code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
716
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
snake_case__ : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Return True if there is node that has not iterated. __lowercase = [False] * len(_SCREAMING_SNAKE_CASE ) __lowercase = [s] __lowercase = True while queue: __lowercase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_SCREAMING_SNAKE_CASE ) __lowercase = True __lowercase = u return visited[t] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = [-1] * (len(_SCREAMING_SNAKE_CASE )) __lowercase = 0 __lowercase = [] __lowercase = [i[:] for i in graph] # Record original cut, copy. while bfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = float("Inf" ) __lowercase = sink while s != source: # Find the minimum value in select path __lowercase = min(_SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) __lowercase = parent[s] max_flow += path_flow __lowercase = sink while v != source: __lowercase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase = parent[v] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
718
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModel.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModel.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForPreTraining.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) __lowercase , __lowercase = TFAutoModelForCausalLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) __lowercase , __lowercase = AutoModelForCausalLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelWithLMHead.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) __lowercase , __lowercase = TFAutoModelForMaskedLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForMaskedLM.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) __lowercase , __lowercase = AutoModelForMaskedLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : str ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) __lowercase , __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) __lowercase , __lowercase = AutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForQuestionAnswering.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) __lowercase = AutoModelWithLMHead.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) __lowercase = AutoModelWithLMHead.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 )
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) snake_case__ : List[Any] = _symbol_database.Default() snake_case__ : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) snake_case__ : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: snake_case__ : Dict = None snake_case__ : List[Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" snake_case__ : Any = 45 snake_case__ : Any = 15_81 snake_case__ : Any = 15_17 snake_case__ : Tuple = 15_70 snake_case__ : Dict = 15_84 snake_case__ : Any = 17_93 snake_case__ : Union[str, Any] = 17_95 snake_case__ : Dict = 19_16 snake_case__ : Any = 18_64 snake_case__ : Union[str, Any] = 19_05 snake_case__ : Optional[int] = 19_19 snake_case__ : Union[str, Any] = 24_29 snake_case__ : List[str] = 22_08 snake_case__ : Dict = 24_18 snake_case__ : Any = 23_23 snake_case__ : Optional[int] = 24_07 # @@protoc_insertion_point(module_scope)
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
from sklearn.metrics import recall_score import datasets snake_case__ : Optional[int] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ snake_case__ : int = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ snake_case__ : int = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[Any]=1 , lowerCamelCase : List[str]="binary" , lowerCamelCase : Tuple=None , lowerCamelCase : Tuple="warn" , ): '''simple docstring''' __lowercase = recall_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , ) return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch snake_case__ : int = random.Random() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str]=7 , lowerCamelCase : Optional[int]=400 , lowerCamelCase : Union[str, Any]=2_000 , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : Optional[int]=160 , lowerCamelCase : Union[str, Any]=8 , lowerCamelCase : str=0.0 , lowerCamelCase : Dict=4_000 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : int=True , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = padding_value __lowercase = sampling_rate __lowercase = return_attention_mask __lowercase = do_normalize __lowercase = feature_size __lowercase = chunk_length __lowercase = hop_length def _snake_case ( self : str ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self : Union[str, Any] , lowerCamelCase : int=False , lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' def _flatten(lowerCamelCase : Any ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __lowercase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = WhisperFeatureExtractor if is_speech_available() else None def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = WhisperFeatureExtractionTester(self ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = feat_extract_first.save_pretrained(lowerCamelCase )[0] check_json_file_has_correct_format(lowerCamelCase ) __lowercase = self.feature_extraction_class.from_pretrained(lowerCamelCase ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowerCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCamelCase ) __lowercase = self.feature_extraction_class.from_json_file(lowerCamelCase ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(lowerCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features __lowercase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowercase = np.asarray(lowerCamelCase ) __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test truncation required __lowercase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] __lowercase = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowercase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs_truncated] __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features __lowercase = feature_extractor(lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def _snake_case ( self : List[Any] ): '''simple docstring''' import torch __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(100 , 32 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowercase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowercase = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = WhisperFeatureExtractor() __lowercase = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase , atol=1e-4 ) ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = self._load_datasamples(1 )[0] __lowercase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue __lowercase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase )[0] self.assertTrue(np.all(np.mean(lowerCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase ) - 1 ) < 1e-3 ) )
700
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : List[str] = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ["""PoolFormerFeatureExtractor"""] snake_case__ : Optional[int] = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys snake_case__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = [], [] while len(_SCREAMING_SNAKE_CASE ) > 1: __lowercase , __lowercase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) start.append(_SCREAMING_SNAKE_CASE ) end.append(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": snake_case__ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ : Dict = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE = 2_0_0 ): __lowercase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] __lowercase = [0] * (pence + 1) __lowercase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_SCREAMING_SNAKE_CASE , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
703
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowercase = [[float("inf" ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): __lowercase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __lowercase = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": snake_case__ : Dict = int(input("""Enter number of vertices: """)) snake_case__ : str = int(input("""Enter number of edges: """)) snake_case__ : str = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): snake_case__ : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) snake_case__ : Union[str, Any] = int(input("""Enter source:""")) snake_case__ : Optional[Any] = int(input("""Enter destination:""")) snake_case__ : int = float(input("""Enter weight:""")) snake_case__ : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
704
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
0
from pathlib import Path import fire from tqdm import tqdm def snake_case_ ( _SCREAMING_SNAKE_CASE="ro" , _SCREAMING_SNAKE_CASE="en" , _SCREAMING_SNAKE_CASE="wmt16" , _SCREAMING_SNAKE_CASE=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __lowercase = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) __lowercase = datasets.load_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if save_dir is None: __lowercase = F"""{dataset}-{pair}""" __lowercase = Path(_SCREAMING_SNAKE_CASE ) save_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __lowercase = "val" if split == "validation" else split __lowercase = save_dir.joinpath(F"""{fn}.source""" ) __lowercase = save_dir.joinpath(F"""{fn}.target""" ) __lowercase = src_path.open("w+" ) __lowercase = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowercase = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex snake_case__ : List[Any] = logging.getLogger(__name__) class _A : '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' __lowercase = False def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): '''simple docstring''' if not self.initialized: __lowercase = RagRetriever( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) __lowercase = True def _snake_case ( self : Dict ): '''simple docstring''' self.retriever.index.init_index() def _snake_case ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase , __lowercase = self.retriever._main_retrieve(lowerCamelCase , lowerCamelCase ) return doc_ids, retrieved_doc_embeds class _A ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCamelCase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) __lowercase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for worker in self.retrieval_workers ] ) def _snake_case ( self : Tuple ): '''simple docstring''' logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Tuple ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowercase , __lowercase = ray.get(random_worker.retrieve.remote(lowerCamelCase , lowerCamelCase ) ) else: __lowercase , __lowercase = self._main_retrieve(lowerCamelCase , lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase ) @classmethod def _snake_case ( cls : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : int ): '''simple docstring''' return super(lowerCamelCase , cls ).get_tokenizers(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) @classmethod def _snake_case ( cls : Optional[int] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : str=None , **lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = kwargs.pop("config" , lowerCamelCase ) or RagConfig.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = RagTokenizer.from_pretrained(lowerCamelCase , config=lowerCamelCase ) __lowercase = rag_tokenizer.question_encoder __lowercase = rag_tokenizer.generator if indexed_dataset is not None: __lowercase = "custom" __lowercase = CustomHFIndex(config.retrieval_vector_size , lowerCamelCase ) else: __lowercase = cls._build_index(lowerCamelCase ) return cls( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , retrieval_workers=lowerCamelCase , index=lowerCamelCase , )
706
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ : Optional[int] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __lowercase = value else: __lowercase = value return new_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:2_5_6, :] __lowercase = in_proj_bias[:2_5_6] __lowercase = in_proj_weight[2_5_6:5_1_2, :] __lowercase = in_proj_bias[2_5_6:5_1_2] __lowercase = in_proj_weight[-2_5_6:, :] __lowercase = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:2_5_6, :] __lowercase = in_proj_bias[:2_5_6] __lowercase = in_proj_weight[2_5_6:5_1_2, :] __lowercase = in_proj_bias[2_5_6:5_1_2] __lowercase = in_proj_weight[-2_5_6:, :] __lowercase = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention __lowercase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowercase = in_proj_weight_cross_attn[:2_5_6, :] __lowercase = in_proj_bias_cross_attn[:2_5_6] __lowercase = in_proj_weight_cross_attn[2_5_6:5_1_2, :] __lowercase = in_proj_bias_cross_attn[2_5_6:5_1_2] __lowercase = in_proj_weight_cross_attn[-2_5_6:, :] __lowercase = in_proj_bias_cross_attn[-2_5_6:] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = image.size __lowercase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = 8_0_0 if "detection" in checkpoint_url else 1_0_0_0 __lowercase = target_max_size / current_max_size __lowercase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = F.to_tensor(_SCREAMING_SNAKE_CASE ) __lowercase = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("Converting model..." ) # load original state dict __lowercase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val # create HuggingFace model and load state dict __lowercase = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __lowercase = 1_5 __lowercase = 2 __lowercase = {0: "table", 1: "table rotated"} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_2_5 __lowercase = 6 __lowercase = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = DetrImageProcessor( format="coco_detection" , max_size=8_0_0 if "detection" in checkpoint_url else 1_0_0_0 ) __lowercase = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion __lowercase = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" __lowercase = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_SCREAMING_SNAKE_CASE ) __lowercase = Image.open(_SCREAMING_SNAKE_CASE ).convert("RGB" ) __lowercase = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) __lowercase = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: __lowercase = (1, 1_5, 3) __lowercase = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) __lowercase = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: __lowercase = (1, 1_2_5, 7) __lowercase = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) __lowercase = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) __lowercase = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : List[str] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
707
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = ["""image_processor""", """tokenizer"""] _snake_case : Dict = """BlipImageProcessor""" _snake_case : Tuple = """AutoTokenizer""" def __init__( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = False super().__init__(lowerCamelCase , lowerCamelCase ) __lowercase = self.image_processor def __call__( self : Optional[int] , lowerCamelCase : ImageInput = None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __lowercase = self.tokenizer __lowercase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding # add pixel_values __lowercase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) if text is not None: __lowercase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) else: __lowercase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def _snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Optional[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
708
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case__ : Dict = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : float , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = feature_size __lowercase = sampling_rate __lowercase = padding_value __lowercase = kwargs.pop("padding_side" , "right" ) __lowercase = kwargs.pop("return_attention_mask" , lowerCamelCase ) super().__init__(**lowerCamelCase ) def _snake_case ( self : Any , lowerCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCamelCase : Union[bool, str, PaddingStrategy] = True , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) __lowercase = processed_features[self.model_input_names[0]] __lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase ) == 0: if return_attention_mask: __lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowercase = required_input[0] if isinstance(lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase ): __lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase ): __lowercase = "tf" elif is_torch_tensor(lowerCamelCase ): __lowercase = "pt" elif isinstance(lowerCamelCase , (int, float, list, tuple, np.ndarray) ): __lowercase = "np" else: raise ValueError( f"""type of {first_element} unknown: {type(lowerCamelCase )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowercase = to_numpy(lowerCamelCase ) else: __lowercase = [to_numpy(lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy __lowercase = self._get_padding_strategies(padding=lowerCamelCase , max_length=lowerCamelCase ) __lowercase = processed_features[self.model_input_names[0]] __lowercase = len(lowerCamelCase ) if not all(len(lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __lowercase = [] for i in range(lowerCamelCase ): __lowercase = {k: v[i] for k, v in processed_features.items()} # truncation __lowercase = self._truncate( lowerCamelCase , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , truncation=lowerCamelCase , ) truncated_inputs.append(lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowercase = PaddingStrategy.MAX_LENGTH __lowercase = {} for i in range(lowerCamelCase ): # padding __lowercase = self._pad( truncated_inputs[i] , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: __lowercase = [] if value.dtype is np.dtype(np.floataa ): __lowercase = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase ) return BatchFeature(lowerCamelCase , tensor_type=lowerCamelCase ) def _snake_case ( self : Optional[int] , lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowercase = len(lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowercase = np.ones(len(lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: __lowercase = max_length - len(lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: __lowercase = np.pad( processed_features["attention_mask"] , (0, difference) ) __lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowercase = np.pad( lowerCamelCase , lowerCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowercase = np.pad( processed_features["attention_mask"] , (difference, 0) ) __lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowercase = np.pad( lowerCamelCase , lowerCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _snake_case ( self : int , lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowercase = len(lowerCamelCase ) > max_length if needs_to_be_truncated: __lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowercase = processed_features["attention_mask"][:max_length] return processed_features def _snake_case ( self : List[str] , lowerCamelCase : Tuple=False , lowerCamelCase : str=None ): '''simple docstring''' if padding is not False: if padding is True: __lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = PaddingStrategy(lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = padding else: __lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
709
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class _A ( _lowercase ): '''simple docstring''' _snake_case : int = """WhisperFeatureExtractor""" _snake_case : Tuple = """WhisperTokenizer""" def __init__( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(lowerCamelCase , lowerCamelCase ) __lowercase = self.feature_extractor __lowercase = False def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self : str , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Optional[int] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __lowercase = kwargs.pop("audio" , lowerCamelCase ) __lowercase = kwargs.pop("sampling_rate" , lowerCamelCase ) __lowercase = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __lowercase = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __lowercase = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __lowercase = encodings["input_ids"] return inputs def _snake_case ( self : Union[str, Any] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , *lowerCamelCase : List[str] , **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : List[Any]="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
710
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
0
import os import sys import unittest snake_case__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path snake_case__ : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""") snake_case__ : Tuple = """ {0} = None """ snake_case__ : List[str] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ snake_case__ : Dict = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowercase = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(lowerCamelCase ) __lowercase = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(lowerCamelCase , "tokenizers" ) __lowercase = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(lowerCamelCase , "tensorflow_text" ) __lowercase = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tokenizers" ) __lowercase = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tensorflow_text" ) __lowercase = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(lowerCamelCase , "sentencepiece_and_tokenizers_and_vision" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowerCamelCase ) self.assertIn("tensorflow_text" , lowerCamelCase ) self.assertIn("sentencepiece_and_tokenizers" , lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowerCamelCase , "\nCONSTANT = None\n" ) __lowercase = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowerCamelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __lowercase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" __lowercase = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" __lowercase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowerCamelCase )
711
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=8 ): __lowercase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowercase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _A ( _lowercase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : DDPMScheduler , lowerCamelCase : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): '''simple docstring''' if latents is None: __lowercase = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowercase = latents.to(lowerCamelCase ) __lowercase = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : List[Any] , lowerCamelCase : List[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) __lowercase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple , lowerCamelCase : Any=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : List[Any] ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : Any , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 100 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase = self._execution_device __lowercase = guidance_scale > 1.0 if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = torch.cat(lowerCamelCase , dim=0 ) __lowercase = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) __lowercase = self.scheduler.timesteps __lowercase = self.unet.config.in_channels __lowercase , __lowercase = downscale_height_and_width(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent __lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {"image_embeds": image_embeds} __lowercase = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , )[0] # post-processing __lowercase = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
712
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _A ( _lowercase ): '''simple docstring''' def __init__( self : int , *lowerCamelCase : Any , **lowerCamelCase : Dict ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type(lowerCamelCase ) def __call__( self : Optional[Any] , lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase : Any ): '''simple docstring''' return super().__call__(lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Union[str, Any] , **lowerCamelCase : Any ): '''simple docstring''' return {}, {}, {} def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = load_image(lowerCamelCase ) __lowercase = image.size __lowercase = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def _snake_case ( self : int , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = self.model(**lowerCamelCase ) return model_outputs def _snake_case ( self : int , lowerCamelCase : Any ): '''simple docstring''' __lowercase = model_outputs.predicted_depth __lowercase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=lowerCamelCase ) __lowercase = prediction.squeeze().cpu().numpy() __lowercase = (output * 255 / np.max(lowerCamelCase )).astype("uint8" ) __lowercase = Image.fromarray(lowerCamelCase ) __lowercase = {} __lowercase = predicted_depth __lowercase = depth return output_dict
