_special_tokens_extended else: _lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ (self , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
355
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
0
def __UpperCAmelCase ( snake_case_ : Any ) -> List[str]: """simple docstring""" _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = sum(snake_case_ ) _lowerCAmelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCAmelCase = True for i in range(1 , s + 1 ): _lowerCAmelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCAmelCase = dp[i][j - 1] if arr[i - 1] <= j: _lowerCAmelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCAmelCase = s - 2 * j break return diff
357
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = tempfile.mkdtemp() # fmt: off _lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _lowerCAmelCase = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowerCamelCase , return_tensors="""np""" ) _lowerCAmelCase = processor(images=lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = processor(text=lowerCamelCase ) _lowerCAmelCase = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase ): processor() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(lowerCamelCase ) _lowerCAmelCase = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
358
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging SCREAMING_SNAKE_CASE : Optional[int] = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] SCREAMING_SNAKE_CASE : int = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = ''' Hello world! cécé herlolip''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __UpperCAmelCase ( snake_case_ : Any ) -> int: """simple docstring""" _lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str ) -> List[str]: """simple docstring""" _lowerCAmelCase = dct.pop(snake_case_ ) _lowerCAmelCase = val def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) _lowerCAmelCase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) _lowerCAmelCase = emb.weight.data return lin_layer @torch.no_grad() def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Any , snake_case_ : int=None ) -> str: """simple docstring""" if not os.path.exists(snake_case_ ): _lowerCAmelCase = torch.hub.load("""pytorch/fairseq""" , snake_case_ ).eval() else: _lowerCAmelCase = load_xsum_checkpoint(snake_case_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _lowerCAmelCase = checkpoint_path.replace(""".""" , """-""" ) _lowerCAmelCase = BartConfig.from_pretrained(snake_case_ ) _lowerCAmelCase = bart.encode(snake_case_ ).unsqueeze(0 ) _lowerCAmelCase = BartTokenizer.from_pretrained(snake_case_ ).encode(snake_case_ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(snake_case_ , snake_case_ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": _lowerCAmelCase = bart.state_dict() remove_ignore_keys_(snake_case_ ) _lowerCAmelCase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase = BartForSequenceClassification(snake_case_ ).eval() model.load_state_dict(snake_case_ ) _lowerCAmelCase = bart.predict("""mnli""" , snake_case_ , return_logits=snake_case_ ) _lowerCAmelCase = model(snake_case_ )[0] # logits else: # no classification heads to worry about _lowerCAmelCase = bart.model.state_dict() remove_ignore_keys_(snake_case_ ) _lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] _lowerCAmelCase = bart.extract_features(snake_case_ ) if hf_checkpoint_name == "facebook/bart-large": _lowerCAmelCase = BartModel(snake_case_ ).eval() model.load_state_dict(snake_case_ ) _lowerCAmelCase = model(snake_case_ ).model[0] else: _lowerCAmelCase = BartForConditionalGeneration(snake_case_ ).eval() # an existing summarization ckpt model.model.load_state_dict(snake_case_ ) if hasattr(snake_case_ , """lm_head""" ): _lowerCAmelCase = make_linear_from_emb(model.model.shared ) _lowerCAmelCase = model.model(snake_case_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType SCREAMING_SNAKE_CASE : Optional[List[str]] = None SCREAMING_SNAKE_CASE : Tuple = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image SCREAMING_SNAKE_CASE : List[str] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __lowerCamelCase : __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = 'PIL.Image.Image' __UpperCamelCase = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __UpperCamelCase = field(default='Image' , init=__lowercase , repr=__lowercase ) def __call__(self ): '''simple docstring''' return self.pa_type def A__ (self , lowerCamelCase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = np.array(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase , lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase ) elif isinstance(lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def A__ (self , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: _lowerCAmelCase = {} _lowerCAmelCase , _lowerCAmelCase = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(lowerCamelCase ): _lowerCAmelCase = PIL.Image.open(lowerCamelCase ) else: _lowerCAmelCase = path.split("""::""" )[-1] try: _lowerCAmelCase = string_to_dict(lowerCamelCase , config.HUB_DATASETS_URL )["""repo_id"""] _lowerCAmelCase = token_per_repo_id.get(lowerCamelCase ) except ValueError: _lowerCAmelCase = None with xopen(lowerCamelCase , """rb""" , use_auth_token=lowerCamelCase ) as f: _lowerCAmelCase = BytesIO(f.read() ) _lowerCAmelCase = PIL.Image.open(bytes_ ) else: _lowerCAmelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ (self ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def A__ (self , lowerCamelCase ): '''simple docstring''' if pa.types.is_string(storage.type ): _lowerCAmelCase = pa.array([None] * len(lowerCamelCase ) , type=pa.binary() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCAmelCase = pa.array([None] * len(lowerCamelCase ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _lowerCAmelCase = storage.field("""bytes""" ) else: _lowerCAmelCase = pa.array([None] * len(lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _lowerCAmelCase = storage.field("""path""" ) else: _lowerCAmelCase = pa.array([None] * len(lowerCamelCase ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _lowerCAmelCase = pa.array( [encode_np_array(np.array(lowerCamelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _lowerCAmelCase = pa.array([None] * len(lowerCamelCase ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase , self.pa_type ) def A__ (self , lowerCamelCase ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCamelCase ): with xopen(lowerCamelCase , """rb""" ) as f: _lowerCAmelCase = f.read() return bytes_ _lowerCAmelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCAmelCase = pa.array( [os.path.basename(lowerCamelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase , self.pa_type ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _lowerCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __UpperCAmelCase ( snake_case_ : "PIL.Image.Image" ) -> bytes: """simple docstring""" _lowerCAmelCase = BytesIO() if image.format in list_image_compression_formats(): _lowerCAmelCase = image.format else: _lowerCAmelCase = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(snake_case_ , format=snake_case_ ) return buffer.getvalue() def __UpperCAmelCase ( snake_case_ : "PIL.Image.Image" ) -> dict: """simple docstring""" if hasattr(snake_case_ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case_ )} def __UpperCAmelCase ( snake_case_ : np.ndarray ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) _lowerCAmelCase = array.dtype _lowerCAmelCase = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _lowerCAmelCase = dtype.kind _lowerCAmelCase = dtype.itemsize _lowerCAmelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _lowerCAmelCase = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _lowerCAmelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _lowerCAmelCase = dtype_byteorder + dtype_kind + str(snake_case_ ) _lowerCAmelCase = np.dtype(snake_case_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _lowerCAmelCase = PIL.Image.fromarray(array.astype(snake_case_ ) ) return {"path": None, "bytes": image_to_bytes(snake_case_ )} def __UpperCAmelCase ( snake_case_ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: _lowerCAmelCase , _lowerCAmelCase = first_non_null_value(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case_ , np.ndarray ): _lowerCAmelCase = no_op_if_value_is_null(snake_case_ ) return [obj_to_image_dict_func(snake_case_ ) for obj in objs] elif isinstance(snake_case_ , PIL.Image.Image ): _lowerCAmelCase = no_op_if_value_is_null(snake_case_ ) return [obj_to_image_dict_func(snake_case_ ) for obj in objs] else: return objs else: return objs