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC snake_case__ : Tuple = parse(importlib.metadata.version("""torch""")) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) __lowercase = STR_OPERATION_TO_FUNC[operation] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = parse(importlib.metadata.version(_SCREAMING_SNAKE_CASE ) ) return operation(_SCREAMING_SNAKE_CASE , parse(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
714
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Optional[Any] = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ["""LayoutLMv3FeatureExtractor"""] snake_case__ : List[str] = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys snake_case__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class _A ( _lowercase ): '''simple docstring''' _snake_case : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _snake_case : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) _snake_case : ClassVar[Features] = Features({"""labels""": ClassLabel} ) _snake_case : str = "text" _snake_case : str = "labels" def _snake_case ( self : str , lowerCamelCase : Any ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def _snake_case ( self : List[str] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
716
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser snake_case__ : Tuple = logging.getLogger(__name__) torch.set_grad_enabled(False) snake_case__ : int = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_0 , _SCREAMING_SNAKE_CASE=" " ): __lowercase = text.split(_SCREAMING_SNAKE_CASE ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_SCREAMING_SNAKE_CASE ): titles.append(title if title is not None else "" ) texts.append(_SCREAMING_SNAKE_CASE ) return {"title": titles, "text": texts} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" )["input_ids"] __lowercase = ctx_encoder(input_ids.to(device=_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowercase = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowercase = dataset.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=processing_args.num_proc ) # And compute the embeddings __lowercase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_SCREAMING_SNAKE_CASE ) __lowercase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowercase = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space __lowercase = dataset.map( partial(_SCREAMING_SNAKE_CASE , ctx_encoder=_SCREAMING_SNAKE_CASE , ctx_tokenizer=_SCREAMING_SNAKE_CASE ) , batched=_SCREAMING_SNAKE_CASE , batch_size=processing_args.batch_size , features=_SCREAMING_SNAKE_CASE , ) # And finally save your dataset __lowercase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_SCREAMING_SNAKE_CASE ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowercase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_SCREAMING_SNAKE_CASE ) # And save the index __lowercase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_SCREAMING_SNAKE_CASE ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _A : '''simple docstring''' _snake_case : str = field( default=str(Path(_lowercase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _snake_case : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _snake_case : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _snake_case : Optional[str] = field( default=str(Path(_lowercase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _A : '''simple docstring''' _snake_case : Optional[int] = field( default=_lowercase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _snake_case : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _A : '''simple docstring''' _snake_case : int = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) snake_case__ : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) snake_case__ : str = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: snake_case__ : List[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "num_attention_heads" ) ) class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str=13 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Any=2 , lowerCamelCase : int=3 , lowerCamelCase : Optional[int]=640 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : List[str]="silu" , lowerCamelCase : Any=3 , lowerCamelCase : List[Any]=32 , lowerCamelCase : int=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=True , lowerCamelCase : int=True , lowerCamelCase : int=10 , lowerCamelCase : str=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = last_hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : Optional[Any] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = MobileViTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _snake_case : str = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : Any = False _snake_case : int = False _snake_case : Tuple = False _snake_case : str = False def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = MobileViTModelTester(self ) __lowercase = MobileViTConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _snake_case ( self : Any ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any ): __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case_ ( ): __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _snake_case ( self : Any ): '''simple docstring''' __lowercase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __lowercase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __lowercase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : str ): '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
718
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
0
'''simple docstring''' def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("longest_common_substring() takes two strings for inputs" ) __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowercase = 0 __lowercase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowercase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowercase = i __lowercase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , *lowerCamelCase : int , **lowerCamelCase : int ): '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
from collections import deque class _A : '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = process_name # process name __lowercase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __lowercase = arrival_time __lowercase = burst_time # remaining burst time __lowercase = 0 # total time of the process wait in ready queue __lowercase = 0 # time from arrival time to completion time class _A : '''simple docstring''' def __init__( self : Any , lowerCamelCase : int , lowerCamelCase : list[int] , lowerCamelCase : deque[Process] , lowerCamelCase : int , ): '''simple docstring''' __lowercase = number_of_queues # time slice of queues that round robin algorithm applied __lowercase = time_slices # unfinished process is in this ready_queue __lowercase = queue # current time __lowercase = current_time # finished process is in this sequence queue __lowercase = deque() def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : Any , lowerCamelCase : list[Process] ): '''simple docstring''' __lowercase = [] for i in range(len(lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Optional[int] , lowerCamelCase : list[Process] ): '''simple docstring''' __lowercase = [] for i in range(len(lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[Process] ): '''simple docstring''' __lowercase = [] for i in range(len(lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : str , lowerCamelCase : deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , lowerCamelCase : Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[Any] , lowerCamelCase : deque[Process] ): '''simple docstring''' __lowercase = deque() # sequence deque of finished process while len(lowerCamelCase ) != 0: __lowercase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __lowercase = 0 # set the process's turnaround time because it is finished __lowercase = self.current_time - cp.arrival_time # set the completion time __lowercase = self.current_time # add the process to queue that has finished queue finished.append(lowerCamelCase ) self.finish_queue.extend(lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : str , lowerCamelCase : deque[Process] , lowerCamelCase : int ): '''simple docstring''' __lowercase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowerCamelCase ) ): __lowercase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __lowercase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __lowercase = 0 # set the finish time __lowercase = self.current_time # update the process' turnaround time because it is finished __lowercase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowerCamelCase ) self.finish_queue.extend(lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): __lowercase , __lowercase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case__ : List[Any] = Process("""P1""", 0, 53) snake_case__ : List[str] = Process("""P2""", 0, 17) snake_case__ : List[Any] = Process("""P3""", 0, 68) snake_case__ : Union[str, Any] = Process("""P4""", 0, 24) snake_case__ : Union[str, Any] = 3 snake_case__ : Union[str, Any] = [17, 25] snake_case__ : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) snake_case__ : Optional[Any] = Process("""P1""", 0, 53) snake_case__ : Dict = Process("""P2""", 0, 17) snake_case__ : Dict = Process("""P3""", 0, 68) snake_case__ : int = Process("""P4""", 0, 24) snake_case__ : Union[str, Any] = 3 snake_case__ : Optional[Any] = [17, 25] snake_case__ : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) snake_case__ : List[str] = MLFQ(number_of_queues, time_slices, queue, 0) snake_case__ : List[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( __magic_name__ = "AAPL" )-> str: """simple docstring""" snake_case_ : int = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' snake_case_ : Dict = BeautifulSoup(requests.get(__magic_name__ ).text ,"html.parser" ) snake_case_ : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" ,class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
656
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCamelCase : Union[str, Any] = 250004 __lowerCamelCase : Dict = 250020 @require_sentencepiece @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MBartTokenizer a__ = MBartTokenizerFast a__ = True a__ = True def _A ( self :Dict ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : int = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[str] ) -> int: '''simple docstring''' snake_case_ : Tuple = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _A ( self :List[Any] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : Optional[int] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : List[str] = tempfile.mkdtemp() snake_case_ : Optional[Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ ) snake_case_ : Optional[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) snake_case_ : List[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way snake_case_ : Optional[int] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) snake_case_ : int = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Any = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) snake_case_ : Optional[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way snake_case_ : Optional[int] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) snake_case_ : str = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : Tuple = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) snake_case_ : Any = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : Optional[Any] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) snake_case_ : Any = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/mbart-large-en-ro''' a__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] a__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] a__ = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def _A ( cls :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) snake_case_ : int = 1 return cls def _A ( self :Dict ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) def _A ( self :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) snake_case_ : int = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] snake_case_ : Any = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) snake_case_ : Any = 10 snake_case_ : str = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :str ) -> str: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_026, 250_001] ) def _A ( self :Tuple ) -> int: '''simple docstring''' snake_case_ : List[str] = tempfile.mkdtemp() snake_case_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def _A ( self :str ) -> Tuple: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Optional[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _A ( self :List[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) snake_case_ : str = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case_ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _A ( self :List[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors="pt" ) snake_case_ : Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors="pt" ) snake_case_ : Optional[Any] = targets["input_ids"] snake_case_ : int = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _A ( self :Tuple ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX "input_ids": [[62, 3_034, 2, 250_004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
656
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A_ (a_ ): """simple docstring""" a__ = '''wav2vec2''' def __init__( self :int , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Any=768 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Dict=12 , lowerCAmelCase__ :Dict=3_072 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :Tuple=0.0 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Union[str, Any]=1E-5 , lowerCAmelCase__ :List[str]="group" , lowerCAmelCase__ :Tuple="gelu" , lowerCAmelCase__ :str=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__ :List[Any]=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ :List[Any]=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :Dict=128 , lowerCAmelCase__ :List[str]=16 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Dict=0.0_5 , lowerCAmelCase__ :Tuple=10 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Dict=10 , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=320 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :Optional[Any]=100 , lowerCAmelCase__ :List[Any]=256 , lowerCAmelCase__ :int=256 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Any="sum" , lowerCAmelCase__ :str=False , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :int=256 , lowerCAmelCase__ :Dict=(512, 512, 512, 512, 1_500) , lowerCAmelCase__ :List[str]=(5, 3, 3, 1, 1) , lowerCAmelCase__ :Tuple=(1, 2, 3, 1, 1) , lowerCAmelCase__ :str=512 , lowerCAmelCase__ :Any=0 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :str=3 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Any=None , **lowerCAmelCase__ :Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) snake_case_ : int = hidden_size snake_case_ : List[str] = feat_extract_norm snake_case_ : List[Any] = feat_extract_activation snake_case_ : str = list(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = list(lowerCAmelCase__ ) snake_case_ : Tuple = list(lowerCAmelCase__ ) snake_case_ : List[Any] = conv_bias snake_case_ : List[Any] = num_conv_pos_embeddings snake_case_ : List[Any] = num_conv_pos_embedding_groups snake_case_ : Tuple = len(self.conv_dim ) snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = intermediate_size snake_case_ : str = hidden_act snake_case_ : Any = num_attention_heads snake_case_ : int = hidden_dropout snake_case_ : List[str] = attention_dropout snake_case_ : List[Any] = activation_dropout snake_case_ : int = feat_proj_dropout snake_case_ : Tuple = final_dropout snake_case_ : int = layerdrop snake_case_ : List[Any] = layer_norm_eps snake_case_ : Any = initializer_range snake_case_ : Optional[Any] = vocab_size snake_case_ : Any = do_stable_layer_norm snake_case_ : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : Optional[Any] = apply_spec_augment snake_case_ : str = mask_time_prob snake_case_ : Any = mask_time_length snake_case_ : Dict = mask_time_min_masks snake_case_ : Optional[int] = mask_feature_prob snake_case_ : List[str] = mask_feature_length snake_case_ : Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ : Optional[int] = num_codevectors_per_group snake_case_ : Union[str, Any] = num_codevector_groups snake_case_ : Optional[int] = contrastive_logits_temperature snake_case_ : int = feat_quantizer_dropout snake_case_ : List[Any] = num_negatives snake_case_ : List[Any] = codevector_dim snake_case_ : str = proj_codevector_dim snake_case_ : Dict = diversity_loss_weight # ctc loss snake_case_ : str = ctc_loss_reduction snake_case_ : Union[str, Any] = ctc_zero_infinity # adapter snake_case_ : List[str] = add_adapter snake_case_ : Optional[Any] = adapter_kernel_size snake_case_ : int = adapter_stride snake_case_ : List[str] = num_adapter_layers snake_case_ : List[str] = output_hidden_size or hidden_size snake_case_ : str = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ : int = list(lowerCAmelCase__ ) snake_case_ : Dict = list(lowerCAmelCase__ ) snake_case_ : Optional[int] = list(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = xvector_output_dim @property def _A ( self :str ) -> Dict: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
656
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A_ : """simple docstring""" a__ = PegasusConfig a__ = {} a__ = '''gelu''' def __init__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str]=13 , lowerCAmelCase__ :List[Any]=7 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :Optional[Any]=99 , lowerCAmelCase__ :List[Any]=32 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :str=37 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Optional[Any]=40 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :Union[str, Any]=0 , ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = parent snake_case_ : Any = batch_size snake_case_ : Optional[int] = seq_length snake_case_ : Tuple = is_training snake_case_ : Tuple = use_labels snake_case_ : Optional[int] = vocab_size snake_case_ : str = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[Any] = eos_token_id snake_case_ : str = pad_token_id snake_case_ : List[Any] = bos_token_id def _A ( self :List[Any] ) -> int: '''simple docstring''' snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : Any = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict ) -> str: '''simple docstring''' snake_case_ : Tuple = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder() snake_case_ : Optional[int] = inputs_dict["input_ids"] snake_case_ : Tuple = input_ids[:1, :] snake_case_ : Dict = inputs_dict["attention_mask"][:1, :] snake_case_ : List[Any] = inputs_dict["head_mask"] snake_case_ : Optional[Any] = 1 # first forward pass snake_case_ : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) snake_case_, snake_case_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] snake_case_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=None ,__magic_name__=None ,__magic_name__=None ,__magic_name__=None ,__magic_name__=None ,)-> Optional[Any]: """simple docstring""" if attention_mask is None: snake_case_ : Tuple = tf.cast(tf.math.not_equal(__magic_name__ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: snake_case_ : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: snake_case_ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ (a_ , a_ , unittest.TestCase ): """simple docstring""" a__ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a__ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a__ = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a__ = True a__ = False a__ = False def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = TFPegasusModelTester(self ) snake_case_ : int = ConfigTester(self , config_class=lowerCAmelCase__ ) def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class A_ (unittest.TestCase ): """simple docstring""" a__ = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a__ = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a__ = '''google/pegasus-xsum''' @cached_property def _A ( self :Optional[int] ) -> Tuple: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _A ( self :Union[str, Any] , **lowerCAmelCase__ :str ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.translate_src_text(**lowerCAmelCase__ ) assert self.expected_text == generated_words def _A ( self :str , **lowerCAmelCase__ :Dict ) -> str: '''simple docstring''' snake_case_ : Dict = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="tf" ) snake_case_ : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , ) snake_case_ : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ ) return generated_words @slow def _A ( self :Optional[int] ) -> Any: '''simple docstring''' self._assert_generated_batch_equal_expected()
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCamelCase : List[str] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : Any = '''cpu''' __lowerCamelCase : Union[str, Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCamelCase : Union[str, Any] = '''path-to-your-trained-model''' __lowerCamelCase : int = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCamelCase : List[str] = pipe.to(device) # to channels last __lowerCamelCase : List[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCamelCase : List[Any] = pipe.vae.to(memory_format=torch.channels_last) __lowerCamelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCamelCase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCamelCase : int = torch.randn(2, 4, 64, 64) __lowerCamelCase : List[str] = torch.rand(1) * 999 __lowerCamelCase : Tuple = torch.randn(2, 77, 768) __lowerCamelCase : List[str] = (sample, timestep, encoder_hidden_status) try: __lowerCamelCase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCamelCase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCamelCase : Union[str, Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCamelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCamelCase : Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCamelCase : List[str] = 666 __lowerCamelCase : Tuple = torch.Generator(device).manual_seed(seed) __lowerCamelCase : Any = {'''generator''': generator} if args.steps is not None: __lowerCamelCase : str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCamelCase : List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
656
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[Any] = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A_ (a_ ): """simple docstring""" a__ = '''dandelin/vilt-b32-finetuned-vqa''' a__ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) a__ = '''image_qa''' a__ = AutoProcessor a__ = AutoModelForVisualQuestionAnswering a__ = ['''image''', '''text'''] a__ = ['''text'''] def __init__( self :int , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :int , lowerCAmelCase__ :"Image" , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return self.pre_processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="pt" ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> Dict: '''simple docstring''' with torch.no_grad(): return self.model(**lowerCAmelCase__ ).logits def _A ( self :int , lowerCAmelCase__ :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Any = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
656
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
656
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( "-m" ,"--pretrained_model_name_or_path" ,type=__magic_name__ ,default=__magic_name__ ,required=__magic_name__ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,) parser.add_argument( "-c" ,"--caption" ,type=__magic_name__ ,default="robotic cat with wings" ,help="Text used to generate images." ,) parser.add_argument( "-n" ,"--images_num" ,type=__magic_name__ ,default=4 ,help="How much images to generate." ,) parser.add_argument( "-s" ,"--seed" ,type=__magic_name__ ,default=42 ,help="Seed for random process." ,) parser.add_argument( "-ci" ,"--cuda_id" ,type=__magic_name__ ,default=0 ,help="cuda_id." ,) snake_case_ : Union[str, Any] = parser.parse_args() return args def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[int]: """simple docstring""" if not len(__magic_name__ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) snake_case_, snake_case_ : Optional[Any] = imgs[0].size snake_case_ : int = Image.new("RGB" ,size=(cols * w, rows * h) ) snake_case_, snake_case_ : Any = grid.size for i, img in enumerate(__magic_name__ ): grid.paste(__magic_name__ ,box=(i % cols * w, i // cols * h) ) return grid def __UpperCAmelCase ( __magic_name__ ,__magic_name__="robotic cat with wings" ,__magic_name__=7.5 ,__magic_name__=50 ,__magic_name__=1 ,__magic_name__=42 ,)-> Optional[Any]: """simple docstring""" snake_case_ : List[str] = torch.Generator(pipeline.device ).manual_seed(__magic_name__ ) snake_case_ : Any = pipeline( __magic_name__ ,guidance_scale=__magic_name__ ,num_inference_steps=__magic_name__ ,generator=__magic_name__ ,num_images_per_prompt=__magic_name__ ,).images snake_case_ : Optional[Any] = int(math.sqrt(__magic_name__ ) ) snake_case_ : Dict = image_grid(__magic_name__ ,rows=_rows ,cols=num_images_per_prompt // _rows ) return grid, images __lowerCamelCase : Dict = parse_args() # Load models and create wrapper for stable diffusion __lowerCamelCase : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __lowerCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __lowerCamelCase : List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __lowerCamelCase : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __lowerCamelCase : str = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __lowerCamelCase : Any = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __lowerCamelCase : List[str] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __lowerCamelCase : str = unet.to(torch.device('''cuda''', args.cuda_id)) __lowerCamelCase : int = pipeline.to(unet.device) __lowerCamelCase , __lowerCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __lowerCamelCase : Tuple = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