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
0
"""simple docstring""" import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
361
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
0
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
362
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = {'''vocab_file''': '''vocab.txt'''} SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } SCREAMING_SNAKE_CASE : int = { '''YituTech/conv-bert-base''': 5_1_2, '''YituTech/conv-bert-medium-small''': 5_1_2, '''YituTech/conv-bert-small''': 5_1_2, } SCREAMING_SNAKE_CASE : Dict = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ConvBertTokenizer def __init__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): _lowerCAmelCase = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = tokenize_chinese_chars _lowerCAmelCase = normalizer_class(**lowerCamelCase ) _lowerCAmelCase = do_lower_case def A__ (self , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> bool: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(snake_case_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(snake_case_ ) == 1: return True _lowerCAmelCase = series[1] - series[0] for index in range(len(snake_case_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCAmelCase ( snake_case_ : list ) -> float: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(snake_case_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) _lowerCAmelCase = 0 for val in series: answer += val return answer / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class __lowerCamelCase ( tf.keras.layers.Layer ): def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1 , lowerCamelCase=False , **lowerCamelCase ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = d_embed _lowerCAmelCase = d_proj _lowerCAmelCase = cutoffs + [vocab_size] _lowerCAmelCase = [0] + self.cutoffs _lowerCAmelCase = div_val _lowerCAmelCase = self.cutoffs[0] _lowerCAmelCase = len(self.cutoffs ) - 1 _lowerCAmelCase = self.shortlist_size + self.n_clusters _lowerCAmelCase = keep_order _lowerCAmelCase = [] _lowerCAmelCase = [] def A__ (self , lowerCamelCase ): '''simple docstring''' if self.n_clusters > 0: _lowerCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=lowerCamelCase , name="""cluster_weight""" ) _lowerCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=lowerCamelCase , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _lowerCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=lowerCamelCase , name=f"""out_projs_._{i}""" , ) self.out_projs.append(lowerCamelCase ) else: self.out_projs.append(lowerCamelCase ) _lowerCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=lowerCamelCase , name=f"""out_layers_._{i}_._weight""" , ) _lowerCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=lowerCamelCase , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _lowerCAmelCase , _lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase = self.d_embed // (self.div_val**i) _lowerCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=lowerCamelCase , name=f"""out_projs_._{i}""" ) self.out_projs.append(lowerCamelCase ) _lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=lowerCamelCase , name=f"""out_layers_._{i}_._weight""" , ) _lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=lowerCamelCase , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase ) @staticmethod def A__ (lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = x if proj is not None: _lowerCAmelCase = tf.einsum("""ibd,ed->ibe""" , lowerCamelCase , lowerCamelCase ) return tf.einsum("""ibd,nd->ibn""" , lowerCamelCase , lowerCamelCase ) + b @staticmethod def A__ (lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = shape_list(lowerCamelCase ) _lowerCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) _lowerCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = 0 if self.n_clusters == 0: _lowerCAmelCase = self._logit(lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _lowerCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase , logits=lowerCamelCase ) _lowerCAmelCase = tf.nn.log_softmax(lowerCamelCase , axis=-1 ) else: _lowerCAmelCase = shape_list(lowerCamelCase ) _lowerCAmelCase = [] _lowerCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _lowerCAmelCase , _lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _lowerCAmelCase = (target >= l_idx) & (target < r_idx) _lowerCAmelCase = tf.where(lowerCamelCase ) _lowerCAmelCase = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) - l_idx if self.div_val == 1: _lowerCAmelCase = self.out_layers[0][0][l_idx:r_idx] _lowerCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: _lowerCAmelCase = self.out_layers[i][0] _lowerCAmelCase = self.out_layers[i][1] if i == 0: _lowerCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) _lowerCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) _lowerCAmelCase = self._logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , self.out_projs[0] ) _lowerCAmelCase = tf.nn.log_softmax(lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _lowerCAmelCase = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self._gather_logprob(lowerCamelCase , lowerCamelCase ) else: _lowerCAmelCase = self._logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , self.out_projs[i] ) _lowerCAmelCase = tf.nn.log_softmax(lowerCamelCase ) _lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster _lowerCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase ) if target is not None: _lowerCAmelCase = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self._gather_logprob(lowerCamelCase , lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase , -cur_logprob , shape_list(lowerCamelCase ) ) _lowerCAmelCase = tf.concat(lowerCamelCase , axis=-1 ) if target is not None: if return_mean: _lowerCAmelCase = tf.reduce_mean(lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
366