656
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase : str = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCamelCase : List[Any] = logging.get_logger('''transformers.models.speecht5''') __lowerCamelCase : Any = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __lowerCamelCase : Any = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __lowerCamelCase : List[str] = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __lowerCamelCase : str = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __lowerCamelCase : Dict = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __lowerCamelCase : Union[str, Any] = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __lowerCamelCase : Tuple = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __lowerCamelCase : List[str] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __lowerCamelCase : List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCamelCase : Union[str, Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCamelCase : int = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Tuple = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __lowerCamelCase : Any = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __lowerCamelCase : Any = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __lowerCamelCase : Dict = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" for attribute in key.split("." ): snake_case_ : Optional[int] = getattr(__magic_name__ ,__magic_name__ ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(__magic_name__ ,__magic_name__ ).shape else: snake_case_ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : List[Any] = value elif weight_type == "weight_v": snake_case_ : Tuple = value elif weight_type == "bias": snake_case_ : List[Any] = value elif weight_type == "running_mean": snake_case_ : int = value elif weight_type == "running_var": snake_case_ : int = value elif weight_type == "num_batches_tracked": snake_case_ : Union[str, Any] = value else: snake_case_ : Dict = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_, snake_case_ : Any = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = [] if task == "s2t": snake_case_ : Tuple = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ : Optional[Any] = MAPPING_S2T snake_case_ : str = IGNORE_KEYS_S2T elif task == "t2s": snake_case_ : List[str] = None snake_case_ : int = MAPPING_T2S snake_case_ : Any = IGNORE_KEYS_T2S elif task == "s2s": snake_case_ : List[str] = hf_model.speechta.encoder.prenet.feature_encoder snake_case_ : List[Any] = MAPPING_S2S snake_case_ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__magic_name__ ,__magic_name__ ): logger.info(F'''{name} was ignored''' ) continue snake_case_ : List[str] = False if "conv_layers" in name: load_conv_layer( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,hf_model.config.feat_extract_norm == "group" ,) snake_case_ : Optional[int] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case_, snake_case_ : Dict = key.split(".*." ) if prefix in name and suffix in name: snake_case_ : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case_ : Dict = True if "*" in mapped_key: snake_case_ : Tuple = name.split(__magic_name__ )[0].split("." )[-2] snake_case_ : Union[str, Any] = mapped_key.replace("*" ,__magic_name__ ) if "weight_g" in name: snake_case_ : Union[str, Any] = "weight_g" elif "weight_v" in name: snake_case_ : Union[str, Any] = "weight_v" elif "bias" in name: snake_case_ : List[Any] = "bias" elif "weight" in name: snake_case_ : List[str] = "weight" elif "running_mean" in name: snake_case_ : List[Any] = "running_mean" elif "running_var" in name: snake_case_ : str = "running_var" elif "num_batches_tracked" in name: snake_case_ : Optional[int] = "num_batches_tracked" else: snake_case_ : Any = None set_recursively(__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Any: """simple docstring""" snake_case_ : Dict = full_name.split("conv_layers." )[-1] snake_case_ : Dict = name.split("." ) snake_case_ : List[Any] = int(items[0] ) snake_case_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case_ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=None ,__magic_name__=None ,__magic_name__=None ,)-> Optional[Any]: """simple docstring""" if config_path is not None: snake_case_ : Optional[int] = SpeechTaConfig.from_pretrained(__magic_name__ ) else: snake_case_ : int = SpeechTaConfig() if task == "s2t": snake_case_ : Optional[int] = config.max_text_positions snake_case_ : List[Any] = SpeechTaForSpeechToText(__magic_name__ ) elif task == "t2s": snake_case_ : str = 1876 snake_case_ : Any = 600 snake_case_ : Any = config.max_speech_positions snake_case_ : Optional[Any] = SpeechTaForTextToSpeech(__magic_name__ ) elif task == "s2s": snake_case_ : Tuple = 1876 snake_case_ : str = config.max_speech_positions snake_case_ : Dict = SpeechTaForSpeechToSpeech(__magic_name__ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: snake_case_ : Dict = SpeechTaTokenizer(__magic_name__ ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case_ : Tuple = AddedToken("<mask>" ,lstrip=__magic_name__ ,rstrip=__magic_name__ ) snake_case_ : Union[str, Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) snake_case_ : int = SpeechTaFeatureExtractor() snake_case_ : Dict = SpeechTaProcessor(tokenizer=__magic_name__ ,feature_extractor=__magic_name__ ) processor.save_pretrained(__magic_name__ ) snake_case_ : Optional[Any] = torch.load(__magic_name__ ) recursively_load_weights(fairseq_checkpoint["model"] ,__magic_name__ ,__magic_name__ ) model.save_pretrained(__magic_name__ ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__magic_name__ ) model.push_to_hub(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __lowerCamelCase : List[str] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
656
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _A ( self :str , lowerCAmelCase__ :Tuple=0 ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCAmelCase__ ) ) snake_case_ : Dict = np.random.RandomState(lowerCAmelCase__ ) snake_case_ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.7_5, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _A ( self :Dict ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[str] = self.get_dummy_inputs() snake_case_ : Optional[int] = pipe(**lowerCAmelCase__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ : List[str] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _A ( self :str ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Union[str, Any] = self.get_dummy_inputs() snake_case_ : Tuple = pipe(**lowerCAmelCase__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : Tuple = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # warmup pass to apply optimizations snake_case_ : Dict = pipe(**self.get_dummy_inputs() ) snake_case_ : List[str] = self.get_dummy_inputs() snake_case_ : Optional[int] = pipe(**lowerCAmelCase__ ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : List[str] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _A ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Any = self.get_dummy_inputs() snake_case_ : Union[str, Any] = pipe(**lowerCAmelCase__ ).images snake_case_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : Union[str, Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[str] = self.get_dummy_inputs() snake_case_ : int = pipe(**lowerCAmelCase__ ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _A ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : Tuple = pipe(**lowerCAmelCase__ ).images snake_case_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ : Tuple = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" @property def _A ( self :Any ) -> Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : Any = ort.SessionOptions() snake_case_ : Tuple = False return options def _A ( self :Dict ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default snake_case_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Optional[Any] = "A fantasy landscape, trending on artstation" snake_case_ : Optional[Any] = np.random.RandomState(0 ) snake_case_ : Dict = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images snake_case_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ : Dict = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : Tuple = init_image.resize((768, 512) ) snake_case_ : int = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) snake_case_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : int = "A fantasy landscape, trending on artstation" snake_case_ : Dict = np.random.RandomState(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Any = output.images snake_case_ : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
656
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A_ (a_ ): """simple docstring""" a__ = '''upernet''' def __init__( self :List[str] , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str=512 , lowerCAmelCase__ :str=0.0_2 , lowerCAmelCase__ :List[str]=[1, 2, 3, 6] , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[Any]=0.4 , lowerCAmelCase__ :Dict=384 , lowerCAmelCase__ :int=256 , lowerCAmelCase__ :Any=1 , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :List[str]=255 , **lowerCAmelCase__ :List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : Any = backbone_config.get("model_type" ) snake_case_ : List[Any] = CONFIG_MAPPING[backbone_model_type] snake_case_ : Optional[int] = config_class.from_dict(lowerCAmelCase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : str = hidden_size snake_case_ : Dict = initializer_range snake_case_ : List[str] = pool_scales snake_case_ : Tuple = use_auxiliary_head snake_case_ : int = auxiliary_loss_weight snake_case_ : Optional[Any] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : Dict = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def _A ( self :int ) -> int: '''simple docstring''' snake_case_ : List[str] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
656
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class A_ : """simple docstring""" def __init__( self :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Optional[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = start snake_case_ : Tuple = end snake_case_ : Optional[int] = val snake_case_ : Optional[int] = (start + end) // 2 snake_case_ : int = left snake_case_ : Union[str, Any] = right def __repr__( self :Union[str, Any] ) -> Dict: '''simple docstring''' return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class A_ : """simple docstring""" def __init__( self :str , lowerCAmelCase__ :Sequence , lowerCAmelCase__ :List[str] ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = collection snake_case_ : Optional[int] = function if self.collection: snake_case_ : Tuple = self._build_tree(0 , len(lowerCAmelCase__ ) - 1 ) def _A ( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] ) -> Optional[int]: '''simple docstring''' self._update_tree(self.root , lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any ) -> Any: '''simple docstring''' return self._query_range(self.root , lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' if start == end: return SegmentTreeNode(lowerCAmelCase__ , lowerCAmelCase__ , self.collection[start] ) snake_case_ : List[Any] = (start + end) // 2 snake_case_ : str = self._build_tree(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Dict = self._build_tree(mid + 1 , lowerCAmelCase__ ) return SegmentTreeNode(lowerCAmelCase__ , lowerCAmelCase__ , self.fn(left.val , right.val ) , lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: '''simple docstring''' if node.start == i and node.end == i: snake_case_ : str = val return if i <= node.mid: self._update_tree(node.left , lowerCAmelCase__ , lowerCAmelCase__ ) else: self._update_tree(node.right , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = self.fn(node.left.val , node.right.val ) def _A ( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str ) -> Optional[Any]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowerCAmelCase__ , lowerCAmelCase__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowerCAmelCase__ , node.mid ) , self._query_range(node.right , node.mid + 1 , lowerCAmelCase__ ) , ) else: # range in right child tree return self._query_range(node.right , lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' if self.root is not None: snake_case_ : Optional[Any] = Queue() queue.put(self.root ) while not queue.empty(): snake_case_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
656
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class A_ (a_ ): """simple docstring""" a__ = '''swin2sr''' a__ = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :List[Any] , lowerCAmelCase__ :Dict=64 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :List[str]=180 , lowerCAmelCase__ :Dict=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__ :Optional[int]=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__ :List[str]=8 , lowerCAmelCase__ :Dict=2.0 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=0.0 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :Union[str, Any]="gelu" , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Union[str, Any]=1E-5 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Tuple=1.0 , lowerCAmelCase__ :List[Any]="1conv" , lowerCAmelCase__ :Optional[Any]="pixelshuffle" , **lowerCAmelCase__ :Any , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : Tuple = image_size snake_case_ : List[Any] = patch_size snake_case_ : int = num_channels snake_case_ : Tuple = embed_dim snake_case_ : Any = depths snake_case_ : List[str] = len(lowerCAmelCase__ ) snake_case_ : Tuple = num_heads snake_case_ : int = window_size snake_case_ : List[str] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Optional[Any] = drop_path_rate snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = use_absolute_embeddings snake_case_ : List[str] = layer_norm_eps snake_case_ : Optional[int] = initializer_range snake_case_ : Optional[int] = upscale snake_case_ : str = img_range snake_case_ : Any = resi_connection snake_case_ : Any = upsampler
656
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(__magic_name__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
656
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list: """simple docstring""" snake_case_ : Any = len(__magic_name__ ) snake_case_ : int = [] for i in range(len(__magic_name__ ) - pat_len + 1 ): snake_case_ : List[str] = True for j in range(__magic_name__ ): if s[i + j] != pattern[j]: snake_case_ : List[Any] = False break if match_found: position.append(__magic_name__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCamelCase : int = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class A_ (a_ ): """simple docstring""" def __init__( self :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Tuple=1 ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = tokenizer snake_case_ : Union[str, Any] = dataset snake_case_ : str = len(lowerCAmelCase__ ) if n_tasks is None else n_tasks snake_case_ : Any = n_copies def __iter__( self :Union[str, Any] ) -> str: '''simple docstring''' snake_case_ : Tuple = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) snake_case_ : List[Any] = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A_ (a_ ): """simple docstring""" def __init__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = start_length snake_case_ : str = eof_strings snake_case_ : Optional[int] = tokenizer def __call__( self :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCAmelCase__ ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : List[Any] = re.split("(%s)" % "|".join(__magic_name__ ) ,__magic_name__ ) # last string should be "" return "".join(string_list[:-2] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=20 ,**__magic_name__ )-> Dict: """simple docstring""" snake_case_ : Dict = defaultdict(__magic_name__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__magic_name__ ) ): with torch.no_grad(): snake_case_ : List[str] = batch["ids"].shape[-1] snake_case_ : Any = accelerator.unwrap_model(__magic_name__ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] ,num_return_sequences=__magic_name__ ,**__magic_name__ ) # each task is generated batch_size times snake_case_ : Tuple = batch["task_id"].repeat(__magic_name__ ) snake_case_ : Any = accelerator.pad_across_processes( __magic_name__ ,dim=1 ,pad_index=tokenizer.pad_token_id ) snake_case_, snake_case_ : Dict = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ : List[Any] = generated_tokens.cpu().numpy() snake_case_ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__magic_name__ ,__magic_name__ ): gen_token_dict[task].append(__magic_name__ ) snake_case_ : List[str] = [[] for _ in range(__magic_name__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ : List[Any] = tokenizer.decode(__magic_name__ ,skip_special_tokens=__magic_name__ ,clean_up_tokenization_spaces=__magic_name__ ) code_gens[task].append(remove_last_block(__magic_name__ ) ) return code_gens def __UpperCAmelCase ( )-> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser(__magic_name__ ) snake_case_ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ : int = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ : Optional[Any] = "false" if args.num_workers is None: snake_case_ : Tuple = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ : Any = Accelerator() set_seed(args.seed ,device_specific=__magic_name__ ) # Load model and tokenizer snake_case_ : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ : Optional[int] = tokenizer.eos_token snake_case_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ : List[str] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 ,__magic_name__ ,__magic_name__ )] ), } # Load evaluation dataset and metric snake_case_ : Optional[int] = load_dataset("openai_humaneval" ) snake_case_ : int = load_metric("code_eval" ) snake_case_ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) snake_case_ : int = args.n_samples // args.batch_size snake_case_ : Any = TokenizedDataset(__magic_name__ ,human_eval["test"] ,n_copies=__magic_name__ ,n_tasks=__magic_name__ ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ : Any = DataLoader(__magic_name__ ,batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ : List[Any] = code_eval_metric.compute(references=[""] ,predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception snake_case_, snake_case_ : str = accelerator.prepare(__magic_name__ ,__magic_name__ ) snake_case_ : str = complete_code( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,n_tasks=__magic_name__ ,batch_size=args.batch_size ,**__magic_name__ ,) if accelerator.is_main_process: snake_case_ : List[Any] = [] for task in tqdm(range(__magic_name__ ) ): snake_case_ : Dict = human_eval["test"][task]["test"] snake_case_ : Dict = F'''check({human_eval['test'][task]['entry_point']})''' references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric snake_case_, snake_case_ : Tuple = code_eval_metric.compute( references=__magic_name__ ,predictions=__magic_name__ ,num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file ,"w" ) as fp: json.dump(__magic_name__ ,__magic_name__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
656
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
1
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class A_ : """simple docstring""" def __init__( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int = 13 , lowerCAmelCase__ :int = 64 , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :int = 3 , lowerCAmelCase__ :int = 3 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 128 , lowerCAmelCase__ :List[str]=[16, 32, 64, 128] , lowerCAmelCase__ :int = 7 , lowerCAmelCase__ :int = 4 , lowerCAmelCase__ :int = 37 , lowerCAmelCase__ :str = "gelu" , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :int = 10 , lowerCAmelCase__ :float = 0.0_2 , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :int = 128 , lowerCAmelCase__ :List[int] = [2, 2, 2, 2] , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :int = 2 , ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = parent snake_case_ : Dict = batch_size snake_case_ : Dict = image_size snake_case_ : List[str] = patch_size snake_case_ : Tuple = num_channels snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : Optional[int] = initializer_range snake_case_ : int = encoder_stride snake_case_ : Dict = num_attention_outputs snake_case_ : Union[str, Any] = embed_dim snake_case_ : str = embed_dim + 1 snake_case_ : Optional[int] = resolution snake_case_ : List[Any] = depths snake_case_ : Union[str, Any] = hidden_sizes snake_case_ : List[str] = dim snake_case_ : int = mlp_expansion_ratio def _A ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Tuple = None if self.use_labels: snake_case_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Tuple = self.get_config() return config, pixel_values, labels def _A ( self :int ) -> int: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _A ( self :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int ) -> Any: '''simple docstring''' snake_case_ : List[Any] = TFEfficientFormerModel(config=lowerCAmelCase__ ) snake_case_ : Tuple = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : str = self.type_sequence_label_size snake_case_ : str = TFEfficientFormerForImageClassification(lowerCAmelCase__ ) snake_case_ : Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Tuple = TFEfficientFormerForImageClassification(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self :Any ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ : Union[str, Any] = config_and_inputs snake_case_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ (a_ , a_ , unittest.TestCase ): """simple docstring""" a__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Dict = TFEfficientFormerModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _A ( self :List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def _A ( self :int ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def _A ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :List[Any] ) -> Tuple: '''simple docstring''' snake_case_, snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Tuple = model_class(lowerCAmelCase__ ) snake_case_ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[Any] = [*signature.parameters.keys()] snake_case_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _A ( self :Dict ) -> Any: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ): snake_case_ : Dict = model_class(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) snake_case_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ : List[str] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case_ : Dict = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case_ : List[Any] = seq_length * self.model_tester.chunk_length else: snake_case_ : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case_ : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase__ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) snake_case_ : Any = getattr(self.model_tester , "seq_length" , lowerCAmelCase__ ) snake_case_ : Any = getattr(self.model_tester , "decoder_seq_length" , lowerCAmelCase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case_, snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :str=False ) -> Dict: '''simple docstring''' snake_case_ : int = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _A ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def _A ( self :Dict ) -> int: '''simple docstring''' snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : str = TFEfficientFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> str: '''simple docstring''' snake_case_, snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Union[str, Any] = True snake_case_ : Tuple = getattr(self.model_tester , "seq_length" , lowerCAmelCase__ ) snake_case_ : Tuple = getattr(self.model_tester , "encoder_seq_length" , lowerCAmelCase__ ) snake_case_ : List[str] = getattr(self.model_tester , "key_length" , lowerCAmelCase__ ) snake_case_ : Optional[Any] = getattr(self.model_tester , "chunk_length" , lowerCAmelCase__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case_ : Optional[int] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case_ : Optional[int] = True snake_case_ : List[Any] = False snake_case_ : Tuple = True snake_case_ : Any = model_class(lowerCAmelCase__ ) snake_case_ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) snake_case_ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ : Optional[Any] = True snake_case_ : Tuple = model_class(lowerCAmelCase__ ) snake_case_ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) snake_case_ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_, snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case_ : str = model_class(lowerCAmelCase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case_ : int = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case_ : int = model(lowerCAmelCase__ ) self.assertTrue(outputs_dict is not None ) def __UpperCAmelCase ( )-> Tuple: """simple docstring""" snake_case_ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ (unittest.TestCase ): """simple docstring""" @cached_property def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Any = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case_ : Dict = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : Any = image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass snake_case_ : int = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits snake_case_ : int = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def _A ( self :Tuple ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case_ : Optional[int] = self.default_image_processor snake_case_ : str = prepare_img() snake_case_ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass snake_case_ : List[Any] = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits snake_case_ : Optional[int] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) snake_case_ : Any = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