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def A__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return ("This is a test", "This is a test") def A__ (self ): '''simple docstring''' _lowerCAmelCase = """</s>""" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(lowerCamelCase ) , 1_103 ) def A__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowerCAmelCase = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _lowerCAmelCase = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 _lowerCAmelCase = """To ensure a smooth flow of bank resolutions.""" _lowerCAmelCase = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = ["""This is going to be way too long.""" * 150, """short example"""] _lowerCAmelCase = ["""not super long but more than 5 tokens""", """tiny"""] _lowerCAmelCase = self._large_tokenizer(lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) _lowerCAmelCase = self._large_tokenizer( text_target=lowerCamelCase , max_length=5 , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def A__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(lowerCamelCase , offset=0 , mask_token_sent=lowerCamelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return ("This is a test", "This is a test") def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = ["""This is going to be way too long.""" * 1_000, """short example"""] _lowerCAmelCase = ["""not super long but more than 5 tokens""", """tiny"""] _lowerCAmelCase = self._large_tokenizer(lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) _lowerCAmelCase = self._large_tokenizer( text_target=lowerCamelCase , max_length=5 , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase ) == 2 # input_ids, attention_mask. def A__ (self ): '''simple docstring''' _lowerCAmelCase = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _lowerCAmelCase = self._large_tokenizer(lowerCamelCase ).input_ids self.assertListEqual( lowerCamelCase , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
367
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=64 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = vocab_size - 1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def A__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = True return config, input_ids, input_mask, token_labels def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = GPTNeoXModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase ) _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = True _lowerCAmelCase = GPTNeoXModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = GPTNeoXForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = GPTNeoXForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = GPTNeoXForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = True _lowerCAmelCase = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) _lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) _lowerCAmelCase = output_from_no_past["""hidden_states"""][0] _lowerCAmelCase = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["""hidden_states"""][0] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = GPTNeoXModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def A__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def A__ (self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) _lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = GPTNeoXModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() _lowerCAmelCase = original_model(lowerCamelCase ).last_hidden_state _lowerCAmelCase = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = {"""type""": scaling_type, """factor""": 10.0} _lowerCAmelCase = GPTNeoXModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() _lowerCAmelCase = scaled_model(lowerCamelCase ).last_hidden_state _lowerCAmelCase = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: _lowerCAmelCase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase ) _lowerCAmelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _lowerCAmelCase = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" _lowerCAmelCase = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=20 ) _lowerCAmelCase = tokenizer.batch_decode(lowerCamelCase )[0] self.assertEqual(lowerCamelCase , lowerCamelCase )
368
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
0
"""simple docstring""" import os import sys SCREAMING_SNAKE_CASE : Dict = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) SCREAMING_SNAKE_CASE : Dict = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def __UpperCAmelCase ( *snake_case_ : List[str] , **snake_case_ : List[str] ) -> Optional[int]: """simple docstring""" return AutoConfig.from_pretrained(*snake_case_ , **snake_case_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __UpperCAmelCase ( *snake_case_ : Any , **snake_case_ : Optional[Any] ) -> Dict: """simple docstring""" return AutoTokenizer.from_pretrained(*snake_case_ , **snake_case_ ) @add_start_docstrings(AutoModel.__doc__ ) def __UpperCAmelCase ( *snake_case_ : Optional[Any] , **snake_case_ : Dict ) -> Dict: """simple docstring""" return AutoModel.from_pretrained(*snake_case_ , **snake_case_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __UpperCAmelCase ( *snake_case_ : Union[str, Any] , **snake_case_ : str ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*snake_case_ , **snake_case_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __UpperCAmelCase ( *snake_case_ : Optional[int] , **snake_case_ : List[str] ) -> List[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*snake_case_ , **snake_case_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __UpperCAmelCase ( *snake_case_ : Tuple , **snake_case_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*snake_case_ , **snake_case_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __UpperCAmelCase ( *snake_case_ : Dict , **snake_case_ : List[str] ) -> Optional[Any]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*snake_case_ , **snake_case_ )
369
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
0
"""simple docstring""" import torch from torch import nn class __lowerCamelCase ( nn.Module ): def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1 , lowerCamelCase=False ): '''simple docstring''' super().__init__() _lowerCAmelCase = n_token _lowerCAmelCase = d_embed _lowerCAmelCase = d_proj _lowerCAmelCase = cutoffs + [n_token] _lowerCAmelCase = [0] + self.cutoffs _lowerCAmelCase = div_val _lowerCAmelCase = self.cutoffs[0] _lowerCAmelCase = len(self.cutoffs ) - 1 _lowerCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _lowerCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _lowerCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _lowerCAmelCase = nn.ModuleList() _lowerCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase , lowerCamelCase ) ) ) else: self.out_projs.append(lowerCamelCase ) self.out_layers.append(nn.Linear(lowerCamelCase , lowerCamelCase ) ) else: for i in range(len(self.cutoffs ) ): _lowerCAmelCase , _lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase , lowerCamelCase ) ) ) self.out_layers.append(nn.Linear(lowerCamelCase , r_idx - l_idx ) ) _lowerCAmelCase = keep_order def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if proj is None: _lowerCAmelCase = nn.functional.linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _lowerCAmelCase = nn.functional.linear(lowerCamelCase , proj.t().contiguous() ) _lowerCAmelCase = nn.functional.linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A__ (self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n _lowerCAmelCase = hidden[..., :-1, :].contiguous() _lowerCAmelCase = labels[..., 1:].contiguous() _lowerCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _lowerCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _lowerCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _lowerCAmelCase = self._compute_logit(lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _lowerCAmelCase = labels != -100 _lowerCAmelCase = torch.zeros_like(lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) _lowerCAmelCase = ( -nn.functional.log_softmax(lowerCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _lowerCAmelCase = nn.functional.log_softmax(lowerCamelCase , dim=-1 ) else: # construct weights and biases _lowerCAmelCase , _lowerCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _lowerCAmelCase , _lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _lowerCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _lowerCAmelCase = self.out_layers[i].weight _lowerCAmelCase = self.out_layers[i].bias if i == 0: _lowerCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _lowerCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCamelCase ) biases.append(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = weights[0], biases[0], self.out_projs[0] _lowerCAmelCase = self._compute_logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = nn.functional.log_softmax(lowerCamelCase , dim=1 ) if labels is None: _lowerCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _lowerCAmelCase = torch.zeros_like(lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] + self.cutoffs for i in range(len(lowerCamelCase ) - 1 ): _lowerCAmelCase , _lowerCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _lowerCAmelCase = (labels >= l_idx) & (labels < r_idx) _lowerCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _lowerCAmelCase = labels.index_select(0 , lowerCamelCase ) - l_idx _lowerCAmelCase = head_logprob.index_select(0 , lowerCamelCase ) _lowerCAmelCase = hidden.index_select(0 , lowerCamelCase ) else: _lowerCAmelCase = hidden if i == 0: if labels is not None: _lowerCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _lowerCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = weights[i], biases[i], self.out_projs[i] _lowerCAmelCase = self._compute_logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = nn.functional.log_softmax(lowerCamelCase , dim=1 ) _lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _lowerCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _lowerCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _lowerCAmelCase = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A__ (self , lowerCamelCase ): '''simple docstring''' if self.n_clusters == 0: _lowerCAmelCase = self._compute_logit(lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCamelCase , dim=-1 ) else: # construct weights and biases _lowerCAmelCase , _lowerCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _lowerCAmelCase , _lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _lowerCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _lowerCAmelCase = self.out_layers[i].weight _lowerCAmelCase = self.out_layers[i].bias if i == 0: _lowerCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _lowerCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCamelCase ) biases.append(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = weights[0], biases[0], self.out_projs[0] _lowerCAmelCase = self._compute_logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _lowerCAmelCase = nn.functional.log_softmax(lowerCamelCase , dim=1 ) _lowerCAmelCase = [0] + self.cutoffs for i in range(len(lowerCamelCase ) - 1 ): _lowerCAmelCase , _lowerCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _lowerCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = weights[i], biases[i], self.out_projs[i] _lowerCAmelCase = self._compute_logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = nn.functional.log_softmax(lowerCamelCase , dim=1 ) _lowerCAmelCase = head_logprob[:, -i] + tail_logprob_i _lowerCAmelCase = logprob_i return out
370
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 10**9 ) -> int: """simple docstring""" _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _lowerCAmelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[str] = logging.get_logger('''transformers.models.speecht5''') SCREAMING_SNAKE_CASE : List[str] = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } SCREAMING_SNAKE_CASE : Optional[Any] = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } SCREAMING_SNAKE_CASE : Optional[int] = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } SCREAMING_SNAKE_CASE : Optional[Any] = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } SCREAMING_SNAKE_CASE : Optional[Any] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } SCREAMING_SNAKE_CASE : Tuple = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } SCREAMING_SNAKE_CASE : Optional[Any] = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } SCREAMING_SNAKE_CASE : List[Any] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } SCREAMING_SNAKE_CASE : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } SCREAMING_SNAKE_CASE : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] SCREAMING_SNAKE_CASE : List[Any] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] SCREAMING_SNAKE_CASE : int = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] SCREAMING_SNAKE_CASE : List[Any] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Any , snake_case_ : Tuple ) -> List[str]: """simple docstring""" for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(snake_case_ , snake_case_ ) if weight_type is not None: _lowerCAmelCase = getattr(snake_case_ , snake_case_ ).shape else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "running_mean": _lowerCAmelCase = value elif weight_type == "running_var": _lowerCAmelCase = value elif weight_type == "num_batches_tracked": _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : str ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase = [] if task == "s2t": _lowerCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase = MAPPING_S2T _lowerCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _lowerCAmelCase = None _lowerCAmelCase = MAPPING_T2S _lowerCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _lowerCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCAmelCase = MAPPING_S2S _lowerCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(snake_case_ , snake_case_ ): logger.info(F"""{name} was ignored""" ) continue _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCAmelCase , _lowerCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: _lowerCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(snake_case_ )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , snake_case_ ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: _lowerCAmelCase = """weight""" elif "running_mean" in name: _lowerCAmelCase = """running_mean""" elif "running_var" in name: _lowerCAmelCase = """running_var""" elif "num_batches_tracked" in name: _lowerCAmelCase = """num_batches_tracked""" else: _lowerCAmelCase = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict ) -> int: """simple docstring""" _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : str=None , snake_case_ : Union[str, Any]=None , snake_case_ : str=None , ) -> Union[str, Any]: """simple docstring""" if config_path is not None: _lowerCAmelCase = SpeechTaConfig.from_pretrained(snake_case_ ) else: _lowerCAmelCase = SpeechTaConfig() if task == "s2t": _lowerCAmelCase = config.max_text_positions _lowerCAmelCase = SpeechTaForSpeechToText(snake_case_ ) elif task == "t2s": _lowerCAmelCase = 1876 _lowerCAmelCase = 600 _lowerCAmelCase = config.max_speech_positions _lowerCAmelCase = SpeechTaForTextToSpeech(snake_case_ ) elif task == "s2s": _lowerCAmelCase = 1876 _lowerCAmelCase = config.max_speech_positions _lowerCAmelCase = SpeechTaForSpeechToSpeech(snake_case_ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: _lowerCAmelCase = SpeechTaTokenizer(snake_case_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken("""<mask>""" , lstrip=snake_case_ , rstrip=snake_case_ ) _lowerCAmelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _lowerCAmelCase = SpeechTaFeatureExtractor() _lowerCAmelCase = SpeechTaProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(snake_case_ ) _lowerCAmelCase = torch.load(snake_case_ ) recursively_load_weights(fairseq_checkpoint["""model"""] , snake_case_ , snake_case_ ) model.save_pretrained(snake_case_ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(snake_case_ ) model.push_to_hub(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