656
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
1
'''simple docstring''' class A_ : """simple docstring""" def __init__( self :List[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Any = "" snake_case_ : List[Any] = "" snake_case_ : Dict = [] def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: snake_case_ : int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: snake_case_ : Any = self.__min_dist_top_down_dp(lowerCAmelCase__ , n - 1 ) snake_case_ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , lowerCAmelCase__ ) snake_case_ : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) snake_case_ : Union[str, Any] = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return self.dp[m][n] def _A ( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> int: '''simple docstring''' snake_case_ : int = worda snake_case_ : Optional[int] = worda snake_case_ : int = [[-1 for _ in range(len(lowerCAmelCase__ ) )] for _ in range(len(lowerCAmelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCAmelCase__ ) - 1 , len(lowerCAmelCase__ ) - 1 ) def _A ( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> int: '''simple docstring''' snake_case_ : List[Any] = worda snake_case_ : Optional[int] = worda snake_case_ : Union[str, Any] = len(lowerCAmelCase__ ) snake_case_ : List[str] = len(lowerCAmelCase__ ) snake_case_ : str = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty snake_case_ : Optional[Any] = j elif j == 0: # second string is empty snake_case_ : List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal snake_case_ : Optional[int] = self.dp[i - 1][j - 1] else: snake_case_ : int = self.dp[i][j - 1] snake_case_ : List[str] = self.dp[i - 1][j] snake_case_ : List[Any] = self.dp[i - 1][j - 1] snake_case_ : Any = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase : Any = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() __lowerCamelCase : Dict = input('''Enter the first string: ''').strip() __lowerCamelCase : int = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
656
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __lowerCamelCase : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A_ (a_ ): """simple docstring""" a__ = field(default=a_ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) a__ = field( default=a_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) a__ = field( default=a_ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) a__ = field( default=a_ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) a__ = field( default=a_ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : Optional[Any] = v.to_dict() return d
656
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case_ : Optional[Any] = [p / w for p, w in zip(__magic_name__ ,__magic_name__ )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case_ : List[Any] = sorted(__magic_name__ ) # declaring useful variables snake_case_ : Optional[int] = len(__magic_name__ ) snake_case_ : Union[str, Any] = 0 snake_case_ : int = 0 snake_case_ : Union[str, Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case_ : List[Any] = sorted_profit_by_weight[length - i - 1] snake_case_ : str = profit_by_weight.index(__magic_name__ ) snake_case_ : Union[str, Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) __lowerCamelCase : Any = [int(x) for x in input('''Input profits separated by spaces: ''').split()] __lowerCamelCase : str = [int(x) for x in input('''Input weights separated by spaces: ''').split()] __lowerCamelCase : Optional[Any] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
656
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A_ (a_ ): """simple docstring""" @staticmethod @abstractmethod def _A ( lowerCAmelCase__ :ArgumentParser ) -> Optional[int]: '''simple docstring''' raise NotImplementedError() @abstractmethod def _A ( self :Any ) -> List[str]: '''simple docstring''' raise NotImplementedError()
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __lowerCamelCase : str = getLogger(__name__) __lowerCamelCase : Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ = 8 ,__magic_name__ = DEFAULT_DEVICE ,__magic_name__=False ,__magic_name__="summarization" ,__magic_name__=None ,**__magic_name__ ,)-> Dict: """simple docstring""" snake_case_ : int = Path(__magic_name__ ).open("w" ,encoding="utf-8" ) snake_case_ : Union[str, Any] = str(__magic_name__ ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ).to(__magic_name__ ) if fpaa: snake_case_ : Union[str, Any] = model.half() snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(__magic_name__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. snake_case_ : int = time.time() # update config with task specific params use_task_specific_params(__magic_name__ ,__magic_name__ ) if prefix is None: snake_case_ : Tuple = prefix or getattr(model.config ,"prefix" ,"" ) or "" for examples_chunk in tqdm(list(chunks(__magic_name__ ,__magic_name__ ) ) ): snake_case_ : List[Any] = [prefix + text for text in examples_chunk] snake_case_ : Tuple = tokenizer(__magic_name__ ,return_tensors="pt" ,truncation=__magic_name__ ,padding="longest" ).to(__magic_name__ ) snake_case_ : Dict = model.generate( input_ids=batch.input_ids ,attention_mask=batch.attention_mask ,**__magic_name__ ,) snake_case_ : int = tokenizer.batch_decode(__magic_name__ ,skip_special_tokens=__magic_name__ ,clean_up_tokenization_spaces=__magic_name__ ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() snake_case_ : Any = int(time.time() - start_time ) # seconds snake_case_ : Optional[Any] = len(__magic_name__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs ,4 )} def __UpperCAmelCase ( )-> Optional[int]: """simple docstring""" return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def __UpperCAmelCase ( __magic_name__=True )-> Dict: """simple docstring""" snake_case_ : str = argparse.ArgumentParser() parser.add_argument("model_name" ,type=__magic_name__ ,help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" ,type=__magic_name__ ,help="like cnn_dm/test.source" ) parser.add_argument("save_path" ,type=__magic_name__ ,help="where to save summaries" ) parser.add_argument("--reference_path" ,type=__magic_name__ ,required=__magic_name__ ,help="like cnn_dm/test.target" ) parser.add_argument("--score_path" ,type=__magic_name__ ,required=__magic_name__ ,default="metrics.json" ,help="where to save metrics" ) parser.add_argument("--device" ,type=__magic_name__ ,required=__magic_name__ ,default=__magic_name__ ,help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" ,type=__magic_name__ ,required=__magic_name__ ,default=__magic_name__ ,help="will be added to the begininng of src examples" ) parser.add_argument("--task" ,type=__magic_name__ ,default="summarization" ,help="used for task_specific_params + metrics" ) parser.add_argument("--bs" ,type=__magic_name__ ,default=8 ,required=__magic_name__ ,help="batch size" ) parser.add_argument( "--n_obs" ,type=__magic_name__ ,default=-1 ,required=__magic_name__ ,help="How many observations. Defaults to all." ) parser.add_argument("--fp16" ,action="store_true" ) parser.add_argument("--dump-args" ,action="store_true" ,help="print the custom hparams with the results" ) parser.add_argument( "--info" ,nargs="?" ,type=__magic_name__ ,const=datetime_now() ,help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) ,) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate snake_case_, snake_case_ : List[Any] = parser.parse_known_args() snake_case_ : List[Any] = parse_numeric_n_bool_cl_kwargs(__magic_name__ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) snake_case_ : Dict = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: snake_case_ : Dict = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__magic_name__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) snake_case_ : int = generate_summaries_or_translations( __magic_name__ ,args.save_path ,args.model_name ,batch_size=args.bs ,device=args.device ,fpaa=args.fpaa ,task=args.task ,prefix=args.prefix ,**__magic_name__ ,) if args.reference_path is None: return {} # Compute scores snake_case_ : Dict = calculate_bleu if "translation" in args.task else calculate_rouge snake_case_ : str = [x.rstrip() for x in open(args.save_path ).readlines()] snake_case_ : List[str] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__magic_name__ )] snake_case_ : dict = score_fn(__magic_name__ ,__magic_name__ ) scores.update(__magic_name__ ) if args.dump_args: scores.update(__magic_name__ ) if args.info: snake_case_ : Union[str, Any] = args.info if verbose: print(__magic_name__ ) if args.score_path is not None: json.dump(__magic_name__ ,open(args.score_path ,"w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
656
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ (a_ ): """simple docstring""" a__ = ['''pixel_values'''] def __init__( self :str , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :List[Any] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : List[str] = size if size is not None else {"shortest_edge": 224} snake_case_ : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="crop_size" ) snake_case_ : Dict = do_resize snake_case_ : Union[str, Any] = size snake_case_ : str = resample snake_case_ : Dict = do_center_crop snake_case_ : Optional[Any] = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ : int = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ : Dict = do_convert_rgb def _A ( self :int , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :int , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[int] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ : Optional[int] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :str , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Any , ) -> np.ndarray: '''simple docstring''' snake_case_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[int, float] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :str , ) -> List[str]: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :int , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Tuple , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :int = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ :str , ) -> PIL.Image.Image: '''simple docstring''' snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(lowerCAmelCase__ , param_name="size" , default_to_square=lowerCAmelCase__ ) snake_case_ : List[str] = resample if resample is not None else self.resample snake_case_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" , default_to_square=lowerCAmelCase__ ) snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Any = image_std if image_std is not None else self.image_std snake_case_ : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ : Union[str, Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ : Tuple = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. snake_case_ : str = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: snake_case_ : Optional[int] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: snake_case_ : Union[str, Any] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: snake_case_ : Tuple = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: snake_case_ : List[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] snake_case_ : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] snake_case_ : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
656
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
1
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = args.pruning_method snake_case_ : Union[str, Any] = args.threshold snake_case_ : str = args.model_name_or_path.rstrip("/" ) snake_case_ : int = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) snake_case_ : Optional[int] = torch.load(os.path.join(__magic_name__ ,"pytorch_model.bin" ) ) snake_case_ : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: snake_case_ : List[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: snake_case_ : Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: snake_case_ : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": snake_case_ : int = MagnitudeBinarizer.apply(inputs=__magic_name__ ,threshold=__magic_name__ ) snake_case_ : int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue snake_case_ : Any = name[:-6] snake_case_ : Any = model[F'''{prefix_}mask_scores'''] snake_case_ : Union[str, Any] = TopKBinarizer.apply(__magic_name__ ,__magic_name__ ) snake_case_ : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue snake_case_ : Optional[Any] = name[:-6] snake_case_ : Any = model[F'''{prefix_}mask_scores'''] snake_case_ : Tuple = ThresholdBinarizer.apply(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : List[str] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue snake_case_ : List[str] = name[:-6] snake_case_ : List[Any] = model[F'''{prefix_}mask_scores'''] snake_case_, snake_case_ : Dict = -0.1, 1.1 snake_case_ : Optional[Any] = torch.sigmoid(__magic_name__ ) snake_case_ : Union[str, Any] = s * (r - l) + l snake_case_ : Optional[int] = s_bar.clamp(min=0.0 ,max=1.0 ) snake_case_ : Dict = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: snake_case_ : int = os.path.join( os.path.dirname(__magic_name__ ) ,F'''bertarized_{os.path.basename(__magic_name__ )}''' ) if not os.path.isdir(__magic_name__ ): shutil.copytree(__magic_name__ ,__magic_name__ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(__magic_name__ ,os.path.join(__magic_name__ ,"pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __lowerCamelCase : Dict = parser.parse_args() main(args)
656
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" return [ord(__magic_name__ ) - 96 for elem in plain] def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __UpperCAmelCase ( )-> None: """simple docstring""" snake_case_ : Union[str, Any] = encode(input("-> " ).strip().lower() ) print("Encoded: " ,__magic_name__ ) print("Decoded:" ,decode(__magic_name__ ) ) if __name__ == "__main__": main()
656
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A_ (a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , ) -> int: '''simple docstring''' super().__init__() snake_case_ : Union[str, Any] = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Dict = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Any = False snake_case_ : Optional[int] = nn.Dropout(p=lowerCAmelCase__ ) snake_case_ : int = TaConfig( vocab_size=lowerCAmelCase__ , d_model=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ , feed_forward_proj=lowerCAmelCase__ , is_decoder=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , ) snake_case_ : str = nn.ModuleList() for lyr_num in range(lowerCAmelCase__ ): snake_case_ : List[Any] = TaBlock(lowerCAmelCase__ ) self.encoders.append(lowerCAmelCase__ ) snake_case_ : Dict = TaLayerNorm(lowerCAmelCase__ ) snake_case_ : List[Any] = nn.Dropout(p=lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' snake_case_ : Dict = self.token_embedder(lowerCAmelCase__ ) snake_case_ : Tuple = encoder_input_tokens.shape[1] snake_case_ : Union[str, Any] = torch.arange(lowerCAmelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase__ ) snake_case_ : List[str] = self.dropout_pre(lowerCAmelCase__ ) # inverted the attention mask snake_case_ : int = encoder_input_tokens.size() snake_case_ : str = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ ) for lyr in self.encoders: snake_case_ : Optional[int] = lyr(lowerCAmelCase__ , lowerCAmelCase__ )[0] snake_case_ : Any = self.layer_norm(lowerCAmelCase__ ) return self.dropout_post(lowerCAmelCase__ ), encoder_inputs_mask
656
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
1
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A_ (unittest.TestCase ): """simple docstring""" def __init__( self :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int]=7 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :int=18 , lowerCAmelCase__ :List[str]=30 , lowerCAmelCase__ :List[str]=400 , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :str=[0.5, 0.5, 0.5] , ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = size if size is not None else {"height": 18, "width": 18} snake_case_ : List[str] = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Optional[Any] = num_channels snake_case_ : List[str] = image_size snake_case_ : int = min_resolution snake_case_ : Optional[Any] = max_resolution snake_case_ : List[str] = do_resize snake_case_ : int = size snake_case_ : List[Any] = do_normalize snake_case_ : List[Any] = image_mean snake_case_ : List[Any] = image_std def _A ( self :Optional[Any] ) -> str: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = DPTImageProcessor if is_vision_available() else None def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : str = DPTImageProcessingTester(self ) @property def _A ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _A ( self :Any ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case_ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _A ( self :Optional[Any] ) -> Any: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input snake_case_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case_ : Any = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _A ( self :List[Any] ) -> int: '''simple docstring''' snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case_ : Union[str, Any] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
656
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
1
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
1
'''simple docstring''' from collections import defaultdict from math import gcd def __UpperCAmelCase ( __magic_name__ = 150_0000 )-> int: """simple docstring""" snake_case_ : defaultdict = defaultdict(__magic_name__ ) snake_case_ : Tuple = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,__magic_name__ ,2 ): if gcd(__magic_name__ ,__magic_name__ ) > 1: continue snake_case_ : Optional[int] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__magic_name__ ,limit + 1 ,__magic_name__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
656
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) snake_case_ : Union[str, Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" snake_case_ : Optional[Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" snake_case_ : Any = max(len(__magic_name__ ) ,len(__magic_name__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(__magic_name__ ) ,b_binary.zfill(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A_ (a_ ): """simple docstring""" def _A ( self :Dict ) -> Dict: '''simple docstring''' snake_case_ : int = tempfile.mkdtemp() snake_case_ : Union[str, Any] = 8 # DPR tok snake_case_ : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case_ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) snake_case_ : Tuple = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok snake_case_ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case_ : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ : Tuple = {"unk_token": "<unk>"} snake_case_ : str = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) snake_case_ : Any = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : List[Any] = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _A ( self :Union[str, Any] ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _A ( self :List[str] ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _A ( self :Union[str, Any] ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def _A ( self :int ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _A ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _A ( self :int ) -> int: '''simple docstring''' snake_case_ : str = self.get_dummy_dataset() snake_case_ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case_ : List[Any] = dataset snake_case_ : Optional[Any] = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _A ( self :Tuple , lowerCAmelCase__ :bool ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.get_dummy_dataset() snake_case_ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: snake_case_ : Any = os.path.join(self.tmpdirname , "dataset" ) snake_case_ : Any = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset snake_case_ : int = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case_ : str = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase__ ) , ) return retriever def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case_ : str = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) snake_case_ : List[str] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) snake_case_ : int = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(lowerCAmelCase__ , open(lowerCAmelCase__ , "wb" ) ) snake_case_ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) snake_case_ : Union[str, Any] = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _A ( self :int ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = 1 snake_case_ : List[str] = self.get_dummy_canonical_hf_index_retriever() snake_case_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_, snake_case_, snake_case_ : Union[str, Any] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case_ : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase__ ) snake_case_ : Optional[Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ : str = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _A ( self :int ) -> Any: '''simple docstring''' snake_case_ : str = 1 snake_case_ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) snake_case_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_, snake_case_, snake_case_ : Dict = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ : Any = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _A ( self :str ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = 1 snake_case_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) snake_case_ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_, snake_case_, snake_case_ : int = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) snake_case_ : Dict = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ : int = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _A ( self :int ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = 1 snake_case_ : Dict = self.get_dummy_legacy_index_retriever() snake_case_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_, snake_case_, snake_case_ : Optional[Any] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _A ( self :List[Any] ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) snake_case_ : Optional[Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ : List[Any] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _A ( self :List[str] ) -> Dict: '''simple docstring''' import torch snake_case_ : Optional[Any] = 1 snake_case_ : Dict = self.get_dummy_canonical_hf_index_retriever() snake_case_ : str = [[5, 7], [10, 11]] snake_case_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ : List[Any] = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ ) snake_case_, snake_case_, snake_case_ : Union[str, Any] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) snake_case_ : Any = retriever( lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ , return_tensors="pt" , ) snake_case_, snake_case_, snake_case_, snake_case_ : Union[str, Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : str = self.get_dpr_ctx_encoder_tokenizer() snake_case_ : int = 1 snake_case_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase__ ) snake_case_ : Optional[Any] = [[5, 7], [10, 11]] snake_case_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ : str = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ ) self.assertEqual( len(lowerCAmelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , lowerCAmelCase__ ) # check for doc token related keys in dictionary.
656
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
1
'''simple docstring''' import argparse import os import re __lowerCamelCase : Optional[int] = '''src/transformers''' # Pattern that looks at the indentation in a line. __lowerCamelCase : List[Any] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __lowerCamelCase : List[Any] = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __lowerCamelCase : Optional[Any] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __lowerCamelCase : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __lowerCamelCase : Dict = re.compile(R'''\[([^\]]+)\]''') def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = _re_indent.search(__magic_name__ ) return "" if search is None else search.groups()[0] def __UpperCAmelCase ( __magic_name__ ,__magic_name__="" ,__magic_name__=None ,__magic_name__=None )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = 0 snake_case_ : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__magic_name__ ): index += 1 snake_case_ : str = ["\n".join(lines[:index] )] else: snake_case_ : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case_ : Optional[Any] = [lines[index]] index += 1 while index < len(__magic_name__ ) and (end_prompt is None or not lines[index].startswith(__magic_name__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__magic_name__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__magic_name__ ) ) if index < len(__magic_name__ ) - 1: snake_case_ : str = [lines[index + 1]] index += 1 else: snake_case_ : Tuple = [] else: blocks.append("\n".join(__magic_name__ ) ) snake_case_ : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__magic_name__ ) > 0: blocks.append("\n".join(__magic_name__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__magic_name__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" def _inner(__magic_name__ ): return key(__magic_name__ ).lower().replace("_" ,"" ) return _inner def __UpperCAmelCase ( __magic_name__ ,__magic_name__=None )-> Dict: """simple docstring""" def noop(__magic_name__ ): return x if key is None: snake_case_ : Dict = noop # Constants are all uppercase, they go first. snake_case_ : Dict = [obj for obj in objects if key(__magic_name__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case_ : Dict = [obj for obj in objects if key(__magic_name__ )[0].isupper() and not key(__magic_name__ ).isupper()] # Functions begin with a lowercase, they go last. snake_case_ : str = [obj for obj in objects if not key(__magic_name__ )[0].isupper()] snake_case_ : List[Any] = ignore_underscore(__magic_name__ ) return sorted(__magic_name__ ,key=__magic_name__ ) + sorted(__magic_name__ ,key=__magic_name__ ) + sorted(__magic_name__ ,key=__magic_name__ ) def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" def _replace(__magic_name__ ): snake_case_ : Any = match.groups()[0] if "," not in imports: return F'''[{imports}]''' snake_case_ : Tuple = [part.strip().replace("\"" ,"" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ : Tuple = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__magic_name__ )] ) + "]" snake_case_ : str = import_statement.split("\n" ) if len(__magic_name__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case_ : Tuple = 2 if lines[1].strip() == "[" else 1 snake_case_ : Dict = [(i, _re_strip_line.search(__magic_name__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case_ : Optional[Any] = sort_objects(__magic_name__ ,key=lambda __magic_name__ : x[1] ) snake_case_ : Optional[int] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__magic_name__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case_ : int = _re_bracket_content.sub(_replace ,lines[1] ) else: snake_case_ : str = [part.strip().replace("\"" ,"" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ : List[Any] = keys[:-1] snake_case_ : List[Any] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(__magic_name__ )] ) return "\n".join(__magic_name__ ) else: # Finally we have to deal with imports fitting on one line snake_case_ : Optional[int] = _re_bracket_content.sub(_replace ,__magic_name__ ) return import_statement def __UpperCAmelCase ( __magic_name__ ,__magic_name__=True )-> Union[str, Any]: """simple docstring""" with open(__magic_name__ ,encoding="utf-8" ) as f: snake_case_ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case_ : List[Any] = split_code_in_indented_blocks( __magic_name__ ,start_prompt="_import_structure = {" ,end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(__magic_name__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case_ : List[str] = main_blocks[block_idx] snake_case_ : str = block.split("\n" ) # Get to the start of the imports. snake_case_ : Optional[Any] = 0 while line_idx < len(__magic_name__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case_ : str = len(__magic_name__ ) else: line_idx += 1 if line_idx >= len(__magic_name__ ): continue # Ignore beginning and last line: they don't contain anything. snake_case_ : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) snake_case_ : Optional[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case_ : Union[str, Any] = split_code_in_indented_blocks(__magic_name__ ,indent_level=__magic_name__ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case_ : Dict = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case_ : List[str] = [(pattern.search(__magic_name__ ).groups()[0] if pattern.search(__magic_name__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case_ : Dict = [(i, key) for i, key in enumerate(__magic_name__ ) if key is not None] snake_case_ : str = [x[0] for x in sorted(__magic_name__ ,key=lambda __magic_name__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case_ : Optional[Any] = 0 snake_case_ : Any = [] for i in range(len(__magic_name__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case_ : List[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__magic_name__ ) count += 1 # And we put our main block back together with its first and last line. snake_case_ : Optional[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__magic_name__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__magic_name__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(__magic_name__ ) ) def __UpperCAmelCase ( __magic_name__=True )-> Optional[int]: """simple docstring""" snake_case_ : Dict = [] for root, _, files in os.walk(__magic_name__ ): if "__init__.py" in files: snake_case_ : Union[str, Any] = sort_imports(os.path.join(__magic_name__ ,"__init__.py" ) ,check_only=__magic_name__ ) if result: snake_case_ : Optional[int] = [os.path.join(__magic_name__ ,"__init__.py" )] if len(__magic_name__ ) > 0: raise ValueError(F'''Would overwrite {len(__magic_name__ )} files, run `make style`.''' ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __lowerCamelCase : Any = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
656
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" while a != 0: snake_case_, snake_case_ : Any = b % a, a return b def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" if gcd(__magic_name__ ,__magic_name__ ) != 1: snake_case_ : List[Any] = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(__magic_name__ ) snake_case_, snake_case_, snake_case_ : int = 1, 0, a snake_case_, snake_case_, snake_case_ : Tuple = 0, 1, m while va != 0: snake_case_ : int = ua // va snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : Tuple = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
656
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_, snake_case_ : str = len(__magic_name__ ), len(grid[0] ) if ( min(__magic_name__ ,__magic_name__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) snake_case_ : List[str] = 0 count += depth_first_search(__magic_name__ ,row + 1 ,__magic_name__ ,__magic_name__ ) count += depth_first_search(__magic_name__ ,row - 1 ,__magic_name__ ,__magic_name__ ) count += depth_first_search(__magic_name__ ,__magic_name__ ,col + 1 ,__magic_name__ ) count += depth_first_search(__magic_name__ ,__magic_name__ ,col - 1 ,__magic_name__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> float: """simple docstring""" snake_case_ : Dict = 0 while len(__magic_name__ ) > 1: snake_case_ : List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): snake_case_ : Union[str, Any] = files.index(min(__magic_name__ ) ) temp += files[min_index] files.pop(__magic_name__ ) files.append(__magic_name__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
1
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __lowerCamelCase : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class A_ (nn.Module ): """simple docstring""" def __init__( self :List[str] , lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' super().__init__() snake_case_ : List[Any] = torchvision.models.resnetaaa(pretrained=lowerCAmelCase__ ) snake_case_ : Tuple = list(model.children() )[:-2] snake_case_ : Union[str, Any] = nn.Sequential(*lowerCAmelCase__ ) snake_case_ : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _A ( self :List[Any] , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' snake_case_ : str = self.pool(self.model(lowerCAmelCase__ ) ) snake_case_ : Union[str, Any] = torch.flatten(lowerCAmelCase__ , start_dim=2 ) snake_case_ : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class A_ (a_ ): """simple docstring""" def __init__( self :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str ) -> int: '''simple docstring''' snake_case_ : str = [json.loads(lowerCAmelCase__ ) for l in open(lowerCAmelCase__ )] snake_case_ : Tuple = os.path.dirname(lowerCAmelCase__ ) snake_case_ : Any = tokenizer snake_case_ : List[Any] = labels snake_case_ : Union[str, Any] = len(lowerCAmelCase__ ) snake_case_ : str = max_seq_length snake_case_ : Tuple = transforms def __len__( self :Dict ) -> Any: '''simple docstring''' return len(self.data ) def __getitem__( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=lowerCAmelCase__ ) ) snake_case_, snake_case_, snake_case_ : str = sentence[0], sentence[1:-1], sentence[-1] snake_case_ : Tuple = sentence[: self.max_seq_length] snake_case_ : List[Any] = torch.zeros(self.n_classes ) snake_case_ : List[str] = 1 snake_case_ : str = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) snake_case_ : int = self.transforms(lowerCAmelCase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Any = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[int] = [len(row["sentence"] ) for row in batch] snake_case_, snake_case_ : Optional[Any] = len(__magic_name__ ), max(__magic_name__ ) snake_case_ : Any = torch.zeros(__magic_name__ ,__magic_name__ ,dtype=torch.long ) snake_case_ : List[Any] = torch.zeros(__magic_name__ ,__magic_name__ ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__magic_name__ ,__magic_name__ ) ): snake_case_ : Optional[int] = input_row["sentence"] snake_case_ : List[str] = 1 snake_case_ : Dict = torch.stack([row["image"] for row in batch] ) snake_case_ : Dict = torch.stack([row["label"] for row in batch] ) snake_case_ : int = torch.stack([row["image_start_token"] for row in batch] ) snake_case_ : List[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCAmelCase ( )-> List[str]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCAmelCase ( )-> str: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] ,std=[0.12_221_994, 0.12_145_835, 0.14_380_469] ,), ] )
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : str = logging.get_logger(__name__) class A_ (a_ ): """simple docstring""" a__ = ['''pixel_values'''] def __init__( self :Tuple , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Dict[str, int]] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ :Dict , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : str = size if size is not None else {"shortest_edge": 256} snake_case_ : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) snake_case_ : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Optional[int] = get_size_dict(lowerCAmelCase__ ) snake_case_ : str = do_resize snake_case_ : Optional[int] = size snake_case_ : Optional[int] = resample snake_case_ : Union[str, Any] = do_center_crop snake_case_ : List[str] = crop_size snake_case_ : Optional[int] = do_rescale snake_case_ : int = rescale_factor snake_case_ : str = do_normalize snake_case_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self :str , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :int , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ : Optional[Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :int , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Dict , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[int] = get_size_dict(lowerCAmelCase__ ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :float , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Union[str, Any] ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :str , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self :Tuple , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[float] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ :str , ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = size if size is not None else self.size snake_case_ : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) snake_case_ : Dict = resample if resample is not None else self.resample snake_case_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Optional[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : Dict = get_size_dict(lowerCAmelCase__ ) snake_case_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: snake_case_ : Any = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: snake_case_ : Any = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: snake_case_ : Tuple = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] snake_case_ : Any = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] snake_case_ : List[str] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
656
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" @property def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _A ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _A ( self :Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCAmelCase__ ) def _A ( self :Dict ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.dummy_uncond_unet snake_case_ : Optional[int] = DDIMScheduler() snake_case_ : Dict = self.dummy_vq_model snake_case_ : List[Any] = LDMPipeline(unet=lowerCAmelCase__ , vqvae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ldm.to(lowerCAmelCase__ ) ldm.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = ldm(generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="numpy" ).images snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : List[str] = ldm(generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="numpy" , return_dict=lowerCAmelCase__ )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) snake_case_ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Tuple = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(lowerCAmelCase__ ) ldm.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = torch.manual_seed(0 ) snake_case_ : Any = ldm(generator=lowerCAmelCase__ , num_inference_steps=5 , output_type="numpy" ).images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ : Any = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) snake_case_ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
656
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> bool: """simple docstring""" snake_case_ : Union[str, Any] = 0 for ch in input_str: snake_case_ : int = ord(__magic_name__ ) snake_case_ : Tuple = pow(2 ,__magic_name__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __lowerCamelCase : int = logging.get_logger(__name__) # General docstring __lowerCamelCase : str = '''PoolFormerConfig''' # Base docstring __lowerCamelCase : Tuple = '''sail/poolformer_s12''' __lowerCamelCase : int = [1, 512, 7, 7] # Image classification docstring __lowerCamelCase : Any = '''sail/poolformer_s12''' __lowerCamelCase : Any = '''tabby, tabby cat''' __lowerCamelCase : Any = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = 0.0 ,__magic_name__ = False )-> str: """simple docstring""" if drop_prob == 0.0 or not training: return input snake_case_ : List[Any] = 1 - drop_prob snake_case_ : Union[str, Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case_ : Any = keep_prob + torch.rand(__magic_name__ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize snake_case_ : Dict = input.div(__magic_name__ ) * random_tensor return output class A_ (nn.Module ): """simple docstring""" def __init__( self :List[str] , lowerCAmelCase__ :Optional[float] = None ) -> None: '''simple docstring''' super().__init__() snake_case_ : Optional[int] = drop_prob def _A ( self :List[str] , lowerCAmelCase__ :torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(lowerCAmelCase__ , self.drop_prob , self.training ) def _A ( self :Optional[Any] ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class A_ (nn.Module ): """simple docstring""" def __init__( self :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple=None ) -> Any: '''simple docstring''' super().__init__() snake_case_ : List[Any] = patch_size if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case_ : Union[str, Any] = stride if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (stride, stride) snake_case_ : Dict = padding if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (padding, padding) snake_case_ : Union[str, Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ ) snake_case_ : Optional[Any] = norm_layer(lowerCAmelCase__ ) if norm_layer else nn.Identity() def _A ( self :Tuple , lowerCAmelCase__ :int ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.projection(lowerCAmelCase__ ) snake_case_ : Dict = self.norm(lowerCAmelCase__ ) return embeddings class A_ (nn.GroupNorm ): """simple docstring""" def __init__( self :Optional[Any] , lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :Optional[Any] ) -> str: '''simple docstring''' super().__init__(1 , lowerCAmelCase__ , **lowerCAmelCase__ ) class A_ (nn.Module ): """simple docstring""" def __init__( self :List[Any] , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' super().__init__() snake_case_ : Any = nn.AvgPoolad(lowerCAmelCase__ , stride=1 , padding=pool_size // 2 , count_include_pad=lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int] ) -> Optional[int]: '''simple docstring''' return self.pool(lowerCAmelCase__ ) - hidden_states class A_ (nn.Module ): """simple docstring""" def __init__( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple ) -> Tuple: '''simple docstring''' super().__init__() snake_case_ : int = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) snake_case_ : Any = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) snake_case_ : Optional[Any] = PoolFormerDropPath(lowerCAmelCase__ ) if isinstance(config.hidden_act , lowerCAmelCase__ ): snake_case_ : List[str] = ACTaFN[config.hidden_act] else: snake_case_ : int = config.hidden_act def _A ( self :Optional[Any] , lowerCAmelCase__ :int ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.conva(lowerCAmelCase__ ) snake_case_ : Dict = self.act_fn(lowerCAmelCase__ ) snake_case_ : Optional[int] = self.drop(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = self.conva(lowerCAmelCase__ ) snake_case_ : int = self.drop(lowerCAmelCase__ ) return hidden_states class A_ (nn.Module ): """simple docstring""" def __init__( self :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' super().__init__() snake_case_ : str = PoolFormerPooling(lowerCAmelCase__ ) snake_case_ : Dict = PoolFormerOutput(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Any = PoolFormerGroupNorm(lowerCAmelCase__ ) snake_case_ : Any = PoolFormerGroupNorm(lowerCAmelCase__ ) # Useful for training neural nets snake_case_ : Optional[int] = PoolFormerDropPath(lowerCAmelCase__ ) if drop_path > 0.0 else nn.Identity() snake_case_ : Any = config.use_layer_scale if config.use_layer_scale: snake_case_ : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((lowerCAmelCase__) ) , requires_grad=lowerCAmelCase__ ) snake_case_ : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((lowerCAmelCase__) ) , requires_grad=lowerCAmelCase__ ) def _A ( self :Tuple , lowerCAmelCase__ :Any ) -> List[Any]: '''simple docstring''' if self.use_layer_scale: snake_case_ : str = self.pooling(self.before_norm(lowerCAmelCase__ ) ) snake_case_ : Tuple = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case_ : Tuple = hidden_states + self.drop_path(lowerCAmelCase__ ) snake_case_ : str = () snake_case_ : Optional[int] = self.output(self.after_norm(lowerCAmelCase__ ) ) snake_case_ : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case_ : Dict = hidden_states + self.drop_path(lowerCAmelCase__ ) snake_case_ : Dict = (output,) + outputs return outputs else: snake_case_ : List[str] = self.drop_path(self.pooling(self.before_norm(lowerCAmelCase__ ) ) ) # First residual connection snake_case_ : Optional[int] = pooling_output + hidden_states snake_case_ : Union[str, Any] = () # Second residual connection inside the PoolFormerOutput block snake_case_ : Tuple = self.drop_path(self.output(self.after_norm(lowerCAmelCase__ ) ) ) snake_case_ : Optional[int] = hidden_states + layer_output snake_case_ : List[Any] = (output,) + outputs return outputs class A_ (nn.Module ): """simple docstring""" def __init__( self :Union[str, Any] , lowerCAmelCase__ :int ) -> int: '''simple docstring''' super().