351
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 class __lowerCamelCase ( __lowercase , __lowercase ): __UpperCamelCase = 1 @register_to_config def __init__(self , lowerCamelCase = 2_000 , lowerCamelCase = 0.15 , lowerCamelCase = 0.01 , lowerCamelCase = 1348.0 , lowerCamelCase = 1e-5 , lowerCamelCase = 1 , ): '''simple docstring''' _lowerCAmelCase = sigma_max # setable values _lowerCAmelCase = None self.set_sigmas(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' return sample def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase = torch.linspace(1 , lowerCamelCase , lowerCamelCase , device=lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase = torch.exp(torch.linspace(math.log(lowerCamelCase ) , math.log(lowerCamelCase ) , lowerCamelCase ) ) _lowerCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _lowerCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase = timesteps.to(self.discrete_sigmas.device ) _lowerCAmelCase = self.discrete_sigmas[timesteps].to(sample.device ) _lowerCAmelCase = self.get_adjacent_sigma(lowerCamelCase , lowerCamelCase ).to(sample.device ) _lowerCAmelCase = torch.zeros_like(lowerCamelCase ) _lowerCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _lowerCAmelCase = diffusion.unsqueeze(-1 ) _lowerCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCamelCase , device=sample.device , dtype=sample.dtype ) _lowerCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase , prev_sample_mean=lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _lowerCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _lowerCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _lowerCAmelCase = step_size.unsqueeze(-1 ) _lowerCAmelCase = sample + step_size * model_output _lowerCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = timesteps.to(original_samples.device ) _lowerCAmelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] _lowerCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) _lowerCAmelCase = noise + original_samples return noisy_samples def __len__(self ): '''simple docstring''' return self.config.num_train_timesteps
352
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(snake_case_ ) ) def __UpperCAmelCase ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> bool: """simple docstring""" if index == len(snake_case_ ): return True # Recursive Step for i in range(snake_case_ ): if valid_coloring(graph[index] , snake_case_ , snake_case_ ): # Color current vertex _lowerCAmelCase = i # Validate coloring if util_color(snake_case_ , snake_case_ , snake_case_ , index + 1 ): return True # Backtrack _lowerCAmelCase = -1 return False def __UpperCAmelCase ( snake_case_ : list[list[int]] , snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [-1] * len(snake_case_ ) if util_color(snake_case_ , snake_case_ , snake_case_ , 0 ): return colored_vertices return []
353
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan __SCREAMING_SNAKE_CASE : str = 6_3_7_8_1_3_7.0 __SCREAMING_SNAKE_CASE : Optional[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 __SCREAMING_SNAKE_CASE : Any = 6_3_7_8_1_3_7 def __UpperCAmelCase ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> float: """simple docstring""" _lowerCAmelCase = (AXIS_A - AXIS_B) / AXIS_A _lowerCAmelCase = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _lowerCAmelCase = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _lowerCAmelCase = radians(snake_case_ ) _lowerCAmelCase = radians(snake_case_ ) # Equation _lowerCAmelCase = sin((phi_a - phi_a) / 2 ) _lowerCAmelCase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _lowerCAmelCase = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
355
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : int = 4 ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = abs(snake_case_ ) or 4 return [[1 + x + y * row_size for x in range(snake_case_ )] for y in range(snake_case_ )] def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(snake_case_ ) ) # OR.. transpose(reverse_column(matrix)) def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(snake_case_ ) ) # OR.. reverse_column(reverse_row(matrix)) def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(snake_case_ ) ) # OR.. transpose(reverse_row(matrix)) def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = [list(snake_case_ ) for x in zip(*snake_case_ )] return matrix def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = matrix[::-1] return matrix def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = [x[::-1] for x in matrix] return matrix def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE : Dict = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE : List[str] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
0
from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
357
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=4 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxBertModelTester(self ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxBertModel.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase )
358
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : int = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple=None , snake_case_ : int=None , snake_case_ : int=None , snake_case_ : Dict=None , snake_case_ : int=None , snake_case_ : str=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _lowerCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowerCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowerCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=0.02 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = initializer_range def A__ (self ): '''simple docstring''' _lowerCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowerCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowerCAmelCase = shift_tokens_right(lowerCamelCase , 1 , 2 ) _lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase , ) _lowerCAmelCase = prepare_blenderbot_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(lowerCamelCase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = model.decode(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(lowerCamelCase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCamelCase ( unittest.TestCase ): __UpperCamelCase = 99 def A__ (self ): '''simple docstring''' _lowerCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _lowerCAmelCase = input_ids.shape[0] _lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_config_and_data() _lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase ) _lowerCAmelCase = lm_model(input_ids=lowerCamelCase ) _lowerCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase ) _lowerCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _lowerCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _lowerCAmelCase = lm_model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ) _lowerCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _lowerCAmelCase = shift_tokens_right(lowerCamelCase , 1 , 2 ) _lowerCAmelCase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum() _lowerCAmelCase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCamelCase ( __lowercase , unittest.TestCase , __lowercase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxBlenderbotSmallModelTester(self ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase = encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase = encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _lowerCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase , lowerCamelCase , lowerCamelCase ): return model.decode( decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase = decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase = decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowerCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id _lowerCAmelCase = model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase )
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="resnet50" , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = out_indices if out_indices is not None else [4] _lowerCAmelCase = stage_names _lowerCAmelCase = out_features _lowerCAmelCase = backbone _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = is_training def A__ (self ): '''simple docstring''' _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = self.get_config() return config, pixel_values def A__ (self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TimmBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = (TimmBackbone,) if is_torch_available() else () __UpperCamelCase = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = TimmBackboneModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def A__ (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ (self ): '''simple docstring''' _lowerCAmelCase = """resnet18""" _lowerCAmelCase = """microsoft/resnet-18""" _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase , use_timm_backbone=lowerCamelCase ) _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase , use_timm_backbone=lowerCamelCase , out_indices=[1, 2, 3] ) _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Safetensors is not supported by timm.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality _lowerCAmelCase = self.all_model_classes[0] _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) _lowerCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(**lowerCamelCase ) _lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models _lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(**lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowerCAmelCase = copy.deepcopy(lowerCamelCase ) _lowerCAmelCase = None _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(**lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowerCAmelCase = copy.deepcopy(lowerCamelCase ) _lowerCAmelCase = False _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(**lowerCamelCase )
361
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
0
"""simple docstring""" import qiskit def __UpperCAmelCase ( snake_case_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" _lowerCAmelCase = qubits # Using Aer's simulator _lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register _lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , snake_case_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , snake_case_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(snake_case_ ) ) , list(range(snake_case_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1000 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
362
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = """""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE : List[Any] = tuple[int, int] class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = pos_x _lowerCAmelCase = pos_y _lowerCAmelCase = (pos_y, pos_x) _lowerCAmelCase = goal_x _lowerCAmelCase = goal_y _lowerCAmelCase = g_cost _lowerCAmelCase = parent _lowerCAmelCase = self.calculate_heuristic() _lowerCAmelCase = self.g_cost + self.h_cost def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.pos_x - self.goal_x _lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase ) + abs(lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self , lowerCamelCase ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase ) _lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowerCamelCase ) _lowerCAmelCase = [self.start] _lowerCAmelCase = [] _lowerCAmelCase = False def A__ (self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase ) self.closed_nodes.append(lowerCamelCase ) _lowerCAmelCase = self.get_successors(lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path _lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase ) else: self.open_nodes.append(lowerCamelCase ) return [self.start.pos] def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] for action in delta: _lowerCAmelCase = parent.pos_x + action[1] _lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase , ) ) return successors def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = node _lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = AStar(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = AStar(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = False def A__ (self ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase , lowerCamelCase ) self.fwd_astar.closed_nodes.append(lowerCamelCase ) self.bwd_astar.closed_nodes.append(lowerCamelCase ) _lowerCAmelCase = current_bwd_node _lowerCAmelCase = current_fwd_node _lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path _lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase ) else: astar.open_nodes.append(lowerCamelCase ) return [self.fwd_astar.start.pos] def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.fwd_astar.retrace_path(lowerCamelCase ) _lowerCAmelCase = self.bwd_astar.retrace_path(lowerCamelCase ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE : List[str] = (0, 0) SCREAMING_SNAKE_CASE : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() SCREAMING_SNAKE_CASE : Any = AStar(init, goal) SCREAMING_SNAKE_CASE : str = a_star.search() SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : List[str] = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE : Any = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Dict , **snake_case_ : int ) -> Dict: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Union[str, Any] , **snake_case_ : str ) -> List[str]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[str] , **snake_case_ : int ) -> List[str]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : List[Any] ) -> int: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Optional[Any] , **snake_case_ : List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] )
365
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'new-model' if is_tf_available(): class __lowerCamelCase ( __lowercase ): __UpperCamelCase = NewModelConfig @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = """bert-base-cased""" _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = """bert-base-cased""" _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow @require_tensorflow_probability def A__ (self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = copy.deepcopy(model.config ) _lowerCAmelCase = ["""FunnelBaseModel"""] _lowerCAmelCase = TFAutoModel.from_config(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase ) _lowerCAmelCase = TFAutoModel.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' try: AutoConfig.register("""new-model""" , lowerCamelCase ) _lowerCAmelCase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase ): auto_class.register(lowerCamelCase , lowerCamelCase ) auto_class.register(lowerCamelCase , lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase ): auto_class.register(lowerCamelCase , lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase = BertModelTester(self ).get_config() _lowerCAmelCase = NewModelConfig(**tiny_config.to_dict() ) _lowerCAmelCase = auto_class.from_config(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase ) _lowerCAmelCase = auto_class.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def A__ (self ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ): _lowerCAmelCase = TFAutoModel.from_pretrained("""bert-base""" ) def A__ (self ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _lowerCAmelCase = TFAutoModel.from_pretrained(lowerCamelCase , revision="""aaaaaa""" ) def A__ (self ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def A__ (self ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase , """Use `from_pt=True` to load this model""" ): _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _lowerCAmelCase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: _lowerCAmelCase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