__init__() snake_case_ : int = config # stochastic depth decay rule snake_case_ : int = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case_ : Optional[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case_ : List[Any] = nn.ModuleList(lowerCAmelCase__ ) # Transformer blocks snake_case_ : Dict = [] snake_case_ : List[Any] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case_ : Dict = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowerCAmelCase__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowerCAmelCase__ ) ) snake_case_ : int = nn.ModuleList(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :Tuple=True ) -> str: '''simple docstring''' snake_case_ : str = () if output_hidden_states else None snake_case_ : List[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case_, snake_case_ : str = layers # Get patch embeddings from hidden_states snake_case_ : Dict = embedding_layer(lowerCAmelCase__ ) # Send the embeddings through the blocks for _, blk in enumerate(lowerCAmelCase__ ): snake_case_ : List[str] = blk(lowerCAmelCase__ ) snake_case_ : Any = layer_outputs[0] if output_hidden_states: snake_case_ : Any = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ ) class A_ (a_ ): """simple docstring""" a__ = PoolFormerConfig a__ = '''poolformer''' a__ = '''pixel_values''' a__ = True def _A ( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _A ( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :str=False ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = value __lowerCamelCase : str = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowerCamelCase : Tuple = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , a_ , ) class A_ (a_ ): """simple docstring""" def __init__( self :Optional[Any] , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) snake_case_ : Optional[Any] = config snake_case_ : int = PoolFormerEncoder(lowerCAmelCase__ ) # Initialize weights and apply final processing self.post_init() def _A ( self :List[str] ) -> Tuple: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _A ( self :str , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' snake_case_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) snake_case_ : int = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) snake_case_ : List[str] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) class A_ (nn.Module ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ : Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def _A ( self :str , lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.dense(lowerCAmelCase__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , a_ , ) class A_ (a_ ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = config.num_labels snake_case_ : int = PoolFormerModel(lowerCAmelCase__ ) # Final norm snake_case_ : Optional[int] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case_ : Optional[int] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _A ( self :Dict , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' snake_case_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Tuple = self.poolformer( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) snake_case_ : Dict = outputs[0] snake_case_ : Optional[int] = self.classifier(self.norm(lowerCAmelCase__ ).mean([-2, -1] ) ) snake_case_ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ : Tuple = "single_label_classification" else: snake_case_ : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": snake_case_ : Optional[Any] = MSELoss() if self.num_labels == 1: snake_case_ : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ : Union[str, Any] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": snake_case_ : List[Any] = CrossEntropyLoss() snake_case_ : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ : Any = BCEWithLogitsLoss() snake_case_ : Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: snake_case_ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
656
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : int = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''rwkv''' a__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Any=50_277 , lowerCAmelCase__ :Optional[int]=1_024 , lowerCAmelCase__ :Tuple=4_096 , lowerCAmelCase__ :Optional[int]=32 , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :List[str]=1E-5 , lowerCAmelCase__ :Any=0 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :Optional[Any]=6 , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :str=True , **lowerCAmelCase__ :Optional[int] , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = vocab_size snake_case_ : str = context_length snake_case_ : int = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ : Tuple = layer_norm_epsilon snake_case_ : str = rescale_every snake_case_ : Dict = use_cache snake_case_ : Union[str, Any] = bos_token_id snake_case_ : int = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" assert column_title.isupper() snake_case_ : Optional[int] = 0 snake_case_ : List[Any] = len(__magic_name__ ) - 1 snake_case_ : List[str] = 0 while index >= 0: snake_case_ : int = (ord(column_title[index] ) - 64) * pow(26 ,__magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
656
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A_ (a_ ): """simple docstring""" a__ = '''xlm-roberta-xl''' def __init__( self :int , lowerCAmelCase__ :str=250_880 , lowerCAmelCase__ :Any=2_560 , lowerCAmelCase__ :Any=36 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Optional[int]=10_240 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Optional[Any]=514 , lowerCAmelCase__ :Tuple=1 , lowerCAmelCase__ :Union[str, Any]=0.0_2 , lowerCAmelCase__ :Any=1E-0_5 , lowerCAmelCase__ :Union[str, Any]=1 , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Tuple=2 , lowerCAmelCase__ :Union[str, Any]="absolute" , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Dict=None , **lowerCAmelCase__ :Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : Tuple = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Tuple = hidden_act snake_case_ : int = intermediate_size snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Any = initializer_range snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = position_embedding_type snake_case_ : Optional[Any] = use_cache snake_case_ : List[str] = classifier_dropout class A_ (a_ ): """simple docstring""" @property def _A ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
656
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCamelCase : str = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCamelCase : Dict = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowerCamelCase : int = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _A ( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] snake_case_ : List[str] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) snake_case_ : Any = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
1
'''simple docstring''' from __future__ import annotations __lowerCamelCase : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,)-> tuple[list[list[int]], list[list[int]]]: """simple docstring""" snake_case_ : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__magic_name__ ) ) ] # the reference grid snake_case_ : Optional[Any] = 1 snake_case_ : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__magic_name__ ) ) ] # the action grid snake_case_ : List[Any] = init[0] snake_case_ : List[Any] = init[1] snake_case_ : Any = 0 snake_case_ : Tuple = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ : Tuple = [[f, g, x, y]] snake_case_ : List[Any] = False # flag that is set when search is complete snake_case_ : Tuple = False # flag set if we can't find expand while not found and not resign: if len(__magic_name__ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ : Tuple = cell.pop() snake_case_ : List[str] = next_cell[2] snake_case_ : int = next_cell[3] snake_case_ : Optional[int] = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ : Tuple = True else: for i in range(len(__magic_name__ ) ): # to try out different valid actions snake_case_ : Optional[Any] = x + DIRECTIONS[i][0] snake_case_ : List[str] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__magic_name__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ : Dict = g + cost snake_case_ : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ : Union[str, Any] = 1 snake_case_ : Optional[Any] = i snake_case_ : Optional[Any] = [] snake_case_ : Any = goal[0] snake_case_ : Tuple = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ : Any = x - DIRECTIONS[action[x][y]][0] snake_case_ : Tuple = y - DIRECTIONS[action[x][y]][1] snake_case_ : Tuple = xa snake_case_ : Tuple = ya invpath.append([x, y] ) snake_case_ : Any = [] for i in range(len(__magic_name__ ) ): path.append(invpath[len(__magic_name__ ) - 1 - i] ) return path, action if __name__ == "__main__": __lowerCamelCase : Optional[int] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __lowerCamelCase : Any = [0, 0] # all coordinates are given in format [y,x] __lowerCamelCase : Optional[Any] = [len(grid) - 1, len(grid[0]) - 1] __lowerCamelCase : Any = 1 # the cost map which pushes the path closer to the goal __lowerCamelCase : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __lowerCamelCase : Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __lowerCamelCase : Dict = 99 __lowerCamelCase , __lowerCamelCase : Dict = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
656
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Any = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } snake_case_ : int = Dataset.from_dict(__magic_name__ ) return dataset class A_ (a_ ): """simple docstring""" def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = get_dataset() snake_case_ : Optional[int] = make_duplicate_clusters(lowerCAmelCase__ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = get_dataset() snake_case_, snake_case_ : List[Any] = deduplicate_dataset(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) print(lowerCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowerCAmelCase__ )
656
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Dict = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __lowerCamelCase : Tuple = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__magic_name__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
656
1
'''simple docstring''' __lowerCamelCase : Dict = range(2, 20 + 1) __lowerCamelCase : Optional[Any] = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase : dict[int, dict[int, list[list[int]]]] = {} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Dict = sum(a_i[j] for j in range(__magic_name__ ,len(__magic_name__ ) ) ) snake_case_ : Any = sum(a_i[j] * base[j] for j in range(min(len(__magic_name__ ) ,__magic_name__ ) ) ) snake_case_, snake_case_ : Any = 0, 0 snake_case_ : Union[str, Any] = n - i snake_case_ : str = memo.get(__magic_name__ ) if sub_memo is not None: snake_case_ : Tuple = sub_memo.get(__magic_name__ ) if jumps is not None and len(__magic_name__ ) > 0: # find and make the largest jump without going over snake_case_ : Any = -1 for _k in range(len(__magic_name__ ) - 1 ,-1 ,-1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ : Optional[int] = _k break if max_jump >= 0: snake_case_, snake_case_, snake_case_ : int = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ : Any = diff + c for j in range(min(__magic_name__ ,len(__magic_name__ ) ) ): snake_case_, snake_case_ : Dict = divmod(__magic_name__ ,10 ) if new_c > 0: add(__magic_name__ ,__magic_name__ ,__magic_name__ ) else: snake_case_ : Tuple = [] else: snake_case_ : Optional[Any] = {c: []} snake_case_ : Dict = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_, snake_case_ : Optional[int] = next_term(__magic_name__ ,k - 1 ,i + dn ,__magic_name__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_, snake_case_ : str = compute(__magic_name__ ,__magic_name__ ,i + dn ,__magic_name__ ) diff += _diff dn += terms_jumped snake_case_ : Optional[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ : Any = 0 while j < len(__magic_name__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__magic_name__ ,(diff, dn, k) ) return (diff, dn) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" if i >= n: return 0, i if k > len(__magic_name__ ): a_i.extend([0 for _ in range(k - len(__magic_name__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ : int = i snake_case_, snake_case_, snake_case_ : Optional[Any] = 0, 0, 0 for j in range(len(__magic_name__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ : str = ds_c + ds_b diff += addend snake_case_ : Union[str, Any] = 0 for j in range(__magic_name__ ): snake_case_ : Optional[Any] = a_i[j] + addend snake_case_, snake_case_ : Optional[Any] = divmod(__magic_name__ ,10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__magic_name__ ,__magic_name__ ,__magic_name__ ) return diff, i - start_i def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Union[str, Any]: """simple docstring""" for j in range(__magic_name__ ,len(__magic_name__ ) ): snake_case_ : Tuple = digits[j] + addend if s >= 10: snake_case_, snake_case_ : Optional[int] = divmod(__magic_name__ ,10 ) snake_case_ : str = addend // 10 + quotient else: snake_case_ : Optional[Any] = s snake_case_ : Optional[Any] = addend // 10 if addend == 0: break while addend > 0: snake_case_, snake_case_ : Optional[int] = divmod(__magic_name__ ,10 ) digits.append(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ = 10**15 )-> int: """simple docstring""" snake_case_ : List[str] = [1] snake_case_ : Optional[Any] = 1 snake_case_ : Any = 0 while True: snake_case_, snake_case_ : Optional[Any] = next_term(__magic_name__ ,20 ,i + dn ,__magic_name__ ) dn += terms_jumped if dn == n - i: break snake_case_ : Optional[Any] = 0 for j in range(len(__magic_name__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
656
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
1
'''simple docstring''' __lowerCamelCase : int = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __lowerCamelCase : int = frozenset(['''prompt''', '''negative_prompt''']) __lowerCamelCase : int = frozenset([]) __lowerCamelCase : str = frozenset(['''image''']) __lowerCamelCase : List[Any] = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) __lowerCamelCase : Optional[int] = frozenset(['''image''']) __lowerCamelCase : List[Any] = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __lowerCamelCase : Tuple = frozenset(['''prompt''', '''image''', '''negative_prompt''']) __lowerCamelCase : str = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __lowerCamelCase : str = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) __lowerCamelCase : str = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __lowerCamelCase : Any = frozenset(['''image''', '''mask_image''']) __lowerCamelCase : Any = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __lowerCamelCase : List[str] = frozenset(['''example_image''', '''image''', '''mask_image''']) __lowerCamelCase : str = frozenset(['''class_labels''']) __lowerCamelCase : Optional[int] = frozenset(['''class_labels''']) __lowerCamelCase : Optional[int] = frozenset(['''batch_size''']) __lowerCamelCase : int = frozenset([]) __lowerCamelCase : str = frozenset(['''batch_size''']) __lowerCamelCase : Tuple = frozenset([]) __lowerCamelCase : Optional[Any] = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __lowerCamelCase : Optional[Any] = frozenset(['''prompt''', '''negative_prompt''']) __lowerCamelCase : Any = frozenset(['''input_tokens''']) __lowerCamelCase : int = frozenset(['''input_tokens'''])
656
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : List[str] = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
656
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase : str = 128022 __lowerCamelCase : List[Any] = 128028 @require_sentencepiece class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MaMaaaTokenizer a__ = False a__ = False a__ = True def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case_ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Optional[int] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self :List[Any] , **lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _A ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = "</s>" snake_case_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def _A ( self :Optional[int] ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizer() snake_case_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case_ : Any = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , "This is a test" ) @slow def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): """simple docstring""" a__ = '''facebook/m2m100_418M''' a__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] a__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off a__ = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def _A ( cls :str ) -> int: '''simple docstring''' snake_case_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case_ : List[str] = 1 return cls def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _A ( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCAmelCase__ ) def _A ( self :Any ) -> Dict: '''simple docstring''' snake_case_ : List[str] = "en" snake_case_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : Dict = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ : List[str] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def _A ( self :Optional[Any] ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = "en" snake_case_ : Tuple = "fr" snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors="pt" ) snake_case_ : Dict = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ : int = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _A ( self :str ) -> int: '''simple docstring''' snake_case_ : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ : Tuple = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
656
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = KandinskyVaaInpaintPipeline a__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] a__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] a__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a__ = False @property def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return 32 @property def _A ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' return 32 @property def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' return self.time_input_dim @property def _A ( self :List[str] ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' return 100 @property def _A ( self :str ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : int = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case_ : Any = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _A ( self :Tuple ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self :Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self :List[str] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.dummy_unet snake_case_ : List[Any] = self.dummy_movq snake_case_ : Dict = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) snake_case_ : Any = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str]=0 ) -> List[str]: '''simple docstring''' snake_case_ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image snake_case_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) snake_case_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Tuple = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((256, 256) ) # create mask snake_case_ : Dict = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : Union[str, Any] = 0 if str(lowerCAmelCase__ ).startswith("mps" ): snake_case_ : Dict = torch.manual_seed(lowerCAmelCase__ ) else: snake_case_ : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = "cpu" snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : Optional[int] = self.pipeline_class(**lowerCAmelCase__ ) snake_case_ : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) snake_case_ : Any = output.images snake_case_ : Dict = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Dict = image[0, -3:, -3:, -1] snake_case_ : List[str] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _A ( self :str ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :int ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :Optional[int] ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) snake_case_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case_ : int = np.ones((768, 768) , dtype=np.floataa ) snake_case_ : Optional[Any] = 0 snake_case_ : Dict = "a hat" snake_case_ : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) snake_case_ : Optional[int] = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) snake_case_ : Union[str, Any] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_, snake_case_ : Union[str, Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() snake_case_ : List[Any] = pipeline( image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
656
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger('''transformers.models.speecht5''') def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" hf_model.apply_weight_norm() snake_case_ : Union[str, Any] = checkpoint["input_conv.weight_g"] snake_case_ : List[Any] = checkpoint["input_conv.weight_v"] snake_case_ : Optional[int] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): snake_case_ : Optional[Any] = checkpoint[F'''upsamples.{i}.1.weight_g'''] snake_case_ : Optional[Any] = checkpoint[F'''upsamples.{i}.1.weight_v'''] snake_case_ : Tuple = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case_ : Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] snake_case_ : List[Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] snake_case_ : Union[str, Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] snake_case_ : Dict = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] snake_case_ : List[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] snake_case_ : int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] snake_case_ : int = checkpoint["output_conv.1.weight_g"] snake_case_ : Dict = checkpoint["output_conv.1.weight_v"] snake_case_ : Optional[Any] = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__=None ,__magic_name__=None ,)-> Dict: """simple docstring""" if config_path is not None: snake_case_ : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__magic_name__ ) else: snake_case_ : List[Any] = SpeechTaHifiGanConfig() snake_case_ : List[str] = SpeechTaHifiGan(__magic_name__ ) snake_case_ : List[Any] = torch.load(__magic_name__ ) load_weights(orig_checkpoint["model"]["generator"] ,__magic_name__ ,__magic_name__ ) snake_case_ : Union[str, Any] = np.load(__magic_name__ ) snake_case_ : int = stats[0].reshape(-1 ) snake_case_ : Optional[Any] = stats[1].reshape(-1 ) snake_case_ : Any = torch.from_numpy(__magic_name__ ).float() snake_case_ : int = torch.from_numpy(__magic_name__ ).float() model.save_pretrained(__magic_name__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
656
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : list[list[str]] = [[] for _ in range(__magic_name__ )] snake_case_ : Optional[int] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(__magic_name__ ) <= key: return input_string for position, character in enumerate(__magic_name__ ): snake_case_ : Optional[int] = position % (lowest * 2) # puts it in bounds snake_case_ : int = min(__magic_name__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__magic_name__ ) snake_case_ : Union[str, Any] = ["".join(__magic_name__ ) for row in temp_grid] snake_case_ : Optional[int] = "".join(__magic_name__ ) return output_string def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : Union[str, Any] = [] snake_case_ : Any = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string snake_case_ : list[list[str]] = [[] for _ in range(__magic_name__ )] # generates template for position in range(len(__magic_name__ ) ): snake_case_ : int = position % (lowest * 2) # puts it in bounds snake_case_ : str = min(__magic_name__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) snake_case_ : Optional[int] = 0 for row in temp_grid: # fills in the characters snake_case_ : Any = input_string[counter : counter + len(__magic_name__ )] grid.append(list(__magic_name__ ) ) counter += len(__magic_name__ ) snake_case_ : Dict = "" # reads as zigzag for position in range(len(__magic_name__ ) ): snake_case_ : int = position % (lowest * 2) # puts it in bounds snake_case_ : Union[str, Any] = min(__magic_name__ ,lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __UpperCAmelCase ( __magic_name__ )-> dict[int, str]: """simple docstring""" snake_case_ : int = {} for key_guess in range(1 ,len(__magic_name__ ) ): # tries every key snake_case_ : Union[str, Any] = decrypt(__magic_name__ ,__magic_name__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = MgpstrTokenizer a__ = False a__ = {} a__ = False def _A ( self :List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' snake_case_ : Dict = "tester" snake_case_ : Tuple = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _A ( self :Dict ) -> str: '''simple docstring''' pass def _A ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _A ( self :int ) -> Dict: '''simple docstring''' pass
656
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) # TODO: upload to AWS __lowerCamelCase : Tuple = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class A_ (a_ ): """simple docstring""" a__ = '''retribert''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=30_522 , lowerCAmelCase__ :Any=768 , lowerCAmelCase__ :Tuple=8 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Any=3_072 , lowerCAmelCase__ :Union[str, Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Any=512 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Tuple=0.0_2 , lowerCAmelCase__ :List[Any]=1E-1_2 , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Dict=128 , lowerCAmelCase__ :Optional[int]=0 , **lowerCAmelCase__ :List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ : Any = vocab_size snake_case_ : str = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Optional[Any] = hidden_act snake_case_ : str = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : List[str] = layer_norm_eps snake_case_ : List[str] = share_encoders snake_case_ : Dict = projection_dim
656
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__magic_name__ ,__magic_name__ ) ) ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: snake_case_ : int = ( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__magic_name__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case_ : Dict = ( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__magic_name__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: snake_case_ : Dict = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__magic_name__ ) snake_case_ : Optional[int] = [] for value in value_array: snake_case_ : List[str] = euclidean(__magic_name__ ,dataset[0] ) snake_case_ : int = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case_ : Optional[Any] = euclidean(__magic_name__ ,__magic_name__ ) if dist > temp_dist: snake_case_ : Tuple = temp_dist snake_case_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> float: """simple docstring""" return np.dot(__magic_name__ ,__magic_name__ ) / (norm(__magic_name__ ) * norm(__magic_name__ )) if __name__ == "__main__": import doctest doctest.testmod()
656
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowerCamelCase : Union[str, Any] = ['''bert-base-uncased''', '''bert-base-cased'''] __lowerCamelCase : Optional[int] = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class A_ (tf.keras.Model ): """simple docstring""" def __init__( self :int , lowerCAmelCase__ :Optional[int] ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : int = tokenizer snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = TFAutoModel.from_config(lowerCAmelCase__ ) def _A ( self :Optional[int] , lowerCAmelCase__ :str ) -> str: '''simple docstring''' snake_case_ : Dict = self.tokenizer(lowerCAmelCase__ ) snake_case_ : Tuple = self.bert(**lowerCAmelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : str = [ BertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false snake_case_ : Dict = [TFBertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCAmelCase__ , use_fast_bert_tokenizer=lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case_ : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] snake_case_ : List[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _A ( self :Tuple ) -> Tuple: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): snake_case_ : List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding="longest" ) snake_case_ : Dict = tf_tokenizer(lowerCAmelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _A ( self :Optional[int] ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case_ : Optional[Any] = tf_tokenizer(self.paired_sentences ) snake_case_ : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case_ : Any = tf.function(lowerCAmelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): snake_case_ : Optional[Any] = tf.constant(lowerCAmelCase__ ) snake_case_ : List[Any] = compiled_tokenizer(lowerCAmelCase__ ) snake_case_ : List[str] = tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _A ( self :int ) -> Optional[int]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case_ : Optional[int] = ModelToSave(tokenizer=lowerCAmelCase__ ) snake_case_ : str = tf.convert_to_tensor(self.test_sentences ) snake_case_ : Dict = model(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case_ : Optional[int] = Path(lowerCAmelCase__ ) / "saved.model" model.save(lowerCAmelCase__ ) snake_case_ : Dict = tf.keras.models.load_model(lowerCAmelCase__ ) snake_case_ : str = loaded_model(lowerCAmelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
656
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : int = [1] for i in range(2 ,__magic_name__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" snake_case_ : int = [] snake_case_ : Any = list(range(__magic_name__ ) ) # Find permutation while factorials: snake_case_ : Tuple = factorials.pop() snake_case_, snake_case_ : int = divmod(__magic_name__ ,__magic_name__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
656
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[Any] = state_dict.pop(__magic_name__ ) snake_case_ : Any = val def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Optional[Any] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : int = value else: snake_case_ : int = value return new_state_dict def __UpperCAmelCase ( __magic_name__ ,__magic_name__=False )-> Optional[int]: """simple docstring""" snake_case_ : str = "" if is_panoptic: snake_case_ : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : Optional[Any] = in_proj_weight[256:512, :] snake_case_ : Optional[int] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : str = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" snake_case_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Optional[Any] = Image.open(requests.get(__magic_name__ ,stream=__magic_name__ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ : Optional[Any] = "resnet101" if "dc5" in model_name: snake_case_ : List[str] = True snake_case_ : Tuple = "panoptic" in model_name if is_panoptic: snake_case_ : List[Any] = 250 else: snake_case_ : Optional[Any] = 91 snake_case_ : Optional[int] = "huggingface/label-files" snake_case_ : Dict = "coco-detection-id2label.json" snake_case_ : List[Any] = json.load(open(hf_hub_download(__magic_name__ ,__magic_name__ ,repo_type="dataset" ) ,"r" ) ) snake_case_ : Optional[int] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case_ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" snake_case_ : str = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : int = image_processor(images=__magic_name__ ,return_tensors="pt" ) snake_case_ : Union[str, Any] = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case_ : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" ,__magic_name__ ,pretrained=__magic_name__ ).eval() snake_case_ : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ : Any = "conditional_detr." + src rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Tuple = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ,is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : int = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : Tuple = state_dict.pop(__magic_name__ ) snake_case_ : Any = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case_ : Union[str, Any] = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : Any = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[int] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion snake_case_ : Dict = conditional_detr(__magic_name__ ) snake_case_ : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
656
1
'''simple docstring''' def __UpperCAmelCase ( )-> int: """simple docstring""" return 1 def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ = 200 )-> int: """simple docstring""" return two_pound(__magic_name__ ) if __name__ == "__main__": print(solution(int(input().strip())))
656
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''bloom''' a__ = ['''past_key_values'''] a__ = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=250_880 , lowerCAmelCase__ :List[str]=64 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=1 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :Tuple=0.0 , lowerCAmelCase__ :Optional[Any]=1 , lowerCAmelCase__ :Optional[int]=False , **lowerCAmelCase__ :str , ) -> Dict: '''simple docstring''' snake_case_ : str = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : Any = kwargs.pop("n_embed" , lowerCAmelCase__ ) snake_case_ : List[Any] = hidden_size if n_embed is None else n_embed snake_case_ : str = n_layer snake_case_ : Optional[Any] = n_head snake_case_ : int = layer_norm_epsilon snake_case_ : Dict = initializer_range snake_case_ : Tuple = use_cache snake_case_ : Any = pretraining_tp snake_case_ : Any = apply_residual_connection_post_layernorm snake_case_ : List[Any] = hidden_dropout snake_case_ : Dict = attention_dropout snake_case_ : Union[str, Any] = bos_token_id snake_case_ : List[str] = eos_token_id snake_case_ : Any = slow_but_exact super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) class A_ (a_ ): """simple docstring""" a__ = version.parse('''1.12''' ) def __init__( self :Optional[int] , lowerCAmelCase__ :PretrainedConfig , lowerCAmelCase__ :str = "default" , lowerCAmelCase__ :List[PatchingSpec] = None , lowerCAmelCase__ :bool = False , ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCAmelCase__ ): # TODO: how to do that better? snake_case_ : List[Any] = 0 @property def _A ( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case_ : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" , inverted_values_shape=lowerCAmelCase__ ) snake_case_ : int = {0: "batch", 1: "past_sequence + sequence"} else: snake_case_ : int = {0: "batch", 1: "sequence"} return common_inputs @property def _A ( self :str ) -> int: '''simple docstring''' return self._config.n_layer @property def _A ( self :int ) -> int: '''simple docstring''' return self._config.n_head @property def _A ( self :Tuple ) -> float: '''simple docstring''' return 1E-3 def _A ( self :Optional[int] , lowerCAmelCase__ :"PreTrainedTokenizer" , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : int = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() snake_case_ : Any = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_, snake_case_ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case_ : Any = seqlen + 2 snake_case_ : Union[str, Any] = self._config.hidden_size // self.num_attention_heads snake_case_ : str = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case_ : str = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case_ : Dict = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] snake_case_ : str = common_inputs["attention_mask"] if self.use_past: snake_case_ : Any = ordered_inputs["attention_mask"].dtype snake_case_ : Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def _A ( self :Optional[int] ) -> int: '''simple docstring''' return 13
656
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ (unittest.TestCase ): """simple docstring""" a__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = ZeroShotClassificationPipeline( model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # No kwarg snake_case_ : List[Any] = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) snake_case_ : int = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : Optional[int] = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) snake_case_ : str = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(lowerCAmelCase__ , {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case_ : Dict = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(1 ) ] , ) snake_case_ : Tuple = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( lowerCAmelCase__ , [ {"sequence": ANY(lowerCAmelCase__ ), "labels": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )], "scores": [ANY(lowerCAmelCase__ ), ANY(lowerCAmelCase__ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier(lowerCAmelCase__ , candidate_labels="politics" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(lowerCAmelCase__ ): classifier("Who are you voting for in 2020?" , candidate_labels=lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(lowerCAmelCase__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=lowerCAmelCase__ , ) self.run_entailment_id(lowerCAmelCase__ ) def _A ( self :List[Any] , lowerCAmelCase__ :Pipeline ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = zero_shot_classifier.model.config snake_case_ : Optional[int] = config.labelaid snake_case_ : Tuple = zero_shot_classifier.entailment_id snake_case_ : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case_ : Tuple = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case_ : str = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case_ : List[str] = original_labelaid self.assertEqual(lowerCAmelCase__ , zero_shot_classifier.entailment_id ) @require_torch def _A ( self :Tuple ) -> Any: '''simple docstring''' snake_case_ : List[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) snake_case_ : int = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) snake_case_ : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _A ( self :Union[str, Any] ) -> int: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) snake_case_ : str = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _A ( self :List[str] ) -> str: '''simple docstring''' snake_case_ : int = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) snake_case_ : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) snake_case_ : Tuple = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
656
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Dict = state_dict.pop(__magic_name__ ) snake_case_ : List[Any] = val def __UpperCAmelCase ( __magic_name__ )-> List[str]: """simple docstring""" snake_case_ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ : Any = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) snake_case_ : List[Any] = value else: snake_case_ : Dict = value return new_state_dict def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : str = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Tuple = in_proj_weight[:256, :] snake_case_ : str = in_proj_bias[:256] snake_case_ : Dict = in_proj_weight[256:512, :] snake_case_ : Optional[Any] = in_proj_bias[256:512] snake_case_ : Optional[int] = in_proj_weight[-256:, :] snake_case_ : Tuple = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case_ : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ : Any = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : int = in_proj_weight[:256, :] snake_case_ : List[Any] = in_proj_bias[:256] snake_case_ : List[Any] = in_proj_weight[256:512, :] snake_case_ : List[str] = in_proj_bias[256:512] snake_case_ : Dict = in_proj_weight[-256:, :] snake_case_ : int = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention snake_case_ : Optional[int] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) snake_case_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case_ : int = in_proj_weight_cross_attn[:256, :] snake_case_ : Optional[Any] = in_proj_bias_cross_attn[:256] snake_case_ : Any = in_proj_weight_cross_attn[256:512, :] snake_case_ : Optional[int] = in_proj_bias_cross_attn[256:512] snake_case_ : Optional[Any] = in_proj_weight_cross_attn[-256:, :] snake_case_ : Any = in_proj_bias_cross_attn[-256:] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" snake_case_, snake_case_ : Optional[int] = image.size snake_case_ : Dict = max(__magic_name__ ,__magic_name__ ) snake_case_ : Optional[int] = 800 if "detection" in checkpoint_url else 1000 snake_case_ : Optional[int] = target_max_size / current_max_size snake_case_ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = F.to_tensor(__magic_name__ ) snake_case_ : List[Any] = F.normalize(__magic_name__ ,mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" logger.info("Converting model..." ) # load original state dict snake_case_ : str = torch.hub.load_state_dict_from_url(__magic_name__ ,map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Dict = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : Tuple = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case_ : str = state_dict.pop(__magic_name__ ) snake_case_ : int = val # create HuggingFace model and load state dict snake_case_ : List[str] = TableTransformerConfig( backbone="resnet18" ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: snake_case_ : str = 15 snake_case_ : Tuple = 2 snake_case_ : Any = {0: "table", 1: "table rotated"} snake_case_ : List[str] = idalabel snake_case_ : Optional[int] = {v: k for k, v in idalabel.items()} else: snake_case_ : int = 125 snake_case_ : List[Any] = 6 snake_case_ : str = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } snake_case_ : Any = idalabel snake_case_ : int = {v: k for k, v in idalabel.items()} snake_case_ : List[str] = DetrImageProcessor( format="coco_detection" ,max_size=800 if "detection" in checkpoint_url else 1000 ) snake_case_ : Optional[Any] = TableTransformerForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # verify our conversion snake_case_ : Dict = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" snake_case_ : List[str] = hf_hub_download(repo_id="nielsr/example-pdf" ,repo_type="dataset" ,filename=__magic_name__ ) snake_case_ : Any = Image.open(__magic_name__ ).convert("RGB" ) snake_case_ : Optional[int] = normalize(resize(__magic_name__ ,__magic_name__ ) ).unsqueeze(0 ) snake_case_ : Optional[Any] = model(__magic_name__ ) if "detection" in checkpoint_url: snake_case_ : Optional[Any] = (1, 15, 3) snake_case_ : Union[str, Any] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) snake_case_ : int = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: snake_case_ : Any = (1, 125, 7) snake_case_ : Dict = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) snake_case_ : Optional[Any] = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,__magic_name__ ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,__magic_name__ ,atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) snake_case_ : str = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(__magic_name__ ) image_processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCamelCase : Dict = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