366
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Dict = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE : str = '''src/transformers''' SCREAMING_SNAKE_CASE : List[str] = '''docs/source/en/tasks''' def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Any ) -> Union[str, Any]: """simple docstring""" with open(snake_case_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.readlines() # Find the start prompt. _lowerCAmelCase = 0 while not lines[start_index].startswith(snake_case_ ): start_index += 1 start_index += 1 _lowerCAmelCase = start_index while not lines[end_index].startswith(snake_case_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : List[str] = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE : List[Any] = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE : Dict = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __UpperCAmelCase ( snake_case_ : Tuple ) -> List[str]: """simple docstring""" _lowerCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _lowerCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case_ , set() ) _lowerCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : str=False ) -> List[str]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = _find_text_in_file( filename=os.path.join(snake_case_ , snake_case_ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) _lowerCAmelCase = get_model_list_for_task(snake_case_ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case_ , snake_case_ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
368
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : list[float] ) -> float: """simple docstring""" _lowerCAmelCase = 0.0_0 _lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: _lowerCAmelCase = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(snake_case_ ) first_sum += 1 / float(snake_case_ ) index += 1 return 1 / first_sum def __UpperCAmelCase ( snake_case_ : list[float] ) -> float: """simple docstring""" _lowerCAmelCase = 0.0_0 _lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCAmelCase = F"""Resistor at index {index} has a negative value!""" raise ValueError(snake_case_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'efficientnet' def __init__(self , lowerCamelCase = 3 , lowerCamelCase = 600 , lowerCamelCase = 2.0 , lowerCamelCase = 3.1 , lowerCamelCase = 8 , lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase = [] , lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase = 0.25 , lowerCamelCase = "swish" , lowerCamelCase = 2_560 , lowerCamelCase = "mean" , lowerCamelCase = 0.02 , lowerCamelCase = 0.001 , lowerCamelCase = 0.99 , lowerCamelCase = 0.5 , lowerCamelCase = 0.2 , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = width_coefficient _lowerCAmelCase = depth_coefficient _lowerCAmelCase = depth_divisor _lowerCAmelCase = kernel_sizes _lowerCAmelCase = in_channels _lowerCAmelCase = out_channels _lowerCAmelCase = depthwise_padding _lowerCAmelCase = strides _lowerCAmelCase = num_block_repeats _lowerCAmelCase = expand_ratios _lowerCAmelCase = squeeze_expansion_ratio _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dim _lowerCAmelCase = pooling_type _lowerCAmelCase = initializer_range _lowerCAmelCase = batch_norm_eps _lowerCAmelCase = batch_norm_momentum _lowerCAmelCase = dropout_rate _lowerCAmelCase = drop_connect_rate _lowerCAmelCase = sum(lowerCamelCase ) * 4 class __lowerCamelCase ( __lowercase ): __UpperCamelCase = version.parse('1.11' ) @property def A__ (self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ (self ): '''simple docstring''' return 1e-5
370
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE : Any = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE : Tuple = { '''facebook/nllb-large-en-ro''': 1_0_2_4, '''facebook/nllb-200-distilled-600M''': 1_0_2_4, } # fmt: off SCREAMING_SNAKE_CASE : Optional[Any] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = NllbTokenizer __UpperCamelCase = [] __UpperCamelCase = [] def __init__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token _lowerCAmelCase = legacy_behaviour super().__init__( vocab_file=lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase , additional_special_tokens=lowerCamelCase , legacy_behaviour=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True _lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) _lowerCAmelCase = tgt_lang_id return inputs def A__ (self , lowerCamelCase , lowerCamelCase = "eng_Latn" , lowerCamelCase = None , lowerCamelCase = "fra_Latn" , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def A__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
371
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 3 , snake_case_ : int = 7 , snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 1 for current_denominator in range(1 , limit + 1 ): _lowerCAmelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _lowerCAmelCase = current_numerator _lowerCAmelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
350
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import random from typing import Any def __UpperCAmelCase ( snake_case_ : list ) -> list[Any]: for _ in range(len(snake_case_ ) ): _lowerCAmelCase = random.randint(0 , len(snake_case_ ) - 1 ) _lowerCAmelCase = random.randint(0 , len(snake_case_ ) - 1 ) _lowerCAmelCase , _lowerCAmelCase = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : List[Any] = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
352
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import pytest SCREAMING_SNAKE_CASE : Optional[Any] = '''__dummy_dataset1__''' SCREAMING_SNAKE_CASE : List[str] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = dataset_loading_script_name _lowerCAmelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=snake_case_ ) _lowerCAmelCase = script_dir / F"""{script_name}.py""" with open(snake_case_ , """w""" ) as f: f.write(snake_case_ ) return str(snake_case_ )
353
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __SCREAMING_SNAKE_CASE : Any = '''ABAABA''' __SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' __SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) __SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
355
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
0