656
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) __lowerCamelCase : List[str] = ['''names''', '''prefix'''] __lowerCamelCase : int = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __lowerCamelCase : str = ['''encoding_errors''', '''on_bad_lines'''] __lowerCamelCase : Optional[Any] = ['''date_format'''] @dataclass class A_ (datasets.BuilderConfig ): """simple docstring""" a__ = "," a__ = None a__ = "infer" a__ = None a__ = None a__ = None a__ = None a__ = None a__ = True a__ = None a__ = None a__ = None a__ = None a__ = False a__ = None a__ = None a__ = None a__ = True a__ = True a__ = False a__ = True a__ = None a__ = "." a__ = None a__ = '"' a__ = 0 a__ = None a__ = None a__ = None a__ = None a__ = True a__ = True a__ = 0 a__ = True a__ = False a__ = None a__ = 10000 a__ = None a__ = "strict" a__ = "error" a__ = None def _A ( self :List[str] ) -> Any: '''simple docstring''' if self.delimiter is not None: snake_case_ : Tuple = self.delimiter if self.column_names is not None: snake_case_ : List[Any] = self.column_names @property def _A ( self :Optional[Any] ) -> int: '''simple docstring''' snake_case_ : Optional[int] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ (datasets.ArrowBasedBuilder ): """simple docstring""" a__ = CsvConfig def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _A ( self :Tuple , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): snake_case_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : List[str] = [files] snake_case_ : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : str = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ : str = [files] snake_case_ : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _A ( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: snake_case_ : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast snake_case_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _A ( self :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case_ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): snake_case_ : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): snake_case_ : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
656
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=None ,__magic_name__="no" ,__magic_name__="29500" )-> Optional[int]: """simple docstring""" snake_case_ : str = False snake_case_ : int = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): snake_case_ : Any = True elif "IPython" in sys.modules: snake_case_ : Union[str, Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: snake_case_ : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,__magic_name__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: snake_case_ : Tuple = 8 snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__magic_name__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port=__magic_name__ ,mixed_precision=__magic_name__ ): snake_case_ : Optional[int] = PrepareForLaunch(__magic_name__ ,distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case_ : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__=() ,__magic_name__=2 )-> Dict: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__magic_name__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): snake_case_ : Any = PrepareForLaunch(__magic_name__ ,debug=__magic_name__ ) start_processes(__magic_name__ ,args=__magic_name__ ,nprocs=__magic_name__ ,start_method="fork" )
656
1
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A_ : """simple docstring""" def __init__( self :Dict ) -> List[str]: '''simple docstring''' snake_case_ : int = {} def _A ( self :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=1 ) -> Any: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: snake_case_ : Optional[int] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): snake_case_ : Dict = [] def _A ( self :List[Any] ) -> Optional[int]: '''simple docstring''' return list(self.graph ) def _A ( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _A ( self :List[str] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :str=-1 ) -> str: '''simple docstring''' if s == d: return [] snake_case_ : str = [] snake_case_ : Optional[int] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Tuple , lowerCAmelCase__ :int=-1 ) -> int: '''simple docstring''' if c == -1: snake_case_ : Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Tuple , lowerCAmelCase__ :Dict=-2 ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : Tuple = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :List[str] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _A ( self :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Tuple , lowerCAmelCase__ :List[str]=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = [] if s == -2: snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: snake_case_ : int = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _A ( self :Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Optional[int] = -2 snake_case_ : Any = [] snake_case_ : List[Any] = s snake_case_ : int = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[str] = s snake_case_ : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : str = -2 snake_case_ : List[str] = [] snake_case_ : List[Any] = s snake_case_ : List[str] = False snake_case_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Tuple = True if len(lowerCAmelCase__ ) != 0: snake_case_ : List[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : int = s snake_case_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[int]=-2 , lowerCAmelCase__ :Tuple=-1 ) -> str: '''simple docstring''' snake_case_ : Optional[int] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Optional[Any] = time() return end - begin def _A ( self :Any , lowerCAmelCase__ :Tuple=-2 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Any = time() return end - begin class A_ : """simple docstring""" def __init__( self :Tuple ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = {} def _A ( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=1 ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist snake_case_ : str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist snake_case_ : List[str] = [[w, u]] def _A ( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> int: '''simple docstring''' if s == d: return [] snake_case_ : Any = [] snake_case_ : Dict = [] if s == -2: snake_case_ : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _A ( self :Optional[int] , lowerCAmelCase__ :str=-1 ) -> List[Any]: '''simple docstring''' if c == -1: snake_case_ : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): snake_case_ : str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _A ( self :Any , lowerCAmelCase__ :Optional[Any]=-2 ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = deque() snake_case_ : Optional[Any] = [] if s == -2: snake_case_ : List[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: snake_case_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _A ( self :str , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.graph[u] ) def _A ( self :Union[str, Any] ) -> Dict: '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : Optional[int] = [] snake_case_ : Tuple = s snake_case_ : Optional[Any] = False snake_case_ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[int] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : List[Any] = s snake_case_ : Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = [] snake_case_ : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) snake_case_ : Tuple = -2 snake_case_ : int = [] snake_case_ : int = s snake_case_ : Optional[Any] = False snake_case_ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: snake_case_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): snake_case_ : Tuple = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) snake_case_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: snake_case_ : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: snake_case_ : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = s snake_case_ : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _A ( self :Any ) -> Tuple: '''simple docstring''' return list(self.graph ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Tuple=-2 , lowerCAmelCase__ :Optional[int]=-1 ) -> str: '''simple docstring''' snake_case_ : List[str] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : List[Any] = time() return end - begin def _A ( self :Union[str, Any] , lowerCAmelCase__ :List[Any]=-2 ) -> int: '''simple docstring''' snake_case_ : List[str] = time() self.bfs(lowerCAmelCase__ ) snake_case_ : Tuple = time() return end - begin
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> set: """simple docstring""" snake_case_ : int = set() # edges = list of graph's edges snake_case_ : Optional[Any] = get_edges(__magic_name__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case_, snake_case_ : List[Any] = edges.pop() chosen_vertices.add(__magic_name__ ) chosen_vertices.add(__magic_name__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__magic_name__ ) return chosen_vertices def __UpperCAmelCase ( __magic_name__ )-> set: """simple docstring""" snake_case_ : Optional[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
656
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCamelCase : List[str] = re.compile(R'''\s+''') def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Optional[Any] = [len(__magic_name__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def __UpperCAmelCase ( __magic_name__ )-> int: """simple docstring""" snake_case_ : Optional[int] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 )-> Tuple: """simple docstring""" snake_case_ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Optional[Any] = example["content"].splitlines() for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=5 ,__magic_name__=0.05 )-> Optional[Any]: """simple docstring""" snake_case_ : str = ["unit tests", "test file", "configuration file"] snake_case_ : int = example["content"].splitlines() snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 # first test for _, line in zip(range(__magic_name__ ) ,__magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : Tuple = example["content"].count("\n" ) snake_case_ : int = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : List[Any] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( __magic_name__ ,__magic_name__=4 )-> Optional[int]: """simple docstring""" snake_case_ : Tuple = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = tokenizer(example["content"] ,truncation=__magic_name__ )["input_ids"] snake_case_ : int = len(example["content"] ) / len(__magic_name__ ) return {"ratio": ratio} def __UpperCAmelCase ( __magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Tuple: """simple docstring""" if not check_uniques(__magic_name__ ,__magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( __magic_name__ )-> Dict: """simple docstring""" with open(__magic_name__ ,"rb" ) as f_in: with gzip.open(str(__magic_name__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ ,__magic_name__ ) os.unlink(__magic_name__ ) # Settings __lowerCamelCase : List[Any] = HfArgumentParser(PreprocessingArguments) __lowerCamelCase : str = parser.parse_args() if args.num_workers is None: __lowerCamelCase : List[Any] = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCamelCase : Any = time.time() __lowerCamelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Any = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCamelCase : Any = set(ds.unique('''hash''')) __lowerCamelCase : Optional[int] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Tuple = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCamelCase : List[str] = time.time() __lowerCamelCase , __lowerCamelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCamelCase : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) __lowerCamelCase : List[str] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCamelCase : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCamelCase : Union[str, Any] = str(data_dir / f'''file-{file_number+1:012}.json''') __lowerCamelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
656
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ = "The quick brown fox jumps over the lazy dog" ,)-> bool: """simple docstring""" snake_case_ : Any = set() # Replace all the whitespace in our sentence snake_case_ : Any = input_str.replace(" " ,"" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__magic_name__ ) == 26 def __UpperCAmelCase ( __magic_name__ = "The quick brown fox jumps over the lazy dog" ,)-> bool: """simple docstring""" snake_case_ : int = [False] * 26 for char in input_str: if char.islower(): snake_case_ : Union[str, Any] = True elif char.isupper(): snake_case_ : str = True return all(__magic_name__ ) def __UpperCAmelCase ( __magic_name__ = "The quick brown fox jumps over the lazy dog" ,)-> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __UpperCAmelCase ( )-> None: """simple docstring""" from timeit import timeit snake_case_ : Any = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" ,setup=__magic_name__ ) ) print(timeit("is_pangram_faster()" ,setup=__magic_name__ ) ) print(timeit("is_pangram_fastest()" ,setup=__magic_name__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __lowerCamelCase : Optional[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' __lowerCamelCase : str = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' __lowerCamelCase : Dict = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" snake_case_ : Dict = simple_accuracy(__magic_name__ ,__magic_name__ ) snake_case_ : Union[str, Any] = float(fa_score(y_true=__magic_name__ ,y_pred=__magic_name__ ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Optional[int]: """simple docstring""" snake_case_ : List[str] = float(pearsonr(__magic_name__ ,__magic_name__ )[0] ) snake_case_ : Tuple = float(spearmanr(__magic_name__ ,__magic_name__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :int ) -> Union[str, Any]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def _A ( self :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
656
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : Optional[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Union[str, Any] = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Any = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Tuple = None # source code of `config_class` snake_case_ : List[Any] = inspect.getsource(__magic_name__ ) snake_case_ : List[str] = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): snake_case_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ : str = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case_ : Dict = ckpt_name break return checkpoint def __UpperCAmelCase ( )-> Dict: """simple docstring""" snake_case_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ : str = get_checkpoint_from_config_class(__magic_name__ ) snake_case_ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case_ : Tuple = "\n".join(sorted(__magic_name__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
656
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''transfo-xl''' a__ = ['''mems'''] a__ = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :Union[str, Any] , lowerCAmelCase__ :int=267_735 , lowerCAmelCase__ :Tuple=[20_000, 40_000, 200_000] , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :int=1_024 , lowerCAmelCase__ :int=16 , lowerCAmelCase__ :int=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Optional[int]=4 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :List[str]=1_600 , lowerCAmelCase__ :int=1_000 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :str=-1 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[str]="normal" , lowerCAmelCase__ :Any=0.0_1 , lowerCAmelCase__ :List[str]=0.0_1 , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Tuple=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :List[Any] , ) -> str: '''simple docstring''' snake_case_ : List[str] = vocab_size snake_case_ : List[Any] = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: snake_case_ : Tuple = [False] + [True] * len(self.cutoffs ) else: snake_case_ : int = [False] + [False] * len(self.cutoffs ) snake_case_ : Dict = d_model snake_case_ : Union[str, Any] = d_embed snake_case_ : List[Any] = d_head snake_case_ : List[Any] = d_inner snake_case_ : str = div_val snake_case_ : Optional[Any] = pre_lnorm snake_case_ : List[Any] = n_layer snake_case_ : Tuple = n_head snake_case_ : List[Any] = mem_len snake_case_ : Union[str, Any] = same_length snake_case_ : Union[str, Any] = attn_type snake_case_ : Optional[Any] = clamp_len snake_case_ : List[str] = sample_softmax snake_case_ : List[Any] = adaptive snake_case_ : Any = dropout snake_case_ : List[str] = dropatt snake_case_ : int = untie_r snake_case_ : Dict = init snake_case_ : List[Any] = init_range snake_case_ : Tuple = proj_init_std snake_case_ : Union[str, Any] = init_std snake_case_ : Union[str, Any] = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _A ( self :Tuple ) -> str: '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _A ( self :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
656
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : int = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class A_ (a_ ): """simple docstring""" a__ = '''cvt''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Any=[7, 3, 3] , lowerCAmelCase__ :Dict=[4, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ :Any=[64, 192, 384] , lowerCAmelCase__ :List[str]=[1, 3, 6] , lowerCAmelCase__ :str=[1, 2, 10] , lowerCAmelCase__ :Any=[4.0, 4.0, 4.0] , lowerCAmelCase__ :int=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ :Dict=[0.0, 0.0, 0.1] , lowerCAmelCase__ :List[Any]=[True, True, True] , lowerCAmelCase__ :List[Any]=[False, False, True] , lowerCAmelCase__ :Dict=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__ :Any=[3, 3, 3] , lowerCAmelCase__ :Tuple=[1, 1, 1] , lowerCAmelCase__ :Optional[int]=[2, 2, 2] , lowerCAmelCase__ :Union[str, Any]=[1, 1, 1] , lowerCAmelCase__ :Any=[1, 1, 1] , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=1E-1_2 , **lowerCAmelCase__ :Optional[Any] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) snake_case_ : int = num_channels snake_case_ : int = patch_sizes snake_case_ : Optional[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Tuple = embed_dim snake_case_ : Optional[int] = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Optional[int] = mlp_ratio snake_case_ : Tuple = attention_drop_rate snake_case_ : str = drop_rate snake_case_ : Tuple = drop_path_rate snake_case_ : Any = qkv_bias snake_case_ : Union[str, Any] = cls_token snake_case_ : int = qkv_projection_method snake_case_ : Any = kernel_qkv snake_case_ : Union[str, Any] = padding_kv snake_case_ : str = stride_kv snake_case_ : Dict = padding_q snake_case_ : Tuple = stride_q snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps
656
1