from collections.abc import Generator from math import sin def __UpperCAmelCase ( snake_case_ : bytes ) -> bytes: """simple docstring""" if len(snake_case_ ) != 32: raise ValueError("""Input must be of length 32""" ) _lowerCAmelCase = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __UpperCAmelCase ( snake_case_ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _lowerCAmelCase = format(snake_case_ , """08x""" )[-8:] _lowerCAmelCase = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def __UpperCAmelCase ( snake_case_ : bytes ) -> bytes: """simple docstring""" _lowerCAmelCase = B"""""" for char in message: bit_string += format(snake_case_ , """08b""" ).encode("""utf-8""" ) _lowerCAmelCase = format(len(snake_case_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(snake_case_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __UpperCAmelCase ( snake_case_ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(snake_case_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(snake_case_ ) , 512 ): _lowerCAmelCase = bit_string[pos : pos + 512] _lowerCAmelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _lowerCAmelCase = format(snake_case_ , """032b""" ) _lowerCAmelCase = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(snake_case_ , 2 ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __UpperCAmelCase ( snake_case_ : bytes ) -> bytes: """simple docstring""" _lowerCAmelCase = preprocess(snake_case_ ) _lowerCAmelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _lowerCAmelCase = 0X67_452_301 _lowerCAmelCase = 0Xef_cda_b89 _lowerCAmelCase = 0X98_bad_cfe _lowerCAmelCase = 0X10_325_476 _lowerCAmelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(snake_case_ ): _lowerCAmelCase = aa _lowerCAmelCase = ba _lowerCAmelCase = ca _lowerCAmelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _lowerCAmelCase = d ^ (b & (c ^ d)) _lowerCAmelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _lowerCAmelCase = c ^ (d & (b ^ c)) _lowerCAmelCase = (5 * i + 1) % 16 elif i <= 47: _lowerCAmelCase = b ^ c ^ d _lowerCAmelCase = (3 * i + 5) % 16 else: _lowerCAmelCase = c ^ (b | not_aa(snake_case_ )) _lowerCAmelCase = (7 * i) % 16 _lowerCAmelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 _lowerCAmelCase = d _lowerCAmelCase = c _lowerCAmelCase = b _lowerCAmelCase = sum_aa(snake_case_ , left_rotate_aa(snake_case_ , shift_amounts[i] ) ) # Add hashed chunk to running total _lowerCAmelCase = sum_aa(snake_case_ , snake_case_ ) _lowerCAmelCase = sum_aa(snake_case_ , snake_case_ ) _lowerCAmelCase = sum_aa(snake_case_ , snake_case_ ) _lowerCAmelCase = sum_aa(snake_case_ , snake_case_ ) _lowerCAmelCase = reformat_hex(snake_case_ ) + reformat_hex(snake_case_ ) + reformat_hex(snake_case_ ) + reformat_hex(snake_case_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ['image_processor', 'tokenizer'] __UpperCamelCase = 'BlipImageProcessor' __UpperCamelCase = ('BertTokenizer', 'BertTokenizerFast') def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = False super().__init__(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self.image_processor def __call__(self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _lowerCAmelCase = self.tokenizer _lowerCAmelCase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding # add pixel_values _lowerCAmelCase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) if text is not None: _lowerCAmelCase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) else: _lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
358
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase = SwinConfig() _lowerCAmelCase = swin_name.split("""_""" ) _lowerCAmelCase = name_split[1] _lowerCAmelCase = int(name_split[4] ) _lowerCAmelCase = int(name_split[3][-1] ) if model_size == "tiny": _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 6, 2) _lowerCAmelCase = (3, 6, 12, 24) elif model_size == "small": _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (3, 6, 12, 24) elif model_size == "base": _lowerCAmelCase = 128 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (4, 8, 16, 32) else: _lowerCAmelCase = 192 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (6, 12, 24, 48) if "in22k" in swin_name: _lowerCAmelCase = 21841 else: _lowerCAmelCase = 1000 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = img_size _lowerCAmelCase = num_classes _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size return config def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Dict: """simple docstring""" if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: _lowerCAmelCase = """encoder.""" + name if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": _lowerCAmelCase = """layernorm.weight""" if name == "norm.bias": _lowerCAmelCase = """layernorm.bias""" if "head" in name: _lowerCAmelCase = name.replace("""head""" , """classifier""" ) else: _lowerCAmelCase = """swin.""" + name return name def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(snake_case_ ) if "mask" in key: continue elif "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[1] ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[ dim : dim * 2, : ] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[ :dim ] _lowerCAmelCase = val[ dim : dim * 2 ] _lowerCAmelCase = val[ -dim: ] else: _lowerCAmelCase = val return orig_state_dict def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Optional[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = timm.create_model(snake_case_ , pretrained=snake_case_ ) timm_model.eval() _lowerCAmelCase = get_swin_config(snake_case_ ) _lowerCAmelCase = SwinForImageClassification(snake_case_ ) model.eval() _lowerCAmelCase = convert_state_dict(timm_model.state_dict() , snake_case_ ) model.load_state_dict(snake_case_ ) _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) _lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) _lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""pt""" ) _lowerCAmelCase = timm_model(inputs["""pixel_values"""] ) _lowerCAmelCase = model(**snake_case_ ).logits assert torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' super().__init__( lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = field _lowerCAmelCase = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths} _lowerCAmelCase = Json( cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , field=lowerCamelCase , **lowerCamelCase , ) def A__ (self ): '''simple docstring''' if self.streaming: _lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , ) _lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) _lowerCAmelCase = dataset _lowerCAmelCase = path_or_buf _lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase = num_proc _lowerCAmelCase = """utf-8""" _lowerCAmelCase = to_json_kwargs def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.to_json_kwargs.pop("""path_or_buf""" , lowerCamelCase ) _lowerCAmelCase = self.to_json_kwargs.pop("""orient""" , """records""" ) _lowerCAmelCase = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) _lowerCAmelCase = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) _lowerCAmelCase = self.to_json_kwargs.pop("""compression""" , lowerCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCamelCase ) as buffer: _lowerCAmelCase = self._write(file_obj=lowerCamelCase , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" """ was passed. Please provide a local path instead.""" ) _lowerCAmelCase = self._write( file_obj=self.path_or_buf , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **self.to_json_kwargs ) return written def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = args _lowerCAmelCase = query_table( table=self.dataset.data , key=slice(lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCAmelCase = batch.to_pandas().to_json( path_or_buf=lowerCamelCase , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **lowerCamelCase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _lowerCAmelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase ) else: _lowerCAmelCase , _lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCamelCase , lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCamelCase ) return written
360
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
0